06级高等数学3期末试题Adoc

合集下载

2006数学三考研真题

2006数学三考研真题

2006数学三考研真题一、选择题1. 下列命题中,正确的是:A. 若函数f(x)在[a, b]上连续,则必在[a, b]上有界。

B. 函数f(x)在开区间(a, b)上有界,则f(x)在[a, b]上有界。

C. 函数f(x)在[0, 1]上单调有界,则f(x)在[0, 1]上一定有一极限。

D. 若函数f(x)在[a, b]上单调有界,则f(x)在[a, b]上一定有一极限。

2. 设函数f(x) = x^3 - 3x^2 - 9x + c, 其中c为常数,则当x的取值为多少时,函数f(x)在区间[1, 3]上的最小值为-4?A. x = -1B. x = 1C. x = 4D. x = 53. 在圆锥体的三个属性:“有一个封闭的曲面、曲面上任何一点的切平面都交于一条公共直线、锥形顶点至底面的距离不变”,以下哪个属性是不正确的?A. 有一个封闭的曲面B. 曲面上任何一点的切平面都交于一条公共直线C. 锥形顶点至底面的距离不变D. 圆锥的底面是一个圆二、填空题1. 设函数f(x) = ax^3 + bx^2 + cx + d,其中a ≠ 0,若f''(x) = 6,则a + b + c + d = ______。

2. 若函数f(x) = x^2 - 2x - 3的图像经过B(2, -1),则直线y = kx + 5与f(x)的图像恰好相切,其中k的值为______。

三、计算题1. 计算定积分I = ∫(0,1) (4x^2 - 2x + 1)dx.2. 已知三角形ABC,其中∠BAC = 45°,BM为直角三角形ABC上BC边的中线,且∠BCA = 30°。

若BM = 2,则三角形ABC的面积为______。

四、证明题设数列{an}的公差d ≠ 0,数列{bn}的公差为arctan(d) ≠ 0,且当n→∞时,lim(an·bn) = 1.求证:lim(an) = lim(bn) = 1/d.总结:本文为2006年数学三考研真题的解答,包括选择题、填空题、计算题和证明题。

2006-2007学年第二学期高等数学期末试卷

2006-2007学年第二学期高等数学期末试卷

2006-2007学年第二学期高等数学期末试卷北京工业大学2006-2007学年第二学期《高等数学》期末试卷一、单项选择题:本大题共5小题,每小题4分,共20 分。

在每小题给出的四个选项中,只有一项是符合题目要求的. 请将正确结果的字母写在括号内。

1.假定函数f (x,,y )在点),(0y x 处取得极大值,此时下列结论正确的是 【 】(A )0(,)f x y 在0x x =处导数等于零. (B )0(,)f x y 在0x x =处导数大于零.(C )0(,)f x y 在0x x =处导数小于零. (D )0(,)f x y 在x x =处导数未必存在.2. 222222ln()1z x y z dxdydz x y z Ω+++++⎰⎰⎰(其中Ω为2222xy z ++≤)的值等于 【 】 (A ) 2 (B ) 1 (C ) 0 (D ) -1 3.级数21(1)ln nn n∞=-∑ 的敛散情况是【 】(A )条件收敛 (B )绝对收敛 (C )发散 (D )敛散性不能确定4.将三重积分dvz y xI ⎰⎰⎰Ω++=)(222,其中1:222≤++Ωz y x,化为球面坐标下的三次积分为 【 】 (A )⎰⎰⎰120drd d ππϕθ (B ) ⎰⎰⎰1220rdrd d ππϕθ(C )⎰⎰⎰1420sin drr d d ϕϕθππ(D ) ⎰⎰⎰12020sin drr d d ϕϕθππθϕϕd drd r dv sin 2=注意到体积元素5.定义在[,]ππ-上的函数()||f x x =展开为以2π为周期的傅立叶级数,其和函数记为)(x S ,则=)(πS【 】(A )0 (B) π(C )π- (D )2π二、填空题:本大题共5小题,每小题4分,共20分,把答案填在题中的横线上.6.曲线32,,t z ty t x ===在点),1,1,1(--P 处的切线方程为___________________ , 法平面方程为12.计算二次积分2()a x y aI a dx e dy-=⎰⎰,其中实数0a >,并求极限lim ()a I a →+∞13.利用高斯公式计算曲面积分⎰⎰∑+-=,2dxdy z xdzdx ydydz I 其中∑是锥面22y x z +=介于平面0z =与平面3z =之间部分的外侧.14.已知曲线积分()[]⎰'+-=),()0,0()()(,y x x dyxydxxeyxIϕϕ与积分路径无关,其中()xϕ是二阶可导函数,且(0)0ϕ=,0)0(='ϕ.1.求()xϕ;2.求)1,1(I.15. 求(1)幂级数112n n n n x ∞-=∑的收敛域;(2)幂级数112n nn n x ∞-=∑的和函数;(3)级数1(1)2nnn n ∞=-∑的和.16.函数)(x f 具有连续的导数,满足0()()d 1x ax xf x e f at t ae +=+⎰,且(0)2f a =, 求a 的值及函数)(x f .12()(2)x x e xe xf x e e ee--+-+=-+四、 证明题: 本题共1题,6分.17. 已知无穷级数2n n u ∞=∑满足 22222ln 1xy nx y a nun dxdyπ--+≤=-⎰⎰,其中实数0a >, 证明: 级数2n n u ∞=∑ 当1a >时收敛; 当1a ≤时发散, 但2(1)nnn u ∞=-∑ 总收敛.北京工业大学2006-2007学年第二学期 《高等数学》期末试卷 参考答案一、单项选择题1. D 2. C 3.A 4. C (θϕϕd drd r dv sin 2=注意到体积元素)5. B二、填空题 6.312111+=--=+z y x 0632=++-z y x7. 44a π8.544x - )4,4(-9.3,2==b a 310.dy dx dz 2121+=三、计算题11. 解:设 ,x u y x v ye =-=, 则''x u v zf ye f x∂=-+∂ ()()2'''''''''''''''2'''()1x x u v uu uvx x x vu vv v x x x uu uv vv v z f ye f f e f x y yye f e f e f f e y f ye f e f ∂∂=-+=--∂∂∂+++=-+-++12. 解:()2222211.2a xa aa yy y y a xa y a dx edy dx edy dy edxyedy e -----=-=-=-=-⎰⎰⎰⎰⎰⎰⎰从而1lim ()2a I a →+∞=-。

