圆锥曲线之动点轨迹方程
圆锥曲线的轨迹方程问题(教师版)
圆锥曲线的轨迹方程问题1.抛物线C :y 2=2px (p >0)的焦点为F ,P 在抛物线C 上,O 是坐标原点,当PF 与x 轴垂直时,△OFP 的面积为1.(1)求抛物线C 的方程;(2)若A ,B 都在抛物线C 上,且OA ⋅OB =-4,过坐标原点O 作直线AB 的垂线,垂足是G ,求动点G 的轨迹方程.【答案】(1)y 2=4x ;(2)x 2+y 2-2x =0x ≠0【解析】(1)当PF 与x 轴垂直时,P p 2,p ,故S △OFP =12×p 2×p =1,故p =2,故抛物线的方程为:y 2=4x .(2)设A y 214,y 1 ,B y 224,y 2,直线AB :x =ty +m ,因为OA ⋅OB =-4,故y 21y 2216+y 1y 2=-4,整理得到:y 21y 22+16y 1y 2+64=0,故y 1y 2=-8.由x =ty +my 2=4x可得y 2-4ty -4m =0,故-4m =-8即m =2,故直线AB :x =ty +2,此直线过定点M 2,0 .因为OG ⊥GM ,故G 的轨迹为以OM 为直径的圆,其方程为:x -0 x -2 +y -0 y -0 =0即x 2+y 2-2x =0.因为直线AB :x =ty +2与x 轴不重合,故G 不为原点,故G 的轨迹方程为:x 2+y 2-2x =0x ≠0 .2.已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 的离心率e =233,且经过点P 3,1 .(1)求双曲线C 的方程;(2)设A ,B 在C 上,PA ⊥PB ,过P 点向AB 引垂线,垂足为M ,求M 点的轨迹方程.【答案】(1)x 26-y 22=1;(2)x -92 2+y +122=92(去掉点P )【解析】(1)∵双曲线的离心率e =c a =233,∴c 2=43a 2=a 2+b 2,即a 2=3b 2,将P 3,1 代入C :x 23b 2-y 2b 2=1,即93b 2-1b2=1,解得b 2=2,a 2=6,故双曲线C 的方程为x 26-y 22=1;(2)当直线AB 斜率不存在时,不满足PA ⊥PB ,故不满足题意;当直线AB 斜率存在时,设A x 1,y 1 ,B x 2,y 2 ,AB :y =kx +m ,代入双曲线方程整理得:3k 2-1 x 2+6kmx +3m 2+6 =0.Δ>0,则x 1+x 2=-6km 3k 2-1,x 1x 2=3m 2+63k 2-1,∵PA ⊥PB ,∴x 1-3 x 2-3 +y 1-1 y 2-1 =0,即x 1-3 x 2-3 +kx 1+m -1 kx 2+m -1 =0,整理得18k 2+9km +m 2+m -2=0,即3k +m -1 6k +m +2 =0,当3k +m -1=0时,AB 过P 点,不符合题意,故6k +m +2=0,直线AB 化为y +2=k x -6 ,AB 恒过定点Q 6,-2 ,∴M 在以PQ 为直径的圆上且不含P 点,即M 的轨迹方程为x -92 2+y +12 2=92(去掉点P ).3.已知抛物线C :y =x 2,过点M 1,2 的直线交抛物线C 于A ,B 两点,以A ,B 为切点分别作抛物线C 的两条切线交于点P .(1)若线段AB 的中点N 的纵坐标为32,求直线AB 的方程;(2)求动点P 的轨迹.【答案】(1)x -y +1=0;(2)2x -y -2=0【解析】(1)依题意有:直线AB 的斜率必存在,故可设直线AB 的方程为y -2=k (x -1).由y -2=k (x -1),y =x 2, 可得:x 2-kx +k -2=0.设A (x 1,y 1),B (x 2,y 2),则有x 1+x 2=k ,x 1x 2=k -2.于是:y 1+y 2=x 21+x 22=(x 1+x 2)2-2x 1x 2=k 2-2k +4=3,解得k =1,故直线AB 的方程为x -y +1=0.(2)设P (x 0,y 0),对于抛物线y =x 2,y =2x ,于是:A 点处切线方程为y -y 1=2x 1(x -x 1),点P 在该切线上,故y 0-x 21=2x 1(x 0-x 1),即x 21-2x 0x 1+y 0=0.同理:P 点坐标也满足x 22-2x 0x 2+y 0=0,于是:x 1,x 2是方程x 2-2x 0x +y 0=0的两根,所以x 1+x 2=2x 0,x 1x 2=y 0.又由(1)可知:x 1+x 2=k ,x 1x 2=k -2,于是x 0=k2,y 0=k -2,消k 得y 0=2x 0-2,于是P 的轨迹方程为2x -y -2=0,点P 的轨迹是一条直线.4.已知圆C 与y 轴相切,圆心C 在直线x -2y =0上且在第一象限内,圆C在直线y =x 上截得的弦长为214.(1)求圆C 的方程;(2)已知线段MN 的端点M 的横坐标为-4,端点N 在(1)中的圆C 上运动,线段MN 与y 轴垂直,求线段MN 的中点H 的轨迹方程.【答案】(1)x -4 2+y -2 2=16;(2)4x 2+y -2 2=16【解析】(1)依题意,设所求圆C 的方程为x -a 2+y -b 2=r 2a >0 .所以圆心a ,b 到直线x -y =0d =a -b2,则有d 2+14 2=r 2,即a -b 2+28=2r 2.①由于圆C 与y 轴相切,所以r 2=a 2.②又因为圆C 的圆心在直线x -2y =0上,所以a -2b =0.③联立①②③,解得a =4,b =2,r =4,故所求圆C 的方程为x -4 2+y -2 2=16.(2)设点H 的坐标为x ,y ,点N 的坐标为x 0,y 0 ,点M 的坐标为-4,y ,因为H 是线段MN 的中点,所以x =x 0-42,y =y 0,于是有x 0=2x +4,y 0=y .①因为点N 在第(1)问中圆C 上运动,所以点N 满足x 0-4 2+y 0-2 2=16.②把①代入②,得2x +4-4 2+y -2 2=16,整理,得4x 2+y -2 2=16.此即为所求点H 的轨迹方程.5.已知圆O :x 2+y 2=4与x 轴交于点A (-2,0),过圆上一动点M 作x 轴的垂线,垂足为H ,N 是MH 的中点,记N 的轨迹为曲线C .(1)求曲线C 的方程;(2)过-65,0 作与x 轴不重合的直线l 交曲线C 于P ,Q 两点,设直线AP ,AS 的斜率分别为k 1,k 2.证明:k 1=4k 2.【答案】(1)x 22+y 2=1;(2)证明见解析.【解析】(1)设N (x 0,y 0),则H (x 0,0),∵N 是MH 的中点,∴M (x 0,2y 0),又∵M 在圆O 上,∴ x 20+(2y 0)2=4,即x 204+y 20=1;∴曲线C 的方程为:x 24+y 2=1;(2)①当直线l 的斜率不存在时,直线l 的方程为:x =-65,若点P 在轴上方,则点Q 在x 轴下方,则P -65,45 ,Q -65,-45,直线OQ 与曲线C 的另一交点为S ,则S 与Q 关于原点对称,∴S 65,45,k 1=k AP =45-0-65+2=1,k 2=k AS =45-065+2=14,∴k 1=4k 2;若点P 在x 轴下方,则点Q 在x 轴上方,同理得:P -65,-45 ,Q -65,45 ,S 65,-45,∴k1=k AP=-45-0-65+2=-1,k2=k AS=-45-065+2=-14,∴k1=4k2;②当直线l的斜率存在时,设直线l的方程为:x=my-6 5,,由x=my-65,与x24+y2=1联立可得(m2+4)y2-12m5y-6425=0,其中Δ=144m225+4×(m2+4)×6425>0,设P(x1,y1),Q(x2,y2),则S(-x2,-y2),则y1+y2=12m5m2+4,y1y2=-6425m2+4,∴k1=k AP=y1-0x1+2=y1x1+2,k2=k AS=-y2-0-x2+2=y2x2-2,则k1k2=y1x1+2⋅x2-2y2=y1my2-165my1+45y2=my1y2-165y1my1y2+45(y1+y2)-45y1=-6425m2+4-165y1-6425mm2+4+45⋅125mm2+4-45y1=-6425m2+4-165y1-1625m2+4-45y1=4,∴k1=4k2.6.已知点E(2,0),F22,0,点A满足|AE|=2|AF|,点A的轨迹为曲线C.(1)求曲线C的方程;(2)若直线l:y=kx+m与双曲线:x24-y29=1交于M,N两点,且∠MON=π2(O为坐标原点),求点A到直线l距离的取值范围.【答案】(1)x2+y2=1;(2)655-1,655+1.【解析】(1)设A(x,y),因为|AE|=2|AF|,所以(x-2)2+(y-0)2=2×x-2 22+(y-0)2,平方化简,得x2+y2=1;(2)直线l:y=kx+m与双曲线:x24-y29=1的方程联立,得y=kx+mx2 4-y29=1⇒(4k2-9)x2+8kmx+4m2+36=0,设M(x1,y1),N(x2,y2),所以有4k2-9≠0(8km)2-4⋅(4k2-9)(4m2+36)>0⇒m2+9>4k2且k≠±32,所以x 1+x 2=-8km 4k 2-9,x 1x 2=4m 2+364k 2-9,因为∠MON =π2,所以OM ⊥ON⇒x 1x 2+y 1y 2=0⇒x 1x 2+(kx 1+m )(kx 2+m )=0,化简,得(k 2+1)x 1x 2+km (x 1+x 2)+m 2=0,把x 1+x 2=-8km 4k 2-9,x 1x 2=4m 2+364k 2-9代入,得(k 2+1)⋅4m 2+364k 2-9+km ⋅-8km 4k 2-9 +m 2=0,化简,得m 2=36(k 2+1)5,因为m 2+9>4k 2且k ≠±32,所以有36(k 2+1)5+9>4k 2且k ≠±32,解得k ≠±32,圆x 2+y 2=1的圆心为(0,0),半径为1,圆心(0,0)到直线l :y =kx +m 的距离为d =mk 2+1=65k 2+1k 2+1=655>1,所以点A 到直线距离的最大值为655+1,最小值为655-1,所以点A 到直线距离的取值范围为655-1,655+1 ,7.在平面直角坐标系xOy 中,点D ,E 的坐标分别为-2,0 ,2,0 ,P 是动点,且直线DP 与EP 的斜率之积等于-14.(1)求动点P 的轨迹C 的方程;(2)已知直线y =kx +m 与椭圆:x 24+y 2=1相交于A ,B 两点,与y 轴交于点M ,若存在m 使得OA +3OB =4OM,求m 的取值范围.【答案】(1)x 24+y 2=1x ≠±2 ;(2)-1,-12 ∪12,1 【解析】(1)设P x ,y ,则k EP ⋅k DP =y x -2⋅y x +2=-14x ≠±2 ,所以可得动点P 的轨迹C 的方程为x 24+y 2=1x ≠±2 .(2)设A x 1,y 1 ,B x 2,y 2 ,又M 0,m ,由OA +3OB =4OM得x 1+3x 2,y 1+3y 2 =0,4m ,x 1=-3x 2联立y =kx +m x 24+y 2=1可得4k 2+1 x 2+8kmx +4m 2-4=0∵Δ=(8km )2-4×(4k 2+1)×(4m 2-4)>0,即64k 2-16m 2+16>0∴4k 2-m 2+1>0,且x 1+x 2=-8km4k 2+1x 1x 2=4m 2-44k 2+1,又x 1=-3x 2∴x 2=4km 4k 2+1,则x 1⋅x 2=-3x 22=4km 4k 2+1 2=4m 2-44k 2+1,∴16k 2m 2-4k 2+m 2-1=0,∴k 2=m 2-14-16m 2代入4k 2-m 2+1>0得m 2-11-4m2+1-m 2>0,14<m 2<1,解得m ∈-1,-12 ∪12,1 .∴m 的取值范围是-1,-12 ∪12,1 8.如图,设点A ,B 的坐标分别为(-3,0),(3,0),直线AP ,BP 相交于点P ,且它们的斜率之积为-23.(1)求P 的轨迹方程;(2)设点P 的轨迹为C ,点M 、N 是轨迹为C 上不同于A ,B 的两点,且满足AP ∥OM ,BP ∥ON ,求△MON 的面积.【答案】(1)x 23+y 22=1x ≠±3 ;(2)62【解析】(1)由已知设点P 的坐标为x ,y ,由题意知k AP ⋅k BP =y x +3⋅y x -3=-23x ≠±3 ,化简得P 的轨迹方程为x 23+y 22=1x ≠±3(2)证明:由题意M 、N 是椭圆C 上非顶点的两点,且AP ⎳OM ,BP ⎳ON ,则直线AP ,BP 斜率必存在且不为0,又由已知k AP ⋅k BP =-23.因为AP ⎳OM ,BP ⎳ON ,所以k OM k ON =-23设直线MN 的方程为x =my +t ,代入椭圆方程x 23+y 22=1,得3+2m 2 y 2+4mty +2t 2-6=0....①,设M ,N 的坐标分别为x 1,y 1 ,x 2,y 2 ,则y 1+y 2=-4mt 3+2m 2,y 1y 2=2t 2-63+2m 2又k OM ⋅k ON =y 1y 2x 1x 2=y 1y 2m 2y 1y 2+mt y 1+y 2 +t 2=2t 2-63t 2-6m 2,所以2t 2-63t 2-6m2=-23,得2t 2=2m 2+3又S △MON =12t y 1-y 2 =12t -24t 2+48m 2+723+2m 2,所以S △MON =26t t 24t 2=62,即△MON 的面积为定值62.9.在平面直角坐标系xOy 中,已知直线l :x =1,点F 4,0 ,动点P 到点F 的距离是它到直线l 的距离的2倍,记P 的轨迹为曲线C .(1)求曲线C 的方程;(2)过点F 且斜率大于3的直线交C 于两点,点Q -2,0 ,连接QA 、QB 交直线l 于M 、N 两点,证明:点F 在以MN 为直径的圆上.【答案】(1)x 24-y 212=1;(2)证明见解析【解析】(1)设P x ,y ,由题意得x -4 2+y 2=2x -1 化简得x 24-y 212=1,所以曲线C 的方程为x 24-y 212=1.(2)证明:设A x 1,y 1 、B x 2,y 2 、M 1,m 、N 1,n ,设直线AB 的方程为y =k x -4 且k >3,联立y =k x -4 x 24-y 212=1得3-k 2 x 2+8k 2x -16k 2-12=0,3-k 2≠0,Δ=64k 4+43-k 2 16k 2+12 =144k 2+1 >0,由韦达定理可得x 1+x 2=8k 2k 2-3,x 1x 2=16k 2+12k 2-3,因为点M 在直线QA 上,则k QM =k QA ,即m3=y 1x 1+2,可得m =3y 1x 1+2=3k x 1-4x 1+2,同理可得n =3k x 2-4 x 2+2,FM=-3,m ,FN =-3,n ,所以,FM ⋅FN =9+mn =9+9k 2x 1x 2-4x 1+x 2 +16x 1x 2+2x 1+x 2 +4=9+9k 216k 2+12-32k 2+16k 2-4816k 2+12+16k 2+4k 2-12=0,故点F 在以MN 为直径的圆上.10.已知圆C :x 2+y 2-2x -2y +1=0,O 为坐标原点,动点P 在圆C 外,过P 作圆C 的切线,设切点为M .(1)若点P 运动到(2,3)处,求此时切线l 的方程;(2)求满足条件PM =PO 的点P 的轨迹方程.【答案】(1)x =2或3x -4y +6=0;(2)2x +2y -1=0.【解析】(1)把圆C 的方程化为标准方程为(x -1)2+(y -1)2=1,∴圆心为C (1,1),半径r =1.当l 的斜率不存在时,此时l 的方程为x =2,C 到l 的距离d =1=r ,满足条件.当l 的斜率存在时,设斜率为k ,得l 的方程为y -3=k (x -2),即kx -y +3-2k =0,则k -1+3-2k1+k 2=1,解得k =34.∴l 的方程为y -3=34(x -2),即3x -4y +6=0.综上,满足条件的切线l 的方程为x =2或3x -4y +6=0.(2)设P (x ,y ),则|PM |2=|PC |2-|MC |2=(x -1)2+(y -1)2-1,|PO |2=x 2+y 2,∵|PM |=|PO |.∴(x -1)2+(y -1)2-1=x 2+y 2,整理,得2x +2y -1=0,∴点P 的轨迹方程为2x +2y -1=0.11.已知抛物线C :y 2=2x 的焦点为F ,平行于x 轴的两条直线l 1、l 2分别交C 于A 、B 两点,交C 的准线于P 、Q 两点.(1)若F 在线段AB 上,R 是PQ 的中点,证明:AR ∥FQ .(2)若△PQF 的面积是△ABF 的面积的两倍,求AB 中点的轨迹方程.【答案】(1)证明见解析;(2)y 2=x -1.【解析】(1)由题意可知F 12,0 ,设l 1:y =a ,l 2:y =b 且ab ≠0,A a 22,a ,B b 22,b ,P -12,a ,Q -12,b ,R -12,a +b 2 ,直线AB 方程为2x -(a +b )y +ab =0,∵点F 在线段AB 上,∴ab +1=0,记直线AR 的斜率为k 1,直线FQ 的斜率为k 2,∴k 1=a -b 1+a 2,k 2=b-12-12=-b ,又∵ab +1=0,∴k 1=a -b 1+a 2=a -b a 2-ab =1a =-aba =-b =k 2,∴AR ∥FQ ;(2)设l 1:y =a ,l 2:y =b ,A a 22,a ,B b 22,b ,设直线AB 与x 轴的交点为D x 1,0 ,∴S △ABF =12a -b FD =12a -b x 1-12,又S△PQF=a-b2,∴由题意可得S△PQF=2S△ABF,即a-b2=2×12·a-b⋅x1-12,解得x1=0(舍)或x1=1.设满足条件的AB的中点为E(x,y),则x=a2+b24y=a+b2,当AB与x轴不垂直时,由k AB=k DE可得a-ba22-b22=yx-1,即2a+b=yx-1(x≠1),∴y2=x-1x≠1.当AB与x轴垂直时,E与D重合,也满足y2=x-1.∴AB中点的轨迹方程为y2=x-1.12.已知椭圆C:x2a2+y2b2=1a>b>0的长轴长为4,左顶点A到上顶点B的距离为5,F为右焦点.