高中数学 1.1.2导数的概念课件 新人教A版选修2-2
人教A版高中数学选修2-2课件1.2导数的计算(3).pptx
例4 求下列函数的导数
(1) y (2x 3)2
解:(1)函数y (2x 3)2可以看作 函数y u2和u 2x 3的复合函数。 根据复合函数求导法则有
yx ' yu '• ux ' (u 2 ) '• (2x 3) '
2ug2 4u 8x 12.
(2) y e0.05x1
x, 则f
'( x)
1 (a x ln a
0, 且a
1);
公式8.若f (x) ln x,则f '(x) 1 ; x
导数运算法则
1. f ( x) g ( x) f ( x) g ( x)
2 . f ( x ) • g ( x ) f ( x ) g ( x ) f ( x ) g ( x )
例设 y ln x x2 a2 a 0 求 y
解
y ln x
x2 a2
1
1
2x
1
x x2 a2 2 x2 a2 x2 a2
例设 y求 ln tan 2 x
y
解 y ln tan 2x 1 tan 2x
tan 2x
1 tan 2x
1 cos2
2x
2 x
解 (1) y 2u ,u x 1. (2) y sin u,u v 1, v ln x.
3.复合函数的求导法则 (1) y f [g(x)] y f (u),u g(x). 那么
yx yu ux .
(2) y f (u),u g(v), v h(x). 那么
yx yu uv vx' .
2. c f (x) c f (x)
3.
f g
(x) (x)
人教新课标A版高二数学《选修2-2》1.1.2 导数的概念
=
Δt
65 ht0+Δt-ht0 -4.9 +Δt+6.5=0 ∴Δ lim =Δ lim → t→0 t 0 Δt 49
65 即运动员在 t0=98 s 时的瞬时速度为 0 m/s. 说明运动员处于跳水运动中离水面最高点处.
点评:运动物体瞬时速度问题实际上是函数平均变化率在物理知识上 的一个深入的应用.事实上,瞬时速度就是位移函数相对于时间的瞬 Δs 时 变 化 率 . 这 里 需 强 调 的 是 : 依 题 意 在 求 完 平 均 变 化 率 Δt = st0+Δt-st0 Δs Δs 后需对 求极限,只有当 Δ lim 为一个常数时,此常数 → t 0 Δt Δt Δt 才称为物体在 t=t0 时的瞬时速度.
Δy 点评: 的最终结果要先化简约分,再令 Δx=0 代入求出导数值. Δx
变式探究 2
若函数 y=x +ax 在 x=2 处的导数为 8,求 a 的值.
2
f2+Δx-f2 解:f′(2)=Δ lim x→0 Δx 2+Δx +a2+Δx-2 +2a =Δ lim x→0 Δx =Δ lim (Δx+4+a) x→0 =4+a. 由题意知 f′(2)=8, ∴4+a=8. 解得 a=4.
【答案】C
知识讲解: 1.了解导数的概念需注意 (1)Δx 是自变量 x 在 x0 处的改变量, 所以 Δx 可正、 可负, 但不能为零. 当 Δx>0(或 Δx<0)时, Δx→0 表示 x0+Δx 从右边(或从左边)趋近于 x0, Δy 是相应函数的改变量,Δy 可正、可负,也可以为零. (2)导数是一个局部概念,它只与函数 y=f(x)在 x=x0 处及其附近的函 数值有关,与 Δx 无关. fx0+Δx-fx0 (3)f′(x0)是一个常数,即当 Δx→0 时,存在一个常数与 Δx Δy 无限接近.如果当 Δx→0 时,Δ lim 不存在,则称函数 f ( x ) 在 x = x 处 0 → x 0Δx 不可导.
高中数学 第一章 导数及其应用 1.1 变化率与导数 1.1.2 导数的概念同步课件 新人教A版选
(3)求极限,得导数 f′(x0)=
Δy Δx.
[变式训练] (1)设 f(x)=ax3+2,若 f′(-1)=3,则 a =( )
A.-1 B.12 C.1 D.13 (2)求函数 y=x42在 x=2 处的导数. (1)解析: 因为 f′(-1)= f(-1+ΔxΔ)x-f(-1)=
a(ΔxΔ-x1)3+a=3a,所以 3a=3,解得 a=1. 答案:C
两个自变量的差,即(x0+Δx)-x0.在求解此类问题时要
严格按照定义,注意分子与分母相应的符号的一致性.
[正确解答] 因为
f(x0-3ΔΔx)x -f(x0)=
[f(x0-3-Δx3) Δ- x f(x0)·(-3)]=-3f′(x0)=1,
所以 f′(x0)=-13.
归纳升华 根据已知条件,利用导数定义求函数 y=f(x)在某一 点 x0 处的导数,关键是牢记导数定义利用已知条件拼凑 出导数定义的形式,从而得到 f′(x0).
所以
ΔΔst=
12Δt+2=2.
