高中数学选修(2-3)综合测试题

合集下载

高中数学选修2-3答案

高中数学选修2-3答案

高中数学选修2-3答案【篇一:高中数学选修2-3所有试卷含答案】每章分三个等级:[基础训练a组], [综合训练b组], [提高训练c 组] 建议分别适用于同步练习,单元自我检查和高考综合复习。

(数学选修2--3) 第一章计数原理[基础训练a组]一、选择题1.将3个不同的小球放入4个盒子中,则不同放法种数有()a.81 b.64c.12d.142.从4台甲型和5台乙型电视机中任意取出3台,其中至少有甲型与乙型电视机各1台,则不同的取法共有()a.140种 b.84种 c.70种 d.35种3.5个人排成一排,其中甲、乙两人至少有一人在两端的排法种数有() a.a3 b.4a3 c.a5?a3a3 d.a2a3?a2a3a3 4.a,b,c,d,e共5个人,从中选1名组长1名副组长,但a不能当副组长,不同的选法总数是()a.20 b.16 c.10 d.65.现有男、女学生共8人,从男生中选2人,从女生中选1人分别参加数学、物理、化学三科竞赛,共有90种不同方案,那么男、女生人数分别是() a.男生2人,女生6人 b.男生3人,女生5人 c.男生5人,女生3人 d.男生6人,女生2人. ?x6.在??的展开式中的常数项是() ?283352323113a.7 b.?7 c.28 d.?287.(1?2x)(2?x)的展开式中x3的项的系数是() a.120 b.?120 c.100 d.?100 ?8.??2??2?展开式中只有第六项二项式系数最大,则展开式中的常数项是() x?n5a.180 b.90 c.45 d.360二、填空题1.从甲、乙,??,等6人中选出4名代表,那么(1)甲一定当选,共有种选法.(2)甲一定不入选,共有种选法.(3)甲、乙二人至少有一人当选,共有种选法.2.4名男生,4名女生排成一排,女生不排两端,则有. 3.由0,1,3,5,7,9这六个数字组成_____个没有重复数字的六位奇数.4.在(x?的展开式中,x的系数是1062205.在(1?x)展开式中,如果第4r项和第r?2项的二项式系数相等,则r?,t4r?6.在1,2,3,...,9的九个数字里,任取四个数字排成一个首末两个数字是奇数的四位数,这样的四位数有_________________个?7.用1,4,5,x四个不同数字组成四位数,所有这些四位数中的数字的总和为288,则x. 8.从1,3,5,7,9中任取三个数字,从0,2,4,6,8中任取两个数字,组成没有重复数字的五位数,共有________________个?三、解答题1.判断下列问题是排列问题还是组合问题?并计算出结果.(1)高三年级学生会有11人:①每两人互通一封信,共通了多少封信?②每两人互握了一次手,共握了多少次手?(2)高二年级数学课外小组10人:①从中选一名正组长和一名副组长,共有多少种不同的选法?②从中选2名参加省数学竞赛,有多少种不同的选法?(3)有2,3,5,7,11,13,17,19八个质数:①从中任取两个数求它们的商可以有多少种不同的商?②从中任取两个求它的积,可以得到多少个不同的积?2.7个排成一排,在下列情况下,各有多少种不同排法?(1)甲排头,(2)甲不排头,也不排尾,(3)甲、乙、丙三人必须在一起,(4)甲、乙之间有且只有两人,(5)甲、乙、丙三人两两不相邻,(6)甲在乙的左边(不一定相邻),(7)甲、乙、丙三人按从高到矮,自左向右的顺序,(8)甲不排头,乙不排当中。

黑龙江高中数学选修2-3模块综合测试2 Word版含解析

黑龙江高中数学选修2-3模块综合测试2 Word版含解析

选修2-3模块综合测试(二)(时间120分钟满分150分)一、选择题(本大题共12小题,每小题5分,共60分)的解集为()1.方程C x14=C2x-414A.{4} B.{14}C.{4,6} D.{14,2}得x=2x-4或x+2x-4=14,解得x=4或x=6.经检验知x=4或解析:由C x14=C2x-414x=6符合题意.答案:C2.小王有70元钱,现有面值分别为20元和30元的两种I C电话卡.若他至少买一张,则不同的买法共有()A.7种B.8种C.6种D.9种解析:要完成的“一件事”是“至少买一张I C电话卡”,分3类完成:买1张I C卡、买2张I C卡、买3张I C卡.而每一类都能独立完成“至少买一张I C电话卡”这件事.买1张I C卡有2种方法,买2张I C卡有3种方法,买3张I C卡有2种方法.不同的买法共有2+3+2=7种.答案:A3.如果χ2=5.024,那么认为“X与Y有关系”的把握有()A.75% B.90%C.95% D.99%解析:∵χ2=5.024>3.841,∴有95%的把握认为“X与Y有关系”.答案:C4.已知离散型随机变量ξ的分布列如下,则其数学期望Eξ=()A.1C.2+3m D.2.4解析:由分布列的性质知0.5+m+0.2=1,解得m=0.3,所以Eξ=1×0.5+3×0.3+5×0.2=2.4.答案:D5.(2x -12x )6的展开式的常数项是( )A .20B .-20C .40D .-40解析:由题知(2x -12x)6的通项为T r +1=(-1)r C r 626-2r x 6-2r,令6-2r =0得r =3, 故常数项为(-1)3C 36=-20. 答案:B6.3个人坐在一排6个座位上,3个空位只有2个相邻的坐法种数为( ) A .24 B .36 C .48D .72解析:先将三个人排好,共有6种排法,空出4个位,再将空座位插空,有4×3=12种排法,故有6×12=72种排法.答案:D7.从装有3个红球、2个白球的袋中任取3个球,则所取的3个球中至少有1个白球的概率是( )A .110B .310C .35D .910解析:“所取的3个球中至少有1个白球”的对立事件是“所取的3个球都不是白球”,因而所求的概率P =1-C 33C 35=1-110=910.答案:D8.对标有不同编号的6件正品和4件次品的产品进行检测,不放回地依次摸出2件.在第一次摸出正品的条件下,第二次也摸到正品的概率是( )A .35B .25C .110D .59解析:记“第一次摸出正品”为事件A ,“第二次摸到正品”为事件B ,则P (A )=C 16C 19C 110C 19=35,P (AB )=C 16C 15C 110C 19=13.故P (B |A )=P (AB )P (A )=59. 答案:D9.为了研究男子的年龄与吸烟的关系,抽查了100个男子,按年龄超过和不超过40岁,吸烟量每天多于和不多于20支进行分组,如下表:A .99.9%B .99%C .95%D .90%解析:利用题中列联表,代入公式计算.χ2=100×(50×25-10×15)265×35×60×40≈22.16>6.635,所以我们有99%的把握认为吸烟量与年龄有关. 答案:B10.已知随机变量ξ,η满足ξ+η=8,且ξ服从二项分布B (10,0.6),则Eη和Dη的值分别是( )A .6和2.4B .2和2.4C .2和5.6D .6和5.6解析:∵ξ~B (10,0.6) ∴Eξ=10×0.6=6, Dξ=10×0.6×0.4=2.4. ∵ξ+η=8, ∴η=-ξ+8,∴Eη=-Eξ+8=-6+8=2.Dη=(-1)2Dξ=2.4. 答案:B11.有10件产品,其中3件是次品,从中任取2件,若ξ表示取到次品的件数,则Dξ=( )A .35B .1115C .1415D .2875解析:ξ的所有可能取值是0,1,2.则 P (ξ=0)=C 27C 210=715.P (ξ=1)=C 17C 13C 210=715.P (ξ=2)=C 23C 210=115.所以,ξ的分布列为于是E ξ=0×715+1×715+2×115=35,D ξ= i =1n(x i -EX )2P i =2875.答案:D12.有5本不同的书,其中语文书2本,数学书2本,物理书1本.若将其随机地并排摆放到书架的同一层上,则同一科目的书都不相邻的概率是( )A .15B .25C .35D .45解析:基本事件共有A 55=120种,同一科目的书都不相邻的情况可用间接法求解,即A 55-A 22A 22A 23×2-A 22A 22A 33=48,因此同一科目的书都不相邻的概率是25. 答案:B二、填空题(本大题共4小题,每小题5分,共20分)13.[2012·浙江高考]若将函数f (x )=x 5表示为f (x )=a 0+a 1(1+x )+a 2(1+x )2+…+a 5(1+x )5,其中a 0,a 1,a 2,…,a 5为实数,则a 3=________.解析:不妨设1+x =t ,则x =t -1,因此有(t -1)5=a 0+a 1t +a 2t 2+a 3t 3+a 4t 4+a 5t 5,则a 3=C 25(-1)2=10.答案:1014.设随机变量ξ的分布列为P (ξ=k )=k 15(k =1,2,3,4,5),则P (12<ξ<52)的值为__________.解析:P (12<ξ<52)=P (ξ=1)+P (ξ=2)=115+215=15.答案:1515.在某次学校的游园活动中,高二(2)班设计了这样一个游戏:在一个纸箱里放进了5个红球和5个白球,这些球除了颜色不同外完全相同,一次性从中摸出5个球,摸到4个或4个以上红球即为中奖,则中奖的概率是________.(精确到0.001)解析:设摸出的红球个数为X ,则X 服从超几何分布,其中N =10,M =5,n =5,于是中奖的概率为P (X ≥4)=P (X =4)+P (X =5)=C 45C 15C 510+C 55C 510≈0.103.答案:0.10316.马老师从课本上抄录一个随机变量ξ的概率分布列如下表:请小牛同学计算ξ且两个“?”处字迹模糊,但能断定这两个“?”处的数值相同.据此,小牛给出了正确答案Eξ=________.解析:设“?”处的数值为x ,则“!”处的数值为1-2x ,则Eξ=1·x +2×(1-2x )+3x =x +2-4x +3x =2.答案:2三、解答题(本大题共6小题,共70分)17.(10分)某项化学实验,要把2种甲类物质和3种乙类物质按照先放甲类物质后放乙类物质的顺序,依次放入某种液体中,观察反应结果.现有符合条件的3种甲类物质和5种乙类物质可供使用.问:这个实验一共要进行多少次,才能得到所有的实验结果?解:由于要把2种甲类物质和3种乙类物质按照先放甲类物质后放乙类物质的顺序依次放入某种液体中,因此需要分步计数.由于同一类物质不同的放入顺序,反应结果可能会不同,因此这是一个排列问题.第1步,放入甲类物质,共有A 23种方案; 第2步,放入乙类物质,共有A 35种方案.根据分步乘法计算原理,共有A 23A 35=360种方案.因此,共要进行360次实验,才能得到所有的实验结果.18.(12分)[2014·深圳高二检测]在二项式(3x -123x )n 的展开式中,前三项系数的绝对值成等差数列.(1)求展开式的第四项; (2)求展开式的常数项. 解:T r +1=C r n(3x )n -r(-123x )r =(-12)r C r n x 13n -23r 由前三项系数的绝对值成等差数列,得 C 0n +(-12)2C 2n =2×12C 1n ,解这个方程得n =8或n =1(舍去). (1)展开式的第4项为: T 4=(-12)3C 38x 23=-73x 2.(2)当83-23r =0,即r =4时,常数项为(-12)4C 48=358. 19.(12分)[2014·湖南高考]某企业有甲、乙两个研发小组,他们研发新产品成功的概率分别为23和35.现安排甲组研发新产品A ,乙组研发新产品B .设甲、乙两组的研发相互独立.(1)求至少有一种新产品研发成功的概率;(2)若新产品A 研发成功,预计企业可获利润120万元;若新产品B 研发成功,预计企业可获利润100万元.求该企业可获利润的分布列和数学期望.解:记E ={甲组研发新产品成功},F ={乙组研发新产品成功},由题设知P (E )=23,P (E )=13,P (F )=35,P (F )=25,且事件E 与F ,E 与F ,E 与F ,E 与F 都相互独立. (1)记H ={至少有一种新产品研发成功},则H =E F , 于是P (H )=P (E )P (F )=13×25=215,故所求的概率为P (H )=1-P (H )=1-215=1315.(2)设企业可获利润为X (万元),则X 的可能取值为0,100,120,220,因为P (X =0)=P (E F )=13×25=215,P (X =100)=P (E F )=13×35=315,P (X =120)=P (E F )=23×25=415,P (X =220)=P (EF )=23×35=615.故所求的分布列为数学期望为EX =0×215+100×315+120×415+220×615=300+480+132015=210015=140.20.(12分)某运动项目设计了难度不同的甲乙两个系列,每个系列都有K ,D 两个动作,比赛时每位运动员自选一个系列完成,两个动作得分之和为该运动员的成绩.假设每位运动员完成每个系列中的两个动作的得分是相互独立的,根据赛前训练的统计数据,某运动员完成甲系列和乙系列动作情况如下表:(1)若该运动员希望获得该项目的第一名,应选择哪个系列?说明理由,并求其获得第一名的概率;(2)若该运动员选择乙系列,求其成绩ξ的分布列.解:(1)若该运动员希望获得该项目的第一名,应选择甲系列. 理由如下:选择甲系列最高得分为100+40>115, 可能获得第一名;而选择乙系列最高得分为90+20<115,不可能获得第一名. 记“该运动员完成K 动作得100分”为事件A , 记“该运动员完成D 动作得40分”为事件B ,则P (A )=34,P (B )=34,由事件A 与事件B 相互独立,记“该运动员获得第一名”为事件C ,法一:依题意得P (C )=P (AB )+P (A B )=34×34+14×34=34.∴该运动员获得第一名的概率为34.法二:由题意可知,该运动员只要D 动作得40分就获得第一名,则P (C )=P (B )=34.(2)若该运动员选择乙系列,ξ可能取得的值为50,70,90,110. 则P (ξ=50)=110×110=1100,P (ξ=70)=110×910=9100,P (ξ=90)=910×110=9100,P (ξ=110)=910×910=81100ξ的分布列为:21.(12分)km 时,租车费为10元;若行驶路程超出4 km ,则按每超出1 km 加收2元计费(超出不足1 km 的部分按1 km 计).从这个城市的民航机场到某宾馆的路程为15 km .某司机经常驾车在机场与此宾馆之间接送旅客,由于行车路线的不同以及途中停车时间要转换成行车路程(这个城市规定,每停车5分钟按1 km 路程计费,不足5分钟的部分不计费),这个司机一次接送旅客的转换后的行车路程ξ是一个随机变量.设他所收费用为η.(1)求费用η关于行车路程ξ的关系式; (2)若随机变量ξ的分布列为求所收费用η(3)已知某旅客实付费用38元,而出租汽车实际行驶了15 km ,问出租车在途中因故停车累计多长时间?解:(1)依题意得η=2(ξ-4)+10, 即η=2ξ+2,ξ≥15,ξ∈N ;(2)Eξ=15×0.1+16×0.5+17×0.3+18×0.1=16.4.∵η=2ξ+2,∴Eη=E (2ξ+2)=2Eξ+2=34.8(元), 故所收费用η的数学期望为34.8元. (3)由38=2ξ+2,解得ξ=18,故停车时间t 转换的行车路程为18-15=3 km , ∴3×5≤t <4×5,即出租车在途中因故停车累计时间t ∈[15,20).22.(12分)[2013·安徽高考]某高校数学系计划在周六和周日各举行一次主题不同的心理测试活动,分别由李老师和张老师负责.已知该系共有n 位学生,每次活动均需该系k 位学生参加(n 和k 都是固定的正整数).假设李老师和张老师分别将各自活动通知的信息独立、随机地发给该系k 位学生,且所发信息都能收到.记该系收到李老师或张老师所发活动通知信息的学生人数为X .(1)求该系学生甲收到李老师或张老师所发活动通知信息的概率; (2)求使P (X =m )取得最大值的整数m .解:(1)因为事件A :“学生甲收到李老师所发信息”与事件B :“学生甲收到张老师所发信息”是相互独立的事件,所以A 与B 相互独立.由于P (A )=P (B )=C k -1n -1C k n =k n,故P (A )=P (B )=1-k n ,因此学生甲收到活动通知信息的概率P =1-(1-k n )2=2kn -k2n 2.(2)当k =n 时,m 只能取n ,有P (X =m )=P (X =n )=1.当k <n 时,整数m 满足k ≤m ≤t ,其中t 是2k 和n 中的较小者.由于“李老师和张老师各自独立、随机地发活动通知信息给k 位同学”所包含的基本事件总数为(C k n )2.当X =m 时,同时收到李老师和张老师转发信息的学生人数恰为2k -m ,仅收到李老师或仅收到张老师转发信息的学生人数均为m -k .由乘法计数原理知:事件{X =m }所含基本事件数为C k n C 2k -mk C m -k n -k =C k n C m -k kC m -k n -k .此时 P (X =m )=C k n C 2k -m k C m -k n -k (C k n )2=C m -k kC m -kn -k C k n . 当k ≤m <t 时,P (X =m )≤P (X =m +1)⇔C m -k k C m -kn -k ≤C m +1-kkC m +1-kn -k⇔(m -k +1)2≤(n -m )(2k -m ) ⇔m ≤2k -(k +1)2n +2.假如k ≤2k -(k +1)2n +2<t 成立,则当(k +1)2能被n +2整除时,k ≤2k -(k +1)2n +2<2k +1-(k +1)2n +2≤t .故P (X =m )在m =2k -(k +1)2n +2和m =2k +1-(k +1)2n +2处达最大值;当(k +1)2不能被n +2整除时,P (X =m )在m =2k -[(k +1)2n +2]处达最大值.(注:[x ]表示不超过x 的最大整数)下面证明k ≤2k -(k +1)2n +2<t .因为1≤k <n ,所以2k -(k +1)2n +2-k =kn -k 2-1n +2≥k (k +1)-k 2-1n +2=k -1n +2≥0.而2k -(k +1)2n +2-n =-(n -k +1)2n +2<0,故2k -(k +1)2n +2<n ,显然2k -(k +1)2n +2<2k .因此k ≤2k -(k +1)2n +2<1.。

