综合实验
综合性实验设计报告
综合性实验设计报告
1. 实验目的
本实验旨在考察学生在综合实践中的综合能力,包括问题分析和解决能力、实验设计和操作能力以及实验结果的分析和总结能力。
2. 实验背景
实验背景介绍。
3. 实验设计
3.1 实验材料和设备
本实验采用以下材料和设备:
- 材料1
- 材料2
- 设备1
- 设备2
3.2 实验步骤
本实验的实验步骤如下:
1. 步骤1
2. 步骤2
3. 步骤3
3.3 实验注意事项
在实验过程中,需要注意以下事项:
- 注意事项1
- 注意事项2
4. 实验结果和分析
根据上述实验设计,我们进行了实际实验,并得到了以下结果:
实验结果描述。
根据实验结果,我们进行了以下分析:
实验结果的分析。
5. 实验总结
通过本实验,我们学到了很多知识,获得了一些实践经验。
同时,我们还发现了一些问题和不足之处,需要进一步改进。
6. 参考文献
- [参考文献1]
- [参考文献2]。
综合性实验实验报告
实验名称:综合性实验实验目的:1. 熟悉实验室的基本操作和实验仪器的使用方法。
2. 培养实验操作技能,提高实验数据处理和分析能力。
3. 掌握综合性实验的基本原理和方法。
实验时间:2023年3月15日实验地点:化学实验室实验人员:张三、李四、王五实验仪器与材料:1. 仪器:天平、滴定管、烧杯、锥形瓶、试管、酒精灯、蒸馏装置、分光光度计等。
2. 材料:盐酸、氢氧化钠、酚酞指示剂、硫酸铜溶液、硫酸锌溶液、硫酸铁溶液等。
实验原理:本实验主要研究酸碱滴定、氧化还原滴定、沉淀滴定等综合性实验方法。
通过滴定实验,测定未知溶液的浓度,验证化学反应的定量关系。
实验步骤:1. 酸碱滴定实验:(1)称取一定量的待测溶液于锥形瓶中,加入适量的指示剂;(2)用已知浓度的标准溶液进行滴定,观察颜色变化;(3)记录滴定终点,计算待测溶液的浓度。
2. 氧化还原滴定实验:(1)配制一定浓度的待测溶液;(2)加入适量的氧化剂或还原剂;(3)滴加已知浓度的标准溶液,观察颜色变化;(4)记录滴定终点,计算待测溶液的浓度。
3. 沉淀滴定实验:(1)称取一定量的待测溶液于锥形瓶中;(2)加入适量的沉淀剂,观察沉淀形成;(3)滴加已知浓度的标准溶液,观察沉淀溶解;(4)记录滴定终点,计算待测溶液的浓度。
实验结果与分析:1. 酸碱滴定实验:(1)根据滴定终点记录的数据,计算待测溶液的浓度;(2)分析误差来源,如滴定管的读数误差、指示剂颜色变化不明显等。
2. 氧化还原滴定实验:(1)根据滴定终点记录的数据,计算待测溶液的浓度;(2)分析误差来源,如滴定管读数误差、氧化还原反应不完全等。
3. 沉淀滴定实验:(1)根据滴定终点记录的数据,计算待测溶液的浓度;(2)分析误差来源,如沉淀剂加入过量、沉淀溶解不完全等。
实验结论:通过本次综合性实验,我们掌握了酸碱滴定、氧化还原滴定、沉淀滴定等实验方法。
在实验过程中,我们学会了如何正确使用实验仪器、准确操作实验步骤,并能够对实验数据进行处理和分析。
综合实践实验教学设计(3篇)
第1篇一、实验背景随着社会经济的快速发展,环境污染问题日益严重,尤其是城市垃圾处理问题已成为制约城市可持续发展的瓶颈。
垃圾分类与回收作为解决垃圾问题的重要途径,对于提高资源利用率、减少环境污染具有重要意义。
为了增强学生的环保意识,培养他们的实践能力,本实验设计旨在通过社区垃圾分类与回收活动,让学生深入了解垃圾分类的重要性,掌握垃圾分类的方法,并积极参与到社区环保实践中。
二、实验目标1. 知识目标:- 了解我国城市垃圾处理现状及垃圾分类的重要性。
- 掌握垃圾分类的基本知识和分类方法。
- 了解不同垃圾的回收处理流程。
2. 能力目标:- 培养学生观察、分析、解决问题的能力。
- 提高学生动手实践和团队合作能力。
- 增强学生参与社区环保活动的积极性。
3. 情感目标:- 增强学生的环保意识和社会责任感。
- 培养学生关爱环境、关爱他人的情感。
三、实验内容1. 实验准备阶段(1)分组:将学生分成若干小组,每组5-6人,选出组长。
(2)资料收集:要求学生收集关于垃圾分类的资料,包括垃圾分类的基本知识、分类方法、回收处理流程等。
(3)活动策划:每组讨论并制定社区垃圾分类与回收活动的具体方案,包括活动时间、地点、流程、所需物资等。
2. 实验实施阶段(1)社区宣传:各组在社区内进行垃圾分类宣传活动,包括发放宣传资料、张贴海报、讲解垃圾分类知识等。
(2)实地考察:各组在社区内选取不同地点进行垃圾分类实地考察,了解社区垃圾分类现状。
(3)分类实践:各组在社区内进行垃圾分类实践,将收集到的垃圾进行分类投放。
(4)回收处理:各组将分类后的垃圾送到指定的回收点,了解垃圾的回收处理流程。
3. 实验总结阶段(1)成果展示:各组展示活动成果,包括活动照片、视频、宣传资料等。
(2)心得体会:各组撰写活动心得体会,分享活动过程中的收获和感悟。
(3)总结评价:教师对各组活动进行评价,肯定优点,指出不足。
四、实验评价1. 评价方式:采用过程性评价与结果性评价相结合的方式。
综合实践实验法教学设计(3篇)
第1篇一、教学背景随着新课程改革的深入推进,综合实践实验法作为一种重要的教学方法,越来越受到教育工作者的重视。
该方法强调学生在实践中学习,通过实验操作、观察、分析、总结等环节,培养学生的科学探究能力、创新精神和实践能力。
本教学设计旨在通过综合实践实验法,让学生在轻松愉快的氛围中掌握科学知识,提升综合素质。
二、教学目标1. 知识与技能目标:- 掌握实验操作的基本技能,如观察、记录、分析、总结等。
- 理解实验原理,并能运用所学知识解决实际问题。
2. 过程与方法目标:- 通过实验探究,培养学生的观察能力、分析能力和解决问题的能力。
- 培养学生的合作意识,提高团队协作能力。
3. 情感态度与价值观目标:- 激发学生对科学探究的兴趣,培养学生对科学的热爱。
- 培养学生的严谨态度和科学精神,树立正确的价值观。
三、教学内容以“探究物质在不同条件下的变化”为主题,通过一系列实验活动,让学生了解物质的性质和变化规律。
四、教学过程第一阶段:实验准备1. 导入:- 通过多媒体展示物质变化的图片或视频,激发学生的学习兴趣。
- 提出问题:物质在不同条件下会发生哪些变化?2. 分组:- 将学生分成若干小组,每组4-6人,明确分工。
3. 分配任务:- 每组选择一个实验项目,如:水的沸腾、盐水的凝固、气体的溶解等。
- 每个学生负责一个实验环节,如:观察、记录、分析、总结等。
第二阶段:实验操作1. 实验指导:- 教师简要介绍实验原理和操作步骤。
- 强调实验安全注意事项。
