北师大版小学数学专题讲解1

合集下载

北师大版六年级数学找单位一专题讲解分数混合

北师大版六年级数学找单位一专题讲解分数混合
2、桃树棵树相当于梨树的 ,橘子树的 棵数是梨树的 ,请找出这道题的单位 一。
二、找单位“1”的方法和步骤:
1.找分率句(题目中不带单位的分数的那句话)
2.找关键字或词: (1)找关键字或词:“比”、“占”、“是”、“相当于” 后面的量是单位“1”;分率“的”字前面的量是单位 “1
(2)当“比”( “是”、“占”、“相当于”)和 “的”同时出现时,以“的”优先。
分数混合运算复习 内容
新社学校603班
3 4
把一个整体平均分4份,占了
其中的3份。
对应量
3份表示:三个磁铁
一、分数应用题主要讨论的是以下三者之间的关系 1.分率
2.标准量(单位“1”的量)
3.比较量:解答分数应用题时,通常把题目中与标
准量比较的那个数,称为比较量(也叫分率对应的
量)
男生人数 是
比较量
1 如:甲数的 4 是 20
1、男生人数比女生人数多全班的

看作单位“1”。
3、鸭子数量占鸡 。单位“1”


2、水结成冰后体积增加了 ,

看作单位“1”
2、分量和分率
1、关于分量和分率 ⑴ 一根绳子长度的½ 米。 ⑵ 一根绳子的长度是 ½ 。
一条绳子原来长为8米,现在增 加了½ ,现在绳子长为多少 ( )米。
一条绳子原来长为8米,现在增 加了½ 米,现在绳子长为多少 ( )米。
做一做
先找出下面各题中的单位“1”,再写出数量关系
式,最后列式计算。
2
1. 六(2)班有男生30人,女生人数占男生的 3,女
生有多少人?
2.科技书有180本,故事书的本数相当于科技书的
8 5
故事书有多少本?

北师大版六年级数学上册第三章《观察物体》知识讲解及考前押题卷精讲(一)

北师大版六年级数学上册第三章《观察物体》知识讲解及考前押题卷精讲(一)

是彬彬从右侧面看到的图形.
【点评】此题考查了从不同方向观察物体和几何体,锻炼了学生的空间想象力和抽象思维能力.
一.选择题
2.认真观察如图,数一数.(如果有困难可以动手摆一摆再计数) 上面的几何体是由( C )个小正方体搭成的.
A.5
B.6
C.7
【分析】观察图形可知,这个图形一共有3层:下面2层都是3个小正方体,上层1个小正方体,据此加起来即
【解答】解:根据题干分析可得:只有选项C中, 故选:C.
从侧面看到的图形是 .
【点评】此题考查了从不同方向观察物体和几何体,锻炼了学生的空间想象力和抽象思维能力.
二.填空题
11.站在不同的位置看课桌,最多看到它的 3 个面.
【分析】观察一个正方体或长方体,从它的一个面观察,只能看到一个面,从它一条棱观察,能看到它的 相交于这条棱的两个面,从它的一个顶点观察,此时能看到它最多的面,能看到它的三个面. 【解答】解:站在不同的位置看课桌,最多能看到3个面. 故答案为:3. 【点评】本题是考查从不同方向观察物体和几何体,是训练学生的观察能力、分析能力和空间想象能力.
一.选择题
6.用同样大小的正方体摆成的物体,从正面看到
,从上面看到

从侧面看到( A )
A.
B.
C.
【分析】根据从正面和上面看到的图形可得,这个物体是1层2行:前面一行3个正方体,后面一行1个正方体 靠中间,据此即可画出这个物体,从侧面看到的图形是一行2个正方形,据此即可解答问题.
【解答】解:根据题干分析可得,这个物体是
一.选择题
8.观察一个长方体或正方体的物体,最多能看到( A )面.
A.2个
B.3个
C.4个
【分析】根据观察的范围随观察点、观察角度的变化而改变;从一个方向观察长方体或正方体,最多可以看 到它的3个面.