(1)求椭圆C的方程和离心率;(2)设直线l与椭圆C交于不同的两点M,N(不同于A,B两点),且直线BM ⊥BN时,求F在l上的射影H的轨迹方程.【答案】(1)x24+y2=1,离心率为32;(2)x-322+y+3102=2125【解析】(1)由题意可得:2a=4,a2+b2=5,a2=b2+c2,可得a=2,c=3,b=1,所以椭圆C的方程为x24+y2=1,离心率为e=ca=32.(2)当直线斜率存在时,可设l:y=kx+m代入椭圆方程x24+y2=1,得:4k2+1x2+8kmx+4m2-1=0.设M x 1,y 1 ,N x 2,y 2 ,则x 1+x 2=-8km4k 2+1x 1x 2=4m 2-1 4k 2+1.因为直线BM ,BN 垂直,斜率之积为-1,所以k BM ⋅k BN =-1,所以k BM ⋅k BN =k 2x 1x 2+k m -1 x 1+x 2 +m -1 2x 1x 2=-1.将x 1+x 2=-8km 4k 2+1x 1x 2=4m 2-1 4k 2+1代入,整理化简得:m -1 5m +3 =0,所以m =1或m =-35.由直线l :y =kx +m ,当m =1时,直线l 经过0,1 ,与B 点重合,舍去,当m =-35时,直线l 经过定点E 0,-35,当直线斜率不存在时,可设l :x =t ,则M t ,1-t 24 ,N t ,-1-t 24,因为k BM ⋅k BN =-1,所以1-t 24-1t ×-1-t 24+1t=-1,解得t =0,舍去.综上所述,直线l 经过定点E 0,-35,而F 在l 上的射影H 的轨迹为以EF 为直径的圆,其E 0,-35 ,F 3,0 ,所以圆心32,-310 ,半径r =215,所以圆的方程为x -32 2+y +310 2=2125,即为点H 的轨迹方程.13.在平面直角坐标系xOy 中,A (-3,0),B (3,0),C 是满足∠ACB =π3的一个动点.(1)求△ABC 垂心H 的轨迹方程;(2)记△ABC 垂心H 的轨迹为Γ,若直线l :y =kx +m (km ≠0)与Γ交于D ,E 两点,与椭圆T :2x 2+y 2=1交于P ,Q 两点,且|DE |=2|PQ |,求证:|k |>2.【答案】(1)x 2+(y +1)2=4(y ≠-2);(2)证明见解析.【解析】设△ABC 的外心为O 1,半径为R ,则有R =AB 2sin ∠ACB=2,又∠OO 1B =∠OO 1C =π3,所以OO 1=R cos π3=1,即O 1(0,1),或O 1(0,-1),当O 1坐标为(0,1)时.设C (x ,y ),H x 0,y 0 ,有O 1C =R ,即有x 2+(y -1)2=4(y >0),由CH ⊥AB ,则有x 0=x ,由AH ⊥BC ,则有AH ⋅BC=x 0+3 (x -3)+y 0y =0,所以有y 0=-x 0+3 (x -3)y =3-x 2y =(y -1)2-1y=y -2,y >0,则y 0=y -2>-2,则有x 20+y 0+1 2=4(y 0>-2),所以△ABC 垂心H 的轨迹方程为x 2+(y +1)2=4(y >-2).同理当O 1坐标为(0,-1)时.H 的轨迹方程为x 2+(y -1)2=4(y <2).综上H 的轨迹方程为x 2+(y +1)2=4(y >-2)或x 2+(y -1)2=4(y <2).(2)若取x 2+(y +1)2=4(y >-2),记点(0,-1)到直线l 的距离为d ,则有d =|m +1|1+k 2,所以|DE |=24-d 2=24-(m +1)21+k 2,设P x 1,y 1 ,Q x 2,y 2 ,联立y =kx +m 2x 2+y 2=1,有2+k 2 x 2+2kmx +m 2-1=0,所以Δ=4k 2+2-2m 2 >0,|PQ |=1+k 2⋅Δ2+k 2=21+k 2 k 2+2-2m 2 2+k 2,由|DE |=2|PQ |,可得4-(m +1)21+k 2=4k 2+1 k 2+2-8m 2k 2+1 2+k 2 2≤4k 2+1 k 2+2-8m 2k 2+22,所以4k 2+2+8m 22+k 22≤(m +1)2k 2+1,即有4k 2+1 k 2+2+8k 2+1 m 22+k 22≤(m +1)2,所以2+2m 2-4k 2+1 k 2+2-8k 2+1 m 2k 2+22≥(m -1)2,即2k 2k 2+2k 2m 2k 2+2-1 =(m -1)2⇒k 2m 2k 2+2-1≥0⇒m 2≥1+2k2又Δ>0,可得m 2<1+k 22,所以1+2k2<1+k 22,解得k 2>2,故|k |>2.同理,若取x 2+(y -1)2=4(y <2),由对称性,同理可得|k |> 2.综上,可得|k |> 2.14.在平面直角坐标系中,△ABC 的两个顶点A ,B 的坐标分别为-1,0 ,1,0 ,平面内两点G ,M 同时满足以下3个条件:①G 是△ABC 三条边中线的交点;②M 是△ABC 的外心;③GM ⎳AB .(1)求△ABC 的顶点C 的轨迹方程;(2)若点P 2,0 与(Ⅰ)中轨迹上的点E ,F 三点共线,求PE ⋅PF 的取值范围.【答案】(1)x 2+y 23=1(y ≠0);(2)3,92.【解析】(1)设C x ,y ,G x 0,y 0 ,M x M ,y M ,圆锥曲线的轨迹方程问题第11页因为M 是△ABC 的外心,所以MA =MB ,所以M 在线段AB 的中垂线上,所以x M =-1+12=0.因为GM ⎳AB ,所以y M =y 0.又G 是△ABC 三条边中线的交点,所以G 是△ABC 的重心,所以x 0=-1+1+x 3=x 3,y 0=0+0+y 3=y 3,所以y M =y 0=y 3.又MA =MC ,所以0+1 2+y 3-0 2=0-x 2+y 3-y 2,化简得x 2+y 23=1(y ≠0),所以顶点C 的轨迹方程为x 2+y 23=1(y ≠0).(2)因为P ,E ,F 三点共线,所以P ,E ,F 三点所在直线斜率存在且不为0,设所在直线的方程为y =k x -2 ,联立y =k x -2 ,x 2+y 23=1,得k 2+3 x 2-4k 2x +4k 2-3=0.由Δ=4k 2 2-4k 2+3 4k 2-3 >0,得k 2<1.设E x 1,y 1 ,F x 2,y 2 ,则x 1+x 2=4k 2k 2+3,x 1⋅x 2=4k 2-3k 2+3.所以PE ⋅PF =1+k 22-x 1 ⋅1+k 22-x 2 =1+k 2 ⋅4-2x 1+x 2 +x 1⋅x 2=1+k 2 ⋅4k 2+3 -8k 2+4k 2-3 k 2+3=91+k 2 k 2+3=9-18k 2+3.又0<k 2<1,所以3<k 2+3<4,所以3<PE ⋅PF <92.故PE ⋅PF 的取值范围为3,92 .15.已知A x 1,y 1 ,B x 2,y 2 是抛物线C :y 2=4x 上两个不同的点,C 的焦点为F .(1)若直线AB 过焦点F ,且y 21+y 22=32,求AB 的值;(2)已知点P -2,2 ,记直线PA ,PB 的斜率分别为k PA ,k PB ,且k PA +k PB =-1,当直线AB 过定点,且定点在x 轴上时,点D 在直线AB 上,满足PD ⋅AB =0,求点D 的轨迹方程.【答案】(1)AB =10;(2)x 2+y -1 2=5(除掉点-2,0 ).【解析】(1)由抛物线方程知:F 1,0 ,准线方程为:x =-1.圆锥曲线的轨迹方程问题第12页∵AF =x 1+1=y 214+1,BF =x 2+1=y 224+1,∴AB =AF +BF =y 21+y 224+2=10.(2)依题意可设直线AB :x =ty +m ,由y 2=4x x =ty +m得:y 2-4ty -4m =0,则Δ=16t 2+16m >0,∴y 1+y 2=4t y 1y 2=-4m ⋯①∵k PA +k PB =y 1-2x 1+2+y 2-2x 2+2=y 1-2ty 1+m +2+y 2-2ty 2+m +2=-1,∴2ty 1y 2+m +2 y 1+y 2 -2t y 1+y 2 -4m +2 t 2y 1y 2+t m +2 y 1+y 2 +m +2 2=-1⋯②由①②化简整理可得:8t -4m +m 2-4=0,则有m +2-4t m -2 =0,解得:m =2或m =4t -2.当m =4t -2时,Δ=16t 2+64t -32=16t +2 2-96>0,解得:t >-2+6或t <-2-6,此时AB :x =ty +4t -2=t y +4 -2过定点-2,-4 ,不符合题意;当m =2时,Δ=16t 2+32>0对于∀t ∈R 恒成立,直线AB :x =ty +2过定点E 2,0 ,∴m =2.∵PD ⋅AB =0,∴PD ⊥AB ,且A ,B ,D ,E 四点共线,∴PD ⊥DE ,则点D 的轨迹是以PE 为直径的圆.设D x ,y ,PE 的中点坐标为0,1 ,PE =25,则D 点的轨迹方程为x 2+y -1 2=5.当D 的坐标为-2,0 时,AB 的方程为y =0,不符合题意,∴D 的轨迹方程为x 2+y -1 2=5(除掉点-2,0 ).圆锥曲线的轨迹方程问题第13页。
圆锥曲线中动点的轨迹方程的求法
知识导航有关圆锥曲线的题型较多,有求圆锥曲线的离心率、轨迹方程、判定两图形的位置关系、求弦长等,其中,求动点的轨迹方程比较常见.本文总结了求圆锥曲线中动点的轨迹方程的三种方法,供大家参考.一、直接法直接法主要应用于解答题目中所给的有关动点的几何条件较为明显的问题.运用直接法求动点的轨迹方程的主要步骤是:(1)建立合适的直角坐标系,设出所求动点的坐标;(2)根据题意,列出相关关系式;(3)将相关的点代入,化简并整理关系式即可得到动点的轨迹方程.例1.已知点Q (2,0)在圆C :x 2+y 2=1,动点M 到圆C 的切线长与|MQ |的比等于常数λ(λ>0),求动点M 的轨迹方程并说明它是什么曲线.分析:通过分析可知,动点M 到圆C 的切线长与|MQ |的比等于常数λ,所以可以考虑运用直接法求解.设出动点M 的坐标,根据题设建立关系式,化简便可得到动点的轨迹方程.解:设M (x ,y ),由直线MN 切圆于N ,MN|MQ |=λ,可得22=λ,整理得则(λ1)x 2+(λ2-1)y 2-4λ2x +(1+4λ2)=0,若λ=1,方程可化为x =54,它代表过点(54,0),与x 轴垂直的一条直线;若λ≠1,方程可化为æèçöø÷x -2λ2λ2-12+y 2=1+3λ2(λ2-1)2,它代表以æèçöø÷2λ2λ2-1,0为半径的圆.二、代入法若动点M 依赖已知曲线上的另一动点N 而运动,就可以运用代入法来求动点的轨迹方程.首先设出两动点的坐标,建立两动点的关系式,然后将转化后的动点N 的坐标代入已知曲线的方程或条件中,从而得到动点M 的轨迹方程.例2.已知点B 是椭圆x 2a 2+y 2b2=1上的动点,A (2a ,Q )为定点,求线段AB 的中点M 的轨迹方程.分析:动点M 是线段AB 的中点,M 随着动点B 而运动,本题需采用代入法来求解.解:设动点M 的坐标为(x ,y ),B 点坐标为(x 0,y 0),由M 为线段AB 的中点,可得ìíîïïïïx 0+2a2=x ,y 0+02=y ,则点B 的坐标为(2x -2a ,2y ),则(2x -2a )2a 2+(2y )2b2=1,故动点M 的轨迹方程为4(x -a )2a 2+4y 2b2=1.三、参数法参数法是指通过引入一些新变量(参数)为媒介来解答问题的方法.运用参数法求圆锥曲线中动点的轨迹方程的基本思路是,设出合适的参数,根据题意列出参数方程,通过消参将方程化为普通方程即可解题.但在解题的过程中需注意参数的取值范围.例3.如图,过点P (2,4)作两条互相垂直的直线l 1,l 2,若l 1交x 轴于A 点,l 2交y 轴于B 点,求线段AB的中点M 的轨迹方程.解:设M (x ,y ),直线l 1的方程为y -4=k (x -2),(k ≠0),由l 1⊥l 2,得直线l 2的方程为y -4=-1k(x -2),∴l 1与x 轴焦点A 的坐标为(2-4k,0),l 2与y 轴焦点B 的坐标为(0,4+2k),∵M 为AB 的中点,∴ìíîïïïïx =2-4k 2=1-2k ,y =4+2k 2=2+1k ,消去k ,得到x +2y -5=0,当k =0时,AB 的中点为M (1,2),满足上述方程,当k 不存在时,AB 的中点为M (1,2),也满足上述方程,综上所述,M 的轨迹方程为x +2y -5=0.这里通过引入参数k ,得到两条直线的方程,然后结合题意建立关于k 的关系式,通过消参得到动点的轨迹方程.相比较而言,直接法较为简单,是最常用也是适用范围最广的方法;代入法的适用范围较窄,只适用于两个动点相关的题型;运用参数法解题的运算量较大.无论采用什么方法求动点的轨迹方程,都要关注轨迹方程中变量的取值范围.(作者单位:江苏省南通市海门四甲中学)蒋秋霞39Copyright©博看网 . All Rights Reserved.。
圆锥曲线公式大全(高中珍藏版)
圆锥曲线公式大全1、椭圆的定义、椭圆的标准方程、椭圆的性质椭圆定义焦点位置椭圆的图象和性质若M 为椭圆上任意一点,则有|MF 1|+|MF 2|=2ax 轴y图形o xy 轴y o x标准方程焦点坐标焦距顶点坐标a ,b ,c 的关系式长、短轴对称轴离心率范围x 2y 2+2=12a b F 1(-c, 0 ), F 2( c, 0 )|F 1F 2| = 2c(±a , 0 ), ( 0,±b )a 2 =b 2 +c 2y 2x 2+2=12a b F 1(0,-c, ), F 2( 0, c )(0,±a ), (±b , 0 )长轴长=2a ,短轴长=2b ,长半轴长=a ,短半轴长=b 无论椭圆是x 型还是y 型,椭圆的焦点总是落在长轴上关于x 轴、y 轴和原点对称e =c ( 0 <e < 1),离心率越大,椭圆越扁,反之,越圆a-a ≤x ≤a ,-b ≤y ≤b 2-b ≤x ≤b ,-a ≤y ≤a22、判断椭圆是x 型还是y 型只要看x 对应的分母大还是y 对应的分母大,若x 对应的分母大则x 型,若y 对应的分母大则y 型.22x 2y 23、求椭圆方程一般先判定椭圆是x 型还是y 型,若为x 型则可设为2+2=1,若为y a b y 2x 222型则可设为2+2=1,若不知什么型且椭圆过两点,则设为稀里糊涂型:mx +ny =1a b 4、双曲线的定义、双曲线的标准方程、椭圆的性质双曲线的图象和性质若M为双曲线上任意一点,则有MF1-MF2=2a(2a<2c)双曲线定义若MF1-MF2=2a=2c,则点M的轨迹为两条射线若MF1-MF2=2a>2c,则点M无轨迹焦点位置x轴y轴图形标准方程焦点坐标焦距顶点坐标(±a, 0 )x2y2-2=12a bF1(-c, 0 ), F2( c, 0 )|F1F2| = 2cy2x2-2=12a bF1(0,-c, ), F2( 0, c )(0,±a )a,b,c的关系式椭圆形状长的像a,所以a是老大,a2 = b2 + c2;双曲线形状长的像c,所以c是老大,c2 = a2 + b2实轴、虚轴对称轴离心率范围渐近线实轴长=2a,虚轴长=2b,实半轴长=a,虚半轴长=b无论双曲线是x型还是y型,双曲线的焦点总是落在实轴上关于x轴、y轴和原点对称e=c(e >1)aa≤x或x≤-a,y∈R a≤y或y≤-a,x∈Ry=±bxay=±axb2、判断双曲线是x 型还是y 型只要看x 前的符号是正还是y 前的符号是正,若x 前的符号为正则x 型,若y 前的符号为正则y 型,同样的,哪个分母前的符号为正,则哪个分母就为a 22222x 2y 23、求双曲线方程一般先判定双曲线是x 型还是y 型,若为x 型则可设为2-2=1,若a b y 2x 2为y 型则可设为2-2=1,若不知什么型且双曲线过两点,则设为稀里糊涂型:a b mx 2-ny 2=1(mn <0)6、若已知双曲线一点坐标和渐近线方程y =mx ,则可设双曲线方程为y 2-m 2x 2=λ(λ≠0),而后把点坐标代入求解7、椭圆、双曲线、抛物线与直线l :y =kx +b 的弦长公式:AB =(k 2+1)(x 1-x 2)2=(12+1)(y -y )122k 8、椭圆、双曲线、抛物线与直线问题出现弦的中点往往考虑用点差法9、椭圆、双曲线、抛物线与直线问题的解题步骤:(1)假化成整(把分式型的椭圆方程化为整式型的椭圆方程),联立消y 或x (2)求出判别式,并设点使用伟大定理(3)使用弦长公式1、抛物线的定义:平面内有一定点F 及一定直线l (F 不在l 上)P 点是该平面内一动点,当且仅当点P 到F 的距离与点P 到直线l 距离相等时,那么P 的轨迹是以F 为焦点,l 为准线的一条抛物线.————见距离想定义!!!2、(1)抛物线标准方程左边一定是x 或y 的平方(系数为1),右边一定是关于x 和y 的一次项,如果抛物线方程不标准,立即化为标准方程!(2)抛物线的一次项为x 即为x 型,一次项为y 即为y 型!(3)抛物线的焦点坐标为一次项系数的四分之一,准线与焦点坐标互为相反数!一次项为x ,则准线为”x=多少”,一次项为y ,则准线为”y=多少”!(4)抛物线的开口看一次项的符号,一次项为正,则开口朝着正半轴,一次项为负,则开口朝着负半轴!(5)抛物线的题目强烈建议画图,有图有真相,无图无真相!3、求抛物线方程,如果只知x 型,则设它为y =ax (a ≠0),a>o,开口朝右;a<0,开口朝左;如果只知y 型,则设它为x =ay (a ≠0),a>o,开口朝上;a<0,开口朝下。
最全圆锥曲线知识点总结
最全圆锥曲线知识点总结的定义是指平面内一个动点P到两个定点F1,F2的距离之和等于常数(PF1+PF2=2a>F1F2),那么这个动点P的轨迹就是椭圆。
这两个定点被称为椭圆的焦点,两焦点的距离被称为椭圆的焦距。
注意:如果PF1+PF2=F1F2,则动点P的轨迹是线段F1F2;如果PF1+PF2<F1F2,则动点P的轨迹无图形。
2)对于椭圆,如果焦点在x轴上,那么它的参数方程是x=acosθ,y=bsinθ(其中θ为参数),如果焦点在y轴上,那么它的参数方程是y=acosθ,x=bsinθ。
如果椭圆的标准方程是x2/a2+y2/b2=1(a>b>0),那么它的范围是−a≤x≤a,−b≤y≤b,焦点是两个点(±c,0),对称中心是(0,0),顶点是(±a,0)和(0,±b),长轴长为2a,短轴长为2b,离心率为e=c/a,椭圆即为0<e<1的情况。