2. 小组合作:- 各小组按照分工进行实验操作。
- 教师巡回指导,解答学生疑问。
第三阶段:实验总结1. 数据整理:- 各小组整理实验数据,填写实验报告。
2. 讨论交流:- 各小组展示实验结果,分享实验心得。
- 教师引导学生分析实验现象,总结物质变化的规律。
3. 评价反馈:- 教师对实验过程和结果进行评价,指出学生的优点和不足。
- 学生自评和互评,总结经验教训。
五、教学评价1. 过程评价:- 观察学生在实验过程中的表现,如:实验操作是否规范、合作是否默契等。
本科学生综合性、设计性实验报告
1、实验目的
2、实验设备及材料
3、理论依据
4、实验方法步骤及注意事项
5.参考文献
指导老师对实验设计方案的意见:
指导老师签名:
年月日
二、实验报告
1、实验现象、数据处理及结果
2、对实验现象、数据及观察结果的分析与讨论(本次实验成败之处、原因分析、关键环节及其改进措施)
3、结论
指导老师评语及得分(五级制):
伊犁师范学院
本科学生综合性、设计性
实验报告
综合性实验□设计性实验□
姓名_____学号_____
专业_____班级_____
实验课程名称专业综合课程设计___
指导教师及职称________
开课学期至_学年__学期
上课时间年月日
物理与电子信息学院编印
一、实验设计方案
实验名称:
实验时间:
小组合作:是○否○
签名:
年月日
文丘里综合型实验报告
文丘里综合型实验报告
文丘里综合型实验(Wittig reaction)是一种有机合成反应,其基本过程是通过将芳香醛和亚磷酸酯反应来制备烯烃。
为了在实验中获得最佳结果,需要按照以下步骤进行:
实验准备:准备所需试剂和设备,包括芳香醛、亚磷酸酯、碱性催化剂、干燥剂、乙醚等。
反应条件设置:根据不同实验要求,设置适当的反应条件,例如反应温度、反应时间、反应物比例等。
实验操作:将芳香醛和亚磷酸酯加入反应体系中,并添加碱性催化剂催化反应。
反应完成后,用干燥剂除去反应混合物中的水份,然后用乙醚提取反应产物。
产物纯化:通过柱层析等方法对反应产物进行分离和纯化。
结果分析:使用NMR、IR等仪器对纯化后的产物进行分析和鉴定,包括产物结构和纯度等方面。
最终,将实验中的步骤、条件和结果整理成详细的实验报告,包括实验目的、原理、方法、结果、分析等部分。
需要注意的是,为了
保证实验的准确性和安全性,在实验过程中应严格遵守安全操作规程,并在有经验的人员指导下进行实验。
化学初中综合实验教案
化学初中综合实验教案
实验名称:溶解度实验
实验目的:通过这个实验,学生将掌握溶解度的概念,并能够观察不同固体在水中的溶解度。
实验器材:试管、试管架、烧杯、玻璃棒、硫酸镁、硫酸钠、硫酸钾、纯净水。
实验方法:
1. 将试管放在试管架上,逐一加入硫酸镁、硫酸钠、硫酸钾,每次加入0.5g,并记录每次加入后的试管中的溶液状态。
2. 使用玻璃棒搅拌试管中的固体和水,观察反应过程。
实验步骤:
1. 取一个试管,添加0.5g硫酸镁。
2. 加入适量的水,并用玻璃棒搅拌均匀。
3. 观察硫酸镁是否完全溶解,记录下来。
4. 重复以上步骤,分别加入硫酸钠和硫酸钾,观察它们的溶解情况。
实验结果:
1. 硫酸钠和硫酸镁能够完全溶解在水中,而硫酸钠的溶解度较低。
2. 通过观察三种实验物质在水中的溶解情况,学生可以得出不同物质在水中的溶解度是不同的。
实验结论:不同物质在水中的溶解度是不同的,硫酸镁和硫酸钠具有较高的溶解度,而硫酸钾的溶解度相对较低。
注意事项:
1. 实验时要小心操作,避免试管破裂。
2. 及时清理实验台面,避免混合试剂。
3. 实验结束后,将试管中的溶液倒入废液桶。
扩展实验:可以在溶解度实验的基础上,让学生设计不同固体的溶解度实验,并让他们总结影响溶解度的因素。
生化系统综合实验报告
生化系统综合实验报告1. 引言生化系统是一个复杂的系统,由多个生化反应和生物分子组成。
了解和研究生化系统对于理解生物体的功能和疾病发生机制具有重要意义。
本实验旨在通过实验操作和数据分析,加深对生化系统的认识和理解。
2. 实验目的1. 掌握生化实验操作技能;2. 了解常用的生化实验仪器和试剂的使用方法;3. 学习采集和处理实验数据;4. 加深对生化反应和生物分子的理解。
3. 实验材料与方法3.1 材料- 实验仪器:分光光度计、离心机、PCR仪、电泳仪;- 实验试剂:DNA提取试剂盒、PCR试剂盒、琼脂糖、DNA分子量标记物。
3.2 方法1. DNA提取:从植物叶片样品中提取DNA,按照DNA提取试剂盒的说明书进行操作;2. PCR扩增:通过PCR扩增特定基因片段,使用PCR试剂盒和PCR仪进行反应,优化PCR反应条件,包括温度和时间;3. 准备琼脂糖凝胶:按照说明书将琼脂糖溶解于TAE缓冲液中,并将其倒入电泳仪模型中固化;4. 准备DNA样品:将PCR扩增产物与DNA分子量标记物混合,加载到琼脂糖凝胶槽中;5. DNA电泳:将琼脂糖凝胶放入电泳仪中,设定合适的电流和时间进行电泳,观察DNA迁移结果。
4. 实验结果与讨论在本实验中,我们成功提取了植物叶片样品的DNA,并通过PCR扩增得到了特定基因片段。
下图展示了PCR电泳结果:![PCR结果](PCR_result.png)通过结果观察,我们发现所有样品都成功扩增出了目标基因片段,并且具有相似的大小。
这说明我们的PCR反应条件是合适的,并且得到了高质量的PCR产物。
通过DNA电泳结果,我们可以看到样品之间的DNA迁移距离存在差异。
这是因为DNA分子的大小不同,在电场力下会以不同的速度迁移。
另外,我们还看到了DNA分子量标记物,在琼脂糖凝胶上形成了明显的条带。
通过与标准品的比较,我们可以估计出PCR产物的大小。
5. 结论通过本实验,我们成功地进行了DNA提取、PCR扩增和DNA电泳等生化实验操作。
初中物理化学综合实验教案
初中物理化学综合实验教案
实验目的:通过制备氧气和氢气实验,掌握氧气和氢气的制备方法、性质和用途。
实验器材:试管、试管夹、试剂瓶、酸性钠氯酸、锌粉、煤气生成装置、试管架、酒精灯、玻璃棒、火柴等。
实验步骤:
1. 实验前准备:准备好所有实验器材和试剂,检查试验台面整洁,摆放好试管、试管夹和
试管架。
2. 制备氢气:取一些锌粉放入试管中,用试管夹夹住试管底部稍微倾斜放置于试管架上,
注入适量的酸性钠氯酸溶液,观察气体生成情况。
3. 收集氢气:用煤气生成装置收集生成的氢气,将试管的开口置于水中,收集氢气。
4. 制备氧气:取一些锌粉放入试管中,注入适量的酸性钠氯酸溶液,观察气体生成情况。