五年级下册北师大版数学课讲解

五年级下册北师大版数学课讲解

五年级下册北师大版数学课讲解全文共四篇示例,供读者参考第一篇示例:五年级下册北师大版数学课,作为小学生学习的一部分,是非常重要的一门学科。

数学是一门理性的学科,它不仅能够帮助学生培养逻辑思维能力,还能够在日常生活中起到重要的作用。

本文将对五年级下册北师大版数学课进行讲解,帮助学生更快地掌握数学知识,提升学习成绩。

五年级下册北师大版数学课主要分为几个部分,包括有数与运算、几何、分数、图形、数据统计等内容。

每个部分都有其独特的特点和知识点,需要学生认真学习。

我们来看数与运算这一部分。

数与运算是数学的基础,是其他部分的基础。

在这个部分中,学生将学习加减乘除四则运算、整数、小数等内容。

在学习加减法时,学生要掌握进位、借位、竖式计算等方法,同时要懂得灵活运用这些方法解决实际问题。

在学习乘法时,要掌握乘法口诀表,熟练计算两位数乘一位数、两位数乘两位数等题目。

在学习除法时,要掌握除法运算规则,灵活运用长除法、短除法等方法解决问题。

接下来是几何部分。

在这个部分中,学生将学习平行线、垂直线、相交线、三角形、四边形等内容。

学生需要掌握这些基本图形的性质和特点,能够准确描述和画出这些图形,解决与这些图形相关的问题。

学生还需要学习测量长度、面积、体积等知识,掌握测量工具的使用方法。

分数是五年级下册北师大版数学课中的又一个重要内容。

在学习分数时,学生要掌握分数的读法、写法、比较、化简、加减乘除等操作。

分数是数学中非常重要的一个概念,学生要努力学习,掌握其中的规律,运用到实际问题中去。

最后是数据统计部分。

在这个部分中,学生将学习调查统计、图表分析等内容。

学生需要学会使用各种图表,比如直方图、折线图、饼图等,描述和分析数据的规律,从中得出结论。

五年级下册北师大版数学课内容丰富多彩,涵盖了数与运算、几何、分数、图形、数据统计等各个方面。

学生在学习过程中要认真对待,积极参与,多加练习,及时复习,努力提高自己的数学水平,取得更好的成绩。

五年级北师大版上册数学第一单元课程讲解

五年级北师大版上册数学第一单元课程讲解

五年级北师大版上册数学第一单元课程讲解在五年级的数学教学中,北师大版上册数学第一单元是一项重要的内容。

本单元的主要内容包括数的认识和数的运算。

通过本单元的学习,学生将掌握基本的数的概念、数的读法、数的比较和数的运算等基本技能。

1. 数的认识数是我们日常生活中经常使用的概念。

在本单元的数的认识部分,学生将学习如何认识和表示数。

首先,他们将通过认识0-9这几个数字来学习数的基本概念。

其次,学生将学习如何将这些数字组合成不同的数,如10、12等。

最后,他们还将学习如何读写这些数。

2. 数的比较在数的比较部分,学生将学习数的大小关系。

他们将通过比较两个数的大小来判断它们的大小关系,例如通过比较12和15,可以知道15大于12。

通过这一部分的学习,学生将培养对数的敏感度和比较数的能力。

3. 数的运算数的运算是本单元的重点内容之一。

学生将学习不同数的运算,如加法、减法和乘法。

通过这些数的运算,学生将掌握数的简单计算方法。

例如,学生将学会如何进行10以内的简单加减法运算,并通过乘法表的学习,加深对乘法的理解。

4. 课程实践在本单元的课程实践环节,学生将通过实际问题的解决来应用他们所学到的数学知识。

例如,他们可以通过购物清单的编写和计算来练习数的认识和运算。

通过这些实践活动,学生将更好地掌握数学知识,并将数学应用于实际生活中。

通过五年级北师大版上册数学第一单元的学习,学生将掌握数的认识和数的运算等基本数学技能。

这将为他们今后的数学学习打下坚实的基础。

希望同学们能够在课堂上认真学习并积极参与课程实践,不断提高自己的数学能力。

最后,祝愿同学们在数学学习中取得优异的成绩!。

(完整版)北师大版小学数学专题讲解——列方程解应用题

(完整版)北师大版小学数学专题讲解——列方程解应用题

3、甲筐苹果的重量是乙筐的3倍。

如果从甲筐取出20千克放入乙筐,那么两筐苹果的重量就相等。

两筐原来各有苹果多少千克?4、师徒二人共加工208个零件,师傅加工的零件数比徒弟的2倍还多4个。

师傅加工了多少个零件?5、新江县新开通的公共汽车实行两种票制,普通车票每张2元,通票每张5元。

有一天售票员统计车票收入时,发现这天共有乘客880人,通票收入比普通车票收入多1740元。

问这天购买通票的有多少人?6、苹果、梨、桔子三种水果共100千克,其中苹果的重量是梨的3倍,桔子的重量比梨的一半少8千克,其中有桔子多少千克?7、张师傅加工一批零件,原打算每天做50个,为了提早10天完成,他把效率提高,每天做75个。

这批零件一共有多少个?8、运送29.5吨煤,先用一辆载重4吨的汽车运3次,剩下的用一辆载重为2.5吨的货车运。

还要运几次才能运完?常见的列方程解应用题问题【行程问题】1、甲乙两车从相距272千米的两地同时相向而行,3小时后两车还相隔17千米。

甲每小时行45千米,乙每小时行多少千米?2、甲乙两人同时从同一地点向相反方向行走,3.5小时后两人相距38.5千米。

甲每小时行走5千米,乙每小时行走多少千米?3、两地相距660千米,甲车每小时行32千米,乙车每小时行34千米,两车分别从两地同时出发相向而行,经过几小时相遇?4、小东、小英同时从某地相背而行,小东每分钟走50米,小英每分钟走45米,经过多少分钟两人相距285米?5、两列火车同时从甲、乙两城相对开出,慢车每小时行60千米,快车每小时行80千米,两城相距770千米,两车开出几小时后还相距210千米?6、甲、乙两地相距480千米,客车、货车分别从甲、乙两地同时出发相向而行,客车每小时行70千米,货车每小时行50千米,相遇时,两车各行了多少千米?7、一辆轿车和一辆摩托车分别从甲、乙两地相向而行,两地相距500千米,摩托车上午8点出发,每小时行40千米,轿车上午10点出发,每小时行60千米,问几点两车可以相遇?8、两地相距400米,两人从两地同时出发向相反的方向而行,5分钟后两人相距960米,甲每分钟走50米,乙每分钟走多少米?9、一列快车和一列慢车同时分别从相距630千米的两地同向开出,4.5小时快车追上慢车,快车每小时行78千米,慢车每小时行多少千米?10、甲乙两辆汽车同时从相距300千米的两地同向行驶,4小时后甲车追上乙车,已知甲车每小时行40千米,乙车每小时行多少千米?11、甲、乙两车同时从两地相向开出,甲车每小时行50千米,经过3小时已驶过中点30千米,此时甲车与乙车还相距6千米,求乙车每小时行多少千米?12、甲乙两列火车同时从某地相对开出,经过8小时相遇,已知甲火车每小时行85千米,相遇时,甲比乙多行了240千米,求乙火车的速度是多少千米?13、一只小船要行216千米的路程,逆水航行需要12小时,顺水航行需要9小时,求船速和水速各是多少千米?14、一只货船顺水行800千米的航程用20小时,已知水速为每小时4千米,如果逆水返回需要多少小时?15、顺水行船,2小时行36千米,已知船在静水中的速度是每小时7千米,求逆水行船返回出发地点要多少小时?16、两码头相距540千米,一货船顺水行全程需8小时,逆水行全程需要4小时,这货船顺水比逆水每小时快多少千米?17、逆水行船9小时行44千米,已知水速是每小时3千米,问这只船顺水行330千米的路程用多少小时?18、有甲、乙两只船航行于720千米的江河中,甲船逆水行全程需要36小时,乙船逆水行全程用30小时,甲船顺水行全程用20小时,乙船顺水行全程几小时走完?19、一只船从甲地到乙地,逆水每小时行48千米,顺水返回,比逆水提前5小时到达。

五年级上册数学说课稿-1.1 精打细算 北师大版()

五年级上册数学说课稿-1.1 精打细算 北师大版()