2006年硕士研究生入学考试(数学三)试题及答案解析

2006年硕士研究生入学考试(数学三)试题及答案解析

2006年硕士研究生入学考试(数学三)试题及答案解析一、填空题:1-6小题,每小题4分,共24分. 把答案填在题中横线上. (1)()11lim 1.nn n n -→∞+⎛⎫=⎪⎝⎭【分析】将其对数恒等化ln eNN =求解.【详解】()(1)111ln lim (1)ln 1lim lim eennn n n n n n n n n n -→∞-++⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭→∞→∞+⎛⎫== ⎪⎝⎭,而数列{}(1)n -有界,1lim ln 0n n n →∞+⎛⎫= ⎪⎝⎭,所以1lim(1)ln 0nn n n →∞+⎛⎫-= ⎪⎝⎭. 故 ()101lim e 1nn n n -→∞+⎛⎫==⎪⎝⎭.(2)设函数()f x 在2x =的某邻域内可导,且()()e f x f x '=,()21f =,则()322e .f '''=【分析】利用复合函数求导即可.【详解】由题设知,()()e f x f x '=,两边对x 求导得()()()2e()e f x f x f x f x '''==,两边再对x 求导得 ()()23()2e()2e f x f x f x f x ''''==,又()21f =,故 ()323(2)2e2e f f '''==.(3)设函数()f u 可微,且()102f '=,则()224z f x y =-在点(1,2)处的全微分()1,2d 4d 2d .zx y =-【分析】利用二元函数的全微分公式或微分形式不变性计算. 【详解】方法一:因为22(1,2)(1,2)(4)84z f x y xx∂'=-⋅=∂,()22(1,2)(1,2)(4)22z f x y y y∂'=-⋅-=-∂,所以 ()()()1,21,21,2d d d 4d 2d z z z x y x y xy⎡⎤∂∂=+=-⎢⎥∂∂⎣⎦. 方法二:对()224z f x y =-微分得()222222d (4)d(4)(4)8d 2d z f x y x y f x y x x y y ''=--=--, 故 ()()1,2d (0)8d 2d 4d 2d z f x y x y '=-=-. (4)设矩阵2112A ⎛⎫= ⎪-⎝⎭,E 为2阶单位矩阵,矩阵B 满足2BA B E =+,则 =B 2 .【分析】 将矩阵方程改写为AX B XA B AXB C ===或或的形式,再用方阵相乘的行列式性质进行计算即可.【详解】 由题设,有()2B A E E -= 于是有 4B A E -=,而11211A E -==-,所以2B =. (5)设随机变量X Y 与相互独立,且均服从区间[]0,3上的均匀分布,则{}{}max ,1P X Y ≤=19. 【分析】 利用X Y 与的独立性及分布计算. 【详解】 由题设知,X Y 与具有相同的概率密度1,3()30,x f x ⎧≤≤⎪=⎨⎪⎩ 0 其他.则 {}{}{}max ,11,1P X Y P X Y ≤=≤≤{}{}11P X P Y =≤≤{}()2120111d 39P X x ⎛⎫=≤== ⎪⎝⎭⎰. (6)设总体X 的概率密度为()()121,,,,2xn f x e x X X X -=-∞<<+∞ 为总体X 的简单随机样本,其样本方差为2S ,则22.ES = 【分析】利用样本方差的性质2ES DX =即可. 【详解】因为()d e d 02xx EX xf x x x +∞+∞--∞-∞===⎰⎰,22222000()d e d e d e 2e d 2xx xx x EX x f x x x x x x x x +∞+∞+∞+∞---+∞--∞-∞====-+⎰⎰⎰⎰002e 2e d 2e 2xx xx x +∞-+∞--+∞=-+=-=⎰,所以 ()22202DX EX EX =-=-=,又因2S 是DX 的无偏估计量,所以 22ES DX ==.二、选择题:7-14小题,每小题4分,共32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(7)设函数()y f x =具有二阶导数,且()0,()0f x f x '''>>,x ∆为自变量x 在点0x 处的增量,d y y ∆与分别为()f x 在点0x 处对应的增量与微分,若0x ∆>,则(A) 0d y y <<∆. (B) 0d y y <∆<.(C) d 0y y ∆<<. (D) d 0y y <∆< . [ A ] 【分析】 题设条件有明显的几何意义,用图示法求解. 【详解】 由()0,()0f x f x '''>>知,函数()f x 单调增加,曲线()y f x =凹向,作函数()y f x =的图形如右图所示,显然当0x ∆>时,00d ()d ()0y y f x x f x x ''∆>==∆>,故应选(A).(8)设函数()f x 在0x =处连续,且()22lim1h f h h →=,则(A) ()()000f f -'=且存在 (B) ()()010f f -'=且存在(C) ()()000f f +'=且存在 (D) ()()010f f +'=且存在 [ C ] 【分析】从()22lim 1h f h h→=入手计算(0)f ,利用导数的左右导数定义判定(0),(0)f f -+''的存在性. 【详解】由()22lim1h f h h→=知,()20lim 0h f h →=.又因为()f x 在0x =处连续,则()2(0)lim ()lim 0x h f f x f h→→===.令2t h =,则()()220(0)1limlim (0)h t f h f t f f h t++→→-'===. 所以(0)f +'存在,故本题选(C ). (9)若级数1nn a∞=∑收敛,则级数(A)1nn a∞=∑收敛 . (B )1(1)nn n a ∞=-∑收敛.(C)11n n n a a ∞+=∑收敛. (D)112n n n a a ∞+=+∑收敛. [ D ] 【分析】 可以通过举反例及级数的性质来判定. 【详解】 由1n n a ∞=∑收敛知11n n a ∞+=∑收敛,所以级数112n n n a a ∞+=+∑收敛,故应选(D). 或利用排除法: 取1(1)nn a n=-,则可排除选项(A),(B);取(1)nn a =-.故(D)项正确. (10)设非齐次线性微分方程()()y P x y Q x '+=有两个不同的解12(),(),y x y x C 为任意常数,则该方程的通解是(A)[]12()()C y x y x -. (B)[]112()()()y x C y x y x +-.(C)[]12()()C y x y x +. (D)[]112()()()y x C y x y x ++ [ B ] 【分析】 利用一阶线性非齐次微分方程解的结构即可.【详解】由于12()()y x y x -是对应齐次线性微分方程()0y P x y '+=的非零解,所以它的通解是 []12()()Y C y x y x =-,故原方程的通解为[]1112()()()()y y x Y y x C y x y x =+=+-,故应选(B).(11)设(,)(,)f x y x y ϕ与均为可微函数,且(,)0y x y ϕ'≠,已知00(,)x y 是(,)f x y 在约束条件(,)0x y ϕ=下的一个极值点,下列选项正确的是(A) 若00(,)0x f x y '=,则00(,)0y f x y '=.(B) 若00(,)0x f x y '=,则00(,)0y f x y '≠. (C) 若00(,)0x f x y '≠,则00(,)0y f x y '=.(D) 若00(,)0x f x y '≠,则00(,)0y f x y '≠. [ D ] 【分析】 利用拉格朗日函数(,,)(,)(,)F x y f x y x y λλϕ=+在000(,,)x y λ(0λ是对应00,x y 的参数λ的值)取到极值的必要条件即可.【详解】 作拉格朗日函数(,,)(,)(,)F x y f x y x y λλϕ=+,并记对应00,x y 的参数λ的值为0λ,则000000(,,)0(,,)0x y F x y F x y λλ⎧'=⎪⎨'=⎪⎩, 即0000000000(,)(,)0(,)(,)0x x y y f x y x y f x y x y λϕλϕ⎧''+=⎪⎨''+=⎪⎩ .消去0λ,得00000000(,)(,)(,)(,)0x y y x f x y x y f x y x y ϕϕ''''-=, 整理得 000000001(,)(,)(,)(,)x y x y f x y f x y x y x y ϕϕ'''='.(因为(,)0y x y ϕ'≠), 若00(,)0x f x y '≠,则00(,)0y f x y '≠.故选(D).(12)设12,,,s ααα 均为n 维列向量,A 为m n ⨯矩阵,下列选项正确的是(A) 若12,,,s ααα 线性相关,则12,,,s A A A ααα 线性相关. (B) 若12,,,s ααα 线性相关,则12,,,s A A A ααα 线性无关. (C) 若12,,,s ααα 线性无关,则12,,,s A A A ααα 线性相关.(D) 若12,,,s ααα 线性无关,则12,,,s A A A ααα 线性无关. [ A ]【分析】 本题考查向量组的线性相关性问题,利用定义或性质进行判定. 【详解】 记12(,,,)s B ααα= ,则12(,,,)s A A A AB ααα= .所以,若向量组12,,,s ααα 线性相关,则()r B s <,从而()()r AB r B s ≤<,向量组12,,,s A A A ααα 也线性相关,故应选(A).(13)设A 为3阶矩阵,将A 的第2行加到第1行得B ,再将B 的第1列的1-倍加到第2列得C ,记110010001P ⎛⎫ ⎪= ⎪ ⎪⎝⎭,则(A)1C P AP -=. (B)1C PAP -=.(C)TC P AP =. (D)TC PAP =. [ B ] 【分析】利用矩阵的初等变换与初等矩阵的关系以及初等矩阵的性质可得.【详解】由题设可得110110*********,010010010001001001001B A C B A --⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ ,而 1110010001P --⎛⎫ ⎪= ⎪ ⎪⎝⎭,则有1C PAP -=.故应选(B).(14)设随机变量X 服从正态分布211(,)N μσ,Y 服从正态分布222(,)N μσ,且{}{}1211P X P Y μμ-<>-< 则必有 (A) 12σσ< (B) 12σσ>(C)12μμ< (D) 12μμ> [ A ]【分析】 利用标准正态分布密度曲线的几何意义可得.【详解】 由题设可得12112211X Y P P μμσσσσ⎧-⎫⎧-⎫<><⎨⎬⎨⎬⎩⎭⎩⎭,则 12112121σσ⎛⎫⎛⎫Φ->Φ-⎪ ⎪⎝⎭⎝⎭,即1211σσ⎛⎫⎛⎫Φ>Φ ⎪ ⎪⎝⎭⎝⎭. 其中()x Φ是标准正态分布的分布函数. 又()x Φ是单调不减函数,则1211σσ>,即12σσ<.故选(A).三 、解答题:15-23小题,共94分. 解答应写出文字说明、证明过程或演算步骤. (15)(本题满分7分)设()1sin,,0,01arctan xy y yf x y x y xy xπ-=->>+,求 (Ⅰ) ()()lim ,y g x f x y →+∞=;(Ⅱ) ()0lim x g x +→. 【分析】第(Ⅰ)问求极限时注意将x 作为常量求解,此问中含,0∞⋅∞∞型未定式极限;第(Ⅱ)问需利用第(Ⅰ)问的结果,含∞-∞未定式极限.【详解】(Ⅰ) ()()1sin lim ,lim 1arctan y y x y y y g x f x y xy x π→+∞→∞⎛⎫- ⎪⎪==-+⎪ ⎪⎝⎭sin 1111lim 1arctan arctan y x yxy x x x x y ππ→∞⎛⎫ ⎪ ⎪-⎪⎪-=-=-⎪ ⎪+ ⎪ ⎪ ⎪⎝⎭. (Ⅱ) ()200011arctan lim lim lim arctan arctan x x x x x x x g x x x x xππ+++→→→--+⎛⎫=-= ⎪⎝⎭ (通分) 22222000112arctan 2(1)1lim lim lim 22x x x x x x x x x x x x x xππππ+++→→→-+-+-+++==== (16)(本题满分7分)计算二重积分d Dx y ,其中D 是由直线,1,0y x y x ===所围成的平面区域.【分析】画出积分域,将二重积分化为累次积分即可.【详解】积分区域如右图.因为根号下的函数为关于x 的一次函数,“先x 后y ”积分较容易,所以10d d Dx y y x =⎰⎰()311222002122d d 339y y xy y y y y=--==⎰⎰.证明:当0a b π<<<时,sin 2cos sin 2cos b b b b a a a a ππ++>++.【分析】 利用“参数变易法”构造辅助函数,再利用函数的单调性证明.【详解】 令()sin 2cos sin 2cos ,0f x x x x x a a a a a x b πππ=++---<≤≤<, 则 ()sin cos 2sin cos sin f x x x x x x x x ππ'=+-+=-+,且()0f π'=. 又 ()cos sin cos sin 0f x x x x x x x ''=--=-<,(0,s i n 0x x x π<<>时),故当0a x b π<≤≤<时,()f x '单调减少,即()()0f x f π''>=,则()f x 单调增加,于是()()0f b f a >=,即sin 2cos sin 2cos b b b b a a a a ππ++>++.(18)(本题满分8分)在xOy 坐标平面上,连续曲线L 过点()1,0M ,其上任意点()(),0P x y x ≠处的切线斜率与直线OP 的斜率之差等于ax (常数>0a ). (Ⅰ) 求L 的方程;(Ⅱ) 当L 与直线y ax =所围成平面图形的面积为83时,确定a 的值. 【分析】(Ⅰ)利用导数的几何意义建立微分方程,并求解;(Ⅱ)利用定积分计算平面图形的面积,确定参数. 【详解】(Ⅰ) 设曲线L 的方程为()y f x =,则由题设可得 y y ax x '-=,这是一阶线性微分方程,其中1(),()P x Q x ax x=-=,代入通解公式得()11d d 2e e d x x x x y ax x C x ax C ax Cx -⎛⎫⎰⎰=+=+=+ ⎪⎝⎭⎰, 又(1)0f =,所以C a =-.故曲线L 的方程为 2y ax ax =-(0)x ≠.(Ⅱ) L 与直线y ax =(>0a )所围成平面图形如右图所示. 所以()220d D ax ax ax x ⎡⎤=--⎣⎦⎰ ()22482d 33a x x x a =-==⎰, 故2a =.求幂级数()()1211121n n n x n n -+∞=--∑的收敛域及和函数()s x .【分析】因为幂级数缺项,按函数项级数收敛域的求法计算;利用逐项求导或积分并结合已知函数的幂级数展开式计算和函数.【详解】记121(1)()(21)n n n x u x n n -+-=-,则2321121(1)()(1)(21)lim lim (1)()(21)n n n n n n n nx u x n n xx u x n n ++-+→∞→∞-++==--. 所以当21,1x x <<即时,所给幂级数收敛;当1x >时,所给幂级数发散;当1x =±时,所给幂级数为1(1)(1),(21)(21)n nn n n n -----,均收敛, 故所给幂级数的收敛域为[]1,1-在()1,1-内,()12112111(1)(1)()22()(21)(21)2n n n nn n x x s x x xs x n n n n -+-∞∞==--===--∑∑,而 12112211211(1)1(),()(1)211n n n n n n x s x s x x n x --∞∞--==-'''==-=-+∑∑, 所以 1112001()(0)()d d arctan 1xxs x s s t t t x t''''-===+⎰⎰,又1(0)0s '=, 于是 1()arctan s x x '=.同理 11100()(0)()d arctan d xxs x s s t t t t '-==⎰⎰()20201arctan d arctan ln 112xxt t tt x x x t =-=-++⎰, 又 1(0)0s =,所以 ()211()arctan ln 12s x x x x =-+.故 ()22()2arctan ln 1s x x x x x =-+.()1,1x ∈-.由于所给幂级数在1x =±处都收敛,且()22()2arctan ln 1s x x x x x =-+在1x =± 处都连续,所以()s x 在1x =±成立,即()22()2arctan ln 1s x x x x x =-+,[]1,1x ∈-.(20)(本题满分13分)设4维向量组()()()TT T1231,1,1,1,2,2,2,2,3,3,3a a a ααα=+=+=+()T44,4,4,4a α=+,问a 为何值时1234,,,αααα线性相关?当1234,,,αααα线性相关时,求其一个极大线性无关组,并将其余向量用该极大线性无关组线性表出.【分析】因为向量组中的向量个数和向量维数相同,所以用以向量为列向量的矩阵的行列式为零来确定参数a ;用初等变换求极大线性无关组. 【详解】记以1234,,,αααα为列向量的矩阵为A ,则312341234(10)12341234a a A a a a a++==+++.于是当0,010A a a ===-即或时,1234,,,αααα线性相关.当0a =时,显然1α是一个极大线性无关组,且2131412,3,4αααααα===; 当10a =-时,1α 2α 3α 4α9234183412741236A -⎛⎫ ⎪-⎪= ⎪- ⎪-⎝⎭, 由于此时A 有三阶非零行列式9231834000127--=-≠-,所以123,,ααα为极大线性无关组,且123441230αααααααα+++==---,即. (21)(本题满分13分)设3阶实对称矩阵A 的各行元素之和均为3,向量()()TT121,2,1,0,1,1αα=--=-是线性方程组0Ax =的两个解.(Ⅰ) 求A 的特征值与特征向量;(Ⅱ) 求正交矩阵Q 和对角矩阵Λ,使得TQ AQ =Λ;(Ⅲ)求A 及632A E ⎛⎫- ⎪⎝⎭,其中E 为3阶单位矩阵.【分析】 由矩阵A 的各行元素之和均为3及矩阵乘法可得矩阵A 的一个特征值和对应的特征向量;由齐次线性方程组0Ax =有非零解可知A 必有零特征值,其非零解是0特征值所对应的特征向量.将A 的线性无关的特征向量正交化可得正交矩阵Q ;由T Q A Q =Λ可得到A 和632A E ⎛⎫- ⎪⎝⎭.【详解】 (Ⅰ) 因为矩阵A 的各行元素之和均为3,所以1311331131A ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则由特征值和特征向量的定义知,3λ=是矩阵A 的特征值,T (1,1,1)α=是对应的特征向量.对应3λ=的全部特征向量为k α,其中k 为不为零的常数.又由题设知 120,0A A αα==,即11220,0A A αααα=⋅=⋅,而且12,αα线性无关,所以0λ=是矩阵A 的二重特征值,12,αα是其对应的特征向量,对应0λ=的全部特征向量为 1122k k αα+,其中12,k k 为不全为零的常数.(Ⅱ) 因为A 是实对称矩阵,所以α与12,αα正交,所以只需将12,αα正交. 取11βα=,()()21221111012,3120,61112αββαβββ⎛⎫-⎪-⎛⎫⎛⎫ ⎪- ⎪ ⎪=-=--= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭ ⎪⎝⎭.再将12,,αββ单位化,得1212312,,0ββαηηηαββ⎛⎛⎪====== ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭ ⎪⎝⎭, 令 []123,,Q ηηη=,则1T QQ -=,由A 是实对称矩阵必可相似对角化,得T 3Q AQ⎡⎤⎢⎥==Λ⎢⎥⎢⎥⎣⎦.(Ⅲ)由(Ⅱ)知T 3Q AQ⎡⎤⎢⎥==Λ⎢⎥⎢⎥⎣⎦,所以T3111001110111A Q Q⎛⎫⎪⎪⎛⎫⎛⎫⎪⎪ ⎪=Λ==⎪⎪ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎪ ⎪⎪⎪⎝⎭⎭.666T T T333222Q A E Q Q A E Q Q AQ E⎡⎤⎛⎫⎛⎫⎛⎫-=-=-⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦66666332233332223322E⎛⎫⎛⎫⎡⎤⎛⎫ ⎪⎪⎢⎥⎪⎝⎭⎪⎛⎫⎢⎥⎪ ⎪⎛⎫⎛⎫⎪⎢⎥⎪ ⎪=-==⎪ ⎪⎪⎢⎥⎪ ⎪⎝⎭⎝⎭⎪⎢⎥⎪ ⎪⎝⎭⎢⎥⎪⎛⎫⎪⎪⎢⎥ ⎪⎝⎭⎣⎦ ⎪⎝⎭⎝⎭,则666T333222A E Q EQ E⎛⎫⎛⎫⎛⎫-==⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.(22)(本题满分13分)设随机变量X的概率密度为()1,1021,0240,Xxf x x⎧-<<⎪⎪⎪=≤<⎨⎪⎪⎪⎩ 其他,令()2,,Y X F x y=为二维随机变量(,)X Y的分布函数.(Ⅰ)求Y的概率密度()Yf y;(Ⅱ) Cov(,)X Y;(Ⅲ) 1,42F ⎛⎫-⎪⎝⎭. 【分析】 求一维随机变量函数的概率密度一般先求分布,然后求导得相应的概率密度或利用公式计算.【详解】 (I ) 设Y 的分布函数为()Y F y ,即2()()()Y F y P Y y P X y =≤=≤,则 1) 当0y <时,()0Y F y =;2) 当01y ≤<时,(2()()Y F y P X y P X =<=<<0d 4x x =+=⎰3) 当14y ≤<时,(2()()1Y F y P X y P X =<=-<<1011d d 242x x -=+=⎰. 4) 当4y ≥,()1Y F y =. 所以1()()40,Y Y y f y F y y <<⎪'==≤<⎪⎩其他. (II ) 22232Cov(,)Cov(,)()()X Y X X E X EX X EX EX EXEX ==--=-,而 02101d d 244x x EX x x -=+=⎰⎰,22022105d d 246x x EX x x -=+=⎰⎰, 3323107d d 248x x EX x x -=+=⎰⎰, 所以 7152Cov(,)8463X Y =-⋅=. (Ⅲ) 1,42F ⎛⎫-⎪⎝⎭211,4,422P X Y P X X ⎛⎫⎛⎫=≤-≤=≤-≤ ⎪ ⎪⎝⎭⎝⎭11,22222P X X P X ⎛⎫⎛⎫=≤--≤≤=-≤≤- ⎪ ⎪⎝⎭⎝⎭12111d 24x --==⎰. (23)(本题满分13分)设总体X 的概率密度为(),01,;1,12,0,x f x x θθθ<<⎧⎪=-≤<⎨⎪⎩其他,其中θ是未知参数()01θ<<,12n ,...,X X X 为来自总体X 的简单随机样本,记N 为样本值12,...,n x x x 中小于1的个数.(Ⅰ)求θ的矩估计; (Ⅱ)求θ的最大似然估计【分析】 利用矩估计法和最大似然估计法计算.【详解】(Ⅰ)因为()1213(;)d d 1d 2EX xf x x x x x x θθθθ+∞-∞==+-=-⎰⎰⎰, 令 32X θ-=,可得θ的矩估计为 32X θ=- .(Ⅱ)记似然函数为()L θ,则()()()()()111(1)N n NN n N L θθθθθθθθθ--=⋅⋅⋅-⋅-⋅⋅-=- 个个. 两边取对数得ln ()ln ()ln(1)L N n N θθθ=+--, 令d ln ()0d 1L N n Nθθθθ-=-=-,解得N nθ= 为θ的最大似然估计.。