5. 收集氧气:用煤气生成装置收集生成的氧气,将试管的开口置于水中,收集氧气。
6. 实验结束:观察收集到的氢气和氧气的性质,记录实验结果,清理实验台面和器材。
实验注意事项:
1. 实验中操作要谨慎,避免酸性溶液溅到皮肤或眼睛中。
2. 注意锌粉和酸性溶液之间的化学反应可能产生氢气,要注意收集氢气。
3. 实验结束后要及时清理实验器材和台面,将废弃物品分类处理。
实验总结:通过本次实验,了解了氢气和氧气的制备方法,掌握了氢气和氧气的性质和用途,加深了对化学反应和气体性质的认识。
《人体及动物生理学实验》综合性实验项目
《人体及动物生理学实验》综合性实验项目实验一蟾蜍内脏血管灌流[实验目的] 采用恒压灌流法,可观察交感神经和去甲肾上腺素对内脏血管舒缩的作用。
[实验原理] 器官灌流为常用的实验方法,广泛用于研究体液因素和药物对器官的直接作用。
[实验对象]蟾蜍[实验药品] 任氏液、0.01%去甲肾上腺素溶液[仪器与器械] 蛙类手术器械、橡皮接管、细塑料管、电子刺激器和保护电极、秒表、1mL注射器和针头[实验方法与步骤]1.组装恒压灌流装置用一个500mL下口瓶作贮液瓶(也可用倒置的盐水瓶代替)内盛任氏液约400mL,瓶口橡皮塞中心插入的进气玻璃管下口距瓶底约1厘米。
进气管下口水平面与动脉插管口水平面的垂直距离,即为灌流压的高度(厘米水柱cmH2O),它不受瓶中液面变化的影响。
贮液瓶下口用橡皮管连接作动脉插管的细塑料管。
接管中可串接一个计滴用的摩氏(Muiphy)滴管,并在其上方的接管上夹一个调节流量用的何氏夹。
在管道中充满灌流液,驱净气泡。
调整贮液瓶高度,使灌流压为30cmH2O左右。
调节何氏夹的螺丝,使灌流液流量为20滴/min左右。
然后将接管下段夹闭。
2.制备蟾蜍内脏血管灌流标本破坏蟾蜍的脑和脊髓,背位固定于蛙板上。
在腹部作一正中切口,用棉球将腹内脏器推向一侧。
小心地剪开背侧的腹膜,可见到由两支主动脉弓汇合而成的背主动脉,汇合后的第一分支为粗而短的腹腔系膜动脉,其分支分布于胃、肠、肝、胆、脾、胰等腹腔内脏。
在背主动脉下方,穿细线备用。
再找到汇入静脉窦和后腔静脉和前腹壁内面的腹静脉,亦各在其下方穿线备结扎之用。
在脊柱近旁两侧,找到由交感神经节组成的交感干,从第三对至第五对交感神经节发出的分支组成内脏神经,与腹腔系膜动脉伴行,支配胃、肠、肝、胆、脾、胰、肾等腹腔内脏。
在内脏神经(或交感干)下方穿一细线备用。
用留置线将两支主动脉弓一起结扎。
在结扎远心端的一支主动脉弓上剪一斜口,将充满灌流液的细塑料管插入,直至背主动脉发出腹腔系膜动脉处的近端,用留置线结扎固定好动脉插管,再将背主动脉的远端(在发出肾动脉分支前)结扎。
动量定律综合型实验实验报告
动量定律综合型实验实验报告实验名称:动量定律综合型实验实验目的:1)掌握动量定律的基本概念和演示方法。
2)理解动量定律的物理意义和应用场景。
3)通过实验,探究动量定律和力的关系,验证动量守恒定律。
4)培养学生观察、记录和分析实验数据的能力, 训练学生综合考虑实验之中各种因素的能力。
实验原理:动量定律是物理学中的基本定律之一,指出了物体在受力的情况下,动量的改变量等于该物体所受合力的大小与方向相同的力的作用时间。
即Δp=Ft.动量守恒定律是指在物体间发生碰撞时,所有物体的动量总量守恒,即p1 + p2 = p'1 + p'2。
实验器材:1、气体喷射装置2、两个滑轮和绳子3、两个木块4、卡尺5、计时器6、小球7、带刻度的木板8、砝码实验步骤:1、找到一平滑的墙面做实验,把两个滑轮固定在墙上,绕上绳子。
2、取两个木块,分别在上面钻一个小洞,使其可以穿过绳子。
3、将木块穿过绳子,使两个木块中间夹着一小段绳子。
然后在绳子的任一侧挂好气体喷射装置。
4、将装置上的球体压缩,然后按下弹出按钮,这样球体就会被气体喷射出来,带动木块和绳子运动。
5、观察木块和球的运动,并记录下发生碰撞后的运动情况。
6、对比不同条件下的实验结果,综合考虑各种因素,验证动量定律和动量守恒定律的正确性。
实验结果:实验过程中会发现,气体喷射装置的弹出力与压缩程度成正比,运动的轨迹与绳子张力和倾斜角度有关。
在木块发生碰撞时,我们可以用卡尺对速度和位移进行测量,记录下实验数据。
分别使用动量定律和动量守恒定律,进行计算和验证。
实验结果通常会接近理论值。
实验分析:在进行实验时,我们需要综合考虑不同因素的影响,如气体压缩程度、木块质量、绳子长度和倾斜角度等,才能得到准确的实验结果。
通过比较不同条件下的实验数据,我们可以验证动量定律和动量守恒定律的正确性。
动量定律告诉我们,物体受到力的大小和作用时间会影响其动量的改变量。
因此,我们可以通过控制气体喷射装置的压缩程度,改变喷出气体的动量大小和方向,从而达到控制运动的目的。
综合实践教学案例述评(3篇)
第1篇一、案例背景随着我国教育改革的不断深入,实践教学在高等教育中的地位日益凸显。
综合实践教学作为一种以学生为主体、以实践能力培养为核心的教学模式,旨在通过跨学科、跨专业的综合实践活动,培养学生的创新意识、实践能力和综合素质。
本文将以某高校“创新创业综合实践活动”课程为例,对其综合实践教学案例进行述评。
二、案例概述该案例以“创新创业综合实践活动”课程为核心,通过整合学校、企业、社会资源,构建了“理论教学—实践锻炼—成果展示—评价反馈”四位一体的教学模式。
课程主要面向全校本科生,旨在培养学生的创新精神、创业意识和实践能力。
三、案例实施过程1. 理论教学阶段(1)课程设置:课程内容包括创新创业基础理论、创业项目策划、创业团队建设、创业融资与风险管理等。
(2)教学方法:采用讲授、案例分析、小组讨论等多种教学方法,激发学生的学习兴趣。
2. 实践锻炼阶段(1)项目选择:学生根据自身兴趣和专业背景,选择合适的创业项目。
(2)实践形式:包括企业实习、创业实践、社会调研、创新创业竞赛等。
(3)实践指导:由校内导师和校外导师共同指导,确保实践活动的顺利进行。
3. 成果展示阶段(1)成果形式:包括创业计划书、创业项目路演、创业团队展示等。
(2)展示平台:校内创新创业大赛、校外创新创业竞赛、创业孵化基地等。
4. 评价反馈阶段(1)评价方式:采用学生自评、小组互评、教师评价、企业评价等多种评价方式。
(2)反馈机制:建立反馈机制,及时收集学生、教师、企业等各方面的意见和建议,不断优化课程内容和教学方法。
四、案例成效分析1. 学生方面(1)创新能力:通过实践锻炼,学生的创新意识和创新能力得到显著提升。
(2)实践能力:学生在实践中掌握了创业项目的策划、实施、管理等技能。
(3)综合素质:学生的团队合作、沟通协调、抗压能力等综合素质得到锻炼。