五年级上册数学说课稿-1.1 精打细算北师大版一、教材分析本节课是五年级上册数学中第一篇,篇名为《精打细算》。

该篇以考核学生对基本的数学运算知识的掌握能力为主,注重培养学生的算术技能。

教材采用了多种教学手段,例如通过教师示范练习、小组合作与课堂交流等形式帮助学生进一步理解与掌握知识。

二、教学目标1.认识数的基本运算及其性质,熟练掌握加减法的计算方法。

2.理解问题情境,寻找解题思路,培养思维能力。

三、教学重难点1.重点:学生认识数的基本运算及其性质,熟练掌握加减法的计算方法。

2.难点:学生应掌握加减法的通性,即了解加减法运算间的相互联系,理解加减法的逆运算性质,能够运用加减法的方法解决实际问题。

四、教学步骤及内容安排1.引入(5分钟)通过向学生展示一道加减法的题目,让学生思考如何解答这道题目并激发学生的兴趣和热情。

2.学习加减法运算及其性质(15分钟)首先,教师介绍加减法的概念,让学生认识数的运算及其性质。

然后,通过示范练习与课堂交流,引导学生分析加减法的性质,并加深对加、减法逆运算的理解。

3.练习加减法计算(20分钟)教师结合实际问题,通过小组合作练习、课堂练习等方式,让学生掌握加减法的计算方法,并提高计算运用的能力。

同时,教师应重点培养学生习惯于思考问题的能力,让学生能够独立解决问题。

4.巩固加减法计算(10分钟)教师向学生展示几道加减法题目,让学生运用所学知识并加以巩固。

5.小结(5分钟)教师做简单总结并强调本节课的要点,提出学生可能存在的疑问,并鼓励学生积极思考和发言。

五、教学方法本节课采用了多种教学方法,例如教师示范练习、小组合作与课堂交流等,以达到深入理解与掌握知识的目的。

同时,教师应鼓励学生运用已学知识,自主思考问题并独立解决实际问题。

六、教学手段1.教具准备:黑板、粉笔、教科书。

2.教学手段:教师示范练习、小组合作与课堂交流。

七、课后作业1.完成教材中的习题。

2.巩固加减法的计算方法,并运用所学知识去解决实际问题。

五年级下册数学北师大版讲解

五年级下册数学北师大版讲解

五年级下册数学北师大版讲解一、内容简介北师大版五年级下册数学教材旨在帮助学生巩固已学的知识,为进一步提高学生的数学素养打下坚实基础。

本册教材围绕核心知识点,设计了丰富的教学内容,包括小数乘除法、简易方程、多边形的面积、统计图表的绘制等。

通过学习这些内容,学生将更好地理解数学概念,培养自己的逻辑思维能力。

二、知识点梳理1.小数乘除法:本单元重点讲解小数乘法和除法的运算方法,以及小数乘除法的运算规律。

学生将通过例题和练习掌握小数乘除法的计算技巧,并能熟练地进行实际运算。

2.简易方程:本单元主要介绍方程的概念,引导学生学会用方程表示数量关系,并掌握解方程的基本方法。

通过本单元的学习,学生将能够熟练地解简易方程,提高问题解决能力。

3.多边形的面积:本单元围绕多边形的面积公式展开,引导学生学会计算简单多边形的面积。

学生将通过实例学习多边形面积的计算方法,并运用所学知识解决实际问题。

4.统计图表:本单元教授统计图表的绘制方法,包括条形统计图、折线统计图和饼状统计图。

学生将学会如何收集数据、整理数据,并运用统计图表展示数据,分析数据。

三、解题技巧与策略1.小数乘除法:学生在解题时,要注意小数点的位置,正确地进行乘除运算。

可以通过列竖式进行计算,以提高运算的准确性。

2.简易方程:解简易方程时,可以运用消元法、代入法等方法。

学生要熟练掌握这些方法,并能在实际解题中灵活运用。

3.多边形的面积:计算多边形面积时,要牢记公式,并根据题目所给条件进行计算。

学会将复杂图形分解为简单图形,以简化计算过程。

4.统计图表:绘制统计图表时,要准确收集和整理数据,注意图表的标题、图例、标注等要素。

通过分析统计图表,学生可以更好地了解数据背后的信息。

四、实践与应用本册教材设计了丰富的实践与应用题,旨在帮助学生巩固所学知识,提高实际应用能力。

学生可以通过做这些题目,检验自己对知识点的掌握程度,并学会将数学知识运用到日常生活中。

总之,北师大版五年级下册数学教材为学生提供了丰富的学习内容,有助于提高学生的数学素养。

五年级下册数学期末复习专题讲义-1.分数加减法版

五年级下册数学期末复习专题讲义-1.分数加减法版

北师大版五年级下册数学期末复习专题讲义-1.分数加减法【知识点归纳】1、异分母分数相加减:要先通分,化成相同的分母,再加减,计算结果能约分的要约分。

2、分数方程的计算方法与整数方程的计算方法一致,在计算过程中要注意统一分数单位。

3、分数加减混和运算的运算顺序和整数加减混和运算的运算顺序相同。

在计算过程,整数的运算律对分数同样适用。

4、计算异分母分数混合运算主要有两种方法,一是将所有的分数进行通分,再进行计算,二是先根据需要进行部分通分。

根据算式特点来选择方法。

5、在比较分数与小数大小时,要先统一他们的表现形式。

将分数转化为小数或者将小数转化为分数。

只有表现形式统一了,才有可能比较大小。

6、小数化成分数的方法:将小数化成分母是10、100、1000…的分数,能约分的要约分。

具体是:看有几位小数,就在1后边写几个0做分母,把小数点去掉的部分做分子,能约分的要约分。

7、分数化成小数的方法:用分子除以分母所得的商即可,除不尽时通常保留三位小数。

8、分数单位:用分子是1、分母是某一自然数(0和1除外)的分数(即几分之一)作为分数单位。