2006-2007学年第二学期高等数学期末试卷

2006-2007学年第二学期高等数学期末试卷

2006-2007学年第二学期高等数学期末试卷D4.将三重积分dvz y xI ⎰⎰⎰Ω++=)(222,其中1:222≤++Ωz y x,化为球面坐标下的三次积分为 【 】 (A )⎰⎰⎰120drd d ππϕθ (B ) ⎰⎰⎰1220rdrd d ππϕθ(C )⎰⎰⎰1420sin drr d d ϕϕθππ(D ) ⎰⎰⎰12020sin drr d d ϕϕθππθϕϕd drd r dv sin 2=注意到体积元素5.定义在[,]ππ-上的函数()||f x x =展开为以2π为周期的傅立叶级数,其和函数记为)(x S ,则=)(πS【 】(A )0 (B) π(C )π- (D )2π二、填空题:本大题共5小题,每小题4分,共20分,把答案填在题中的横线上.6.曲线32,,t z ty t x ===在点),1,1,1(--P 处的切线方程为___________________ , 法平面方程为______________ . 7.设∑为球面2222xy z a ++=的表面,则⎰⎰∑++dS z y x )(222=________.8.函数41)(-=x x f 的麦克劳林级数的第5项为 _______ ,收敛域为 _______ . 9.已知函数(,)23abf x y x y xy =+--(其中,a b 是大于1的实数),有一个极值点(1,1), 则____________, 此时函数(,)f x y 的极大值为 . 10.33z xyz x y z-=++确定了隐函数),(y x z z =,则),(y x z z =在点(0,0,1)处的全微分为 _________ .三、计算下列各题:本大题共6小题,每小题9分,共54分. 解答应写出主要过程或演算步骤.11.设函数(),x z f y x ye =-,其中f 具有二阶连续偏导数,求zx∂∂,yx z ∂∂∂2.12.计算二次积分2()a x y aI a dx e dy-=⎰⎰,其中实数0a >,并求极限lim ()a I a →+∞13.利用高斯公式计算曲面积分⎰⎰∑+-=,2dxdy z xdzdx ydydz I 其中∑是锥面22y x z +=介于平面0z =与平面3z =之间部分的外侧.14.已知曲线积分()[]⎰'+-=),()0,0()()(,y x x dyxydxxeyxIϕϕ与积分路径无关,其中()xϕ是二阶可导函数,且(0)0ϕ=,0)0(='ϕ.1.求()xϕ;2.求)1,1(I.15. 求(1)幂级数112n n n n x ∞-=∑的收敛域;(2)幂级数112n nn n x ∞-=∑的和函数;(3)级数1(1)2nnn n ∞=-∑的和.16.函数)(x f 具有连续的导数,满足0()()d 1x axxf x ef at t ae +=+⎰,且(0)2f a =, 求a 的值及函数)(x f .12()(2)xxe x e xf x e e e e --+-+=-+四、 证明题: 本题共1题,6分.17. 已知无穷级数2n n u ∞=∑满足 22222ln 1xy nx y a nun dxdyπ--+≤=-⎰⎰,其中实数0a >, 证明: 级数2n n u ∞=∑ 当1a >时收敛; 当1a ≤时发散, 但2(1)nnn u ∞=-∑ 总收敛.北京工业大学2006-2007学年第二学期 《高等数学》期末试卷 参考答案一、单项选择题1. D 2. C 3.A 4. C (θϕϕd drd r dv sin 2=注意到体积元素)5. B二、填空题 6.312111+=--=+z y x 0632=++-z y x7. 44a π8.544x - )4,4(-9.3,2==b a 3 10.dy dx dz 2121+=三、计算题11. 解:设 ,xu y x v ye =-=, 则''x uv zf ye f x∂=-+∂()()2'''''''''''''''2'''()1x x u v uu uvx x x vu vv v x x x uu uv vv v z f ye f f e f x y yye f e f e f f e y f ye f e f ∂∂=-+=--∂∂∂+++=-+-++12. 解:()2222211.2a xa aa yy y y a xa y a dx edy dx edy dy edxyedy e -----=-=-=-=-⎰⎰⎰⎰⎰⎰⎰从而1lim ()2a I a →+∞=-。

2006年数学三真题答案解析

2006年数学三真题答案解析

Δy
dy
O
x0
x0+Δx
x
结合图形分析,就可以明显得出结论: 0 dy y .
方法 2:用两次拉格朗日中值定理
y dy f (x0 x) f (x0 ) f (x0 )x (前两项用拉氏定理)
f ( )x f (x0 )x
(再用一次拉氏定理)
f ()( x0)x , 其中 x0 x0 x, x0
换元令 x h2 ,由题设可得
lim
h0
f (h2) h2
lim x0
f (x) 1 x
.
于是 lim f (x) lim f (x) x 10 0
x0
x x0
因为函数 f (x) 在点 x 0 处连续,故 f (0) lim f (x) 0 ,进而有 x0
1 lim x0
f (x) lim
2( 1 ) 1 1
2( 1 ) 1,即 1
2
1
1 2
,所以 1
2
,故选(A).
三、解答题
(15)【详解】题目考察二元函数的极限,求 g(x) 时,可以将 y 视为常数
1 y sin x
(I)
g(x)
lim
f (x, y)
y
lim [
y
y 1 xy
y ],
arctan x
由于 x 0 ,所以
dz dx
x x0
f (x0 , y0 ) f (x0 , y0 )
x
y
dy dx
x x0
fx(x0, y0)
f y( x0 ,
y0
)
x
y
( (
x0 x0
, ,

2006年全国考研数学三真题及答案.doc

2006年全国考研数学三真题及答案.doc

2006年考研数学三真题一、填空题(1~6小题,每小题4分,共24分。

)(1)。

【答案】。

【解析】【方法一】记因为且故。

【方法二】而无穷小量,为有界变量,则原式。

综上所述,本题正确答案是。

【考点】高等数学—函数、极限、连续—极限的四则运算(2)设函数在的某领域内可导,且则。

【答案】。

【解析】本题主要考查复合函数求导。

由知。

综上所述,本题正确答案是。

【考点】高等数学—一元函数微分学—复合函数的导数(3)设函数可微,且则在点处的全微分。

【答案】。

【解析】因为, 所以。

综上所述,本题正确答案是。

【考点】高等数学—多元函数微积分学—偏导数、全微分(4)设矩阵,为二阶单位矩阵,矩阵满足,则___________。

【答案】2。

【解析】因为,所以。

综上所述,本题正确答案是。

【考点】线性代数—行列式—行列式的概念和基本性质线性代数—矩阵—矩阵的线性运算(5)设随机变量与相互独立,且均服从区间上的均匀分布,则___________。

【答案】。

【解析】本题考查均匀分布,两个随机变量的独立性和他们的简单函数的分布。

事件又根据相互独立,均服从均匀分布,可以直接写出。

综上所述,本题正确答案是。

【考点】概率论—多维随机变量的分布—二维随机变量的分布(6)设总体的概率密度为为总体的随机简单样本,其样本方差为则_______。

【答案】。

【解析】。

综上所述,本题正确答案是。

【考点】概率论—随机变量的数字特征—随机变量的数学期望(均值)、方差、标准差及其性质二、选择题(7~14小题,每小题4分,共32分,下列每题给出的四个选项中,只有一个选项是符合题目要求的。

)(1)设函数具有二阶导数,且,为自变量在点处的增量,与分别为在点处对应的增量与微分,若,则(A)(B)(C)(C)【答案】A。

【解析】【方法一】由函数单调上升且凹,根据和的几何意义,得如下所示的图由图可得【方法二】由凹曲线的性质,得,于是,即综上所述,本题正确答案是A。

【考点】高等数学—一元函数微分学—导数和微分的概念,导数的几何意义和物理意义(8)设函数在处连续,且则(A)且存在(B)且存在(C)且存在(D)且存在【答案】C。