高中数学选修2-3《2.2二项分布及其应用》测试卷解析版

高中数学选修2-3《2.2二项分布及其应用》测试卷解析版

高中数学选修2-3《2.2二项分布及其应用》测试卷解析版一.选择题(共6小题)1.三个元件T1,T2,T3正常工作的概率分别为且是互相独立的,按图种方式接入电路,电路正常工作的概率是()A.B.C.D.【分析】电路正常工作的条件是T1必须正常工作,T2,T3至少有一个正常工作,由此利用相互独立事件乘法公式和对立事件概率公式能求出电路正常工作的概率.【解答】解:∵三个元件T1,T2,T3正常工作的概率分别为且是互相独立的,图种方式接入电路,∴电路正常工作的条件是T1必须正常工作,T2,T3至少有一个正常工作,∴电路正常工作的概率:P=(1﹣)=.故选:C.【点评】本题考查概率的求法,是基础题,解题时要认真审题,注意相互独立事件乘法公式和对立事件概率计算公式的合理运用.2.抛掷3枚质地均匀的硬币,A={既有正面向上又有反面向上},B={至多有一个反面向上},则A与B关系是()A.互斥事件B.对立事件C.相互独立事件D.不相互独立事件【分析】由于A中的事件发生与否对于B中的事件是否发生不产生影响,故A与B是相互独立的,从而得出结论.【解答】解:由于A中的事件发生与否对于B中的事件是否发生不产生影响,故A与B 是相互独立的,故选:C.【点评】本题主要考查相互独立事件的定义,属于基础题.3.某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是()A.0.8B.0.75C.0.6D.0.45【分析】设随后一天的空气质量为优良的概率为p,则由题意可得0.75×p=0.6,由此解得p的值.【解答】解:设随后一天的空气质量为优良的概率为p,则由题意可得0.75×p=0.6,解得p=0.8,故选:A.【点评】本题主要考查相互独立事件的概率乘法公式的应用,属于基础题.4.投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为()A.0.648B.0.432C.0.36D.0.312【分析】判断该同学投篮投中是独立重复试验,然后求解概率即可.【解答】解:由题意可知:同学3次测试满足X∽B(3,0.6),该同学通过测试的概率为=0.648.故选:A.【点评】本题考查独立重复试验概率的求法,基本知识的考查.5.设某批产品合格率为,不合格率为,现对该产品进行测试,设第ε次首次取到正品,则P(ε=3)等于()A.C32()2×()B.C32()2×()C.()2×()D.()2×()【分析】根据题意,P(ε=3)即第3次首次取到正品的概率,若第3次首次取到正品,即前两次取到的都是次品,第3次取到正品,由相互独立事件的概率计算可得答案.【解答】解:根据题意,P(ε=3)即第3次首次取到正品的概率;若第3次首次取到正品,即前两次取到的都是次品,第3次取到正品,则P(ε=3)=()2×();故选:C.【点评】本题考查相互独立事件的概率计算,解题的关键在于正确理解P(ε=3)的意义.6.已知P(B|A)=,P(A)=,则P(AB)=()A.B.C.D.【分析】根据条件概率的公式,整理出求事件AB同时发生的概率的表示式,代入所给的条件概率和事件A的概率求出结果.【解答】解:∵P(B/A)=,P(A)=,∴P(AB)=P(B/A)•P(A)==,故选:D.【点评】本题考查条件概率与独立事件,本题解题的关键是记住并且会利用条件概率的公式,要正确运算数据,本题是一个基础题.二.填空题(共1小题)7.为了考察某校各班参加课外小组的人数,从全校随机抽取5个班级,把每个班级参加该小组的人数作为样本数据,已知样本平均数为7,样本方差为4,且样本数据互不相同,则样本数据中的最大值为10.【分析】本题可运用平均数公式求出平均数,再运用方差的公式列出方差表达式,再讨论样本数据中的最大值的情况,即可解决问题.【解答】解:设样本数据为:x1,x2,x3,x4,x5,平均数=(x1+x2+x3+x4+x5)÷5=7;方差s2=[(x1﹣7)2+(x2﹣7)2+(x3﹣7)2+(x4﹣7)2+(x5﹣7)2]÷5=4.从而有x1+x2+x3+x4+x5=35,①(x1﹣7)2+(x2﹣7)2+(x3﹣7)2+(x4﹣7)2+(x5﹣7)2=20.②若样本数据中的最大值为11,不妨设x5=11,则②式变为:(x1﹣7)2+(x2﹣7)2+(x3﹣7)2+(x4﹣7)2=4,由于样本数据互不相同,这是不可能成立的;若样本数据为4,6,7,8,10,代入验证知①②式均成立,此时样本数据中的最大值为10.故答案为:10.【点评】本题考查的是平均数和方差的求法.计算方差的步骤是:①计算数据的平均数;②计算偏差,即每个数据与平均数的差;③计算偏差的平方和;④偏差的平方和除以数据个数.三.解答题(共9小题)8.某商场一号电梯从1层出发后可以在2、3、4层停靠.已知该电梯在1层载有4位乘客,假设每位乘客在2、3、4层下电梯是等可能的.(Ⅰ)求这4位乘客中至少有一名乘客在第2层下电梯的概率;(Ⅱ)用X表示4名乘客在第4层下电梯的人数,求X的分布列和数学期望.【分析】(I)根据题意知每位乘客在第2层下电梯的概率都是,至少有一名乘客在第2层下电梯的对立事件是没有人在第二层下电梯,根据对立事件和相互独立事件的概率公式得到结果.(II)由题意知X的可能取值为0,1,2,3,4,由题意可得每个人在第4层下电梯的概率均为,且每个人下电梯互不影响,得到变量符合二项分布,根据二项分布的公式写出分布列和期望.【解答】解:(Ⅰ)设4位乘客中至少有一名乘客在第2层下电梯的事件为A,…(1分)由题意可得每位乘客在第2层下电梯的概率都是,…(3分)则.…(6分)(Ⅱ)X的可能取值为0,1,2,3,4,…(7分)由题意可得每个人在第4层下电梯的概率均为,且每个人下电梯互不影响,所以,.…(9分)X01234P…(11分).…(13分)【点评】本题看出离散型随机变量的分布列和期望,本题解题的关键是看出变量符合二项分布的特点,后面用公式就使得运算更加简单9.为了了解某年段1000名学生的百米成绩情况,随机抽取了若干学生的百米成绩,成绩全部介于13秒与18秒之间,将成绩按如下方式分成五组:第一组[13,14);第二组[14,15);…;第五组[17,18].按上述分组方法得到的频率分布直方图如图所示,已知图中从左到右的前3个组的频率之比为3:8:19,且第二组的频数为8.(Ⅰ)将频率当作概率,请估计该年段学生中百米成绩在[16,17)内的人数;(Ⅱ)求调查中随机抽取了多少个学生的百米成绩;(Ⅲ)若从第一、五组中随机取出两个成绩,求这两个成绩的差的绝对值大于1秒的概率.【分析】(1)根据频率分步直方图中小正方形的面积是这组数据的频率,用长乘以宽得到面积,即为频率.(II)根据所有的频率之和是1,列出关于x的方程,解出x的值做出样本容量的值,即调查中随机抽取了50个学生的百米成绩.(III)本题是一个古典概型,试验发生所包含的事件是从第一、五组中随机取出两个成绩,满足条件的事件是成绩的差的绝对值大于1秒,列举出事件数,根据古典概型概率公式得到结果.【解答】解:(Ⅰ)百米成绩在[16,17)内的频率为0.32×1=0.32,则共有1000×0.32=320人;(Ⅱ)设图中从左到右前3个组的频率分别为3x,8x,19x依题意,得3x+8x+19x+0.32+0.08=1,∴x=0.02设调查中随机抽取了n个学生的百米成绩,∴n=50∴调查中随机抽取了50个学生的百米成绩.(Ⅲ)百米成绩在第一组的学生数有3×0.02×1×50=3,记他们的成绩为a,b,c 百米成绩在第五组的学生数有0.08×1×50=4,记他们的成绩为m,n,p,q.则从第一、五组中随机取出两个成绩包含的基本事件有{a,b},{a,c},{a,m},{a,n},{a,p},{a,q},{b,c},{b,m},{b,n},{b,p},{b,q},{c,m},{c,n},{c,p},{c,q},{m,n},{m,p},{m,q},{n,p},{n,q},{p,q},共21个其中满足成绩的差的绝对值大于1秒所包含的基本事件有{a,m},{a,n},{a,p},{a,q},{b,m},{b,n},{b,p},{b,q},{c,m},{c,n},{c,p},{c,q},共12个,∴P=【点评】本题考查样本估计总体,考查古典概型的概率公式,考查频率分布直方图等知识,考查数据处理能力和分析问题、解决问题的能力.10.某校高二年级某班的数学课外活动小组有6名男生,4名女生,从中选出4人参加数学竞赛考试,用X表示其中男生的人数,(1)请列出X的分布列;(2)根据你所列的分布列求选出的4人中至少有3名男生的概率.【分析】(1)本题是一个超几何分步,用X表示其中男生的人数,X可能取的值为0,1,2,3,4.结合变量对应的事件和超几何分布的概率公式,写出变量的分布列和数学期望.(2)选出的4人中至少有3名男生,表示男生有3个人,或者男生有4人,根据第一问做出的概率值,根据互斥事件的概率公式得到结果.【解答】解:(1)依题意得,随机变量X服从超几何分布,随机变量X表示其中男生的人数,X可能取的值为0,1,2,3,4..∴所以X的分布列为:X01234P(2)由分布列可知至少选3名男生,即P(X≥3)=P(X=3)+P(X=4)=+=.【点评】本小题考查离散型随机变量分布列和数学期望,考查超几何分步,考查互斥事件的概率,考查运用概率知识解决实际问题的能力.11.某批产品共10件,已知从该批产品中任取1件,则取到的是次品的概率为P=0.2.若从该批产品中任意抽取3件,(1)求取出的3件产品中恰好有一件次品的概率;(2)求取出的3件产品中次品的件数X的概率分布列与期望.【分析】设该批产品中次品有x件,由已知,可求次品的件数(1)设取出的3件产品中次品的件数为X,3件产品中恰好有一件次品的概率为;(2)取出的3件产品中次品的件数X可能为0,1,2,求出相应的概率,从而可得概率分布列与期望.【解答】解:设该批产品中次品有x件,由已知,∴x=2…(2分)(1)设取出的3件产品中次品的件数为X,3件产品中恰好有一件次品的概率为…(4分)(2)∵X可能为0,1,2∴…(10分)∴X的分布为:X012P则…(13分)【点评】本题以实际问题为载体,考查等可能事件的概率,考查随机变量的期望与分布列,难度不大.12.某班组织知识竞赛,已知题目共有10道,随机抽取3道让某人回答,规定至少要答对其中2道才能通过初试,他只能答对其中6道,试求:(1)抽到他能答对题目数的分布列;(2)他能通过初试的概率.【分析】(1)设随机抽出的三道题目某人能答对的道数为X,且X=0、1、2、3,X服从超几何分布,根据超几何分步的概率公式写出概率和分布列.(2)要答对其中2道才能通过初试,则可以通过初试包括两种情况,即答对两道和答对三道,这两种情况是互斥的,根据上一问的计算可以得到.【解答】解:(1)设随机抽出的三道题目某人能答对的道数为X,且X=0、1、2、3,X 服从超几何分布,分布列如下:X0123P即X0123P(2)要答对其中2道才能通过初试,则可以通过初试包括两种情况,这两种情况是互斥的,根据上一问的计算可以得到【点评】本题考查超几何分布,本题解题的关键是看出变量符合超几何分布,这样可以利用公式直接写出结果.13.甲有一个箱子,里面放有x个红球,y个白球(x,y≥0,且x+y=4);乙有一个箱子,里面放有2个红球,1个白球,1个黄球.现在甲从箱子任取2个球,乙从箱子里再取1个球,若取出的3个球颜色全不相同,则甲获胜.(1)试问甲如何安排箱子里两种颜色的个数,才能使自己获胜的概率最大?(2)在(1)的条件下,求取出的3个球中红球个数的数学期望.【分析】(1)根据甲从箱子任取2个球,乙从箱子里在取1个球,若取出的3个球颜色全不相同,则甲获胜,可得甲获胜的概率,再利用基本不等式,可得x,y的值;(2)由题意知取出的3个球中红球个数ξ的取值为1,2,3,4,分别求出其发生的概率,进而求出次数ξ的数学期望【解答】解:(1)由题意,;∴,当且仅当x=y=2时“=”成立所以当红球与白球各2个时甲获胜的概率最大(2)取出的3个球中红球个数ξ=0,1,2,3,所以【点评】本题以摸球为素材,考查等可能事件的概率,考查离散型随机变量的期望,考查基本不等式的运用,解题的关键是理解题意,搞清变量的所有取值.14.甲乙两班进行消防安全知识竞赛,每班出3人组成甲乙两支代表队,首轮比赛每人一道必答题,答对则为本队得1分,答错不答都得0分,已知甲队3人每人答对的概率分别为,,,乙队每人答对的概率都是.设每人回答正确与否相互之间没有影响,用ξ表示甲队总得分.(Ⅰ)求随机变量ξ的分布列及其数学期望E(ξ);(Ⅱ)求在甲队和乙队得分之和为4的条件下,甲队比乙队得分高的概率.【分析】(Ⅰ)由题设知ξ的可能取值为0,1,2,3,分别求出P(ξ=0),P(ξ=1),P (ξ=2),P(ξ=3),由此能求出随机变量ξ的分布列和数学期望E(ξ).(Ⅱ)设“甲队和乙队得分之和为4”为事件A,“甲队比乙队得分高”为事件B,分别求出P(A),P(AB),再由P(B/A)=,能求出结果.【解答】解:(Ⅰ)由题设知ξ的可能取值为0,1,2,3,P(ξ=0)=(1﹣)(1﹣)(1﹣)=,P(ξ=1)=(1﹣)(1﹣)+(1﹣)××(1﹣)+(1﹣)(1﹣)×=,P(ξ=2)=++=,P(ξ=3)==,∴随机变量ξ的分布列为:ξ01 2 3P数学期望E(ξ)=0×+1×+2×+3×=.(Ⅱ)设“甲队和乙队得分之和为4”为事件A,“甲队比乙队得分高”为事件B,则P(A)=++=,P(AB)==,P(B|A)===.【点评】本题考查离散型随机变量的期分布列和数学期望,考查条件概率的求法,是历年高考的必考题型之一,解题时要注意排列组合知识的合理运用.15.如图,李先生家住H小区,他工作在C科技园区,从家开车到公司上班路上有L1、L2两条路线,L1路线上有A1、A2、A3三个路口,各路口遇到红灯的概率均为;L2路线上有B1、B2两个路口,各路口遇到红灯的概率依次为,.(1)若走L1路线,求最多遇到1次红灯的概率;(2)若走L2路线,求遇到红灯次数X的数学期望;(3)按照“平均遇到红灯次数最少”的要求,请你帮助李先生从上述两条路线中选择一条最好的上班路线,并说明理由.【分析】(1)利用二项分布即可得出;(2)利用相互独立事件的概率计算公式及离散型随机变量的期望计算公式即可得出;(3)由于走路线L1时服从二项分布即可得出期望,比较走两条路的数学期望的大小即可得出要选择的路线.【解答】解:(1)设“走L1路线最多遇到1次红灯”为事件A,包括没有遇到红灯和只遇到红灯一次两种情况.则,所以走L1路线,最多遇到1次红灯的概率为.(2)依题意,X的可能取值为0,1,2.,,.随机变量X的分布列为:X012P所以.(3)设选择L1路线遇到红灯次数为Y,随机变量Y服从二项分布Y~,所以.因为EX<EY,所以选择L2路线上班最好.【点评】熟练掌握二项分布列、相互独立事件的概率计算公式及离散型随机变量的期望计算公式及其意义是解题的关键.16.某篮球队与其他6支篮球队依次进行6场比赛,每场均决出胜负,设这支篮球队与其他篮球队比赛中获胜的事件是独立的,并且获胜的概率均为.(1)求这支篮球队首次获胜前已经负了两场的概率;(2)求这支篮球队在6场比赛中恰好获胜3场的概率;(3)求这支篮球队在6场比赛中获胜场数的期望.【分析】(1)首次获胜前已经负了两场说明已经比赛三场,前两场输,第三场嬴,用乘法公式即可求得概率;(2)6场比赛中恰好获胜3场的情况有C63,比赛六场胜三场,故用乘法公式即可.(3)由于X服从二项分布,即X~B(6,),由公式即可得出篮球队在6场比赛中获胜场数的期望.【解答】解:(1)这支篮球队首次获胜前已经负了两场的概率为P==(2)6场比赛中恰好获胜3场的情况有C63,故概率为C63×=20××=(3)由于X服从二项分布,即X~B(6,),∴EX=6×=2【点评】本题考查二项分布与n次独立重复试验的模型,考查根据所给的事件类型选择概率模型的方法,以及用概率模型求概率与期望的能力。

新课标任教A版高中数学选修2-3综合测试题

新课标任教A版高中数学选修2-3综合测试题

选修2-3综合测试题一、选择题(本大题共10小题,每小题5分,共50分.每小题中只有一项符合题目要求) 1.将编号为1,2,3,4,5的五个球放入编号为1,2,3,4,5的五个盒子,每个盒内放一个球,若恰好有三个球的编号与盒子编号相同,则不同的投放方法的种数为A .6B .10C .20D .30 2.(1+x )10(1+1x )10展开式中的常数项为( )A .1B .(C 110)2 C .C 120 D .C 10203.设随机变量ξ服从正态分布N (3,4),若P (ξ<2a -3)=P (ξ>a +2),则a 的值为 A.73B.53 C .5D .34.在区间[0,π]上随机取一个数x ,则事件“sin x +3cos x ≤1”发生的概率为 A.14B.13C.12D.235.一个坛子里有编号1,2,…,12的12个大小相同的球,其中1到6号球是红球,其余的是黑球,若从中任取两个球,则取到的都是红球,且至少有1个球的号码是偶数的概率为A.122B.111C.322D.2116.下表提供了某厂节能降耗技术改造后在生产A 产品过程中记录的产量x (吨)与相应的生产能耗y (吨)的几组对应数据:根据上表提供的数据,求出y 关于x 的线性回归方程为y ^=0.7x +0.35,那么表中t 的精确值为(A .3B .3.15C .3.5D .4.57.体育课的排球发球项目考试的规则是每位学生最多可发球3次,一旦发球成功,则停止发球,否则一直发到3次为止.设学生一次发球成功的概率为p (p ≠0),发球次数为X ,若X 的数学期望E (X )>1.75,则p 的取值范围是( )A .(0,712)B .(712,1)C .(0,12)D .(12,1)8.掷两次骰子分别得到点数m 、n ,向量a =(m ,n ),b =(-1,1)若在△ABC 中, A B →与a 同向, C B →与b 反向,则∠ABC 是钝角的概率是( )A.512B.712C.39D.49二、填空题(本大题共6小题,每小题5分,共30分,把答案填在题中横线上)9.将一个骰子连续抛掷三次,它落地时向上的点数依次..成等差数列的概率为________.10.已知x与y之间的一组数据:则y与x的线性回归方程为y^=b^x+a^必过点________.11.(2012·广东)(x2+1x)6的展开式中x3的系数为______.(用数字作答)12.(2012·上海)三位同学参加跳高、跳远、铅球项目的比赛.若每人都选择其中两个项目,则有且仅有两人选择项目完全相同的概率是________(结果用最简分数表示).13.袋中有3个黑球,1个红球.从中任取2个,取到一个黑球得0分,取到一个红球得2分,则所得分数ξ的数学期望E(ξ)=________.14.为落实素质教育,衡水重点中学拟从4个重点研究性课题和6个一般研究性课题中各选2个课题作为本年度该校启动的课题项目,若重点课题A和一般课题B至少有一个被选中的不同选法种数是k,则二项式(1+kx2)6的展开式中,x4的系数为________.15.某医疗研究所为了检验某种血清预防感冒的作用,把500名使用血清的人与另外500名未用血清的人一年中的感冒记录作比较,提出假设H0:“这种血清不能起到预防感冒的作用”,利用2×2列联表计算得K2≈3.918,经查对临界值表知P(K2≥3.841)≈0.05.对此,四名同学作出了以下的判断:p:有95%的把握认为“这种血清能起到预防感冒的作用”;q:若某人未使用该血清,则他在一年中有95%的可能性得感冒;r:这种血清预防感冒的有效率为95%;s:这种血清预防感冒的有效率为5%.则下列结论中,正确结论的序号是________.(把你认为正确的命题序号都填上)①p∧綈q②綈p∧q③(綈p∧綈q)∧(r∨s)④(p∨綈r)∧(綈q∨s)三、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤)16.(本小题满分10分)为备战2013年天津东亚运动会,射击队努力拼博,科学备战.现对一位射击选手100发子弹的射击结果统计如下:(2)该选手射击2发子弹取得19环以上(含19环)成绩的概率.17.甲、乙两人各进行3次射击,甲每次击中目标的概率为12,乙每次击中目标的概率为23.(1)记甲击中目标的次数为ξ,求ξ的概率分布及数学期望E(ξ);(2)求乙至多击中目标2次的概率;(3)求甲恰好比乙多击中目标2次的概率.18.(本小题满分12分)某位收藏爱好者鉴定一件物品时,将正品错误地鉴定为赝品的概率为13,将赝品错误地鉴定为正品的概率为12.已知一批物品共有4件,其中正品3件、赝品1件.(1)求该收藏爱好者的鉴定结果为正品2件、赝品2件的概率;(2)求该收藏爱好者的鉴定结果中正品数X的分布列及数学期望.19.四个大小相同的小球分别标有数字1、1、2、2,把它们放在一个盒子里,从中任意摸出两个小球,它们所标有的数字分别为x,y,记ξ=x+y.(1)求随机变量ξ的分布列及数学期望;(2)设“函数f(x)=x2-ξx-1在区间(2,3)上有且只有一个零点”为事件A,求事件A发生的概率.20.(本小题满分12分)在综合素质评价的某个维度的测评中,依据评分细则,学生之间相互打分,最终将所有的数据合成一个分数.满分100分,按照大于等于80分为优秀,小于80分为合格.为了解学生的在该维度的测评结果,从毕业班中随机抽出一个班的数据.该班共有60名学生,得到如下的列联表.已知在该班随机抽取1人测评结果为优秀的概率为1 3.(1)请完成下面的列联表;(2)能否在犯错误的概率不超过0.10的前提下认为性别与测评结果有关系?(3)现在如果想了解全校学生在该维度的表现情况,采取简单随机抽样的方式在全校学生中抽取少数一部分人来分析,请你选择一个合适的抽样方法,并解释理由.选修2-3综合测试题参考答案一、选择题(本大题共10小题,每小题5分,共50分.每小题中只有一项符合题目要求)1.B ;从编号为1,2,3,4,5的五个球中选出三个与盒子编号相同的球的投放方法有C 35=10种;另两个球的投放方法有1种,所以共有10种不同的投放方法.选择B.2.D ;因为(1+x )10(1+1x )10=[(1+x )(1+1x )]10=(2+x +1x )10=(x +1x)20(x >0),所以T r +1=C r 20(x )20-r(1x)r =C r 20x 10-r ,由10-r =0,得r =10,故常数项为T 11=C 1020,选D. 3.A ;由已知2a -3,与a +2关于3对称,故(2a -3)+(a +2)=6,解得a =73.4. C ;此概率符合几何概型所有基本事件包含的区域长度为π,设A 表示取出的x 满足sin x +3cos x ≤1这样的事件,对条件变形为sin(x +π3)≤12,即事件A 包含的区域长度为π2.∴P (A )=π2π=12.5. D ;分类:一类是两球号均为偶数且红球,有C 23种取法;另一类是两球号码是一奇一偶有C 13C 13种取法,因此所求的概率为C 23+C 13C 13C 212=211.6. A ;x =3+4+5+64=4.5,代入y ^=0.7x +0.35得y ^=3.5,∴t =3.5×4-(2.5+4+4.5)=3.注:本题极易将x =4,y =t 代入回归方程求解而选B ,但那只是近似值而不是精确值. 7. C ;发球次数X 的分布列如下表,所以期望E (X )=p +2(1-p )p +3(1-p )2>1.75,解得p >52(舍去)或p <12,又p >0,故选C.8. A ;要使∠ABC 是钝角,必须满足A B →·C B →<0,即a ·b =n -m >0,连掷两次骰子所得点数m 、n 共有36种情形,其中15种满足条件,故所求概率是512.二、填空题(本大题共6小题,每小题5分,共30分,把答案填在题中横线上) 9. 112; 10. (1.5,4); 11.20; 12. 23; 13. 1; 14. 54 000;15.①④;本题考查了独立性检验的基本思想及常用逻辑用语.由题意,得K 2≈3.918,P (K 2≥3.841)≈0.05,所以,只要第一位同学的判断正确,即有95%的把握认为“这种血清能起到预防感冒的作用”.由真值表知①④为真命题.三、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤)16.解析 以该选手射击的频率近似估算概率.(1)射击一次击中8环以上的概率约为P =20+35+25100=0.8.(2)记一次射击命中10环为事件p 1,则p 1=0.2,一次射击命中9环为事件p 2,则p 2=0.35, 于是两次射击均命中10环的概率约为P (A )=(p 1)2=0.04.两次射击一次命中10环,一次命中9环的概率约为P (B )=C 12p 1p 2=0.14,即该选手射击2发子弹取得19环以上(含19环)成绩的概率约为0.18.17.解析(1)P (ξ=0)=C 03(12)3=18;P (ξ=1)=C 13(12)3=38;P (ξ=2)=C 23(12)3=38;P (ξ=3)=C 33(12)3=18.ξ的概率分布如下表E (ξ)=0×18+1×38+2×38+3×18=1.5.(2)乙至多击中目标2次的概率为1-C 33(23)3=1927.(3)设“甲恰比乙多击中目标2次”为事件A ,“甲恰击中目标2次且乙恰击中目标0次”为事件B 1,“甲恰击中目标3次且乙恰击中目标1次”为事件B 2,则A =B 1+B 2,B 1,B 2为互斥事件.P (A )=P (B 1)+P (B 2)=38×127+18×29=124.所以,甲恰好比乙多击中目标2次的概率为124.18.解析 (1)有两种可能使得该收藏爱好者的鉴定结果为正品2件、赝品2件:其一是错误地把一件正品鉴定为赝品,其他鉴定正确;其二是错误地把两件正品鉴定为赝品,把一件赝品鉴定为正品,其他鉴定正确.则所求的概率为C 13×13×(23)2×12+C 23×(13)2×23×12=13.(2)由题意知X 的所有可能取值为0,1,2,3,4.P (X =0)=(13)3×12=154; P (X =1)=C 23×(13)2×23×12+(13)3×12=754;P (X =2)=13; P (X =3)=(23)3×12+C 13×(23)2×13×12=1027;P (X =4)=(23)3×12=427. 故X 的分布列为所以X 的数学期望E (X )=0×154+1×754+2×13+3×1027+4×427=52. 19.解析:解析 (1)由题知随机变量ξ的可能取值为2,3,4. 从盒子中摸出两个小球的基本事件总数为C 24=6.当ξ=2时,摸出的小球所标的数字为1、1,∴P(ξ=2)=1 6.当ξ=4时,摸出的小球所标的数字为2、2,∴P(ξ=4)=1 6.∴可知当ξ=3时,P(ξ=3)=1-16-16=23.∴ξ的分布列为∴E(ξ)=2×16+3×23+4×16=3.(2)∵函数f(x)=x2-ξx-1在区间(2,3)上有且只有一个零点,∴f(2)f(3)<0,即(3-2ξ)(8-3ξ)<0.∴32<ξ<83,且ξ的所有可能取值为2、3、4.∴ξ=2,∴P(A)=P(ξ=2)=16.∴事件A发生的概率为16.20.解析(1)(2)提示统计假设:性别与测评结果没有关系,则K2=18-22×14)240×20×32×28≈3.348>2.706.由于P(K2>2.706)=0.10,在犯错误的概率不超过0.10的前提下认为“性别与测评结果有关系”.(3)由(1)可知性别很有可能对是否优秀有影响,所以采用分层抽样按男女生比例抽取一定的学生,这样得到的结果对学生在该维度的总体表现情况会比较符合实际情况.。