【典例讲解】例1.下面各题计算正确的是()A.B.C.D.【分析】同分母分数相加减,分母不变,分子相加减.异分母分数相加减,先通分,变成同分母的分数相加减,再计算;由此进行求解.【解答】解:++=++=++=>A选项计算错误;﹣=﹣=<1;B选项计算错误;﹣=C选项计算正确;+=+=>D选项计算错误;故选:C.【点评】熟练掌握分数加减法的计算方法是解决本题的关键.例2.+=.【分析】根据分数的意义,把长方形平均分成5份,三个图形的阴影部分分别是2份、1份、3份,用分数表示分别是、、,用加法算式表示是+=,据此解答即可.【解答】解:+=故答案为:、、.【点评】解答本题关键是明确分数的意义和同分母分数加法的计算算理.例3.+=.判断:×改正:+=.【分析】运用同分母分数加法的计算法则进行计算,同分母分数相加,分母不变,只把分子相加.【解答】解:+=所以题干的说法是错误的.故答案为:×,+=.【点评】本题考查了分数加法的计算法则,运用计算法则进行计算即可.例4.我会口算.======【分析】运用同分母分数加减法的计算法则进行计算,同分母分数相加减,分母不变,只把分子相加减.【解答】解:======【点评】本题考查了同分母分数加减法的计算法则,计算的结果要化成最简分数.例5.小林骑自行车去郊游,去时平均每小时行12km,小时到达.原路返回时只用了小时,返回时平均每小时行多少千米?【分析】首先根据速度×时间=路程,用去时的速度乘以用的时间,求出两地之间的距离是多少;然后用它除以返回用的时间,求出返回时平均每小时行多少千米即可.【解答】解:12×÷=18÷=24(千米/时)答:返回时平均每小时行24千米.【点评】此题主要考查了行程问题中速度、时间和路程的关系:速度×时间=路程,路程÷时间=速度,路程÷速度=时间,要熟练掌握,解答此题的关键是求出两地之间的距离是多少.【同步测试】一.选择题(共10小题)1.计算时,应用了加法的()A.交换律B.结合律C.交换律和结合律2.下列算式中,结果等于的是()A.B.C.D.3.+=()A.B.C.4.()去掉2个,剩下5个.A.7B.3C.15.一个非零自然数与它的倒数和是20.05,这个自然数是()A.B.21C.20D.6.4个减去3个,就是()A.B.C.7.下列各式中,()的计算结果最大.A.B.C.8.分数单位不相同的分数()A.能直接相加减B.不能相加减C.通分后才能相加减9.异分母分数相加减的计算方法是()A.把分子、分母分别相加减B.把分子相加减C.通分后分母不变,把分子相加减10.去掉()个与它相同的分数单位后是A.1B.2C.3D.4二.填空题(共8小题)11.在五年级的数学学习中,我们领略到了很多数学思想方法的真谛与奥秘,我们用的方法学习了异分母分数加减法.12.计算.﹣=13.比多;0.75比少.14.+就是个,再加上4个,等于个,也就是.15.6个是,再添上个就是1.16.写算式.+=17.我会比.(在横线上填上“>”“<”或“=”)18.1=﹣=.三.判断题(共5小题)19..(判断对错)20.1﹣就是6个减去1个剩下5个,等于.(判断对错)21.比1kg少它的是1kg.(判断对错)22.+=.判断:改正:.23.同分母分数相加、减,分母不变,只把分子相加减(判断对错).四.计算题(共2小题)24.我会算.125.计算下面各题,能简算的要简算.++﹣﹣+﹣(﹣)五.应用题(共2小题)26.一根铁丝,第一次用去全长的九分之四,第二次用去全长的九分之一,还剩下这根铁丝的几分之几?27.一根丝绳,第一次用去了它的,第二次用去了它的,两次共用去了它的几分之几?还剩几分之几?六.操作题(共1小题)28.画一画,涂一涂,写一写,算一算.+=+=七.解答题(共2小题)29.+的得数比1大还是比1小?你有几种方法?请写出来.(写两种8分,写三种10分)30.一根铁丝第一次用去全长的,第二次用去全长的,一共用去这根铁丝的几分之几?这根铁丝还剩几分之几?参考答案与试题解析一.选择题(共10小题)1.【分析】加法结合律:先把前两个数相加,或先把后两个数相加,和不变.如:a+b+c=a+(b+c);据此解答即可.【解答】解:计算时,应用了加法的结合律;故选:B.【点评】本题利用具体的算式考查了学生对于加法结合律的理解.2.【分析】根据分数加减法的计算方法,把这4个算式的得数都算出,再选择.【解答】解:========结果等于的是.故选:B.【点评】本题考查了分数加减法的计算方法的掌握情况.3.【分析】+,分母不变,只把分子相加.【解答】解:+==故选:C.【点评】同分母分数相加减,分母不变,只把分子相加减.4.【分析】根据分数的意义,5个加上2个,是7个,也就是1,所以,1去掉2个,剩下5个,据此解答.【解答】解:1去掉2个,剩下5个.故选:C.【点评】考查了分数的意义的灵活运用.5.【分析】把20.05化成带分数是20,20=20+,20是一个自然数,且20与互为倒数,其和是20;据此解答即可.【解答】解:把20.05化成带分数是2020=20+20×=1所以这个自然数是20答:这个自然数是20.故选:C.【点评】此题主要考查倒数的意义,乘积是1的两个数互为倒数.把20.05化成分数问题便得到解决.6.【分析】4个减去3个,是1个,就是,据此解答.【解答】解:4个减去3个,是1个,就是.故选:A.【点评】考查了分数的意义的灵活运用.7.【分析】根据分数加法的计算方法,分别求出各个算式的结果,再比较解答.【解答】解:A、+=B、=C、=>>所以,B算式的计算结果最大.故选:B.【点评】含有算式的大小比较,先求出它们的结果,然后再按照分数大小比较的方法进行解答.8.【分析】两个分数的分数单位不相同,也就是分母不相同,需要把它们通分,化成同分母的分数,也就是分数单位相同了,再计算.【解答】解:分数单位不相同的分数通分后才能相加减.故选:C.【点评】本题考查了异分母分数加减法的计算方法.9.【分析】异分母分数的分数单位不同,先通过通分变成同分母的分数,统一分数单位,再根据同分母分数相加减,分母不变,分子相加减进行求解.【解答】解:异分母分数相加减的计算方法是:通分后分母不变,把分子相加减.故选:C.【点评】本题考查了异分母分数的计算法:异分母分数相加减,先通分,变成同分母的分数相加减,再计算.10.【分析】先把化成分母是18的分数,用减去求出差(差的分母是18,不进行化简),看差里面有多少分数单位即可求解.【解答】解:﹣=﹣=里面有4个即:去掉4个与它相同的分数单位后是.故选:D.【点评】本题考查了分数减法的计算方法以及分数单位的意义.二.填空题(共8小题)11.【分析】根据异分母分数加减法的计算方法,把异分母转化为同分母,然后再计算,据此解答.【解答】解:异分母分数相加减,要先通分,把异分母分数转化成同分母分数,再加减.所以,我们用转化的方法学习了异分母分数加减法.