2006年考研数学三真题及完整解析

2006年考研数学三真题及完整解析

2006年考研数学(三)真题一、填空题:1-6小题,每小题4分,共24分. 把答案填在题中横线上. (1)()11lim ______.nn n n -→∞+⎛⎫=⎪⎝⎭(2)设函数()f x 在2x =的某邻域内可导,且()()e f xf x '=,()21f =,则()2____.f '''=(3)设函数()f u 可微,且()102f '=,则()224z f x y =-在点(1,2)处的全微分()1,2d _____.z =(4)设矩阵2112A ⎛⎫=⎪-⎝⎭,E 为2阶单位矩阵,矩阵B 满足2BA B E =+,则=B .(5)设随机变量X Y 与相互独立,且均服从区间[]0,3上的均匀分布,则{}{}max ,1P X Y ≤=_______. (6)设总体X 的概率密度为()()121,,,,2xn f x e x X X X -=-∞<<+∞ 为总体X 的简单随机样本,其样本方差为2S ,则2____.ES =二、选择题:7-14小题,每小题4分,共32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(7)设函数()y f x =具有二阶导数,且()0,()0f x f x '''>>,x ∆为自变量x 在点0x 处的增量,d y y ∆与分别为()f x 在点0x 处对应的增量与微分,若0x ∆>,则(A) 0d y y <<∆. (B) 0d y y <∆<.(C) d 0y y ∆<<. (D) d 0y y <∆< . [ ](8)设函数()f x 在0x =处连续,且()22lim1h f h h →=,则(A) ()()000f f -'=且存在 (B) ()()010f f -'=且存在(C) ()()000f f +'=且存在 (D)()()010f f +'=且存在 [ ] (9)若级数1nn a∞=∑收敛,则级数(A)1nn a∞=∑收敛 . (B )1(1)nn n a ∞=-∑收敛.(C)11n n n a a ∞+=∑收敛. (D)112n n n a a ∞+=+∑收敛. [ ] (10)设非齐次线性微分方程()()y P x y Q x '+=有两个不同的解12(),(),y x y x C 为任意常数,则该方程的通解是(A)[]12()()C y x y x -. (B)[]112()()()y x C y x y x +-.(C)[]12()()C y x y x +. (D)[]112()()()y x C y x y x ++ [ ](11)设(,)(,)f x y x y ϕ与均为可微函数,且(,)0y x y ϕ'≠,已知00(,)x y 是(,)f x y 在约束条件(,)0x y ϕ=下的一个极值点,下列选项正确的是(A) 若00(,)0x f x y '=,则00(,)0y f x y '=. (B) 若00(,)0x f x y '=,则00(,)0y f x y '≠. (C) 若00(,)0x f x y '≠,则00(,)0y f x y '=.(D) 若00(,)0x f x y '≠,则00(,)0y f x y '≠. [ ] (12)设12,,,s ααα 均为n 维列向量,A 为m n ⨯矩阵,下列选项正确的是(A) 若12,,,s ααα 线性相关,则12,,,s A A A ααα 线性相关. (B) 若12,,,s ααα 线性相关,则12,,,s A A A ααα 线性无关. (C) 若12,,,s ααα 线性无关,则12,,,s A A A ααα 线性相关.(D) 若12,,,s ααα 线性无关,则12,,,s A A A ααα 线性无关. [ ](13)设A 为3阶矩阵,将A 的第2行加到第1行得B ,再将B 的第1列的1-倍加到第2列得C ,记110010001P ⎛⎫ ⎪= ⎪ ⎪⎝⎭,则(A)1C P AP -=. (B)1C PAP -=.(C)TC P AP =. (D)TC PAP =. [ ](14)设随机变量X 服从正态分布211(,)N μσ,Y 服从正态分布222(,)N μσ,且{}{}1211P X P Y μμ-<>-<则必有 (A) 12σσ< (B) 12σσ>(C)12μμ< (D) 12μμ> [ ]三 、解答题:15-23小题,共94分. 解答应写出文字说明、证明过程或演算步骤. (15)(本题满分7分)设()1sin,,0,01arctan xy y yf x y x y xy xπ-=->>+,求 (Ⅰ) ()()lim ,y g x f x y →+∞=;(Ⅱ) ()0lim x g x +→. (16)(本题满分7分) 计算二重积分2d d Dy xy x y -⎰⎰,其中D 是由直线,1,0y x y x ===所围成的平面区域.(17)(本题满分10分)证明:当0a b π<<<时,sin 2cos sin 2cos b b b b a a a a ππ++>++.(18)(本题满分8分)在xOy 坐标平面上,连续曲线L 过点()1,0M ,其上任意点()(),0P x y x ≠处的切线斜率与直线OP 的斜率之差等于ax (常数>0a ).(Ⅰ) 求L 的方程;(Ⅱ) 当L 与直线y ax =所围成平面图形的面积为83时,确定a 的值. (19)(本题满分10分)求幂级数()()1211121n n n x n n -+∞=--∑的收敛域及和函数()s x .(20)(本题满分13分)设4维向量组()()()T T T 1231,1,1,1,2,2,2,2,3,3,3,3,a a a ααα=+=+=+ ()T44,4,4,4a α=+,问a为何值时1234,,,αααα线性相关?当1234,,,αααα线性相关时,求其一个极大线性无关组,并将其余向量用该极大线性无关组线性表出.(21)(本题满分13分)设3阶实对称矩阵A 的各行元素之和均为3,向量()()TT121,2,1,0,1,1αα=--=-是线性方程组0Ax =的两个解.(Ⅰ)求A 的特征值与特征向量;(Ⅱ)求正交矩阵Q 和对角矩阵Λ,使得TQ AQ =Λ;(Ⅲ)求A 及632A E ⎛⎫- ⎪⎝⎭,其中E 为3阶单位矩阵.(22)(本题满分13分)设随机变量X 的概率密度为()1,1021,0240,X x f x x ⎧-<<⎪⎪⎪=≤<⎨⎪⎪⎪⎩ 其他,令()2,,Y X F x y =为二维随机变量(,)X Y 的分布函数. (Ⅰ)求Y 的概率密度()Y f y ; (Ⅱ)Cov(,)X Y ;(Ⅲ)1,42F ⎛⎫-⎪⎝⎭. (23)(本题满分13分) 设总体X 的概率密度为(),01,;1,12,0,x f x x θθθ<<⎧⎪=-≤<⎨⎪⎩其他,其中θ是未知参数()01θ<<,12n ,...,X X X 为来自总体X 的简单随机样本,记N 为样本值12,...,n x x x 中小于1的个数.(Ⅰ)求θ的矩估计; (Ⅱ)求θ的最大似然估计2006年考研数学(三)真题解析二、填空题:1-6小题,每小题4分,共24分. 把答案填在题中横线上. (1)()11lim 1.nn n n -→∞+⎛⎫=⎪⎝⎭【分析】将其对数恒等化ln eNN =求解.【详解】()(1)111ln lim (1)ln 1lim lim eennn n n n n n n n n n -→∞-++⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭→∞→∞+⎛⎫== ⎪⎝⎭,而数列{}(1)n -有界,1lim ln 0n n n →∞+⎛⎫= ⎪⎝⎭,所以1lim(1)ln 0nn n n →∞+⎛⎫-= ⎪⎝⎭. 故 ()101lim e 1nn n n -→∞+⎛⎫==⎪⎝⎭.(2)设函数()f x 在2x =的某邻域内可导,且()()e f x f x '=,()21f =,则()322e .f '''=【分析】利用复合函数求导即可. 【详解】由题设知,()()e f x f x '=,两边对x 求导得()()()2e()e f x f x f x f x '''==,两边再对x 求导得 ()()23()2e()2e f x f x f x f x ''''==,又()21f =,故 ()323(2)2e 2e f f '''==.(3)设函数()f u 可微,且()102f '=,则()224z f x y =-在点(1,2)处的全微分()1,2d 4d 2d .z x y =-【分析】利用二元函数的全微分公式或微分形式不变性计算. 【详解】方法一:因为22(1,2)(1,2)(4)84z f x y xx∂'=-⋅=∂,()22(1,2)(1,2)(4)22z f x y y y∂'=-⋅-=-∂,所以 ()()()1,21,21,2d d d 4d 2d z z z x y x y xy⎡⎤∂∂=+=-⎢⎥∂∂⎣⎦. 方法二:对()224z f x y =-微分得()222222d (4)d(4)(4)8d 2d z f x y x y f x y x x y y ''=--=--,故 ()()1,2d (0)8d 2d 4d 2d z f x y x y '=-=-.(4)设矩阵2112A ⎛⎫=⎪-⎝⎭,E 为2阶单位矩阵,矩阵B 满足2BA B E =+,则=B 2 .【分析】 将矩阵方程改写为AX B XA B AXB C ===或或的形式,再用方阵相乘的行列式性质进行计算即可.【详解】 由题设,有()2B A E E -= 于是有 4B A E -=,而11211A E -==-,所以2B =.(5)设随机变量X Y 与相互独立,且均服从区间[]0,3上的均匀分布,则{}{}max ,1P X Y ≤=19. 【分析】 利用X Y 与的独立性及分布计算. 【详解】 由题设知,X Y 与具有相同的概率密度1,3()30,x f x ⎧≤≤⎪=⎨⎪⎩ 0 其他.则 {}{}{}max ,11,1P X Y P X Y ≤=≤≤{}{}11P X P Y =≤≤{}()2120111d 39P X x ⎛⎫=≤== ⎪⎝⎭⎰.【评注】 本题属几何概型,也可如下计算,如下图:则 {}{}{}1max ,11,19S P X Y P X Y S ≤=≤≤==阴.(6)设总体X 的概率密度为()()121,,,,2xn f x e x X X X -=-∞<<+∞ 为总体X 的简单随机样本,其样本方差为2S ,则2 2.ES =【分析】利用样本方差的性质2ES DX =即可. 【详解】因为()d e d 02xx EX xf x x x +∞+∞--∞-∞===⎰⎰, 22222000()d e d e d e 2e d 2xx xx x EX x f x x x x x x x x +∞+∞+∞+∞---+∞--∞-∞====-+⎰⎰⎰⎰2e2e d 2e 2x x xx x +∞-+∞--+∞=-+=-=⎰,所以 ()22202DX EX EX =-=-=,又因2S 是DX 的无偏估计量,所以 22ES DX ==.二、选择题:7-14小题,每小题4分,共32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(7)设函数()y f x =具有二阶导数,且()0,()0f x f x '''>>,x ∆为自变量x 在点0x 处的增量,d y y ∆与分别为()f x 在点0x 处对应的增量与微分,若0x ∆>,则(A) 0d y y <<∆. (B) 0d y y <∆<.(C) d 0y y ∆<<. (D) d 0y y <∆< .[ A ]【分析】 题设条件有明显的几何意义,用图示法求解.【详解】 由()0,()0f x f x '''>>知,函数()f x 单调增加,曲线()y f x =凹向,作函数()y f x =的图形如右图所示,显然当0x ∆>时,00d ()d ()0y y f x x f x x ''∆>==∆>,故应选(A).(8)设函数()f x 在0x =处连续,且()22lim1h f h h →=,则(A) ()()000f f -'=且存在 (B) ()()010f f -'=且存在 (C) ()()000f f +'=且存在 (D)()()010f f +'=且存在 [ C ] 【分析】从()22lim1h f h h→=入手计算(0)f ,利用导数的左右导数定义判定(0),(0)f f -+''的存在性.【详解】由()22lim1h f h h →=知,()20lim 0h f h →=.又因为()f x 在0x =处连续,则()2(0)lim ()lim 0x h f f x f h→→===.令2t h =,则()()22(0)1limlim (0)h t f h f t f f h t++→→-'===.所以(0)f +'存在,故本题选(C ). (9)若级数1nn a∞=∑收敛,则级数(A)1nn a∞=∑收敛 . (B )1(1)nn n a ∞=-∑收敛.(C)11n n n a a ∞+=∑收敛. (D)112n n n a a ∞+=+∑收敛. [ D ] 【分析】 可以通过举反例及级数的性质来判定. 【详解】 由1n n a ∞=∑收敛知11n n a ∞+=∑收敛,所以级数112n n n a a ∞+=+∑收敛,故应选(D). 或利用排除法: 取1(1)nn a n=-,则可排除选项(A),(B); 取1(1)nn a n=-,则可排除选项(C).故(D)项正确. (10)设非齐次线性微分方程()()y P x y Q x '+=有两个不同的解12(),(),y x y x C 为任意常数,则该方程的通解是(A)[]12()()C y x y x -. (B)[]112()()()y x C y x y x +-.(C)[]12()()C y x y x +. (D)[]112()()()y x C y x y x ++ [ B ] 【分析】 利用一阶线性非齐次微分方程解的结构即可.【详解】由于12()()y x y x -是对应齐次线性微分方程()0y P x y '+=的非零解,所以它的通解是[]12()()Y C y x y x =-,故原方程的通解为[]1112()()()()y y x Y y x C y x y x =+=+-,故应选(B).【评注】本题属基本题型,考查一阶线性非齐次微分方程解的结构:*y y Y =+.其中*y 是所给一阶线性微分方程的特解,Y 是对应齐次微分方程的通解.(11)设(,)(,)f x y x y ϕ与均为可微函数,且(,)0y x y ϕ'≠,已知00(,)x y 是(,)f x y 在约束条件(,)0x y ϕ=下的一个极值点,下列选项正确的是(A) 若00(,)0x f x y '=,则00(,)0y f x y '=. (B) 若00(,)0x f x y '=,则00(,)0y f x y '≠. (C) 若00(,)0x f x y '≠,则00(,)0y f x y '=.(D) 若00(,)0x f x y '≠,则00(,)0y f x y '≠. [ D ]【分析】 利用拉格朗日函数(,,)(,)(,)F x y f x y x y λλϕ=+在000(,,)x y λ(0λ是对应00,x y 的参数λ的值)取到极值的必要条件即可.【详解】 作拉格朗日函数(,,)(,)(,)F x y f x y x y λλϕ=+,并记对应00,x y 的参数λ的值为0λ,则000000(,,)0(,,)0x y F x y F x y λλ⎧'=⎪⎨'=⎪⎩, 即0000000000(,)(,)0(,)(,)0x x y y f x y x y f x y x y λϕλϕ⎧''+=⎪⎨''+=⎪⎩ .消去0λ,得00000000(,)(,)(,)(,)0x y y x f x y x y f x y x y ϕϕ''''-=, 整理得 000000001(,)(,)(,)(,)x y x y f x y f x y x y x y ϕϕ'''='.(因为(,)0y x y ϕ'≠),若00(,)0x f x y '≠,则00(,)0y f x y '≠.故选(D).(12)设12,,,s ααα 均为n 维列向量,A 为m n ⨯矩阵,下列选项正确的是(A) 若12,,,s ααα 线性相关,则12,,,s A A A ααα 线性相关. (B) 若12,,,s ααα 线性相关,则12,,,s A A A ααα 线性无关. (C) 若12,,,s ααα 线性无关,则12,,,s A A A ααα 线性相关.(D) 若12,,,s ααα 线性无关,则12,,,s A A A ααα 线性无关. [ A ] 【分析】 本题考查向量组的线性相关性问题,利用定义或性质进行判定. 【详解】 记12(,,,)s B ααα= ,则12(,,,)s A A A AB ααα= .所以,若向量组12,,,s ααα 线性相关,则()r B s <,从而()()r AB r B s ≤<,向量组12,,,s A A A ααα 也线性相关,故应选(A).(13)设A 为3阶矩阵,将A 的第2行加到第1行得B ,再将B 的第1列的1-倍加到第2列得C ,记110010001P ⎛⎫ ⎪= ⎪ ⎪⎝⎭,则(A)1C P AP -=. (B)1C PAP -=.(C)TC P AP =. (D)TC PAP =. [ B ]【分析】利用矩阵的初等变换与初等矩阵的关系以及初等矩阵的性质可得. 【详解】由题设可得1101101101110,010********1001001001B A C B A --⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ , 而 1110010001P --⎛⎫⎪= ⎪ ⎪⎝⎭,则有1C PAP -=.故应选(B).(14)设随机变量X 服从正态分布211(,)N μσ,Y 服从正态分布222(,)N μσ,且{}{}1211P X P Y μμ-<>-< 则必有 (A) 12σσ< (B) 12σσ>(C)12μμ< (D) 12μμ> [ A ]【分析】 利用标准正态分布密度曲线的几何意义可得.【详解】 由题设可得12112211X Y P P μμσσσσ⎧-⎫⎧-⎫<><⎨⎬⎨⎬⎩⎭⎩⎭,则 12112121σσ⎛⎫⎛⎫Φ->Φ-⎪ ⎪⎝⎭⎝⎭,即1211σσ⎛⎫⎛⎫Φ>Φ ⎪ ⎪⎝⎭⎝⎭. 其中()x Φ是标准正态分布的分布函数. 又()x Φ是单调不减函数,则1211σσ>,即12σσ<.故选(A).三 、解答题:15-23小题,共94分. 解答应写出文字说明、证明过程或演算步骤.(15)(本题满分7分)设()1sin,,0,01arctan xy y yf x y x y xy xπ-=->>+,求 (Ⅰ) ()()lim ,y g x f x y →+∞=;(Ⅱ) ()0lim x g x +→. 【分析】第(Ⅰ)问求极限时注意将x 作为常量求解,此问中含,0∞⋅∞∞型未定式极限;第(Ⅱ)问需利用第(Ⅰ)问的结果,含∞-∞未定式极限.【详解】(Ⅰ) ()()1sin lim ,lim 1arctan y y x y y y g x f x y xy x π→+∞→∞⎛⎫- ⎪⎪==-+ ⎪⎪⎝⎭sin 11111lim 1arctan arctan y x yxy x x x x y ππ→∞⎛⎫ ⎪ ⎪-⎪⎪-=-=-⎪ ⎪+ ⎪ ⎪ ⎪⎝⎭. (Ⅱ) ()200011arctan lim lim lim arctan arctan x x x x x x x g x x x x xππ+++→→→--+⎛⎫=-= ⎪⎝⎭ (通分) 22222000112arctan 2(1)1lim lim lim 22x x x x x x x x x x x x x xππππ+++→→→-+-+-+++====(16)(本题满分7分) 计算二重积分2d d Dy xy x y -⎰⎰,其中D 是由直线,1,0y x y x ===所围成的平面区域.【分析】画出积分域,将二重积分化为累次积分即可. 【详解】积分区域如右图.因为根号下的函数为关于x 的一次函数,“先x 后y ”积分较容易,所以1220d d d d yDy xy x y y y xy x -=-⎰⎰⎰⎰()311222002122d d 339y y xy y y y y=--==⎰⎰(17)(本题满分10分)证明:当0a b π<<<时,sin 2cos sin 2cos b b b b a a a a ππ++>++.【分析】 利用“参数变易法”构造辅助函数,再利用函数的单调性证明.【详解】 令()sin 2cos sin 2cos ,0f x x x x x a a a a a x b πππ=++---<≤≤<, 则 ()sin cos 2sin cos sin f x x x x x x x x ππ'=+-+=-+,且()0f π'=. 又 ()cos sin cos sin 0f x x x x x x x ''=--=-<,(0,s i n 0x x x π<<>时),故当0a x b π<≤≤<时,()f x '单调减少,即()()0f x f π''>=,则()f x 单调增加,于是()()0f b f a >=,即sin 2cos sin 2cos b b b b a a a a ππ++>++.(18)(本题满分8分)在xOy 坐标平面上,连续曲线L 过点()1,0M ,其上任意点()(),0P x y x ≠处的切线斜率与直线OP 的斜率之差等于ax (常数>0a ).(Ⅰ) 求L 的方程;(Ⅱ) 当L 与直线y ax =所围成平面图形的面积为83时,确定a 的值. 【分析】(Ⅰ)利用导数的几何意义建立微分方程,并求解;(Ⅱ)利用定积分计算平面图形的面积,确定参数. 【详解】(Ⅰ) 设曲线L 的方程为()y f x =,则由题设可得 y y ax x '-=,这是一阶线性微分方程,其中1(),()P x Q x ax x=-=,代入通解公式得 ()11d d 2e e d x x x x y ax x C x ax C ax Cx -⎛⎫⎰⎰=+=+=+ ⎪⎝⎭⎰, 又(1)0f =,所以C a =-.故曲线L 的方程为 2y ax ax =-(0)x ≠.(Ⅱ) L 与直线y ax =(>0a )所围成平面图形如右图所示. 所以()220d D ax ax ax x ⎡⎤=--⎣⎦⎰ ()220482d 33a x x x a =-==⎰,故2a =.(19)(本题满分10分)求幂级数()()1211121n n n x n n -+∞=--∑的收敛域及和函数()s x.【分析】因为幂级数缺项,按函数项级数收敛域的求法计算;利用逐项求导或积分并结合已知函数的幂级数展开式计算和函数.【详解】记121(1)()(21)n n n x u x n n -+-=-,则2321121(1)()(1)(21)lim lim (1)()(21)n n n n n n n nx u x n n xx u x n n ++-+→∞→∞-++==--. 所以当21,1x x <<即时,所给幂级数收敛;当1x >时,所给幂级数发散;当1x =±时,所给幂级数为1(1)(1),(21)(21)n nn n n n -----,均收敛, 故所给幂级数的收敛域为[]1,1-在()1,1-内,()12112111(1)(1)()22()(21)(21)2n n n nn n x x s x x xs x n n n n -+-∞∞==--===--∑∑,而 12112211211(1)1(),()(1)211n n n n n n x s x s x x n x --∞∞--==-'''==-=-+∑∑, 所以 111201()(0)()d d arctan 1xxs x s s t t t x t ''''-===+⎰⎰,又1(0)0s '=,于是 1()arctan s x x '=.同理 11100()(0)()d arctan d xxs x s s t t t t '-==⎰⎰()20201arctan d arctan ln 112xx t t tt x x x t =-=-++⎰, 又 1(0)0s =,所以 ()211()arctan ln 12s x x x x =-+.故 ()22()2arctan ln 1s x x x x x =-+.()1,1x ∈-.由于所给幂级数在1x =±处都收敛,且()22()2arctan ln 1s x x x x x =-+在1x =± 处都连续,所以()s x 在1x =±成立,即()22()2arctan ln 1s x x x x x =-+,[]1,1x ∈-.(20)(本题满分13分)设4维向量组()()()T T T 1231,1,1,1,2,2,2,2,3,3,3,3,a a a ααα=+=+=+ ()T44,4,4,4a α=+,问a为何值时1234,,,αααα线性相关?当1234,,,αααα线性相关时,求其一个极大线性无关组,并将其余向量用该极大线性无关组线性表出.【分析】因为向量组中的向量个数和向量维数相同,所以用以向量为列向量的矩阵的行列式为零来确定参数a ;用初等变换求极大线性无关组. 【详解】记以1234,,,αααα为列向量的矩阵为A ,则312341234(10)12341234a a A a a a a++==+++.于是当0,010A a a ===-即或时,1234,,,αααα线性相关.当0a =时,显然1α是一个极大线性无关组,且2131412,3,4αααααα===; 当10a =-时, 1α2α 3α 4α9234183412741236A -⎛⎫ ⎪-⎪= ⎪- ⎪-⎝⎭, 由于此时A 有三阶非零行列式9231834000127--=-≠-,所以123,,ααα为极大线性无关组,且123441230αααααααα+++==---,即.(21)(本题满分13分)设3阶实对称矩阵A 的各行元素之和均为3,向量()()TT121,2,1,0,1,1αα=--=-是线性方程组0Ax =的两个解.(Ⅰ) 求A 的特征值与特征向量;(Ⅱ) 求正交矩阵Q 和对角矩阵Λ,使得TQ AQ =Λ;(Ⅲ)求A 及632A E ⎛⎫- ⎪⎝⎭,其中E 为3阶单位矩阵.【分析】 由矩阵A 的各行元素之和均为3及矩阵乘法可得矩阵A 的一个特征值和对应的特征向量;由齐次线性方程组0Ax =有非零解可知A 必有零特征值,其非零解是0特征值所对应的特征向量.将A 的线性无关的特征向量正交化可得正交矩阵Q ;由TQ AQ =Λ可得到A 和632A E ⎛⎫- ⎪⎝⎭.【详解】 (Ⅰ) 因为矩阵A 的各行元素之和均为3,所以1311331131A ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则由特征值和特征向量的定义知,3λ=是矩阵A 的特征值,T (1,1,1)α=是对应的特征向量.对应3λ=的全部特征向量为k α,其中k 为不为零的常数.又由题设知 120,0A A αα==,即11220,0A A αααα=⋅=⋅,而且12,αα线性无关,所以0λ=是矩阵A 的二重特征值,12,αα是其对应的特征向量,对应0λ=的全部特征向量为 1122k k αα+,其中12,k k 为不全为零的常数.(Ⅱ) 因为A 是实对称矩阵,所以α与12,αα正交,所以只需将12,αα正交. 取 11βα=,()()21221111012,3120,61112αββαβββ⎛⎫-⎪-⎛⎫⎛⎫ ⎪- ⎪ ⎪=-=--= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭ ⎪⎝⎭.再将12,,αββ单位化,得121231211136212,,036111236ββαηηηαββ⎛⎫⎛⎫-⎛⎫ ⎪ ⎪- ⎪ ⎪⎪ ⎪ ⎪⎪====== ⎪⎪ ⎪ ⎪⎪ ⎪⎪ ⎪ ⎪ ⎪⎝⎭ ⎪ ⎪⎝⎭⎝⎭, 令 []123,,Q ηηη=,则1T QQ -=,由A 是实对称矩阵必可相似对角化,得T300Q AQ ⎡⎤⎢⎥==Λ⎢⎥⎢⎥⎣⎦. (Ⅲ)由(Ⅱ)知 T300Q AQ ⎡⎤⎢⎥==Λ⎢⎥⎢⎥⎣⎦,所以T 11111136********121210011136666011111111036222A Q Q ⎛⎫⎛⎫--⎪ ⎪⎪ ⎪⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪=Λ=--=⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭ ⎪ ⎪-- ⎪ ⎪⎝⎭⎝⎭. 666T T T 333222Q A E Q Q A E Q Q AQ E ⎡⎤⎛⎫⎛⎫⎛⎫-=-=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦ 6666633223333022203322E ⎛⎫⎛⎫⎡⎤⎛⎫ ⎪ ⎪⎢⎥ ⎪⎝⎭ ⎪⎛⎫⎢⎥ ⎪ ⎪⎛⎫⎛⎫ ⎪⎢⎥ ⎪ ⎪=-== ⎪ ⎪ ⎪⎢⎥ ⎪ ⎪⎝⎭⎝⎭ ⎪⎢⎥ ⎪ ⎪⎝⎭⎢⎥ ⎪⎛⎫ ⎪ ⎪⎢⎥ ⎪⎝⎭⎣⎦⎪⎝⎭⎝⎭, 则666T 333222A E Q EQ E ⎛⎫⎛⎫⎛⎫-== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.(22)(本题满分13分)设随机变量X 的概率密度为()1,1021,0240,X x f x x ⎧-<<⎪⎪⎪=≤<⎨⎪⎪⎪⎩ 其他,令()2,,Y X F x y =为二维随机变量(,)X Y 的分布函数.(Ⅰ) 求Y 的概率密度()Y f y ; (Ⅱ) Cov(,)X Y ;(Ⅲ) 1,42F ⎛⎫-⎪⎝⎭. 【分析】 求一维随机变量函数的概率密度一般先求分布,然后求导得相应的概率密度或利用公式计算. 【详解】 (I ) 设Y 的分布函数为()Y F y ,即2()()()Y F y P Y y P X y =≤=≤,则 1) 当0y <时,()0Y F y =;2) 当01y ≤<时, ()2()()Y F y P X y P y X y =<=-<<0113d d 244y y x x y -=+=⎰⎰. 3) 当14y ≤<时,()2()()1Y F y P X y P X y =<=-<<101111d d 2442y x x y -=+=+⎰⎰. 4) 当4y ≥,()1Y F y =. 所以3,0181()(),1480,Y Y y y f y F y y y⎧<<⎪⎪⎪'==≤<⎨⎪⎪⎪⎩其他. (II ) 22232Cov(,)Cov(,)()()X Y X X E X EX X EX EX EXEX ==--=-,而 02101d d 244x x EX x x -=+=⎰⎰,22022105d d 246x x EX x x -=+=⎰⎰, 3323107d d 248x x EX x x -=+=⎰⎰, 所以 7152Cov(,)8463X Y =-⋅=. (Ⅲ) 1,42F ⎛⎫-⎪⎝⎭211,4,422P X Y P X X ⎛⎫⎛⎫=≤-≤=≤-≤ ⎪ ⎪⎝⎭⎝⎭11,22222P X X P X ⎛⎫⎛⎫=≤--≤≤=-≤≤- ⎪ ⎪⎝⎭⎝⎭12111d 24x --==⎰. (23)(本题满分13分)设总体X 的概率密度为(),01,;1,12,0,x f x x θθθ<<⎧⎪=-≤<⎨⎪⎩其他,其中θ是未知参数()01θ<<,12n ,...,X X X 为来自总体X 的简单随机样本,记N 为样本值12,...,n x x x 中小于1的个数.(Ⅰ)求θ的矩估计; (Ⅱ)求θ的最大似然估计【分析】 利用矩估计法和最大似然估计法计算. 【详解】(Ⅰ)因为()1213(;)d d 1d 2EX xf x x x x x x θθθθ+∞-∞==+-=-⎰⎰⎰, 令 32X θ-=,可得θ的矩估计为 32X θ=- .(Ⅱ)记似然函数为()L θ,则()()()()()111(1)N n N N n N L θθθθθθθθθ--=⋅⋅⋅-⋅-⋅⋅-=- 个个. 两边取对数得ln ()ln ()ln(1)L N n N θθθ=+--,令d ln ()0d 1L N n Nθθθθ-=-=-,解得N n θ= 为θ的最大似然估计.。