3)关于直线与椭圆的位置关系,如果点P(x,y)在椭圆外,那么a2+b2>1;如果点P(x,y)在椭圆上,那么a2+b2=1;如果点P(x,y)在椭圆内,那么a2+b2<1.4)焦点三角形是指椭圆上的一点与两个焦点构成的三角形。
5)弦长公式是指如果直线y=kx+b与圆锥曲线相交于两点A、B,且x1、x2分别为A、B的横坐标,那么AB=√[1+k2(x1−x2)2]。
如果y1、y2分别为A、B的纵坐标,则AB=√[1+k2(y1−y2)2]。
如果弦AB所在直线方程设为x=ky+b,则AB=√[1+k2(y1−y2)2]。
6)圆锥曲线的中点弦问题可以用“韦达定理”或“点差法”求解。
在椭圆中,以P(x,b2x,y)为中点的弦所在直线的斜率k=−a2y。
1.已知椭圆 $m x^2 + n y^2 = 1$ 与直线 $x+y=1$ 相交于$A,B$ 两点,点 $C$ 是 $AB$ 的中点,且 $AB=2\sqrt{2}$,求椭圆的方程,若 $OC$ 的斜率为 $\frac{1}{2}$,求 $m,n$ 的值。
圆锥曲线大题题型分类归纳大全
圆锥曲线大题题型归纳梳理圆锥曲线中的求轨迹方程问题解题技巧求动点的轨迹方程这类问题可难可易是高考中的高频题型,求轨迹方程的主要方法有直译法、相关点法、定义法、参数法等。
【例1.】已知平面上两定点),,(),,(2020N M -点P 满足MN MP =•求点P 的轨迹方程。
【例2.】已知点P 在椭圆1422=+y x 上运动,过P 作y 轴的垂线,垂足为Q ,点M 满足,PQ PM 31=求动点M 的轨迹方程。
【例3.】已知圆),,(,)(:0236222B y x A =++点P 是圆A 上的动点,线段PB 的中垂线交PA 于点Q ,求动点Q 的轨迹方程。
【例4.】过点),(10的直线l 与椭圆1422=+y x 相交于B A ,两点,求AB 中点M 的轨迹方程。
巩固提升1. 在平面直角坐标系xOy 中,点()(),,,,4010B A 若直线02++-m y x 上存在点P ,使得,PB PA 21=则实数m 的取值范围为_________________.2. 已知()Q P ,,24-为圆422=+y x O :上任意一点,线段PQ 的中点为,M 则OM 的取值范围为________________.3. 抛物线x y C 42:的焦点为,F 点A 在抛物线上运动,点P 满足,FA AP 2-=则动点P 的轨迹方程为_____________________.4. 已知定圆,)(:100422=++y x M 定点),,(40F 动圆P 过定点F 且与定圆M 内切,则动圆圆心P 的轨迹方程为____________________.5. 已知定直线,:2-=x l 定圆,)(:4422=+-y x A 动圆H 与直线l 相切,与定圆A 外切,则动圆圆心H 的轨迹方程为____________________6. 直线033=+-+t y tx l :与抛物线x y 42=的斜率为1的平行弦的中点轨迹有公共点,则实数t 的取值范围为_________________.7. 抛物线y x 42=的焦点为,F 过点),(10-M 作直线l 交抛物线于B A ,两点,以BF AF ,为邻边作平行四边形,FARB 求顶点R 的轨迹方程。
【2020届】高考数学圆锥曲线专题复习:圆锥曲线之轨迹方程的求法
圆锥曲线之轨迹方程的求法(一)【复习目标】□1. 了解曲线与方程的对应关系,掌握求曲线方程的一般步骤;□2. 会用直接法、定义法、相关点法(坐标代换法)求方程。
【基础练习】1.到两坐标轴的距离相等的动点的轨迹方程是( )A .y x =B .||y x =C .22y x =D .220x y +=2.已知点(,)P x y 4,则动点P 的轨迹是( )A .椭圆B .双曲线C .两条射线D .以上都不对3.设定点1(0,3)F -、2(0,3)F ,动点P 满足条件129(0)PF PF a a a+=+>,则点P 的轨迹( ) A .椭圆 B .线段 C. 不存在 D .椭圆或线段4.动点P 与定点(1,0)A -、(1,0)B 的连线的斜率之积为1-,则P 点的轨迹方程为______________.【例题精选】一、直接法求曲线方程根据题目条件,直译为关于动点的几何关系,再利用解析几何有关公式(两点距离公式、点到直线距离公式、夹角公式等)进行整理、化简。
即把这种关系“翻译”成含x ,y 的等式就得到曲线的轨迹方程了。
例1.已知ABC ∆中,2,AB BC m AC==,试求A 点的轨迹方程,并说明轨迹是什么图形.练习:已知两点M (-1,0)、N (1,0),且点P 使MP MN ,PM PN ,NM NP 成公差小于零的等差数列。
点P 的轨迹是什么曲线?二定义法若动点轨迹满足已知曲线的定义,可先设定方程,再确定其中的基本量,求出动点的轨迹方程。
例1.⊙C :22(16x y +=内部一点0)A 与圆周上动点Q 连线AQ 的中垂线交CQ 于BQ R A P o yx P ,求点P 的轨迹方程.例2.设动点(,)(0)P x y x ≥到定点1(,0)2F 的距离比它到y 轴的距离大12。
记点P 的轨迹为曲线C 求点P 的轨迹方程;练习.若动圆与圆1)2(:221=++y x C 相外切,且与直线1=x 相切,则动圆圆心轨迹方程是 .三代入法有些问题中,其动点满足的条件不便用等式列出,但动点是随着另一动点(称之为相关点)而运动的。
高三数学解答题难题突破—圆锥曲线中动点轨迹方程问题
高三数学解答题难题突破—圆锥曲线中动点轨迹方程问题本文介绍了解动点轨迹问题的四种方法:直译法、定义法、代入法和参数法。
其中,直译法包括建系、设点、列式、代换和证明五个步骤;定义法则是根据条件得出动点的轨迹是某种已知曲线,再由曲线的定义直接写出动点的轨迹方程;代入法和参数法则是在特定条件下使用的方法。
此外,文章还提到了解轨迹问题时需要注意的两点:求点的轨迹与求轨迹方程是不同的要求,要验证曲线上的点是否都满足方程。
接下来,文章以一个例题为例,介绍了利用代点法求轨迹方程的具体步骤。
该例题要求求出点P的轨迹方程,通过设点、列式、代换和证明四个步骤,最终得出了轨迹方程x2+y2=2.此外,文章还介绍了如何利用轨迹方程验证曲线上的点是否都满足方程,以及如何去掉满足方程的解而不再曲线上的点。
最后,文章介绍了另一种解轨迹问题的方法:定义法。
该方法是先根据条件得出动点的轨迹是某种已知曲线,再由曲线的定义直接写出动点的轨迹方程。
I)设圆心C的坐标为(x,y),则圆方程为(x-1)^2+y^2=1,又因为在y轴上截得的弦长为2,所以C到y轴的距离为1,即x^2+y^2=1.联立两式可得圆心C的轨迹方程为x^2+y^2-x-1=0.II)由题意可知,直线l的斜率为k,且过点Q(1,0),则直线方程为y=k(x-1)。
将直线方程代入圆的方程中,得到方程x^2+(k(x-1))^2-x-1=0,化简可得x^2(1+k^2)-2xk^2+k^2-1=0.由于直线l与轨迹C有交点A、B,所以方程有两个不同的实根,即Δ=4k^4-4(k^2+1)(k^2-1)≥0.解得-1≤k≤1.再将k带入直线方程可求出交点A、B的坐标,进而证明AR//FQ。
求AB中点的坐标为((k^2-1)/(1+k^2),k(k^2-2)/(1+k^2)),将其代入x^2+y^2-x-1=0中得到轨迹方程为x^4-2x^3+6x^2-2x+1-4y^2=0.1.定点、定值问题的解法定点、定值问题通常可以通过设定参数或取特殊值来确定“定点”是什么、“定值”是多少。
圆锥曲线轨迹问题(解析版)
第四讲 有关圆锥曲线轨迹问题根据动点的运动规律求出动点的轨迹方程,这是解析几何的一大课题:一方面求轨迹方程的实质是将“形”转化为“数”,将“曲线”转化为“方程”,通过对方程的研究来认识曲线的性质;另一方面求轨迹方程是培养学生数形转化的思想、方法以及技巧的极好教材。
该内容不仅贯穿于“圆锥曲线”的教学的全过程,而且在建构思想、函数方程思想、化归转化思想等方面均有体现和渗透。
求轨迹方程的的基本步骤:建设现代化(检验)建(坐标系)设(动点坐标)限(限制条件,动点、已知点满足的条件)代(动点、已知点坐标代入)化(化简整理)检验(要注意定义域“挖”与“补”)求轨迹方程的的基本方法:直接法、定义法、相关点法、参数法、交轨法、向量法等。
1.直接法:如果动点运动的条件就是一些几何量的等量关系,这些条件简单明确,不需要特殊的技巧,易于表述成含x,y 的等式,就得到轨迹方程,这种方法称之为直接法; 例1、已知直角坐标系,点Q (2,0),圆C 方程为122=+y x ,动点M 到圆C 的切线长与MQ的比等于常数)0(>λλ,求动点M 的轨迹。
【解析】设MN 切圆C 于N ,则222ONMO MN -=。
),(y x M ,则2222)2(1y x y x +-=-+λ化简得0)41(4))(1(22222=++-+-λλλx y x 当1=λ时,方程为54x =,表示一条直线。
当1≠λ时,方程化为2222222)1(31)12(-+=+--λλλλy x 表示一个圆。
【练习】如图,圆1O 与圆2O 的半径都是1,124O O =. 过动点P 分别作圆2O 、圆2O 的切线PM PN ,(M N ,分别为切点),使得2PM PN =. 试建立适当的坐标系,并求动点P 的轨迹方程.【解析】以12O O 的中点O 为原点,12O O 所在直线为x 轴,建立如图所示的平面直角坐标系,则1(20)O -,,2(20)O ,. 由已知2PM PN =,得222PM PN =. 因为两圆半径均为1,所以221212(1)PO PO -=-.设()P x y ,,则2222(2)12[(2)1]x y x y ++-=-+-, 即22(6)33x y -+=.(或221230x y x +-+=)评析:1、用直接法求动点轨迹一般有建系,设点,列式,化简,证明五个步骤,最后的y xQMNO证明可以省略,但要注意“挖”与“补”。
高考数学解答题(新高考)圆锥曲线中的轨迹方程问题 (典型例题+题型归类练)(解析版)
专题01 圆锥曲线中的轨迹方程问题(典型例题+题型归类练)目录类型一:定义法求轨迹方程类型二:直接法类型三:代入法(相关点法)类型四:点差法一、必备秘籍1、曲线方程的定义一般地,如果曲线C 与方程(,)0F x y =之间有以下两个关系: ①曲线C 上的点的坐标都是方程(,)0F x y =的解; ②以方程(,)0F x y =的解为坐标的点都是曲线C 上的点.此时,把方程(,)0F x y =叫做曲线C 的方程,曲线C 叫做方程(,)0F x y =的曲线. 2、求曲线方程的一般步骤:(1)建立适当的直角坐标系(如果已给出,本步骤省略); (2)设曲线上任意一点的坐标为),(y x ; (3)根据曲线上点所适合的条件写出等式; (4)用坐标表示这个等式,并化简; (5)确定化简后的式子中点的范围.上述五个步骤可简记为:求轨迹方程的步骤:建系、设点、列式、化简、确定点的范围. 3、求轨迹方程的方法: 3.1定义法:如果动点P 的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程。
3.2直接法:如果动点P 的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P 满足的等量关系易于建立,则可以先表示出点P 所满足的几何上的等量关系,再用点P 的坐标(,)x y 表示该等量关系式,即可得到轨迹方程。
3.3代入法(相关点法):如果动点P 的运动是由另外某一点P '的运动引发的,而该点的运动规律已知,(该点坐标满足某已知曲线y x 、例题5.(2022·湖北武汉·模拟预测)已知P 是平面上的动点,且点P 与(2,0),(2,0)F F -的距离之差的的直线分别与x 轴的正半轴和y 为坐标原点.若2BP PA =,且1OQ AB ⋅=,则点,则0,0a b >>,(,BP x y ∴=,(PA a =-2BP PA =,a ∴又(),AB a b =-=,(,OQ x =-,1OQ AB ⋅=,()332x x ⎛⎫∴-⋅-+ ⎪⎝⎭)2230,0x y y +=>.故答案为:)2302x y +>.例题2.(2022·全国·高二课时练习)已知定点()0,4A ,满足12NR NM =,又12NR NM =,可得例题5.(2022·全国·高二课时练习)已知两个定点AP OB PB ⋅=(O 为坐标原点).(1)求动点P 的轨迹【答案】(1)24y x =设(),P x y ,()AP x =+,()1,0OB =,(1PB =-,(AP OB x ⋅=+()221x B y P =-+,因为AP OB PB ⋅=,则)221x x y +=-+,所以222121x x x x ++=-+,即24y x =.例题6.(2022·四川·富顺第二中学校高二阶段练习(文))已知直线线l 垂直于轴,动点在直线l 上,且OP OQ ⊥,记点的轨迹为C ,设点P 的坐标为(),x y ,则(Q x OP OQ ⊥,∴0OP OQ ⋅= 220x y -=,0x =时,P 、O 、Q 三点共线,不符合题意,故曲线C 的方程为(22x y x =≠ 412NR NM =;AP OB PB ⋅=;OP OQ ⊥等,根据这些已知条件直接转化为代数式求解.类型三:代入法(相关点法)21y =上运动时,连接A 与定点故答案为:()()22211x y -+-=,)()0,+∞.()22,x y ,(1221y y k-=)221212y y +=圆a=,24∴动圆圆心6.(2022·和2,动圆【答案】动圆O O=,大圆O的半径为5.过动点P分别作7.(2022·全国·高二课时练习)如图,圆O与圆O内切,且4【答案】圆心为(6,0),半径为3的圆.【详解】如图,以O O所在直线为x轴,以O O的中点为原点,设动点(,)P x y ,(,0)Q t (01)t ≤≤, 高二专题练习)在ABC 中,2BC y x =⨯+足,且33QM QP =. 求动点M 的轨迹Γ的方程;【答案】(1)221x y +=;0,),(,)y M x y ,则Q ,所以0(,0),(,QP x QM x y ==,由33QM QP =得x y ⎧=⎪⎨⎪⎩,即()22313x y +=,故动点的轨迹Γ的方程为x【答案】点M的轨迹方程为:x2+y2=a2(a>0).表示圆心在原点半径为a的圆.M x y,若A、B不与原点重合时,则AOB是直角三角形,且∠O为直角,设线段AB的中点(,)为半径的圆,。
圆锥曲线精讲
圆锥曲线圆锥曲线圆锥曲线包括椭圆,双曲线,抛物线。
其统一定义:到定点的距离与到定直线的距离的比e是常数的点的轨迹叫做圆锥曲线。
当0<e<1时为椭圆:当e=1时为抛物线;当e>1时为双曲线。
b5E2RGbCAP圆锥曲线分类圆锥曲线包括椭圆,双曲线,抛物线p1EanqFDPw椭圆:到两个定点的距离之和等于定长<定长大于两个定点间的距离)的动点的轨迹叫做椭圆。
即:{P| |PF1|+|PF2|=2a, (2a>|F1F2|>}。
DXDiTa9E3d双曲线:到两个定点的距离的差的绝对值为定值<定值小于两个定点的距离)的动点轨迹叫做双曲线。
即{P|||PF1|-|PF2||=2a, (2a<|F1F2|>}。
RTCrpUDGiT 抛物线:到一个定点和一条定直线的距离相等的动点轨迹叫做抛物线。
圆锥曲线由来:圆,椭圆,双曲线,抛物线同属于圆锥曲线。
早在两千多年前,古希腊数学家对它们已经很熟悉了。
古希腊数学家阿波罗尼采用平面切割圆锥的方法来研究这几种曲线。
用垂直于锥轴的平面去截圆锥,得到的是圆;把平面渐渐倾斜,得到椭圆;当平面和圆锥的一条母线平行时,得到抛物线;当平面再倾斜一些就可以得到双曲线。
阿波罗尼曾把椭圆叫“亏曲线”,把双曲线叫做“超曲线”,把抛物线叫做“齐曲线”。
5PCzVD7HxA1)椭圆参数方程:X=acosθ Y=bsinθ (θ为参数 >直角坐标<中心为原点):x^2/a^2 + y^2/b^2 = 12)双曲线参数方程:x=asecθ y=btanθ (θ为参数 >直角坐标<中心为原点):x^2/a^2 - y^2/b^2 = 1 (开口方向为x轴) y^2 /a^2 - x^2/b^2 = 1 (开口方向为y轴) jLBHrnAILg3)抛物线参数方程x=2pt^2 y=2pt (t为参数> t=1/tanθ(tanθ为曲线上点与坐标原点确定直线的斜率)特别地,t可等于0xHAQX74J0X直角坐标y=ax^2+bx+c (开口方向为y轴, a<>0 ) x=ay^2+by+c <开口方向为x轴, a<>0 > LDAYtRyKfE圆锥曲线<二次非圆曲线)的统一极坐标方程为 Zzz6ZB2Ltkρ=ep/(1-e×co sθ>其中e表示离心率,p为焦点到准线的距离。
圆锥曲线解题技巧
圆锥曲线一概念、方法、题型、及应试技巧总结1. 圆锥曲线的两个定义(1)第一定义中要重视“括号”内的限制条件:椭圆中,与两个定点F ,,F 2的距离 的和等于常数2a ,且此常数2a 一定要大于 F ,F 2,当常数等于 F ,F 2时,轨迹是线段F 1F 2,当常数小于F l F 2时,无轨迹;双曲线中,与两定点F l ,F 2的距离的差的绝对值 等于常数2a ,且此常数2a 一定要小于|卩汙2丨,定义中的“绝对值”与2a V |F 1F 2|不 可忽视。
若2a = |F 1F 2|,则轨迹是以 F 1 , F 2为端点的两条射线,若 2a > |F 1F 2 |,则 轨迹不存在。
若去掉定义中的绝对值则轨迹仅表示双曲线的一支。
如(1)已知定点F 1(;,0),F 2(3,0),在满足下列条件的平面上动点 P 的轨迹中是椭圆 的是 A -PF1I + PF 2 =4 B •|PF 1 +|PF 2〔 =6 C •PF 1 +|PF 2 =1022D • PF 1 +|PF 2| =12 (答:C );方程J (x -6)2+y 2—J (x +6)2+y 2=8表示的曲线是 ______ (答:双曲线的左支)(2)第二定义中要注意定点和定直线是相应的焦点和准线,且“点点距为分子、点线距为分母”,其商即是离心率e 。
圆锥曲线的第二定义, 给出了圆锥曲线上的点到焦点距 离与此点到相应准线距离间的关系,要善于 运用第二定义对它们进行相互转化 。