2021-2022学年人教版高中数学选修2-3教材用书:模块综合检测(一) Word版含答案

2021-2022学年人教版高中数学选修2-3教材用书:模块综合检测(一) Word版含答案

模块综合检测(一)(时间120分钟,满分150分)一、选择题(共12小题,每小题5分,共60分) 1.方程C x 14=C 2x -414的解集为( )A .{4}B .{14}C .{4,6}D .{14,2}解析:选C 由C x 14=C 2x -414得x =2x -4或x +2x -4=14,解得x =4或x =6.经检验知x =4或x =6符合题意.2.设X 是一个离散型随机变量,则下列不能成为X 的概率分布列的一组数据是( ) A .0,12,0,0,12 B .0.1,0.2,0.3,0.4C .p,1-p (0≤p ≤1) D.11×2,12×3,…,17×8解析:选D 利用分布列的性质推断,任一离散型随机变量X 的分布列都具有下述两共性质:①p i ≥0,i =1,2,3,…,n ;②p 1+p 2+p 3+…+p n =1.选C 如图,由正态曲线的对称性可得P (a ≤X <4-a )=1-2P (X <a )=0.36. 3.已知随机变量X ~N (2,σ2),若P (X <a )=0.32,则P (a ≤X <4-a )等于( ) A .0.32 B .0.68 C .0.36 D .0.64解析:选C 如图,由正态曲线的对称性可得P (a ≤X <4-a )=1-2P (X <a )=0.36.4.已知x ,y 取值如下表:x 0 1 4 5 6 8 y1.31.85.66.17.49.3从所得的散点图分析可知:y 与x 线性相关,且y ^=0.95x +a ,则a 等于( ) A .1.30 B .1.45 C .1.65 D .1.80解析:选B 依题意得,x -=16×(0+1+4+5+6+8)=4,y -=16×(1.3+1.8+5.6+6.1+7.4+9.3)=5.25.又直线y ^=0.95x +a 必过样本中心点(x -,y -), 即点(4,5.25),于是有5.25=0.95×4+a , 由此解得a =1.45.5.甲、乙两人独立地对同一目标各射击一次,其命中率分别为0.6,0.5,现已知目标被击中,则它是被甲击中的概率是( )A .0.45B .0.6C .0.65D .0.75 解析:选D 目标被击中P 1=1-0.4×0.5=0.8, ∴P =0.60.8=0.75. 6.从6名男生和2名女生中选出3名志愿者,其中至少有1名女生的选法有( ) A .36种 B .30种 C .42种 D .60种解析:选A 直接法:选出3名志愿者中含有1名女生和2名男生或2名女生和1名男生,故共有C 12C 26+C 22C 16=2×15+6=36种选法;间接法:从8名同学中选出3名,减去全部是男生的状况,故共有C 38-C 36=56-20=36种选法.7.⎝ ⎛⎭⎪⎫x +2x 2n 的开放式中只有第6项二项式系数最大,则开放式中的常数项是( )A .180B .90C .45D .360 解析:选A 由已知得,n =10,T r +1=C r10(x )10-r⎝ ⎛⎭⎪⎫2x 2r =2r ·C r 10x 5-52r ,令5-52r =0,得r =2,T 3=4C 210=180.8.(四川高考)六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有( )A .192种B .216种C .240种D .288种解析:选B 当最左端排甲时,不同的排法共有A 55种;当最左端排乙时,甲只能排在中间四个位置之一,则不同的排法共有C 14A 44种.故不同的排法共有A 55+C 14A 44=9×24=216种.9.箱子里有5个黑球和4个白球,每次随机取出一个球.若取出黑球,则放回箱中,重新取球,若取出白球,则停止取球.那么在第4次取球之后停止的概率为( )A.C 35C 14C 45 B .⎝ ⎛⎭⎪⎫593×49C.35×14D .C 14⎝ ⎛⎭⎪⎫593×49解析:选B 记“从箱子里取出一球是黑球”为大事A ,“从箱子里取出一个球是白球”为大事B ,则P (A )=59,P (B )=49,在第4次取球后停止,说明前3次取到的都是黑球,第4次取到的是白球,又每次取球是相互独立的,由独立大事同时发生的概率公式,在第4次取球后停止的概率为59×59×59×49=⎝ ⎛⎭⎪⎫593×49.10.下列说法:①将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变; ②设有一个回归方程y ^=3-5x ,变量x 增加一个单位时,y 平均增加5个单位;③线性回归直线y ^=b ^x +a ^必过(x -,y -); ④曲线上的点与该点的坐标之间具有相关关系;⑤在一个2×2列联表中,由计算得k =13.079.则其两个变量间有关系的可能性是90%. 其中错误的个数是( ) A .1 B .2 C .3D .4解析:选C 由方差的定义知①正确,由线性回归直线的特点知③正确,②④⑤都错误. 11.对两个变量y 和x 进行线性相关检验,已知n 是观看值组数,r 是相关系数,且已知: ①n =10,r =0.953 3;②n =15,r =0.301 2;③n =17,r =0.999 1;④n =3,r =0.995 0. 则变量y 和x 具有线性相关关系的是( ) A .①和② B .①和③ C .②和④D .③和④解析:选B 相关系数r 的确定值越接近1,变量x ,y 的线性相关性越强.②中的r 太小,④中观看值组数太小.12.某市政府调查市民收入与旅游欲望时,接受独立性检验法抽取3 000人,计算发觉k =6.023,则依据这一数据查阅下表,市政府断言市民收入增减与旅游欲望有关系的把握是( )P (K 2≥k )… 0.25 0.15 0.10 0.025 0.010 0.005 … k…1.3232.0722.7065.0246.6357.879…A.90% B .95% C .97.5%D .99.5%解析:选C ∵k =6.023>5.024,∴可断言市民收入增减与旅游欲望有关的把握为97.5%. 二、填空题(共4小题,每小题5分,共20分)13.有5名男生和3名女生,从中选出5人分别担当语文、数学、英语、物理、化学学科的科代表,若某女生必需担当语文科代表,则不同的选法共有________种.(用数字作答)解析:由题意知,从剩余7人中选出4人担当4个学科的科代表,共有A 47=840(种)选法. 答案:84014.某射手对目标进行射击,直到第一次命中为止,每次射击的命中率为0.6,现共有子弹4颗,命中后剩余子弹数目的均值是________.解析:设ξ为命中后剩余子弹数目,则P (ξ=3)=0.6,P (ξ=2)=0.4×0.6=0.24,P (ξ=1)=0.4×0.4×0.6=0.096,P (ξ=0)=0.4×0.4×0.4=0.064,E (ξ)=3×0.6+2×0.24+0.096=2.376.答案:2.37615.抽样调查表明,某校高三同学成果(总分750分)X 近似听从正态分布,平均成果为500分.已知P (400<X <450)=0.3,则P (550<X <600)=________.解析:由下图可以看出P (550<X <600)=P (400<X <450)=0.3.答案:0.316.某高校“统计初步”课程的老师随机调查了选该课的一些同学状况,具体数据如下表:专业性别非统计专业统计专业 男 13 10 女720为了推断主修统计专业是否与性别有关系,依据表中的数据,计算得到K 2=________(保留三位小数),所以判定________(填“能”或“不能”)在犯错误的概率不超过0.05的前提下认为主修统计专业与性别有关系.解析:依据供应的表格得 K 2=50×13×20-7×10223×27×20×30≈4.844>3.841.所以可以在犯错误的概率不超过0.05的前提下认为主修统计专业与性别有关系. 答案:4.844 能三、解答题(共6小题,共70分,解答时应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)若⎝⎛⎭⎪⎪⎫6x +16x n开放式中第2,3,4项的二项式系数成等差数列.(1)求n 的值.(2)此开放式中是否有常数项?为什么?解:(1)T k +1=C k n·⎝⎛⎭⎫6x n -k·⎝ ⎛⎭⎪⎪⎫16x k =C kn ·x n -2k 6,由题意可知C 1n +C 3n =2C 2n ,即n 2-9n +14=0, 解得n =2(舍)或n =7.∴n =7. (2)由(1)知T k +1=C k7·x 7-2k6. 当7-2k 6=0时,k =72,由于k ∉N *, 所以此开放式中无常数项.18.(本小题满分12分)某篮球队与其他6支篮球队依次进行6场竞赛,每场均决出胜败,设这支篮球队与其他篮球队竞赛胜场的大事是独立的,并且胜场的概率是13.(1)求这支篮球队首次胜场前已经负了2场的概率; (2)求这支篮球队在6场竞赛中恰好胜了3场的概率; (3)求这支篮球队在6场竞赛中胜场数的均值和方差.解:(1)这支篮球队首次胜场前已负2场的概率为P =⎝ ⎛⎭⎪⎫1-132×13=427.(2)这支篮球队在6场竞赛中恰好胜3场的概率为P =C 36×⎝ ⎛⎭⎪⎫133×⎝ ⎛⎭⎪⎫1-133=20×127×827=160729.(3)由于X 听从二项分布,即X ~B ⎝ ⎛⎭⎪⎫6,13,∴E (X )=6×13=2,D (X )=6×13×⎝⎛⎭⎪⎫1-13=43.故在6场竞赛中这支篮球队胜场的均值为2,方差为43.19.(本小题满分12分)某商场经销某商品,依据以往资料统计,顾客接受的付款期数X 的分布列为商场经销一件该商品,接受250元;分4期或5期付款,其利润为300元.Y 表示经销一件该商品的利润.(1)求大事:“购买该商品的3位顾客中,至少有1位接受1期付款”的概率P (A ); (2)求Y 的分布列及E (Y ).解:(1)由A 表示大事“购买该商品的3位顾客中至少有1位接受1期付款”知,A 表示大事“购买该商品的3位顾客中无人接受1期付款”.P (A )=(1-0.4)3=0.216, P (A )=1-P (A )=1-0.216=0.784.(2)Y 的可能取值为200元,250元,300元.P (Y =200)=P (X =1)=0.4,P (Y =250)=P (X =2)+P (X =3)=0.2+0.2=0.4,P (Y =300)=1-P (Y =200)-P (Y =250)=1-0.4-0.4=0.2, Y 的分布列为E (Y )20.(本小题满分12分)为迎接2022年北京冬奥会,推广滑雪运动,某滑雪场开展滑雪促销活动.该滑雪场的收费标准是:滑雪时间不超过1小时免费,超过1小时的部分每小时收费标准为40元(不足1小时的部分按1小时计算).有甲、乙两人相互独立地来该滑雪场运动,设甲、乙不超过1小时离开的概率分别为14,16;1小时以上且不超过2小时离开的概率分别为12,23;两人滑雪时间都不会超过3小时. (1)求甲、乙两人所付滑雪费用相同的概率;(2)设甲、乙两人所付的滑雪费用之和为随机变量ξ,求ξ的分布列与数学期望E (ξ). 解:(1)若两人所付费用相同,则相同的费用可能为0元,40元,80元, 两人都付0元的概率为P 1=14×16=124,两人都付40元的概率为P 2=12×23=13,两人都付80元的概率为P 3=⎝ ⎛⎭⎪⎫1-14-12×1-16-23=14×16=124,则两人所付费用相同的概率为P =P 1+P 2+P 3=124+13+124=512. (2)由题意得,ξ全部可能的取值为0,40,80,120,160.P (ξ=0)=14×16=124, P (ξ=40)=14×23+12×16=14, P (ξ=80)=14×16+12×23+14×16=512, P (ξ=120)=12×16+14×23=14, P (ξ=160)=14×16=124, ξ的分布列为E (ξ)=0×124+40×14+80×12+120×4+160×24=80.21.(本小题满分12分)甲、乙两厂生产同一产品,为了解甲、乙两厂的产品质量,以确定这一产品最终的供货商,接受分层抽样的方法从甲、乙两厂生产的产品中分别抽取14件和5件,测量产品中的微量元素x ,y 的含量(单位:毫克).下表是乙厂的5件产品的测量数据:编号1 2 3 4 5 x 169 178 166 175 180 y7580777081(1)已知甲厂生产的产品共有98件,求乙厂生产的产品数量.(2)当产品中的微量元素x ,y 满足x ≥175,且y ≥75,该产品为优等品.用上述样本数据估量乙厂生产的优等品的数量.(3)从乙厂抽出的上述5件产品中,随机抽取2件,求抽取的2件产品中优等品数ξ的分布列及其均值. 解:(1)乙厂生产的产品总数为5÷1498=35. (2)样品中优等品的频率为25,乙厂生产的优等品的数量为35×25=14.(3)ξ=0,1,2,P (ξ=i )=C i 2C 2-i3C 25(i =0,1,2),ξ的分布列为ξ 0 1 2 P31035110均值E (ξ)=1×35+2×110=45.22.(本小题满分12分)某煤矿发生透水事故时,作业区有若干人员被困.救援队从入口进入之后有L 1,L 2两条巷道通往作业区(如下图),L 1巷道有A 1,A 2,A 3三个易堵塞点,各点被堵塞的概率都是12;L 2巷道有B 1,B 2两个易堵塞点,被堵塞的概率分别为34,35.(1)求L 1巷道中,三个易堵塞点最多有一个被堵塞的概率;(2)若L 2巷道中堵塞点个数为X ,求X 的分布列及均值E (X ),并依据“平均堵塞点少的巷道是较好的抢险路线”的标准,请你挂念救援队选择一条抢险路线,并说明理由.解:(1)设“L 1巷道中,三个易堵塞点最多有一个被堵塞”为大事A ,则P (A )=C 03×⎝ ⎛⎭⎪⎫123+C 13×12×⎝ ⎛⎭⎪⎫122=12.(2)依题意,X 的可能取值为0,1,2,P (X =0)=⎝⎛⎭⎪⎫1-34×⎝⎛⎭⎪⎫1-35=110, P (X =1)=34×⎝⎛⎭⎪⎫1-35+⎝⎛⎭⎪⎫1-34×35=920,P (X =2)=34×35=920,所以随机变量X 的分布列为X 0 1 2 P110920920E (X )=0×110+1×920+2×920=2720.法一:设L 1巷道中堵塞点个数为Y ,则Y 的可能取值为0,1,2,3,P (Y =0)=C 03×⎝ ⎛⎭⎪⎫123=18,P (Y =1)=C 13×12×⎝ ⎛⎭⎪⎫122=38,P (Y =2)=C 23×⎝ ⎛⎭⎪⎫122×12=38, P (Y =3)=C 33×⎝ ⎛⎭⎪⎫123=18, 所以,随机变量Y 的分布列为Y0 1 2 3 P18383818E (Y )=0×18+1×38+2×38+3×18=2,由于E (X )<E (Y ),所以选择L 2巷道为抢险路线为好.法二:设L 1巷道中堵塞点个数为Y ,则随机变量Y ~B ⎝ ⎛⎭⎪⎫3,12, 所以,E (Y )=3×12=32,由于E (X )<E (Y ),所以选择L 2巷道为抢险路线为好.。

2019年高中数学人教A版选修2-3模块综合检测(三)

2019年高中数学人教A版选修2-3模块综合检测(三)

模块综合检测(三)(时间120分钟,满分150分)一、选择题(共12小题,每小题5分,共60分)1.有甲、乙两批种子,发芽率分别为0.8和0.9,在两批种子中各取一粒,则恰有一粒种子能发芽的概率是( )A .0.26B .0.08C .0.18D .0.72解析:选A P =0.8×0.1+0.2×0.9=0.26.2.某产品分甲、乙、丙三级,其中甲为正品,乙、丙均属于次品,若生产中出现乙级品的概率为0.03,出现丙级品的概率为0.01,则对成品抽查一件,恰好得正品的概率为( )A .0.99B .0.98C .0.97D .0.96解析:选D 记事件A ={甲级品},B ={乙级品},C ={丙级品}.事件A 、B 、C 彼此互斥,且A 与B ∪C 是对立事件.所以P (A )=1-P (B ∪C )=1-P (B )-P (C )=1-0.03-0.01=0.96.3.将A ,B ,C ,D ,E 五种不同的文件放入编号依次为1,2,3,4,5,6,7的七个抽屉内,每个抽屉至多放一种文件,若文件A 、B 必须放入相邻的抽屉内,文件C 、D 也必须放在相邻的抽屉内,则所有不同的放法有( )A .192种B .144种C .288种D .240种解析:选D 本题为相邻排列问题,可先排相邻的文件,再作为一个整体与其他文件做排列,则有A 22A 22A 35=240种排法,所以选D.4.若随机变量X 的分布列如表:则E (X )=( ) A.118 B.19 C.209D.109解析:选C 首先2x +3x +7x +2x +3x +x =18x =1,所以x =118,因此E (X )=0×2x+1×3x +2×7x +3×2x +4×3x +5×x =40x =40×118=209,故选C. 5.若n =⎠⎛022x d x ,则⎝⎛⎭⎫x -12x n 的展开式中常数项为( ) A .12 B .-12C .32D .-32解析:选C n =⎠⎛022x d x =x 2|20=4-0=4,∴⎝⎛⎭⎫x -12x 4通项公式为T r +1=⎝⎛⎭⎫-12r C r 4x 4-2r ,∴4-2r =0⇒r =2,C 24⎝⎛⎭⎫-122=6×14=32,所以选C. 6.有10件产品,其中3件是次品,从中任取2件,若X 表示取到次品的个数,则E (X )等于( )A.35 B.815 C.1415D .1解析:选A 离散型随机变量X 服从N =10,M =3,n =2的超几何分布,∴E (X )=nMN =2×310=35. 7.已知随机变量X 的分布列为P (X =k )=15,k =2,4,6,8,10.则D (X )等于( )A .6B .8C .3D .4解析:选B E (X )=15×(2+4+6+8+10)=6.D (X )=15×(42+22+02+22+42)=8.8.已知a ,b ∈{0,1,2,…,9},若满足|a -b |≤1,则称a ,b “心有灵犀”.则a ,b “心有灵犀”的情形共有( )A .9种B .16种C .20种D .28种解析:选D 当a 为0时,b 只能取0,1两个数;当a 为9时,b 只能取8,9两个数,当a 为其他数时,b 都可以取3个数.故共有28种情形.9.用1,2,3,4,5,6组成数字不重复的六位数,满足1不在左右两端,2,4,6三个偶数中有且只有两个偶数相邻,则这样的六位数的个数为( )A.432 B.288C.216 D.144解析:选B从2,4,6三个偶数中任意选出2个看作一个“整体”,方法有A23=6种,先排3个奇数:①若1排在左端,方法有A22种,则将“整体”和另一个偶数中选出一个插在1的左边,方法有C12种,另一个偶数插在3个奇数形成的3个空中,方法有C13种,根据分步乘法计数原理求得此时满足条件的六位数共有6×A22×C12×C13=72种;②若1排在右端,同理求得满足条件的六位数也有72种;③若1排在中间,方法有A22种,则将“整体”和另一个偶数插入3个奇数形成的4个空中,根据分步计数原理求得此时满足条件的六位数共有6×A22×A24=144种.综上,满足条件的六位数共有72+72+144=288种,故选B.10.有甲、乙两种水稻,测得每种水稻各10株的分蘖数据,计算出样本方差分别为D(X甲)=11,D(X乙)=3.4.由此可以估计()A.甲种水稻比乙种水稻分蘖整齐B.乙种水稻比甲种水稻分蘖整齐C.甲、乙两种水稻分蘖整齐程度相同D.甲、乙两种水稻分蘖整齐不能比较解析:选B∵D(X甲)>D(X乙),∴乙种水稻比甲种水稻整齐.11.如图,用4),要求每个区域涂一种颜色,相邻的区域不能涂相同的颜色,则不同的涂色种数有()A.72 B.96C.108 D.120解析:选B颜色都用上时,必定有两块同色,在图中,同色的可能是1,3或1,5或2,5或3,5.对每种情况涂色有A44=24种,所以一共有96种.12.甲、乙、丙、丁4位同学各自对A,B两变量做回归分析,分别得到散点图与残差平方和∑i =1n(y i -y ^i )2,如下表:A .甲B .乙C .丙D .丁解析:选D 根据线性相关知识知,散点图中各样本点条状分布越均匀,同时保持残差平方和越小(对于已经获取的样本数据,R 2表达式中∑i =1n(y i -y )2为确定的数,则残差平方和越小,R 2越大),由回归分析建立的线性回归模型的拟合效果就越好,由试验结果知丁要好些.二、填空题(共4小题,每小题5分,共20分)13.某段铁路所有车站共发行132种普通车票,那么这段铁路共有车站数是________. 解析:设车站数为n ,则A 2n =132,即n (n -1)=132, 所以n =12(n =-11舍去). 答案:1214.若(3x -1)2 015=a 0+a 1x +…+a 2 015x 2 015(x ∈R ),记S 2 015=∑i =12 015 a i3i ,则S 2 015的值为________.解析:因为(3x -1)2 015=-(1-3x )2 015=a 0+a 1x +a 2x 2+…+a 2 015x 2 015, 所以a i =-C i 2 0153i (-1)i ,S 2 015=∑i =12 015 a i 3i =∑i =12 015[-C i 2 015(-1)i ]=-(-C 12 015+C 22 015-C 32 015+…-C 2 0152 015),又因为C 12 015+C 32 015+C 52 015+…=C 02 015+C 22 015+C 42 015+…,且C 02 015=1,所以S 2 015=1.答案:115.已知随机变量x ~N (2,σ2),若P (x <a )=0.32,则P (a ≤x <4-a )=________.解析:由正态分布图象的对称性可得:P (a ≤x <4-a )=1-2P (x <a )=0.36. 答案:0.3616.如果根据性别与是否爱好运动的列联表得到K 2≈3.852>3.841,所以判断性别与运动有关,那么这种判断犯错的可能性不超过________.解析:因为P (K 2≥3.841)≈0.05,故“判断性别与运动有关”出错的可能性为5%. 答案:5%三、解答题(共6小题,共70分,解答时应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)袋中有7个球,其中3个黑球、4个红球,从袋中任取3个球,求取出的红球数X 的分布列,并求至少有一个红球的概率.解:X =0,1,2,3,X =0表示取出的三个球全是黑球,P (X =0)=C 33C 37=135.同理P (X =1)=C 14C 23C 37=1235,P (X =2)=C 24C 13C 37=1835,P (X =3)=C 34C 37=435.∴X 的分布列为:至少有一个红球的概率为P (X ≥1)=1-135=3435.18.(本小题满分12分)(1)若(1-2x )2 015=a 0+a 1x +a 2x 2+…+a 2 015x 2 015(x ∈R),求(a 0+a 1)+(a 0+a 2)+…+(a 0+a 2 015)的值;(2)如果(1-2x )8=a 0+a 1x +a 2x 2+…+a 8x 8, 求|a 0|+|a 1|+|a 2|+…+|a 8|的值. 解:(1)令x =0,得a 0=1,再令x =1,得a 0+a 1+a 2+…+a 2 015=-1, 那么a 1+a 2+…+a 2 015=-2,(a 0+a 1)+(a 0+a 2)+…+(a 0+a 2 015)=2 015-2=2 013.(2)因为展开式的通项为T r +1=(-2)r C r 8x r,r ∈{0,1,2,3,…,8},所以当r 为偶数时,系数为正;当r为奇数时,系数为负,故有|a0|+|a1|+|a2|+…+|a8|=a0-a1+a2-a3+a4-…+a8.令展开式中的x=-1,即可得到(1+2)8=a0-a1+a2-a3+a4-…+a8=38,即|a0|+|a1|+|a2|+…+|a8|=38.19.(本小题满分12分)有6个球,其中3个一样的黑球,红、白、蓝球各1个,现从中取出4个球排成一列,共有多少种不同的排法?解:分三类:(1)若取1个黑球,和另三个球,排4个位置,有A44=24种;(2)若取2个黑球,从另三个球中选2个排4个位置,2个黑球是相同的,自动进入,不需要排列,即有C23A24=36种;(3)若取3个黑球,从另三个球中选1个排4个位置,3个黑球是相同的,自动进入,不需要排列,即有C13A14=12种.综上,共有24+36+12=72(种).20.(本小题满分12分)市场上供应的灯泡中,甲厂产品占70%,乙厂产品占30%,甲厂产品的合格率是95%,乙厂产品的合格率是80%,若用事件A、A分别表示甲、乙两厂的产品,用B表示产品为合格品.(1)试写出有关事件的概率;(2)求从市场上买到一个灯泡是甲厂生产的合格灯泡的概率.解:(1)依题意,P(A)=70%,P(A)=30%,P(B|A)=95%,P(B|A)=80%.进一步可得P(B|A)=5%,P(B|A)=20%.(2)要计算从市场上买到的灯泡既是甲厂生产的(事件A发生),又是合格的(事件B发生)的概率,也就是求A与B同时发生的概率,有P(AB)=P(A)·P(B|A)=0.7×0.95=0.665.21.(本小题满分12分)有一种密码,明文是由三个字符组成,密码是由明文对应的五个数字组成,编码规则如下表:明文由表中每一排取一个字符组成,且第一排取的字符放在第一位,第二排取的字符放在第二位,第三排取的字符放在第三位,对应的密码由明文对应的数字按相同的次序排成一组组成.(1)求P (ξ=2);(2)求随机变量ξ的分布列和它的均值.解:(1)密码中不同数字的个数为2的事件为密码中只有两个数字,注意到密码的第1,2列分别总有1,2,即只能取表格第1,2列中的数字作为密码.∴P (ξ=2)=2343=18.(2)由题意可知,ξ的取值为2,3,4三种情形.若ξ=3,注意表格的第一排总含有数字1,第二排总含有数字2,则密码中只可能取数字1,2,3或1,2,4.∴P (ξ=3)=2(22A 13+2C 23+1)43=1932. 若ξ=4,则P (ξ=4)=A 13A 22+A 23A 2243=932(或用1-P (ξ=2)-P (ξ=3)求得). ∴ξ的分布列为:∴E (ξ)=2×18+3×1932+4×932=10132.22.(本小题满分12分)“开门大吉”是某电视台推出的游戏益智节目.选手面对1-4号4扇大门,依次按响门上的门铃,门铃会播放一段音乐(将一首经典流行歌曲以单音色旋律的方式演绎),选手需正确回答出这首歌的名字,方可获得该扇门对应的家庭梦想基金.正确回答每一扇门后,选手可自由选择带着奖金离开比赛,还可继续挑战后面的门以获得更多奖金(奖金金额累加).但是一旦回答错误,奖金将清零,选手也会离开比赛.在一次场外调查中,发现参加比赛的选手多数分为两个年龄段:20~30;30~40(单位:岁),其中猜对歌曲名称与否的人数如图所示.每扇门对应的梦想基金:(单位:元)(1)写出2×2明你的理由.(下面的临界值表供参考)(2)若某选手能正确回答第一、二、三、四扇门的概率分别为45,34,23,13,正确回答一个问题后,选择继续回答下一个问题的概率是12,且各个问题回答正确与否互不影响.设该选手所获梦想基金总数为ξ,求ξ的分布列及均值.参考公式其中K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ),其中n =a +b +c +d解:(1)根据所给的二维条形图得到列联表,根据列联表所给的数据代入观测值的公式得到k 2=120×(10×70-10×30)220×100×40×80=3,∵3>2.706,∴有1-0.10=90%的把握认为猜对歌曲名称与否与年龄有关. (2)ξ的所有可能取值分别为:0,1 000,3 000,6 000,11 000. 则P (ξ=1 000)=45×12=25,P (ξ=3 000)=45×12×34×12=320,P (ξ=6 000)=45×12×34×12×23×12=120,P (ξ=11 000)=45×12×34×12×23×12×13=160,P (ξ=0)=1-25-320-120-160=2360.ξ的分布列为2360+1 000×25+3 000×320+6 000×120+11 000×160≈1 333.33.ξ的均值E(ξ)=0×。

