运筹学
运筹学简介
Operational Research
1
运筹学简介
一、运筹学发展简介 二、运筹学的定义 三、运筹学在管理中的应用 四、运筹学的工作步骤 五、运筹学内容介绍
2
一、运筹学(OR)发展简介
1. 运筹学在国内
中国古代朴素的运筹学思想
田忌赛马
战国时代,齐王常与他的大将田忌赛马,双方约定每场各 出一匹马,分三场进行比赛。齐王的马有上、中、下三等, 田忌的马也有上、中、下三等,但每一等都比不上齐王同等 的马,于是田忌屡赛屡输。一日,田忌的宾客、对军事颇有 研究的孙膑给田忌出了一个主意,结果以二比一赢了齐王。 即要善于用局部的牺牲去换取全局的胜利,从而达到以弱胜强 的目的——典型的博弈问题.
Operations Research Societies, IFORS).
我国学术界1955年开始研究运筹学时,正是从《史记》中 摘取 “运筹”一词作为OR (Operations Research)的意 译,就是运用筹划、以智取胜的含义.
6
2. 运筹学在国外 运筹学的产生
运筹学的早期历史可以追溯到19世纪中叶,特拉法加尔 (Trafalgar)海战和纳尔森(Nelson)秘诀。法国拿破仑统帅 大军要与英国争夺海上霸主地位。英国海军统帅、海军中将 纳尔森亲自制定了周密的战术方案。1805年10月21日,这 场海上大战爆发了。英国是纳尔森亲自统帅的地中海舰队, 由27艘战舰组成;另外一方是由费伦钮夫(Villenuve)率领 的法国-西班牙联合舰队,共有33艘战舰。在一场海战后, 法国-西班牙联合舰队以惨败告终:联合舰队司令费伦钮夫 连同12艘战舰被俘,8艘沉没,仅13艘逃走,人员伤亡 7000人。而英国战舰没有沉没,人员伤亡1663人。
运筹学
Page 7
与此同时,运筹数学有了飞快的发展,并形成了运筹的 许多分支。如数学规划(线性规划、非线性规划、整数 规划、目标规划、动态规划、随机规划等)、图论与网 络、排队论(随机服务系统理论)、存储论、对策论、 决策论、维修更新理论、搜索论、可靠性和质量管理等。
注:兰德公司是美国最重要的以军事为主的综合性战略 研究机构。它先以研究军事尖端科学技术和重大军事战 略而著称于世,继而又扩展到内外政策各方面,逐渐发 展成为一个研究政治、军事、经济科技、社会等各方面 的综合性思想库,被誉为现代智囊的“大脑集中营”、 “超级军事学院”,以及世界智囊团的开创者和代言人。 它可以说是当今美国乃至世界最负盛名的决策咨询机构。
优化员工安排,以最低成本服务客户
每年节约成本4.06亿美元,销 售额大幅增加 每年节约成本380万美元
每年节约成本1500万美元, 年收入大幅增加。 每年节约成本1300万美元
优化配置上千个国内航线航班来实现利润 每年节约成本1亿美元 最大化
线性规划
(Linear Programming)
本章主要内容:
Interface上发表的部分获奖项目
应用
效果
在满足乘客需求的前提下,以最低成本进 行订票及机场工作班次安排
优化炼油程序及产品供应、配送和营销
每年节约成本600万美元 每年节约成本7000万
优化商业用户的电话销售中心选址
控制成本库存(制定最优再定购点和定购 量确保安全库存) 制定最优铁路时刻表并调整铁路日运营量
Page 10
第一定义强调以量化为基础,必然要用数学。但任何决策都 包含定量和定性两方面,而定性方面又不能简单地用数学表 示,如政治、社会等因素,只有综合多种因素的决策才是全 面的。 第二定义表明运筹学具有与多学科交叉的特点,如综合运用 经济学、心理学、物理学、化学中的一些方法。 第三定义说明,运筹学是强调最优决策,“最”是过分理想 了,在实际生活中往往用次优、满意等概念代替最优。
运筹学的定义
运筹学的定义
运筹学是一门研究决策的学科,它综合了数学、统计学、信息学、经济学、管理学等多个领域的知识和技术,旨在通过科学的方法来解决实际问题。
运筹学在现代社会中拥有广泛的应用,涉及到许多领域,如物流、交通、金融、医疗、能源等。
运筹学的主要目标在于找到最优解决方案。
例如,在物流领域,如何在有限的时间内将货物运输到目的地,同时降低运输成本;在金融领域,如何通过科学的投资策略来最大化收益,同时降低风险。
这些问题都可以通过运筹学的方法来解决。
为了实现这些目标,运筹学应用了许多技术和方法。
其中最常用的是线性规划,即在一组约束条件下最小化或最大化一个线性函数。
除此之外,运筹学还包括非线性规划、整数规划、动态规划、图论、排队论、模拟等等方法。
这些方法都有不同的应用场景,可以根据具体问题的特点选择最合适的方法。
运筹学的应用不仅限于商业领域,也可以用于解决社会问题。
例如,在医疗领域,如何最大化患者的生存率,同时降低医疗成本;在能源领域,如何通过科学的能源规划来提高能源利用效率,降低污染和排放。
这些问题都需要运筹学的方法来提供解决方案。
运筹学是一门非常实用的学科,它可以为我们提供科学的决策方法,解决实际问题。
随着科技的发展和社会的进步,运筹学的应用范围