2如已知点Q (2j2,0)及抛物线y=』上一动点P (x,y ),则y+|PQ|的最小值是4(答: 2)2. 圆锥曲线的标准方程 (标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标 准位置的方程):2 2(1)椭圆:焦点在x 轴上时—y 2 =1 ( a b 0 )= a b2 2 y x=1 ( a b 0)。
方程Ax 2 By^C 表示椭a b1 1(-3,=)U ( ,2));2 2222 2圆的充要条件是什么?(ABC 工 0, 且 A , B , C 同号,A 工 B )。
专题26 求动点轨迹方程 微点2 定义法求动点的轨迹方程及答案
专题26 求动点轨迹方程 微点2 定义法求动点的轨迹方程专题26 求动点轨迹方程 微点2 定义法求动点的轨迹方程 【微点综述】在解析几何教学中,求动点的轨迹方程历来是教学重要专题之一,而曲线的定义反映了曲线的本质属性,它是相应标准方程和几何性质的“源”,也是解题的重要工具,如果能在求动点的轨迹方程中充分利用曲线的定义,常常会达到言简意明、异曲同工的效果.下面就其应用作一些举例介绍. 一、求轨迹方程——定义法若某动点的轨迹符合某一基本轨迹如直线、圆、圆锥曲线的定义,则可以利用所学过的圆的定义、椭圆的定义、双曲线的定义、抛物线的定义等直接写出所求的动点的轨迹方程,这种方法叫做定义法.这种方法要求题设中有定点与定直线及两定点距离之和或差为定值的条件,或利用平面几何知识分析得出这些条件. 二、常见情形1.到线段两端点相等的点的轨迹是该线段的垂直平分线. 2.到角的两边相等的点的轨迹是该角的平分线及外角平分线.3.平面内到一定点的距离等于定长的点的轨迹是圆,定点为圆心,定长为圆的半径. 4.平面内一个动点P 到两个定点12,F F 的距离之和等于常数(12122,PF PF a F F a +=>为常数)的动点P 的轨迹是以12,F F 为焦点,2a 为长轴长的椭圆. 5.平面内一个动点P 到两个定点12,F F 的距离之差的绝对值等于常数(12122,PF PF a F F a -=<为常数)的动点P 的轨迹是以12,F F 为焦点,2a 为实轴长的双曲线.6.平面内与一定点F 和一条定直线l (l 不经过点F )距离之比对于常数()0e e >的动点的轨迹是圆锥曲线.当01e <<时为椭圆;当1e >时为双曲线;当1e =时为抛物线.其中,定点F 叫做圆锥曲线的焦点,定直线l 叫做圆锥曲线的准线. 三、应用举例1.利用圆的定义求轨迹方程 例11.一条定长为2a 的线段AB ,点A 在x 轴上,点B 在y 轴上滑动.求线段AB 的中点P的轨迹方程.2.利用椭圆的定义求轨迹方程 例2(2022·黑龙江·哈尔滨三中二模)2.已知圆1C :22(3)1x y ++=,2C :22(3)81x y -+=,动圆C 与圆1C ,2C 都相切,则动圆C 的圆心轨迹E 的方程为________________l 与曲线E 仅有三个公共点,依次为P ,Q ,R ,则||PR 的值为________. 例3(2019年高考江苏卷17(1))3.如图,在平面直角坐标系xOy 中,椭圆C :22221(0)x y a b a b+=>>的焦点为F 1(–1、0),F 2(1,0).过F 2作x 轴的垂线l ,在x 轴的上方,l 与圆F 2:222(1)4x y a -+=交于点A ,与椭圆C 交于点D .连结AF 1并延长交圆F 2于点B ,连结BF 2交椭圆C 于点E ,连结DF 1.已知DF 1=52.(1)求椭圆C 的标准方程; (2)求点E 的坐标.3.利用双曲线的定义求轨迹方程 例4(2021年新高考I 卷21(1))4.在平面直角坐标系xOy 中,已知点()1F 、)2122F MF MF -=,,点M的轨迹为C . (1)求C 的方程; (2)设点T 在直线12x =上,过T 的两条直线分别交C 于A 、B 两点和P ,Q 两点,且TA TB TP TQ ⋅=⋅,求直线AB 的斜率与直线PQ 的斜率之和.例55.如图,O 为坐标原点,双曲线221112211:1(0,0)x y C a b a b -=>>和椭圆222222222:1(0)y x C a b a b +=>>均过点P ,且以1C 的两个顶点和2C 的两个焦点为顶点的四边形是面积为2的正方形.(1)求12,C C 的方程;(2)是否存在直线l ,使得l 与1C 交于,A B 两点,与2C 只有一个公共点,且||||OA OB AB +=?证明你的结论.4.利用抛物线的定义求轨迹方程 例6(2014年高考福建文21)6.已知曲线Γ上的点到点(0,1)F 的距离比它到直线=3y -的距离小2. (1)求曲线Γ的方程;(2)曲线Γ在点P 处的切线l 与x 轴交于点A .直线3y =分别与直线l 及y 轴交于点,M N ,以MN 为直径作圆C ,过点A 作圆C 的切线,切点为B ,试探究:当点P 在曲线Γ上运动(点P 与原点不重合)时,线段AB 的长度是否发生变化?证明你的结论. 例7(2013年高考全国II 理11)7.设抛物线2:2(0)C y px p =>的焦点为 F ,点M 在 C 上,5MF =,若以 MF 为直径的圆过点(0,2),则C 的方程为 A .24y x =或 28y x = B .22y x =或 28y x = C .24y x =或 216y x = D .22y x =或 216y x =5.解析几何与立体几何交汇轨迹问题例8(2022·全国·模拟预测)8.如图,正方体1111ABCD A B C D -的棱长为点Q 为棱1AA 上一点,点P 在底面ABCD上,且PQ =M 为线段PQ 的中点,则线段1C M 长度的最小值是( )A .2B .6C .2D .6例9(2022·新疆·二模)9.在棱长为6的正四面体ABCD 中,点P 为ABC 所在平面内一动点,且满足+=PA PB PD 的最大值为____________. 小结:定义是事物本质属性的概括和反映,圆锥曲线的几乎每个性质和问题都是由定义派生出来.对于这些常见的圆锥曲线问题,领悟定义优先的思想,把定量的计算和定性的分析有机地结合起来,往往能准确判断、简化运算,灵活解题.我们解决问题,总是希望寻找到最简单又不失本质的原理与方法,从以上案例中,不难发现解决圆锥曲线问题的首选策略是回归定义,优先考虑定义是求解圆锥曲线有关问题的第一思路,运用定义往往能使问题快捷求解. 【强化训练】(2022·四川凉山·三模)10.已知抛物线2:4C y x =,焦点为F ,点M 是抛物线C 上的动点,过点F 作直线()1210a x y a -+-+=的垂线,垂足为P ,则MFMP +的最小值为( )A B C .5D .3(2022·浙江·慈溪中学模拟预测)11.在直角坐标系xOy 中,已知点A ,B 分别是定直线y kx =和(0)=->y kx k 上的动点,若AOB 的面积为定值S ,则线段AB 的中点的轨迹为( ) A .圆B .椭圆C .双曲线D .抛物线(2022·上海青浦·三模)12.如图,ABC ⊥平面,D α为AB 中点,2AB =,60CDB ∠=,点P 为平面α内动点,且P 到直线CD APB ∠的最大值为__________.(2022·山西晋城·三模)13.如图,正方体1111ABCD A B C D -的棱长为4,点M 是棱AB 的中点,点P 是底面ABCD 内的动点,且P 到平面11ADD A 的距离等于线段PM 的长度,则线段1B P 长度的最小值为______.(2022·江苏·南京市宁海中学模拟预测)14.已知平面上一动点P 到定点()1,0F 的距离与它到定直线=1x -的距离相等,设动点P 的轨迹为曲线C . (1)求曲线C 的轨迹方程(2)已知点(B ,过点B 引圆()()222:402M x y r r -+=<<的两条切线BP ;BQ ,切线BP 、BQ 与曲线C 的另一交点分别为P 、Q ,线段PQ 中点N 的纵坐标记为λ,求λ的取值范围.(2022·广东·模拟预测)15.平面直角坐标系内有一定点(1,0)F -,定直线:5l x =-,设动点P 到定直线的距离为d ,且满足||PF d =(1)求动点P 的轨迹方程;(2)直线:3m y kx =-过定点Q ,与动点P 的轨迹交于不同的两点M ,N ,动点P 的轨迹与y 的负半轴交于A 点,直线,AM AN 分别交直线=3y -于点H 、K ,若||||35QH QK +≤,求k 的取值范围.(2022·云南师大附中高三月考)16.已知定圆()221:11F x y ++=,圆()222:125F x y -+=,动圆M 与定圆1F 外切,与定圆2F 内切.(1)求动圆圆心M 的轨迹方程E ;(2)直线l 的方向向量()1,2a =-,直线l 与曲线E 交于A 、B 两点,若AOB ∠为锐角(其中O 为坐标原点),求直线l 纵截距m 的取值范围.17.设圆222150x y x ++-=的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E . (I )证明EA EB +为定值,并写出点E 的轨迹方程;(II )设点E 的轨迹为曲线C 1,直线l 交C 1于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围. (2018年高考江苏卷18(1))18.在平面直角坐标系xOy 中,椭圆C 过点1)2,焦点12(F F ,圆O 的直径为12F F .(1)求椭圆C 及圆O 的方程;(2)设直线l 与圆O 相切于第一象限内的点P .①若直线l 与椭圆C 有且只有一个公共点,求点P 的坐标;①直线l 与椭圆C 交于,A B 两点.若OAB ,求直线l 的方程. 19.已知点()0,2F ,过点()02P ,-且与y 轴垂直的直线为1l ,2l x ⊥轴,交1l 于点N ,直线l 垂直平分FN ,交2l 于点M . (1)求点M 的轨迹方程;(2)记点M 的轨迹为曲线E ,直线AB 与曲线E 交于不同两点1122(,),(,)A x y B x y ,且2211x x m =-+ (m 为常数),直线l '与AB 平行,且与曲线E 相切,切点为C ,试问ABC的面积是否为定值.若为定值,求出ABC 的面积;若不是定值,说明理由.参考答案:1.222x y a +=【分析】设AB 的中点坐标为(,)x y ,当A 、B 均不与原点重合时,由直角三角形斜边的中线等于斜边的一半可得AB 中点轨迹,验证A 、B 有一点与原点重合时成立得答案. 【详解】当OA OB ⊥时,12OP AB =,即,OP a P =∴的轨迹是以原点为圆心,a 为半径的圆,∴方程是222x y a +=(0x ≠且0y ≠).当A 点为原点时,()0,B a 或()0,B a -,当B 点在原点时,()0A a ,或(),0A a -,P ∴点的轨迹方程是222x y a +=.2. 2212516x y +=,221167x y += 6011 【分析】根据动圆C 与圆1C ,2C 的位置关系,分情况讨论可知动圆C 的圆心轨迹为椭圆,然后计算,,a b c 即可,然后假设直线方程,根据直线于曲线E 的位置关系以及弦长公式,可得结果.【详解】设动圆C 的半径为R 由题可知:当动圆C 与圆1C 外切,与圆2C 内切时 则112122=+11069CC R CC CC C C CC R ⎧⎪⇒+=>=⎨=-⎪⎩所以可知动圆C 圆心轨迹为椭圆所以210=5,3=⇒=a a c ,故22216b a c =-=所以动圆C 的圆心轨迹E 的方程为2212516x y +=当动圆C 与圆1C 内切,与圆2C 内切时 则112122=1869CC R CC CC C C CC R ⎧-⎪⇒+=>=⎨=-⎪⎩所以可知动圆C 圆心轨迹为椭圆所以28=4,3=⇒=a a c ,故2227b a c =-= 所以动圆C 的圆心轨迹E 的方程为221167x y +=所以动圆C的圆心轨迹E的方程为2212516x y+=,221167x y+=设直线l方程为y m=+,()()1122,,,P x y R x y由直线l与曲线E仅有三个公共点则直线l与221167x y+=相切于点Q,与2212516x y+=相交于点P,R所以2222139161120167x yx by m⎧+=⎪⇒++-=⎨⎪=+⎩则()()22243916112039∆=-⨯⨯-=⇒=b b22221662540002516x yx by m⎧+=⎪⇒++-=⎨⎪=+⎩212122540066-+==bx x x x则PR则PR239=b代入可得6011=PR故答案为:2212516x y+=,221167x y+=;6011【点睛】本题考查椭圆的定义,以及弦长公式,考验分析问题能力以及计算能力,属中档题. 3.(1)22143x y+=;(2)3(1,)2E--.【分析】(1)由题意分别求得a,b的值即可确定椭圆方程;(2)解法一:由题意首先确定直线1AF的方程,联立直线方程与圆的方程,确定点B的坐标,联立直线BF2与椭圆的方程即可确定点E的坐标;解法二:由题意利用几何关系确定点E的纵坐标,然后代入椭圆方程可得点E的坐标.【详解】(1)设椭圆C的焦距为2c.因为F1(-1,0),F2(1,0),所以F1F2=2,c=1.又因为DF1=52,AF2①x轴,所以DF232=,因此2a=DF1+DF2=4,从而a=2.由b 2=a 2-c 2,得b 2=3.因此,椭圆C 的标准方程为22143x y +=. (2)解法一:由(1)知,椭圆C :22143x y +=,a =2, 因为AF 2①x 轴,所以点A 的横坐标为1. 将x =1代入圆F 2的方程(x -1) 2+y 2=16,解得y =±4. 因为点A 在x 轴上方,所以A (1,4). 又F 1(-1,0),所以直线AF 1:y =2x +2. 由()2222116y x x y =+⎧⎪⎨-+=⎪⎩,得256110x x +-=, 解得1x =或115x =-. 将115x =-代入22y x =+,得125y =-, 因此1112(,)55B --.又F 2(1,0),所以直线BF 2:3(1)4y x =-. 由223(1)4143y x x y ⎧=-⎪⎪⎨⎪+=⎪⎩,得276130x x --=,解得=1x -或137x =. 又因为E 是线段BF 2与椭圆的交点,所以=1x -.将=1x -代入3(1)4y x =-,得32y =-.因此3(1,)2E --.解法二:由(1)知,椭圆C :22143x y +=.如图,连结EF 1.因为BF 2=2a ,EF 1+EF 2=2a ,所以EF 1=EB , 从而①BF 1E =①B .因为F 2A =F 2B ,所以①A =①B , 所以①A =①BF 1E ,从而EF 1①F 2A . 因为AF 2①x 轴,所以EF 1①x 轴.因为F 1(-1,0),由221143x x y =-⎧⎪⎨+=⎪⎩,得32y =±.又因为E 是线段BF 2与椭圆的交点,所以32y =-.因此3(1,)2E --.【点睛】本题主要考查直线方程、圆的方程、椭圆方程、椭圆的几何性质、直线与圆及椭圆的位置关系等基础知识,考查推理论证能力、分析问题能力和运算求解能力. 4.(1)()221116y x x -=≥;(2)0.【分析】(1) 利用双曲线的定义可知轨迹C 是以点1F 、2F 为左、右焦点双曲线的右支,求出a 、b 的值,即可得出轨迹C 的方程;(2)方法一:设出点的坐标和直线方程,联立直线方程与曲线C 的方程,结合韦达定理求得直线的斜率,最后化简计算可得12k k +的值. 【详解】(1)因为12122MF MF F F -=<=所以,轨迹C 是以点1F 、2F 为左、右焦点的双曲线的右支,设轨迹C 的方程为()222210,0x y a b a b-=>>,则22a =,可得1a =,4b =,所以,轨迹C 的方程为()221116y x x -=≥. (2)[方法一] 【最优解】:直线方程与双曲线方程联立如图所示,设1(,)2T n ,设直线AB 的方程为112211(),,(2,(),)y n k x A x y B x y -=-.联立1221()2116y n k x y x ⎧-=-⎪⎪⎨⎪-=⎪⎩, 化简得22221111211(16)(2)1604k x k k n x k n k n -+---+-=.则22211112122211111624,1616k n k n k k n x x x x k k +-+-+==--.故12,11||)||)22TA x TB x -=-.则222111221(12)(1)11||||(1)()()2216n k TA TB k x x k ++⋅=+--=-.设PQ 的方程为21()2y n k x -=-,同理22222(12)(1)||||16n k TP TQ k ++⋅=-. 因为TA TB TP TQ ⋅=⋅,所以22122212111616k k k k ++=--,化简得22121717111616k k +=+--,所以22121616k k -=-,即2212k k =.因为11k k ≠,所以120k k +=. [方法二] :参数方程法设1(,)2T m .设直线AB 的倾斜角为1θ,则其参数方程为111cos 2sin x t y m t θθ⎧=+⎪⎨⎪=+⎩, 联立直线方程与曲线C 的方程2216160(1)x y x --≥=,可得222221111cos 116(cos )(sin 2sin )1604t m t t mt θθθθ+-++-=+,整理得22221111(16cos sin )(16cos 2sin )(12)0t m t m θθθθ-+--+=.设12,TA t TB t ==,由根与系数的关系得2212222111(12)12||||16cos sin 117cos t m m TA TB t θθθ-++⋅===--⋅.设直线PQ 的倾斜角为2θ,34,TP t TQ t ==, 同理可得2342212||||117cos m T T t P Q t θ+⋅==-⋅ 由||||||||TA TB TP TQ ⋅=⋅,得2212cos cos θθ=.因为12θθ≠,所以12s o o s c c θθ=-.由题意分析知12θθπ+=.所以12tan tan 0θθ+=, 故直线AB 的斜率与直线PQ 的斜率之和为0. [方法三]:利用圆幂定理因为TA TB TP TQ ⋅=⋅,由圆幂定理知A ,B ,P ,Q 四点共圆. 