【高考调研】高中数学(人教a版)选修2-3:第一章-计数原理+单元测试题x

【高考调研】高中数学(人教a版)选修2-3:第一章-计数原理+单元测试题x

【高考调研】高中数学(人教a版)选修2-3:第一章-计数原理+单元测试题x第一章综合测试题一、选择题1.设东、西、南、北四面通往山顶的路各有?2、3、3、4?条路,只从一面上山,而从任意一面下山的走法最多,应( )A.从东边上山C.从南边上山B.从西边上山D.从北边上山2.若一系列函数的解析式相同,值域相同,但其定义域不同,则称这些函数为“同族函数”,那么函数解析式为?y=x2,值域为{1,4}的“同族函数”共有( )A.7?个B.8?个?C.9?个D.10?个3.5?名学生相约第二天去春游,本着自愿的原则,规定任何人可以“去”或“不去”,则第二天可能出现的不同情况的种数为( )2A.C5 B.25C.52 D.A2524.6?个人分乘两辆不同的汽车,每辆车最多坐?4?人,则不同的乘车方法数为( )A.40 B.50 C.60 D.705.在航天员进行的一项太空实验中,先后要实施?6?个程序,其中程序 A?只能出现在第一步或最后一步,程序?B?和?C?实施时必须相邻,请问实验顺序的编排方法共有( )A.24?种B.48?种C.96?种D.144?种6.有甲、乙、丙三项任务,甲需?2?人承担,乙、丙各需?1?人承担,从?10?人中选派?4?人承担这三项任务,不同的选法有( )A.2?520 B.2?025 C.1?260 D.5?0408?10.已知?x-x展开式中常数项为?1120,其中实数8?10.已知?x-x展开式中常数项为?1120,其中实数?a?是常数,则展在第?3?道上,货车?B?不能停在第?1?道上,则?5?列火车的停车方法共有 ( )A.78?种B.72?种C.120?种D.96?种8.已知(1+x)n=a0+a1x+a2x2+…+anxn,若?a0+a1+a2+…+an =16,则自然数?n?等于( )A.6 B.5 C.4 D.39.6?个人排队,其中甲、乙、丙?3?人两两不相邻的排法有( )A.30?种B.144?种?C.5?种D.4?种? a?? ?开式中各项系数的和是( )A.28?B.38?C.1?或?38 D.1?或?2811.有?A、B、C、D、E、F?共?6?个集装箱,准备用甲、乙、丙三辆卡车运送,每台卡车一次运两个,若卡车甲不能运?A?箱,卡车乙不能运B?箱,此外无其他任何限制;要把这?6?个集装箱分配给这?3?台卡车运送,则不同的分配方案的种数为( )A.168 B.84 C.56 D.4212.从?2?名女教师和?5?名男教师中选出三位教师参加?20xx?年高考某考场的监考工作.要求一女教师在室内流动监考,另外两位教师固定在室内监考,问不同的安排方案种数为( )A.30 B.180?C.630 D.1?08013.已知(x+2)n?的展开式中共有?5?项,则?n=________,展开式中的常数项为________.(用数字作答)14.5?个人排成一排,要求甲、乙两人之间至少有一人,则不同的排法有____种.15.已知(x+1)6(ax-1)2?的展开式中含?x3?项的系数是?20,则?a?的值等于________.16.用数字?2,3?组成四位数,且数字?2,3?至少都出现一次,这样的四位数共有________个.(用数字作答)17.某书店有?11?种杂志,2?元?1?本的?8?种,1?元?1?本的?3?种,小张用10?元钱买杂志(每种至多买一本,10?元钱刚好用完),求不同的买法有多少种(用数字作答).18.4?个相同的红球和?6?个相同的白球放入袋中,现从袋中取出?4?个球;若取出的红球个数不少于白球个数,则有多少种不同的取法?9(12?分)从?1?到?6?的六个数字中取两个偶数和两个奇数组成没有重复数字的四位数.试问:(1)能组成多少个不同的四位数?(2)四位数中,两个偶数排在一起的有几个?(3)两个偶数不相邻的四位数有几个?(所有结果均用数值表示)20?已知(1+2?x)n?的展开式中,某一项的系数恰好是它的前一项系数5的?2?倍,而且是它的后一项系数的6,试求展开式中二项式系数最大的项.21?某单位有三个科室,为实现减负增效,每科室抽调2?人,去参加再就业培训,培训后这?6?人中有?2?人返回原单位,但不回到原科室工作,且每科室至多安排?1?人,问共有多少种不同的安排方法.22.10?件不同厂生产的同类产品:(1)在商品评选会上,有?2?件商品不能参加评选,要选出?4?件商品,并排定选出的?4?件商品的名次,有多少种不同的选法?(2)若要选?6?件商品放在不同的位置上陈列,且必须将获金质奖章的两件商品放上,有多少种不同的布置方法?1,D2,由题意,问题的关键在于确定函数定义域的个数:第一步,先确定函数值?1?的原象:因为?y=x2,当?y=1?时,x=1?或?x=-1,为此有三种情况:即{1},{-1},{1,-1};第二步,确定函数值?4?的原象,因为?y=4?时,x=2?或?x=-2,为此也有三种情况:{2},{-2},{2,-2}.由分步计数原理,得到:3×3=9?个.选?C.3,B,4B44 22 85C?当?A?出现在第一步时,再排?A,B,C?以外的三个程序,有?A33种,A?与?A,B44 22 8成?4?个可以排列程序?B、C?的空档,此时共有?A33A1A2种排法;当?A?出现在最后一步时的排法与此相同,故共有?2A33A1A2=96?种编排方法.6A?先从?10?人中选出?2?人承担甲任务有?C10种选法,再从剩下的?8?人中选出2?人分别承担乙、丙任务,有?A28种选法,由分步乘法计数原理共有?C10A2=2?520?种不同的选法.故选?A.7不考虑不能停靠的车道,5?辆车共有?5!=120?种停法.A?停在?3?道上的停法:4!=24(种);B?种停在?1?道上的停法:4!=24(种);A、B?分别停在?3?道、1?道上的停法:3!=6(种).故符合题意的停法:120-24-24+6=78(种).故选?A.令?x=1,得?2n=16,则?n=4.故选?C.4分两步完成:第一步,其余?3?人排列有?A33种排法;第二步,从?4?个可插空档中任选?3?个给甲、乙、丙?3?人4站有?A34种插法.由分步乘法计数原理可知,一共有?A3A3=144?种.B r 810,CTr+1=(-a)rC8x8-2r,令?8-2r=0 r=4.∴T5=C4(-a)4=1?120,∴a=±2.当?a=2?时,和为?1;当?ar 8时,和为?38.4 4 4 311,D 分两类:①甲运?B?箱,有?C1·?C2·?C2种;②甲不运?B?箱,有?C2·?C4 4 4 34 4 4 3∴不同的分配方案共有?C1·?C2·?C2+C2·?C2·?C24 4 4 3,A?分两类进行:第一类,在两名女教师中选出一名,从?5?名男教师中选出两名,且该女教师只能在室2 5 5内流动监考,有?C1·?C2种选法;第二类,选两名女教师和一名男教师有?C2·2 5 55 2 2 5 5 2教师中选一名作为室内流动监考人员,即有?C2·?C1·?C1共?10?种选法,∴共有?C1·?C2+C2·?5 2 2 5 5 2A13.4 16 ∵展开式共有?5?项,∴n=4,常数项为?C4424=16.414. 甲、乙两人之间至少有一人,就是甲、乙两人不相邻,则有?A3·?A2=72(种).15. 0?或?5 16,14?因4为四位数的每个数位上都有两种可能性,其中四个数字全是?2?或?3?的情况不合题意,所以适合题意的四位数有?24-2=14?个.17.解析分两类:第一类,买?5?本?2?元的有?C58?种;第二类,买?4?本?2?元的和?2?本?1?元的有?C48×C23种.故共有?C58+C48×C23=266?种不同的买法种数.18.解析依题意知,取出有?4?个球中至少有?2?个红球,可分三类:①取出的全是红球有?C44种方法;②20.解析? 由题意知展开式中第?k+1?项系数是第?k?项系数的?2?倍,是第?k+2?项系数的,6 4 6取出的?4?个球中有20.解析? 由题意知展开式中第?k+1?项系数是第?k?项系数的?2?倍,是第?k+2?项系数的,6 4 64 6 4 6理,共有?C4+C3·?C1+C2·?C4 6 4 6319.解析(1)四位数共有?C23C2A4=216?个.333 3(2)上述四位数中,偶数排在一起的有?C23C2A3A2=10833 3(3)两个偶数不相邻的四位数有?C23C2A2A2=108?个.56∴Ckn2k=6Ckn+1·?2k+ ∴?Ckn2k=6Ckn+1·?2k+1, ? k k5解得?n=7.∴展开式中二项式系数最大两项是:37T4=C37(2?x)3=280x2与?T5=C4(2?x)4=560x2.721. 6?人中有?2?人返回原单位,可分两类:2(1)2?人来自同科室:C13C1=6?种;23 2 2 3 2 2(2)2?人来自不同科室:C2C1C1,然后?2?人分别回到科室,但不回原科室有?3?种方法,故有?3 2 2 3 2 236?种.由分类计数原理共有?6+36=42?种方法22.解析(1)10?件商品,除去不能参加评选的?2?件商品,剩下?8?件,从中选出?4?件进行排列,有?A48=1?680(或8C4·?A4)(种).8(2)分步完成.先将获金质奖章的两件商品布置在?6?个位置中的两个位置上,有?A26种方法,再从剩下的8 6 8 88?件商品中选出?4?件,布置在剩下的?4?个位置上,有?A4种方法,共有?A2·?A4=50?400(或?C4·?8 6 8 8。

高二数学选修2-3第一章测试题(含答案)

高二数学选修2-3第一章测试题(含答案)

高中数学选修2-3第一章测试题一.选择题(每题5分,满分60分)1.四个同学,争夺三项冠军,冠军获得者可能有的种类是( ) A .4 B .24 C .43D .34[答案] C[解析] 依分步乘法计数原理,冠军获得者可能有的种数是4×4×4=43.故选C.2.210所有正约数的个数共有( ) A .12个 B .14个 C .16个 D .20个[答案] C[解析] 由210=2·3·5·7知正约数的个数为2·2·2·2=16.∴选C. 3.设m ∈N *,且m <15,则(15-m )(16-m )…(20-m )等于( ) A .A 615-m B .A 15-m20-mC .A 620-mD .A 520-m[答案] C[解析] 解法1:(15-m )(16-m )…(20-m )=(20-m )(19-m )……[(20-m )-6+1]=A 620-m .解法2:特值法.令m =14得1×2×3×4×5×6=A 66.∴选C.4.A 、B 、C 、D 、E 五人站成一排,如果A 必须站在B 的左边(A 、B 可以不相邻),则不同排法有( )A .24种B .60种C .90种D .120种[答案] B[解析] 5个人全排列有5!=120种、A 在B 左边和A 在B 右边的情形一样多,∴不同排法有12×120=60种.5.在(x -3)10的展开式中,x 6的系数是( ) A .-27C 610B .27C 410 C .-9C 610D .9C 410[答案] D[解析] ∵T r +1=C r 10x 10-r(-3)r .令10-r =6, 解得r =4.∴系数为(-3)4C 410=9C 410.6.用1、2、3、4、5这五个数字,组成没有重复数字的三位数,其中奇数的个数为( )A .36B .30C .40D .60[答案] A[解析] 奇数的个位数字为1、3或5,偶数的个位数字为2、4.故奇数有35A 35=36个.7.6人站成一排,甲、乙、丙3人必须站在一起的所有排列的总数为( ) A .A 66B .3A 33C .A 33·A 33D .4!·3! [答案] D[解析] 甲、乙、丙三人站在一起有A 33种站法,把3人作为一个元素与其他3人排列有A 44种,∴共有A 33·A 44种.故选D. 8.6人站成一排,甲、乙、丙3个人不能都站在一起的排法种数为( ) A .720 B .144 C .576D .684[答案] C[解析] “不能都站在一起”与“都站在一起”是对立事件,由间接法可得A 66-A 33A 44=576.[点评] 不能都站在一起,与都不相邻应区分.9.C 9798+2C 9698+C 9598等于( )A .C 9799B .C 97100C .C 9899D .C 98100[答案] B[解析] 原式=C 9798+C 9698+C 9698+C 9598=C 9799+C 9699=C 97100,故选B.10.已知集合A ={1,2,3,4,5,6},B ={1,2},若集合M 满足B M A ,则不同集合M的个数为( )A .12B .13C .14D .15[答案] C[解析] ∵B M ,∴M 中必含有1、2且至少含有3、4、5、6中的一个元素,又M A ,∴M ≠A ,∴M 的个数为C 14+C 24+C 34=14个.11.某年级有6个班,分别派3名语文教师任教,每个教师教2个班,则不同的任课方法种数为( )A .C 26·C 24·C 22 B .A 26·A 24·A 22 C .C 26·C 24·C 22·C 33 D.A 26·C 24·C 22A 33[答案] A12.1+(1+x )+(1+x )2+…+(1+x )n 的展开式的各项系数之和为( ) A .2n -1B .2n -1C .2n +1-1 D .2n [答案] C[解析] 解法一:令x =1得,1+2+22+…+2n =1×(2n +1-1)2-1=2n +1-1.解法二:令n =1,知各项系数和为3,排除A 、B 、D ,选C.二.填空题(每小题5分,满分20分)13.三个人坐在一排八个座位上,若每人的两边都要有空位,则不同的坐法种数为________.[答案] 24[解析] “每人两边都有空位”是说三个人不相邻,且不能坐两头,可视作5个空位和3个人满足上述两要求的一个排列,只要将3个人插入5个空位形成的4个空档中即可.∴有A 34=24种不同坐法.14.方程C x 17-C x 16=C 2x +216的解集是________.[答案] {5}[解析] 因为C x 17=C x 16+C x -116,所以C x -116=C 2x +216,由组合数公式的性质,得x -1=2x +2或x -1+2x +2=16,得x 1=-3(舍去),x 2=5.15.方程组⎩⎪⎨⎪⎧x 2+y 2=3,y 2+z 2=4,z 2+x 2=5.有________组解.[答案] 8[解析] 由方程组⎩⎪⎨⎪⎧x 2+y 2=3,y 2+z 2=4,z 2+x 2=5.可得⎩⎪⎨⎪⎧x 2=2,y 2=1,z 2=3.因此在{2,-2},{1,-1},{3,-3}中各取一个即可构成方程组的一组解,由分步乘法计数原理共有2×2×2=8组解.16.(2010·湖北文,11)在(1-x 2)10的展开式中,x 4的系数为________. [答案] 45[解析] 本题主要考查二项式定理.(1-x 2)10的展开式中,只有两个括号含x 2的项,则x 4的系数为C 210(-1)2=45三、解答题17.(满分12分)求和:12!+23!+34!+…+n(n +1)!.[解析] ∵k (k +1)!=k +1-1(k +1)!=k +1(k +1)!-1(k +1)!=1k !-1(k +1)!,∴原式=⎝⎛⎭⎫11-12!+⎝⎛⎭⎫12!-13!+⎝⎛⎭⎫13!-14!+…+⎝⎛⎭⎫1n !-1(n +1)!=1-1(n +1)!.18.(满分10分)用1、2、3、4、5、6、7这7个数字组成没有重复数字的四位数. (1)这些四位数中偶数有多少个?能被5整除的有多少个? (2)这些四位数中大于6500的有多少个?[解析] (1)偶数的个位数只能是2、4、6有A 13种排法,其它位上有A 36种排法,由分步乘法计数原理知共有四位偶数A 13·A 36=360个;能被5整除的数个位必须是5,故有A 36=120个.(2)最高位上是7时大于6500,有A 36种,最高位上是6时,百位上只能是7或5,故有2×A 25种.∴由分类加法计数原理知,这些四位数中大于6500的共有A 36+2A 25=160个.19.(满分12分)一场晚会有5个演唱节目和3个舞蹈节目,要求排出一个节目单. (1)3个舞蹈节目不排在开始和结尾,有多少种排法?(2)前四个节目要有舞蹈节目,有多少种排法?(以上两个题只列出算式)[解析](1)先从5个演唱节目中选两个排在首尾两个位置有A25种排法,再将剩余的3个演唱节目,3个舞蹈节目排在中间6个位置上有A66种排法,故共有A25A66种排法.(2)先不考虑排列要求,有A88种排列,其中前四个节目没有舞蹈节目的情况,可先从5个演唱节目中选4个节目排在前四个位置,然后将剩余四个节目排列在后四个位置,有A45A44种排法,所以前四个节目要有舞蹈节目的排法有(A88-A45A44)种.20.(满分12分)六人按下列要求站一横排,分别有多少种不同的站法?(1)甲不站右端,也不站左端;(2)甲、乙站在两端;(3)甲不站左端,乙不站右端.[解析](1)解法一:因甲不站左右两端,故第一步先从甲以外的5个人中任选二人站在左右两端,有A25种不同的站法;第二步再让剩下的4个人站在中间的四个位置上,有A44种不同的站法,由分步乘法计数原理共有A25·A44=480种不同的站法.解法二:因甲不站左右两端,故第一步先让甲排在左右两端之间的任一位置上,有A14种不同的站法;第二步再让余下的5个人站在其他5个位置上,有A55种不同的站法,故共有A14·A55=480种不同的站法.解法三:我们对6个人,不考虑甲站位的要求,做全排列,有A66种不同的站法;但其中包含甲在左端或右端的情况,因此减去甲站左端或右端的排列数2A55,于是共有A66-2A55=480种不同的站法.(2)解法一:首先考虑特殊元素,让甲、乙先站两端,有A22种不同的站法;再让其他4个人在中间4个位置做全排列,有A44种不同的站法,根据分步乘法计数原理,共有A22·A44=48种不同的站法.解法二:“位置分析法”,首先考虑两端2个位置,由甲、乙去站,有A22种站法,再考虑中间4个位置,由剩下的4个人去站,有A44种站法,根据分步乘法计数原理,共有A22·A44=48种不同的站法.(3)解法一:“间接法”,甲在左端的站法有A55种,乙在右端的站法有A55种,而甲在左端且乙在右端的站法有A44种,故共有A66-2A55+A44=504种不同的站法.解法二:“直接法”,以元素甲的位置进行考虑,可分两类:a.甲站右端有A55种不同的站法;b.甲在中间4个位置之一,而乙不在右端,可先排甲后排乙,再排其余4个,有A14·A14·A44种不同的站法,故共有A55+A14·A14·A44=504种不同的站法.21.(满分12分)有9本不同的课外书,分给甲、乙、丙三名同学,求在下列条件下,各有多少种分法?(1)甲得4本,乙得3本,丙得2本; (2)一人得4本,一人得3本,一人得2本; (3)甲、乙、丙各得3本.[分析] 由题目可获取以下主要信息: ①9本不同的课外书分给甲、乙丙三名同学; ②题目中的3个问题的条件不同.解答本题先判断是否与顺序有关,然后利用相关的知识去解答. [解析] (1)分三步完成:第一步:从9本不同的书中,任取4本分给甲,有C 49种方法; 第二步:从余下的5本书中,任取3本给乙,有C 35种方法; 第三步:把剩下的书给丙有C 22种方法,∴共有不同的分法有C 49·C 35·C 22=1260(种).(2)分两步完成:第一步:将4本、3本、2本分成三组有C 49·C 35·C 22种方法;第二步:将分成的三组书分给甲、乙、丙三个人,有A 33种方法,∴共有C 49·C 35·C 22·A 33=7560(种).(3)用与(1)相同的方法求解,得C 39·C 36·C 33=1680(种).22.(满分12分)已知在(3x -123x )n 的展开式中,第6项为常数项.(1)求n ;(2)求含x 2的项的系数; (3)求展开式中所有的有理项. [解析] (1)T r +1=C r n ·(3x )n -r ·(-123x )r =C r n ·(x 13)n -r ·(-12·x -13)r =(-12)r ·C r n ·x n -2r 3. ∵第6项为常数项,∴r =5时有n -2r3=0,∴n =10.(2)令n -2r 3=2,得r =12(n -6)=2,∴所求的系数为C 210(-12)2=454. (3)根据通项公式,由题意得:⎩⎪⎨⎪⎧10-2r3∈Z0≤r ≤10r ∈Z令10-2r3=k (k ∈Z ),则10-2r =3k , 即r =10-3k 2=5-32k .∵r ∈Z ,∴k 应为偶数,∴k 可取2,0,-2, ∴r =2,5,8,∴第3项、第6项与第9项为有理项. 它们分别为C 210·(-12)2·x 2,C 510(-12)5, C 810·(-12)8·x -2.。

高中数学选修2-3综合期末试题

高中数学选修2-3综合期末试题

选修2—3期末考试试题(二)时间:120分钟 总分:150分 第一卷(选择题,共60分)1.如以下图所示,4个散点图中,不适合用线性回归模型拟合其中两个变量的是( )2.袋中有大小一样的5只钢球,分别标有1,2,3,4,5五个,有放回地依次取出2个球,设两个球之和为随机变量*,则*所有可能值的个数是( )A .25B .10C .9D .53.A ,B ,C ,D ,E 五人并排站成一排,如果B 必须站在A 的右边(A ,B 可以不相邻),则不同的排法有( )A .24种B .60种C .90种D .120种4.(1+2*2)⎝⎛⎭⎪⎫*-1*8的展开式中常数项为( )A .42B .-42C .24D .-245.在秋季运动会的开幕式上,鲜花队方阵从左到右共有9列纵队,要求同一列纵队的鲜花颜色要一样,相邻纵队的鲜花颜色不能一样,而且左右各纵队的鲜花颜色要求关于正中间一列呈对称分布.现有4种不同颜色的鲜花可供选择,则鲜花队方阵所有可能的编排方案共有( )A .4×34种B .49种C .4×38种D .45种6.为了解高中生作文成绩与课外阅读量之间的关系,*研究机构随机抽取了60名高中生,通过问卷调查,得到以下数据:说法正确的选项是( )A .没有充足的理由认为课外阅读量大与作文成绩优秀有关B .有0.5%的把握认为课外阅读量大与作文成绩优秀有关C .有99.9%的把握认为课外阅读量大与作文成绩优秀有关D .有99.5%的把握认为课外阅读量大与作文成绩优秀有关 7.一个口袋中装有除颜色外完全一样的2个白球和3个黑球,第一次摸出1个白球后放回,则再摸出1个白球的概率是( )A.23B.14C.25D.158.将二项式⎝⎛⎭⎪⎫*+124*8的展开式中所有项重新排成一列,有理式不相邻的排法有( )种A .A 37B .A 66A 36C .A 66A 37D .A 77A 379.正态分布N 1(μ1,σ21),N 2(μ2,σ22),N 3(μ3,σ23)(其中σ1,σ2,σ3均大于0)所对应的密度函数图象如以下图所示,则以下说法正确的选项是( )①N 1(μ1,σ21) ②N 2(μ2,σ22) ③N 3(μ3,σ23)A .μ1最大,σ1最大B .μ3最大,σ3最大C .μ1最大,σ3最大D .μ3最大,σ1最大10.甲、乙两人进展乒乓球比赛,比赛规则为"3局2胜〞,即以先赢2局者为胜.根据经历,每局比赛中甲获胜的概率为0.6,则本次比赛甲获胜的概率是( )A .0.216B .0.36C .0.432D .0.64811.随机变量ξ~B ⎝⎛⎭⎪⎫9,15,则使P (ξ=k )取得最大值的k 值为( )A .2B .3C .4D .512.为了研究男子的年龄与吸烟的关系,抽查了100个男人,按年龄超过和不超过40岁,吸烟量每天多于和不多于20支进展分组,如下表:则有A .90% B .99%C .95% D .没有理由第二卷(非选择题,共90分)二、填空题(每题5分,共20分)13.从5名学生中任选4名分别参加数学、物理、化学、生物四科竞赛,且每科竞赛只有1人参加,假设甲参加,但不参加生物竞赛,则不同的选择方案共有________种.14.如下图的电路有a ,b ,c 三个开关,每个开关开或关的概率都是12,且是相互独立的,则灯泡甲亮的概率为________.15.100件产品中有10件次品,从中任取3件,则任意取出的3件产品中次品数的数学期望为________.16.许多因素都会影响贫富状况,教育也许是其中之一.在研究这两个因素的关系时收集了*个国家50个州的成年人受过9年或更少教育的百分比(*)和收入低于官方规定的贫困线的人数占本州人数的百分比(y )的数据,建立的回归直线方程为y ^=0.8*+4.6,斜率的估计等于0.8说明________________,成年人受过9年或更少教育的百分比(*)和收入低于官方的贫困线的人数占本州人数的百分比(y )之间的相关系数________(填"大于0〞或"小于0〞).三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分)17.(10分)⎝⎛⎭⎪⎫*+13*2n展开式的二项式系数之和比(*+y )n展开式的所有项系数之和大240.(1)求n 的值;(2)判断⎝⎛⎭⎪⎫*+13*2n展开式中是否存在常数项?并说明理由.18.(12分)带有编号1,2,3,4,5的五个球. (1)全部投入4个不同的盒子里; (2)放进4个不同的盒子里,每盒一个;(3)将其中的4个球投入4个盒子里的一个(另一个球不投入); (4)全部投入4个不同的盒子里,没有空盒.各有多少种不同的放法?19.(12分)*大学志愿者协会有6名男同学,4名女同学.在这10名同学中,3名同学来自数学学院,其余7名同学来自物理、化学等其他互不一样的七个学院.现从这10名同学中随机选取3名同学,到希望小学进展支教活动(每位同学被选到的可能性一样).(1)求选出的3名同学是来自互不一样学院的概率;(2)设*为选出的3名同学中女同学的人数,求随机变量*的分布列和数学期望.20.(12分)在对人们休闲方式的一次调查中,共调查了56人,其中女性28人,男性28人,女性中有16人主要的休闲方式是看电视,另外12人主要的休闲方式是运动,男性中有8人主要的休闲方式是看电视,另外20人的主要休闲方式是运动.(1)根据以上数据建立一个2×2列联表; (2)判断性别与休闲方式是否有关系. 参考数据:球和白球,从A 中摸出一个红球的概率是13,从B 中摸出一个红球的概率为p (0<p <1).(1)从A 中有放回地摸球,每次摸出一个,有3次摸到红球即停顿.①求恰好摸5次停顿的概率;②记5次之内(含5次)摸到红球的次数为ξ,求随机变量ξ的分布列及数学期望E (ξ).(2)假设A ,B 两个袋子中的球的个数之比为1∶2,将A 、B 中的球装在一起后,从中摸出一个红球的概率是25,求p 的值.22.(12分)2011年3月,日本发生了9.0级地震,地震引发了海啸及核泄漏.*国际组织方案派出12名心理专家和18名核专家赴日本工作,临行前对这30名专家进展了总分为1 000分的综合素质测评,测评成绩用茎叶图进展了记录,如图(单位:分).规定测评成绩在976分以上(包括976分)为"尖端专家〞,测评成绩在976分以下为"高级专家〞,且只有核专家中的"尖端专家〞才可以独立开展工作.这些专家先飞抵日本的城市E ,再分乘三辆汽车到达工作地点福岛县.从城市E 到福岛县有三条公路,因地震破坏了道路,汽车可能受阻.据了解:汽车走公路Ⅰ或Ⅱ顺利到达的概率都为910;走公路Ⅲ顺利到达的概率为25,甲、乙、丙三辆车分别走公路Ⅰ、Ⅱ、Ⅲ,且三辆汽车是否顺利到达相互之间没有影响.(1)如果用分层抽样的方法从"尖端专家〞和"高级专家〞中选取6人,再从这6人中选2人,则至少有一人是"尖端专家〞的概率是多少?(2)求至少有两辆汽车顺利到达福岛县的概率;(3)假设从所有"尖端专家〞中选3名志愿者,用ξ表示所选志愿者中能独立开展工作的人数,试写出ξ的分布列,并求ξ的数学期望.答案1.A 题图A中的点不成线性排列,故两个变量不适合线性回归模型.2.C 由题意,由于是有放回地取,故可有如下情况:假设两次取球为一样,则有1+1=2,2+2=4,3+3=6,4+4=8,5+5=10,5个不同的和;假设两次取球为不同,则只有1+2=3,1+4=5,2+5=7,4+5=9这四个和,故共有9个.3.B 只需从5个位置中选出3个位置安排好C,D,E即可,不同的排法有A35=60种.4.B 展开式的常数项为C48+2C58(-1)5=-42.5.A 由题意知,只需安排1,2,3,4,5列纵队即可,对称的一侧按5,4,3,2,1的顺序安排,不同的编排方案共有4×3×3×3×3=4×34(种).6.D 根据临界值表,9.643>7.879,在犯错误的概率不超过0.005的前提下,认为课外阅读量大与作文成绩优秀有关,即有99.5%的把握认为课外阅读量大与作文成绩优秀有关.7.C 由于是有放回摸球,所以第二次摸出1个白球,与第一次摸出白球无关,即相互独立,所以第二次摸出白球的概率为25 .8.C⎝⎛⎭⎪⎫*+124*8展开式的通项公式T r+1=C r 8·(*)8-r ·⎝ ⎛⎭⎪⎫124*r=C r 82r ·*16-3r 4,r =0,1,2,…,8.当16-3r 4为整数时,r =0,4,8.所以展开式共有9项,其中有有理项3项,先排其余6项有A 66种排法,再将有理项插入形成的7个空当中,有A 37种方法.所以共有A 66A 37种排法.9.D 在正态分布N (μ,σ2)中,*=μ为正态曲线的对称轴,结合图象可知,μ3最大;又参数σ确定了曲线的形状:σ越大,曲线越"矮胖〞,σ越小,曲线越"高瘦〞.故由图象知σ1最大.10.D 甲获胜有两种情况,一是甲以20获胜,此时p 1=0.62=0.36,二是甲以21获胜,此时p 2=C 12·0.6×0.4×0.6=0.288, 故甲获胜的概率p =p 1+p 2=0.648.11.A P (ξ=k )=C k 9⎝ ⎛⎭⎪⎫15k⎝⎛⎭⎪⎫1-159-k =C k9·49-k59,验证知C 29·49-2=9×48,C 39·49-3=21×47,C 49·49-4=63×211,C 59·49-5=63×29,故当k =2时,P (ξ=k )取得最大值.12.B χ2=100×50×25-10×15265×35×60×40≈22.16>6.635.故有99%的把握认为吸烟量与年龄有关. 13.96解析:因为特殊元素优先安排,先排甲有3种,则其余的从剩下的4人中选3名,进展全排列得到A 34,另一种情况就是没有甲参加,则有A 44,根据分类加法计数原理,得不同的选择方案共有:3×A 34+A 44=96种.14.18解析:理解事件之间的关系,设"a 闭合〞为事件A ,"b 闭合〞为事件B ,"c 闭合〞为事件C ,则灯亮应为事件AC ,且A ,C ,之间彼此独立,且P (A )=P ()=P (C )=12.所以P (AC )=P (A )P ()P (C )=18.15.0.3解析:次品件数服从参数为N =100,M =10,n =3的超几何分布,由超几何分布的数学期望公式得E (ξ)=3×10100=0.3.16.如果受过9年或更少教育的人数每增加1个百分比,则低于官方规定的贫困线的人数占本州人数的比例将增加0.8个百分比 大于0解析:回归方程y ^=0.8*+4.6是反映这50个州的成年人受过9年或更少教育的百分比(*)和收入低于官方规定的贫困线的人数占本州人数的百分比(y )这两个变量的,而0.8是回归直线的斜率,又0.8>0,即b >0,又根据b 与r 同号的关系知r >0.17.解:(1)⎝⎛⎭⎪⎫*+13*2n展开式的二项式系数之和等于22n. (*+y )n 展开式的所有项系数之和为2n . 所以22n -2n =240,所以n =4.(2)⎝⎛⎭⎪⎫*+13*2n =⎝ ⎛⎭⎪⎫*+13*8,展开式的通项为T r +1=C r8·(*)8-r ·⎝ ⎛⎭⎪⎫13*r =C r8·*24-5r 6.令24-5r =0,r =245,不是自然数,所以⎝⎛⎭⎪⎫*+13*2n展开式中无常数项.18.解:(1)由分步乘法计数原理知,五个球全部投入4个不同的盒子里共有45种放法.(2)由排列数公式知,五个不同的球放进4个不同的盒子里(每盒一个)共有A 45种放法.(3)将其中的4个球投入一个盒子里共有C 45C 14种放法.(4)全部投入4个不同的盒子里(没有空盒)共有C 25A 44种不同的放法.19.解:(1)设"选出的3名同学是来自互不一样的学院〞为事件A ,则P (A )=C 13·C 27+C 03·C 37C 310=4960. 所以选出的3名同学是来自互不一样学院的概率为4960.(2)随机变量*的所有可能值为0,1,2,3.P (*=k )=C k 4·C 3-k6C 310(k =0,1,2,3).所以,随机变量*的分布列为随机变量*的数学期望E (*)=0×16+1×12+2×310+3×130=65.20.解:(1)依题意得2×2列联表看电视 运动 合计 男性 8 20 28 女性 16 12 28 合计243256(2)由2×2列联表中的数据,知 χ2=56×12×8-20×16228×28×24×32≈4.667,从而χ2>3.841,故有95%的把握认为性别与休闲方式有关. 21.解:(1)①恰好摸5次停顿,即第5次摸到的一定为红球,且前4次中有2次摸到红球,其概率为P =C 24⎝ ⎛⎭⎪⎫132⎝ ⎛⎭⎪⎫232×13=881;②随机变量ξ的可能取值为0,1,2,3.则P (ξ=0)=C 05⎝⎛⎭⎪⎫1-135=32243;P (ξ=1)=C 15×13×⎝⎛⎭⎪⎫1-134=80243;P (ξ=2)=C 25⎝ ⎛⎭⎪⎫132⎝⎛⎭⎪⎫1-133=80243;P (ξ=3)=1-32+80+80243=1781.所以,随机变量ξ的分布列为ξ0 1 2 3E (ξ)=80243×1+243+81=13181.(2)设袋子A 中有m 个球,则袋子B 中有2m 个球,由13m +2mp 3m =25,可得p =1330.22.解:(1)根据茎叶图,有"尖端专家〞10人,"高级专家〞20人,每个人被抽中的概率是630=15,所以用分层抽样的方法,选出的"尖端专家〞有10×15=2(人),"高级专家〞有20×15=4(人).用事件A 表示"至少有一名‘尖端专家’被选中〞,则它的对立事件表示"没有一名‘尖端专家’被选中〞,则P (A )=1-C 24C 26=1-615=35.因此,至少有一人是"尖端专家〞的概率是35.(2)记A ="汽车甲走公路Ⅰ顺利到达〞,B ="汽车乙走公路Ⅱ顺利到达〞,C ="汽车丙走公路Ⅲ顺利到达〞,则至少有两辆汽车顺利到达福岛县的概率为P (A ∩B ∩)+P (A ∩∩C )+P (∩B ∩C )+P (A ∩B ∩C )=910×910×35+910×110×25+110×910×25+910×910×25=441500. (3)由茎叶图知,心理专家中的"尖端专家〞为7人,核专家中的"尖端专家〞为3人,依题意,ξ的取值为0,1,2,3.P (ξ=0)=C 37C 310=724,P (ξ=1)=C 13C 27C 310=2140,P (ξ=2)=C 23C 17C 310=740,P (ξ=3)=C 33C 310=1120.因此ξ的分布列为E (ξ)=0×724+1×40+2×40+3×120=10.。