2. 教师方面(1)教学水平:教师通过参与实践指导,提高了自身的实践能力和教学水平。
(2)科研成果:教师结合实践项目,开展了相关的研究,提升了科研成果的质量。
综合性实验_中学教育-中考
综合性实验实验一神经干复合动作电位与骨骼肌收缩的关系【实验目的】利用蟾蜍的坐骨神经干-腓肠肌标本,采用PowerLab多通道同时记录的优点,通过生物电放大器引导并记录神经干复合动作电位;使用机械-电换能器来获得骨骼肌的收缩曲线,两者对照,分析其产生的机制和特点。
【实验原理】骨骼肌纤维受运动神经纤维的控制,神经纤维受到刺激后,其兴奋延神经纤维以动作电位的形式传导到相应的肌纤维,通过兴奋—收缩耦联,引起肌纤维收缩或舒张。
神经纤维的兴奋表现为细胞膜上的生物电——动作电位的产生和传导,随后,肌细胞产生收缩,反映在张力和长度的变化上,两者产生的机制和表现形式均不相同。
【实验动物】蟾蜍【药品与器材】蛙手术器械,PowerLab 8S主机,张力换能器,生物电放大器,桥式放大器,铁架台,肌槽,任氏液。
【实验步骤】1.标本制备:蟾蜍坐骨神经标本制备方法参见P19的蟾蜍神经肌肉标本的制备,标本浸在任氏液中约5 min,待其兴奋性稳定后实验。
2.仪器装置及程序设置(1)连接仪器(图6-1)。
图6-1神经干复合动作电位与骨骼肌收缩实验框图其中,S1和S2为刺激电极,与PowerLab的output I相连,R1和R 2为记录电极,与生物电放大器相连,R 3为接地电极。
(2)参数设置:启动计算机,打开PowerLab主机电源,在桌面上单击Chart5图标,进入Chart应用程序窗口。
1)选择采样速度为40 K/s,显示比例为500:1。
2)在Channel 1显示神经干复合动作电位。
生物电放大器参数设置参见P35的放大器参数设置。
Range 为5~10mV,High Pass 为0.3~10Hz,Low Pass为1 KHz。
选50Hz Notch来抑制交流干扰。
3)在Channel 2显示区域,显示骨骼肌收缩曲线。
桥式放大器参数设置参见P35的放大器参数设置。
Range为200 mV, Low Pass为100 Hz。
综合性实验是指实验内容涉及一门课程的综合知识或多门课程知识的实验
实验操作时应尽量让学生独立完成,指导教师不可替代学生操作,并要巡回检查指导。
在学生首次实验课时,要讲解实验守则、操作规程以及有关注意事项(特别是安全方面)。
实验教学人员对不遵守规章制度、违反操作规程或不听从指挥的学生,有权停止其实验。
合理评定学生成绩,按时如实上报。
要积极开展实验教学研究,改进教学方法,更新教学内容,加强教学交流,不断提高教学水平和质量。
综合性、设计性实验管理
综合性实验是指实验内容涉及一门课程的综合知识或多门课程知识的实验。
设计性实验是指给定实验目的要求和实验条件,由学生自行设计实验方案并加以实现的实验。
学院(中心)组织相关人员对本单位的实验项目是否为综合性、设计性实验进行论证,并将论证材料备案。
有实验的课程尽量开设综合性、设计性实验,使开设综合性、设计性实验的课程占有实验的课程比例达到80%以上。
实验教学考核
实验课的考核一般分为实验理论和实验操作两部分。
关于综合性、设计性实验的说明
南京工程学院车辆工程系关于综合性、设计性实验的说明1、关于实验类型的说明:a. 演示性实验指为便于学生对客观事物的认识,以直观演示的形式,使学生了解其事物的形态结构和相互关系、变化过程及其规律的教学过程。
b. 验证性实验:以加深学生对所学知识的理解,掌握实验方法与技能为目的,验证课堂所讲某一原理、理论或结论,以学生为具体实验操作主体,通过现象衍变观察、数据记录、计算、分析直至得出被验证的原理、理论或结论的实验过程。
c. 综合性实验:是指实验内容涉及本课程的综合知识或与本课程相关课程知识的实验。
d. 设计性实验:是指给定实验目的、要求和实验条件,由教师给定实验目标,学生自行设计实验方案并加以实现的实验。
2、综合性、设计性实验的界定综合性实验是指实验内容涉及本课程的综合知识或与本课程相关课程知识的实验。
是学生在具有一定知识和技能的基础上,运用某一门课程或多门课程的知识、技能和方法进行综合训练的一种复合型实验。
根据定义,综合性实验内容应满足下列条件之一:①涉及本课程多个章节的知识点;②涉及多门课程的多个知识点;③多项实验内容的综合。
设计性实验是指给定实验目的、要求和实验条件,由学生自行设计实验方案并加以实现的实验。
设计性实验一般是指导教师给出题目,由学生运用已掌握的基本知识、基本原理和实验技能,提出实验的具体方案、拟定实验步骤、选定仪器设备、独立完成操作、编程、记录实验数据、绘制图表、分析实验结果等。
3、对综合性、综合性实验进行论证论证专家组组长由院长或主管实验教学的副院长担任,成员不少于3人。
应聘请该领域或与该领域相关的具有副高级以上职称的专家担任论证组成员。
应有综合性、设计性实验教学大纲、综合性、设计性实验指导书;专家组根据实验目的、实施设想、所利用的知识以及实验条件要求等,进行实验属性判定和可行性论证。
对论证符合综合性或设计性实验要求的实验项目的教学过程要进行监督和检查,对学生的实验报告、实验记录和结果等要进行抽查,确保实验内容符合综合性、设计性实验教学要求。
综合设计性实验报告模板
综合设计性实验:设计一个配方,其烧成温度在1250左右;陶瓷坯料配方实验(一)实验目的1.掌握陶瓷坯料配方的实验原理及实验方法。
2.了解影响陶瓷坯料配方的复杂因素及提出一般解决措施。
3.熟悉陶瓷坯料配方操作技能。
(二)实验原理制定坯料配方,尚缺乏完善方法,主要原因是原料成分多变,工艺制度不稳,影响因素太多,以致对预期效果的预测没有把握。
根据理论计算或凭经验摸索,经过多次试验,在既定的各种条件下,均能找到成功配方,但条件一变则配方的性能也随之而变。
根据实验给定的烧成温度1250℃,选用原料,确定配方及成形方法是常用的配料方法。
坯料配方试验方法一般有三轴图法、孤立变量法、示性分析法和综合变量法。
示性分析法即着眼于化学成分和矿物组成的理论配合比。
例如高岭土中常含有长石及石英之混合物,长石中常含有未化合的石英,瓷石中则常含有长石、石英、高岭石、绢云母等。
如配方中的高岭土是指纯净的高岭石,配方中的长石、石英是指极纯的长石及石英,则最好用示性分析法测定各种原料内之高岭石、长石、石英的含量,以便配料时统计计算。
综合变量法即正交试验法,也叫多因素筛选法、多因素优选法、大面积撒网法。
试验前借助于正交表,科学地安排试验方案,试验后,经过表格运算,分析试验结果,以较少的试验次数找出最佳的坯料配方。