设1(,)2T t ,直线AB 的方程为11()2y t k x -=-,直线PQ 的方程为21()2y t k x -=-,则二次曲线1212()()022k kk x y t k x y t --+--+=. 又由22116y x -=,得过A ,B ,P ,Q 四点的二次曲线系方程为:221212()()(1)0(0)2216k k y k x y t k x y t x λμλ--+--++--=≠,整理可得: []2212121212()()()()16k x y k k xy t k k k k k x μμλλλλ++--+++-12(2)02y k k t m λ++-+=, 其中21212()42k k t m t k k λμ⎡⎤=+-+-⎢⎥⎣⎦.由于A ,B ,P ,Q 四点共圆,则xy 项的系数为0,即120k k +=.【整体点评】(2)方法一:直线方程与二次曲线的方程联立,结合韦达定理处理圆锥曲线问题是最经典的方法,它体现了解析几何的特征,是该题的通性通法,也是最优解; 方法二:参数方程的使用充分利用了参数的几何意义,要求解题过程中对参数有深刻的理解,并能够灵活的应用到题目中.方法三:圆幂定理的应用更多的提现了几何的思想,二次曲线系的应用使得计算更为简单.5.(1)1C 的方程为:2213y x -=;2C 的方程为22132y x+= (2)不存在,证明见解析【分析】(1)根据以1C 的两个顶点和2C 的两个焦点为顶点的四边形是面积为2的正方形得 121,1a c ==,分别将P 的坐标代入双曲线和椭圆方程,可求出双曲线和椭圆方程;(2)当直线l 垂直于x 轴时,求出,A B 的坐标,可以验证OA OB AB +≠;当直线l 不垂直于x 轴时,设l 的方程为y kx m =+,代入双曲线方程,由韦达定理得到,A B 两个点的横坐标、纵坐标之间的关系,代入椭圆方程,根据判别式得到2223k m =-,利用韦达定理推出0OA OB ⋅≠,从而可推出OA OB AB +≠.(1)设2C 的焦距为22c ,因为1C 的两个顶点和2C 的两个焦点为顶点的四边形是面积为2的正方形.所以2122,22c a ==,从而121,1a c ==,因为点P ⎫⎪⎝⎭在双曲线22211y x b -=上,所以22121113b b -=⇒=⎝⎭, 所以1C 的方程为:2213y x -=.因为点P ⎫⎪⎝⎭在222222222:1(0)y x C a b a b +=>>上,所以22221314a b +=, 因为222222221b a c a =-=-,所以22221413(1)a a +=-,解得223a =,所以222b =, 所以2C 的方程为22132y x+=. (2)不存在符合题设条件的直线,证明如下:当直线l 垂直于x 轴时,因为l 与2C只有一个公共点,所以直线的方程为x =或x =当x,,AB所以22,23OA OB AB +==此时OA OB AB +≠,当x =OA OB AB +≠.当直线l 不垂直于x 轴时,设l 的方程为y kx m =+,由 2213y kx my x =+⎧⎪⎨-=⎪⎩可得()2223230k x kmx m ----=,当l 与1C 相交于,A B 两点时,230k -≠,222(2)4(3)(3)0km k m ∆=-+-+>,即2230m k +->,设()()1122,,,A x y B x y ,则212122223,33km m x x x x k k ++==--, 于是()22222221212121222(3)2()()33k m k m y y kx m kx m k x x km x x m m k k+=++=+++=++-- 222333k m k -=-, 由22132y kx m y x =+⎧⎪⎨+=⎪⎩可得()222234260k x kmx m +++-=, 因为直线l 与2C 只有一个公共点,所以()()2222016423260k m k m ∆=⇒-+-=,化简可得2223k m =-,因此22222212122222333332303333m k m k m k OA OB x x y y k k k k +-+---⋅=+=+==≠----, 于是222222OA OB OA OB OA OB OA OB ++⋅≠+-⋅, 即22OA OB OA OB +≠-,所以OA OB AB +≠, 综上所述:OA OB AB +≠,所以不存在符合题目条件的直线l .6.(1)24x y =.(2)当点P 在曲线Γ上运动时,线段AB 的长度不变,证明见解析. 【详解】试题分析:(1)思路一:设(,)S x y 为曲线Γ上任意一点, 依题意可知曲线Γ是以点(0,1)F 为焦点,直线1y =-为准线的抛物线, 得到曲线Γ的方程为24x y =.思路二:设(,)S x y 为曲线Γ上任意一点,由(3)2y --==,化简即得.(2)当点P 在曲线Γ上运动时,线段AB 的长度不变,证明如下: 由(1)知抛物线Γ的方程为214y x =, 设000(,)(0)P x y x ≠,得20014y x =, 应用导数的几何意义,确定切线的斜率,进一步得切线l 的方程为2001124y x x x =-. 由20011240y x x x y ⎧=-⎪⎨⎪=⎩,得01(,0)2A x . 由20011243y x x x y ⎧=-⎪⎨⎪=⎩,得0016(,3)2M x x +. 根据(0,3)N ,得圆心0013(,3)4C x x +,半径0011324r MN x x ==+,由弦长,半径及圆心到直线的距离之关系,确定AB 试题解析:解法一:(1)设(,)S x y 为曲线Γ上任意一点, 依题意,点S 到(0,1)F 的距离与它到直线1y =-的距离相等, 所以曲线Γ是以点(0,1)F 为焦点,直线1y =-为准线的抛物线,所以曲线Γ的方程为24x y =.(2)当点P 在曲线Γ上运动时,线段AB 的长度不变,证明如下: 由(1)知抛物线Γ的方程为214y x =, 设000(,)(0)P x y x ≠,则20014y x =, 由12y x '=,得切线l 的斜率001|2x x k y x =='=, 所以切线l 的方程为0001()2y y x x x -=-,即2001124y x x x =-. 由20011{240y x x x y =-=,得01(,0)2A x .由20011{243y x x x y =-=,得016(,3)2M x x +. 又(0,3)N ,所以圆心0013(,3)4C x x +,半径0011324r MN x x ==+,AB ===所以点P 在曲线Γ上运动时,线段AB 的长度不变.解法二:(1)设(,)S x y 为曲线Γ上任意一点,则(3)2y --==,依题意,点(,)S x y 只能在直线=3y -的上方,所以3y >-,1y =+,化简得,曲线Γ的方程为24x y =.(2)同解法一.考点:抛物线的定义,导数的几何意义,直线方程,直线与抛物线的位置关系,直线与圆的位置关系. 7.C【详解】①抛物线C 方程为22(0)y px p =>,①焦点(,0)2pF ,设(,)M x y ,由抛物线性质52p MF x =+=,可得52p x =-,因为圆心是MF 的中点,所以根据中点坐标公式可得,圆心横坐标为52,由已知圆半径也为52,据此可知该圆与y 轴相切于点(0,2),故圆心纵坐标为2,则M 点纵坐标为4, 即(5,4)2pM -,代入抛物线方程得210160p p -+=,所以p=2或p=8. 所以抛物线C 的方程为24y x =或216y x =. 故答案C.【点睛】本题主要考查了抛物线的定义与简单几何性质,圆的性质和解直角三角形等知识,属于中档题,本题给出抛物线一条长度为5的焦半径MF ,以MF 为直径的圆交抛物线于点(0,2),故将圆心的坐标表示出来,半径求出来之后再代入到抛物线中即可求出p 的值,从而求出抛物线的方程,因此正确运用圆的性质和抛物线的简单几何性质是解题的关键. 8.B【分析】根据给定条件,确定点M 所在的轨形迹图,再利用该图形的性质即可求解作答.【详解】依题意,正方体1111ABCD A B C D -,当点P 与A 不重合时,AQ AP ⊥,如图,因点M 为线段PQ 的中点,则12AM PQ ==P 与A 重合时,12AM PQ ==即无论点P ,Q 如何运动,总有AM M 在以点A 18球面上,而16AC ==,所以线段1C M 长度的最小值是16AC = 故选:B【点睛】结论点睛:球面一点与球面上的点间距离最小值等于这一点与球心距离减球半径;球面一点与球面上的点间距离最大值等于这一点与球心距离加球半径,9.【分析】先由+=PA PB P 的轨迹是椭圆,由点D 在底面ABC 上的射影恰为短轴端点E ,得到PD =)P θθ,求出PE 最大值,进而得到PD 的最大值.【详解】取AB 的中点O ,连接OC ,以AB 为x 轴,OC 为y 轴,建立直角坐标系,则点P 在以A ,B 为焦点的椭圆上,且3==a c ,①23b =,即椭圆方程为221123x y +=,易知点D 在底面ABC 上的射影恰为短轴端点E ,DE ==①==PD设)P θθ,由E ,则2222112cos 3sin 6sin 39sin 163⎛⎫=+-+=-++ ⎪⎝⎭PE θθθθ,①()2max16=PE,当1sin 3θ=-取得,①max ||==PD故答案为:【点睛】本题关键点在于确定点P 的轨迹是椭圆,由点D 在底面ABC 上的射影恰为短轴端点E ,将PD 的最大值转化为PE 最大值,再借助椭圆的参数方程求出PE 最大值即可. 10.A【分析】由条件确定点P 的轨迹,结合抛物线的定义,圆的性质求MF MP +的最小值. 【详解】① 抛物线C 的方程为24y x =, ① (1,0)F ,抛物线C 的准线方程为=1x -,① 方程()1210a x y a -+-+=可化为()1(1)2y a x -=--, ①()1210a x y a -+-+=过定点(2,1)B ,设(,)P x y ,设,F B 的中点为A ,则31,22A ⎛⎫⎪⎝⎭,因为FP BP ⊥,P 为垂足,①122PA FB ==,所以22311222x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭,即点P 的轨迹为以A 过点M 作准线=1x -的垂线,垂足为1M ,则1MM MF =,① 1=MF MP MM MP ++,,又MP MA ≥,当且仅当,,M P A 三点共线且P 在,M A 之间时等号成立,① 1MF MP MM MA +≥+, 过点A 作准线=1x -的垂线,垂足为1A ,则115=2MM MA AA +≥,当且仅当1,,A M A 三点共线时等号成立,① MF MP +≥1,,,A M P A 四点共线且P 在,M A 之间时等号成立,所以MF MP +故选:A.11.C【分析】设()()1122,,,-A x kx B x kx ,由于AOB 的面积为定值,可得出12x x 为定值,设12=x x T ,设线段AB 的中点为M,因为()22224M M y x T k ⎛⎫-=± ⎪⎝⎭,即可得出线段AB 的中点的轨迹为双曲线.【详解】设()()1122,,,-A x kx B x kx ,则12||,||==OA OB .由于AOB 的面积为定值且sin AOB ∠为定值,从而12x x 为定值,设12=x x T . 设线段AB 的中点为M ,则122M x x x +=,()122-=M k x x y , 故()()()22221212122244⎛⎫-=+--==± ⎪⎝⎭M M y x x x x x x x T k 为定值, 从而线段AB 的中点的轨迹为双曲线. 故选:C. 12.3π 【分析】由题意,可知P 的椭圆轨迹,即可知当PA PB =,即P 在椭圆短轴的顶点上时APB ∠最大,即可求最大值.【详解】由题设,ABC ⊥平面,D α为AB 中点,2AB =,60CDB ∠=,点P 为平面α内动点,且P 到直线CD①P 是以CD 为轴,α相交的椭圆轨迹上,即以D 为中心,A B 为焦点,2b =24a ==为长轴长的椭圆上,如下图示,①由椭圆的性质知:当且仅当PA PB =,即P 在椭圆短轴的端点上时,APB ∠最大有3APB π∠=.故答案为:3π. 【点睛】关键点点睛:根据题设,确定P 在圆柱体在平面α的交线上,以D 为中心,A B 为焦点, 4为长轴长的椭圆.13.【分析】根据抛物线的定义,可知点P 是以M 为焦点,以AD 为准线的抛物线,然后根据空间中两点的距离来求解.【详解】由P 到平面11ADD A 的距离等于线段PM 的长度,可知点P 是以M 为焦点,以AD 为准线的抛物线.以AM 中点为坐标原点,建立如图所示的空间直角坐标系.()1,0,0M ()13,0,4B ,设(),0P x y ,点P 的方程为:()24,03y x x =≤≤1B P 当1x =时,1B P 长度最小为故答案为: 14.(1)24y x =;(2)λ的取值范围为(--.【分析】(1)根据曲线轨迹方程的定义求解;(2)设切线BP 的方程为12y k x +=(﹣)BQ 的方程为22y k x +=(﹣)12k k += 212284r k k r =--,再求出122y y t +==-,即得解.(1) 设(,)P x y ,|1|x =+, 化简得()222(1)1x y x -+=+, 所以24y x =,所以曲线C 的方程为24y x =, (2)由已知2B(,所以切线,BP BQ 的斜率存在,设切线BP 的方程为12y k x -+=() 则圆心40M (,)到切线AP的距离d r ==,所以22211480r k r -++()﹣=, 设切线BQ 的方程为22y k x -+=()同理可得22222480r k r -++()﹣=, 所以12kk ,是方程222480r k r -++()﹣=的两根,所以12k k += 212284r k k r =--,设1122(,),(,)P x y Q x y ,联立12(2)4y k x y x ⎧=-+⎪⎨=⎪⎩211048k y y k +﹣﹣,所以11=所以114y k =-,同理224y k =-,所以121244(=22y y k k λ-+-++=12112k k ⎛⎫⋅+ ⎪⎝⎭=12122k k k k +⋅=﹣224284r r r -=-⋅--=- 因为02r <<,所以2111884r <<-所以--<- 所以λ的取值范围为(--.【点睛】求取值范围常用的方法有:(1)函数法;(2)导数法;(3)基本不等式法;(4)基本不等式法. 要根据已知条件灵活选择方法求解. 15.(1)动点P 的轨迹方程为椭圆22154x y +=(2)[7,1)(1,7]--【分析】(1)设动点P 的坐标为(,)x y ,根据题意列式再化简方程求解即可;(2)设()()1122,,,M x y N x y ,再根据,AM AN 的直线方程得出,K H x x ,联立直线MN 与椭圆的方程,得出韦达定理与判别式中k 的范围,进而将韦达定理代入||||QH QK +化简可得||7k ≤,结合判别式中k 的范围即可得(1)设动点P 的坐标为(,)x y,因为||PF d ==2225(1)|5|x y x ⎡⎤++=+⎣⎦,整理得22154x y +=.所以动点P 的轨迹方程为椭圆22154x y +=. (2)设()()1122,,,M x y N x y ,由(1)可得A 的坐标为(0,2)-, 故直线112:2y AM y x x +=-,令=3y -,则112H xx y =-+,同理222K x x y =-+.直线:3MN y kx =-,由2234520y kx x y =-⎧⎨+=⎩,消去y 得()224530250k x kx +-+=, 故()22Δ900100450k k =-+>,解得1k <-或1k >.又1212223025,4545k x x x x k k +==++,故120x x >, 又1212||||22H K x xQH QK x x y y +=+=+++ ()()22121212222121212225030245455||253011114545k kkx x x x x x k k k k k kx kx k x x k x x k k --+++=+===---++-+++, ①||||35QH QK +≤, 故5||35k ≤,即||7k ≤, 综上,71k -≤<-或17k <≤. 所以k 的取值范围是[7,1)(1,7]--.16.(1)22198x y ;(2)⎛-⋃ ⎝⎭⎝. 【分析】(1)设动圆M 的半径为r ,分析得出1262MF MF +=>,利用椭圆的定义可知点M的轨迹为椭圆,确定该椭圆的焦点,求出a 、b 、c 的值,即可得出轨迹E 的方程; (2)设点()11,A x y 、()22,B x y ,设直线l 的方程为2y x m =-+,将直线l 的方程与椭圆的方程联立,列出韦达定理,由已知条件得出0OA OB ⋅>,结合0∆>可得出关于实数m 的不等式组,由此可解得实数m 的取值范围.【详解】(1)设动圆M 的半径为r ,由图可知,圆1F 内含于圆2F ,圆1F 的半径为1,圆2F 的半径为5.动圆M 与定圆1F 外切,则11MF r =+,动圆M 与定圆2F 内切,则25MF r =-, 由题意知:()()121562MF MF r r +=++-=>,根据椭圆定义,圆心M 的轨迹是以原点为中心,1F 、2F 为焦点,长半轴长3a =,半焦距1c =的椭圆,2228b a c ∴=-=,E ∴的方程为22198x y ;(2)直线l 的方向向量为()1,2a =-,所以直线l 的斜率为2-. 设点()11,A x y 、()22,B x y ,设直线l 的方程为2y x m =-+,由222198y x m x y =-+⎧⎪⎨+=⎪⎩得2244369720x mx m -+-=.直线l 与椭圆E 有两个交点,所以,()()22223644498288440m m m ∆=-⨯⨯-=->,解得m -<<由韦达定理可得12911m x x +=,21297244m x x -=,AOB ∠为锐角,()()1212121222OA OB x x y y x x x m x m ∴⋅=+=+-+-+()()22212122597223652401444736044m m m x x m x x m m m -==-⨯⋅-++-+=>,m ∴>m <综上,直线l 的纵截距m 的取值范围为⎛-⋃ ⎝⎭⎝. 