故答案为:转化.【点评】异分母分数相加减,先通分,化成同分母分数,然后再按照同分母分数加减法的计算方法进行计算.12.【分析】按照从左到右的顺序依次计算即可.【解答】解:﹣=﹣=故答案为:.【点评】同分母分数相加减,分母不变,分子相加减.13.【分析】要求比多多少,用﹣;要求0.75比少多少,用﹣0.75.【解答】解:﹣=﹣0.75=答:比多;0.75比少.故答案为:,.【点评】求一个数比另一个数多(少)几,用较大数减去较小数.14.【分析】里面有1个,里面有2个,1个加上2个,是3个,再加上4个,等,7个,也就是1,据此解答.【解答】解:+就是3个,再加上4个,等于7个,也就是1.故答案为:3,7,1【点评】考查了同分母分数加法的计算方法,分母不变,只把分子相加.15.【分析】把单位“1”平均分成9份,每份是,6个就是,即;“1”里面有9个,再添上9﹣6=3个即可.【解答】解:6个是,即;再添上3个就是1.故答案为:,3.【点评】此题是考查分数的意义.把单位“1”平均分成若干份,用分数表示,分母是分成的份数,分子是要表示的份数.16.【分析】把每个长方形的面积看作单位“1”,把它平均分成6份,每份是一个长方形的,左图其中3份涂色,表示,中间的1份涂色,表示;3份+1份就是4份涂色,就是,然后再化成最简分数即可.【解答】解:+==故答案为:,,.【点评】此题主要是考查分数的意义、分数加减法的意义及计算法则.把单位“1”平均分成若干份,用分数表示,分母是分成的份数,分子是要表示的份数.同分母分数相加减分母不变,只把分子相加减.17.【分析】运用同分母分数加减法的计算法则计算出算式的结果进行比较即可.【解答】解:======1=1>====>======<===>故答案为:═,>,>,<,<,>.【点评】本题考查了同分母分数加减法的计算法则,也考查了学生分数大小的比较.18.【分析】把1化成以4为分母的分数,然后运用同分母分数减法的计算法则进行计算即可.【解答】解:1﹣==所以1=﹣=.故答案为:,.【点评】本题考查了同分母分数加减法的计算法则,计算的结果要化成最简分数.三.判断题(共5小题)19.【分析】异分母分数相加减,因为分数的计数单位不同,所以必须先通分,化成分数单位相同的分数,然后按照同分母分数相加减的法则进行计算,据此解答即可.【解答】解:==所以原题计算错误.故答案为:×.【点评】解答本题关键是明确异分母分数加减法的计算法则和算理.20.【分析】把1看作,是6个,是1个,6个减去1个剩下5个,等于,据此解答.【解答】解:1=,是6个,是1个,6个减去1个剩下5个,等于;所以,原题说法正确.故答案为:√.【点评】考查了1减去一个分数的计算方法的灵活运用.21.【分析】根据题意,把1kg看作单位“1”,比单位“1”少,就是单位“1”的(1﹣),即1×(1﹣),然后再进一步解答.【解答】解:1×(1﹣)=1×=(kg)答:比1kg少它的是kg.所以,原题说法错误.故答案为:×.【点评】本题关键是找出单位“1”,明确少的分率,然后再根据分数乘法的意义进行解答.22.【分析】运用同分母分数加法的计算法则进行计算,同分母分数相加,分母不变,只把分子相加.【解答】解:+=所以题干+=的解法是错误的.故答案为:×,+=.【点评】本题考查了分数加法的计算法则,运用计算法则进行计算即可.23.【分析】根据同分母分数相加减的计算方法,直接判断即可.【解答】解:同分母分数相加、减,分母不变,只把分子相加减,原题说法是正确的.故答案为:√.【点评】本题考查了同分母分数加减法的计算方法,要熟记.四.计算题(共2小题)24.【分析】根据同分母分数加减法的计算方法计算即可解答.【解答】解:(1)==(2)==(3)==(4)1﹣===(5)===(6)==【点评】本题考查了同分母分数加减法计算方法的掌握情况.25.【分析】(1)根据加法的交换律与结合律简算即可.(2)根据减法的性质简算即可.(3)根据加法的交换律与减法的性质简算即可.【解答】解:(1)++﹣=(+)+(﹣)=1+=1(2)﹣+=﹣(﹣)=﹣=(3)﹣(﹣)=﹣+=+﹣=1﹣=【点评】此题重点考查了学生对运算定律的掌握与运用情况,要结合数据的特征,灵活选择简算方法.五.应用题(共2小题)26.【分析】两次用去的都是把全长看作单位“1”,求还剩几分之几,直接用全长减去用去的即可.【解答】解:+=1﹣=答:还剩下这根铁丝的.【点评】此题考查分数加减法的实际运用,理解题意,找清单位“1”是解决问题的关键.27.【分析】把两次用去的占得分率相加,就是两次一共用去了几分之几;把这条绳子看作单位“1”,用单位“1”减去两次用去占的分率和,就是还剩下的几分之几.【解答】解:+=;1﹣=.答:两次共用去了它的,还剩.【点评】此题考查分数加减法应用题以及同分数分数加减法的计算方法,要注意结果化成最简分数.六.操作题(共1小题)28.【分析】把第一个正方形看作单位“1”,平均分成4份,涂色表示出其中的3份,表示出;把第二个正方形看作单位“1”,平均分成8份,涂色表示出其中的1份,表示出;因为分数单位不同,不能直接相加,再把第一个正方形看作单位“1”,平均分成8份,涂色表示出其中的6份,表示出,然后再相加即可.【解答】解:+=+=.故答案为:,,.【点评】此题考查的目的是理解掌握异分母分数加法的意义及计算方法.七.解答题(共2小题)29.【分析】方法一、根据分数加法的计算方法,求出+的和,再与1进行比较解答;方法二、>,+=1,所以+>1;方法三、>,+=1,所以,+>1;据此解答.【解答】解:方法一、+=,>1,所以,+>1;方法二、>,+=1,所以+>1;方法三、>,+=1,所以,+>1.【点评】第一种方法,就是计算出结果后,再比较大小;第二种和第三种,是把其中一个数看作与另一个数分母相同,并且相加后结果是1,然后再比较解答.30.【分析】两次用去的都是把全长看作单位“1”,求一共用去这根铁丝的几分之几,合并即可得出答案;求还剩几分之几,直接用全长减去用去的即可.【解答】解:+=1﹣=答:一共用去这根铁丝的,这根铁丝还剩.【点评】此题考查分数加减法的实际运用,理解题意,找清单位“1”是解决问题的关键.。