2006高等数学(下)试卷(C)答案

2006高等数学(下)试卷(C)答案

湘司警院2006年(上)《高等数学下》期末试卷(C )适用区队:05信管301 命题人:张建贵 时量:100min 区队: 姓名: 学号:一、单项选择题(每小题3分,共30分)1. 直线11231-=-=-z y x 与平面3x +4y -z =2的位置关系是( C ). (A )平行; (B )垂直; (C )直线在平面内; (D )相交但不垂直.2. 曲线⎩⎨⎧+==222y x z x y 在点(1, 1, 2)处的切线方程为( C ). (A )822111-=-=-z y x ; (B )622111-=--=-z y x ;(C )64211+=+=z y x ; (D )822111-=--=-z y x .3. 设平面区域D : 1≤x 2+y 2≤4,则⎰⎰+Ddxdy y x f )(22=( C ).(A )⎰2)(2dr r rf π; (B )⎰2)(dr r f π; (C )⎰21)(2dr r rf π; (D )⎰21)(dr r f π.4. 根据二重积分的几何意义,下列不等式中正确的是( B ); (A )D x D,0d )1(⎰⎰>-σ:x ≤1,y ≤1; (B )D x D,0d )1(⎰⎰>+σ:x ≤1,y ≤1;(C )D y x D ,0d )(22⎰⎰>--σ:22y x +≤1; (D )D y x D,0d )ln(22⎰⎰>-σ:x +y ≤1.5. 22ecos xy y y x -'''++=的特解形式可设为( A );(A )(cos sin )e xx A x B x -+; (B )e cos x Ax x -; (C )e sin x Ax x -; (D )(cos sin )exAx x x -+.6. 已知22),(y x y x y x f -=-+,则x f∂∂=∂∂+yf ( C );)A ( y x 22+; )B ( y x -; )C ( y x 22- )D ( y x +. 7. 函数122+-=y x z 的极值点为( D ).)A ()0,0(; )B ()1,0(; )C ()0,1(;)D (不存在.8. 正项级数∑∞=1n na若满足条件( D )必收敛;(A)0lim =∞→n n a ;(B)1lim1<+∞→n n n a a ;(C)1lim 1n n naa +→∞≤;(D)1lim 1>=+∞→λn n n a a .9. 设级数∑∑∑∞=∞=∞=111,,n nn nn ncb a ,且n n nc b a <<),2,1( =n ,则( B )正确.(A )若∑∞=1n nb收敛,则∑∞=1n na必收敛; (B )若∑∞=1n na,∑∞=1n nc都收敛,则∑∞=1n nb必收敛;(C )若∑∞=1n na,∑∞=1n nc都发散,则∑∞=1n nb必发散;(D )若∑∞=1n nb发散,则∑∞=1n nc必发散.10. 当a 与b 满足( D )时,有b a b a +=+.(A)⊥a b ; (B)λ=a b (λ为常数); (C)a ∥b ; (D)⋅=a b a b .二、填空题(每小题3分,共30分)1. 以曲线⎩⎨⎧==+x z z y x 222为准线, 母线平行于z 轴的柱面方程是 x 2+y 2-2x =0;2.曲线⎩⎨⎧==-+00422y z z x 绕z 轴旋转所得的旋转曲面的方程是x 2+y 2+z 2-4z =0;3. 设z =x sin(2x +3y ), 则yx z ∂∂∂2= )y x sin(x )y x cos(326323+-+;4. 设)ln(22y x z +=,则11d x y z===d d x y +;5. 设D :x ≤π,y ≤1,则(sin )d d Dx y x y -=⎰⎰ 0 ;6. 改变二次积分⎰⎰21),(xdy y x f dx 的积分次序得⎰⎰110),(y dx y x f dy ;7. 写出麦克劳林展开式,并注明收敛域:=+)1ln(x 1,1](-∈+-+-+-+x nx )1(3x 2x x n1n 32 . 8. (2)''+'+=y py qy 0的特征方程为 02=++q pr r ; 9. ''=y x 2sin 的通解为 122sin x C x C -++ ;10. 设∑∞=1n nnx a的收敛半径为R ,则∑∞=12n n n x a 的收敛半径为R .三、判断题( 正确的打“√”,错误的打“X ”,每小题2分,共20分)1. '=y y 的通解为e xy C =(C 为任意常数). ( √ ) 2. a b b a ⨯-=⨯; ( √ ) 3. ()()()000000,,,x x x y y x x x x y x f y x f y x f =====表达式成立; ( √ )4. 若),(y x f z =在()00,y x 处偏导数存在,则),(y x f z =在()00,y x 处一定可微;( ⨯ )5. 二重积分),(,d d ),(y x f y x y x f D⎰⎰≥0的几何意义是以),(y x f z =为曲顶,D 为底的曲顶柱体的体积; ( √ )6. 交错级数(),11∑∞=-n n na 若,0lim =∞→n n a 则∑∞=-1)1(n n n a 收敛; ( ⨯ )7. 函数的幂级数展开式一定是此函数的泰勒级数. ( √ )8. '''+''-=y y x 0的特征方程为3210r r +-=; ( ⨯ )9. 若c b b a ⨯=⨯且≠0b ,则c a =; ( ⨯ ) 10. 交错级数(),11∑∞=-n n na 若,0lim =∞→n n a 则∑∞=-1)1(n n n a 收敛. ( ⨯ )四、(7分)解微分方程 ''=-'y x y 2.解:设)(x p y =',则)(x p y '='',原方程变形为 p x p 2-=', 对应的齐次方程为 02=+'p p ,用分离变量法,得d 2d px p=-, 两边积分,得 ln 2ln p x c =-+, 即2e xp c -=,根据常数变易法,设2()exp c x -=,代入p x p 2-=',有2()e x c x x -'=, 2()e ,xc x x '= 积分得 2()ed x c x x x=⎰=21de 2xx ⎰=2211e e d 22x x x x -⎰=22111e e 24x x x C -+, 变形后所得一阶微分方程的通解为 p =211e 24x x C --+,所以,原方程的通解为 y =()d p x x ⎰=211(e )d 24xx C x --+⎰=212e x C C -++442x x -. 五、(7分)在曲线⎪⎩⎪⎨⎧===32,,t z t y t x 上求一点,使其在该点的切线平行与平面42=++z y x ,并写出切线方程.解 设所求点为(0t ,20t ,30t ),d d t t xt==1,d d t t y t==20t ,d d t t z t==320t ,故切线方程为 230200321t t z t t y t x -=-=-, 由于切线与平面平行,切线的方向向量s ={1,20t ,320t }与平面的法向量n ={1,2,1}垂直,有={1,20t ,320t }·{1,2,1}=1+40t +320t =0,解方程,得 0t =1-或31-, 当0t =1-时,切点为(1-,1,1-),切线方程为 31211+=--=+z y x ; 当0t =31-时,切点为(31-,91,127-), 切线方程为31271239131+=--=+z y x , 即 271291331+=--=+z y x . 六、(6分)求522++=y x z 在约束条件x y -=1下的极值.解 作辅助函数 )1(5),,(22y x y x y x F --+++=λλ, 则有λλ-='-='y F x F y x 2,2,解方程组 20,20,10,x y x y λλ-=⎧⎪-=⎨--=⎪⎩得 1,12x y λ===.现在判断11(,)22P 是否为条件极值点:由于问题的实质是求旋转抛物面522++=y x z 与平面x y -=1的交线,即开口向上的抛物线的极值,所以存在极小值,且在唯一驻点11(,)22P 处取得极小值112z =.。

考研数学复习资料 2006年数学三考研试题与答案

考研数学复习资料 2006年数学三考研试题与答案

( ) ( 3 ) 设 函 数 f (u) 可 微 , 且 f ′ (0) = 1 , 则 z = f 4x2 − y2 在 点 (1,2) 处 的 全 微 分 2
dz (1,2) = 4dx − 2dy.
【分析】利用二元函数的全微分公式或微分形式不变性计算.
【详解】方法一:因为 ∂z ∂x
= (1, 2 )
2006 年考研数学(三)真题
一、填空题:1-6 小题,每小题 4 分,共 24 分. 把答案填在题中横线上.
(1)
lim
n→∞
⎛ ⎜⎝
n
+ n
1
(−1
⎞ ⎟⎠
)n
= ______ .
(2)设函数 f (x)在 x = 2 的某邻域内可导,且 f ′ ( x) = e f (x) , f ( 2) = 1 ,则 f ′′′ (2) = ____ .
值 x1 , x2 ..., xn 中小于 1 的个数.
(Ⅰ)求θ 的矩估计; (Ⅱ)求θ 的最大似然估计
2006 年考研数学(三)真题解析
二、填空题:1-6 小题,每小题 4 分,共 24 分. 把答案填在题中横线上.
(1)
lim
n→∞
⎛ ⎜⎝
n +1⎞(−1)n n ⎟⎠
= 1.
【分析】将其对数恒等化 N = elnN 求解.
2
.
【分析】 将矩阵方程改写为 AX = B或XA = B或AXB = C 的形式,再用方阵相乘的行
列式性质进行计算即可. 【详解】 由题设,有
B(A− E) = 2E
于是有
11
B A− E = 4 ,而 A − E =
= 2 ,所以 B = 2 .