【点睛】方法点睛:圆锥曲线中的取值范围问题的求解方法(1)函数法:用其他变量作为参数,建立函数关系,利用求函数值域的方法求解. (2)不等式法:根据题意建立含参数的不等式,通过解不等式求参数的取值范围. (3)判别式法:建立关于某变量的一元二次方程,利用根的判别式求参数的取值范围. (4)数形结合法:研究参数所表示的几何意义,利用数形结合思想求解.17.(①)答案见解析;(①)⎡⎣.【详解】试题分析:(①)利用椭圆定义求方程;(①)把面积表示为关于斜率k 的函数,再求最值.试题解析:(①)因为,,故,所以,故. 又圆的标准方程为,从而,所以. 由题设得,,,由椭圆定义可得点的轨迹方程为:().(①)当与轴不垂直时,设的方程为,,.由得.则,.所以.过点且与垂直的直线:,到的距离为,所以.故四边形的面积.可得当与轴不垂直时,四边形面积的取值范围为()12,83.当与轴垂直时,其方程为,,,四边形的面积为12.综上,四边形面积的取值范围为.【考点】圆锥曲线综合问题【名师点睛】高考解析几何解答题大多考查直线与圆锥曲线的位置关系,直线与圆锥曲线的位置关系是一个很宽泛的考试内容,主要由求值、求方程、求定值、求最值、求参数取值范围等几部分组成.其中考查较多的圆锥曲线是椭圆与抛物线,解决这类问题要重视方程思想、函数思想及化归思想的应用.18.(1)2214x y +=,223x y +=;(2)①;①y =+【分析】(1)根据条件易得圆的半径,即得圆的标准方程,再根据点在椭圆上,解方程组可得a ,b ,即得椭圆方程;(2)方法一:①先根据直线与圆相切得一方程,再根据直线与椭圆相切得另一方程,解方程组可得切点坐标;①先根据三角形面积得三角形底边边长,再结合①中方程组,利用求根公式以及两点间距离公式,列方程,解得切点坐标,即得直线方程. 【详解】(1)因为椭圆C 的焦点为()12,F F ,可设椭圆C 的方程为22221(0)x y a b a b+=>>.又点12⎫⎪⎭在椭圆C 上,所以2222311,43,a b a b ⎧+=⎪⎨⎪-=⎩,解得224,1,a b ⎧=⎨=⎩因此,椭圆C 的方程为2214x y +=.因为圆O 的直径为12F F ,所以其方程为223x y +=. (2)[方法一]:【通性通法】代数法硬算①设直线l 与圆O 相切于()0000,(0,0)P x y x y >>,则22003x y +=,所以直线l 的方程为()0000x y x x y y =--+,即0003x y x y y =-+. 由22000143x y x y x y y ⎧+=⎪⎪⎨⎪=-+⎪⎩,消去y ,得()222200004243640x y x x x y +-+-=(*),因为直线l 与椭圆C 有且只有一个公共点,所以()()()()22222200000024443644820x x y y y x ∆=--+-=-=.因为00,0x y >,所以001x y =,因此,点P的坐标为. ①因为三角形OAB,所以12AB OP ⋅=,从而AB = 设()()1122,,,A x y B x y ,由(*)得1,20024x x y =+所以()()2221212AB x x y y =-+-()()222000222200048214y x x y x y -⎛⎫=+⋅ ⎪⎝⎭+. 因为22003x y +=,所以()()2202216232491x AB x-==+,即42002451000x x -+=,解得22005(202x x ==舍去),则2012y =,因此P的坐标为⎝⎭. 综上,直线l的方程为y =+[方法二]: 圆的参数方程的应用设P点坐标为π),0,2ααα⎛⎫∈ ⎪⎝⎭.因为原点到直线cos sin x y αα+=d r ==,所以与圆O 切于点P 的直线l的方程为cos sin x y αα+=由22cos sin 1,4x y x y αα⎧+=⎪⎨+=⎪⎩消去y ,得()()22213cos )124sin 0x x ααα+-+-=. ①因为直线l 与椭圆相切,所以()()22Δ16cos 23cos 20αα=-⋅--=.因为π0,2α⎛⎫∈ ⎪⎝⎭,所以cos (0,1)α∈,故cos α=,sin α=.所以,P点坐标为.①因为直线:cos sin l x y αα+=O 相切,所以OAB 中边ABr =,因为OAB,所以||AB = 设()()1122,,,A x y B x y ,由①知22121222124sin 84cos 13cos 13cos x x x x αααα-++===++||AB ==, 即64218cos 153cos 235cos 1000ααα-+-=,即()()()2226cos 5cos 13cos 200ααα---=.因为π0,2α⎛⎫∈ ⎪⎝⎭,所以cos (0,1)α∈,故25cos 6α=,所以cos αα==所以直线l的方程为y =+.[方法三]:直线参数方程与圆的参数方程的应用设P点坐标为π),0,2ααα⎛⎫∈ ⎪⎝⎭,则与圆O 切于点P 的直线l 的参数方程为:πcos2πsin2x ty tαααα⎧⎛⎫=++⎪⎪⎪⎝⎭⎨⎛⎫⎪=++⎪⎪⎝⎭⎩(t为参数),即sincosx ty tαααα⎧=-⎪⎨=+⎪⎩(t为参数).代入2214xy+=,得关于t的一元二次方程()()22213cos cos)89cos0t tαααα+++-=.①因为直线l与椭圆相切,所以,()()222Δcos)413cos89cos0αααα=-+-=,因为π0,2α⎛⎫∈ ⎪⎝⎭,所以cos(0,1)α∈,故cosα=,sinα=.所以,P点坐标为.①同方法二,略.【整体点评】(2)方法一:①直接利用直线与圆的位置关系,直线与椭圆的位置关系代数法硬算,即可解出点P的坐标;①根据三角形面积公式,利用弦长公式可求出点P的坐标,是该题的通性通法;方法二:①利用圆的参数方程设出点)αα,进而表示出直线方程,根据直线与椭圆的位置关系解出点P的坐标;①根据三角形面积公式,利用弦长公式可求出点P的坐标;方法三:①利用圆的参数方程设出点)αα,将直线的参数方程表示出来,根据直线与椭圆的位置关系解出点P的坐标;①根据三角形面积公式,利用弦长公式可求出点P的坐标.19.(1)28x y=(2)是定值,23(1)64m+【分析】(1)由题意得FM MN=,结合抛物线的定义即可求得点M的轨迹方程;(2)设出直线AB的方程,联立抛物线求得AB的中点Q坐标,再联立切线与抛物线求出切点坐标,得到CQ x⊥轴,结合2211x x m=-+以及1212ABCCS Q x x=⋅-求得23(1)64ABCmS+=即可求解.(1)。
高考数学难点:轨迹方程的求法
高考数学难点:轨迹方程的求法求曲线的轨迹方程是解析几何的两个基本问题之一.求符合某种条件的动点的轨迹方程,其实质就是利用题设中的几何条件,用“坐标化”将其转化为寻求变量间的关系.这类问题除了考查学生对圆锥曲线的定义,性质等基础知识的掌握,还充分考查了各种数学思想方法及一定的推理能力和运算能力,因此这类问题成为高考命题的热点,也是同学们的一大难点.●难点磁场(★★★★)已知A 、B 为两定点,动点M 到A 与到B 的距离比为常数λ,求点M 的轨迹方程,并注明轨迹是什么曲线.●案例探究[例1]如图所示,已知P (4,0)是圆x 2+y 2=36内的一点,A 、B 是圆上两动点,且满足∠APB =90°,求矩形APBQ 的顶点Q 的轨迹方程.命题意图:本题主要考查利用“相关点代入法”求曲线的轨迹方程,属★★★★★级题目.知识依托:利用平面几何的基本知识和两点间的距离公式建立线段AB 中点的轨迹方程.错解分析:欲求Q 的轨迹方程,应先求R 的轨迹方程,若学生思考不深刻,发现不了问题的实质,很难解决此题.技巧与方法:对某些较复杂的探求轨迹方程的问题,可先确定一个较易于求得的点的轨迹方程,再以此点作为主动点,所求的轨迹上的点为相关点,求得轨迹方程.解:设AB 的中点为R ,坐标为(x ,y ),则在Rt △ABP 中,|AR |=|PR |. 又因为R 是弦AB 的中点,依垂径定理:在Rt △OAR 中,|AR |2=|AO |2-|OR |2=36-(x 2+y 2)又|AR |=|PR |=22)4(y x +-所以有(x -4)2+y 2=36-(x 2+y 2),即x 2+y 2-4x -10=0因此点R 在一个圆上,而当R 在此圆上运动时,Q 点即在所求的轨迹上运动. 设Q (x ,y ),R (x 1,y 1),因为R 是PQ 的中点,所以x 1=2,241+=+y y x , 代入方程x 2+y 2-4x -10=0,得244)2()24(22+⋅-++x y x -10=0 整理得:x 2+y 2=56,这就是所求的轨迹方程.[例2]设点A 和B 为抛物线 y 2=4px (p >0)上原点以外的两个动点,已知OA ⊥OB ,OM ⊥AB ,求点M 的轨迹方程,并说明它表示什么曲线.(2000年北京、安徽春招)命题意图:本题主要考查“参数法”求曲线的轨迹方程,属★★★★★级题目. 知识依托:直线与抛物线的位置关系.错解分析:当设A 、B 两点的坐标分别为(x 1,y 1),(x 2,y 2)时,注意对“x 1=x 2”的讨论.技巧与方法:将动点的坐标x 、y 用其他相关的量表示出来,然后再消掉这些量,从而就建立了关于x 、y 的关系.解法一:设A (x 1,y 1),B (x 2,y 2),M (x ,y )依题意,有⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧--=---=--⋅-=⋅==112121212122112221211144x x y y x x y y x x y y x y x y x y px y px y ①-②得(y 1-y 2)(y 1+y 2)=4p (x 1-x 2) 若x 1≠x 2,则有2121214y y px x y y +=-- ⑥①×②,得y 12·y 22=16p 2x 1x 2③代入上式有y 1y 2=-16p 2 ⑦ ⑥代入④,得yxy y p -=+214⑧⑥代入⑤,得pyx y y x x y y y y p442111121--=--=+ 所以211214)(44y px y y p y y p --=+ 即4px -y 12=y (y 1+y 2)-y 12-y 1y 2⑦、⑧代入上式,得x 2+y 2-4px =0(x ≠0)当x 1=x 2时,AB ⊥x 轴,易得M (4p ,0)仍满足方程.故点M 的轨迹方程为x 2+y 2-4px =0(x ≠0)它表示以(2p ,0)为圆心,以2p 为半径的圆,去掉坐标原点.解法二:设M (x ,y ),直线AB 的方程为y =kx +b由OM ⊥AB ,得k =-yx由y 2=4px 及y =kx +b ,消去y ,得k 2x 2+(2kb -4p )x +b 2=0所以x 1x 2=22kb ,消x ,得ky 2-4py +4pb =0① ② ③ ④ ⑤所以y 1y 2=kpb4,由OA ⊥OB ,得y 1y 2=-x 1x 2 所以k pk4=-22kb ,b =-4kp故y =kx +b =k (x -4p ),用k =-yx代入,得x 2+y 2-4px =0(x ≠0) 故动点M 的轨迹方程为x 2+y 2-4px =0(x ≠0),它表示以(2p ,0)为圆心,以2p 为半径的圆,去掉坐标原点.[例3]某检验员通常用一个直径为2 cm 和一个直径为1 cm 的标准圆柱,检测一个直径为3 cm 的圆柱,为保证质量,有人建议再插入两个合适的同号标准圆柱,问这两个标准圆柱的直径为多少?命题意图:本题考查“定义法”求曲线的轨迹方程,及将实际问题转化为数学问题的能力,属★★★★★级题目.知识依托:圆锥曲线的定义,求两曲线的交点.错解分析:正确理解题意及正确地将此实际问题转化为数学问题是顺利解答此题的关键.技巧与方法:研究所给圆柱的截面,建立恰当的坐标系,找到动圆圆心的轨迹方程.解:设直径为3,2,1的三圆圆心分别为O 、A 、B ,问题转化为求两等圆P 、Q ,使它们与⊙O 相内切,与⊙A 、⊙B 相外切.建立如图所示的坐标系,并设⊙P 的半径为r ,则 |P A |+|PO |=1+r +1.5-r =2.5∴点P 在以A 、O 为焦点,长轴长2.5的椭圆上,其方程为3225)41(1622y x ++=1 ① 同理P 也在以O 、B 为焦点,长轴长为2的椭圆上,其方程为 (x -21)2+34y 2=1 ② 由①、②可解得)1412,149(),1412,149(-Q P ,∴r =73)1412()149(2322=+-故所求圆柱的直径为76cm. ●锦囊妙计求曲线的轨迹方程常采用的方法有直接法、定义法、代入法、参数法.(1)直接法 直接法是将动点满足的几何条件或者等量关系,直接坐标化,列出等式化简即得动点轨迹方程.(2)定义法 若动点轨迹的条件符合某一基本轨迹的定义(如椭圆、双曲线、抛物线、圆等),可用定义直接探求.(3)相关点法 根据相关点所满足的方程,通过转换而求动点的轨迹方程.(4)参数法 若动点的坐标(x ,y )中的x ,y 分别随另一变量的变化而变化,我们可以以这个变量为参数,建立轨迹的参数方程.求轨迹方程,一定要注意轨迹的纯粹性和完备性.要注意区别“轨迹”与“轨迹方程”是两个不同的概念.●歼灭难点训练 一、选择题1.(★★★★)已知椭圆的焦点是F 1、F 2,P 是椭圆上的一个动点,如果延长F 1P 到Q ,使得|PQ |=|PF 2|,那么动点Q 的轨迹是( )A.圆B.椭圆C.双曲线的一支D.抛物线2.(★★★★)设A 1、A 2是椭圆4922y x +=1的长轴两个端点,P 1、P 2是垂直于A 1A 2的弦的端点,则直线A 1P 1与A 2P 2交点的轨迹方程为( )A.14922=+y xB.14922=+x yC.14922=-y xD.14922=-x y二、填空题3.(★★★★)△ABC 中,A 为动点,B 、C 为定点,B (-2a ,0),C (2a,0),且满足条件sin C -sin B =21sin A ,则动点A 的轨迹方程为_________. 4.(★★★★)高为5 m 和3 m 的两根旗杆竖在水平地面上,且相距10 m ,如果把两旗杆底部的坐标分别确定为A (-5,0)、B (5,0),则地面观测两旗杆顶端仰角相等的点的轨迹方程是_________.三、解答题5.(★★★★)已知A 、B 、C 是直线l 上的三点,且|AB |=|BC |=6,⊙O ′切直线l 于点A ,又过B 、C 作⊙O ′异于l 的两切线,设这两切线交于点P ,求点P 的轨迹方程.6.(★★★★)双曲线2222by a x -=1的实轴为A 1A 2,点P 是双曲线上的一个动点,引A 1Q ⊥A 1P ,A 2Q ⊥A 2P ,A 1Q 与A 2Q 的交点为Q ,求Q 点的轨迹方程.7.(★★★★★)已知双曲线2222ny m x -=1(m >0,n >0)的顶点为A 1、A 2,与y 轴平行的直线l 交双曲线于点P 、Q .(1)求直线A 1P 与A 2Q 交点M 的轨迹方程;(2)当m ≠n 时,求所得圆锥曲线的焦点坐标、准线方程和离心率.8.(★★★★★)已知椭圆2222by a x +=1(a >b >0),点P 为其上一点,F 1、F 2为椭圆的焦点,∠F 1PF 2的外角平分线为l ,点F 2关于l 的对称点为Q ,F 2Q 交l 于点R .(1)当P 点在椭圆上运动时,求R 形成的轨迹方程;(2)设点R 形成的曲线为C ,直线l :y =k (x +2a )与曲线C 相交于A 、B 两点,当△AOB 的面积取得最大值时,求k 的值.参考答案难点磁场解:建立坐标系如图所示, 设|AB |=2a ,则A (-a ,0),B (a ,0). 设M (x ,y )是轨迹上任意一点.则由题设,得||||MB MA =λ,坐标代入,得2222)()(ya x y a x +-++=λ,化简得(1-λ2)x 2+(1-λ2)y 2+2a (1+λ2)x +(1-λ2)a 2=0(1)当λ=1时,即|M A|=|M B|时,点M 的轨迹方程是x =0,点M 的轨迹是直线(y 轴).(2)当λ≠1时,点M 的轨迹方程是x 2+y 2+221)1(2λ-λ+a x +a 2=0.点M 的轨迹是以 (-221)1(λ-λ+a ,0)为圆心,|1|22λ-λa 为半径的圆. 歼灭难点训练一、1.解析:∵|PF 1|+|PF 2|=2a ,|PQ |=|PF 2|, ∴|PF 1|+|PF 2|=|PF 1|+|PQ |=2a ,即|F 1Q |=2a ,∴动点Q 到定点F 1的距离等于定长2a ,故动点Q 的轨迹是圆. 答案:A2.解析:设交点P (x ,y ),A 1(-3,0),A 2(3,0),P 1(x 0,y 0),P 2(x 0,-y 0) ∵A 1、P 1、P 共线,∴300+=--x yx x y y ∵A 2、P 2、P 共线,∴300-=-+x yx x y y解得x 0=149,149,3,92220200=-=-=y x y x x y y x 即代入得答案:C二、3.解析:由sin C -sin B =21sin A ,得c -b =21a ,∴应为双曲线一支,且实轴长为2a,故方程为)4(1316162222a x a y a x >=-.答案:)4(1316162222ax a y a x >=-4.解析:设P (x ,y ),依题意有2222)5(3)5(5yx yx +-=++,化简得P 点轨迹方程为4x 2+4y 2-85x +100=0.答案:4x 2+4y 2-85x +100=0三、5.解:设过B 、C 异于l 的两切线分别切⊙O ′于D 、E 两点,两切线交于点P .由切线的性质知:|BA |=|BD |,|PD |=|PE |,|CA |=|CE |,故|PB |+|PC |=|BD |+|PD |+|PC |=|BA |+|PE |+|PC | =|BA |+|CE |=|AB |+|CA |=6+12=18>6=|BC |,故由椭圆定义知,点P 的轨迹是以B 、C 为两焦点的椭圆,以l 所在的直线为x 轴,以BC 的中点为原点,建立坐标系,可求得动点P 的轨迹方程为728122y x +=1(y ≠0) 6.解:设P (x 0,y 0)(x ≠±a ),Q (x ,y ). ∵A 1(-a ,0),A 2(a ,0).由条件⎪⎩⎪⎨⎧-=±≠-=⎪⎪⎩⎪⎪⎨⎧-=-⋅--=+⋅+y a x y a x x x a x y a x y a x y a x y 220000000)( 11得 而点P (x 0,y 0)在双曲线上,∴b 2x 02-a 2y 02=a 2b 2. 即b 2(-x 2)-a 2(ya x 22-)2=a 2b 2化简得Q 点的轨迹方程为:a 2x 2-b 2y 2=a 4(x ≠±a ).7.解:(1)设P 点的坐标为(x 1,y 1),则Q 点坐标为(x 1,-y 1),又有A 1(-m ,0),A 2(m ,0), 则A 1P 的方程为:y =)(11m x mx y ++ ①A 2Q 的方程为:y =-)(11m x mx y -- ②①×②得:y 2=-)(2222121m x mx y --③又因点P 在双曲线上,故).(,12212221221221m x m n y n y m x -==-即代入③并整理得2222ny m x +=1.此即为M 的轨迹方程.(2)当m ≠n 时,M 的轨迹方程是椭圆.(ⅰ)当m >n 时,焦点坐标为(±22n m -,0),准线方程为x =±222nm m -,离心率e =mn m 22-;(ⅱ)当m <n 时,焦点坐标为(0,±22n m -),准线方程为y =±222mn n -,离心率e =nm n 22-.8.解:(1)∵点F 2关于l 的对称点为Q ,连接PQ , ∴∠F 2PR =∠QPR ,|F 2R |=|QR |,|PQ |=|PF 2|又因为l 为∠F 1PF 2外角的平分线,故点F 1、P 、Q 在同一直线上,设存在R (x 0,y 0),Q (x 1,y 1),F 1(-c ,0),F 2(c ,0).|F 1Q |=|F 2P |+|PQ |=|F 1P |+|PF 2|=2a ,则(x 1+c )2+y 12=(2a )2.又⎪⎪⎩⎪⎪⎨⎧=+=221010y y c x x 得x 1=2x 0-c ,y 1=2y 0.∴(2x 0)2+(2y 0)2=(2a )2,∴x 02+y 02=a 2. 故R 的轨迹方程为:x 2+y 2=a 2(y ≠0)(2)如右图,∵S △AOB =21|OA |·|OB |·sin AOB =22a sin AOB当∠AOB =90°时,S △AOB 最大值为21a 2.此时弦心距|OC |=21|2|kak +.在Rt △AOC 中,∠AOC =45°,.33,2245cos 1|2|||||2±=∴=︒=+=∴k k a ak OA OC。