答案:A
类型 2 利用导数的定义求导数
[典例 2] (1)求函数 y=3x2 在 x=1 处的导数; (2)求函数 f(x)=x-1x在 x=1 处的导数. 解:(1)因为Δy=f(1+Δx)-f(1)=3(1+Δx)2-3=6 Δx+3(Δx)2, 所以ΔΔxy=6+3Δx,
1.瞬时速度 物体在某一时刻的速度称为瞬时速度.若物体运动的 路程与时间的关系式是 s=f(t),当Δt 趋近于 0 时,函数 f(t)在 t0 到 t0+Δt 之间的平均变化率f(t0+ΔtΔ)t-f(t0) 趋近于常数,
我们就把这个常数叫做 t0 时刻的瞬时速度.即 v=
.故瞬时速度就是位移函数对时 间的瞬时变化率.
人教版高中数学选修2-2全套课件
(2)根据导数的定义
f′(x0)=Δlixm→0
ΔΔyx=Δlixm→0
fx0+Δx-fx0 Δx
= lim Δx→0
2x0+Δx2+4x0+Δx-2x20+4x0 Δx
= lim Δx→0
4x0·Δx+2Δx2+4Δx Δx
= lim Δx→0
(4x0+2Δx+4)
=4x0+4,
∴f′(x0)=4x0+4=12,解得 x0=2.
(1)函数f(x)在x1处有定义. (2)Δx是变量x2在x1处的改变量,且x2是x1附近的任意一点, 即Δx=x2-x1≠0,但Δx可以为正,也可以为负. (3)注意自变量与函数值的对应关系,公式中若Δx=x2-x1, 则Δy=f(x2)-f(x1);若Δx=x1-x2,则Δy=f(x1)-f(x2).
解析: (1)由已知∵Δy=f(x0+Δx)-f(x0) =2(x0+Δx)2+1-2x20-1=2Δx(2x0+Δx), ∴ΔΔyx=2Δx2Δx0x+Δx=4x0+2Δx. (2)由(1)可知:ΔΔxy=4x0+2Δx,当 x0=2,Δx=0.01 时, ΔΔyx=4×2+2×0.01=8.02.
(3)在 x=2 处取自变量的增量 Δx,得一区间[2,2+Δx]. ∴Δy=f(2+Δx)-f(2)=2(2+Δx)2+1-(2·22+1)=2(Δx)2+ 8Δx. ∴ΔΔyx=2Δx+8,当 Δx→0 时,ΔΔxy→8.
1.求瞬时变化率时要首先明确求哪个点处的瞬时
变化率,然后,以此点为一端点取一区间计算平均变化率,并逐步
已知f(x)=x2+3.
(1)求f(x)在x=1处的导数;
(2)求f(x)在x=a处的导数.
[思路点拨]
确定函数 的增量
人教A版数学选修2-2《1.2导数的计算》课件(共26张ppt)
x x 1(是常数)
推广:
y f (x) x ( Q)
y/ x 1
这个公式称为幂函数的导数公式.
事实上 可以是任意实数.
基本初等函数的导数公式
1.若f(x)=c,则f'(x)=0
2.若f(x)=xn,则f'(x)=nxn-1(n R)
3.若f(x)=sinx,则f'(x)=cosx
x
x2 2x x x2 x2
x
2x x
O
所以 y' lim y lim 2x x 2x.
x0 x x0
y=x2 x
从几何的角度理解:
y =2x表示函数y=x2图象上点(x,y)处切线的斜 率为2x,说明随着x的变化,切线的斜率也在变化. 从导数作为函数在一点的瞬时变化率来看,y=2x 表明:
x
x
kx x kx
x
kx kx kx k, x
所以 y' lim y lim k k. x0 x x0
3.函数 y = f (x) = x2 的导数
因为
y
f x x f x x x3) y 3 x (4) y 3 x5
2:
(1)已知y x , 求f (1). x2
(2)已知y 2x3 , 求f (2).
导数的运算法则:
法则1:两个函数的和(差)的导数,等于这两个函数的导数的
和(差),即: f (x) g(x) f (x) g(x)
(3)求极限,得导函数y f (x) lim y . x0 x
几种常见函数的导数 基本初等函数的导数公
式及导数的运算法则
二、几种常见函数的导数
高二数学人教A版选修2-2导数的计算(二)课件
复合函数的导数
• 复合函数y=f(g(x))的导数和函数y=f(u),u =g(x)的导数间的关系为yx′=__y_u_′·_u_x_′___.即y对 x的导数等于__y_对__u_的__导_数___ __与__u_对__x的__导__数__的_乘__积____.
• 2.复合函数求导应注意的问题
(1)y=3-14x4;(2)y=cos(2 008x+8); (3)y=21-3x;(4)y=ln(8x+6).