06年《高等数学》试题及答案

06年《高等数学》试题及答案

2006年河南省普通高等学校 选拔优秀专科生进入本科阶段学习考试《高等数学》试卷题号 一 二 三 四 五 六 总分 核分人 分数一、单项选择题(每小题2分,共计60分)在每小题的四个备选答案中选出一个正确答案,并将其代码写在题 干后面的括号内。

不选、错选或多选者,该题无分.1.已知函数)12(-x f 的定义域为]1,0[ ,则)(x f 的定义域为 ( ) A. ]1,21[B. ]1,1[-C. ]1,0[D. ]2,1[-解:B x x ⇒≤-≤-⇒≤≤112110.2.函数)1ln(2x x y -+=)(+∞<<-∞x 是 ( ) A .奇函数 B. 偶函数 C.非奇非偶函数 D. 既奇又偶函数 解:01ln )1ln()1ln()()(22==+++-+=-+x xx xx f x f A ⇒.3. 当0→x 时,x x sin 2-是x 的 ( ) A. 高阶无穷小 B. 低阶无穷小 C. 同阶非等价无穷小 D. 等价无穷小 解: 1sin lim2-=-→xx xx C ⇒.4.极限=+∞→nnn n sin 32lim( )A. ∞B. 2C. 3D. 5 解:B nn nnn n n ⇒=+=+∞→∞→2]sin 32[lim sin 32lim.5.设函数⎪⎩⎪⎨⎧=+≠-=0,10,1)(2x a x xe xf ax,在0=x 处连续,则 常数=a ( ) A. 0 B. 1 C. 2 D. 3 解:B a a a aexex f axx axx x ⇒=⇒+===-=→→→1122lim 1lim)(lim 2020.6. 设函数)(x f 在点1=x 处可导 ,则=--+→xx f x f x )1()21(lim( )A. )1(f 'B. )1(2f 'C. )1(3f 'D. -)1(f ' 解:xx f f f x f xx f x f x x )1()1()1()21(lim)1()21(lim--+-+=--+→→C f xf x f xf x f x x ⇒'=---+-+=→→)1(3)1()1(lim2)1()21(lim207. 若曲线12+=x y 上点M 处的切线与直线14+=x y 平行,则点M 的坐标( ) A. (2,5) B. (-2,5) C. (1,2) D.(-1,2) 得分 评卷人解: A y x x x y ⇒==⇒=⇒='5,2422000.8.设⎪⎩⎪⎨⎧==⎰202cos sin ty du u x t,则=dx dy ( ) A. 2t B. t 2 C.-2t D. t 2- 解: D t tt t dxdy ⇒-=-=2sin sin 222.9.设2(ln )2(>=-n x x yn ,为正整数),则=)(n y ( )A.x n x ln )(+B. x1 C.1)!2()1(---n nxn D. 0解:B xy x y x x yn n n ⇒=⇒+=⇒=--1ln 1ln )()1()2(.10.曲线233222++--=x xx x y ( )A. 有一条水平渐近线,一条垂直渐近线B. 有一条水平渐近线,两条垂直渐近线C. 有两条水平渐近线,一条垂直渐近线,D. 有两条水平渐近线,两条垂直渐近线 解:A y y y x x x x x xx x y x x x ⇒∞=-==⇒++-+=++--=-→-→±∞→2122lim,4lim ,1lim)2)(1()3)(1(2332.11.下列函数在给定的区间上满足罗尔定理的条件是 ( ) A.]2,0[|,1|-=x y B. ]2,0[,)1(132-=x yC.]2,1[,232+-=x x y D . ]1,0[,arcsin x x y = 解:由罗尔中值定理条件:连续、可导及端点的函数值相等C ⇒.12. 函数xe y -=在区间),(+∞-∞内 ( )A. 单调递增且图像是凹的曲线B. 单调递增且图像是凸的曲线C. 单调递减且图像是凹的曲线D. 单调递减且图像是凸的曲线 解: C ey ey xx ⇒>=''<-='--0,0.13.若⎰+=C x F dx x f )()(,则⎰=--dx e f e x x )( ( ) A.C eF exx++--)( B. C eF x+-)( C. C eF exx+---)( D. C eF x+--)(解:D C eF ed ef dx e f e xxxx x ⇒+-=-=⎰⎰-----)()()()(.14. 设)(x f 为可导函数,且xe xf =-')12( ,则 =)(x f ( )A.C ex +-1221 B. C ex ++)1(212C.C ex ++1221 D. C ex +-)1(212解:B C ex f e x f e x f x x x⇒+=⇒='⇒=-'++)1(21)1(212)()()12(.15. 导数=⎰batdt dxd arcsin ( )A.x arcsinB. 0C. a b arcsin arcsin -D.211x-解:⎰baxdx arcsin 是常数,所以B xdx dxd ba⇒=⎰0arcsin .16.下列广义积分收敛的是 ( ) A. ⎰+∞1dx e xB. ⎰+∞11dx xC. ⎰+∞+1241dx xD. ⎰+∞1cos xdx解:C x dx x⇒-==++∞∞+⎰)21arctan 4(412arctan4141112π. 17.设区域D 由)(),(,),(,x g y x f y a b b x a x ==>==所围成,则区域D 的面积为 ( )A. ⎰-ba dx x g x f )]()([ B.⎰-badx x g x f )]()([C. ⎰-b adx x f x g )]()([ D. ⎰-badx x g x f |)()(|解:由定积分的几何意义可得D 的面积为 ⎰-badx x g x f |)()(|D ⇒.18. 若直线32311-=+=-z ny x 与平面01343=++-z y x 平行,则常数=n( )A. 2B. 3C. 4D. 5解: B n n n ⇒=⇒=+-⇒-⊥30943}3,43{}3,,1{. 19.设yx y x y x f arcsin)1(),(-+=,则偏导数)1,(x f x '为 ( )A.2B.1C.-1D.-2 解: B x f x x f x ⇒='⇒=1)1,()1,(. 20. 设方程02=-xyz e z确定了函数),(y x f z = ,则xz ∂∂ = ( )A. )12(-z x z B.)12(+z x z C.)12(-z x y D. )12(+z x y解: 令xy e F yz F xyz e z y x F zz x z -='-='⇒-=222,),,(A z x z xyxyz yz xyeyz xz z⇒-=-=-=∂∂⇒)12(222.21.设函数xy y x z +=2,则===11y x dz ( )A. dy dx 2+B. dy dx 2-C. dy dx +2D. dy dx -2 解:222xydxxdy dy x xydx dz -++=A dy dx dx dy dy dx dzy x ⇒+=-++=⇒==2211.22.函数2033222+--=y x xy z 在定义域上内 ( ) A.有极大值,无极小值 B. 无极大值,有极小值 C.有极大值,有极小值 D. 无极大值,无极小值 解:,6)0,0(),(062,06222-=∂∂⇒=⇒=-=∂∂=-=∂∂xz y x y x yz x y xz⇒=∂∂∂-=∂∂2,6222yx z yz 是极大值A ⇒.23设D 为圆周由012222=+--+y x y x 围成的闭区域 ,则=⎰⎰Ddxdy ( )A. πB. 2πC.4πD. 16π 解:有二重积分的几何意义知:=⎰⎰Ddxdy 区域D 的面积为π.24.交换二次积分⎰⎰>a xa dy y x f dx0(),(,常数)的积分次序后可化为 ( )A. ⎰⎰a ydx y x f dy0),( B.⎰⎰aay dx y x f dy),( C. ⎰⎰aa dx y x f dy00),( D. ⎰⎰ayadx y x f dy),(解: 积分区域},0|),{(}0,0|),{(a x y a y y x x y a x y x D ≤≤≤≤=≤≤≤≤=B ⇒.25.若二重积分⎰⎰⎰⎰=20sin 20)sin ,cos (),(πθθθθrdr r r f d dxdy y x f D,则积分区域D 为( )A. x yx 222≤+ B. 222≤+yxC. y yx 222≤+ D. 220yy x -≤≤解:在极坐标下积分区域可表示为:}sin 20,20|),{(θπθθ≤≤≤≤=r r D ,在直角坐标系下边界方程为y yx 222=+,积分区域为右半圆域D ⇒26.设L 为直线1=+y x 上从点)0,1(A 到)1,0(B 的直线段,则=-+⎰Ldy dx y x )(( )A. 2B.1C. -1D. -2 解:L :,1⎩⎨⎧-==xy x x x 从1变到0,⎰⎰⇒-=+=-+012)(D dx dx dy dx y x L.27.下列级数中,绝对收敛的是 ( )A .∑∞=1sinn nπB .∑∞=-1sin)1(n nnπC .∑∞=-12sin)1(n nnπD .∑∞=1cos n n π解: ⇒<22sinnnππ∑∞=π12sinn n收敛C ⇒.28. 设幂级数n n nn a x a (0∑∞=为常数 ,2,1,0=n ),在点2-=x 处收敛,则∑∞=-0)1(n n na( ) A. 绝对收敛 B. 条件收敛 C. 发散 D. 敛散性不确定解:∑∞=0n nn x a 在2-=x 收敛,则在1-=x 绝对收敛,即级数∑∞=-0)1(n n na 绝对收敛A ⇒.29. 微分方程0sin cos cos sin =+ydx x ydy x 的通解为 ( ) A. C y x =cos sin B. C y x =sin cos得分C. C y x =sin sinD. C y x =cos cos 解:dx xx dy yy ydx x ydy x sin cos sin cos 0sin cos cos sin -=⇒=+C C y x C x y xx d yy d ⇒=⇒=+⇒-=⇒sin sin ln sin ln sin ln sin sin sin sin .30.微分方程xxe y y y -=-'+''2的特解用特定系数法可设为 ( )A. x e b ax x y -+=*)(B. xeb ax x y -+=*)(2C. xeb ax y -+=*)( D. xaxe y -=*解:-1不是微分方程的特征根,x 为一次多项式,可设xe b ax y -+=*)( C ⇒.二、填空题(每小题2分,共30分)31.设函数,1||,01||,1)(⎩⎨⎧>≤=x x x f 则=)(sin x f _________.解:1)(sin 1|sin |=⇒≤x f x .32.=--+→xxx x 231lim22=_____________.解:=++=++--=--+→→→)31(1lim)31)(2()2(lim231lim2222x x x x x x xxx x x x123341==.33.设函数x y 2arctan =,则=dy __________.解:dx xdy 2412+=.34.设函数bx axx x f ++=23)(在1-=x 处取得极小值-2,则常数b a 和分别为___________.解:b a b a b ax x x f -+-=-=+-⇒++='12,02323)(25,4==⇒b a .35.曲线12323-+-=x x x y 的拐点为 __________.解:)1,1(),(0662632-=⇒=-=''⇒+-='y x x y x x y .36.设函数)(),(x g x f 均可微,且同为某函数的原函数,有1)1(,3)1(==g f 则=-)()(x g x f _________.解:2)1()1()()(=-=⇒=-g f C C x g x f 2)()(=-⇒x g x f . 37.⎰-=+ππdx x x )sin(32 _________.解:3202sin)sin(323232π=+=+=+⎰⎰⎰⎰πππ-ππ-ππ-dx x xdx dx x dx x x .38.设函数⎪⎩⎪⎨⎧<≥=0,0,)(2x x x e x f x,则 ⎰=-20)1(dx x f __________.解:⎰⎰⎰⎰--=--=+=====-211112132)()1(e dx e dx x dt t f dx x f xtx .39. 向量}1,1,2{}2,1,1{-==b a与向量的夹角为__________.解:3,21663||||,cos π>=⇒<==⋅>=<b a b a b a b a. 40.曲线⎩⎨⎧==022z xy L :绕x 轴旋转一周所形成的旋转曲面方程为 _________. 解:把x y22=中的2y 换成22y z+,即得所求曲面方程x yz222=+.41.设函数y x xy z sin 2+= ,则 =∂∂∂yx z 2_________.解:⇒+=∂∂y x y xz sin 2y x yx z cos 212+=∂∂∂.42.设区域}11,10|),{(≤≤-≤≤=y x y x D ,则________)(2⎰⎰=-Ddxdy x y .解:⎰⎰⎰⎰⎰-=-=-=--Ddx x dy x y dxdxdy x y 12101122322)()( .43. 函数2)(xex f -=在00=x 处展开的幂级数是________________.解: ∑∞=⇒=0!n n xn xe ∑∑∞=∞=-+∞-∞∈-=-==022),(,!1)1(!)()(2n n nnn xx xn n x ex f .44.幂级数∑∞=+++-0112)1()1(n n n nn x的和函数为 _________.解:∑∑∑∞=∞=-+∞=+++=-=+-=+-011111)21ln()2()1(1)2()1(2)1()1(n n nn n nn n n nx nx n x n x,)22(≤<-x .45.通解为xxeC eC y 321+=-(21C C 、为任意常数)的二阶线性常系数齐次微分方程为_________.解:xxe C eC y 321+=-0323,1221=--⇒=-=⇒λλλλ032=-'-''⇒y y y .三、计算题(每小题5分,共40分)46.计算 xx exxx 2sin1lim322-→--.解:23042320161lim3222lim81lim2sin 1lim2222xexxex xexxx ex xx xx xx xx -=+-=--=---→-→-→-→161lim 161322lim220-=-=-=-→-→xx xx exxe.47.求函数xx x y 2sin 2)3(+=的导数dxdy .解:取对数得 :)3ln(2sin ln 2x x x y +=,得分 评卷人两边对x 求导得:x xxx x xx y y2sin 332)3ln(2cos 2122++++='所以]2sin 332)3ln(2cos 2[)3(222sin 2x xxx x x x x x y x+++++='x x x x x xx x xx x 2sin )32()3()3ln(2cos )3(212sin 222sin 2+++++=-.48.求不定积分 ⎰-dx xx224.解:⎰⎰⎰====⎰-==-=π<<π-dt t tdt tdt t tdxxxtx t )2cos 1(2sin4cos 2cos 2sin4422sin 22222C x x x C t t x C t t +--=+-=+-=242arcsin2cos sin 22arcsin 22sin 22.49.计算定积分⎰--+12)2()1ln(dx x x .解:⎰⎰⎰+---+=-+=-+11112)1)(2(12)1ln(21)1ln()2()1ln(dx x x xx xdx dx x x⎰=-=+-+=++--=112ln 312ln 322ln 12ln312ln )1121(312ln xx dx xx.50.设),()2(xy x g y x f z ++= ,其中),(),(v u g t f 皆可微,求 yz xz ∂∂∂∂,.解:xv v g xu u g xy x y x f x z ∂∂∂∂+∂∂∂∂+∂+∂+'=∂∂)2()2(),(),()2(2xy x g y xy x g y x f v u'+'++'= =∂∂∂∂+∂∂∂∂+∂+∂+'=∂∂yv v g yu u g yy x y x f yz )2()2(),()2(xy x g x y x f v'++'. 51.计算二重积分⎰⎰=Dydxdy x I 2,其中D 由12,===x x y x y 及所围成.解:积分区域如图06-1所示, 可表示为:x y x x 2,10≤≤≤≤. 所以 ⎰⎰⎰⎰==10222xxDydy x dxydxdyx I10310323)2(105142122====⎰⎰xdx x ydx x xx.52.求幂级数nn nx n ∑∞=--+0)1()3(1的收敛区间(不考虑区间端点的情况).解: 令t x =-1,级数化为 nn nt n ∑∞=-+0)3(1,这是不缺项的标准的幂级数.xy x y =o12x y 2=图06-1因为 313)3(11)3(1lim1)3(1)3(1limlim11=--+-=+⋅-+-+==∞→+∞→+∞→nnn n nn nn n nn a a ρ,故级数nn nt n ∑∞=-+0)3(1的收敛半径31==ρR ,即级数收敛区间为(-3,3).对级数nn nx n ∑∞=--+0)1()3(1有313<-<-x ,即42<<-x .故所求级数的收敛区间为),(42-. 53.求微分方程 0)12(2=+-+dy x xy dy x 通解. 解:微分方程0)12(2=+-+dx x xy dy x 可化为 212xx y xy -=+',这是一阶线性微分方程,它对应的齐次线性微分方程02=+'y xy 通解为2xC y =.设非齐次线性微分方程的通解为2)(xx C y =,则3)(2)(xx C x C x y -'=',代入方程得C xx x C x x C +-=⇒-='2)(1)(2.故所求方程的通解为2211xC xy +-=.四、应用题(每小题7分,共计14分)54. 某公司的甲、乙两厂生产同一种产品,月产量分别为y x ,千件;甲厂月生产成本是5221+-=x xC (千元),乙厂月生产成本是3222++=y yC (千元).若要求该产品每月总产量为8千件,并使总成本最小,求甲、乙两厂最优产量和相应最小成本.解:由题意可知:总成本8222221++-+=+=y x y x C C C ,约束条件为8=+y x .问题转化为在8=+y x 条件下求总成本C 的最小值 .把8=+y x 代入目标函数得 0(882022>+-=x x x C 的整数).则204-='x C ,令0='C 得唯一驻点为5=x ,此时有04>=''C . 故 5=x 是唯一极值点且为极小值,即最小值点.此时有38,3==C y . 所以 甲、乙两厂最优产量分别为5千件和3千件,最低成本为38千元.55.由曲线)2)(1(--=x x y 和x 轴所围成一平面图形,求此平面图形绕y 轴旋转一周所成的旋转体的体积.解:平面图形如图06-2所示,此立体可看作X 型区域绕y 轴旋转一周而得到。