也将更加广泛。
我们应该深入学习和应用运筹学的知识和方法,为实现更高效、更节约、更可持续的社会发展做出贡献。
__运筹学概述
第一讲 运筹学概述一、运筹学是什么?----------------------晕愁学其实,这绝对一种误解,事实上运筹学方法及应用早在中小学就比较系统地学过,并且在我们每时每刻的生活过程中都在利用。
北师大版小学语文第六册教材中就有一篇课文《田忌赛马》,在座的各位应该都不陌生。
这是战国时期运筹学思想成功应用的典型实例。
孙膑同志合理地利用当时的现有资源、条件和比赛规则,只建议田忌调换了赛马的出场顺序,就使得原来屡战屡败的战局得到了彻底的扭转,以获胜而告终。
形成了本文主题中“初战失败”、“孙膑献计”、“再赛获胜”的三部分内容。
运筹学思想体现的是,将现有资源的作用得到充分发挥,以获得最优的结果。
运筹让生活得更有条理的艺术。
谈起运筹学,是否会想到很通俗的例子——沏茶水。
沏茶,看起来是一件日常生活中再小不过的事情,却包含着运筹学的道理。
让我们来看一看,沏茶的过程可以分为烧开水、洗茶壶、放茶叶多道“工序”。
其中,烧开水所需的时间最长,洗茶壶、放茶叶的时间则较短。
善于运筹的人,应该是先将水烧上,在烧水的过程中,从从容容地把茶壶洗净,把茶叶放好。
而不善运筹的人,可能会先把茶壶洗净,把茶叶放好,才想起来水还没有烧;或者先把水烧开了,才急急忙忙去洗茶壶、放茶叶,搞得手忙脚乱。
另外还有一个例子我们外地生到上海的路线选择,虽然条条大路都能通到上海,但我们都有一个明确的目标,有些人的目标是准备用最短的时间到达,有些人的目标是用最少费用到达,这样基于不同的目标,就会选择不同的最佳路线。
这两个生活中的运筹学实例说明了运筹学应用的思想并不神秘,而现实的生活中,从沏茶、选择路线这样一件小事,到规模宏大的建设项目,都能运用运筹学的原理。
在人生大事的安排上,也同样需要下功夫好好运筹一番。
从技术是,也就是运筹学解决决策问题的工具方面,在初中的数学教材中有一个重要的内容是《线性规划》,其中比较详细地讲述了线性规划的数学表述形式和求解方法。
运筹学概述一、运筹学的定义 运筹学(Operational Research...
运筹学模型的一个显著
特点是它们大部分为最优化 模型。一般来说,运筹学模 型都有一个目标函数和一系 列的约束条件,模型的目标 是在满足约束条件的前提下 使目标函数最大化或最小化。
二、运筹学研究的特点
1、科学性
(1)它是在科学方法论的指导下通 过一系列规范化步骤进行的;
(2)它是广泛利用多种学科的科学 技术知识进行的研究。运筹学研究不 仅仅涉及数学,还要涉及经济科学、 系统科学、工程物理科学等其他学科。
2、实践性
运筹学以实际问题为分析对象, 通过鉴别问题的性质、系统的目标 以及系统内主要变量之间的关系, 利用数学方法达到对系统进行最优 化的目的。更为重要的是分析获得 的结果要能被实践检验,并被用来 指导实际系统的运行。
4、Queueing theory(排队论) 5、Game theory(博弈论,对策论) 6、Decision theory(决策论) 7、Storage theory(存储论)
五、运筹学的历史
1、朴素的运筹思想:
❖都江堰水利工程 战国时期(大约公元前250年)川西 太守李冰父子主持修建。其目标是: 利用岷江上游的水资源灌溉川西平 原。追求的效益还有防洪与航运。 其总体构思是系统思想的杰出运用。
3、系统性
运筹学用系统的观点来分析 一个组织(或系统),它着眼于整 个系统而不是一个局部,通过协调 各组成部分之间的关系和利害冲突, 使整个系统达到最优状态。
4、综合性
运筹学研究是一种综合性的 研究,它涉及问题的方方面面,应 用多学科的知识,因此,要由一个 各方面的专家组成的小组来完成。
运筹学课件PPT课件
整数规划的解法
总结词
整数规划的解法可以分为精确解法和近似解法两大类。
详细描述
整数规划的解法可以分为两大类,一类是精确解法,另一类是近似解法。精确解法包括割平面法、分支定界法等, 这些方法可以找到整数规划的精确最优解。而近似解法包括启发式算法、元启发式算法等,这些方法可以找到整 数规划的近似最优解,但不一定能保证找到最优解。
模拟退火算法采用Metropolis准则来 判断是否接受一个较差解,即如果新 解的能量比当前解的能量低,或者新 解的能量虽然较高但接受的概率足够 小,则接受新解。
模拟退火算法的应用
01
模拟退火算法在旅行商问题中得到了广泛应用。通过模拟退火算 法,可以求解旅行商问题的最优解,即在给定一组城市和每对城 市之间的距离后,求解访问每个城市恰好一次并返回出发城市的 最短路径。
动态规划的解法
确定问题的阶段和状态
首先需要确定问题的阶段和状态,以便将问 题分解为子问题。
建立状态转移方程
根据问题的特性,建立状态转移方程,描述 状态之间的转移关系。
求解子问题
求解每个子问题,并存储其解以供将来使用。
递推求解
从最后一个阶段开始,通过递推方式向前求 解每个阶段的最优解。