(完整版)高中数学选修(2-3)综合测试题(3)附答案

(完整版)高中数学选修(2-3)综合测试题(3)附答案

高中数学选修(2-3)综合测试题(3)一、选择题1.假定有一排蜂房,形状如图所示,一只蜜蜂在左下角的蜂房中,由于受了点伤,只能爬,不能飞,而且只能永远向右方(包括右上,右下)爬行,从一间蜂房爬到与之相邻的右方蜂房中去,若从最初位置爬到4号蜂房中,则不同的爬法有( ) A.4种 B.6种 C.8种 D.10种2.乒乓球运动员10人,其中男女运动员各5人,从这10名运动员中选出4人进行男女混合双打比赛,选法种数为( )A.225()A B.225()C C.22254()C A · D.22252()C A · 3.已知集合{}123456M =,,,,,,{}6789N =,,,,从M 中选3个元素,N 中选2个元素,组成一个含有5个元素的集合T ,则这样的集合T 共有( )A.126个 B.120个 C.90个 D.26个 4.342(1)(1)(1)n x x x +++++++L 的展开式中2x 的系数是( )A.33n C +B.32n C +C.321n C +- D.331n C +-5.200620052008+被2006除,所得余数是( )A.2009 B.3 C.2 D.16.市场上供应的灯泡中,甲厂产品占70%,乙厂产品占30%,甲厂产品的合格率是95%,乙厂产品的合格率是80%,则从市场上买到一个是甲厂生产的合格灯泡的概率是( ) A.0.665 B .0.56 C.0.24 D.0.285 7.抛掷甲、乙两颗骰子,若事件A :“甲骰子的点数大于4”;事件B :“甲、乙两骰子的点数之和等于7”,则(|)P B A 的值等于( )A.13 B.118 C.16 D.198.在一次智力竞赛的“风险选答”环节中,一共为选手准备了A ,B ,C 三类不同的题目,选手每答对一个A 类、B 类、C 类的题目,将分别得到300分、200分、100分,但如果答错,则要扣去300分、200分、100分,而选手答对一个A 类、B 类、C 类题目的概率分别为0.6,0.7,0.8,则就每一次答题而言,选手选择( )题目得分的期望值更大一些( ) A.A 类 B.B 类 C.C 类 D.都一样 9.已知ξ的分布列如下:ξ 1 2 3 4P1413 16 14并且23ηξ=+,则方差D η=( )A.17936 B.14336 C.29972 D.2277210.若2~(16)N ξ-,且(31)P ξ--≤≤0.4=,则(1)P ξ≥等于( ) A.0.1 B.0.2 C.0.3 D.0.4 11.已知x ,y 之间的一组数据:x 0 1 2 3 y1 3 5 7则y 与x 的回归方程必经过( ) A.(2,2) B.(1,3) C.(1.5,4) D.(2,5) 12.对于2()P K k ≥,当 2.706k >时,就约有的把握认为“x 与y 有关系”( ) A.99% B.99.5% C.95% D.90% 二、填空题13.912x x ⎛⎫- ⎪⎝⎭的展开式中,常数项为 (用数字作答). 14.某国际科研合作项目成员由11个美国人,4个法国人和5个中国人组成.现从中随机选出两位作为成果发布人,则此两人不属于同一个国家的概率为 (结果用分数表示).15.两名狙击手在一次射击比赛中,狙击手甲得1分、2分、3分的概率分别为0.4,0.1,0.5;狙击手乙得1分、2分、3分的概率分别为0.1,0.6,0.3,那么两名狙击手获胜希望大的是 .16.空间有6个点,其中任何三点不共线,任何四点不共面,以其中的四点为顶点共可作出个四面体,经过其中每两点的直线中,有 对异面直线. 三、解答题17.某人手中有5张扑克牌,其中2张为不同花色的2,3张为不同花色的A ,他有5次出牌机会,每次只能出一种点数的牌,但张数不限,则有多少种不同的出牌方法?18.已知数列{}n a 的通项n a 是二项式(1)n x +与2(1)n x +的展开式中所有x 的次数相同的各项的系数之和,求数列的通项及前n 项和n S .19.某休闲场馆举行圣诞酬宾活动,每位会员交会员费50元,可享受20元的消费,并参加一次抽奖活动,从一个装有标号分别为1,2,3,4,5,6的6只均匀小球的抽奖箱中,有放回的抽两次球,抽得的两球标号之和为12,则获一等奖价值a 元的礼品,标号之和为11或10,获二等奖价值100元的礼品,标号之和小于10不得奖. (1)求各会员获奖的概率;(2)设场馆收益为ξ元,求ξ的分布列;假如场馆打算不赔钱,a 最多可设为多少元? 20.在研究某种新药对猪白痢的防治效果时到如下数据:存活数 死亡数 合计 未用新药 101 38 139 用新药 129 20 149 合计23058288试分析新药对防治猪白痢是否有效?21.甲有一个箱子,里面放有x 个红球,y 个白球(x ,y ≥0,且x +y =4);乙有一个箱子,里面放有2个红球,1个白球,1个黄球.现在甲从箱子里任取2个球,乙从箱子里任取1个球.若取出的3个球颜色全不相同,则甲获胜.(1)试问甲如何安排箱子里两种颜色球的个数,才能使自己获胜的概率最大? (2)在(1)的条件下,求取出的3个球中红球个数的期望.高中数学选修(2-3)综合测试题(3)CDCDB ACBAA CD 13.672 14.11919015.乙 16. 15,45 17.解:由于张数不限,2张2,3张A 可以一起出,亦可分几次出,故考虑按此分类.出牌的方法可分为以下几类:(1)5张牌全部分开出,有55A 种方法;(2)2张2一起出,3张A 一起出,有25A 种方法; (3)2张2一起出,3张A 分开出,有45A 种方法;(4)2张2一起出,3张A 分两次出,有2335C A 种方法; (5)2张2分开出,3张A 一起出,有35A 种方法;(6)2张2分开出,3张A 分两次出,有2435C A 种方法; 因此共有不同的出牌方法5242332455535535860A A A C A A C A +++++=种. 18.解:按(1)nx +及2(1)n x +两个展开式的升幂表示形式,写出的各整数次幂,可知只有当2(1)nx +中出现x 的偶数次幂时,才能与(1)n x +的x 的次数相比较.由0122(1)n n nnn n n x C C x C x C x +=++++L , 132120242213212222222222(1)()()n nn nn n n nnnnnx C C x C x C x C x C x Cx--+=++++++++L L可得0122422222()()()()nnn n n n n n n n n a C C C C C C C C =++++++++L01202422222()()n n n n n n n n n n C C C C C C C C =+++++++++L L 2122n n -=+, 2122nn n a -=+∵,∴222462112(222)(22222(21)(41)223nn nn n S =++++++++=-+⨯-L L122112122(21)(2328)33n n n n +++=-+-=+-·, 2111(2328)3n n n S ++=-∴·.19.解:(1)抽两次得标号之和为12的概率为11116636P =+=;抽两次得标号之和为11或10的概率为2536P =,故各会员获奖的概率为1215136366P P P =+=+=. (2)ξ 30a -30100-30P1365363036由1530(30)(70)300363636E a ξ=-⨯+-⨯+⨯≥, 得580a ≤元.所以a 最多可设为580元. 20.解:由公式计算得2288(1012038129)8.65813914923058k ⨯⨯-⨯=≈⨯⨯⨯,由于8.658 6.635>,故可以有99%的把握认为新药对防治猪白痢是有效的.21.解:(1)要想使取出的3个球颜色全不相同,则乙必须取出黄球,甲取出的两个球为一个红球一个白球,乙取出黄球的概率是14,甲取出的两个球为一个红球一个白球的概率是11246x y C C xy C =·,所以取出的3个球颜色全不相同的概率是14624xy xy P ==·,即甲获胜的概率为24xyP =,由0x y ,≥,且4x y +=,所以12424xy P =≤2126x y +⎛⎫= ⎪⎝⎭·,当2x y ==时取等号,即甲应在箱子里放2个红球2个白球才能使自己获胜的概率最大. (2)设取出的3个球中红球的个数为ξ,则ξ的取值为0,1,2,3.212221441(0)12C C P C C ξ===·,1112122222212144445(1)12C C C C C P C C C C ξ==+=··,2111122222212144445(2)12C C C C C P C C C C ξ==+=··,212221441(3)12C C P C C ξ===·,所以取出的3个球中红球个数的期望:15510123 1.512121212E ξ=⨯+⨯+⨯+⨯=。

人教A版高中数学选修2-3 模块综合评价(一)(含答案解析)

人教A版高中数学选修2-3 模块综合评价(一)(含答案解析)

模块综合评价(一)(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题意的)1.某一随机变量ξ的概率分布如下表,且m +2n =1.2,则m -n2的值为( )A .-0.2B .0.2C .0.1D .-0.1解析:由离散型随机变量分布列的性质,可得m +n +0.2=1, 又m +2n =1.2,所以m =0.4,n =0.4, 所以m -n2=0.2.答案:B2.某商品销售量y (件)与销售价格x (元/件)负相关,则其回归方程可能是( )A.y ^=-10x +200 B.y ^=10x +200 C.y ^=-10x -200D.y ^=10x -200解析:由于销售量y 与销售价格x 负相关,故排除B ,D.又当x =10时,A 中的y =100,而C 中y =-300,故C 不符合题意.3.从A,B,C,D,E5名学生中选出4名分别参加数学、物理、化学、外语竞赛,其中A不参加物理、化学竞赛,则不同的参赛方案种数为()A.24 B.48 C.72 D.120解析:A参加时参赛方案有C34A12A33=48(种),A不参加时参赛方案有A44=24(种),所以不同的参赛方案共72种,故选C.答案:C4.两个分类变量X和Y,值域分别为{x1,x2}和{y1,y2},其样本频数分别是a=10,b=21,c+d=35,若X与Y有关系的可信程度为90%,则c=()A.4 B.5 C.6 D.7解析:列2×2列联表可知:当c=5时,K2=66×(10×30-5×21)215×51×31×35≈3.024>2.706,所以c=5时,X与Y有关系的可信程度为90%,而其余的值c=4,c=6,c=7皆不满足.5.⎝⎛⎭⎪⎫x +12x 8的展开式中常数项为( ) A.3516 B.358 C.354D .105 解析:二项展开式的通项为T k +1=C k 8(x )8-k ⎝ ⎛⎭⎪⎫12x k =⎝ ⎛⎭⎪⎫12k C k 8x 4-k,令4-k =0,解得k =4,所以T 5=⎝ ⎛⎭⎪⎫124C 48=358.答案:B6.ξ,η为随机变量,且η=aξ+b ,若E (ξ)=1.6,E (η)=3.4,则a ,b 可能的值为( )A .2,0.2B .1,4C .0.5,1.4D .1.6,3.4解析:由E (η)=E (aξ+b )=aE (ξ)+b =1.6a +b =3.4,把选项代入验证,只有A 满足.答案:A7.已知随机变量ξ的分布列为ξ=-1,0,1,对应P =12,16,13,且设η=2ξ+1,则η的期望为( )A .-16 B.23 C.2936D .1解析:E (ξ)=-1×12+0×16+1×13=-16,所以E (μ)=E (2ξ+1)=2E (ξ)+1=23.8.若随机变量ξ~N (-2,4),ξ在下列区间上取值的概率与ξ在区间(-4,-2]上取值的概率相等的是( )A .(2,4]B .(0,2]C .[-2,0)D .(-4,4]解析:此正态曲线关于直线x =-2对称,所以ξ在区间(-4,-2]上取值的概率等于ξ在[-2,0)上取值的概率.答案:C9.设随机变量X 服从二项分布B ⎝⎛⎭⎪⎫5,12,则函数f (x )=x 2+4x +X 存在零点的概率是( )A.56B.45C.2021D.3132解析:函数f (x )=x 2+4x +X 存在零点, 所以Δ=16-4X ≥0,所以X ≤4,因为随机变量X 服从二项分布B ⎝⎛⎭⎪⎫5,12, 所以P (X ≤4)=1-P (X =5)=1-125=3132.答案:D10.通过随机询问72名不同性别的大学生在购买食物时是否看营养说明,得到如下列联表:) A.99%的可能性B.99.75%的可能性C.99.5%的可能性D.97.5%的可能性解析:由题意可知a=16,b=28,c=20,d=8,a+b=44,c +d=28,a+c=36,b+d=36,n=a+b+c+d=72.代入公式K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),得K2=72×(16×8-28×20)244×28×36×36≈8.42.由于K2≈8.42>7.879,我们就有99.5%的把握认为性别和读营养说明之间有关系,即性别和读营养说明之间有99.5%的可能是有关系的.答案:C11.某日A,B两个沿海城市受台风袭击的概率相同,已知A市或B市至少有一个受台风袭击的概率为0.36,若用X表示这一天受台风袭击的城市个数,则E(X)=()A.0.1 B.0.2 C.0.3 D.0.4解析:设A,B两市受台风袭击的概率均为p,则A市或B市都不受台风袭击的概率为(1-p)2=1-0.36,解得p=0.2或p=1.8(舍去).法一 P (X =0)=1-0.36=0.64.P (X =1)=2×0.8×0.2=0.32, P (X =2)=0.2×0.2=0.04,所以E (X )=0×0.64+1×0.32+2×0.04=0.4.法二 X ~B (2,0.2),E (X )=np =2×0.2=0.4. 答案:D12.设函数f (x )=⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫x -1x 6,x <0,-x ,x ≥0,则当x >0时,f (f (x ))表达式的展开式中常数项为( )A .-20B .20C .-15D .15解析:当x >0时,f (f (x ))=⎝ ⎛⎭⎪⎫-x +1x 6=⎝ ⎛⎭⎪⎫1x -x 6,则展开式中常数项为C 36⎝⎛⎭⎪⎫1x 3(-x )3=-20. 答案:A二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)13.抽样调查表明,某校高三学生成绩(总分750分)X 近似服从正态分布,平均成绩为500分.已知P (400<X <450)=0.3,则P (550<X <600)=________.解析:由下图可以看出P (550<X <600)=P (400<X <450)=0.3.答案:0.314.已知随机变量ξ~B (36,p ),且E (ξ)=12,则D (ξ)=________. 解析:由E (ξ)=36p =12,得p =13,所以D (ξ)=36×13×23=8.答案:815.欧阳修《卖油翁》中写道:“(翁)乃取一葫芦置于地,以钱覆其口,徐以杓酌油沥之,自钱孔入,而钱不湿.”可见“行行出状元”,卖油翁的技艺让人叹为观止,如图铜钱是直径为4 cm 的圆形,正中间有边长为1 cm 的正方形孔,若随机向铜钱上滴一滴油(油滴是直径为0.2 cm 的球),记“油滴不出边界”为事件A ,“油滴整体正好落入孔中”为事件B .则P (B |A )________(不作近似值计算).解析:因为铜钱的有效面积S =π·(2-0.1)2,能够滴入油的图形为边长为1-2×110=45的正方形,面积为1625, 所以P (B |A )=64361π.答案:64361π16.某射手对目标进行射击,直到第一次命中为止,每次射击的命中率为0.6,现共有子弹4颗,命中后剩余子弹数目的数学期望是________.解析:设ξ为命中后剩余子弹数目,则P (ξ=3)=0.6,P (ξ=2)=0.4×0.6=0.24,P (ξ=1)=0.4×0.4×0.6=0.096,E (ξ)=3×0.6+2×0.24+0.096=2.376.答案:2.376三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)已知f (x )=(1+x )m +(1+x )n (m ,n ∈N *)展开式中x 的系数为19,求f (x )的展开式中x 2的系数的最小值.解:f (x )=1+C 1m x +C 2m x 2+…+C m m x m +1+C 1n x +C 2n x 2+…+C nnx n ,由题意知m +n =19,m ,n ∈N *, 所以x2项的系数为C 2m +C 2n =m (m -1)2+n (n -1)2=⎝ ⎛⎭⎪⎫m -1922+19×174.因为m ,n ∈N *,所以当m =9或m =10时,上式有最小值. 所以当m =9,n =10或m =10,n =9时,x 2项的系数取得最小值,最小值为81.18.(本小题满分12分)某饮料公司招聘了一名员工,现对其进行一项测试,以便确定工资级别.公司准备了两种不同的饮料共8杯,其颜色完全相同,并且其中4杯为A 饮料,另外4杯为B 饮料,公司要求此员工一一品尝后,从8杯饮料中选出4杯A 饮料.若4杯都选对,则月工资定为3 500元;若4杯选对3杯,则月工资定为2 800元,否则月工资定为2 100元,令X 表示此人选对A 饮料的杯数,假设此人对A 和B 两种饮料没有鉴别能力.(1)求X 的分布列; (2)求此员工月工资的期望.解:(1)X 的所有可能取值为:0,1,2,3,4,P (X =i )=C i 4C 4-i 4C 48(i =0,1,2,3,4),故X 的分布列为:(2)令Y 表示新录用员工的月工资,则Y 的所有可能取值为2 100,2 800,3 500,则P (Y =3 500)=P (X =4)=170,P (Y =2 800)=P (X =3)=835,P (Y =2 100)=P (X ≤2)=5370, E (Y )=3 500×170+2 800×835+2 100×5370=2 280.所以新录用员工月工资的期望为2 280元.19.(本小题满分12分)某银行规定,一张银行卡若在一天内出现3次密码尝试错误,该银行卡将被锁定.小王到银行取钱时,发现自己忘记了银行卡的密码,但是可以确定该银行卡的正确密码是他常用的6个密码之一,小王决定从中不重复地随机选择1个进行尝试.若密码正确,则结束尝试;否则继续尝试,直至该银行卡被锁定.(1)求当天小王的该银行卡被锁定的概率;(2)设当天小王用该银行卡尝试密码次数为X ,求X 的分布列和数学期望.解:(1)设“当天小王的该银行卡被锁定”的事件为A , 则P (A )=56×45×34=12.(2)依题意得,X 所有可能的取值是1,2,3, 又P (X =1)=16,P (X =2)=56×15=16,P (X =3)=56×45×1=23.所以X 的分布列为:所以E (X )=1×16+2×16+3×23=52.19.(本小题满分12分)某银行规定,一张银行卡若在一天内出现3次密码尝试错误,该银行卡将被锁定,小王到银行取钱时,发现自己忘记了银行卡的密码,但是可以确定该银行卡的正确密码是他常用的6个密码之一,小王决定从中不重复地随机选择1个进行尝试.若密码正确,则结束尝试;否则继续尝试,直至该银行卡被锁定.(1)求当天小王的该银行卡被锁定的概率;(2)设当天小王用该银行卡尝试密码次数为X ,求X 的分布列和数学期望.解:(1)设“当天小王的该银行卡被锁定”的事件为A , 则P (A )=56×45×34=12.(2)依题意得,X 所有可能的取值是1,2,3,又P (X =1)=16,P (X=2)=56×15=16,P (X =3)=56×45×1=23.所以X 的分布列为:所以E (X )=1×16+2×16+3×23=52.20.(本小题满分12分)从某居民区随机抽取10个家庭,获得第i 个家庭的月收入x i (单位:千元)与月储蓄y i (单位:千元)的数据资料,算得∑10i =1 x i =80,∑10i =1 y i =20,∑10i =1 x i y i =184,∑10i =1 x 2i =720.(1)求家庭的月储蓄y 对月收入x 的线性回归方程y ^=b ^x +a ^; (2)判断变量x 与y 之间是正相关还是负相关;(3)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄. 附:线性回归方程y ^=b ^x +a ^中,b =∑ni =1 x i y i -n x y∑n i =1 x 2i -nx 2,a ^=y -b ^x ,其中x ,y 为样本平均值. 解:(1)由题意知n =10,x =1n ∑n i =1 x i =8010=8,y=1n∑ni=1y i=2010=2,又l xx=∑ni=1x2i-nx2=720-10×82=80,l xy=∑ni=1x i y i-nxy=184-10×8×2=24,由此得b^=l xyl xx=2480=0.3,a^=y-b^x=2-0.3×8=-0.4.故所求线性回归方程为y=0.3x-0.4.(2)由于变量y的值随x值的增加而增加(b=0.3>0),故x与y之间是正相关.(3)将x=7代入回归方程可以预测该家庭的月储蓄为y=0.3×7-0.4=1.7(千元).21.(本小题满分12分)为了研究“教学方式”对教学质量的影响,某高中老师分别用两种不同的教学方式对入学数学平均分数和优秀率都相同的甲、乙两个高一新班进行教学(勤奋程度和自觉性都一样).以下茎叶图为甲、乙两班(每班均为20人)学生的数学期末考试成绩.(1)现从甲班数学成绩不低于80分的同学中随机抽取两名同学,求成绩为87分的同学至少有一名被抽中的概率;(2)学校规定:成绩不低于75分的为优秀.请填写下面的2×2列联表,并判断有多大把握认为“成绩优秀与教学方式有关”.⎝⎭⎪参考公式:K 2=(a +b )(c +d )(a +c )(b +d )解:(1)甲班成绩为87分的同学有2个,其他不低于80分的同学有3个“从甲班数学成绩不低于80分的同学中随机抽取两名同学”的一切可能结果组成的基本事件有C 25=10(个),“抽到至少有一个87分的同学”所组成的基本事件有C 13C 12+C 22=(7个),所以P =710. (2)2×2列联表如下:K 2=40×(6×6-14×14)220×20×20×20=6.4>5.024.因此,我们有97.5%的把握认为成绩优秀与教学方式有关. 22.(本小题满分12分)在一个圆锥体的培养房内培养了40只蜜蜂,准备进行某种实验,过圆锥高的中点有一个不计厚度且平行于圆锥底面的平面把培养房分成两个实验区,其中小锥体叫第一实验区,圆台体叫第二实验区,且两个实验区是互通的.假设蜜蜂落入培养房内任何位置是等可能的,且蜜蜂落入哪个位置相互之间是不受影响的.(1)求蜜蜂落入第二实验区的概率.(2)若其中有10只蜜蜂被染上了红色,求恰有一只红色蜜蜂落入第二实验区的概率.(3)记X 为落入第一实验区的蜜蜂数,求随机变量X 的数学期望E (X ).解:(1)记“蜜蜂落入第一实验区”为事件A ,“蜜蜂落入第二实验区”为事件B ,依题意得:P (A )=V 小锥体V 圆锥体=13·14·S 圆锥底面·12h 圆锥13·S 圆锥底面·h 圆锥=18,所以P (B )=1-P (A )=78,所以蜜蜂落入第二实验区的概率为78.(2)记“蜜蜂被染上红色”为事件C ,则事件B ,C 为相互独立事件,又P (C )=1040=14,P (B )=78.则P (BC )=P (B )P (C )=14×78=732,所以恰有一只红色蜜蜂落入第二实验区的概率为732.(3)因为蜜蜂落入培养房内任何位置是等可能的,且蜜蜂落入哪个位置相互之间是不受影响的,所以变量X 服从二项分布,即X ~B ⎝⎛⎭⎪⎫40,18,所以随机变量X 的数学期望E (X )=40×18=5.。