五年级北师大版上册数学第一单元课程讲解

五年级北师大版上册数学第一单元课程讲解

五年级北师大版上册数学第一单元课程讲解一、单元概述本单元是五年级北师大版上册数学的第一单元,主要内容是“倍数与因数”。

这一单元的学习将为学生后续学习奠定重要的基础,涉及的概念将在后续的数学学习和日常生活中广泛应用。

二、课程目标1. 理解倍数和因数的概念,掌握寻找一个数的倍数和因数的方法。

2. 通过探索,发现倍数和因数的某些特征,如一个数的最小倍数是其本身,一个数的最大因数也是其本身。

3. 能运用倍数和因数的知识解决简单的实际问题。

4. 培养学生对数学的兴趣,提高其数学思维和解决问题的能力。

三、重要知识点1. 倍数的概念:倍数是指一个数能被另一个数整除的数。

例如,12是3的倍数,因为12能被3整除。

2. 因数的概念:因数是指能够整除给定数的数。

例如,3和4都是12的因数,因为它们都能整除12。

3. 倍数和因数的特性:一个数的最小倍数是它本身,一个数的最大因数也是它本身。

例如,6的最小倍数是6,最大因数也是6。

4. 寻找一个数的倍数和因数的方法:通过除法来寻找一个数的倍数,通过整除来判断一个数是否为另一个数的因数。

四、教学建议1. 创设情境,激发兴趣:教师可以创设一些与倍数和因数相关的实际问题,引导学生思考,激发他们对数学的兴趣。

2. 引导探索,发现规律:在教授倍数和因数的概念后,教师可以引导学生通过举例、观察、比较等方式,发现倍数和因数的某些特征和规律。

3. 实际应用,解决问题:教师可以设计一些实际问题,让学生运用倍数和因数的知识来解决,培养他们的数学应用能力。

4. 互动交流,促进理解:教师可以组织学生进行小组讨论或全班交流,让他们在互动中加深对倍数和因数的理解。

5. 及时反馈,强化巩固:教师需要及时对学生的表现进行评价反馈,对他们的错误进行纠正,并通过多种方式巩固他们的学习成果。

五、教学重点与难点重点:理解倍数和因数的概念,掌握寻找一个数的倍数和因数的方法。

难点:运用倍数和因数的知识解决实际问题,理解倍数和因数的某些特性。

五年级下册北师大版数学课讲解

五年级下册北师大版数学课讲解

五年级下册北师大版数学课讲解一、知识点梳理1. 分数的基本性质:分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。

2. 约分:把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。

3. 通分:把异分母分数化成和原来相等的同分母分数,叫做通分。

4. 分数和小数的互化:把分数化为小数,或把小数化为分数。

5. 分数加、减法运算:分数加、减法的运算方法和整数加、减法的运算方法相同。

6. 方程:含有未知数的等式叫做方程。

7. 解方程:求方程的解的过程叫做解方程。

8. 分数乘法运算:分数乘法的运算方法和整数乘法的运算方法相同。

9. 分数除法运算:分数除法的运算方法和整数除法的运算方法相同。

10. 分数混合运算:一个算式中既有分数又有整数的运算是分数混合运算。

二、重点知识讲解1. 分数的基本性质:这是学习分数约分和通分的基础,一定要理解透彻,才能正确运用。

2. 约分和通分:约分和通分是分数的基本操作,对于后续学习分数的加减法、乘法和除法都非常重要。

3. 分数和小数的互化:将分数化为小数或小数化为分数,是解决一些复杂问题的关键步骤。

4. 解方程:解方程是数学中的重要技能,对于解决实际问题有重要意义。

5. 分数混合运算:这是对前面学过的所有知识的综合运用,需要掌握运算顺序,并注意简化计算。

三、难点解析1. 如何正确运用约分和通分的规则,以及如何将分数和小数进行互化,需要多做练习来加深理解和掌握。

2. 在解方程时,如何正确找出未知数,并按照正确的步骤求解,需要仔细审题并理解方程的含义。

3. 在进行分数混合运算时,如何正确处理运算顺序,并简化计算过程,需要一定的逻辑思维和计算能力。

六年级上册数学北师大版讲解

六年级上册数学北师大版讲解

六年级上册数学北师大版讲解
六年级上册数学北师大版的讲解,可以从以下几个方面进行:
1. 圆的认知:在这个部分,可以介绍圆的基本定义,以及圆心、半径和直径等概念。

此外,可以解释为什么圆在现实生活中有着广泛的应用,例如车轮的形状。

还可以进一步讲解圆的特征,如“一中同长”的性质,以及直径和半径的关系。

2. 圆的画法:可以介绍如何使用圆规来画圆。

这个部分可以详细讲解圆规的构造和使用方法,以及如何利用圆规画出不同大小的圆。

3. 圆的对称性:可以引导学生探索圆的对称性,例如,可以问他们能在圆上画出多少条对称轴。

通过这种方式,可以进一步加深他们对圆的理解。

4. 圆的应用:这个部分可以介绍一些实际生活中圆的应用,如硬币、车轮、圆挂钟、碗口、杯口等,这些都可以作为圆在实际生活中的例子。

此外,也可以让学生通过探究体验,理解圆在生活中的重要性。

例如,在套圈游戏中,哪种方式更公平?为什么?
以上是六年级上册数学北师大版讲解的大致内容。

请注意,每个学生的数学基础和学习能力不同,因此在讲解时,应根据学生的实际情况进行适当的调整。

六下数学北师大版讲解

六下数学北师大版讲解

六下数学北师大版讲解全文共四篇示例,供读者参考第一篇示例:六下数学北师大版是小学生学习数学的教材之一,通过该教材的学习可以帮助学生掌握基础数学知识,培养他们的逻辑思维能力和数学解决问题的能力。