动态规划的应用
线性规划的解法
单纯形法
01
单纯形法是求解线性规划问题的经典方法,通过迭代过程逐步
找到最优解。
对偶理论
02
对偶理论是线性规划的一个重要概念,它通过引入对偶问题来
简化求解过程。
分解算法
03
分解算法是将大规模线性规划问题分解为若干个小问题,分别
求解后再综合得到最优解。
线性规划的应用
生产计划
线性规划可以用于生产计划问题, 通过优化资源配置和生产流程, 提高生产效率和利润。
运筹学完整版
绪论
20世纪50年代中期,钱学森、许国志等教授在国内全面介绍 和推广运筹学知识,1956年,中国科学院成立第一个运筹学研究 室,1957年运筹学运用到建筑和纺织业中,1958年提出了图上作 业法,山东大学的管梅谷教授提出了“中国邮递员问题”,1970 年,在华罗庚教授的直接指导下,在全国范围内推广统筹方法和 优选法。
另外,还应用于设备维修、更新和可靠性分析,项目的选择 与评价,工程优化设计等。
“管理运筹学”软件介绍
“管理运筹学”2.0版包括:线性规划、运输问题、整数规划(0-1整数 规划、纯整数规划和混合整数规划)、目标规划、对策论、最短路径、 最小生成树、最大流量、最小费用最大流、关键路径、存储论、排队论、 决策分析、预测问题和层次分析法,共15个子模块。
x
va2x2x a dv 0 dx
2 ( a 2 x )x ( 2 ) ( a 2 x )2 0
x a 6
线性规划问题的数学模型
例1.2 某厂生产两种产品, 下表给出了单位产品所需资 源及单位产品利润
项目
Ⅰ
设备 A(h) 0
设备 B(h) 6
调试工序(h) 1
利润(元) 2
Ⅱ 每天可用能力
5
经济管理学核心课程
运筹学
( Operations Research )
第一章
运
决
筹
胜
帷
绪论
千
幄
里
之n
外
绪论
本章主要内容: (1)运筹学简述 (2)运筹学的主要内容 (3)本课程的教材及参考书 (4)本课程的特点和要求 (5)本课程授课方式与考核 (6)运筹学在经济管理中的应用
绪论
什么是运筹学? Operational Research 运用研究、 运作研究
运筹学涉及的数学知识
运筹学涉及的数学知识
摘要:
一、引言
二、运筹学简介
三、线性规划
四、整数规划
五、动态规划
六、网络优化
七、总结
正文:
运筹学是一门运用数学和统计学方法对实际问题进行建模、优化和求解的学科。
它广泛应用于生产调度、交通运输、资源分配等领域。
本文将简要介绍运筹学涉及的数学知识。
首先,线性规划是运筹学的基础知识。
线性规划研究在一定约束条件下线性目标函数的最优化问题。
它可以用矩阵表示,并使用单纯形法等数学方法求解。
其次,整数规划是线性规划的特殊情况,要求部分或全部变量取整数值。
整数规划在运输、调度和选址等问题中具有重要意义。
常用的求解方法有分枝定界法、割平面法等。
动态规划是另一种重要的优化方法。
它将问题分解成相互联系的子问题,通过求解子问题并将结果存储起来,以避免重复计算,从而提高效率。
动态规
划广泛应用于最短路径、背包问题等领域。
网络优化是运筹学的另一个重要分支,研究在网络结构中的最优化问题。
这类问题可以描述为带权的有向图,通过求解最短路径、最大流等问题,可以有效地改善网络的性能。
总之,运筹学涉及的数学知识包括线性规划、整数规划、动态规划和网络优化等。
(名词解释)运筹学
(名词解释)运筹学
运筹学是一门研究如何在有限资源下做出最佳决策的学科。
它
涉及数学、统计学和计算机科学等多个领域,旨在找到最优解决方
案以最大程度地满足特定目标或约束条件。
运筹学的应用范围非常
广泛,包括生产调度、物流管理、供应链优化、交通规划、金融风
险管理等诸多领域。
在运筹学中,常用的方法包括线性规划、整数规划、动态规划、排队论、模拟等。
线性规划用于解决线性约束条件下的最优化问题,整数规划则是在变量为整数时的最优化问题,动态规划通过分阶段
决策来解决多阶段问题,排队论则研究排队系统的性能指标,模拟
则是通过构建模型来模拟实际系统的运行情况。
运筹学的发展历史可以追溯到二战期间,当时运筹学被用于军
事决策和战争规划,随后逐渐应用于工业生产和商业管理领域。
如今,随着信息技术的发展,运筹学在大数据分析、人工智能和机器
学习等方面也得到了广泛应用。
总的来说,运筹学致力于通过科学的方法和技术手段,帮助人
们做出最佳决策,提高资源利用效率,降低成本,优化系统运行,对于提升生产效率和管理水平具有重要意义。
运筹学的概念
运筹学的概念运筹学是一种综合性学科,它在现代管理中起着至关重要的作用。
运筹学是一种运用数学、统计学、计算机科学以及其他相关领域的方法和理论来帮助制定最优决策的学科。
它的主要目标是通过通过信息分析和决策模型来使决策者在制定决策时更加合理、科学和精准。
下面是对运筹学概念的详细介绍。
一、运筹学的基本定义运筹学(Operations Research,简称OR)是一门科学,通过使用计算机和数学模型,研究如何最好地利用有限资源来达到预期目标,主要研究方法包括优化、数理统计、决策分析、模拟等。