高中数学选修2-3《二项式定理》精选练习题(含答案)

高中数学选修2-3《二项式定理》精选练习题(含答案)

高中数学选修2-3《二项式定理》精选练习题总分:150分 时间:120分钟一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.在()103x -的展开式中,6x 的系数为( )A .610C 27-B .410C 27 C .610C 9-D .410C 92. 已知a 4b ,0b a =>+, ()n b a +的展开式按a 的降幂排列,其中第n 项与第n+1项相等,那么正整数n 等于 ) A .4 B .9 C .10 D .113.已知(n a a )132+的展开式的第三项与第二项的系数的比为11∶2,则n 是( )A .10B .11C .12D .134.5310被8除的余数是( ) A .1B .2C .3D .7 5. (1.05)6的计算结果精确到0.01的近似值是( ) A .1.23 B .1.24 C .1.33D .1.346.二项式n4x 1x 2⎪⎭⎫ ⎝⎛+ (n ∈N)的展开式中,前三项的系数依次成等差数列,则此展开式有理项的项数是 ( ) A .1B .2C .3D .47.设(3x 31+x 21)n 展开式的各项系数之和为t ,其二项式系数之和为h ,若t+h=272,则展开式的x 2项的系数是 ( ) A .21B .1C .2D .38.在62)1(x x -+的展开式中5x 的系数为( )A .4B .5C .6D .79.nxx)(5131+展开式中所有奇数项系数之和等于1024,则所有项的系数中最大的值是( ) A .330B .462C .680D .79010.54)1()1(-+x x 的展开式中,4x 的系数为( )A .-40B .10C .40D .4511.二项式(1+sinx)n 的展开式中,末尾两项的系数之和为7,且系数最大的一项的值为25,则x 在[0,2π]内的值为 ( )A .6π或3π B .6π或65π C .3π或32π D .3π或65π12.在(1+x )5+(1+x )6+(1+x )7的展开式中,含x 4项的系数是等差数列 a n =3n -5的 ( )A .第2项B .第11项C .第20项D .第24项二、填空题:本大题满分16分,每小题4分,各题只要求直接写出结果. 13.92)21(xx -展开式中9x 的系数是 . 14.若()44104x a x a a 3x 2+⋅⋅⋅++=+,则()()2312420a a a a a +-++的值为__________.15.若 32()n x x -+的展开式中只有第6项的系数最大,则展开式中的常数项是 .16.对于二项式(1-x)1999,有下列四个命题: ①展开式中T 1000= -C 19991000x 999; ②展开式中非常数项的系数和是1;③展开式中系数最大的项是第1000项和第1001项; ④当x=2000时,(1-x)1999除以2000的余数是1.其中正确命题的序号是__________.(把你认为正确的命题序号都填上)三、解答题:本大题满分74分. 17.(12分)若n xx )1(66+展开式中第二、三、四项的二项式系数成等差数列.(1)求n 的值;(2)此展开式中是否有常数项,为什么?18.(12分)已知(124x +)n 的展开式中前三项的二项式系数的和等于37,求展式中二项式系数最大的项的系数.19.(12分)是否存在等差数列{}n a ,使nn n 1n 2n 31n 20n 12n C a C a C a C a ⋅=+⋅⋅⋅++++对任意*N n ∈都成立?若存在,求出数列{}n a 的通项公式;若不存在,请说明理由.20.(12分)某地现有耕地100000亩,规划10年后粮食单产比现在增加22%,人均粮食占有量比现在提高10%。

义务教育人教b版选修2-3高中数学综合素质测试(含解析)高三数学试题试卷.doc

义务教育人教b版选修2-3高中数学综合素质测试(含解析)高三数学试题试卷.doc

选修2 — 3综合素质测试木测试仅供教师备用,学生书中没有。

时间120分钟,满分150分。

一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有 一项是符合题目要求的•)1. 六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有 ()A. 192 种B. 216 种C. 240 种D. 288 种[答案]B[解析]分两类:最左端排甲有Al=20种不同的排法,最左端排乙,由于甲不能排在最右 端,所以有C ;A : = 96种不同的排法,由加法原理可得满足条件的排法共有216种.2. (2015 •新课标II 理,3)根据下面给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论屮不正确的是()A. 逐年比较,2008年减少二氧化硫排放量的效果最显著B. 2007年我国治理二氧化硫排放显现成效C. 2006年以来我国二氧化硫年排放量呈减少趋势D. 2006年以来我国二氧化硫年排放量与年份正相关 [答案]D[解析]考查正、负相关及对柱形图的理解.由柱形图得,从2006年以来,我国二氧化硫排放量呈下降趋势,故年排放量与年份负相关, 故选0.3. (0—276 (^e R )展开式中的常数项是() A. -20 B. -15 C. 15D. 202 7002 600- 2 500- 2 4()0・ 2 300・ 2 200- 2 100- 2 000- 2004年2005年 2006年2007年2008年2009年 2010年 2011 年 2012 年 2013年[答案]C[解析]本小题考查二项展开式的指定项的求法.九=以(們宀・(一2一丁=賦一1)空心化 令 12—3厂=0, Ar=4, ・・・%=a=15.n v4. 设随机变量才服从二项分布X 〜B5, p ),则 一等于() A. 6 B.仃一Q ), C. 1-p D.以上都不对[答案]Bn v[解析]因为 X 〜BG p ), (ZO )2=["(l —刀)]2, UU ))2=(%)2,所以 _ = 血□]二(1-旅故选氏"P5-某地区空气质量监测资料表明,一夭的空气质量为优良的概率是0. 75,连续两天为优良的 概率是0・6,已知某夭的空气质量为优良,则随后一天的空气质量为优良的概率是()B. 0. 75C. 0.6D. 0. 45[答案]A[解析]木题考查条件概率的求法.设弭=“某一天的空气质量为优良” ,3= “随后一天的空气质量为优2 ,则P(B\A)=P =拾=0.8,故选 A.6. (2015 •广东理,4)袋中共冇15个除了颜色外完全相同的球,其中冇10个白球,5个红11 c-刃 [答案]B[解析]从袋中任取2个球共有C215 = 105种,其中恰好1个白球1个红球共有C110C15 = 50种,所以恰好1个白球1个红球的概率为語=普,故选B.7. 某校高三年级举行一次演讲比赛共有10位同学参赛,其中一班有3位,二班有2位,其他 班有5位,若采用抽签方式确定他们的演讲顺序,则一班3位同学恰好被排在一起,而二班2位同 学没A. 0.8 球•从袋中任取2个球, 所取的2个球中恰有1个白球,1个红球的概率为(A.5 21B. 102? D. 1有被排在一起的概率为()A丄B丄10 20[答案]B[解析]基本事件总数为A 粘而事件力包括的基本事件可按“捆绑法”与“插空法”求解. 10个人的演讲顺序有A 幣种可能,即基本事件总数为A ;:, —班同学被排在-•起,二班的同学没有被排在一起这样来考虑:先将一班的3位同学当作一个元素与其他班的5位同学一起排列有皿 种,二班的2位同学插入到上述6个元素所留7个空当中,有朋种方法.依分步计数原理得不同的战・・住 1排法有皿•用•為中.・••所求概率A .o故选B.8. 为了评价某个电视栏目的改革效果,在改革前后分别从居民点随机抽取了 100位居民进行 调查,经过计算 疋的观测值 塔=99,根据这一数据分析,下列说法正确的是()A. 有99%的人认为该栏日优秀B. 有99%的人认为栏目是否优秀与改革有关C. 冇99%的把握认为电视栏冃是否优秀与改革冇关系D. 以上说法都不对 [答案]C[解析]当">6.635时有99%的把握认为电视栏冃是否优秀与改革有关系.故选C.9. 甲、乙两队进行排球决赛,现在的情形是甲队只要再赢一局就获冠军,乙队需要再赢两局 才能得冠军.若两队胜每局的概率相同,则甲队获得冠军的概率为()1 A.-D.[答案]D局甲赢和第一局甲没赢,第二局甲贏.・・・Q*+*X(1-寺岭 选D.10. (2015 •新课标I 理,4)投篮测试中,每人投3次,至少投中2次才能通过测试.己知某 同学每次投篮投屮的概率为0.6, 口各次投篮是否投屮相互独立,则该同学通过测试的概率为B. 0. 432D.1 120B. [解析] 考查互斥事件的概率加法公式. 甲获得冠军包括两种情况:在接下来的比赛屮,第一A. 0. 648C.0. 36D. 0.312 [答案]A[解析1考查独立重复试验;互斥事件和概率公式.根据独立重复试验公式得,该同学通过测试的概率为C^O. 62X0.4 + 0.6;5=0. 648,故选A.11. 如图,已知面积为1的正三角形昇%三边的屮点分别为〃、E 、F,从畀,B, C, D, E, F 六个点中任取三个不同的点,所构成的三角形的面积为才(三点共线时,规定/=0),则E3 = ()11[答案]B1 I3 3[解析]由题意知尤可取0,1,戶(*=0)=忑=帀W_| 20=?12. 已知(1 —2方〃的展开式中,奇数项的二项式系数之和是64,则(1 —2方”(1 +力的展开式 中,卫的系数为()A. -672B. 672C. -280 [答案]D[解析]由2宀=64,所以/7-1=6, n=l.则(1一2方"1+0的展开式中含"的项为:C?(- 2"+C ;(—2力S= (24C}-23C?)?=280y,所以”的系数为 280.故选 D.二、填空题(本大题共4个小题,每小题4分,共16分,将止确答案填在题中横线上) 13. (2015 •广东理,13)己知随机变量才服从二项分布B5, p ).若以力=30,=20,则p= _________ -z 1、 6=20 = 3T oz 、 1 'm=1)=20-3 To J_13 20 = 40*D. 2809[答案]I[解析]依题可得=%=30且〃(x)=®仃一p) =20,解得p=|.14. 如下图,A. B 、a 〃为海上的四个小岛,要建三座桥,将这四个小岛连接起来,则不同[答案]16[解析]一类:从一个岛出发向其它三岛各建一桥.共有C=4种;二类:一个岛最多建两座桥如〃一旷—〃与这样两个排列对应一种建桥方法,因 此共有¥=12种,据分类计数原理共有16种.15. 设/为平面上过点(0,1)的直线,/的斜率等可能地取一2萌、—£、—爭、0、平羽、2品 用§表示坐标原点到/的距离,则随机变量§的数学期望£(§) =[答案] 求数学期望,关键是求出其分布列.根据题意,先确定§的所有可能的取值,再计算概率,从而列出分布列.当Z 的斜率&为土2応时,直线方程为土2侮一y+l=0,此时/=*; k=±书时,k2寸,厶=亍;&=0时,d ;=\.由等可能事件的概率可得分布列如卜•:4丄3 丄2 23 1P2 2 2 1 7777z rX 12,1 2,2 2 , ...Mn=-x 7+-x ?+-x-+ix ?=-16. (2015 •上海理,11)在(1+龙+古『°的展开式中,"项的系数为 示) [答案]45的建桥方案共有 种.[解析](结果用数值表[解析]因为(1+卄占)”=[(1+力+占]”=(1+方” + (:;。

数学:《综合测试题》(新人教A版选修2-3)

数学:《综合测试题》(新人教A版选修2-3)

高中新课标数学选修(2-3)综合测试题(1)一、选择题1.已知{}{}{}123013412a b R ∈-∈∈,,,,,,,,,则方程222()()x a y b R -++=所表示的不同的圆的个数有( )A.3×4×2=24 B.3×4+2=14 C.(3+4)×2=14 D.3+4+2=9答案:A2.神六航天员由翟志刚、聂海胜等六人组成,每两人为一组,若指定翟志刚、聂海胜两人一定同在一个小组,则这六人的不同分组方法有( )A.48种 B.36种 C.6种 D.3种答案:D3.41nx ⎛⎫ ⎪⎝⎭的展开式中,第3项的二项式系数比第2项的二项式系数大44,则展开式中的常数项是( )A.第3项 B.第4项 C.第7项 D.第8项答案:B4.从标有1,2,3,…,9的9张纸片中任取2张,数字之积为偶数的概率为( ) A.12 B.718 C.1318 D.1118答案:C5.在10个球中有6个红球和4个白球(各不相同),不放回地依次摸出2个球,在第一次摸出红球的条件下,第2次也摸到红球的概率为( ) A.35 B.25 C.110 D.59答案:D6.正态总体的概率密度函数为2()8()x x f x -∈=R ,则总体的平均数和标准差分别为( )A.0,8 B .0,4 C.0,2 D.0,2答案:D7.在一次试验中,测得()x y ,的四组值分别是(12)(23)(34)(45)A B C D ,,,,,,,,则y 与x 之间的回归直线方程为( )A.1y x=+B.2y x=+C.21y x=+D.1y x=-答案:A8.用0,1,2,3,4这五个数字组成无重复数字的五位数,其中恰有一个偶数数字夹在两个奇数数字之间的五位数的个数是()A.48 B.36 C.28 D.20答案:C9.若随机变量η的分布列如下:0 1 2 30 .1.2.2.3.1.1则当()0.8P xη<=时,实数x的取值范围是()A.x≤2 B.1≤x≤2 C.1<x≤2 D.1<x<2答案:C10.春节期间,国人发短信拜年已成为一种时尚,若小李的40名同事中,给其发短信拜年的概率为1,0.8,0.5,0的人数分别为8,15,14,3(人),则通常情况下,小李应收到同事的拜年短信数为()A.27 B.37 C.38 D.8答案:A11.在4次独立重复试验中事件A出现的概率相同,若事件A至少发生1次的概率为6581,则事件A在1次试验中出现的概率为()A.13B.25C.56D.23答案:A12.已知随机变量1~95Bξ⎛⎫⎪⎝⎭,则使()P kξ=取得最大值的k值为()A.2 B.3 C.4 D.5答案:A二、填空题13.某仪表显示屏上一排有7个小孔,每个小孔可显示出0或1,若每次显示其中三个孔,但相邻的两孔不能同时显示,则这显示屏可以显示的不同信号的种数有种.答案:8014.已知平面上有20个不同的点,除去七个点在一条直线上以外,没有三个点共线,过这20个点中的每两个点可以连 条直线.答案:17015.某射手射击1次,击中目标的概率是0.9,他连续射击4次,且各次射击是否击中目标相互之间没有影响,有下列结论:①他第3次击中目标的概率是0.9;②他恰好击中目标3次的概率是0.93×0.1; ③他至少击中目标1次的概率是41(0.1)-.其中正确结论的序号是 (写出所有正确结论的序号).答案:①③16.口袋内装有10个相同的球,其中5个球标有数字0,5个球标有数字1,若从袋中摸出5个球,那么摸出的5个球所标数字之和小于2或大于3的概率是 (以数值作答). 答案:1363三、解答题17.有4个不同的球,四个不同的盒子,把球全部放入盒内. (1)共有多少种放法?(2)恰有一个盒子不放球,有多少种放法? (3)恰有一个盒内放2个球,有多少种放法? (4)恰有两个盒不放球,有多少种放法? 解:(1)一个球一个球地放到盒子里去,每只球都可有4种独立的放法,由分步乘法计数原理,放法共有:44256=种.(2)为保证“恰有一个盒子不放球”,先从四个盒子中任意拿出去1个,即将4个球分成2,1,1的三组,有24C 种分法;然后再从三个盒子中选一个放两个球,其余两个球,两个盒子,全排列即可.由分步乘法计数原理,共有放法:12124432144C C C A =···种. (3)“恰有一个盒内放2个球”,即另外三个盒子中恰有一个空盒.因此,“恰有一个盒内放2球”与“恰有一个盒子不放球”是一回事.故也有144种放法.(4)先从四个盒子中任意拿走两个有24C 种,问题转化为:“4个球,两个盒子,每盒必放球,有几种放法?”从放球数目看,可分为(3,1),(2,2)两类.第一类:可从4个球中先选3个,然后放入指定的一个盒子中即可,有3142C C ·种放法;第二类:有24C 种放法.因此共有31342414C C C +=·种.由分步乘法计数原理得“恰有两个盒子不放球”的放法有:241484C =·种.18.求25(1)(1)x x +-的展开式中3x 的系数.解:解法一:先变形,再部分展开,确定系数.252232423(1)(1)(1)(1)(12)(133)x x x x x x x x x +-=--=-+-+-.所以3x 是由第一个括号内的1与第二括号内的3x -的相乘和第一个括号内的22x -与第二个括号内的3x -相乘后再相加而得到,故3x 的系数为1(1)(2)(3)5⨯-+-⨯-=.解法二:利用通项公式,因2(1)x +的通项公式为12rr r T C x +=·, 5(1)x -的通项公式为15(1)k k k k T C x +=-·, 其中{}{}012012345r k ∈∈,,,,,,,,,令3k r +=, 则12k r =⎧⎨=⎩,,或21k r =⎧⎨=⎩,,或30k r =⎧⎨=⎩,.故3x 的系数为112352555C C C C -+-=·.19.为了调查胃病是否与生活规律有关,某地540名40岁以上的人的调查结果如下:患胃病 未患胃病 合计 生活不规律 60 260 320 生活有规律 20 200 220 合计80460540根据以上数据比较这两种情况,40岁以上的人患胃病与生活规律有关吗?解:由公式得2540(6020026020)32022080460k ⨯⨯-⨯=⨯⨯⨯ 2540(120005200)24969609.6382590720000259072⨯-==≈.9.6387.879>∵,∴我们有99.5%的把握认为40岁以上的人患胃病与生活是否有规律有关,即生活不规律的人易患胃病.20.一个医生已知某种病患者的痊愈率为25%,为实验一种新药是否有效,把它给10个病人服用,且规定(1)虽新药有效,且把痊愈率提高到35%,但通过实验被否认的概率; (2)新药完全无效,但通过实验被认为有效的概率.解:记一个病人服用该药痊愈率为事件A ,且其概率为p ,那么10个病人服用该药相当于10次独立重复实验.(1) 因新药有效且p =0.35,故由n 次独立重复试验中事件A 发生k 次的概率公式知,实验被否定(即新药无效)的概率为:0010119223371010101010101010(0)(1)(2)(3)(1)(1)(1)(1)0.514x P P P P C p p C p p C p p C p p +++=-+-+-+-≈.(2)因新药无效,故p =0.25,实验被认为有效的概率为: 10101010101010(4)(5)(10)1((0)(1)(2)(3))0.224P P P P P P P +++=-+++≈.即新药有效,但被否定的概率约为0.514; 新药无效,但被认为有效的概率约为0.224.21.A B ,两个代表队进行乒乓球对抗赛,每队三名队员,A 队队员是123A A A ,,,B 队队员是123B B B ,,,现按表中对阵方式出场,每场胜队得1分,负队得0分,设A 队,B 队最后所得总分分别为ξη,. (1)求ξη,的概率分布列; (2)求E ξ,E η.解:(1)ξη,的可能取值分别为3,2,1,0.2228(3)35575P ξ==⨯⨯=;22312223228(2)35535535575P ξ==⨯⨯+⨯⨯+⨯⨯=; 2331231322(1)3553553555P ξ==⨯⨯+⨯⨯+⨯⨯=;1333(0)35525P ξ==⨯⨯=.由题意知3ξη+=, 所以8(0)(3)75P P ηξ====; 28(1)(2)75P P ηξ====; 2(2)(1)5P P ηξ====; 3(3)(0)P P ηξ====.ξ的分布列为3218752875325η的分布列为1238752875325(2)82823223210757552515E ξ=⨯+⨯+⨯+⨯=, 因为3ξη+=,所以23315E E ηξ=-=.22.某工业部门进行一项研究,分析该部门的产量与生产费用之间的关系,从这个工业部门内随机抽选了个企业作样本,有如下资料:产量(千件)x 生产费用 (千元)y79 162 88 185 100 165 120 190 140185完成下列要求:(1)计算x 与y 的相关系数;(2)对这两个变量之间是否线性相关进行相关性检验; (3)设回归直线方程为y bx a =+,求系数a ,b .解:利用回归分析检验的步骤,先求相关系数,再确定0.05r . (1)制表ii y 2i x 2i y i i x y1 40 150 1600 22500 60002 42 140 1764 19600 5880 3481602304256007680产量(千件)x 生产费用 (千元)y40 150 42 140 48 160 55 170 651504 55 170 3025 28900 9350 5 65 150 4225 22500 97506 79 162 6241 26244 127987 88 185774434225 16280 8 100165 10000 27225 16500 9 120190 14400 36100 22800 10140185 1960034225 25900 合计 777 1657 7090327711913293877777.710x ==,1657165.710y == 270903ix =∑,2277119i y =∑,132938iix y=∑220.808(709031077.7)(2771910165.7)r =≈-⨯-⨯.即x 与Y 的相关关系0.808r ≈. (2)因为0.75r >.所以x 与Y 之间具有很强的线性相关关系. (3)1329381077.7165.70.398709031077.7b -⨯⨯=≈-⨯,165.70.39877.7134.9a =-⨯=.高中新课标数学选修(2-3)综合测试题(2)一、选择题1.假定有一排蜂房,形状如图所示,一只蜜蜂在左下角的蜂房中,由于受了点伤,只能爬,不能飞,而且只能永远向右方(包括右上,右下)爬行,从一间蜂房爬到与之相邻的右方蜂房中去,若从最初位置爬到4号蜂房中,则不同的爬法有( ) A.4种 B.6种 C.8种 D.10种答案:C2.乒乓球运动员10人,其中男女运动员各5人,从这10名运动员中选出4人进行男女混合双打比赛,选法种数为( ) A.225()AB.225()CC.22254()C A · D.22252()C A ·答案:D3.已知集合{}123456M =,,,,,,{}6789N =,,,,从M 中选3个元素,N 中选2个元素,组成一个含有5个元素的集合T ,则这样的集合T 共有( )A.126个 B.120个 C.90个 D.26个答案:C4.342(1)(1)(1)n x x x +++++++的展开式中2x 的系数是( )A.33n C +B.32n C +C.321n C +- D.331n C +-答案:D5.200620052008+被2006除,所得余数是( ) A.2009 B.3 C.2 D.1答案:B6.市场上供应的灯泡中,甲厂产品占70%,乙厂产品占30%,甲厂产品的合格率是95%,乙厂产品的合格率是80%,则从市场上买到一个是甲厂生产的合格灯泡的概率是( ) A.0.665 B .0.56 C.0.24 D.0.285答案:A7.抛掷甲、乙两颗骰子,若事件A :“甲骰子的点数大于4”;事件B :“甲、乙两骰子的点数之和等于7”,则(|)P B A 的值等于( )A.13 B.118 C.16 D.19答案:C8.在一次智力竞赛的“风险选答”环节中,一共为选手准备了A ,B ,C 三类不同的题目,选手每答对一个A 类、B 类、C 类的题目,将分别得到300分、200分、100分,但如果答错,则要扣去300分、200分、100分,而选手答对一个A 类、B 类、C 类题目的概率分别为0.6,0.7,0.8,则就每一次答题而言,选手选择( )题目得分的期望值更大一些( ) A.A 类 B.B 类 C.C 类 D.都一样答案:B9.已知ξ的分布列如下:4并且23ηξ=+,则方差D η=( ) A.17936B.14336C.29972D.22772答案:A10.若2~(16)N ξ-,且(31)P ξ--≤≤0.4=,则(1)P ξ≥等于( ) A.0.1 B.0.2 C.0.3D.0.4答案:A11.已知x ,y 之间的一组数据:则y 与x 的回归方程必经过( ) A.(2,2) B.(1,3) C.(1.5,4) D.(2,5)答案:C12.对于2()P K k ≥,当 2.706k >时,就约有的把握认为“x 与y 有关系”( ) A.99% B.99.5% C.95% D.90%答案:D二、填空题13.912xx⎛⎫-⎪⎝⎭的展开式中,常数项为(用数字作答).答案:67214.某国际科研合作项目成员由11个美国人,4个法国人和5个中国人组成.现从中随机选出两位作为成果发布人,则此两人不属于同一个国家的概率为(结果用分数表示).答案:119 19015.两名狙击手在一次射击比赛中,狙击手甲得1分、2分、3分的概率分别为0.4,0.1,0.5;狙击手乙得1分、2分、3分的概率分别为0.1,0.6,0.3,那么两名狙击手获胜希望大的是.答案:乙16.空间有6个点,其中任何三点不共线,任何四点不共面,以其中的四点为顶点共可作出个四面体,经过其中每两点的直线中,有对异面直线.答案:15,45三、解答题17.某人手中有5张扑克牌,其中2张为不同花色的2,3张为不同花色的A,他有5次出牌机会,每次只能出一种点数的牌,但张数不限,则有多少种不同的出牌方法?解:由于张数不限,2张2,3张A可以一起出,亦可分几次出,故考虑按此分类.出牌的方法可分为以下几类:(1)5张牌全部分开出,有55A种方法;(2)2张2一起出,3张A一起出,有25A种方法;(3)2张2一起出,3张A分开出,有45A种方法;(4)2张2一起出,3张A分两次出,有2335C A种方法;(5)2张2分开出,3张A一起出,有35A种方法;(6)2张2分开出,3张A分两次出,有2435C A种方法;因此共有不同的出牌方法5242332455535535860A A A C A A C A+++++=种.18.已知数列{}n a 的通项n a 是二项式(1)n x +与2(1)n x +的展开式中所有x 的次数相同的各项的系数之和,求数列的通项及前n 项和n S .解:按(1)n x +及2(1)n x +两个展开式的升幂表示形式,写出的各整数次幂,可知只有当2(1)n x +中出现x 的偶数次幂时,才能与(1)n x +的x 的次数相比较.由0122(1)n n nnn n n x C C x C x C x +=++++,132120242213212222222222(1)()()n nn nn nnnnnnnx C C x C x C x C x C x Cx--+=++++++++可得00122422222()()()()n nn n n n n n n n n a C C C C C C C C =++++++++01202422222()()n nn n n n n n n n C C C C C C C C =+++++++++2122n n -=+, 2122n n n a -=+∵,∴222462112(222)(22222(21)(41)223n nnnn S =++++++++=-+⨯-122112122(21)(2328)33n n n n +++=-+-=+-·,2111(2328)3n n n S ++=-∴·.19.某休闲场馆举行圣诞酬宾活动,每位会员交会员费50元,可享受20元的消费,并参加一次抽奖活动,从一个装有标号分别为1,2,3,4,5,6的6只均匀小球的抽奖箱中,有放回的抽两次球,抽得的两球标号之和为12,则获一等奖价值a 元的礼品,标号之和为11或10,获二等奖价值100元的礼品,标号之和小于10不得奖.(1)求各会员获奖的概率;(2)设场馆收益为ξ元,求ξ的分布列;假如场馆打算不赔钱,a 最多可设为多少元?解:(1)抽两次得标号之和为12的概率为11116636P =+=; 抽两次得标号之和为11或10的概率为2536P =, 故各会员获奖的概率为1215136366P P P =+=+=. (2)30a-30100-31365363036由1530(30)(70)300363636E a ξ=-⨯+-⨯+⨯≥, 得580a ≤元.所以a 最多可设为580元.20.在研究某种新药对猪白痢的防治效果时到如下数据:存活数死亡数 合计未用新药 101 38 139用新药 129 20 149合计23058288试分析新药对防治猪白痢是否有效?解:由公式计算得2288(1012038129)8.65813914923058k ⨯⨯-⨯=≈⨯⨯⨯,由于8.658 6.635>,故可以有99%的把握认为新药对防治猪白痢是有效的.21.甲有一个箱子,里面放有x 个红球,y 个白球(x ,y ≥0,且x +y =4);乙有一个箱子,里面放有2个红球,1个白球,1个黄球.现在甲从箱子里任取2个球,乙从箱子里任取1个球.若取出的3个球颜色全不相同,则甲获胜.(1)试问甲如何安排箱子里两种颜色球的个数,才能使自己获胜的概率最大? (2)在(1)的条件下,求取出的3个球中红球个数的期望.解:(1)要想使取出的3个球颜色全不相同,则乙必须取出黄球,甲取出的两个球为一个红球一个白球,乙取出黄球的概率是14,甲取出的两个球为一个红球一个白球的概率是 11246x yC C xy C =·,所以取出的3个球颜色全不相同的概率是14624xy xy P ==·,即甲获胜的概率为24xy P =,由0x y ,≥,且4x y +=,所以12424xy P =≤2126x y +⎛⎫= ⎪⎝⎭·,当2x y ==时取等号,即甲应在箱子里放2个红球2个白球才能使自己获胜的概率最大.(2)设取出的3个球中红球的个数为ξ,则ξ的取值为0,1,2,3.212221441(0)12C C P C C ξ===·,1112122222212144445(1)12C C C C C P C C C C ξ==+=··,2111122222212144445(2)12C C C C C P C C C C ξ==+=··,212221441(3)12C C P C C ξ===·,所以取出的3个球中红球个数的期望:15510123 1.512121212E ξ=⨯+⨯+⨯+⨯=.22.规定(1)(1)mxA x x x m =--+,其中x ∈R ,m 为正整数,且01x A =,这是排列数m n A (n ,m 是正整数,且m ≤n )的一种推广.(1)求315A -的值;(2)排列数的两个性质:①11m m n n A nA --=,②11m m mn n n A mA A -++= (其中m ,n 是正整数).是否都能推广到m x A (x ∈R ,m 是正整数)的情形?若能推广,写出推广的形式并给予证明;若不能,则说明理由;(3)确定函数3x A 的单调区间.解:(1)315(15)(16)(17)4080A -=-⨯-⨯-=-;(2)性质①、②均可推广,推广的形式分别是①11m m x x A xA --=,②11()m m m x x x A mA A x m -*++=∈∈R N ,.事实上,在①中,当1m =时,左边1x A x ==,右边01x xA x -==,等式成立;在②中,当1m =时,左边10111x x x A A x A +=+=+==右边,等式成立;当2m ≥时,左边(1)(2)(1)(1)(2)(2)x x x x m mx x x x m =---++---+=(1)(2)(2)[(1)]x x x x m x m m ---+-++1(1)(1)(2)[(1)1]mx x x x x x m A +=+--+-+==右边,因此②11()m m m x x x A mA A x m -*++=∈∈R N ,成立.(3)先求导数,得32()362xA x x '=-+.令23620x x -+>,解得x <x >因此,当x ⎛∈- ⎝⎭∞时,函数为增函数,当x ⎫∈+⎪⎪⎝⎭∞时,函数也为增函数,令23620x x -+≤x ,因此,当x ∈⎣⎦时,函数为减函数,∴函数3x A 的增区间为⎛- ⎝⎭∞,⎫+⎪⎪⎝⎭∞;减区间为⎣⎦.。