然而本设计是采用了三轴图法,利用K2O-Al2O3-SiO2三元系统相图,在设定的1250℃的温度下,根据配料三角形计算出长石-高岭-石英的配料比。
陶瓷坯体在烧结过程中,要发生一系列复杂的物理化学变化,如原料的脱水、氧化分解、易熔物的熔融、液相的形成、旧晶相的消失、新晶相的生成以及新生成化合物量的不断变化,液相的组成、数量和年度的不断变化。
与此同时,坯体的孔隙率逐渐降低,坯体的密度不断增大,最后达到坯体孔隙率最小,密度最大时的状态称为烧结。
烧结时的温度称为烧结温度。
若继续升温,升到一定温度是,坯体开始过烧,这可通过试样过烧膨胀出现气泡、角棱局部熔融等现象来确定。
力热电磁综合设计实验
力热电磁综合设计实验
力热电磁综合设计实验是一种综合性实验,结合了力学、热学、电学和电磁学等多个学科,旨在让学生综合运用这些学科知识,设计并完成一个实际工作中会遇到的问题。
在实验中,学生需要从力学、热学、电学和电磁学等多个方面考虑如何设计一个能够实现某种功能的系统或装置。
例如,可以设计一个能够将机械能转化为电能的发电机,或者设计一个电磁炉,实现材料快速加热。
在实验中,学生需要运用多个学科的知识,包括材料力学、热传导、电场和磁场的运动学与动力学等等,通过对系统或装置的力学、热力学、电学和电磁学的建模和模拟,进行整体设计和优化,最终实现设计目标。
此外,在力热电磁综合设计实验中,学生还需要运用各种实验设备和仪器,进行实验测量及数据分析,检验设计的可行性和实用性。
综合实验能有效提高学生的综合能力和创新能力,让学生在实践中深化对学科知识的理解与应用,为日后科学研究和工程实践奠定基础。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
综合实验实验一 温度传感器非线性误差的理论分析及实验研究 实验目的1测定负温度系数热敏电阻的电阻一温度特性,并利用直线拟合的数据处理方法,求其材料常量;2.了解以热敏电阻力检测元件的温度传感器的电路结构及电路参数的选择原则; 3.学习运用线性电路和运放电路理论分析温度传感器电压一温度特性及非线性误差的基本方法;4.掌握以叠代法为基础的温度传感器电路参数的数值计算技术; 5.训练温度传感器的实验研究能力.仪器和用具TS —B 型温度传感技术实验仪,电磁恒温搅拌器,ZX21型电阻箱,数字万用表,水银温度计(C 100~0︒),烧杯,变压器油. 实验原理具有负温度系数的热敏电阻广泛地应用于温度测量和温度控制技术中.这类热敏电阻大多数是由一些过渡金属氧化物(主要有Mn 、Co 、Ni 、Fe 等氧化物)在一定的烧结条件下形成的半导体金属氧化物作为基本材料制做而成,它们具有p 型半导体的特性.对于一般半导体材料,电阻率随温度变化主要依赖于载流子浓度,而迁移率随温度的变化相对来说可以忽略.但对上述过渡金属氧化物则有所不同,在室温范围内基本上已全部电离,即载流子浓度基本与温度无关,此时主要考虑迁移率与温度的关系,随着温度升高,迁移率增加,所以这类金属氧化物半导体的电阻率下降,根据理论分析,对于这类热敏电阻的电阻一温度特性的数学表达式通常可以表示为⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-=29811exp 25T B R R n t (C.1.1)其中25R 和t R 分别表示环境温度为C 25︒和t (以℃为单位)时热敏电阻的阻值;T 的单位为K ,t K T +=273;n B 为材料常量,其大小随制做热敏电阻时选用的材料和配方而异,对于某一确定的热敏电阻元件,它可由实验上测得的电阻一温度曲线的实验数据,用适当的数据处理方法求得.下面对以这种热敏电阻为检测元件的温度传感器的电路结构、工作原理、电压一温度特性的线性化、电路参数的选择和非线性误差等问题论述如下:一、电路结构及工作原理电路结构如图C.1.l(b)所示,它是由含t R 的桥式电路及差分运算放大电路两个主要部分组成.当热敏电阻t R 所在环境温度变化时,差分放大器的输入信号及其输出电压o V 均要发生变化.传感器输出电压o V 随检测元件 t R 环境温度变化的关系称温度传感器的电压一温度特性.为了定量分析这一特性,可利用电路理论中的戴维南定理把图C.1.1(a )所示的电路等效变换成图C.1.1所示的电路,在图C.1.1中:t t G R R R R R +⋅=111,a ttS V R R R E +=11 (C.1.2) 它们均与温度有关;而32322R R R R R G +⋅=,a S V R R R E 3232+=(C.1.3) 与温度无关.根据电路理论中的叠加原理,盖分运算放大器输出 电压o V 可表示为+-+=o o o V V V (C.1.4)其中-o V 和+o V 分别为图 C.1.1所示电路中1S E 和2S E 单独作用时对输出电压的贡献.由运算放大器的理论知:ER 图C.1.1电路原理图及其等效电路(b)11S G s f o E R R R V +-=-,++⎪⎪⎭⎫⎝⎛++=i G s f o V R R R V 11 (C.1.5) 式中的+i V 为2S E 单独作用时运放电路同相输入端的对地电压.由于运放电路输入阻抗很大,故fG s fS i R R R R E V ++⋅=+22 (C.1.6)把以上结果代入式(C.1.4),并经适当整理得⎥⎥⎦⎤⎢⎢⎣⎡-+++++=12211s s f s G f s G s G fo E E R R R R R R R R R V (C.1.7) 由于上式中1G R 和1S E 与温度有关,所以该式就是温度传感器电压一温度特性的数学表达式,只要电路参数和热敏元件t R 的电阻一温度特性已知,式(C.1.7)所表达的输出电压o V 与温度t 的函数关系就完全确定.二、电压一温度特性的线化和电路多数的选择一般情况下,式(C.1.7)表达的函数关系是非线性的,但通过适当选择电路参数可以使得这一关系和一直线关系近似.这一近似引起的误差与传感器的测温范围有关.设传感器的测温范围为21~t t ,则2312t t t +=就是测温范围的中值温度.若对应1t 、2t 和3t 三个温度值,传感器的输出电压分别为1o V 、2o V 和3o V 所谓传感器电压一温度特性的线性化就是适当选择电路参数使得这三个测量点在电压一温度坐标系中落在通过原点的直线上,即要求01=o V ,232o o V V =,33V V o = (C.1.8) 在图 所示的传感器电路中,需要确定的参数有七个,即 1R 、2R 、3R 、f R 和s R 的阻值,电桥的电源电压 a V 和传感器的最大输出电压3V ,这些参数的选择和计算可按以下原则进行:1.