圆锥曲线的轨迹方程的求法
圆锥曲线轨迹方程的求法知识归纳求轨迹方程的常用方法:⒈直接法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直接法。
⒉定义法:如果能够确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。
⒊相关点法:用动点M 的坐标x ,y 表示相关点P 的坐标(Xo 、Yo ),然后代入点P 的坐标(Xo 、Yo )所满足的曲线方程,整理化简便得到动点Q 轨迹方程,这种求轨迹方程的方法叫做相关点法。
(用未知表示已知,带入已知求未知)⒋参数法:当动点坐标x 、y 之间的直接关系难以找到时,往往先寻找x 、y 与某一变数t 的关系,得再消去参变数t ,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做参数法。
⒌交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。
类型一 直接法求轨迹方程【例1】已知两点M(-2,0),N(2,0),点P 为坐标平面内的动点,满足|MN ⃑⃑⃑⃑⃑⃑ |⋅|MP ⃑⃑⃑⃑⃑⃑ |+MN ⃑⃑⃑⃑⃑⃑ ⋅NP ⃑⃑⃑⃑⃑ =0 ,则动点P(x ,y)的轨迹方程为 。
【点评】直接法求曲线方程时最关键的就是把几何条件或等量关系翻译为代数方程,要注意翻译的等价性.通常将步骤简记为建系设点、列式、代换、化简这四个步骤,如果给出了直角坐标系则可省去建系这一步,求出曲线的方程后还需注意检验方程。
【变式训练】1.已知抛物线C :y 2=2x 的焦点为F ,平行于x 轴的两条直线l 1,l 2分别交C 于A ,B 两点,交C 的准线于P ,Q 两点.若△PQF 的面积是△ABF 的面积的两倍,求AB 中点的轨迹方程.2.已知两点M(-1,0),N(1,0),点P 为坐标平面内的动点,且满足|MN ⃑⃑⃑⃑⃑⃑⃑ |⋅|MP ⃑⃑⃑⃑⃑⃑ |+MN ⃑⃑⃑⃑⃑⃑⃑ ⋅NP ⃑⃑⃑⃑⃑ =0,则动点P 的轨迹方程为3.在平面直角坐标系xOy 中,点P(a ,b)为动点,F 1,F 2分别为椭圆x 2a 2+y2b 2=1(a >b >0)的左、右焦点,已知△F 1PF 2为等腰三角形.设直线PF 2与椭圆相交于A ,B 两点,M 是直线PF 2上的点,满足AM →·BM →=-2,求点M 的轨迹方程.类型二 定义法求轨迹方程【例2】已知圆M:(x+1)2+y2=1,圆N:(x-1)2+y2=9,动圆P与圆M外切并且与圆N 内切,圆心P的轨迹为曲线C,求C的方程.【点评】定义法求轨迹方程1.概念:求轨迹方程时,若动点与定点、定线间的等量关系满足圆、椭圆、双曲线、抛物线的定义,则可以直接根据定义先定轨迹类型,再写出其方程,这种求轨迹方程的方法叫做定义法,其关键是准确应用解析几何中有关曲线的定义.(1)在利用圆锥曲线的定义求轨迹方程时,若所求的轨迹符合某种圆锥曲线的定义,则根据曲线的方程,写出所求的轨迹方程.(2)利用定义法求轨迹方程时,还要看轨迹是不是完整的曲线,如果不是完整的曲线,则应对其中的变量x或y进行限制.【变式训练】1. 在△ABC中,BC=4,△ABC的内切圆切BC于D点,且BD-CD=22,则顶点A的轨迹方程为______________.2.设定点F(1,0),动圆D过点F且与直线x=−1相切.则动圆圆心D的轨迹方程为3.如图所示:在圆C:(x+1)2+y2=16内有一点A(1,0),点Q为圆C上一动点,线段AQ的垂直平分线与直线CQ 的连线交于点M ,根据椭圆定义可得点M 的轨迹方程为x 24+y 23=1;利用类比推理思想:在圆C :(x +3)2+y 2=16外有一点A(3,0),点Q 为圆C 上一动点,线段AQ 的垂直平分线与直线CQ 的连线交于点M ,根据双曲线定义可得点M 的轨迹方程为______.类型三 相关点法求轨迹方程【例3】 如图所示,抛物线E :y 2=2px(p >0)与圆O :x 2+y 2=8相交于A ,B 两点,且点A 的横坐标为2.过劣弧AB 上动点P(x 0,y 0)作圆O 的切线交抛物线E 于C ,D 两点,分别以C ,D 为切点作抛物线E 的切线l 1,l 2,l 1与l 2相交于点M. (1)求p 的值;(2)求动点M 的轨迹方程.【点评】相关点法的基本步骤(1)设点:设被动点坐标为(x ,y),主动点坐标为(x 1,y 1); (2)求关系式:求出两个动点坐标之间的关系式⎩⎪⎨⎪⎧x 1=f (x ,y ),y 1=g (x ,y ); (3)代换:将上述关系式代入已知曲线方程,便可得到所求动点的轨迹方程.【变式训练】1.如图,动圆C 1:x 2+y 2=t 2,1<t <3与椭圆C 2:x 29+y 2=1相交于A ,B ,C ,D 四点.点A 1,A 2分别为C 2的左、右顶点,求直线AA 1与直线A 2B 交点M 的轨迹方程.2.已知三角形ABC 的顶点A (−3,0)、B (3,0),若顶点C 在抛物线y 2=6x 上移动,则三角形ABC 的重心的轨迹方程为______类型四 参数法求轨迹方程【例4】在平面直角坐标系xOy 中,已知两点M(1,-3),N(5,1),若点C 的坐标满足OC →=tOM →+(1-t)ON →(t ∈R),且点C 的轨迹与抛物线y 2=4x 相交于A ,B 两点. (1)求证:OA ⊥OB ;(2)在x 轴上是否存在一点P(m,0)(m≠0),使得过点P 任意作一条抛物线y 2=4x 的弦,并以该弦为直径的圆都经过原点?若存在,求出m 的值及圆心的轨迹方程;若不存在,请说明理由.【点评】利用参数法求轨迹方程:一是选择合适的参数(可以是单参数,也可以是双参数);二是建立参数方程后消掉参数,消参数的方法有代入消参法、加减消参法、平方消参法等.【变式训练】设椭圆中心为原点O,一个焦点为F(0,1),长轴和短轴的长度之比为t.(1)求椭圆的方程;(2)设经过原点且斜率为t的直线与椭圆在y轴右侧部分的交点为Q,点P在该直线上,且OP2-1,当t变化时,求点P的轨迹方程,并说明轨迹是什么图形.OQ=t t类型五 交轨法法求轨迹方程例5 如右图,垂直于x 轴的直线交双曲线12222=-by a x 于M 、N 两点,21,A A 为双曲线的左、右顶点,求直线M A 1与N A 2的交点P 的轨迹方程,并指出轨迹的形状.【变式训练】抛物线)0(42>=p px y 的顶点作互相垂直的两弦OA 、OB ,求抛物线的顶点O 在直线AB 上的射影M 的轨迹。
圆锥曲线知识点
高中数学选修圆锥曲线知识点圆锥曲线的统一定义:平面内的动点P(x,y)到一个定点F(c,0)的距离与到不通过这个定点的一条定直线l的距离之比是一个常数e(e>0),则动点的轨迹叫做圆锥曲线。
其中定点F(c,0)称为焦点,定直线l称为准线,正常数e称为离心率。
当0<e<1时,轨迹为椭圆;当e=1时,轨迹为抛物线;当e>1时,轨迹为双曲线。
椭圆、双曲线、抛物线:椭圆双曲线抛物线定义1.到两定点F1,F2的距离之和为定值2a(2a>|F1F2|)的点的轨迹2.与定点和直线的距离之比为定值e的点的轨迹.(0<e<1)1.到两定点F1F2的距离之差的绝对值为定值2a(0<2a<|F1F2|)的点的轨迹2.与定点和直线的距离之比为定值e的点的轨迹.(e>1)与定点和直线的距离相等的点的轨迹.轨迹条件点集:({M||MF1+|MF2|=2a,|F 1F2|<2a} 点集:{M||MF1|-|MF2|.=±2a,|F2F2|>2a}.点集{M||MF|=点M到直线l的距离}.图形方程标准方程12222=+byax(ba>>0) 12222=-byax(a>0,b>0) pxy22=参数方程为离心角)参数θθθ(sincos⎩⎨⎧==byax为离心角)参数θθθ(tansec⎩⎨⎧==byax⎩⎨⎧==ptyptx222(t为参数) 范围─a≤x≤a,─b≤y≤b |x| ≥ a,y∈R x≥0中心原点O(0,0)原点O(0,0)顶点(a,0),(-a,0),(0,b),(0,-b) (a,0), (-a,0) (0,0)【备注1】双曲线:(1)等轴双曲线:双曲线222a y x ±=-称为等轴双曲线,其渐近线方程为x y ±=,离心率2=e .(2)共轭双曲线:以已知双曲线的虚轴为实轴,实轴为虚轴的双曲线,叫做已知双曲线的共轭双曲线.λ=-2222by a x 与λ-=-2222b y a x 互为共轭双曲线,它们具有共同的渐近线:02222=-by a x . (3)共渐近线的双曲线系方程:)0(2222≠=-λλb y a x 的渐近线方程为02222=-b y a x 如果双曲线的渐近线为0=±bya x 时,它的双曲线方程可设为)0(2222≠=-λλby ax .椭圆的常用结论: 1. 点P 处的切线PT 平分△PF1F2在点P 处的外角.2. PT 平分△PF1F2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3. 以焦点弦PQ 为直径的圆必与对应准线相离.4.以焦点半径PF1为直径的圆必与以长轴为直径的圆内切.5.若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b+=. 6.若000(,)P x y 在椭圆22221x y a b+=外,则过0P 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y ya b+=. 7.椭圆22221x y a b+= (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点角形的面积为122tan2F PFS b γ∆=.8.椭圆22221x y a b+=(a >b >0)的焦半径公式10||MF a ex =+,20||MF a ex =-(1(,0)F c - ,2(,0)F c 00(,)M x y ).9.设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF.10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF.11.AB 是椭圆22221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则22OM AB b k k a⋅=-,即22y a x b K AB-=。
圆锥曲线(求轨迹方程)
专题 圆锥曲线(求轨迹方程)求轨迹方程的常用方法(1)直接法:直接利用条件建立x ,y 之间的关系或F (x ,y )=0;(2)定义法:先根据条件得出动点的轨迹是某种已知曲线,再由曲线的定义直接写出动点的轨迹方程;(3)代入转移法(相关点法):动点P (x ,y )依赖于另一动点Q (x 0,y 0)的变化而变化,并且Q (x 0,y 0)又在某已知曲线上,则可先用x ,y 的代数式表示x 0,y 0,再将x 0,y 0代入已知曲线得要求的轨迹方程.1.一个区别——“轨迹方程”与“轨迹”“求动点的轨迹方程”和“求动点的轨迹”是不同的.前者只须求出轨迹的方程,标出变量x ,y 的范围;后者除求出方程外,还应指出方程的曲线的图形,并说明图形的形状、位置、大小等有关的数据.2.双向检验——求轨迹方程的注意点求轨迹方程,要注意曲线上的点与方程的解是一一对应关系,检验应从两个方面进行:一是方程的化简是否是同解变形;二是是否符合实际意义,注意轨迹上特殊点对轨迹的“完备性与纯粹性”的影响.考向一 直接法求轨迹方程【例1】 已知动点P (x ,y )与两定点M (-1,0),N (1,0)连线的斜率之积等于常数λ(λ≠0).(1)求动点P 的轨迹C 的方程;(2)试根据λ的取值情况讨论轨迹C 的形状.【解】 (1)由题意可知,直线PM 与PN 的斜率均存在且均不为零,所以k PM ·k PN =y x +1·y x -1=λ,整理得x 2-y 2λ=1(λ≠0,x ≠±1).即动点P 的轨迹C 的方程为x 2-y 2λ=1(λ≠0,x ≠±1).(2)①当λ>0时,轨迹C 为中心在原点,焦点在x 轴上的双曲线(除去顶点);②当-1<λ<0时,轨迹C 为中心在原点,焦点在x 轴上的椭圆(除去长轴的两个端点); ③当λ=-1时,轨迹C 为以原点为圆心,1为半径的圆除去点(-1,0),(1,0).④当λ<-1时,轨迹C 为中心在原点,焦点在y 轴上的椭圆(除去短轴的两个端点).【对点练习1】已知A ,B 为平面内两定点,过该平面内动点M 作直线AB 的垂线,垂足为N .若MN →2=λAN →·NB →,其中λ为常数,则动点M 的轨迹不可能是( )A .圆B .椭圆C .抛物线D .双曲线【解析】以AB 所在直线为x 轴,AB 的中垂线为y 轴,建立坐标系,设M (x ,y ),A (-a,0),B (a,0),则N (x,0).因为MN →2=λAN →·NB →,所以y 2=λ(x +a )(a -x ),即λx 2+y 2=λa 2,当λ=1时,是圆的轨迹方程;当λ>0且λ≠1时,是椭圆的轨迹方程;当λ<0时,是双曲线的轨迹方程;当λ=0时,是直线的轨迹方程.综上,方程不表示抛物线的方程.【答案】 C图8-8- 2 图8-8- 1考向二 定义法求轨迹方程【例2】已知两个定圆O 1和O 2,它们的半径分别是1和2,且|O 1O 2|=4.动圆M 与圆O 1内切,又与圆O 2外切,建立适当的坐标系,求动圆圆心M 的轨迹方程,并说明轨迹是何种曲线.【解】 如图所示,以O 1O 2的中点O 为原点,O 1O 2所在直线为x 轴建立平面直角坐标系.由|O 1O 2|=4,得O 1(-2,0),O 2(2,0).设动圆M 的半径为r ,则由动圆M 与圆O 1内切,有|MO 1|=r -1;由动圆M 与圆O 2外切,有|MO 2|=r +2.∴|MO 2|-|MO 1|=3.∴点M 的轨迹是以O 1,O 2为焦点,实轴长为3的双曲线的左支.∴a =32,c =2,∴b 2=c 2-a 2=74.∴点M 的轨迹方程为4x 29-4y 27=1⎝ ⎛⎭⎪⎫x ≤-32.【对点练习2】如图8-8-1所示,已知圆A :(x +2)2+y 2=1与点B (2,0),分别求出满足下列条件的动点P 的轨迹方程.(1)△P AB 的周长为10;(2)圆P 与圆A 外切,且过B 点(P 为动圆圆心);(3)圆P 与圆A 外切,且与直线x =1相切(P 为动圆圆心).【解】(1)根据题意,知|P A |+|PB |+|AB |=10,即|P A |+|PB |=6>4=|AB |,故P 点轨迹是椭圆,且2a =6,2c =4,即a =3,c =2,b = 5.因此其轨迹方程为x 29+y 25=1(y ≠0).(2)设圆P 的半径为r ,则|P A |=r +1,|PB |=r ,因此|P A |-|PB |=1.由双曲线的定义知,P 点的轨迹为双曲线的右支,且2a =1,2c =4,即a =12,c =2,b =152,因此其轨迹方程为4x 2-415y 2=1⎝ ⎛⎭⎪⎫x ≥12. (3)依题意,知动点P 到定点A 的距离等于到定直线x =2的距离,故其轨迹为抛物线,且开口向左,p =4. 因此其轨迹方程为y 2=-8x .考向三 代入法(相关点法)求轨迹方程【例3】如图8-8-2所示,设P 是圆x 2+y 2=25上的动点,点D 是P 在x 轴上的投影,M 为PD 上一点,且|MD |=45|PD |.(1)当P 在圆上运动时,求点M 的轨迹C 的方程;(2)求过点(3,0)且斜率为45的直线被C 所截线段的长度.【解】(1)设M 的坐标为(x ,y ),P 的坐标为(x P ,y P ),由已知得⎩⎪⎨⎪⎧x P=x ,y P =54y . ∵P 在圆上,∴x 2+⎝ ⎛⎭⎪⎫54y 2=25,即C 的方程为x 225+y 216=1.