高中数学选修2-3综合测试题

高中数学选修2-3综合测试题

高中数学选修2-3综合检测题(满分150分)一.单选题(共8小题)1.n ∈N *,则(20-n )(21-n)……(100-n)等于 ( )A .80100n A -B .nn A --20100C .81100n A - D .8120n A -2.、随机变量ξ服从二项分布ξ~()p n B ,,且,200,300==ξξD E 则p 等于( )A.32B. 31C. 1D. 03.已知 (1+x )6=a 0+a 1x +a 2x 2+…+a 6x 6,在a 0,a 1,a 2,…,a 6这7个数中,从中任取两数,则所取的两数之和为偶数的概率为( ) A .B .C .D .4.现有5人站成一排照相,其中甲、乙相邻,且丙、丁不相邻,这样的排法有( ) A .12种B .24种C .36种D .48种5.某工厂周一到周六轮流由甲、乙、丙3人值班,每人值两天,3人通过抽签决定每个人在哪两天值班,若乙恰好本周六需要出差,则乙需要与他人换班的概率为( ) A .B .C .D .6.奥运会乒乓球单打的淘汰赛采用七局四胜制,猜先后由一方先发球,双方轮流先发球,当一方赢得四局胜利时,该方获胜,比赛结束,现有甲、乙两人比赛,根据前期比赛成绩,单局甲先发球并取胜的概率为0.8,乙先发球并取胜的概率为0.4,且各局比赛的结果相互独立;如果第一局由乙先发球,则甲以4:0获胜的概率是( ) A .0.1024B .0.2304C .0.2048D .0.46087.已知随机变量X 的分布列为,k =1,2,…10,则P (3≤X ≤4)=( )A .B .C .D .8.PM 2.5是空气质量的一个重要指标,我国PM 2.5标准采用世卫组织设定的最宽限值,即PM 2.5日均值在35μg /m 3以下空气质量为一级,在35μg /m 3~75μg /m 3之间空气质量为二级,在75μg /m 3以上空气质量为超标.如图是某市2019年12月1日到10日PM 2.5日均值(单位:μg /m 3)的统计数据.若从这10天中随机抽取3天进行进一步的空气质量数据分析,则空气质量为一级的恰好抽取了2天的概率为( )A .B .C .D .二.多选题(共4小题)9.设命题1p :42()x x +的展开式共有4项;命题2p :42()x x+展开式中的常数项为24 命题3p :42()x x +的展开式中各项的二项式系数之和为16 ; 命题p4:42()x x+的展开式 各项的系数之和为81 .那么,下列命题中为真命题的是( ) A. 1p B 2p C 3p D p410.甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球,3个白球和3个黑球.先从甲罐中随机取出一球放入乙罐,分别以A 1,A 2和A 3表示由甲罐取出的球是红球,白球和黑球的事件;再从乙罐中随机取出一球,以B 表示由乙罐取出的球是红球的事件,则下列结论中正确的是( ) A .B .C .事件B 与事件A 1相互独立D .A 1,A 2,A 3是两两互斥的事件11.关于(a ﹣b )11的说法,正确的是( ) A .展开式中的二项式系数之和为2048B .展开式中只有第6项的二项式系数最大C .展开式中第6项和第7项的二项式系数最大D .展开式中第6项的系数最小12.已知由样本数据点集合{(x i ,y i )|i =1,2,…,n },求得的回归直线方程为=1.5x +0.5,且=3,现发现两个数据点(1.2,2.2)和(4.8,7.8)误差较大,去除后重新求得的回归直线l 的斜率为1.2,则( ) A .变量x 与y 具有正相关关系 B .去除后的回归方程为=1.2x +1.4 C .去除后y 的估计值增加速度变快D .去除后相应于样本点(2,3.75)的残差为0.05三.填空题(共4小题)13.若⎝⎛⎭⎫ax 2+bx 6的展开式中x 3项的系数为20,则a 2+b 2的最小值为________ 14.若(ax ﹣1)(+x )6的展开式中含x 3的系数为30,则a 的值为 .15.汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”是我国古代数学的瑰宝,“赵爽弦图”如图所示,由四个全等的直角三角形和一个正方形构成,现有五种不同的颜色可供涂色,要求相邻的区域不能用同一种颜色,则不同的涂色方案有 种(用数字作答).16.根据公共卫生传染病分析中心的研究,传染病爆发疫情期间,如果不采取任何措施,则会出现感染者基数猛增,重症挤兑,医疗资源负荷不堪承受的后果.如果采取公共卫生强制措施,则会导致峰值下降,峰期后移.如图,设不采取措施、采取措施情况下分别服从正态分布N (35,2),N (70,8),则峰期后移了 天,峰值下降了 %(注:正态分布的峰值计算公式为)四.解答题(共6小题)17.(10分) 设⎝ ⎛⎭⎪⎪⎫32+133n 的展开式的第7项与倒数第7项的比是1∶6,求展开式中的第7项.18.(12分)已知二项式(ax+)n的第三项和第八项的二项式系数相等.(1)求n的值.(2)若展开式的常数项为84,求a.19.(12分)近年来,国家相关政策大力鼓励创新创业种植业户小李便是受益者之一,自从2017年毕业以来,其通过自主创业而种植的某种农产品广受市场青睐,他的种植基地也相应地新增加了一个平时小李便带着部分员工往返于新旧基地之间进行科学管理和经验交流,新旧基地之间开车单程所需时间为i,由于不同时间段车流量的影响,现对50名员工往返新旧基地之间的用时情况进行统计,结果如表:t(分钟)3035404550频数(人)10201055(1)若有50名员工参与调查,现从单程时间在35分钟,40分钟,45分钟的人员中按分层抽样的方法抽取7人,再从这7人中随机抽取3人进行座谈,用X表示抽取的3人中时间在40分钟的人数,求X的分布列和数学期望;(2)某天,小李需要从旧基地驾车赶往新基地召开一个20分钟的紧急会议,结束后立即返回旧基地.(以50名员工往返新旧基地之间的用时的频率作为用时发生的概率)①求小李从离开旧基地到返回旧基地共用时间不超过110分钟的概率;②若用随机抽样的方法从旧基地抽取8名骨干员工陪同小李前往新基地参加此次会议,其中有Y名员工从离开旧基地到返回旧基地共用时间不超过110分钟,求随机变量Y的方差.20.(12分)为响应“坚定文化自信,建设文化强国”,提升全民文化修养,引领学生“读经典,用经典”,某广播电视台计划推出一档“阅读经典”节目.工作人员在前期的数据采集中,在某高中学校随机抽取了120名学生做调查,统计结果显示:样本中男女比例为3:2,而男生中喜欢阅读中国古典文学和不喜欢的比例是7:5,女生中喜欢阅读中国古典文学和不喜欢的比例是5:3.(1)填写下面列联表,并根据联表判断是否有95%的把握认为喜欢阅读中国古典文学与性别有关系?男生女生总计喜欢阅读中国古典文学不喜欢阅读中国古典文学总计(2)为做好文化建设引领,实验组把该校作为试点,和该校的的学生进行中国古典文学阅读交流.实验人员已经从所调查的120人中筛选出4名男生和3名女生共7人作为代表,这7个代表中有2名男生代表和2名女生代表喜欢中国古典文学.现从这7名代表中任选3名男生代表和2名女生代表参加座谈会,记ξ为参加会议的5人中喜欢古典文学的人数,求ξ的分布列及数学期望E(ξ).附表及公式:.P(K2>k0)0.050.0250.0100.0050.001 k0 3.841 5.024 6.6357.87910.82821.(12分)某果园种植“糖心苹果”已有十余年,根据其种植规模与以往的种植经验,产自该果园的单个“糖心苹果”的果径(最大横切面直径,单位:mm)在正常环境下服从正态分布N(68,36).(1)一顾客购买了20个该果园的“糖心苹果”,求会买到果径小于56mm的概率;(2)为了提高利润,该果园每年投入﹣定的资金,对种植、采摘、包装、宜传等环节进行改进.如图是2009年至2018年,该果园每年的投资金额x(单位:万元)与年利润增量y(单位:万元)的散点图:该果园为了预测2019年投资金额为20万元时的年利润增量,建立了y关于x的两个回归模型;模型①:由最小二乘公式可求得y与x的线性回归方程:=2.50x﹣2.50;模型②:由图中样本点的分布,可以认为样本点集中在曲线:y=blnx+a的附近,对投资金额x做交换,令t=lnx,则y=b•t+a,且有,(I)根据所给的统计量,求模型②中y关于x的回归方程;(II)根据下列表格中的数据,比较两种模型的相关指数R2,并选择拟合精度更高、更可靠的模型,预测投资金额为20万元时的年利润增量(结果保留两位小数).回归模型模型①模型②回归方程=2.50x﹣2.50=blnx+a102.2836.19附:若随机变量X~N(μ,σ2),则P(μ﹣2σ≤X≤μ+2σ)=0.9544,P(μ﹣3σ≤X≤μ+3σ)=0.9974;样本(t i,y i)(i=1,2,…,n)的最小乘估计公式为=,=﹣;相关指数R2=1﹣.参考数据:0.977220≈0.6305,0.998720≈0.9743,ln2≈0.6931,ln5≈1.6094.22.(12分)某学校为了解全校学生的体重情况,从全校学生中随机抽取了100人的体重数据,得到如下频率分布直方图,以样本的频率作为总体的概率.(1)估计这100人体重数据的平均值μ和样本方差σ2(结果取整数,同一组中的数据用该组区间的中点值作代表)(2)从全校学生中随机抽取3名学生,记X为体重在[55,65)的人数,求X的分布列和数学期望;(3)由频率分布直方图可以认为,该校学生的体重Y近似服从正态分布N(μ,σ2).若P(μ﹣2σ≤Y<μ+2σ)>0.9544,则认为该校学生的体重是正常的.试判断该校学生的体重是否正常?并说明理由.。

2017-2018学年高中数学选修2-3模块综合检测题含答案

2017-2018学年高中数学选修2-3模块综合检测题含答案

2017-2018学年高中数学选修2-3模块综合检测题含答案2017-2018学年高中数学选修2-3模块综合检测题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟。

第Ⅰ卷(选择题共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列四个命题:①线性相关系数r越大,两个变量的线性相关性越强;反之,线性相关性越弱;②残差平方和越小的模型,模型拟合的效果越好;③用相关指数R2来刻画回归效果,R2越小,说明模型的拟合效果越好;④在推断“X与Y有关系”的论述中,用三维柱形图,只要主对角线上两个柱形高度的比值与副对角线上的两个柱形高度的比值相差越大,H成立的可能性就越大。

其中真命题的个数是()A。

1B。

2C。

3D。

42.在x(1+x)6的展开式中,含x3项的系数为()A。

30B。

20C。

15D。

103.甲、乙两人进行围棋比赛,比赛采取五局三胜制,无论哪一方先胜三局则比赛结束,假定甲每局比赛获胜的概率均为。

则甲以3∶1的比分获胜的概率为()A。

B。

C。

D。

4.随机变量ξ的概率分布规律为P(X=n)=(n=1、2、3、4),其中a为常数,则P的值为()A。

B。

C。

D。

5.若随机变量ξ~N(-2,4),则ξ在区间(-4,-2]上取值的概率等于ξ在下列哪个区间上取值的概率()A。

(2,4]B。

(0,2]C。

[-2,0)D。

(-4,4]6.有6张卡片分别标有1、2、3、4、5、6,将其排成3行2列,要求每一行的两张卡片上的数字之和均不等于7,则不同的排法种数是()A。

192B。

384C。

432D。

4487.变量X与Y相对应的一组数据为(10,1)、(11.3,2)、(11.8,3)、(12.5,4)、(13,5);变量U与V相对应的一组数据为(10,5)、(11.3,4)、(11.8,3)、(12.5,2)、(13,1)。

高中新课标数学选修(2-3)综合测试题

高中新课标数学选修(2-3)综合测试题

选修(2-3)综合测试题一、选择题1.从0,1,2,…,9这10个数字中,任取两个不同数字作为平面直角坐标系中点的坐标,能够确定不在x 轴上的点的个数是( ) A .100 B .90 C .81 D .72 2.A ,B ,C ,D ,E 五人并排站成一排,如果B 必须站在A 的右边,(A ,B 可以不相邻)那么不同的排法有( ) A .24种 B .60种 C .90种 D .120种3.男女学生共有8人,从男生中选取2人,从女生中选取1人,共有30种不同的选法,其中女生有( ) A .2人或3人 B .3人或4人 C .3人 D .4人4.工人工资(元)依劳动生产率(千元)变化的回归方程为y =50+80x ,下列判断中正确的是( )A .劳动生产率为1000元时,工资为130元B .劳动生产率平均提高1000元时,工资平均提高80元C .劳动生产率平均提高1000元时,工资平均提高130元D .当工资为250元时,劳动生产率为2000元 5.设313nx x ⎛⎫+ ⎪⎝⎭的展开式的各项系数的和为P ,所有二项式系数的和为S ,若P +S =272,则n 为( )A .4B .5C .6D .86.已知随机变量X 的分布列为1()122kP X k k n === ,,,,,则(24)P X <≤为( ) A .3/16 B .1/4 C .1/16 D .5/167.两位同学一起去一家单位应聘,面试前单位负责人对他们说:“我们要从面试的人中招聘3人,你们俩同时被招聘进来的概率是1/70”.根据这位负责人的话可以推断出参加面试的人数为 A .21 B .35 C .42 D .70 8.有外形相同的球分装三个盒子,每盒10个.其中,第一个盒子中7个球标有字母A 、3个球标有字母B ;第二个盒子中有红球和白球各5个;第三个盒子中则有红球8个,白球2个.试验按如下规则进行:先在第一号盒子中任取一球,若取得标有字母A 的球,则在第二号盒子中任取一个球;若第一次取得标有字母B 的球,则在第三号盒子中任取一个球.如果第二次取出的是红球,则称试验成功,那么试验成功的概率为( ) A .0.59 B .0.54 C .0.8 D .0.15 9.设一随机试验的结果只有A 和A ,()P A p =,令随机变量10A X A =⎧⎨⎩,出现,,不出现,,则X 的方差为( )A .pB .2(1)p p -C .(1)p p --D .(1)p p -10.310(1)(1)x x -+的展开式中,5x 的系数是( ) A.297-B.252-C.297D.20711.某厂生产的零件外直径ξ~N (10,0.04),今从该厂上、下午生产的零件中各随机取出一个,测得其外直径分别为9.9cm 和9.3cm ,则可认为( )A .上午生产情况正常,下午生产情况异常B .上午生产情况异常,下午生产情况正常C .上、下午生产情况均正常D .上、下午生产情况均异常12.甲乙两队进行排球比赛,已知在一局比赛中甲队获胜的概率是2/3,没有平局.若采用三局两胜制比赛,即先胜两局者获胜且比赛结束,则甲队获胜的概率等于( ) A.2027B.49C.827 D.1627二、填空题13.有6名学生,其中有3名会唱歌,2名会跳舞,1名既会唱歌也会跳舞.现从中选出2名会唱歌的,1名会跳舞的去参加文艺演出,则共有选法 种. 14.设随机变量ξ的概率分布列为()1cP k k ξ==+,0123k =,,,,则(2)P ξ== . 15.已知随机变量X 服从正态分布2(0)N σ,且(20)P X -≤≤0.4=则(2)P X >= .16.已知100件产品中有10件次品,从中任取3件,则任意取出的3件产品中次品数的数学期望为 ,方差为 .三、解答题17.在调查学生数学成绩与物理成绩之间的关系时,得到如下数据(人数):物理成绩好 物理成绩不好 合计数学成绩好 62 23 85 数学成绩不好28 22 50 合计9045135试判断数学成绩与物理成绩之间是否线性相关,判断出错的概率有多大?18.假设关于某设备使用年限x (年)和所支出的维修费用y (万元)有如下统计资料:x 2 3 4 5 6 y 2.2 3.8 5.5 6.5 7.0 若由资料知,y 对x 呈线性相关关系,试求:(1)回归直线方程; (2)估计使用年限为10年时,维修费用约是多少?19.用0,1,2,3,4,5这六个数字: (1)能组成多少个无重复数字的四位偶数?(2)能组成多少个无重复数字且为5的倍数的五位数? (3)能组成多少个无重复数字且比1325大的四位数?20.已知()(1)(1)()m n f x x x m n *=+++∈N ,的展开式中x 的系数为19,求()f x 的展开式中2x 的系数的最小值.21.某厂工人在2006年里有1个季度完成生产任务,则得奖金300元;如果有2个季度完成生产任务,则可得奖金750元;如果有3个季度完成生产任务,则可得奖金1260元;如果有4个季度完成生产任务,可得奖金1800元;如果工人四个季度都未完成任务,则没有奖金,假设某工人每季度完成任务与否是等可能的,求他在2006年一年里所得奖金的分布列.22.在某社区举办的《有奖知识问答比赛》中,甲、乙、丙三人同时回答某一道题,已知甲回答对这道题的概率是3/4,甲、丙二人都回答错的概率是1/12,乙、丙二人都回答对的概率是1/4. (1)求乙、丙二人各自回答对这道题的概率;(2)设乙、丙二人中回答对该题的人数为X ,求X 的分布列和数学期望.参考答案CBABAA AADDAA 13.15 14.42515:0.1 16:0.3,0.2645 17 4.066k ≈.有95%的把握,认为数学成绩与物理成绩有关,判断出错的概率只有5%. 18:(1) 1.230.08y x =+.(2)10x =时,12.38万元.19 (1) 156个(2)216个.(3)270个.20. 81. 2122(1)P(B)=3/8, P(C)=2/3, (2)随机变量的分布列为.X 0 300 750 1260 1800P116 14 38 14 116X 0 1 2 P5/2413/241/421解404111(0)2216P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,1314111(300)224P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,2224113(750)228P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,3134111(1260)224P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭, 4044111(1800)2216P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭.∴其分布列为X 0 300 750 1260 1800P116 14 38 14 11622解:(1)当3m =时,一个小组有3个人,经过一次检验就能确定化验结果是指经过一次检验,结果为阴性,所以概率为3(10.1)0.729p =-=;(2)当4m =时,一个小组有4个人,这时每个人需要检验的次数是一个随机变量1η,其分布列为1η14 54P 40.9 410.9-所以441150.9(10.9)0.5944E η=⨯+⨯-=;当6m =时,一个小组有6个人,这时需要检验的次数是一个随机变量2η,其分布列为2η16 76P 60.9 610.9-所以662170.9(10.9)0.6466E η=⨯+⨯-=,由于21E E ηη>,因此当每4个人一组时所需要的化验次数更少一些.。