当温度为1t 时,电路参数应使得 01==o o V V ,这时电桥应工作于平衡状态和差分运放电路参数应处于对称状态,即要求1321t R R R R ===(热敏电阻在温度1t 时的阻值),但为了充分利用成品电阻元件,通常选取A R R R ==32,11t R R =,式中A R 为阻值最接近1t R 的电阻元件的系列值.2.为了尽量减小热敏电阻中流过的电流所引起的发热对测量结果带来的影响,a V 的大小不应使t R 中流过的电流超过mA 1.3.传感器的最大输出电压3V 的值应与后面联接的显示仪表相匹配,例如为了使测量仪表的指示与被测温度的数值一致,要求3V 在数字上与测温范围(13t t -)的数字一致. 4.最后两个电路参数s R 和f R 的值可按式(C.1.8)所表示的线性化条件的后两个关系式确定,即⎥⎥⎦⎤⎢⎢⎣⎡-+++++==1322131333S S f s G f s G s G fo E E R R R R R R R R R V V⎥⎥⎦⎤⎢⎢⎣⎡-+++++==12221212322S S f s G f s G sG f o E E R R R R R R R R R V V (C.1.10) 其中i G R 1、i S E 1(3,2,1=i )是热敏电阻t R 所处环境温度为i t 时按(C.1.2)式计算所得的1G R 和1S E 值.当电桥各桥臂阻值、电源电压a V 和热敏电阻的电阻一温度特性以及传感器最大输出电压3V 已知后,在(C.1.9)、(C.1.10)两式中除s R 、f R 外其余各量均具有确定的数值,这样只要联立求解(C.1.9)、(C.1.10)两式就可求出s R 和f R 的值.然而(C.1.9)、(C.1.10)两式是以s R 和f R 为未知数的二元二次方程组,其解很难用解析的方法求出,必须采用数值计算技术.三、确定s R 和f R 的数值计算技术 如前所述、方程(C.1.9)和(C.1.10)是以s R 和f R 为未知数的两个二元二次方程组,每个方程式在(s R 和f R )直角坐标系中对应着一条二次曲线,两条二次曲线交点的坐标值即为这个联立方程组的解.这个解可以利用叠代法求得.由于在0=s R 处与式图C.1.2电压-温度特性及非线形误差C(C.1.10)对应的曲线对f R 轴的截距较式(C.1.9)对应的曲线的截距大(由数值计算结果可以证明),因此为了使叠代运算收敛,首先令0=s R 代入式(C.1.10),由式(C.1.10)求出一个f R 值,然后把这一f R 值代入式(C.1.9),并由式(C.1.9)求出一个新的s R 值,再代入式(C.1.10)…创此反复叠代,直到在一定的精度范围内可认为相邻两次算出的s R 和f R 值相等为止.四、非线性误差的理论分析热敏元件电阻一温度曲线测定后和a V 、3V 及电路参数确定后,传感器由式(C.1.7)所表达的电压一温度特性的函数关系()t V o 就完全确定了,虽然在电路参数的选择上保证了与1t 、2t 和3t 对应的三个测量点在(o V 、t )平面上落在通过原点的同一直线上,但在整个测温范围内,式(C.1.7)所表达的电压一温度特性不是一条直线,而是一条如图C.1.2所示的S 形曲线.在此情形下,若在传感器的输出端用刻度特性均匀的电压表头来显示温度值,就相当于用上述直线关系代替式(C.1.7)所表达的曲线关系.除1t 、2t 和3t 三个温度值外,对于其余各点,这一替代均存在着由于传感器电压一温度特性的非线性引起的误差,根据图C.1.2所示的关系,在理论上计算这一误差的公式可以写成如下形式:()⎥⎦⎤⎢⎣⎡+--∆1313t t V V t t tt o (C.1.11)上式中t 是传感器探头所在环境的实际温度值,右边第二项(方括弧中的算式)代表具有均匀刻度特性的电压表头显示的温度值t ',其中()t V o 是由实际温度按式(C.1.7)算出的传感器的输出电压.实验过程本实验的主要设备是TS —B 型温度传感技术实验仪,其电路原理图如图C.1.3所示,使用方法见该仪器的使用说明书.该仪器配上数字万用表、恒温电磁搅拌器、盛有变压器油的烧杯和水银温度计等简单器具就可方便地进行下面各项内容的实验: 1.热敏电阻元件电阻一温度特性的测定该项测量是设计本温度传感器的基础,要求测量结果在测量器具允许误差范围内尽量准确,为此在测量过程中应特别仔细、认真,尽量减少人为因素的影响.测量时把热敏电阻固靠在C 100~0︒水银温度计的头部后,把温度计及热敏元件浸入盛有变压器油的烧杯内,并用恒温电磁搅拌器加热变压器油.在C 75~25︒的温度范围内,从C 25︒开始,每隔C 5︒用数字万用表测量这些温度下热敏电阻的阻值,直到C 75︒止.为了使测量结果更为准确,可在升温过程和降温过程中各测一次,然后取平均.升温时,升温速度不宜过快.该项测定完成后,采用直线拟合方法处理实验数据,求出式(C.1.1)所表示的热敏电阻的电阻一温度特性中的材料常量n B 的实验值. 2.选择和计算电路参数首先根据实验测得的热敏电阻的电阻一温度特性曲线和两种测温范围(C 45~25︒和C 65~25︒),按前面所论述的原则确定1R 、2R 、3R 、a V 和3V 然后把式(C.1.9)和式(C.1.10)改写成以下标准形式:02=++C BR AR s s (A ,B ,C 中含f R ) (C.1.9’)02='+'+'C R B R A f f (A ',B ',C '中含s R ) (C.1.10’) 并用叠代法计算电路参数s R 和f R ;然后,按式(C.1.7)和式(C.1.11)计算以上两种测温范围情况下传感器的电压一温度特性及非线性误差的理论值(计算程序自编). 3.温度传感器的组装与调试首先调节设置在TS —B 型温度传感技术实验仪后面板上的多圈电阻器,使s R 和f R 的值 为计算结果值(具体调节方法见TS —B 型温度传感技术实验仪使用说明书);然后调节传感器零点和校准量程,具体操作如下.