图8-8-5(2)过点(3,0)且斜率为45的直线方程为y =45(x -3),设直线与C 的交点为A (x 1,y 1),B (x 2,y 2),将直线方程y =45(x -3)代入C 的方程,得x 225+(x -3)225=1,即x 2-3x -8=0.∴x 1=3-412,x 2=3+412.∴线段AB 的长度为|AB |=(x 1-x 2)2+(y 1-y 2)2=⎝ ⎛⎭⎪⎫1+1625(x 1-x 2)2=4125×41=415.【对点练习2】(2014·合肥模拟)如图8-8-5所示,以原点O 为圆心的两个同心圆的半径分别为3和1,过原点O 的射线交大圆于点P ,交小圆于点Q ,P 在y 轴上的射影为M .动点N 满足PM →=λPN →且PM →·QN→=0. (1)求点N 的轨迹方程;(2)过点A (0,3)作斜率分别为k 1,k 2的直线l 1,l 2与点N 的轨迹分别交于E ,F 两点,k 1·k 2=-9.求证:直线EF 过定点.【解】(1)由PM →=λPN →且PM →·QN →=0可知N ,P ,M 三点共线且PM ⊥QN . 过点Q 作QN ⊥PM ,垂足为N ,设N (x ,y ),∵|OP |=3,|OQ |=1,由相似可知P (3x ,y ).∵P 在圆x 2+y 2=9上,(3x )2+y 2=9,即y 29+x 2=1. 所以点N 的轨迹方程为y 29+x 2=1.(2)证明:设E (x E ,y E ),F (x F ,y F ),依题意,由⎩⎪⎨⎪⎧ y =k 1x +3,y 29+x 2=1⇒(k 21+9)x 2+6k 1x =0,① 解得x =0或x =-6k 1k 21+9. 所以x E =-6k 1k 21+9,y E =k 1⎝ ⎛⎭⎪⎫-6k 1k 21+9+3=27-3k 21k 21+9, ∴E ⎝ ⎛⎭⎪⎫-6k 1k 21+9,27-3k 21k 21+9. ∵k 1k 2=-9,∴k 2=-9k 1.用k 2=-9k 1替代①中的k 1, 同理可得F ⎝ ⎛⎭⎪⎫6k 1k 21+9,3k 21-27k 21+9. 显然E ,F 关于原点对称,∴直线EF 必过原点O .【达标训练】一、选择题1.若M ,N 为两个定点,且|MN |=6,动点P 满足PM →·PN →=0,则P 点的轨迹是( )A .圆B .椭圆C .双曲线D .抛物线 2.已知点F ⎝ ⎛⎭⎪⎫14,0,直线l :x =-14,点B 是l 上的动点.若过B 垂直于y 轴的直线与线段BF 的垂直平分线交于点M ,则点M 的轨迹是( )A .双曲线B .椭圆C .圆D .抛物线3.(2014·天津模拟)平面直角坐标系中,已知两点A (3,1),B (-1,3),若点C 满足OC →=λ1OA →+λ2OB →(O 为原点),其中λ1,λ2∈R ,且λ1+λ2=1,则点C 的轨迹是( )图8-8-4 A .直线 B .椭圆 C .圆 D .双曲线4.(2014·合肥模拟)如图8-8-4所示,A 是圆O 内一定点,B 是圆周上一个动点,AB 的中垂线CD 与OB 交于E ,则点E 的轨迹是( )A .圆B .椭圆C .双曲线D .抛物线5.设过点P (x ,y )的直线分别与x 轴的正半轴和y 轴的正半轴交于A ,B 两点,点Q 与点P 关于y 轴对称,O 为坐标原点,若BP →=2P A →, 且OQ →·AB →=1,则点P 的轨迹方程是 ( )A.32x 2+3y 2=1(x >0,y >0)B.32x 2-3y 2=1(x >0,y >0)C .3x 2-32y 2=1(x >0,y >0)D .3x 2+32y 2=1(x >0,y >0)6.已知动点P 在曲线2x 2-y =0上移动,则点A (0,-1)与点P 连线中点的轨迹方程是( )A .y =2x 2B .y =8x 2C .2y =8x 2-1D .2y =8x 2+1二、填空题7.平面上有三个点A (-2,y ),B ⎝ ⎛⎭⎪⎫0,y 2,C (x ,y ),若AB →⊥BC →,则动点C 的轨迹方程是_______________________.8.动圆与⊙C 1:x 2+y 2=1外切,与⊙C 2:x 2+y 2-8x +12=0内切,则动圆圆心的轨迹是_______________________.9.已知△ABC 的顶点B (0,0),C (5,0),AB 边上的中线长|CD |=3,则顶点A 的轨迹方程为_______________________.10.(2014·佛山模拟)在△ABC 中,A 为动点,B ,C 为定点,B ⎝ ⎛⎭⎪⎫-a 2,0,C ⎝ ⎛⎭⎪⎫a 2,0(a >0),且满足条件sin C -sin B =12sin A ,则动点A 的轨迹方程是_____________.三、解答题11.已知定点F (0,1)和直线l 1:y =-1,过定点F 与直线l 1相切的动圆的圆心为点C .(1)求动点C 的轨迹方程;(2)过点F 的直线l 2交轨迹于P ,Q 两点,交直线l 1于点R ,求RP →·RQ →的最小值.12.(2011·课标全国卷)在平面直角坐标系xOy 中,已知点A (0,-1),B 点在直线y =-3上,M 点满足MB →∥OA →,MA →·AB →=MB →·BA →,M 点的轨迹为曲线C .(1)求C 的方程;(2)P 为C 上的动点,l 为C 在P 点处的切线,求O 点到l 距离的最小值.13.(2013·课标全国卷Ⅱ)在平面直角坐标系xOy 中,已知圆P 在x 轴上截得线段长为22,在y 轴上截得线段长为2 3.(1)求圆心P 的轨迹方程;(2)若P 点到直线y =x 的距离为22,求圆P 的方程.【达标训练】 参考答案一、选择题1.A. 【解析】∵PM →·PN →=0,∴PM ⊥PN ,∴点P 的轨迹是以线段MN 为直径的圆.2.D. 【解析】由已知:|MF |=|MB |,由抛物线定义知,点M 的轨迹是以F 为焦点,l 为准线的抛物线.3.A .【解析】设C (x ,y ),因为OC →=λ1OA →+λ2OB →,所以(x ,y )=λ1(3,1)+λ2(-1,3),即⎩⎨⎧ x =3λ1-λ2,y =λ1+3λ2,解得⎩⎪⎨⎪⎧ λ1=y +3x 10,λ2=3y -x 10,又λ1+λ2=1,所以y +3x 10+3y -x 10=1,即x +2y =5,所以点C 的轨迹为直线,故选A.4.B .【解析】由题意知,|EA |+|EO |=|EB |+|EO |=r (r 为圆的半径)且r >|OA |,故E 的轨迹为以O ,A 为焦点的椭圆,故选B.5.A. 【解析】设P (x ,y ),A (x A,0),B (0,y B ),则BP →=(x ,y -y B ),P A →=(x A -x ,-y ),∵BP →=2P A →,∴⎩⎨⎧ x =2(x A -x ),y -y B =-2y ,即⎩⎪⎨⎪⎧ x A =32x ,y B=3y .∴A ⎝ ⎛⎭⎪⎫32x ,0,B (0,3y ). 又Q (-x ,y ),∴OQ →=(-x ,y ),AB →=⎝ ⎛⎭⎪⎫-32x ,3y ,∴OQ →·AB →=32x 2+3y 2=1, 则点P 的轨迹方程是32x 2+3y 2=1(x >0,y >0).6.C .【解析】设AP 中点M (x ,y ),P (x ′,y ′),则x =x ′2,y =y ′-12,∴⎩⎨⎧x ′=2x ,y ′=2y +1, 代入2x 2-y =0,得2y =8x 2-1,故选C.二、填空题7.y 2=8x 。
圆锥曲线轨迹方程的求法
圆锥曲线轨迹方程的求法
一、直接法求轨迹方程
利用动点运动的条件得到等量关系,表示为x和y的等式。
例如,已知点A(-2,0)和B(3,0),动点P(x,y)满足PA·PB=x²,
那么点P的轨迹是抛物线。
二、有定义法求轨迹方程
根据圆锥曲线的基本定义解题。
例如,已知圆O的方程
为x²+y²=100,点A的坐标为(-6,0),M为圆O上的任意一点,AM的垂直平分线交OM于点P,那么点P的轨迹方程为
25/16=(x+3)²/y²,即椭圆。
三、用相关点法求轨迹方程
当动点M随着已知方程的曲线上另一动点C(x,y)运动时,找出点M与点C之间的坐标关系式,用(x,y)表示(x,y),再将
x和y代入已知曲线方程,即可得到点M的轨迹方程。
例如,从双曲线x²-y²=1上一点Q引直线x+y=2的垂线,垂足为N,
求线段QN的中点P的轨迹方程。
设动点P的坐标为(x,y),点
Q的坐标为(x₁,y₁),则N点的坐标为(2x-x₁,2y-y₁)。
因为N
点在直线x+y=2上,所以2x-x₁+2y-y₁=2.又因为PQ垂直于直线x+y=2,所以x-y+y₁-x₁=0.将两个方程联立,得到
x₁=2x+2y-1和y₁=2x+2y-1.因为点Q在双曲线上,所以x₁²-y₁²=1.将x₁和y₁代入公式中,得到动点P的轨迹方程式为2x²-2y²-2x+2y-1=0.
四、用参数法求轨迹方程
选取适当的参数,分别用参数表示动点坐标得到动点轨迹的普通方程。
圆锥曲线中的轨迹方程问题-(解析版)
专题1 圆锥曲线的轨迹方程问题轨迹与轨迹方程高考题中在选择题或填空题中单独考查,在解答题中也会出现轨迹与轨迹方程的问题.本文主要研究圆锥曲线中关于轨迹方程求法。
首先正确理解曲线与方程的概念,会用解析几何的基本思想和坐标法研究几何问题,用方程的观点实现几何问题的代数化解决,并能根据所给条件选择适当的方法求曲线的轨迹方程,常用方法有:直译法、定义法、相关点法、参数(交轨)法等方法1、直译法:若动点运动的条件是一些已知(或通过分析得出)几何量的等量关系,可转化成含x,y 的等式,就得到轨迹方程。
直译法知识储备:两点间距离公式,点到直线的距离公式,直线的斜率(向量)公式。
经典例题:1.(2020·江苏徐州市·高三月考)古希腊著名数学家阿波罗尼斯与欧几里得、阿基米德齐名,他发现:平面内到两个定点A 、B 的距离之比为定值λ(1λ≠)的点所形成的图形是圆.后来,人们将这个圆以他的名字命名,称为阿波罗尼斯圆,简称阿氏圆.已知在平面直角坐标系xOy 中,()2,0A -、()4,0B ,点P 满足12PA PB =,设点P 所构成的曲线为C ,下列结论正确的是( ) A .C 的方程为()22416x y ++= B .在C 上存在点D ,使得D 到点()1,1的距离为3 C .在C 上存在点M ,使得2MO MA = D .在C 上存在点N ,使得224NO NA += 【答案】ABD【分析】设点P 的坐标,利用12PA PB =,即可求出曲线C 的轨迹方程,然后假设曲线C 上一点坐标,根据BCD 选项逐一列出所满足条件,然后与C 的轨迹方程联立,判断是否有解,即可得出答案.【详解】设点P (x ,y ),()2,0A -、()4,0B ,由12PA PB =,12=,化简得x 2+y 2+8x =0,即:(x +4)2+y 2=16,故A 选项正确;曲线C 的方程表示圆心为(﹣4,0),半径为4的圆,圆心与点(1,1)=﹣4,+4,而3∈﹣4,故B 正确;对于C 选项,设M (x 0,y 0),由|MO |=2|MA |,=又 ()2200416x y ++=,联立方程消去y 0得x 0=2,解得y 0无解,故C 选项错误;对于D 选项,设N (x 0,y 0),由|NO |2+|NA |2=4,得 ()2222000024x y x y ++++=,又()2200416x y ++=,联立方程消去y 0得x 0=0,解得y 0=0,故D 选项正确.2.(2020·湖南省高三期末)点(,)P x y 与定点(1,0)F 的距离和它到直线:4l x =距离的比是常数12. 求点P 的轨迹方程;【答案】22143x y +=12=,化简即可求出;12=,化简得:223412x y +=,故1C 的方程为22143x y +=.【点睛】该题考查的是有关解析几何的问题,涉及到的知识点是动点轨迹方程的求解.3.(2021年湖南省高三月考)已知动点P 到定点A (5,0)的距离与到定直线165x =的距离的比是54,求P 点的轨迹方程.【答案】轨迹方程是221169x y -=.【分析】利用动点P 到定点A (5,0)的距离与到定直线165x =的距离的比是54可得方程,化简由此能求出轨迹M 的方程.【详解】由题意,设P (x ,y ),则()22252516165x y x -+=⎛⎫- ⎪⎝⎭,化简得轨迹方程是221169x y -=. 故答案为221.169x y -=【点睛】本题主要考查轨迹方程的求法,属于基础题.由2、3题推广:圆锥曲线统一定义(第二定义):到定点的距离与到定直线的距离的比e 是常数的点的轨迹叫做圆锥曲线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学复习--日期:
圆锥曲线之动点轨迹方程:
(1)求轨迹方程的步骤:建系、设点、列式、化简、确定点的范围;
(2)求轨迹方程的常用方法:
①直接法:直接利用条件建立,x y 之间的关系(,)0F x y =;
已知动点P 到定点F(1,0)和直线3=x 的距离之和等于4,求P 的轨迹方程。
②待定系数法:已知所求曲线的类型,求曲线方程――先根据条件设出所求曲线的方程,再由条件确定其待定系数。
线段AB 过x 轴正半轴上一点M (m ,0))0(>m ,端点A 、B 到x 轴距离之积为2m ,以x 轴为对称轴,过A 、O 、B 三点作抛物线,则此抛物线方程为 。
③定义法:先根据条件得出动点的轨迹是某种已知曲线,再由曲线的定义直接写出动点的轨迹方程;
(1) 由动点P 向圆221x y +=作两条切线PA 、PB ,切点分别为A 、B ,∠APB=600,则动点P 的轨迹方程为 。
(2)点M 与点F(4,0)的距离比它到直线05=+x l :的距离小于1,则点M 的轨迹方程是 。
(3) 一动圆与两圆⊙M :122=+y x 和⊙N :012822=+-+x y x 都外切,则动圆圆心的轨迹为 。
④代入转移法:动点(,)P x y 依赖于另一动点00(,)Q x y 的变化而变化,并且00(,)Q x y 又在某已知曲线上,则可先用,x y 的代数式表示00,x y ,再将00,x y 代入已知曲线得要求的轨迹方程;
动点P 是抛物线122+=x y 上任一点,定点为)1,0(-A ,点M 分−→
−PA 所成的比为2,则M 的轨迹方程为 。
⑤参数法:当动点(,)P x y 坐标之间的关系不易直接找到,也没有相关动点可用时,可考虑将,x y 均用一中间变量(参数)表示,得参数方程,再消去参数得普通方程)。
(1)AB 是圆O 的直径,且|AB|=2a ,M 为圆上一动点,作MN ⊥AB ,垂足为N ,在OM 上取点P ,使||||OP MN =,求点P 的轨迹。
(2)若点),(11y x P 在圆122=+y x 上运动,则点),(1111y x y x Q +的轨迹方程是 。
(3)过抛物线y x 42=的焦点F 作直线l 交抛物线于A 、B 两点,则弦AB 的中点M 的轨迹方程是 。
高考数学复习--日期:
b ∙i =|a |.求点P(x,y)的轨迹。
(5)已知A,B 为抛物线x 2
=2py (p >0)上异于原点的两点,0OA OB ⋅= ,点C 坐标为(0,2p ), ① 求证:A,B,C 三点共线;
② 若=λ(R ∈λ)且0OM AB ⋅= 试求点M 的轨迹方程。
1、已知点P 是圆x 2+y 2=4上一个动点,定点Q 的坐标为(4,0),求线段PQ 的中点轨迹方程。
2、以抛物线28y x =上的点M 与定点(6,0)A 为端点的线段MA 的中点为P ,求P 点轨迹方程。
3、在面积为1的PMN ∆中,2
1tan =M ,2tan -=N ,建立适当的坐标系,求出以M 、N 为焦点且过P 点的椭圆方程。
4、已知动圆过定点()1,0,且与直线1x =-相切, 求动圆的圆心轨迹C 的方程。
5、已知:直线L 过原点,抛物线C 的顶点在原点,焦点在x 轴正半轴上。
若点A (-1,0)和点B (0,8)关于L 的对称点都在C 上,求直线L 和抛物线C 的方程。
6、设抛物线2:x y C =的焦点为F ,动点P 在直线02:=--y x l 上运动,过P 作抛物线C 的两条切线PA 、PB ,且与抛物线C 分别相切于A 、B 两点,(1)求△APB 重心G 的轨迹方程;
7、动圆M 与圆C 1:(x+1)2+y 2=36内切,与圆C 2:(x-1)2+y 2=4外切,求圆心M 的轨迹方程。
8、已知平面内一动点P 到点(1,0)F 的距离与点P 到y 轴的距离的差等于1,
(1)求动点P 的轨迹C 的方程;
9、已知圆C 方程为:224x y +=,
(1)直线l 过点()1,2P ,且与圆C 交于A 、B 两点,若||AB =l 的方程;
10、已知椭圆C :2222b
y a x +=1(a >b >0)的离心率为35,短轴一个端点到右焦点的距离为 3.(1)求椭圆C 的方程;
11、已知椭圆以坐标原点为中心,坐标轴为对称轴,且该椭圆以抛物线x y 162=的焦点P 为其一个焦点,以双曲线19
162
2=-y x 的焦点Q 为顶点。
(1)求椭圆的标准方程;
12、已知椭圆C 的中心在坐标原点,焦点在x 轴上,它的一个顶点恰好是抛物线214
y x =的焦
点,离心率为
5.(1)求椭圆C 的标准方程; 13、已知椭圆的一个顶点为()0,1A -,焦点在x 轴上.若右焦点到直线022=+-y x 的距离为3.求椭圆的标准方程;
14、已知椭圆:C 22221(0)x y a b a b +=>>的离心率为
的三角形的面积为
(1)求椭圆C 的方程;
15、已知椭圆E :()222210x y a b a b +=>>的一个焦点为()
1F ,而且过点12H ⎫⎪⎭.(Ⅰ)求椭圆E 的方程;
16、已知椭圆C :122
22=+b
y a x (0>>b a )的离心率21=e ,且经过点)3 , 2(A . (1)求椭圆C 的方程;
17、已知双曲线22
1:(0)C x y m m -=>与椭圆22
222:1x y C a b +=有公共焦点12,F F ,点N 是它们的一个公共点.(1)求12,C C 的方程;
18、已知椭圆1C :()2221024x y b b +=<<2C :()220x py p =>的焦点在椭圆的顶点上。
(1)求抛物线2C 的方程;
19、已知椭圆1C :22221x y a b += (0a b >>),直线:2L y x =+与以原点为圆心、以椭圆1C 的短半轴长为半径的圆相切.(1)求椭圆1C 的方程;。