[思路点拨] 选取中间变量 → 分解 → 求导 → 转化
解析: (1)引入中间变量 u=φ(x)=3-4x. 则函数 y=3-14x4是由函数 f(u)=u14=u-4 与 u=φ(x)=3-4x 复合而成的. 查导数公式表可得 f′(u)=-4u-5=-u45,φ′(x)=-4. 根据复合函数求导法则可得3-14x4′=f′(u)φ′(x) =-u45·(-4)=1u65 =3-164x5.
高中数学人教A 版选修2-2
1.2.2 导数的计算(二)
• 1.能利用导数的四则运算法则求解导函数.
• 2.能利用复合函数的求导法则进行复合函数 的求导.(难点)
• 3.掌握求曲线切线方程的方法和切线问题求 参数的题型.(重点)
导数的运算法则
• 设两个函数分别为f(x)和g(x)
两个函数的 和的导数
两个函数的 商的导数
gfxx′=_f_′__x__g__[xg_-_x_f]_2x__g_′___x_(_g_(_x)_≠__0_)___
• 1.应用导数的运算法则应注意的问题
• (1)对于教材中给出的导数的运算法则,不 要求根据导数定义进行推导,只要能熟练运用 运算法则求简单函数的导数即可.
• (2)对于和差的导数运算法则,此法则可推 广到任意有限个可导函数的和或差,即 [f1(x)±f2(x)±…±fn(x)]′=f′1(x)± f′2(x) ±…±f′n(x).
《导数的概念》说课稿(人教A版选修2-2)
说课稿一、教材分析导数的概念是高中新教材人教A 版选修2-2第一章1.1.2的内容, 是在学生学习了物理的平均速度和瞬时速度的背景下,以及前节课所学的平均变化率基础上,阐述了平均变化率和瞬时变化率的关系,从实例出发得到导数的概念,为以后更好地研究导数的几何意义和导数的应用奠定基础。
新教材在这个问题的处理上有很大变化,它与旧教材的区别是从平均变化率入手,用形象直观的“逼近”方法定义导数。
问题1 气球平均膨胀率--→瞬时膨胀率 问题2 高台跳水的平均速度--→瞬时速度--难点二、 教学目标1、知识与技能:通过大量的实例的分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景,知道瞬时变化率就是导数。
2、过程与方法:① 通过动手计算培养学生观察、分析、比较和归纳能力② 通过问题的探究体会逼近、类比、以已知探求未知、从特殊到一般的数学思想方法3、情感、态度与价值观:通过运动的观点体会导数的内涵,使学生掌握导数的概念不再困难,从而激发学生学习数学的兴趣. 三、 重点、难点重点:导数概念的形成,导数内涵的理解难点:在平均变化率的基础上去探求瞬时变化率,深刻理解导数的内涵 通过逼近的方法,引导学生观察来突破难点 四、 教学设想(具体如下表)五、学法与教法学法与教学用具学法:(1)合作学习:引导学生分组讨论,合作交流,共同探讨问题。
(如问题2的处理)(2)自主学习:引导学生通过亲身经历,动口、动脑、动手参与数学活动。
(如问题3的处理)(3)探究学习:引导学生发挥主观能动性,主动探索新知。
(如例题的处理)教学用具:电脑、多媒体、计算器教法:整堂课围绕“一切为了学生发展”的教学原则,突出①动——师生互动、共同探索。
②导——教师指导、循序渐进(1)新课引入——提出问题, 激发学生的求知欲(2)理解导数的内涵——数形结合,动手计算,组织学生自主探索,获得导数的定义(3)例题处理——始终从问题出发,层层设疑,让他们在探索中自得知识(4)变式练习——深化对导数内涵的理解,巩固新知六、评价分析这堂课由平均速度到瞬时速度再到导数,展示了一个完整的数学探究过程。
人教a版数学【选修2-2】1.1.2《导数的概念》ppt课件
常数 叫做t0时刻的瞬时速度.即 常数 ,我们就把这个______ 于______
st0+Δt-st0 Δs lim Δt Δt→0 v= lim = ______________________. → Δt
Δt 0
故瞬时速度就是运动方程是S=-4t2+16t(S的单位为m;t的 单位为s),则该物体在t=2s时的瞬时速度为( ) A.3m/s B.2m/s C.1m/s D.0m/s [答案] D
Δx 0
典例探究学案
瞬时速度
1 2 已知自由落体的运动方程为s=2gt ,求: (1)落体在t0到t0+Δt这段时间内的平均速度; (2)落体在t0时的瞬时速度; (3)落体在t0=2秒到t1=2.1秒这段时间内的平均速度; (4)落体在t=2秒时的瞬时速度.
[分析] 平均速度 v 即平均变化率,而瞬时速度即是平均 速度 v 在Δt→0时的极限值,为此,要求瞬时速度,应先求出 平均速度,再求 v 当Δt→0时的极限值.