(1)零点调节调节图C.1.3所示电路中的1w (对应TS —B 型温度传感技术实验仪前面板上的“a V 调图C.1.3 TS-B 型温度传感技术实验仪电路原理图节”旋钮)使传感器的输入桥式电路的电源电压a V 为设计时的选定值,然后用ZX21型电阻箱代替热敏元件t R 接入传感器电路,并把电阻箱的阻值调至1t R (即热敏元件在1t 时的阻值),用数字万用表mV 200档观测传感器的输出电压o V 是否为零,若不为零,调节图C.1.3中的1R (对应仪器前面板上的“调零旋钮”)使o V 值为零(允许m V 1±的误差). (2)量程校准完成零点调节后,把代替热敏电阻的电阻箱阻值调至3t R (即热敏元件在3t 时的阻值),用数字万用表观测传感器输出电压o V 是否为设计时所要求的3V 值.如果不是,再次调节1w 改变电桥电源电压a V ,使 3V V o =.在完成以上调节工作后,注意保持“零点调节”和“a V 调节”旋钮位置不变.4.传感器电压一温度特性的测定把测温范围分成10个等间隔的子温区,加热变压器油,当温度计示值低于3t 约C 5︒时就停止加热(但不停止搅拌),由于加热器有余热,变压器油的温度会继续升高,当温度计示值高于3t 的某一最高温度后,变压器油便处于降温状态.在降温过程中,测量和记录下以上各子温区交界点温度对应的传感器输出电压o V 值,并与按式(C.1.7)计算的理论值列表进行比较.5.温度的数字显示为了用数字万用表的mV 200挡实现起始温度1t 及测温范围 31~t t 内温度传感器温度的数字显示,在mV 200数字表头和图C.1.3所示的温度一电压变换电路之间需设置一个处理电路,试根据模拟电子线路理论自行设计一个具有这种功能的处理电路并拟定出相应的调试步骤.数据处理1.根据实验数据在直角坐标纸上绘出t R 的电阻一温度特性曲线;并在同一坐标纸上绘出根据实验求出的n B 值由式(C.1.1)表示的特性曲线.2.就某一测温范围的传感器,在同一直角坐标系中绘出电压一温度特性的理论计算曲线和实验测定曲线.3.列表比较两种不同测温范围的传感器非线性误差随温度变化的理论值与实测值. 4.对实验结果进行分析、讨论和评定.思考题1.用叠代法计算s R 和f R 时,若先给f R 赋值,计算过程将如何发展? 2.在调节温度传感器的零点和量程时,为什么要先调节零点,后调节量 程?参考文献1 牛德芳.半导体传感器原理及应用.大连:大连理工大学出版社, 1993实验二 高温超导体的临界温度和临界电流的测量在各种新材料特性研究中,其电特性的研究占有相当重要的地位,往往由此揭示新的物理规律和这些材料新的应用前景.追溯超导电现象的发现历史,就是在著名低温物理学家昂尼斯(K.Onnes ,1853-1926)的指导下,实现的氦的液化,达到4.2K 这个当时所能达到的最低温度后,探索在所达到的新的低温区内各种金属电阻变化规律,当选用纯汞作实验时,发现随着温度的下降,汞的电阻先是平缓地减小,而在4.2K 附近,电阻在很窄的温区内,突然降为零.如图C.2.1所示.他把这种显示零电阻特性的物质状态定为“超导态”,该现象称为“超导电性”.又如现在广泛应用的半导体,其基本特性的揭示是和电阻-温度关系的研究分不开的.而在低温测量中广泛应用的电阻温度计,完全是建立在对各种类型材料的电阻-温度关系研究的基础上的.实验目的1.掌握超导材料临界温度和临界电流测试原理和方法. 2.测量反映高温超导体基本特性.3.利用电磁测量的基本手段来研究高温超导体.仪器和用具低温装置(包括真空玻璃杜瓦和测试探头),数字电压表2台(分别为215214和位的数字电压表),铂电阻温度计或铜-康铜温差电偶,恒流源(100mA ,100Ω),直流稳压电源与K /图C.2.1汞的电阻与温度关系标准电阻(10Ω、1Ω),高温超导样品,铟丝,银引线(或细漆包线),液氮,直流放大器.实验原理1.超导体的基本特性——零电阻现象和迈斯纳效应超导材料有两个不同于其他材料的最基本特性,即零电阻现象和完全抗磁性(也称迈斯纳效应).零电阻现象是指具有超导电性的材料,当温度下降时,其电阻随温度下降发生缓慢的变化(一种是金属性的材料,其电阻缓慢下降;一种是显示半导体性,其电阻缓慢升高),而当到达某一温度时,其电阻在很窄的温区内,从n R 急剧地变为零,超导体呈现零电阻现象.为描述电阻陡降的突变过程,可以定义如下几个特征温度:起始转变温度起始T 是指电阻随温度的变化偏离线性的温度;临界温度C T 是指电阻值下降到2/n R 时所对应的温度,零电阻温度0=R T 为电阻刚降至零时对应的温度,而把电阻变化1/10到9/10所对应的温度间隔定义为转变宽度T ∆,如图C.2.2所示.超导体的另一个重要电磁特性是完全抗磁性,即所谓迈斯纳效应.不论超导体是先降温到超导态再加磁场,还是先加磁场后降温,只要温度低于零电阻温度,置于磁场下超导体内的磁感应强度B 都恒等于零,磁场被排斥到超导体外面,该现象称为迈斯纳效应.该效应是超导体区别于理想导体的独有特性.由于磁感应强度B 和磁场强度H 有如下关系:H M x H B m r ⋅+==)1(0μμ (C.2.1)式中0μ为真空磁导率,r μ为介质的相对磁导率,m x 为磁化率.当发生正常态到超导态的转变时,r μ由1变到零,或者说磁化率由近于零变到-1,从而使超导体内部B=0.如果把超导体材料作成线圈的芯子,则线圈自感L 和介质的磁导率的关系如下:V n L r 20μμ= (C.2.2)式中n 为线圈单位长度的匝数,V 为线圈的体积,可见当发生超导转变时,磁导率r μ发生变0=R C 起始R 9.05.0R 1.0R 图C.2.2转变宽度T ∆化,线圈的电感量也变化.利用超导转变时,线圈电感量变化来测量临界温度的方法,称为电感法.1.临界电流当通过超导线的电流超过一定的数值后,超导态便被破坏,转变为正常态,该电流I c 称为超导体的临界电流.当电流超过一定值后,所以能引起超导态到正常态的转化,其根本原因是由于电流所产生的磁场(自场)超过临界磁场引起的.各超导体临界电流的大小,除和超导材料组成和结构有关外,对同一种超导材料而言,与其截面积的大小和形状有关.2.测量方法及参考方案电阻法测临界电流最常用的方法是四引线法.四引线法示意图如图C.2.3所示,其中两端的电流引线与恒流源相连,用以检测超导样品的电压.当产生超导转变时,其电压降为零.采用四引线法的优点在于能够避免引线及接点电阻所引入的测量误差.由于数字电压表的输入阻抗很高,所以引线的接点的接触电阻均可忽略.用四引线法测超导转变温度的原理简图如图C.2.4所示.图中温度测量是用铜-康铜温差电偶,也可采用铂电阻温度计,铂电阻温度计电阻的对应关系见文献]3[所附分度值表.如用铜-康铜温差电偶,则必须利用铂电阻温度计在所使用的温区(即77K~室温)对铜-康铜温差电偶进行定标.通过样品的电流在毫安量级.实验中采用的低温装置是一种简易的真空玻璃杜瓦瓶,内盛液氮,低温可到达液氮温度.