二、运筹学的发展历程运筹学是在二战期间发展出来的,主要应用于军事后勤问题的解决。
之后,运筹学学科马不停蹄地在各个领域快速发展,至今已经成为了一门广泛的学科。
三、运筹学的应用范围运筹学在各个领域都有广泛的应用,例如生产制造、物流管理、金融风险管理、医疗管理、资源分配等。
它在实践中的应用能够使企业和组织在有限的资源下获得最大收益。
例如,电商企业可以利用运筹学和网络优化技术来解决配送问题。
医院可以利用运筹学与供应链的整合优化来提高采购成本的效率。
银行等金融机构则可以利用运筹学来建立风险管理模型,减轻市场波动造成的经济损失。
四、运筹学的关键技术该学科主要基于优化、数学建模、统计推断和计算机仿真等关键技术。
对于不同的问题,会采用不同的技术手段。
例如,对于线性规划问题,使用线性规划算法进行求解;对于决策树问题,可以使用决策树算法进行求解;对于复杂的大规模问题,可以使用数学建模与计算机仿真技术进行求解。
总之,运筹学是为了解决实际问题而产生的一种学科,它在生产、经济、政策等许多领域有广泛应用,发展迅速,使得成本降低、管理规范化、业务流程优化等问题得到了解决。
运筹学简介
筹
学
Operational Research
1
运筹学简介
一、运筹学发展简介 二、运筹学的定义 三、运筹学在管理中的应用 四、运筹学的工作步骤 五、运筹学内容介绍
2
一、运筹学(OR)发展简介
1. 运筹学在国内
中国古代朴素的运筹学思想 田忌赛马
战国时代,齐王常与他的大将田忌赛马,双方约定每场各 出一匹马,分三场进行比赛。齐王的马有上、中、下三等, 田忌的马也有上、中、下三等,但每一等都比不上齐王同等 的马,于是田忌屡赛屡输。一日,田忌的宾客、对军事颇有 研究的孙膑给田忌出了一个主意,结果以二比一赢了齐王。 即要善于用局部的牺牲去换取全局的胜利,从而达到以弱胜强 的目的——典型的博弈问题.
9
为此,一些科学家就如何合理运用雷达开始了研究。 1939年,英国皇家空军指挥部组织了一个小组,即成立了 英国第一个运筹小组,组长是曼彻斯特大学物理学家、英 国战斗机司令部顾问P.M.S.Blackett(战后因在宇宙射线 方面的研究成果而获得诺贝尔物理学奖)。组员:2位理论 数学家,2位应用数学家,1位天文物理学家, 1位普通物 理学家,3位心理学家,1位海军军官,1位陆军军官,l位 测量员)。——“Blackett杂技团”。 他们研究的问题是:设计将雷达信息传递到指挥系统和武 器系统的最佳方式;雷达与武器的最佳配置。他们对探测、 信息传递、作战指挥、战斗机与武器的协调等做了系统的 研究,并获得成功。他们在秘密报告中使用了 “Operational Research”一词,即“运筹学”。
6
2. 运筹学在国外 运筹学的产生 运筹学的早期历史可以追溯到19世纪中叶,特拉法加尔 (Trafalgar)海战和纳尔森(Nelson)秘诀。法国拿破仑统帅 大军要与英国争夺海上霸主地位。英国海军统帅、海军中 将纳尔森亲自制定了周密的战术方案。1805年10月21日, 这场海上大战爆发了。英国是纳尔森亲自统帅的地中海舰 队,由27艘战舰组成;另外一方是由费伦钮夫(Villenuve) 率领的法国-西班牙联合舰队,共有33艘战舰。在一场海战 后,法国-西班牙联合舰队以惨败告终:联合舰队司令费伦 钮夫连同12艘战舰被俘,8艘沉没,仅13艘逃走,人员伤亡 7000人。而英国战舰没有沉没,人员伤亡1663人。
运筹学知识点
运筹学知识点运筹学是一门应用广泛的学科,旨在通过科学的方法和技术来解决各种决策和优化问题。
它综合运用数学、统计学、计算机科学等多学科知识,为管理和决策提供有力的支持。
下面让我们来了解一些运筹学的重要知识点。
一、线性规划线性规划是运筹学中最基本也是最重要的内容之一。
它研究的是在一组线性约束条件下,如何找到目标函数的最优解。
例如,一家工厂生产两种产品 A 和 B,生产单位 A 产品需要消耗 2 单位的原材料和 1 单位的劳动力,生产单位 B 产品需要消耗 3 单位的原材料和 2 单位的劳动力。
工厂现有 100 单位的原材料和 80 单位的劳动力,A 产品的单位利润是 5 元,B 产品的单位利润是 8 元。
那么,如何安排生产才能使工厂的利润最大化?解决这个问题,首先要建立线性规划模型。
设生产 A 产品 x 件,生产 B 产品 y 件,目标函数就是利润最大化:Z = 5x + 8y。
约束条件包括原材料限制:2x +3y ≤ 100;劳动力限制:x +2y ≤ 80;以及非负限制:x ≥ 0,y ≥ 0。
通过求解这个线性规划模型,可以得到最优的生产方案,即生产多少 A 产品和多少 B 产品能够使利润达到最大值。
二、整数规划整数规划是在线性规划的基础上,要求决策变量必须取整数的规划问题。
比如,一个项目需要选择一些地点建设仓库,每个地点的建设成本和运营效益不同。