)
f1+Δx-f1 1 1 [解析] 原式=3 lim =3f ′(1). Δx Δx→0
4.(2013· 揭阳一中段考)若f(x)=x3,f ′(x0)=3,则x0的值 为( ) A.1 C.± 1 [答案] C B.-1 D.3 3
fx0+Δx-fx0 [解析] ∵f ′(x0)= lim Δx Δx→0 x0+Δx3-x3 0 = lim Δx Δx→0
3.对导数定义的理解要注意: 第一:Δx是自变量x在x0处的改变量,所以Δx可正可负,但 Δx≠0;Δy是函数值的改变量,可以为0; 第二:函数在某点的导数,就是在该点的函数值改变量与自 变量改变量之___的极限.因此,它是一个常数而不是变量 ; 比
高中数学 第一章 导数及其应用 1.1.2 导数的概念教案 新人教A版选修2-2(2021年整理)
江苏省苏州市高中数学第一章导数及其应用1.1.2 导数的概念教案新人教A版选修2-2编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(江苏省苏州市高中数学第一章导数及其应用1.1.2 导数的概念教案新人教A版选修2-2)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为江苏省苏州市高中数学第一章导数及其应用1.1.2 导数的概念教案新人教A版选修2-2的全部内容。
导数的概念本节课的教学内容选自人教社普通高中课程标准实验教科书(A版)数学选修2-2第一章第一节的《变化率与导数》,《导数的概念》是第2课时.教学内容分析1.导数的地位、作用导数是微积分的核心概念之一,它是一种特殊的极限,反映了函数变化的快慢程度.导数是求函数的单调性、极值、曲线的切线以及一些优化问题的重要工具,同时对研究几何、不等式起着重要作用.导数概念是我们今后学习微积分的基础.同时,导数在物理学,经济学等领域都有广泛的应用,是开展科学研究必不可少的工具。
2.本课内容剖析教材安排导数内容时,学生是没有学习极限概念的.教材这样处理的原因,一方面是因为极限概念高度抽象,不适合在没有任何极限认识的基础上学习.所以,让学生通过学习导数这个特殊的极限去体会极限的思想,这为今后学习极限提供了认识基础.另一方面,函数是高中的重要数学概念,而导数是研究函数的有力工具,因此,安排先学习导数方便学生学习和研究函数.基于学生已经在高一年级的物理课程中学习了瞬时速度,因此,先通过求物体在某一时刻的平均速度的极限去得出瞬时速度,再由此抽象出函数在某点的平均变化率的极限就是瞬时变化率的的模型,并将瞬时变化率定义为导数,这是符合学生认知规律的.进行导数概念教学时还应该看到,通过若干个特殊时刻的瞬时速度过渡到任意时刻的瞬时速度;从物体运动的平均速度的极限是瞬时速度过渡到函数的平均变化率的极限是瞬时变化率,我们可以向学生渗透从特殊到一般的研究问题基本思想.教学目的1.使学生认识到:当时间间隔越来越小时,运动物体在某一时刻附近的平均速度趋向于一个常数,并且这个常数就是物体在这一时刻的瞬时速度;2.使学生通过运动物体瞬时速度的探求,体会函数在某点附近的平均变化率的极限就是函数在该点的瞬时变化率,并由此建构导数的概念;3.掌握利用求函数在某点的平均变化率的极限实现求导数的基本步骤;4.通过导数概念的构建,使学生体会极限思想,为将来学习极限概念积累学习经验;5.通过导数概念的教学教程,使学生体会到从特殊到一般的过程是发现事物变化规律的重要过程.教学重点通过运动物体在某一时刻的瞬时速度的探求,抽象概括出函数导数的概念.教学难点使学生体会运动物体在某一时刻的平均速度的极限意义,由此得出函数在某点平均变化率的极限就是函数在该点的瞬时变化率,并由此得出导数的概念.教学准备1.查找实际测速中测量瞬时速度的方法;2.为学生每人准备一台Ti-nspire CAS图形计算器,并对学生进行技术培训;3.制作《数学实验记录单》及上课课件.教学流程框图教学流程设计充分尊重学生认知事物的基本规律,使学生在操作感知的基础上形成导数概念的表象,再通过表象抽象出导数概念,并通过运用导数概念解决实际问题使学生进一步体会导数的本质.教学的主要过程设计如下:复习准备理解平均速度与瞬时速度的区别与联系.体会模型感受当△t→0时,平均速度逼近于某个常数.提炼模型从形式上完成从平均速度向瞬时速度的过渡.形成概念由物体运动的瞬时速度推广到函数瞬时变化率,并由此得出导数的定义.应用概念理解导数概念,熟悉求导的步骤,应用计算结果解释瞬时变化率的意义.小结作业通过师生共同小结,使学生进一步感受极限思想对人类思维的重大影响.教学过程设计5分钟1.复习准备设计意图:让学生理解平均速度与瞬时速度的区别与联系,感受到平均速度在时间间隔很小时可以近似地表示瞬时速度.(1)提问:请说出函数从x1到x2的平均变化率公式.(2)提问:如果用x1与增量△x表示平均变化率的公式是怎样的?(3)高台跳水的例子中,在时间段]4965,0[里的平均速度是零,而实际上运动员并不是静止的.这说明平均速度不能准确反映他在这段时间里运动状态。
2014-2015学年高中数学(人教版选修2-2)配套课件第一章 1.1 1.1.2 导数的概念
栏 目 链 接
∴4 s 时物体的瞬时速度为 2+6×4=26.