【成才之路】2014-2015学年高中数学(北师大版,选修2-3)综合测试(含答案)

【成才之路】2014-2015学年高中数学(北师大版,选修2-3)综合测试(含答案)

选修2-3综合测试时间120分钟,满分150分。

一、选择题(本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.从单词“equation”中选取5个不同的字母排成一排,含有“qu”(其中“qu”相连且顺序不变)的不同排列共有( )A .120个B .480个C .720个D .840个[答案] B[解析] 第一步,先从除“qu ”之外的另外6个字母中任选3个不同的字母,与“qu ”一起分成一堆,共有C 36种不同的选法;第二步,把“qu ”看作一个字母,与另外3个字母排列,且“qu ”顺序不变,共有A 44种不同的排法,由分步乘法计数原理,共有C 36·A 44=480个不同的排列.故选B.2.(2012·安徽理,7)(x 2+2)(1x 2-1)5的展开式的常数项是( )A .-3B .-2C .2D .3[答案] D[解析] 本题考查了二项式及其展开式中的特定项的问题.第一个因式取x 2,第二个因式取1x 2,得:1×C 15(-1)4=5;第一个因式取2,第二个因式取(-1)5得:2×(-1)5=-2,展开式的常数项是5+(-2)=3.故选D.利用展开式的通项公式求二项式中的特定项是高考考查的重点.3.甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中至少有1门不相同的选法共有( )A .6种B .12种C .30种D .36种[答案] C[解析] 用间接法求解:第一步:甲从4门课程中选修2门,有C 24种选法. 第二步:乙从4门课程中选修2门,有C 24种选法.根据乘法原理,甲、乙两人从4门课程中各选修2门共有C 24C 24种选法.甲、乙所选的课程完全相同有C 24种选法,所以甲、乙所选的课程中至少有1门不相同的选法共有C 24C 24-C 24=30种.故选C.4.有甲、乙两种钢材,从中各取等量样品检验它们的抗拉强度指标如下:A .期望与方差B .正态分布C .卡方χ2D .概率[答案] A[解析] 检验钢材的抗拉强度,若平均抗拉强度相同,再比较波动情况.故选A. 5.设随机变量ξ服从二项分布ξ~B (n ,p ),则(Dξ)2(Eξ)2等于( )A .p 2B .(1-p )2C .npD .p 2(1-p )[答案] B[解析] 因为ξ~B (n ,p ),(Dξ)2=[np (1-p )]2,(Eξ)2=(np )2,所以(Dξ)2(Eξ)2=[np (1-p )]2(np )2=(1-p )2.故选B.6.随机变量X 的所有等可能取值为1,2,…,n ,若P (X <4)=0.3,则n 的值为( ) A .3 B .4 C .10 D .不能确定[答案] C[解析] 因为P (X <4)=P (X =1)+P (X =2)+P (X =3)=1n +1n +1n =3n =0.3,所以n =10.7.在一次试验中,测得(x ,y )的四组值分别是A (1,2),B (2,3),C (3,4),D (4,5),则y 与x 之间的线性回归方程是( )A .y =x +1B .y =x +2C .y =2x +1D .y =x -1 [答案] A[解析] ∵A ,B ,C ,D 四点共线,都在直线y =x +1上,故选A.8.某校从学生中的10名女生干部与5名男生干部中随机选6名学生干部组成“文明校园督察队”,则组成4女2男的“文明校园督察队”的概率为( )A.C 615A 615B.C 310C 35C 615 C.C 410C 25C 615D.C 410A 25A 615[答案] C[解析] 此题为超几何分布问题,组成4女2男的“文明校园督察队”的概率为C 410C 25C 615.9.为了评价某个电视栏目的改革效果,在改革前后分别从居民点随机抽取了100位居民进行调查,经过计算χ2的观测值χ2=99.9,根据这一数据分析,下列说法正确的是( )A .有99.9%的人认为该栏目优秀B .有99.9%的人认为栏目是否优秀与改革有关C .有99.9%的把握认为电视栏目是否优秀与改革有关系D .以上说法都不对 [答案] C[解析] 当χ2>10.828时有99.9%的把握认为电视栏目是否优秀与改革有关系.故选C. 10.假设每一架飞机的引擎在飞行中出现故障的概率为1-p ,且各引擎是否有故障是独立的,已知4引擎飞机中至少有3个引擎正常运行,飞机就可成功飞行;2引擎飞机要2个引擎全部正常运行,飞机才可成功飞行.要使4引擎飞机比2引擎飞机更安全,则p 的取值范围是( )A.⎝⎛⎭⎫23,1B.⎝⎛⎭⎫13,1 C.⎝⎛⎭⎫0,23 D.⎝⎛⎭⎫0,13 [答案] B[解析] 4引擎飞机成功飞行的概率为C 34p 3(1-p )+p 4,2引擎飞机成功飞行的概率为p 2,要使C 34(1-p )+p 4>p 2,必有13<p <1.故选B. 二、填空题(本大题共5小题,每小题5分,共25分)11.(2014·山东青岛质检)平面内有10个点,其中5个点在一条直线上,此外再没有三点共线,则共可确定______条直线;共可确定________个三角形.[答案] 36;110[解析] 设10个点分别为A 1,A 2,…,A 10,其中A 1,A 2,…,A 5共线,A i (i =1,2,…,5)与A 6、A 7、…、A 10分别确定5条直线,共25条;A 1、A 2、…、A 5确定1条; A 6、A 7、…、A 10确定C 25=10条, 故共可确定36条直线.在A 1,A 2,…,A 5中任取两点,在A 6,A 7,…,A 10中任取一点可构成C 25C 15=50个三角形;在A 1,A 2,…,A 5中任取一点,在A 7,A 7,…,A 10中任取两点可构成C 15C 25=50个三角形;在A 6,A 7,…,A 10中任取3点构成C 35=10个三角形,故共可确定50+50+10=110个三角形.12.(2012·陕西理,12)(a +x )5展开式中x 2的系数为10,则实数a 的值为________. [答案] 1[解析] 本题考查了二项式定理与二项展开式的通项分式.由已知C r 5a5-r ·x r 中r =2,∴C 25a 3=10,a 3=1,∴a =1,准确运用二项展开式的通项公式是解题关键.13.一个袋中装有黑球、白球和红球共n (n ∈N *)个,这些球除颜色外完全相同.已知从袋中任意摸出1个球,得到黑球的概率是25,现从袋中任意摸出2个球.若n =15,且摸出的2个球都是白球的概率是221,设ξ表示摸出的2个球中红球的个数,则随机变量ξ的数学期望Eξ= ________.[答案]815[解析] 设袋中黑球的个数为x (个),记“从袋中任意摸出一个球,得到黑球”为事件A ,则P (A )=x 15=25.∴x =6.设袋中白球的个数为y (个),记“从袋中任意摸出两个球,得到的都是白球”为事件B ,则P (B )=C 2yC 215=221,∴y (y -1)15×14∴y =5或y =-4(舍去)即白球的个数为5(个).∴红球的个数为15-6-5=4(个). ∴随机变量ξ的取值为0,1,2,分布列是ξ的数学期望Eξ=1121×0+44105×1+235×2=815.14.已知X ~N (1.4,0.052),则X 落在区间(1.35,1.45)中的概率为____________.[答案] 0.6826[解析] 因为μ=1.4,σ=0.05,所以X 落在区间(1.35,1.45)中的概率为P (1.4-0.05<X <1.4+0.05)=0.6826.15.若两个分类变量x 与y 的列联表为:则“X 与Y . [答案] 0.01[解析] 由列联表中的数据,得K 2的观测值为K 2=(10+15+40+16)(10×16-15×40)2(10+15)(40+16)(10+40)(15+16)≈7.227>6.635,因为P (K 2≥6.635)≈0.01,所以“X 与Y 有关系”这一结论是错误的概率不超过0.01. 三、解答题(本大题共6小题,共75分,前4题每题12分,20题13分,21题14分) 16.研究某特殊药物有无副作用(比如服用后恶心),给50名患者服用此药,给另外50个患者服用安慰剂,记录每类样本中出现恶心的数目如下表:[解析] 由题意,问题可以归纳为独立检验假设H 1:服该药物(A )与恶心(B )独立.为了检验假设,计算统计量K 2=100×(15×46-4×35)250×50×19×81≈7.86>6.635.故拒绝H 1,即不能认为药物无恶心副作用,也可以说,我们有99%的把握说,该药物与副作用(恶心)有关.17.一厂家向用户提供的一箱产品共10件,其中有2件次品,用户先对产品进行抽检以决定是否接收.抽检规则是这样的:一次取一件产品检查(取出的产品不放回箱子);若前三次没有抽查到次品,则用户接收这箱产品;若前三次中一抽查到次品就立即停止抽检,并且用户拒绝接收这箱产品.(1)求这箱产品被用户接收的概率; (2)记抽检的产品件数为ξ,求ξ的分布列. [解析] (1)设“这箱产品被用户接收”为事件A ,则P (A )=8×7×610×9×8=715.即这箱产品被用户接收的概率为715.(2)ξ的可能取值为1,2,3. P (ξ=1)=210=15.P (ξ=2)=810×29=845.P (ξ=3)=810×79=2845.∴ξ的分布列为:18.已知二项式(x -2x)10的展开式中, (1)求展开式中含x 4项的系数;(2)如果第3r 项和第r +2项的二项式系数相等,试求r 的值. [解析] (1)设第k +1项为T k +1=C k 10x10-k(-2x)k =(-2)k C k 10x 10-32k 令10-32k =4,解得k =4,∴展开式中含x 4项的系数为(-2)C 410=-420.(2)∵第3r 项的二项式系数为C 3r -110,第r +2项的二项式系数为C r +110∴C 3r -110=C r +110,故3r -1=r +1或3r -1+r +1=10,解得r =1.19.(2012·陕西理,20)某银行柜台设有一个服务窗口,假设顾客办理业务所需的时间互相独立,且都是整数分钟,对以往顾客办理业务所需的时间统计结果如下:(1)估计第三个顾客恰好等待4分钟开始办理业务的概率;(2)X 表示至第2分钟末已办理完业务的顾客人数,求X 的分布列及数学期望. [解析] 设Y 表示顾客办理业务所需的时间,用频率估计概率,得Y 的分布列如下:(1)A A对应三种情形:①第一个顾客办理业务所需的时间为1分钟,且第二个顾客办理业务所需的时间为3分钟;②第一个顾客办理业务所需的时间为3分钟,且第二个顾客办理业务所需的时间为1分钟;③第一个和第二个顾客办理业务所需的时间均为2分钟.所以P(A)=P(Y=1)P(Y=3)+P(Y=3)P(Y=1)+P(Y=2)P(Y=2)=0.1×0.3+0.3×0.1+0.4×0.4=0.22.(2)X所有可能的取值为0,1,2.X=0对应第一个顾客办理业务所需的时间超过2分钟,所以P(X=0)=P(Y>2)=0.5;X=1对应第一个顾客办理业务所需的时间为1分钟且第二个顾客办理业务所需的时间超过1分钟,或第一个顾客办理业务所需的时间为2分钟,所以P(X=1)=P(Y=1)P(Y>1)+P(Y=2)=0.1×0.9+0.4=0.49;X=2对应两个顾客办理业务所需的时间均为1分钟,所以P(X=2)=P(Y=1)P(Y=1)=0.1×0.1=0.01;所以X的分布列为E(X)=0×0.5+1×0.49+20.(2014·沈阳市质检)为了研究“教学方式”对教学质量的影响,某高中老师分别用两种不同的教学方式对入学数学平均分数和优秀率都相同的甲、乙两个高一新班进行教学(勤奋程度和自觉性都一样).以下茎叶图为甲、乙两班(每班均为20人)学生的数学期末考试成绩.(1)现从甲班数学成绩不低于80分的同学中随机抽取两名同学,求成绩为87分的同学至少有一名被抽中的概率;(2)学校规定:成绩不低于75分的为优秀.请填写下面的2×2列联表,并判断有多大把握认为“成绩优秀与教学方式有关”.(参考公式:K 2=n (ad -bc )(a +b )(c +d )(a +c )(b +d ))[解析] (1)甲班成绩为87分的同学有2个,其他不低于80分的同学有3个“从甲班数学成绩不低于80分的同学中随机抽取两名同学”的一切可能结果组成的基本事件有C 25=10个,“抽到至少有一个87分的同学”所组成的基本事件有C 13C 12+C 22=7个,所以P =710. (2)K 2=40×(6×6-14×14)20×20×20×20=6.4>5.024,因此,我们有97.5%的把握认为成绩优秀与教学方式有关.21.某城市一个交通路口原来只设有红绿灯,平均每年发生交通事故80起,案件的破获率为70%,为了加强该路口的管理,第二年在该路口设置了电子摄像头,该年发生交通事故70起,共破获56起,第三年白天安排了交警执勤,该年发生交通事故60起,共破获了54起.(1)根据以上材料分析,加强管理后的两年该路口的交通状况发生了怎样的变化? (2)试采用独立性检验进行分析,设置电子摄像头对该路口交通肇事案件的破获产生了什么样的影响?设置电子摄像头和交警白天执勤的共同作用对该路口交通肇事案件的破获产生了什么样的影响?[解析] (1)由统计数据可知,没有采取措施之前,案件的发生较多,并且破获率只有70%,安装电子摄像头之后,案件的发生次数有所减少,并且破获率提高到了80%,白天安排交警执勤后,案件的发生次数进一步减少,并且破获率提高到了90%.由此可知,电子摄像头对遏制交通案件的发生起到了一定作用,并且给破案带了一定的帮助,而安排交警执勤对这些的影响更大.(2)根据所提供的数据可以绘制对应的2×2列联表如下:案件的破获率有了明显提高,这说明两种措施对案件的破获都起到了一定的积极作用.先分析电子摄像头对破案的影响的可信度,令a =56,b =24,c =56,d =14,构造随机变量χ2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )=150×(56×14-24×56)280×70×112×38≈1.974.其中n =a +b +c +d .而查表可知,P (χ2≥1.323)=0.25.且1-0.25=0.75=75%,因此约有75%的把握认为,安装电子摄像头对案件的破获起到了作用.再分析安装电子摄像头及交警执勤的情况,同样令a =56,b =24,c =54,d =6,则 χ2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )=140×(56×6-24×54)280×60×110×30≈8.145,其中n =a +b +c +d .而查表可知,P (χ2≥6.635)=0.01,且1-0.01=0.99=99%,因此约有99%的把握认为安装电子摄像头及交警执勤对案件的破获起到了作用.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第 1 页 共 9 页高中数学选修(2-3)综合测试题一、选择题1.已知{}{}{}123013412a b R ∈-∈∈,,,,,,,,,则方程222()()x a y b R -++=所表示的不同的圆的个数有( A ) A.3×4×2=24 B.3×4+2=14 C.(3+4)×2=14 D.3+4+2=92.乒乓球运动员10人,其中男女运动员各5人,从这10名运动员中选出4人进行男女混合双打比赛,选法种数为( D ) A.225()AB.225()CC.22254()C A ·D.22252()C A ·3.342(1)(1)(1)n x x x +++++++L 的展开式中2x 的系数是( D )A.33n C +B.32n C +C.321n C +- D.331n C +-4.从标有1,2,3,…,9的9张纸片中任取2张,数字之积为偶数的概率为(C )A.1/2 B.7/18 C.13/18 D.11/18 5.在10个球中有6个红球和4个白球(各不相同),不放回地依次摸出2个球,在第一次摸出红球的条件下,第2次也摸到红球的概率为( D ) A.3/5 B.2/5 C.1/10 D.5/96.市场上供应的灯泡中,甲厂产品占70%,乙厂产品占30%,甲厂产品的合格率是95%,乙厂产品的合格率是80%,则从市场上买到一个是甲厂生产的合格灯泡的概率是(A )A.0.665 B .0.56 C.0.24 D.0.285 7.正态总体的概率密度函数为2()8()x x f x -∈=R ,则总体的平均数和标准差分别为( D )A.0,8 B .0,4 C.0,2 D.0,2 8.在一次试验中,测得()x y ,的四组值分别是(12)(23)(34)(45)A B C D ,,,,,,,,则y 与x 之间的回归直线方程为( A ) A.$1y x =+B.$2y x =+C.$21y x =+D.$1y x =-第 2 页 共 9 页9.用0,1,2,3,4这五个数字组成无重复数字的五位数,其中恰有一个偶数数字夹在两个奇数数字之间的五位数的个数是( C ) A.48 B.36 C.28 D.20 10.若随机变量η的分布列如下:则当()0.8P x η<=时,实数x 的取值范围是( C )A.x ≤2 B.1≤x ≤2 C.1<x ≤2 D.1<x <211.春节期间,国人发短信拜年已成为一种时尚,若小李的40名同事中,给其发短信拜年的概率为1,0.8,0.5,0的人数分别为8,15,14,3(人),则通常情况下,小李应收到同事的拜年短信数为( A ) A.27 B.37 C.38 D.8 12.已知ξ的分布列如下:4并且23ηξ=+,则方差D η=(A )A.17936 B.14336 C.29972 D.22772 二、填空题13.某仪表显示屏上一排有7个小孔,每个小孔可显示出0或1,若每次显示其中三个孔,但相邻的两孔不能同时显示,则这显示屏可以显示的不同信号的种数有 80 种.14.空间有6个点,其中任何三点不共线,任何四点不共面,以其中的四点为顶点共可作出个四面体,经过其中每两点的直线中,有 15 对异面直线.15.某射手射击1次,击中目标的概率是0.9,他连续射击4次,且各次射击是否击中目标相互之间没有影响,有下列结论: ①他第3次击中目标的概率是0.9;第 3 页 共 9 页②他恰好击中目标3次的概率是0.93×0.1; ③他至少击中目标1次的概率是41(0.1)-.其中正确结论的序号是 ①③ (写出所有正确结论的序号).16.两名狙击手在一次射击比赛中,狙击手甲得1分、2分、3分的概率分别为0.4,0.1,0.5;狙击手乙得1分、2分、3分的概率分别为0.1,0.6,0.3,那么两名狙击手获胜希望大的是 乙 . 三、解答题17.有4个不同的球,四个不同的盒子,把球全部放入盒内. (1)共有多少种放法?(2)恰有一个盒子不放球,有多少种放法? (3)恰有一个盒内放2个球,有多少种放法? (4)恰有两个盒不放球,有多少种放法?解:(1)一个球一个球地放到盒子里去,每只球都可有4种独立的放法,由分步乘法计数原理,放法共有:44256=种.(2)为保证“恰有一个盒子不放球”,先从四个盒子中任意拿出去1个,即将4个球分成2,1,1的三组,有24C 种分法;然后再从三个盒子中选一个放两个球,其余两个球,两个盒子,全排列即可.由分步乘法计数原理,共有放法:12124432144C C C A =···种. (3)“恰有一个盒内放2个球”,即另外三个盒子中恰有一个空盒.因此,“恰有一个盒内放2球”与“恰有一个盒子不放球”是一回事.故也有144种放法.(4)先从四个盒子中任意拿走两个有24C 种,问题转化为:“4个球,两个盒子,每盒必放球,有几种放法?”从放球数目看,可分为(3,1),(2,2)两类.第一类:可从4个球中先选3个,然后放入指定的一个盒子中即可,有3142C C ·种放法;第二类:有24C 种放法.因此共有31342414C C C +=·种.由分步乘法计数原理得“恰有两个盒子不放球”的放法有:241484C =·种. 18.求25(1)(1)x x +-的展开式中3x 的系数.第 4 页 共 9 页解:解法一:先变形,再部分展开,确定系数.252232423(1)(1)(1)(1)(12)(133)x x x x x x x x x +-=--=-+-+-.所以3x 是由第一个括号内的1与第二括号内的3x -的相乘和第一个括号内的22x -与第二个括号内的3x -相乘后再相加而得到,故3x 的系数为1(1)(2)(3)5⨯-+-⨯-=.解法二:利用通项公式,因2(1)x +的通项公式为12rr r T C x +=·, 5(1)x -的通项公式为15(1)k k k k T C x +=-·, 其中{}{}012012345r k ∈∈,,,,,,,,,令3k r +=, 则12k r =⎧⎨=⎩,,或21k r =⎧⎨=⎩,,或30k r =⎧⎨=⎩,.故3x 的系数为112352555C C C C -+-=·. 19.为了调查胃病是否与生活规律有关,某地540名根据以上数据比较这两种情况,40岁以上的人患胃病与生活规律有关吗?第 5 页 共 9 页解:由公式得2540(6020026020)32022080460k ⨯⨯-⨯=⨯⨯⨯ 2540(120005200)24969609.6382590720000259072⨯-==≈.9.6387.879>∵,∴我们有99.5%的把握认为40岁以上的人患胃病与生活是否有规律有关,即生活不规律的人易患胃病.20.一个医生已知某种病患者的痊愈率为25%,为实验一种新药是否有效,把它给10个病人服用,且规定若10个病人中至少有4个被治好,则认为这种药有效;反之,则认为无效,试求:(1)虽新药有效,且把痊愈率提高到35%,但通过实验被否认的概率; (2)新药完全无效,但通过实验被认为有效的概率.解:记一个病人服用该药痊愈率为事件A ,且其概率为p ,那么10个病人服用该药相当于10次独立重复实验.(1) 因新药有效且p =0.35,故由n 次独立重复试验中事件A 发生k 次的概率公式知,实验被否定(即新药无效)的概率为:0010119223371010101010101010(0)(1)(2)(3)(1)(1)(1)(1)0.514x P P P P C p p C p p C p p C p p +++=-+-+-+-≈.(2)因新药无效,故p =0.25,实验被认为有效的概率为: 10101010101010(4)(5)(10)1((0)(1)(2)(3))0.224P P P P P P P +++=-+++≈L .即新药有效,但被否定的概率约为0.514; 新药无效,但被认为有效的概率约为0.224. 21.A B ,两个代表队进行乒乓球对抗赛,每队三名队员,A 队队员是123A A A ,,,B 队队员是123B B B ,,,按以往多次比赛的统计,对阵队员之间的胜负概率如下:第 6 页 共 9 页现按表中对阵方式出场,每场胜队得1(1)求ξη,的概率分布列; (2)求E ξ,E η. 解:(1)ξη,的可能取值分别为3,2,1,0.2228(3)35575P ξ==⨯⨯=;22312223228(2)35535535575P ξ==⨯⨯+⨯⨯+⨯⨯=;2331231322(1)3553553555P ξ==⨯⨯+⨯⨯+⨯⨯=;1333(0)35525P ξ==⨯⨯=.由题意知3ξη+=, 所以8(0)(3)75P P ηξ====; 28(1)(2)75P P ηξ====; 2(2)(1)5P P ηξ====; 3(3)(0)25P P ηξ====. ξ的分布列为第 7 页 共 9 页η的分布列为(2)82823223210757552515E ξ=⨯+⨯+⨯+⨯=, 因为3ξη+=,所以23315E E ηξ=-=. 22.规定(1)(1)m xA x x x m =--+L ,其中x ∈R ,m 为正整数,且01x A =,这是排列数m n A (n ,m 是正整数,且m ≤n )的一种推广. (1)求315A -的值;(2)排列数的两个性质:①11m m n n A nA --=,②11m m m n n n A mA A -++= (其中m ,n 是正整数).是否都能推广到mx A (x ∈R ,m 是正整数)的情形?若能推广,写出推广的形式并给予证明;若不能,则说明理由;(3)确定函数3x A 的单调区间.解:(1)315(15)(16)(17)4080A -=-⨯-⨯-=-;(2)性质①、②均可推广,推广的形式分别是①11m m x x A xA --=,第 8 页 共 9 页②11()m m m x x x A mA A x m -*++=∈∈R N ,.事实上,在①中,当1m =时,左边1x A x ==,右边01x xA x -==,等式成立;在②中,当1m =时,左边10111x x x A A x A +=+=+==右边,等式成立;当2m ≥时,左边(1)(2)(1)(1)(2)(2)x x x x m mx x x x m =---++---+L L =(1)(2)(2)[(1)]x x x x m x m m ---+-++L1(1)(1)(2)[(1)1]m x x x x x x m A +=+--+-+==L 右边,因此②11()m m m x x x A mA A x m -*++=∈∈R N ,成立.(3)先求导数,得32()362xA x x '=-+. 令23620x x -+>,解得x <x >因此,当x ⎛∈- ⎝⎭∞时,函数为增函数,当x ⎫∈+⎪⎪⎝⎭∞时,函数也为增函数,第 9 页 共 9 页令23620x x -+≤3333x -+, 因此,当3333x -+∈⎣⎦,时,函数为减函数, ∴函数3x A 的增区间为33⎛-- ⎝⎭,∞,33⎫++⎪⎪⎝⎭,∞;减区间为3333-+⎣⎦,。

相关文档
最新文档