由于仓库的数量必须是整数,这就构成了一个整数规划问题。
整数规划的求解比线性规划更加复杂,常用的方法有分支定界法、割平面法等。
三、动态规划动态规划是解决多阶段决策过程最优化的一种方法。
以资源分配问题为例,假设一家公司有一定数量的资金要在多个项目中进行分配,每个项目在不同的投资水平下有不同的收益。
要在有限的资金条件下,使总收益最大。
这个问题就可以用动态规划来解决。
动态规划的核心思想是将一个复杂的多阶段决策问题分解为一系列相互关联的子问题,通过求解子问题的最优解来逐步得到原问题的最优解。
名词解释运筹学
名词解释运筹学
运筹学是现代管理学的一门重要专业基础课,起源于20世纪30年代初。
其主要目的是在决策时为管理人员提供科学依据,是实现有效管理、正确决策和现代化管理的重要方法之一。
该学科应用于数学和形式科学的跨领域研究,利用统计学、数学模型和算法等方法,去寻找复杂问题中的最佳或近似最佳的解答。
运筹学经常用于解决现实生活中的复杂问题,特别是改善或优化现有系统的效率。
研究运筹学的基础知识包括实分析、矩阵论、随机过程、离散数学和算法基础等。
而在应用方面,多与仓储、物流、算法等领域相关。
因此运筹学与应用数学、工业工程、计算机科学、经济管理等专业相关。
以上内容仅供参考,建议查阅运筹学书籍获取更全面和准确的信息。
运筹学
当然对价格还要有非负限制。 当然对价格还要有非负限制。即:
y1 , y2 , y3 ≥ 0
将该厂所有的资源都用来加工外来产品, 将该厂所有的资源都用来加工外来产品,其 总收入(即对方的总支出) 总收入(即对方的总支出)是
W = 18 y1 + 4 y2 + 12 y3
从工厂的决策者来看当然是W越大越好。但是根据 从工厂的决策者来看当然是W越大越好。 第二条原则,也应该使对方的支出尽可能的少; 第二条原则,也应该使对方的支出尽可能的少; 从而这个问题就可以转化为下述数学问题: 从而这个问题就可以转化为下述数学问题:
§1 . 1 线性规划问题
例1 生产计划问题-Product Mix 某企业要在计划期内安排生产甲、乙两种产品, 某企业要在计划期内安排生产甲、乙两种产品,这 个企业现有的生产资料是:设备 台时 原材料A 吨 台时, 个企业现有的生产资料是:设备18台时,原材料 4吨, 原材料 B 12吨;已知单位产品所需消耗生产资料及利润 吨 如下表。问应如何确定生产计划使企业获利最多。 如下表。问应如何确定生产计划使企业获利最多。
问题分析 分别表示这三种资源的收费单价。 设y1,y2,y3分别表示这三种资源的收费单价。则 由第一条原则: 由第一条原则:将用于加工产品甲或乙的所有资 源,如用来加工外来产品所获得的收回的费用, 如用来加工外来产品所获得的收回的费用, 应不低于可获得的利润, 应不低于可获得的利润,即
3 y1 + y2 ≥ 3 2 y1 + 2 y3 ≥ 5
Amount of Resource Available b1 b2 … bm
资源利用问题的数学模型为: 资源利用问题的数学模型为:
max z = c1 x1 + c2 x2 + ⋯ cn xn
《运筹学》全套课件(完整版)
服务时间分布
负指数分布、确定型分布、一般分布等。
顾客到达和服务时间的独立性
假设顾客到达和服务时间是相互独立的。
单服务台排队系统
M/M/1排队系统
顾客到达服从泊松分布,服务时间服从负指 数分布,单服务台。
M/D/1排队系统
顾客到达服从泊松分布,服务时间服从确定 型分布,单服务台。
投资组合优化
确定投资组合中各种资产的最 优配置比例,以最大化收益或
最小化风险。
03
整数规划
整数规划问题的数学模型
01
整数规划问题的定 义
整数规划是数学规划的一个分支 ,研究决策变量取整数值的规划 问题。
02
整数规划问题的数 学模型
包括目标函数、约束条件和决策 变量,其中决策变量要求取整数 值。
03
Edmonds-Karp算法
介绍Edmonds-Karp算法的原理、步骤和实现方法,以及其与FordFulkerson算法的比较。
网络最大流问题的应用
列举网络最大流问题在资源分配、任务调度等领域的应用案例。
最小费用流问题
最小费用流问题的基本概 念
介绍最小费用流问题的定义、 分类和应用背景。
Bellman-Ford算法
优点是可以求解较大规模的整数规划问题,缺点是计算量较大,需 要较高的计算精度。
割平面法
割平面法的基本思想
通过添加新的约束条件(割平面)来缩小可行域的范围,从而逼 近最优解。
割平面法的步骤
包括构造割平面、求解子问题和更新割平面三个步骤,通过不断 迭代找到最优解。
割平面法的优缺点
优点是可以处理较复杂的整数规划问题,缺点是构造割平面的难 度较大,需要较高的数学技巧。
运筹学概述
2.多学科的配合
一个企业的有效管理涉及很多方面,运筹学研究中吸收了来自不同领域、具 有不同经验和技能的专家。由于专家们来自不同的学科领域,具有不同的经历经 验 ,因此增强了集体提出问题和解决问题的能力。这种多学科的协调配合在研究 的初期、在分析和确定问题的主要方面、在选定和探索解决问题的途径时,显得 尤其重要。