题型2
利用导数的定义求导数
例2 利用导数的定义解下列各题:
1 (1)求函数 f(x)= 在 x=1 处的导数; x+1 (2)已知函数 f(x)=ax2+2x 在 x=1 处的导数为 6, 求a 的值.
-Δx 1 1 Δy 解析: (1)因为 Δy=f(1+Δx)-f(1)= - = , 所以 Δx 2+Δx 2 22+Δx 1 Δy 1 =- ,于是 f(x)在 x=1 处的导数 f′(1)=Δ lim =- . x→0 Δx 4 22+Δx
1 2 2. 已知物体做自由落体运动的方程为 s(t)= gt , 若 Δt→0 时, 2 s1+Δt-s1 无限趋近于 9.8 m/s,则正确的说法是( Δt A.9.8 m/s 是物体在 0~1 s 这段时间内的速度 B.9.8 m/s 是物体在 1 s~(1+Δt)s 这段时间内的速度 C.9.8 m/s 是物体在 t=1 s 这一时刻的速度 D.9.8 m/s 是物体从 1 s~(1+Δt)s 这段时间内的平均速度
栏 目 链 接
点评:由导数的定义求导数,是求导数的基本方法, 必须严格按以下三个步骤进行: ①求函数的增量 Δy=f(x0+Δx)-f(x0); Δy fx0+Δx-fx0 ②求平均变化率 = ; Δx Δx Δy ③取极限,得导数 f′(x0)=Δ lim . x→0 Δx
例:设函数 y=f(x)=3x2,则 Δy=f(1+Δx)-f(1) Δy Δy 2 6Δ x + 3(Δ x ) 6 + 3Δ x =________________, =______________,Δ lim x→0 Δx Δx
6 6 =______________ ;f′(1)=______________.
高中数学 第一章 导数及其应用 1.2 导数的计算 导数概念与运算基础知识总结素材 新人教A版选修2-2
导数概念与运算基础知识总结知识清单 1.导数的概念函数y=f(x),如果自变量x 在x 0处有增量x ∆,那么函数y 相应地有增量y ∆=f (x 0+x ∆)-f (x 0),比值xy∆∆叫做函数y=f (x )在x 0到x 0+x ∆之间的平均变化率,即x y ∆∆=x x f x x f ∆-∆+)()(00。
如果当0→∆x 时,xy ∆∆有极限,我们就说函数y=f(x)在点x 0处可导,并把这个极限叫做f (x )在点x 0处的导数,记作f’(x 0)或y’|0x x =。
即f (x 0)=0lim →∆x xy∆∆=0lim →∆x x x f x x f ∆-∆+)()(00。
说明:(1)函数f (x )在点x 0处可导,是指0→∆x 时,x y ∆∆有极限。
如果xy∆∆不存在极限,就说函数在点x 0处不可导,或说无导数。
(2)x ∆是自变量x 在x 0处的改变量,0≠∆x 时,而y ∆是函数值的改变量,可以是零。
由导数的定义可知,求函数y=f (x )在点x 0处的导数的步骤(可由学生来归纳):(1)求函数的增量y ∆=f (x 0+x ∆)-f (x 0); (2)求平均变化率xy ∆∆=x x f x x f ∆-∆+)()(00;(3)取极限,得导数f’(x 0)=xyx ∆∆→∆0lim 。
2.导数的几何意义函数y=f (x )在点x 0处的导数的几何意义是曲线y=f (x )在点p (x 0,f(x 0))处的切线的斜率。
也就是说,曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率是f’(x 0)。
相应地,切线方程为y -y 0=f /(x 0)(x -x 0)。
3.几种常见函数的导数:①0;C '= ②()1;n n x nx -'= ③(sin )cos x x '=; ④(cos )sin x x '=-;⑤();x x e e '=⑥()ln x x a a a '=; ⑦()1ln x x '=; ⑧()1l g log a a o x e x '=.4.两个函数的和、差、积的求导法则法则1:两个函数的和(或差)的导数,等于这两个函数的导数的和(或差), 即: (.)'''v u v u ±=±法则2:两个函数的积的导数,等于第一个函数的导数乘以第二个函数,加上第一个函数乘以第二个函数的导数,即:.)('''uv v u uv +=若C 为常数,则'''''0)(Cu Cu Cu u C Cu =+=+=.即常数与函数的积的导数等于常数乘以函数的导数: .)(''Cu Cu =法则3:两个函数的商的导数,等于分子的导数与分母的积,减去分母的导数与分子的积,再除以分母的平方:⎪⎭⎫⎝⎛v u ‘=2''v uv v u -(v ≠0)。
1.1.1变化率问题1.1.2导数的概念课件高二下学期数学人教A版选修22
度, 写成
lim
t 0
h(2
+
t) t
-
h(2)
.