06级高数(下)试题及答案-8页word资料

06级高数(下)试题及答案-8页word资料

一、 填空题(每空 3 分,共 15 分)1. 设()()a b y 1,3,2,2,,4r r==,则当y =时, rr a b ⊥;当y = 时, //rr a b .2. 函数 (,,)u x y z z x y=--221的间断点是.3. 设函数z x y y =+22, 则 dz =.4. 设G 是一个单连通域,(,)P x y 与(,)Q x y 在G 内即有一阶连续偏导数, 则曲线积分LPdx Qdy +⎰ 在G 内与路径无关的充要条件是.二、单项选择题 (每小题3分,共15分)1. 设直线方程为 L :x x y y z z m n p---==000, 平面方程为 :Ax By Cz D ∏+++=0, 若直线与平面平行,则 ( ).(A) 充要条件是:0Am Bn Cp ++=.(B) 充要条件是:A B C m n p==. (C) 充分但不必要条件是:0Am Bn Cp ++=(D) 充分但不必要条件是:A B C m n p==. 2.设(,)z z x y =是由方程 zx y z e ++= 所确定的隐函数, 则zx∂=∂( ). (A) z e -11. (B) ze -21.(C) z e -11. (D) ze -1.3.函数33(,)3f x y x y xy =+- 的极小值为 ( ).(A)1 . (B) 1-. (C) 0. (D) 3-.4.下列说法正确的是 ( ).(A) 若lim 0n n u →+∞=, 则级数 1n n u ∞=∑ 必收敛.(B) 若级数1n n u ∞=∑ 发散, 则必有 lim 0n n u →+∞≠. (C) 若级数1n n u ∞=∑ 发散, 则 lim n n s →+∞=∞. (D) 若lim 0n n u →+∞≠, 则 级数 1n n u ∞=∑ 必发散.5.微分方程 0ydx xdy += 的通解是 ( ).(A) 0x y +=. (B) y x =. (C)y C =. (D) xy C =.三、求解下列各题 (共2小题, 每小题8分, 共16分) 1.设一平面经过原点及点(,,),-632M 且与平面x y z -+=428 垂直, 求此平面方程.2.设(,),z f u v =而,u y v xy ==,且f具有二阶连续偏导数,求zx y∂∂∂2.四、求下列积分 (共2小题, 每小题8分, 共16分): 1、计算二重积分x y Ded σ+⎰⎰22,其中D 是由圆周224x y +=所围成的闭区域. 2、计算曲线积分2(22)(4)ÑLxy y dx x x dy -+-⎰, 其中 L 是取圆周229x y += 的正向闭曲线.五、计算题 (共2小题, 每小题8分,共16分): 1、 利用高斯公式计算曲面积分xdydz ydzdx zdxdy ∑++⎰⎰Ò,其中∑是长方体:{}(,,)|,,x y z x a y b z c Ω=≤≤≤≤≤≤000整个表面的外侧.2、判别正项级数 122nn n ∞=+∑ 的敛散性.六、解下列各题(共2小题. 每小题8分, 共16分): 1、设幂级数11n n nx ∞-=∑. (1). 求收敛半径及收敛区间 . (2). 求和函数. 2、求微分方程'''x y y y e ++=222 的通解.七、(6分) 求一曲线方程,这曲线通过原点,并且它在点(,)x y 处的切线斜率等于x y +2.南昌大学 2019~2019学年第二学期期末考试试卷及答案 一、填空题(每空 3 分,共 15 分)1. 设()()a b y 1,3,2,2,,4r r ==,则当y =-103时, rr a b ⊥;当y = 6时, //rr a b .2. 函数(,,)u x y z z x y=--221的间断点是{}(,,)|x y z z x y =+22.3. 设函数z x y y =+22, 则 dz =()xydx x y dy++222.4. 设G 是一个单连通域,(,)P x y 与(,)Q x y 在G 内即有一阶连续偏导数, 则曲线积分LPdx Qdy +⎰ 在G 内与路径无关的充要条件是P Q y x∂∂=∂∂.二、单项选择题 (每小题3分,共15分)1. 设直线方程为 L :x x y y z z m n p---==000, 平面方程为 :Ax By Cz D ∏+++=0, 若直线与平面平行,则 ( A ).(A) 充要条件是:0Am Bn Cp ++=.(B) 充要条件是:A B C m n p==. (C) 充分但不必要条件是:0Am Bn Cp ++=(D) 充分但不必要条件是:A B C m n p==. 2.设(,)z z x y =是由方程 zx y z e ++= 所确定的隐函数, 则zx∂=∂( C ). (A) z e -11. (B) ze -21.(C) z e -11. (D) ze -1.3.函数33(,)3f x y x y xy =+- 的极小值为 ( B ).(A)1 . (B) 1-. (C) 0. (D) 3-.4.下列说法正确的是 ( D ).(A) 若lim 0n n u →+∞=, 则级数 1n n u ∞=∑ 必收敛.(B) 若级数1n n u ∞=∑ 发散, 则必有 lim 0n n u →+∞≠. (C) 若级数1n n u ∞=∑ 发散, 则 lim n n s →+∞=∞. (D) 若lim 0n n u →+∞≠, 则 级数 1n n u ∞=∑ 必发散.5.微分方程 0ydx xdy += 的通解是 ( D ).(A) 0x y +=. (B) y x =. (C)y C =. (D) xy C =.三、求解下列各题 (共2小题, 每小题8分, 共16分) 1.设一平面经过原点及点(,,),-632M 且与平面x y z -+=428 垂直, 求此平面方程.解法一: 所求平面的法向量(,,),(,,)n n OM ⊥-⊥=-412632u u u ur r r .则(,,)(,,)(,,)-⨯-=-412632446. 取 (,,)n =-223r.故所求平面方程为:x y z +-=2230. 解法二: 设所求平面法向量(,,),n A B C =r则,(,,)n OM n ⊥⊥-412u u u ur r r .于是有 ,.A B C A B C -+=⎧⎨-+=⎩6320420解得: ,A B C B ==-32. 由平面的点法式方程可知,所求平面方程为Ax By Cz ++=0.将,A B C B ==-32代入上式,并约去()B B ≠0,便得:x y z +-=2230. 即为所求平面方程.2.设(,),z f u v =而,u y v xy ==,且f具有二阶连续偏导数,求zx y∂∂∂2.解:'.zy f x∂=⋅∂2 ()'''''z f y f f x x y∂=++⋅∂∂222122'''''.f yf xyf =++22122四、求下列积分 (共2小题, 每小题8分, 共16分): 1、计算二重积分x y Ded σ+⎰⎰22,其中D 是由圆周224x y +=所围成的闭区域. 解:x y Ded d ed πρσθρρ+=⋅⎰⎰⎰⎰2222200().e d e e ρρπρππ⎡⎤===-⎣⎦⎰2222240012122、计算曲线积分2(22)(4)ÑLxy y dx x x dy -+-⎰, 其中 L 是取圆周229x y += 的正向闭曲线.解:,,Q P x x x y ∂∂=-=-∂∂2422 .Q P x y∂∂-=-∂∂2 由格林公式,有 原式().Dd σππ=-=-⋅⋅=-⎰⎰222318五、计算题 (共2小题, 每小题8分,共16分): 1、 利用高斯公式计算曲面积分xdydz ydzdx zdxdy ∑++⎰⎰Ò,其中∑是长方体:{}(,,)|,,x y z x a y b z c Ω=≤≤≤≤≤≤000整个表面的外侧. 解:,,.P x Q y R z ===,,PQRxy z∂∂∂===∂∂∂111 则由高斯公式有原式().dv abc Ω=++=⎰⎰⎰11132、判别正项级数 122nn n ∞=+∑ 的敛散性.解:lim lim n n n n n n u n u n ++→∞→∞⎛⎫+=⋅ ⎪+⎝⎭113222Qlim .()n n n →∞+==<+311222所以原级数收敛.六、解下列各题(共2小题. 每小题8分, 共16分):1、设幂级数11n n nx ∞-=∑.(1). 求收敛半径及收敛区间 . (2). 求和函数.解: (1). limlim .n n n na n a n ρ+→∞→∞+===111 所以收敛半径.R =1当x =1时,n n ∞=∑1发散;当x =-1时,()n n n ∞-=-∑111 发散.所以收敛区间为:(,)-11.(2). 设和函数为:()n n S x nx ∞-==∑11. ()xx xn n n n S x dx nx dx nx dx ∞∞--==⎛⎫== ⎪⎝⎭∑∑⎰⎰⎰110011 .x n nn n x x x x ∞∞==⎡⎤===⎣⎦-∑∑1101故 '().().()x S x x x x ⎛⎫==-<< ⎪--⎝⎭2111112、求微分方程'''x y y y e ++=222 的通解.解:..r r r r ++===-2122101()x Y C C x e -∴=+12.λ=2Q 不是特征根,所以设特解为: *x y Ae =2.则(*)',(*)''x x y Ae y Ae ==2224,代入原方程得A =29. *xy e ∴=229.故通解为:().x x y C C x e e -=++21229七、(6分) 求一曲线方程,这曲线通过原点,并且它在点(,)x y 处的切线斜率等于x y +2.解: 依题意: ',().y x y y =+⎧⎨=⎩200则: x y x Ce =--+22.把()y =00 代入上式, 得C =2.故().x y e x =--21。

大学高数三期末复习题(答案)

大学高数三期末复习题(答案)