(1)运筹学的概念 运筹学( Operations Research )是一门新兴的应用学科。由于它所研究的对象极其 广泛,所以有着许多不同的定义。
英国《运筹学》杂志认为:“运筹学是运用科学方法(特别是数学方法)来解决那 些在工业、商业、政府和国防部门中有关人力、机器、物质、金钱等大型系统的 指挥和管理方面出现的问题的科学,目的是帮助管理者科学地决定其策略和行 动。”
(2)五规划。在一定约束条件下寻求某种目标最大或最小的方法就是规划方法要解 决的问题,包括线性规划、整数规划、非线性规划、目标规划与动态规划。一个 典型的应用就是企业在一定资源限制下寻求利润最大或成本最小。
(3)五论。在决策过程中,首先要考虑的就是竞争对手的情况,这就需要应用对 策论方法;企业必须维持一定的原料或产品的库存量以满足需求,同时为控制成 本又必须压低库存,这就是库存论要解决的问题:而图论是用图形来描述问题, 图形是由一些点以及一些点之间的连线表示,可用于解决运输设计、信息系统的 设计以及工程时间表的设计;有时也需要解决各种服务系统在排队等待现象中的 概率特性,这就需要排队论,而非常重要的产品、工程的可靠性问题就需要可靠 性模型和决策论来解决。
美国运筹学会(1976年)的定义是:“运筹学是研究用科学方法来决定在资源不充分 的情况下如何最好地设计人机系统,并使之最好地运行的一门学科。”这从侧面 描写了运筹学的特点。 《联邦德国科学辞典》(1978年)上的定义是:“运筹学是从事决策模型的数学解 法的一门科学。”
运筹学
绪论一、运筹学一词起源于20世纪30年代。
据《大英百科全书》释义,“运筹学是一门应用于管理有组织系统的科学”,“运筹学为掌管这类系统的人提供决策目标和数量分析的工具”。
我国《辞海》中有关运筹学条目的释义为:“运筹学主要研究经济活动与军事活动中能用数量来表达有关运用、筹划与管理方面的问题。
它根据问题的要求,通过数学的分析与运算,做出综合性的合理安排,以达到较经济较有效地使用人力物力”。
运筹学一词的英文原名,美国英语Operations Research,英国英语Operational Research (缩写为O.R.),可直译为“运用研究”或“作业研究”。
1957年我国从“夫运筹于帷幄之中,决胜于千里之外”这句古语中摘取“运筹”二字,将O.R.正式译作运筹学,比较恰当地反映了这门学科的性质和内涵。
由于运筹学涉及的主要领域是管理问题,研究的基本手段是建立数学模型,并且比较多地运用各种数学工具,从这点出发,曾有人将运筹学称作“管理数学”。
二、朴素的运筹学思想在我国古代文献中就有不少记载,例如齐王赛马和丁渭主持皇宫的修复等事。
二战后,运筹学的发展大致可分为三个阶段:1、从1945年到20世纪50年代初,被称为创建时期。
2、20世纪50年代初期到20世纪50年代末期,被认为是运筹学的成长时期。
3、自20世纪60年代以来,被认为是运筹学迅速发展和开始普及的时期。
国际上著名的运筹学刊物有:Management Science,Operations Research,Journal of Operational Research Society,European Journal of Operations Research等,国内运筹学的刊物或较多刊登运筹学理论和应用的刊物主要有:运筹学学报,运筹与管理,系统工程学报,系统工程理论与实践,系统工程理论方法应用,数量经济技术经济研究,预测,系统工程,系统科学与数学等等。
运筹学简解
解
30
1. 唯一最优解的情况:目标函数在可行域K的 唯一顶点处达最优值,该顶点的坐标就是唯一的 最优解。 2. 无穷多最优解的情况:当目标函数在可行 域K的两个顶点处达最大(小)值之时,目标函数 所表示的直线族平行于这两点的连线线段,即可 行域K的一边,该边上的所有点的坐标都是最优解。 因此有无穷多最优解。
47
3. 编制初始调运方案──最小元素法
例 设某物资需要从产地A1、A2、A3调往销 地 B1、B2、B3、B4,它们的平衡表和单位运价表 如下表所示,求它的初始调运方案。
48
解: 因为
a
3
i
50 50 75 175
b
j 1
i 1 4
j
40 55 60 20 175
20
二元线性规划的数学模型为 :
max( 或min)z c1 x1 c2 x2
a11 x1 a12 x 2 (或 , )b1 a 21 x1 a 22 x 2 (或 , )b2 s.t. a m1 x1 a m 2 x 2 (或 , )bm x1 0, x 2 0
13
例 制造某种产品,每瓶重量为500克,它是由
甲、乙两种原料混合而成,要求每瓶中甲种原料最 多不能超过 400 克,乙种原料至少不少于 200 克。 而甲种原料的成本是每克5分,乙种每克8分。问如 何决定每瓶中甲、乙原料的配比,使得成本最小?