即
lim
t 0
h(2
+
t) t
-
h(2)
=
-13.1.
2. 瞬时变化率
对于函数的平均变化率
y = f (x2 ) - f (x1) ,
x
x2 - x1
由△x=x2-x1 得 x2=△x+x1,
y = f (x + x1) - f (x1) .
x
x
当△x 很小很小时, △x+x1 就接近于 x1.
我们用符号
lim
x0
表示△x
趋近于零,
用平均变化
率的极限 lim y = lim f (x + x1) - f (x1)
x x0
x0
x
表示函数在 x1 处的瞬时变化率.
3. 导数
一般地, 函数 y=f(x) 在 x=x0 处的瞬时变化率是
lim f (x0 + x) - f (x0 ) = lim y ,
x0
x
x0 x
我们称它为函数 y=f(x) 在 x=x0 处的导数, 记作 f(x0)
或 y |x=x0, 即
f
(x0) =
lim
x0
f
(x0 + x)x
f
(x0) .
问题 1 中, 运动员在时间 t=2 时的瞬时速度就是 求函数 h(x) 在 t=2 时的导数.
导数可以描述任何物体的瞬时变化.
由导数的定义可知, 求函数 y = f (x)的导数的一般方法:
人教A版·高中数学·选修2-2 第一章
人教a版数学【选修2-2】1.2.2《基本初等函数的导数公式(二)》ppt课件
3.写出下列复合函数的导数: (1)y=sin2x,y′=________. 1 (2)y=lnx,y′=________. (3)y= 1-3x,y′=________. (4)y=22x-1,y′=________. (5)y=e2x-ex+3,y′=________. (6)y=(lnx-1)(lnx+2),y′=________. 1 (7)y=cosx,y′=________.
(8)y′=2sinx(sinx)′=2sinxcosx=sin2x. (9)∵y=sin2x-2sinx+3,∴y′=sin2x-2cosx. x x x x x cos2′· x-cos2 -2sin2-cos2 (10)y′= = x2 x2 x x xsin2+2cos2 =- . 2 x2
1 3 (2)y′= · (6x+4)′= . 6x+4 3x+2 (3)y′=e2x+1· (2x+1)′=2e2x+1. 1 1 (4)y′= · (2x-1)′= . 2 2x-1 2x-1
π π π 3x- ′=3cos3x- . (5)y′=cos3x-4· 4 4
1 3 (3)y′= · (1-3x)′=- . 2 1-3x 2 1-3x (4)y′=22x-1ln2· (2x-1)′=22xln2. (5)y′=2e2x-ex. (6)∵y=ln2x+lnx-2, 1 2lnx+1 ∴y′=2lnx· (lnx)′+x= x . 1 sinx (7)y′=-cos2x· (cosx)′=cos2x.
u对x的导数
牛刀小试 x2+a2 1.(2013· 天津红桥区高二检测)函数y= x 的导数值为0 时,x等于( A.a C.-a [答案] B ) B.± a D.a2
2x2-x2+a2 x2-a2 [解析] y′= = x2 , x2 x2-a2 由y′=0得, x2 =0,∴x=± a.
高中数学人教A版选修(2-2)1.1 教学课件 《导数的概念》(人教A版)
分析:
s
s(t0
t )
s(t0 )
2 g t
1 2
g (t)2
__
v
s
s(t0
t) s(t0 )
2g
1
g (t )
t
t
2
解:
__
v
s
2g
1
g(t )
t
2
(1)将 Δt=0.1代入上式,得:
__
v 2.05g 20.5m / s.
(2)将 Δt=0.01代入上式,得:
v 4.9t 13.1
当△t = 0.01时, 当△t =0.001时, 当△t =0.0001时,
v 13.149 v 13.1049 v 13.10049
△t = 0.00001,
v 13.100049
△t =0.000001,
v 13.1000049 ……
判断极限 lim f (x0 x) f (x0 ) 是否存在。
x0
x
人民教育出版社 高二年级 | 选修2-2
【探讨2】导数是什么?
描述角度 文字语言 符号语言
本质 瞬时变化率
lim y
x0 x
图形语言 (切线斜 率)
(三)剖析概念加深理解
人民教育出版社 高二年级 | 选修2-2
f (x0 Δx) x
f (x0 )
.
1. f (x0 )与x0的值有关,不同的x0其导数值一般也不相同。
2. f (x0 )与x的具体取值无关。 3.瞬时变化率与导数是同一概念的两个名称。
人教a版数学【选修2-2】1.1.3《导数的概念》ppt课件
重点:导数的几何意义及曲线的切线方程. 难点:对导数几何意义的理解.