10级高数(3)期末复习题(答案)一、单项选择题:1、若lim 0n n u →∞=,则级数∑∞=1n n u (D )A 、条件收敛B 、收敛C 、发散D 、可能收敛也可能发散2、 lim 0n n u →∞=是级数∑∞=1n n u 收敛的( B )A 、充分条件B 、必要条件C 、充要条件D 、既非充分也非必要3、下面曲面为柱面的是( C )A 、22z x y =+ B 、 22214zx y +-=C 、222x y -=D 、2222x y z r ++=4、在空间直角坐标系下,方程()()22212(3)1x y z -+-+-=表示的图形是( B )A 、圆B 、球面C 、平面D 、柱面 5、下列级数中条件收敛的是(B )A 、1(1)nn ∞=-∑ B 、11(1)1nn n ∞=-+∑C 、211(1)nn n∞=-∑ D 、1(1)(1)nnn q q∞=->∑6、下列级数中绝对收敛的是(D )A 、21cosn nπ∞=∑ B 、11(1)1nn n ∞=-+∑C 、11(1)sinn n nπ∞-=-∑ D 、1(1)(1)nnn q q∞=->∑7、下列级数中收敛的是(B )A 、121n n n ∞=+∑B 、121(1)ln n n n∞-=-∑C 、 05()3nn ∞=-∑D 、1121n n ∞=+∑8、微分方程0)(43='-''y y y x 的阶数是( B )A 、1B 、2C 、3D 、4 9、 =+⋅+∞→∞→22223sin)(lim yx y x y x (B )A 、0B 、3C 、31 D 、∞10、 微分方程x e y -=''的通解是(C )A 、xCey -= B 、x Ce y =C 、21C x C e y x ++=-D 、21C x C e y x ++-=- 11、下列方程中(C )是线性微分方程微分方程A 、21y x y '=-B 、(ln ln )dy y y x dxx=-C 、tan sec dy y x x dx-= D 、(76)()0x y dx x y dy -++=12、下列方程中(A )是可分离变量的微分方程A 、tan 0dy y x dx-= B 、(ln ln )dy y y x dxx=-C 、tan sec dy y x x dx-= D 、(76)()0x y dx x y dy -++=二、填空题:1、 幂级数∑∞=+122n nnxn 的收敛半径R = ,收敛域为 2、幂级数21(2)nn x n ∞=-∑的收敛半径R = ,收敛域为3、幂级数2121n n xn ∞=-∑的收敛域为4、改变二次积分1(,)yeeI d y f xy d x=⎰⎰的积分次序,则I = ;21)21,21[-1]1,1[-)1,1(-⎰⎰e xdy y x f dx 1ln 0),(5、改变二次积分11(,)xI dx f x y dy =⎰⎰的积分次序,则I = ; 6、设f 是连续函数,D 是由22 , 0x y x y +≤≥确定的区域,则在极坐标系下,二重积分(,)Df x y d σ⎰⎰先r 后θ的二次积分是 7、设f 是连续函数,D 由曲线222 ,x y y +=围成则在极坐标下,化二重积分22()Df x y d σ+⎰⎰为先r 后θ的二次积分是 ; 8、11(1)n n n ∞=+∑= ,1123n n -∞=⎛⎫- ⎪⎝⎭∑=9、设级数111p n n∞-=∑,则当p 时级数收敛,当p 时级数发散;10、设 ln(ln ),z x y =+则(1,)e dz= 11、xoy 平面上的双曲线22236x y -=绕y 轴旋转所得曲面方程是____________________12用某种材料做一个开口的长方体容器,其外形长5m ,宽3m ,高为8m,厚20cm ,则所需材料的近似值为 __________________三、计算题:1、方程222238x y z ++=确定函数(,)z z x y =,求,z zx y∂∂∂∂, ⎰⎰100),(ydxy x f dy ⎰⎰20cos 0)sin ,cos (πθθθθrdrr r f d 112>2≤63)(2222=-+y z x ]2.08,4.05,4.03:[6.28||6.28)2.0(53)4.0(83)4.0(852.0,4.0,4.0,8,5,3,:(3---=∆=∆∴-=-**+-**+-**=∆+∆+∆=≈∆-=∆-=∆-=∆====内高为内长为内宽为注外高外长外宽设解mu V zxy y xz x yz du u z y z y x xyz u ⎰⎰πθθ0sin 20)(rdr r f d dyedx 2121+36.28mzy zy F F yzz x z x F F xz z F y F x F z y x z y x F :zy zx z y x 3264,362642832),,(222-=-=-=∂∂-=-=-=∂∂===∴-++=则设解2、设22x z x y=+求z x∂∂和z y∂∂,2322'2122232222221222222)(])([)(2)(21y x xyy x x yz y x yyx xy x x y x x z yx x z :y +-=+=∂∂∴+=+⋅+-+=∂∂∴+=--已知解3、设2yz x ye =,求2z x y∂∂∂和22z y∂∂)2()1()1()1(222,22222222222y e x e x y e x yz y e x yex e x yz y xe xyexeyx z xye xz yex z :yyyyyyyyyyy+=++=∂∂+=+=∂∂+=+=∂∂∂=∂∂∴=已知解4、设222(,,)f x y z xy yz zx =++,求(0,0,1),(1,0,1),(2,0,1)xx xy xxz f f f -2)1,0,2(2),,(0)1,0,1(2),,(2)1,0,0(2),,(2),,(),,(2222=∴==-∴==∴=+=++=xxz xxz xy xy xx xx x f z y x f f y z y x f f z z y x f xz y z y x f zxyzxyz y x f :已知解5、 设 22(,)z f x y xy =+,f 为可微函数,求,z zx y∂∂∂∂212122222222),(,),(),(xf yf x f y f y vv fyu uf yz yf xf y f x f x vv f x u u f x z xyy x v y x y x u ,xy y x f z :v u v u +=⋅+⋅=∂∂⋅∂∂+∂∂⋅∂∂=∂∂∴+=⋅+⋅=∂∂⋅∂∂+∂∂⋅∂∂=∂∂∴=+=+=设已知解6、 设22,3,42,v z u x y v x y u==+=+求yzx z ∂∂∂∂,22222222222222222222222222)3()43(2)3()24(2)3(222'')3()33(4)3()24(6)3(464''24,3y x y xy x y x y x y y x uyv u uvu u v yz y x xy x y y x y x x y x uxv u uvu u v x z yx v y x u ,uv z :y y x x +--=++-+=-=-=∂∂∴+--=++-+=-=-=∂∂∴+=+==设已知解7、求2Dx ydxdy ⎰⎰,D 为抛物线22y x =和直线12x =所围成的区域)243(]3[]2[:0]22[,),(0),(,),(),(:7111211311122222122212222212222222212222222=-=======∴=-===⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰--------dy yy dy yx ydx x dy dx yx ydy x dx ydxdyx ydy x dx ydxdyx ydy x ,x ,y y x ydy x dx dxdy y x f dxdyy x f D y x f ,x D ,y y x y x f yyx xDx xDx xx x Dx xD或解二则由定积分性质可知轴对称的区间时为关于的奇函数为关于由于本题必有上连续时在则当轴对称关于若积分区域的奇函数关于解一8、 求2(),Dx y dxdy +⎰⎰ 其中D 是由曲线1 y x=和直线 ,2y x y ==围成的区域。

高数三期末考试题及答案

高数三期末考试题及答案

高数三期末考试题及答案一、选择题(每题5分,共20分)1. 已知函数f(x)=x^3-3x,求f'(x)的值。

A. 3x^2-3B. 3x^2+3C. x^3-3D. x^3+3答案:A2. 计算定积分∫(0,1) x^2 dx。

A. 1/3B. 1/2C. 2/3D. 1答案:B3. 判断下列级数是否收敛。

∑(1, 2, 3, 4, ...)A. 收敛B. 发散答案:B4. 求解微分方程dy/dx+y=x的通解。

A. y = e^(-x)∫x dx + CB. y = e^(x)∫x dx + CC. y = e^(-x)∫e^x dx + CD. y = e^(x)∫e^(-x) dx + C答案:A二、填空题(每题5分,共20分)1. 函数f(x)=sinx的二阶导数是______。

答案:-cosx2. 求极限lim(x→0) (sinx/x)。

答案:13. 已知函数f(x)=x^2-4x+4,求其顶点坐标。

答案:(2, 0)4. 计算二重积分∬D xy dA,其中D为x^2+y^2≤1的闭区域。

答案:π/2三、解答题(每题10分,共30分)1. 求函数y=x^3-6x^2+9x+1的极值点。

解:首先求导数y'=3x^2-12x+9,令y'=0,解得x=1或x=3。

然后检查二阶导数y''=6x-12,发现x=1时y''<0,x=3时y''>0,因此x=1为极大值点,x=3为极小值点。

2. 计算定积分∫(0,2) (x^2-4x+4) dx。

解:首先进行积分运算,得到∫(x^2-4x+4) dx = (1/3)x^3-2x^2+4x。

然后将积分上限2和下限0代入,计算得到(1/3)(2)^3-2(2)^2+4(2)- [(1/3)(0)^3-2(0)^2+4(0)] = 8/3 - 8 + 8 = 8/3。

3. 求解微分方程dy/dx-2y=e^(2x)。

2006年数学三真题及答案

2006年数学三真题及答案

( ) (3)设函数 f (u) 可微,且 f ′(0) = 1 ,则 z = f 2
4x2 − y2
在点(1,2)处的全微分 dz (1,2) = _
___.
(4)设矩阵
A
=
⎛ ⎜ ⎝
2 −1
1 2
⎞ ⎟ ⎠

E

2
阶单位矩阵,矩阵
B
满足
BA
=
B
+
2
E
,则
B = ___.
(5)设随机变量 X 与Y 相互独立,且均服从区间[0,3] 上的均匀分布,则
(A) σ1 < σ 2
(B) σ1 > σ 2
(C) μ1 < μ2
(D) μ1 > μ2
三 、解答题:15-23 小题,共 94 分. 解答应写出文字说明、证明过程或演算步骤. (15)(本题满分 7 分)
1− y sin π x
设 f ( x, y) = y −
y , x > 0, y > 0 ,求
列得
C
,记
P
=
⎜ ⎜⎜⎝
0 0
1 0
0 1
⎟ ⎟⎟⎠
,则(
)
(A) C = P−1AP
(B) C = PAP−1
(C) C = PT AP
(D) C = PAPT
(14)设随机变量
X
服从正态分布
N
(
μ1
,
σ
2 1
)

Y
服从正态分布
N
(
μ
2

2 2
)
,且
P{ X − μ1 < 1} > P{ Y − μ2 } < 1 ,则必有( )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

楚 雄 师 范 学 院2007—2008学年第一学期期末考试卷A 卷 课程《 高等数学 》 考试时间120分钟(每小题3分,共21分)_________________________________7.._____________sin cos ____06.________________)31(__5._____)(2_____4)(______04.___0000300032000110__],,,1[)()(][3).1,1,0()0,1,1(),0,0,1(________)3,1,0_____(][3212._______________132214321)4(322223243213213C x C x C e y e y x C x C e C e C y y y e C x y e x y y p C p x p y C x y y y x x x x x f x Tf x P R A A x x x x x x +++=='''+++==-+==-'⎩⎨⎧+==+±==-'⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--'====--=-的通解为、方程的通解为、微分方程的通解为、方程为参变量或的通解为、方程下的矩阵为在基底中,微商变换、在,其中下的坐标为,,)在基底,,(中的向量、可逆的充分必要条件是、矩阵εεεεεεα二、选择题(每小题3分,共15分)..;.;.;.运算性质正确的是阶方阵,则下面的矩阵是、设B A AB D B A AB C B A AB B BA AB A B n B A ''='===---)()()()()()()(,11112、下面所给的函数组是线性相关的是( A ).,,.;,,.;,,.;,,.x x D e x C xe e B x x A x x x cos sin 1)(1)(1)(21)(0)).(()(;0)).(3()(0)21).(23()(;0)21).(23()()(0323221222122212221222=+++-=+-++=+++-=+-++=-'-'C x y C x y D C x y C x y C C x y C x y B C x y C x y A B x y x y ....的通积分为、微分方程⎰⎰⎰⎰⎰=⎰=⎰=⎰==+'+''--..;.;.;.).的特解是(性无关,则它的另一个与它线的一个特解为、方程dx e y y y D dx e y y y C dx e y y y B dx e y y y A C y y x q y x p y dxx p dxx p dxx p dxx p )(2112)(2112)(112)(11211.1.11.0)()(4三、计算题(每小题6分,共18分).,11001300001100121并求它的逆矩阵的行列式的值、求矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=M 分分解:34/34/1004/14/1000021001100341113111212111⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---=⎥⎦⎤⎢⎣⎡==-⨯=---A A M M.下的矩阵,,在基底求下的坐标.,,在基底,求)若(下的矩阵为,,在基底、线性变换B T T A T ][)2(][21,413201312][2123321321321εεεεεεαεεεαεεε-+=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=分下的矩阵,,在基底即分,,,,,,分下的坐标,,在基底即分分解:1312201413][1324][;101][;213][;32)2(1)7,1,1(][272)2(1423;;32)1(123123312321231321132132132132132133123211⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=∴++=----=-+=-+=∴++=+=++=B T T T T T T T T T T T T T T εεεεεεεεεεεεεεεεεεεεεεαεεεεεεεεεαεεεεεεεεεεε 分或其中过渡矩阵为分;对角化后的矩阵为即矩阵分;解之得基础特征向量有时当分解之得基础特征向量有时当分特征根分解:对角化、将矩阵5.01100011301010101035.020002000211010101040303;21010;103;0301000301,212;22)4)(2(10120301..101020301333212,132,12⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-==⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡==⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=-==∴--=----=-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=A X X X X X E A A λλλλλλλλλλ四、求下列微分方程的通解(每小题8分,共24分)分为参变量)即所求的通解为分两边积分锝:分从而分则解:令、2(3541623542)64()64(216;;0161254254344P CP P y P P x CP P y dPP P dP P P Pdx dy P P x P y x y y ⎪⎩⎪⎨⎧++=++=++=+=+==++=='=+-'+' 分即原方程的通解为分代入原方程得:分;;则分另原方程的特解为分解之锝特征根分解:特征方程为、144*14/11)66(*)42(*)2(*2,*21,11,012.23212222232,123x xx x xxx x x xe x eC xe C e C y ex y A e x x A y e x x A y e x x A y Ae x y e y y y y +++==∴=++='''++=''+='=-===+--=+'-''-'''-λλλλλ分从而原方程的通解为:分)的通解为:方程(分)得:代入方程(则)的特解为:令(分解之得特征根为)的特征方程为:方程(分)(即则原方程转变为:分令解:这是尤拉方程、192ln 31)(19231)(2192,3120*,*;)(*223,1;0322223233)1(1,..)1.(ln 33332132121222--+=--+=-=-==''='+=-===-+=-+=-+-===-'+''--x x C x C x y t e C e C t y B A y A y B At t y ty Dy y D ty Dy y D D dtdD e x x y y x y x t t t λλλλ五、解下列微分方程组(每小题7分,共14分)分所求的基本解矩阵分.从而有分即)得:又由(分或因此得到分解之得特征根:分此方程的特征方程为:分)(即得到:分求导得:)两边对解:方程(的基本解矩阵)()(、求线性方程组12)(1212,221;11,21021302121221122212221121212121111121112211⎥⎦⎤⎢⎣⎡-=⎪⎩⎪⎨⎧-==⎪⎩⎪⎨⎧======-===--=-'-''+'='+'=''⎪⎪⎩⎪⎪⎨⎧=+=-----⎰x xx xxxx x xx e ee e x M ey ey e y e y dxy y dx y dy e y e y y y y y y y y y x y dxdy y y dxdy λλλλ⎪⎪⎩⎪⎪⎨⎧+-+-=++=--++='-=++==='-++-'='''-=++-'=---'='-'=''⎪⎪⎩⎪⎪⎨⎧--=-=⎰⎰212321312213213)1(216161216161)(1)()2(1212Ct C t t y C t C t x C t C t C t x x y C t C t tdt x tx x t x x x x x y yt x x t y x x y x x t y x dtdy y x dtdx原方程的通解为从而代入上式得)知:又由(得:)解:由(的通解.)()(、求方程组六、证明题(满分8分).)()()()()(,()(()()(),(21212121的解是线性微分方程则)的解)及分别是线性微分方程若x Q x Q x L x y x y x Q y L x Q y L x y x y +=+==。

相关文档
最新文档