14
15
数学模型 : min S 5x1 8 x2
23
§6.3 二元线性规划的图象解法
24
例 : 在约束条件
下,求: max z 10x1 11x2 max z 4 x1 2 x2
运筹学PPT完整版
C 变量:决策变量和非决策变量
B 约束条件:线性等式或不等式
A 目标函数:求最大值或最小值
非线性规划
目标函数:非线性函数
约束条件:非线性不等式
求解方法:梯度下降法、 牛顿法、拟牛顿法等
应用领域:生产计划、资 源分配、投资决策等
动态规划
基本概念:将复杂问题分解为若干子 0 1 问题,通过求解子问题来解决原问题
运筹学广泛应用于生产、运输、库存、销售、人力 资源等各个领域。
运筹学通过建立数学模型,求解最优解,以实现资 源的合理配置和高效利用。
运筹学的应用领域
生产与运营管理 项目管理 交通与运输规划
供应链管理 财务管理 资源分配与调度
运筹学的发展历程
起源:二战期间, 军事需求推动运 筹学的发展
20世纪50年代: 运筹学逐渐应用 于工业、经济等 领域
适用范围:解决资源分配、路径规划、 02 生产调度等问题
主要步骤:划分阶段、确定状态、建 0 3 立状态转移方程、求解最优解
特点:具有最优子结构性质,能够高 04 效地求解复杂问题
运筹学的实际应 用
生产计划与调度
生产计划:根据市场需求和生产能力制定生产计划, 包括生产数量、生产时间、生产地点等
生产调度:根据生产计划,合理分配生产资源,包 括人员、设备、原材料等
场趋势
运筹学在生物学中 的应用:分析生物 种群数量变化,预
测生物进化趋势
运筹学在工程学中 的应用:优化工程 设计,提高工程效
率
THANK YOU
汇报人:稻小壳
运筹学与人工智 能的结合,拓展
2 了运筹学的应用
领域
3 运筹学与人工智
能的结合,推动 了运筹学的理论 研究和实践应用
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
如例1的(1)中,
v1 e1 v2
e3 e6
v5
e1与 v1 , v2 关联的次数均为1,
e2 与 v2 关联的次数为2, e2
边 e1 , e4 , e5 , e6 都是相邻的,
e4
e5 v3
v4
v5 为孤立点, v4 为悬挂点,
e4 , e5 为平行边,重数2, e6 为悬挂边,e2 为环,
G 为多重图。
图,称 E ' 的导出子图。
例 3、
(1)
(2)
(3)
(4)
(5)
(6)
上图中,(1)-(6)都是(1)的子图, 其中(2)-(6)为真子图,(1)-(5)为生成子图。
2、补图定义。 设 G V , E 为无向完全图, G1 V , E1 ,
G2 V , E2 为无向简单图,其中 E1
补图的概念, 5、图的同构的定义。
一、图的概念。
1、定义。 无序积 A & B (a, b) a A b B 无向图 G V , E
E V & V , E 中元素为无向边,简称边。
有向图 D V , E
E V V , E 中元素为有向边,简称边。
一、图的概念。
ห้องสมุดไป่ตู้
则从 vi 到自身存在长度小于等于 n 的回路。
推论:在一个 n 阶图中,若 vi 到自身存在一个
简单回路,则从vi 到自身存在长度小于等于 n
的初级回路。
6、性质。 由以上定理可知,在 n 阶图中, 任何一条初级通路的长度 n 1 任何一条初级回路的长度 n
二、图的连通性。 1、连通,可达。 无向图中,从 vi 到 v j 存在通路,称 vi 到 v j 是 连通的(双向)。 有向图中,从 vi 到 v j 存在通路,称 vi 可达 v j 。
——连接顶点 a , b 的线段。
有向边 a, b ——以 a 为始点,以 b 为终点的有向线段。
例1、(1) 无向图 G V , E , V v1, v2 , v3 , v4 , v5
E (v1, v2 ),(v2 , v2 ),(v2 , v3 ),(v1, v3 ),(v1, v3 ),(v1, v4 )
(G) , (G) 。
如例1的(2)中,
d (v2 ) d (v2 ) d (v2 )
1 3 4
d (v1 ) d (v1 ) d (v1 )
1 0 1
d (v5 ) d (v5 ) d (v5 ) 2 2 4
3、相关概念。
0 vi与ek 不关联 无向图关联的次数 1 vi与ek 关联1次 2 v 与e 关联2次(e 为环) i k k
(2)
1 vi为ek的始点 有向图关联的次数 0 vi与ek 不关联 1 v 为e 的终点 (无环) i k
3、相关概念。
(2)
点的相邻——两点间有边,称此两点相邻 相邻 边的相邻——两边有公共端点,称此两边相邻
(注意方向)
2、短程线,距离。
短程线——连通或可达的两点间长度最短的
通路。
距离——短程线的长度, 记
d (Vi ,V j )
d Vi , V j
无向图 有向图
2、短程线,距离。
若 vi , v j 之间无通路(或不可达),规定
d (vi , v j ) d vi , v j
E ' E )。
生成子图—— G ' G 且 V ' V 。