导数的几何意义
新知导学 1.曲线的切线:过曲线y=f(x)上一点P作曲线的割线PQ,当
Q点沿着曲线无限趋近于P时,若割线PQ趋近于某一确定的 直线PT,则这一确定的直线PT称为曲线y=f(x)在点P的 __________.
[解析] (1)将x=2代入曲线C的方程得y=4,
∴切点P(2,4).
y′|x=2=Δlixm→0
ΔΔyx=Δlixm→0
132+Δx3+43-13×23-43 Δx
=Δlixm→0[4+2·Δx+13(Δx)2]=4. ∴k=y′|x=2=4. ∴曲线在点P(2,4)处的切线方程为y-4=4(x-2),即4x-y
)
A.1
B.π4
C.54π
D.-π4
[答案] B
[解析] ∵y=12x2-2,
∴y′= lim Δx→0
12x+Δx2-2-12x2-2 Δx
= lim Δx→0
12ΔxΔ2+x x·Δx=Δlixm→0
x+12Δx=x.
∴y′|x=1=1.
∴点P1,-32处切线的斜率为1,则切线的倾斜角为45°.
数f(x)的导函数__________.
(3)函数y=f(x)在点x0处的导数f ′(x0)就是导函数f ′(x)在点x=x0 处的函数值,f即′(xf)′(x0)=__________.
f′(x)|x=x0
牛刀小试
1.(2014·三峡名校联盟联考)曲线y=x2在点P(1,1)处的切线 方程为( )
A.y=2x
B.y=2x-1
C.y=2x+1 D.y=-2x
[答案] B
五年级【数学】1.1.2《导数的概念》课件(人教A版选修2-2)---初版
t 0
t
lim 4.9(t)2 (9.8t0 6.5)t
t 0
t
lim (4.9t
t 0
9.8t0
6.5)
9.8t0 6.5
定义:
函数 y = f (x) 在 x = x0 处的瞬时变化率是
lim f (x0 Δx) f (x0 ) f
x 0
x
x0 x
称为函数 y = f (x) 在 x = x0 处的导数, 记作 f (x0 )
)
x
lim
x0
f x
.
x
一差、二化、三极限
例1 将原油精炼为汽油、柴油、塑胶等各种不同产品,
需要对原油进行冷却和加热. 如果第 x h时, 原油的温度(单
位: C )为 f (x) = x2 – 7x+15 ( 0≤x≤8 ) . 计算第2h和第6h,
原油温度的瞬时变化率, 并说明它们的意义. 解: 在第2h和第6h时, 原油温度的瞬时变化率就是
课堂练习:
如果质点A按规律 s 2t3 则在t=3s
时的瞬时速度为
A.6
B.18
C.54 D.81
练习:
例1 将原油精炼为汽油、柴油、塑胶等各种不同产品,
需要对原油进行冷却和加热. 如果第 x h时, 原油的温度(单 位: C )为 f (x) = x2 – 7x+15 ( 0≤x≤8 ) . 计算第2h和第6h,
原油温度的瞬时变化率, 并说明它们的意义.
练习: 计算第3h和第5h时原油的瞬时变化率, 并说 明它们的意义.
f (2)和 f (6).
根据导数的定义,
f (2 x) f (2) 4x (x)2 7x x 3
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
)
[答案] A
fx-f1 [解析] f ′(1)=lim =li m a=a=2. x - 1 x→1 x→1
f1+Δx-f1 3.设函数f(x)可导,则 lim 等于( 3Δ x Δx→0 A.f ′(1) 1 C.3f ′(1) B.3f ′(1) D.f ′(3)
)
[答案] C
常数 ,我们就把这个________ 常数 于________ 叫做t0时刻的瞬时速
度.即
st0+Δt-st0 Δs lim Δt→0 v= lim Δt =______________ .Δt Δt→0
故瞬时速度就是位移函数对时间的瞬时变化率.
牛刀小试
1.已知物体的运动方程是S=-4t2+16t(S的单位为m;t的 单位为s),则该物体在t=2s时的瞬时速度为( )
2.05g≈2.05×9.8=20.09(米/秒). (4)由(2)知落体在t0=2秒的瞬时速度为v=g×2≈9.8×2= 19.6(米/秒).
[ 方法规律总结 ]
1. 应注意区分平均速度与瞬时速度的概
念、瞬时速度是运动物体在t0到t0+Δt这一段时间内的平均速度 当Δt→0时的极限,即运动方程s=f(t)在t=t0时对时间t的导数. 2.求瞬时速度的步骤: 第一步,求平均速度.