本文将对六下数学北师大版的内容进行详细讲解,希望可以帮助学生更好地理解和掌握数学知识。

一、加减乘除的基础知识在六下数学北师大版的教材中,加减乘除的基础知识是非常重要的,学生需要掌握这些基本运算的方法和技巧。

加减乘除是数学的基础,只有掌握了这些基础知识,学生才能更好地进行复杂的数学运算。

1. 加法加法是最基本的数学运算之一。

在加法运算中,学生需要将两个或多个数相加,得到一个和。

加法的运算方法是从个位开始相加,若相加结果大于等于10,则进位到更高的位数。

加法的运算可以通过竖式或横式来表示,学生需要掌握这两种表示方法。

4. 除法除法是乘法的逆运算。

除法的运算方法是将被除数除以除数,得到商和余数。

除法的运算可以通过长除法或短除法来表示,学生需要熟练掌握这两种表示方法。

二、分数的运算在六下数学北师大版的教材中,分数的运算是一个比较重要的内容。

学生需要掌握分数的加减乘除运算方法以及化简分数的技巧。

1. 分数的加减分数的加减运算是将两个或多个分数相加或相减,得到一个和或差。

分数的加减运算方法是先找到分数的公共分母,然后进行分子的加减运算。

学生需要熟练掌握分数的加减运算规则和方法。

4. 化简分数在分数的运算中,有时候需要将分数化简到最简形式。

化简分数的方法是找到最大公约数,然后将分子和分母同时除以最大公约数得到最简分数。

学生需要熟练掌握化简分数的方法和技巧。

三、图形的认识在六下数学北师大版的教材中,图形的认识是一个重要内容。

学生需要掌握各种基本图形的名称、性质和特点,并学会画出这些图形。

1. 直角三角形直角三角形是一种特殊的三角形,其中有一个角是直角。

直角三角形的特点是有一个角是90度,另外两个角相加为90度。

学生需要认识直角三角形的性质和特点,能够辨别和画出直角三角形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北师大版小学数学专题讲解——列方程解应用题在小学数学教学中,列方程解应用题是难点。

这一部分内容融入了等式的性质,利用四则运算各部分的关系,有助于对所学的算术知识进行巩固和加深理解,初步渗透代数的思想,然而在这一部分教学中存在一定的难点。

一、审清题意:审题,理解题意。

即全面分析题目中的已知量、未知量及二者之间的关系。

特别要把牵涉到的一些概念术语弄清,如同向,相向,增加到,增加了等。

二、确立未知数:即用x表示所求的数量或有关的未知量。

若题中含有两个或两个以上的未知量,则找出他们之间数量关系,用含有x的式子分别将它们表示出来;三、寻找等量关系:“含有未知数的等式称为方程”因而是“等式”是列方程比不可少的条件。

所以寻找等量关系是解题的关键。

常见的等量关系有以下几种:1、总量相等;2、成倍数相等;3、按公式相等;小学常用数量关系总结:【行程问题】1、速度×时间=路程①合作行程:速度和×时间=路程和2、甲的路程+乙的路程=总路程3、甲的速度×甲的时间+乙的速度×乙的时间=总路程(注意:总路程是指已经行走的路程,未走的路程要扣除)②追及行程:速度差×时间=路程差甲的路程—乙的路程=路程差甲的速度×甲的时间—乙的速度×乙的时间=路程差(注意:路程差是指二者相差的路程,分为先天形成和后天形成两种)③流水行船:顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度(静水速度是指船在不受外力影响的作用下,由船本身决定的速度,一般不会改变)【工程问题】工作效率×工作时间=工作总量①合作工程:工作效率和×工作时间=工作总量和甲的工作总量+乙的工作总量=总的工作总量甲的工作效率×甲的工作时间+乙的工作效率×乙的工作时间=总的工作总量(注意:总的工作总量是指已经完成的工作,未完成的工作要扣除)②追及工程:工作效率差×工作时间=工作总量差甲的工作总量—乙的工作总量=工作总量差甲的工作效率×甲的工作时间—乙的工作效率×乙的工作时间=工作总量差(注意:工作总量差是指二者相差的工作量,分为先天形成和后天形成两种)【商品问题】单价×数量=总价售价—成本=利润利润÷成本-利润率【植树问题】(一)在线段上的植树问题可以分为以下三种情形。

1、如果植树线路的两端都要植树,那么植树的棵数应比要分的段数多1,即:棵数=间隔数+1。

2、如果植树线路只有一端要植树,那么植树的棵数和要分的段数相等,即:棵数=间隔数。

3、如果植树线路的两端都不植树,那么植树的棵数比要分的段数少1,即:棵数=间隔数-1。

(二)在封闭线路上植树,棵数与段数相等,即:棵数=间隔数。

(三)在正方形线路上植树,如果每个顶点都要植树,则棵数=(每边的棵数-1)×边数。

【鸡兔同笼问题】鸡的头+兔的头=总头数鸡的脚+兔的脚=总脚数【图形问题】图形周长面积体积正方形 C正=4 a S正=a2长方形C长=2(a+b) S长=ab平行四边形 S平行四边形=ah三角形 S三角形=ah÷2梯形S梯=(a+b)h ÷2正方体S正=6a2 V正=a3长方体S长=2(ab+ac+bc)V长=abc【基础训练】(一)根据题意把方程补充完整:1、三角形的面积是25.6平方厘米,高是6.4厘米,底边长x厘米。

=25.62、一个圆锥的体积是25.12立方分米,它的底面半径是x分米,高是6分米。

= 25.123、李娟同学买了2支圆珠笔与3本练习本,共付7.2元,每本练习本X元,每本练习本Y元。

=7.24、水果店运来苹果420千克,每25千克装一箱,装了x箱后还剩下20千克。

=205、洗衣机厂今年每日生产洗衣机260台,比去年平均日产量的2.5倍少40台,去年平均日产洗衣机多少台?解:设。

6、用一根铁丝可以围成一个边长是4厘米的正方形,还用这根铁丝,围成一个宽是2厘米的长方形,这个长方形的长是多少厘米?解:设。

7、两艘货船同时从一个码头出发,各往东西方向行驶。

甲船每小时行驶30千米,乙船每小时行驶42千米,航行几小时后两轮船相距252千米?解:设(二)列方程解应用题:1、某建筑队修筑一段公路,原计划每天修56米,15天完成,实际上每天多修4米,实际用了几天?2、两个车间共有150人,如果从一车间调出50人,这时一车间人数是二车间的,二车间原有多少人?3、甲筐苹果的重量是乙筐的3倍。

如果从甲筐取出20千克放入乙筐,那么两筐苹果的重量就相等。

两筐原来各有苹果多少千克?4、师徒二人共加工208个零件,师傅加工的零件数比徒弟的2倍还多4个。

师傅加工了多少个零件?5、新江县新开通的公共汽车实行两种票制,普通车票每张2元,通票每张5元。

有一天售票员统计车票收入时,发现这天共有乘客880人,通票收入比普通车票收入多1740元。

问这天购买通票的有多少人?6、苹果、梨、桔子三种水果共100千克,其中苹果的重量是梨的3倍,桔子的重量比梨的一半少8千克,其中有桔子多少千克?7、张师傅加工一批零件,原打算每天做50个,为了提早10天完成,他把效率提高,每天做75个。