超导样品和测量用铂电阻温度计或铜-康铜温差电偶安装在测试探头上,如图 C.2.5所示.当把测试探头浸入液氮并达到热平衡时,恒温紫铜块、超导样品和温度计均达到液氮温度.提升探头至液氮以上,恒温紫铜块和超导样品同步逐渐升温,可测出超导样品输出电压随温度的变化曲线.本实验所用的高温超导样品是采用烧结工艺制备的多晶超导块材料,其结构式为图C.2.3四引线法图C.2.4四引线法测量C T 装置的示意图Yba 2Cu 3O 7-δ,式中δ为与超导样品氧含量有关的系数,样品的转变温度约为92K 左右,由于该样品无法用焊接法直接引出引线,四引线发的四根引线是用铟丝将细银丝粘压在高温超导样品表面,然后再焊在接线片上.所有引线均由德银管引出与德银管上端的接线插座相连,并由接头接到测量电路.临界电流的测量线路也可用图C.2.4说明,即只要把图C.2.4中的恒流源改用输出电压可调的稳压电源,毫安表改用额定电流为数安培的取样电阻就可以了.改变稳压电源的输出电压,即可改变电流,直到样品发生超导态到正常态的转变.本实验只要求测出液氮温区的临界电流.电路、仪器的配置和参数的选择由同学自己考虑选取.若采用磁测量法测转变温度,可参阅本实验后所附参考文献,自己组装测量和调试测量装置.在科研工作中,由于研究工作的需要,往往要根据或参考别人的文献,并根据自己所需解决的问题和仪器设备条件,加以适当的改进,实现测量,这也是科研能力的训练.在以上测试中由于要用到低温容器与液氮,使用中必须注意遵守下列安全规则:1.所有盛放在低温液氮的容器都必须留有供蒸发气体逸出的孔道,以免容器内压力过大引起事故.2.液氮灌入玻璃杜瓦时,应缓慢灌入,避免骤冷引起杜瓦的破裂.灌注液氮采用专用液氮灌注器.3.实验中注意不要让液氮触及裸露的皮肤特别是眼睛,以免造成严重的冻伤. 4.使用液氮时,室内应保持空气通畅,防止液氮的大量蒸发造成室内缺氧.因为氧含量低于14%~15%,会引起人的昏厥.实验内容1.高温超导样品的准备本实验提供的高温超导样品,是用一般陶瓷烧结工艺制备的,先按照1:2:3的理想配图C.2.5低温装置图1.真空玻璃杜瓦;2.德银管;3.外套筒;4.超导样品;5.恒温紫铜块;6.液氮;7.铂电阻温度计;8.接线片.比,将氧化钇、氧化铜和碳酸钡的分析纯粉末混合,然后经过研磨、预烧、压片和烧结等工艺制成直径为12mm、厚度为1mm的超导圆片,结构式为Yba2Cu3O7-δ.经切割后成为2mm ×1mm截面的条形试样.粘压引线的方法如下:把从铟丝上切割下的铟粒新鲜面用削尖的竹简压贴在试样的表面,银引线的一端置于压贴好的新鲜铟面上,上端再用新鲜的铟粒面压贴固定,这样可形成良好的欧姆接触.可用万用表检查接点是否良好.2.用四引线法测量高温超导样品的临界温度,求出几个特征温度.根据提供的测试仪器和设备,决定测量方案和测试线路,选择测量参数和操作步骤,完成测量.3.测量所提供样品的临界电流,计算临界电流密度.4.参阅参考文献,用磁测量法测量临界温度,同学也可根据迈斯纳效应的特点,设计其他观察研究迈斯纳效应的实验方法.参考文献[1]章立源等.超导物理.北京:电子工业出版社,1987.8[2]贾起民,郑永令.电磁学下册.上海:复旦大学出版社,1987.182——190[3]戴乐山.温度计量.北京:中国计量出版社,1987.182——190[4]吕斯骅,朱印康.近代物理实验技术.北京:高等教育出版社,1991.240[5]俞永勤等.频率法在高温超导体中的应用.低温与超导,1989,17(4):39——42实验三热敏电阻的特性测试和温度的实时测量与控制温度的测量和控制是科研和生产时间中经常遇到和需要解决的问题.如何根据温度测量范围、精确度、灵敏度、对测温用敏感元件反应速度的要求以及测温的环境条件来合理地选择温度测量的传感器和测量方法,是解决问题的关键.本课题要求设计一个测量装置,使它具有小的热惯性、高的灵敏度,并具实时显示和高限报警功能.内容涉及温度的测量知识,传感器特性的测试、定标,基本电学量的测量,非平衡电桥等方面的基本知识的运用,也是一种初步的综合应用能力的培养.设计研究要求设计一套用于温度的实时测量和控制的装置,要求达到如下的技术指标:温度的测量范围:10℃~60℃.精确度:1.50℃;灵敏度:0.20℃;响应速度:〈5s;并设置高限60℃报警装置.显示:用适当的数字万用表作显示装置.要求写出测试研究总结报告,以测试数据和实时测量记录说明所设计的装置满足所提技术指标.并提交完整的装置技术资料.仪器和用具珠状热敏电阻,AD590集成温度传感器,213数字电压表2只,精密金属膜电阻若干,精密稳压电源,恒温水浴,标准电阻(10Ω,100Ω),惠斯通电桥,测量放大器,0~100℃分度值为0.1℃的一等标准水银温度计.实验原理1.测温传感器的选择由于本测温装置要求实时地显示问地测量值,因而选择能把温度的变化转化为电学量输出的传感器较为合适.电阻温度传感器及温差电偶温度传感器均具有以上功能,但在技术指标中,对测温敏感度及响应速度均提出了具体的要求,从这方面的要求考虑,所选择的传感器体积要小,温度变化0.2℃时,输出显示应能分辨,根据以上要求,比较合适的是珠状热敏电阻及新型的集成温度传感器AD-590.热敏电阻的阻值随温度变化的特性及线性化问题半导体热敏电阻具有很高的负电阻温度系数,其灵敏度(每度温度变化所相应的电阻变化率)要比电阻丝式热敏电阻高很多,而且体积可以做得很小.热敏电阻的电阻随温度的变化,可用如下的指数关系表示,即:)11(2020)(T T b t R T R -=(C.3.1)式中R t (T)系摄氏温度为t(热力学温度为T)时的电阻值;R 20系温度为20℃时的电阻值;T 为热力学温度;T 20为t=20℃时的热力学温度;b 为与半导体材料物理性能有关的常量.由(C.3.1)式可知,半导体热敏电阻的电阻值随温度变化的关系是非线性的,如果我们通过放大线路,把电阻的变化转化为电压的变化,并且放大线路是线性放大线路,则由于热敏电阻阻值随温度的非线性变化关系,必然导致输出电压随温度变化是非线性的关系.因此,在测温中,为了使输出电压随温度作线性的变化(因为这样便于显示和读数),就必须采用某种线性化网络,经过线性化网络校正,使输出电压随温度的变化基本上成为线性关系.使热敏电阻线性化的方法很多,最简单的方法是用温度系数很小的电阻与热敏电阻串联或并联,可以使等效电阻与温度的关系在一定的范围内是线性的.图 C.3.1是热敏电阻R t (T)与补偿电阻R x 串联的情况,串联后的等效电阻为)(T R R R t x s +=,由于R t (T)随着温度上升而下降,而补偿电阻是金属或合金材料电阻,具有一。