典例探究学案
瞬时速度
1 2 已知自由落体的运动方程为s=2gt ,求: (1)落体在t0到t0+Δt这段时间内的平均速度; (2)落体在t0时的瞬时速度; (3)落体在t0=2秒到t1=2.1秒这段时间内的平均速度; (4)落体在t=2秒时的瞬时速度.
ቤተ መጻሕፍቲ ባይዱ
[分析] 平均速度 v 即平均变化率,而瞬时速度即是平均 速度 v 在Δt→0时的极限值,为此,要求瞬时速度,应先求出 平均速度,再求 v 当Δt→0时的极限值. [解析] (1)落体在t0到t0+Δt这段时间内路程的增量为Δs=
2 = lim [(Δx)2+3x0Δx+3x2 ] = 3 x 1. 0 0=3,∴x0=± Δx→0
5 .由导数的定义可求得,函数f(x) =x2- 2x 在 x = 1处的导 数f ′(1)=________________.
[答案] 0
f1+Δx-f1 [解析] f ′(1)= lim Δx Δx→0 1+Δx2-21+Δx+1 = lim = lim Δx=0. Δx Δx→0 Δx→0
2
导数的概念
思维导航
2 .物体的平均速度能否精确反映它的运动状态?瞬时速 度呢?如何描述物体在某一时刻的运动状态?
新知导学
Δy 2.导数:函数y=f(x)在x=x0处的瞬时变化率是 lim Δx = Δx→0 fx0+Δx-fx0 lim .我们称它为函数y=f(x)在x=x0处的导数, Δ x Δx→0 fx0+Δx-fx0 Δy lim Δx 记作f ′(x0)或y′|x=x0,即f ′(x0)= lim Δx=Δ . x→0 ______________
无导数 _______________ ;
第四:f ′(x0)的不同表达方式: y′|x=x0=f fx0+Δx-fx0 . Δx ′(x0)= lim x→x0 fx-fx0 x -x 0 = lim
Δx→0
牛刀小试
2.设f(x)=ax+4,若f ′(1)=2,则a等于(
A.2 C.3 B.-2 D.-3
1 1 2 2 2g(t0+Δt) -2gt0 因此,落体在这段时间内的平均速度为: 1 1 2 2 gt +Δt -2gt0 Δs 2 0 1 Δt2t0+Δt 1 v = Δt = =2g· Δt =2g(2t0+Δt). Δt
(2)落体在t0时的瞬时速度为 1 v= lim v = lim 2g(2t0+Δt)=gt0. Δt→0 Δt→0 (3)落体在t0=2秒到t1=2.1秒时,其时间增量Δt=t1-t0= 0.1秒,由(1)知平均速度为 v = 1 2 g(2×2+0.1)=
A.3m/s
C.1m/s
B.2m/s
D.0m/s
[答案] D [解析] ΔS=-4(2+Δt)2+16(2+Δt)+4×22-16×2=-
ΔS -4Δt 2 4Δt ,∴ Δt = Δt =-4Δt, ΔS ∴v=lim Δt =lim (-4Δt)=0. Δt→0 Δt→0 ∴物体在t=2s时的瞬时速度为0m/s.
瞬时速度
思维导航
1 .在汽车行驶、飞机航行、高台跳水等不同的运动过程
中,不同时刻的速度是不同的,怎样用数学方法加以区别.
新知导学
1.瞬时速度:物体在某一时刻的速度称为瞬时速度. 若物体运动的路程与时间的关系式是s=f(t),当Δt趋近于0 ft0+Δt-ft0 时,函数f(t)在t0到t0+Δt之间的平均变化率 趋近 Δt
f1+Δx-f1 1 1 [解析] 原式=3 lim =3f ′(1). Δ x Δx→0
4.若f(x)=x3,f ′(x0)=3,则x0的值为( A.1 C.± 1 B.-1 D.3 3
)
[答案] C
fx0+Δx-fx0 [解析] ∵f ′(x0)= lim Δx Δx→0 x0+Δx3-x3 0 = lim Δx Δx→0
Δx→0
3.对导数定义的理解要注意: 第一:Δx是自变量x在x0处的改变量,所以Δx可正可负, 但Δx≠0;Δy是函数值的改变量,可以为0; 第二:函数在某点的导数,就是在该点的函数值改变量与
比 自变量改变量之________ 的极限.因此,它是一个常数而不是
变量;
Δy 第三:函数f(x)在x0处可导,是指Δx→0时, Δx 有极限.如 Δy 不可导 果 Δx 不存在极限,就说函数在点x0处_______________ ,或说
成才之路 ·数学
人教A版 ·选修2-2
路漫漫其修远兮 吾将上下而求索
第一章
导数及其应用
第一章
1.1 变化率与导数
1.1.2 导数的概念
1
自主预习学案
2
典例探究学案
3
课 时 作 业
自主预习学案
1.理解函数的瞬时变化率的概念和导数的概念.
2.能利用导数的定义求简单函数的导数.
重点:导数的定义. 难点:用导数的定义求函数的导数.