这批零件一共有多少个?8、运送29.5吨煤,先用一辆载重4吨的汽车运3次,剩下的用一辆载重为2.5吨的货车运。

还要运几次才能运完?常见的列方程解应用题问题【行程问题】1、甲乙两车从相距272千米的两地同时相向而行,3小时后两车还相隔17千米。

甲每小时行45千米,乙每小时行多少千米?5、2、甲乙两人同时从同一地点向相反方向行走,3.5小时后两人相距38.5千米。

甲每小时行走5千米,乙每小时行走多少千米?3、两地相距660千米,甲车每小时行32千米,乙车每小时行34千米,两车分别从两地同时出发相向而行,经过几小时相遇?4、小东、小英同时从某地相背而行,小东每分钟走50米,小英每分钟走45米,经过多少分钟两人相距285米?6、5、两列火车同时从甲、乙两城相对开出,慢车每小时行60千米,快车每小时行80千米,两城相距770千米,两车开出几小时后还相距210千米?6、甲、乙两地相距480千米,客车、货车分别从甲、乙两地同时出发相向而行,客车每小时行7 0千米,货车每小时行50千米,相遇时,两车各行了多少千米?7、一辆轿车和一辆摩托车分别从甲、乙两地相向而行,两地相距500千米,摩托车上午8点出发,每小时行40千米,轿车上午10点出发,每小时行60千米,问几点两车可以相遇?8、两地相距400米,两人从两地同时出发向相反的方向而行,5分钟后两人相距960米,甲每分钟走50米,乙每分钟走多少米?9、一列快车和一列慢车同时分别从相距630千米的两地同向开出,4.5小时快车追上慢车,快车每小时行78千米,慢车每小时行多少千米?10、甲乙两辆汽车同时从相距300千米的两地同向行驶,4小时后甲车追上乙车,已知甲车每小时行40千米,乙车每小时行多少千米?11、甲、乙两车同时从两地相向开出,甲车每小时行50千米,经过3小时已驶过中点30千米,此时甲车与乙车还相距6千米,求乙车每小时行多少千米?12、甲乙两列火车同时从某地相对开出,经过8小时相遇,已知甲火车每小时行85千米,相遇时,甲比乙多行了240千米,求乙火车的速度是多少千米?13、一只小船要行216千米的路程,逆水航行需要12小时,顺水航行需要9小时,求船速和水速各是多少千米?14、一只货船顺水行800千米的航程用20小时,已知水速为每小时4千米,如果逆水返回需要多少小时?15、顺水行船,2小时行36千米,已知船在静水中的速度是每小时7千米,求逆水行船返回出发地点要多少小时?16、两码头相距540千米,一货船顺水行全程需8小时,逆水行全程需要4小时,这货船顺水比逆水每小时快多少千米?17、逆水行船9小时行44千米,已知水速是每小时3千米,问这只船顺水行330千米的路程用多少小时?18、有甲、乙两只船航行于720千米的江河中,甲船逆水行全程需要36小时,乙船逆水行全程用30小时,甲船顺水行全程用20小时,乙船顺水行全程几小时走完?19、一只船从甲地到乙地,逆水每小时行48千米,顺水返回,比逆水提前5小时到达。

已知水流速度为每小时6千米,求甲、乙两地的距离。

20、甲、乙两港间的水路长208千米,一只船从甲港开往乙港,顺水8小时到达,从乙港返回甲港,逆水13小时到达,求船在静水中的速度和水流速度。

21、某船在静水中的速度是每小时15千米,它从上游甲地开往下游乙地共花去了8小时,水速每小时3千米,问从乙地返回甲地需要多少时间?22、甲、乙两港相距360千米,一轮船往返两港需35小时,逆流航行比顺流航行多花了5小时.现在有一机帆船,静水中速度是每小时12千米,这机帆船往返两港要多少小时?【工程问题】1、师徒两人在15天中共完成465个零件。

师傅每天制造18个,师傅每天完成的件数比徒弟多多少个?2、甲、乙两个工程队共同开凿一具隧道。

15天共开凿了2070米,甲队每天开凿65米,乙队每天开凿多少米?3、甲、乙两个工程队共同开凿一个隧道。

开凿了15天,甲队比乙队少开凿了120米,甲队每天开凿65米,乙队每天开凿多少米?4、甲、乙两个工程队共同开凿一个隧道。

甲队每天开凿65米,乙队每天开凿73米,铺了多少天后,甲队比乙队少铺120米?【商品问题】1、5个足球比5个排球贵62.5元,已知每个排球52.5元,每个足球多少元?2、一只足球46.8元,比一只排球价钱的3倍少1.2元,一只排球的价钱是多少元?3、学校买了18个篮球和20个足球,共付了490元,每个篮球14元,每个足球多少元?【平均数问题】1、某校六年级有两个班,上学期级数学平均成绩是85分。

已知六(1)班40人,平均成绩为87. 1分;六(2)班有42人,平均成绩是多少分?2、某学校五年级有两个班,半期考试平均分为90分。

已知五年一班有45人,平均分89分,五年二班平均分91分,问五年二班有多少人?【鸡兔同笼问题】1、王老师圆珠笔和钢笔共买了15支,圆珠笔每支1.5元,钢笔每支4.5元,共花了49.5元,圆珠和钢笔各买了几支?2、小刚买回8分邮票和4分邮票共100张,共付出6.8元,问,小刚买回这两种邮票个多少张?各付出多少元?3、鹤龟同池,鹤比龟多12只,鹤龟足共72只,求鹤龟各有多少只?4、大油瓶每瓶装4千克,小油瓶2瓶装1千克,现有100千克油装了共60个瓶子。

问大小油瓶各多少个?5、班主任张老师带五年级(2)班50名同学栽树,张老师栽5棵,男生每人栽3棵,女生每人栽2棵,总共栽树120棵,问几名男生,几名女生?【图形问题】1、王大爷准备用400米长的栅栏围一个长方形养鸡场,如果长是宽的3倍,这个养鸡场的长和宽各是多少米?2、王大爷准备用400米长的栅栏围一个长方形养鸡场,如果长比宽多80米,这个养鸡场的长和宽各是多少米?3、把一块长31.4厘米,宽20厘米,高4厘米的长方体钢坯熔化后烧铸成底面半径是4厘米的圆柱体。

相关文档
最新文档