三、子图,补图。 导出子图 ——非空 V ' V ,以 V ' 为顶点集, 以两端均在 V ' 中的边的全体为边集的 G 的 子图,称 V ' 的导出子图。 ——非空 E ' E ,以 E ' 为边集,以
E ' 中边关联的顶点的全体为顶点集的 G 的子
4、完全图
设 G V , E 为 n 阶无向简单图,若G 中每个
顶点都与其余 n 1 个顶点相邻,则称G为n 阶
无向完全图,记作 K n 。
若有向图 D 的任一对顶点 u, v(u v),既有有向
边 u, v 又有有向边 v, u ,则称D 为有向完全图。
例如:
K4
K5
二、顶点的度数,握手定理。 1、顶点的度数 (简称度)。 无向图 G V , E , vi 的度数记 d (vi ) ,指与 vi 相关联的边的条数。 有向图 G V , E , vi 的度数
( D) 4 , ( D) 1 。
设 V v1, v1,
, vn 为图 G 的顶点集,称 , d (vn ) 为G 的度数序列。
d (v1 ), d (v2 ),
2、握手定理。
定理1: 设图 G V , E 为无向图或有向图,
V v1, v1,
则
, vn ,E m ( m为边数),
…………
初级通路 简单通路 复杂通路
例1、(2)
图(2)中过 v 2 的回路 (从 v 2 到 v 2 )有:
1 v2e4v4e3v3e2v2 2 v2e5v5e6v4e3v3e2v2
…………
长度3
长度4
3 v2e4v4e3v3e2v2e5v5e6v4e3v3e2v2 长度7
例1、(2)
例2、(1) (3,3, 2,3) , (5, 2,3,1, 4) 能成为图的度数 序列吗?为什么? (2) 已知图 G 中有10条边,4个3度顶点,其余顶
点的度数均小于3,问 G 中至少有多少个顶点? 为什么?
三、子图,补图。 1、子图定义: 设 G V , E , G ' V ', E ' 是两个图,若 V ' V ,且 E ' E ,则称 G ' 是 G 的子图,G 是 G ' 的母图,记作 G ' G 。 真子图—— G ' G且 G ' G (即V ' V 或
一、通路,回路。
2、简单通路,简单回路。
简单通路 (迹) 简单回路 (闭迹) 复杂通路 (回路)
一、通路,回路。
3、初级通路,初级回路。
初级通路 (路径) 初级回路 (圈)
初级通路 (回路) 简单通路 (回路), 但反之不真。 4、通路,回路 的长度—— 中边的数目。
例1、(1)
图(1)中,从 v1 到 v6 的通路有:
1、定义。 无序积 A & B (a, b) a A b B
无向图G V , E 图 有向图D V , E
V 记为V (G ), E记为E (G ) V 记为V ( D), E记为E ( D)
2、图的表示法。
有向图,无向图的顶点都用小圆圈表示。
无向边 ( a, b)
一、通路,回路。 1、通路 (回路) —— G 中顶点和边的交替序列
v0e1v1e2
el vl ,其中 ei (vi 1 , vi )(无向图),
或 ei vi 1 , vi (有向图), v0 ——始点,
vl ——终点,称 为 v0 到 vl 的通路。当 v0 vl
时, 为回路。
第七章 图的基本概念
第一节 无向图及有向图
内容:有向图,无向图的基本概念。
重点:1、有向图,无向图的定义,
2、图中顶点,边,关联与相邻,顶点 度数等基本概念, 3、各顶点度数与边数的关系
d (v ) 2m 及推论,
i 1 i
n
内容:有向图,无向图的基本概念。
重点:4、简单图,完全图,子图,
E1
E2 ,
E2 E,则称 G1 , G2 相对于 G 互为补图,
记 G1 G2 , G2 G1 。
如例3中,
(1)
(2)
(3)
(4)
(5)
(6)
四、图的同构。
定义: 设两个无向图 G1 V1 , E1 , G2 V2 , E2 ,
若存在双射函数 : V1 V2 ,使得对于任意的
1 v1e1v2e5v5e7v6
2 v1e1v2e2v3e3v4e4v2e5v5e7v6 3 v1e1v2e5v5e6v4e4v2e5v5e7v6
…………
长度3
长度6 长度6
例1、(1)
图(1)中,从 v1 到 v6 的通路有:
1 v1e1v2e5v5e7v6
2 v1e1v2e2v3e3v4e4v2e5v5e7v6 3 v1e1v2e5v5e6v4e4v2e5v5e7v6
(7)
v6 v5
f
(5)
b
(6)
d
例5、(1) 画出4个顶点,3条边的所有非同构 的无向简单图。 解:只有如下3个图:
(1.1)
(1.2)
(1.3)
例5、(2) 画出3个顶点,2条边的所有非同构 的有向简单图。 解:只有如下4个图:
第二节 通路,回路,图的连通性
内容:图的通路,回路,连通性。 重点:1、通路,回路,简单通路,回路, 初级通路,回路的定义, 2、图的连通性的概念, 3、短程线,距离的概念。
d (vi ) d (vi ) d (vi )
二、顶点的度数,握手定理。 1、顶点的度数 (简称度)。
最大度 (G ) max d (v) v V
最小度 (G ) min d (v) v V
对有向图相应地还有 ( D) , ( D) ,
图形表示如右:
v1 e1
e6
v5
e2
v2
e3
e4
e5 v3