第六章练概率初步习题(含答案)

合集下载

北师大版七年级下册数学第六章 概率初步含答案

北师大版七年级下册数学第六章 概率初步含答案

北师大版七年级下册数学第六章概率初步含答案一、单选题(共15题,共计45分)1、某校九年级(1)班50名学生中有20名团员,他们都积极报名参加学校开展的“文明劝导活动”。

根据要求,该班从团员中随机抽取1名参加,则该班团员京京被抽到的概率是()A. B. C. D.2、在一个箱子里放有1个白球和2个红球,它们除颜色外其余都相同.从箱子里任意摸出1个球,摸到白球的概率是()A.1B.C.D.3、下列随机事件:①在一副扑g牌中,抽一张是红桃;②抛掷一枚质地均匀的骰子,朝上一面是偶数;③抛一枚质地均匀的硬币,正面朝上;④不透明的袋子中有除颜色外完全相同的红球和白球各2个,摸出一个是白球,其中,概率为的是()A.①③B.①②③C.②③④D.①②③④4、某商场为了吸引顾客,设立了一个可以自由转动的转盘(如图所示),并规定:顾客消费200元以上(含200元),就能获得一次转动转盘的机会,如果转盘停止后,指针正好对准九折、八折、七折区域,顾客就可以获得此项优惠,如果指针恰好在分界线上时,则需要重新转动转盘.某顾客正好消费300元,他转动一次转盘,实际付款210元的概率为()A. B. C. D.5、向如图所示的正三角形区域扔沙包(区域中每一个小正三角形除颜色外完全相同),假设沙包击中每一个小三角形是等可能的,扔沙包1次击中阴影区域的概率等于()A. B. C. D.6、在期末体育考核中,成绩分为优秀、合格、不合格三个档次,某班有40名学生,达到优秀的有18人,合格的有17人,则这次体育考核中,不合格人数的频率是()A.0.125B.0.45C.0.425D.1.257、小刚掷一枚均匀的硬币,一连99次都掷出正面朝上,当他第100次掷硬币时,出现正面朝上的概率是()A.0B.1C.D.8、已知长度为2cm,3cm,4cm,5cm的四条线段,从中任取一条线段,与4cm 及6cm两条线段能组成等腰三角形的概率是()A. B. C. D.9、不透明袋子中装有红、绿小球各一个,除颜色外无其他差别,随机摸出一个小球后,放回并摇匀,再随机摸出一个,两次都摸到红球的概率为()A. B. C. D.10、下列命题是真命题的是()A.任意抛掷一只一次性纸杯,杯口朝上的概率为B.在一次抽奖活动中,“中奖的概率是”表示抽奖100次就一定会中奖C.从1至9这九个自然数中任取一个,是2的倍数或是3的倍数的概率是D.一运动员投4次篮,有2次投中,则该运动员的投一次篮投中的概率一定是11、掷一枚质地均匀的硬币10次,下列说法正确的是()A.每2次必有1次正面向上B.必有5次正面向上C.可能有7次正面向上D.不可能有10次正面向上12、一个不透明的盒子中装有6个大小相同的乒乓球,其中4个是黄球,2个是白球.从该盒子中任意摸出一个球,摸到黄球的概率是( )A. B. C. D.13、如果小球在如图所示的地面上自由滚动,并随机停留在某块方砖上,那么它最终停留在黑色区域的概率是()A. B. C. D.14、如图,有四张不透明的卡片除正面的算式不同外,其余完全相同,将它们背面朝上洗匀后,从中随机抽取一张,则抽到得卡片上算式正确的概率是()A. B. C. D.115、抛掷一枚质地均匀的硬币,如果每掷一次出现正面与反面的可能性相同,那么连掷三次硬币,出现“一次正面,两次反面”的概率为( )A. B. C. D.二、填空题(共10题,共计30分)16、若随机掷一枚均匀的骰子,骰子的6个面上分别刻有1,2,3,4,5,6点,则点数不小于3的概率是________.17、在一个布袋里放有1个白球和2个红球,它们除颜色外其余都相同.从布袋里摸出1个球,记下颜色后放回,搅匀,再摸出1个球,将2个红球分别记为红I,红II,两次摸球的所有可能的结果如下表所示:第二次白红I 红II第一次白白,白白,红I 白,红II红I 红I,白红I,红I 红I,红II红II 红II,白红II,红I 红II,红II则两次摸出的球都是红球的概率是________.18、一个口袋有3个黑球和若干个白球,在不允许将球倒出来的前提下,小明为估计其中的白秋数,采用了如下的方法:从口袋中随机摸出一球,记下颜色,然后把它放回口袋中,摇匀后再随机摸出一球,记下颜色,再放回口袋中,…,不断重复上述过程,小明共摸了100次,其中20次摸到黑球.根据上述数据,小明正估计口袋中的白球的个数是________19、如图所示,平行四边形的两条对角线及过对角线交点的任意一条直线将平行四边形纸片分割成六个部分,现在平行四边形纸片上作随机扎针实验,针头扎在阴影区域内的概率为________ .20、一盒中有白色和黑色棋子各若干颗,从盒中随机取出一颗棋子,是白色棋子的概率为,如再往盒中放进2颗黑色棋子,取得白色棋子的概率变为,则原来盒里有________ 颗白色棋子.21、如图,飞镖游戏板中每一块小正方形除颜色外都相同.若某人向游戏板投掷飞镖一次(假设飞镖落在游戏板上),则飞镖落在阴影部分的概率是________.22、在不透明的口袋中装有除颜色外其它都相同的2个黑球和3个白球,任意从口袋中摸出一个球来,摸到白球的概率为________.23、任意选择电视的某一频道,正在播放动画片,这个事件是________.(填“必然事件”、“不可能事件”或“随机事件”)24、在一个不透明的袋子中有5个除颜色外完全相同的小球,其中绿球个,红球个,摸出一个球不放回,混合均匀后再摸出一个球,两次都摸到红球的概率是________.25、如图是一个转盘,转一次指针指向灰色部分的概率是________三、解答题(共6题,共计25分)26、在七年级数学《谁转出的“四位数”大》一节课中,小明和小新分别转动标有“0﹣9”十个数字的转盘四次,每次将转出的数填入表示四位数的四个方格中的任意一个,比较两人得到的四位数,谁大谁获胜.已知他们四次转出的数字如下表:第一次第二次第三次第四次小明9 0 7 3小新0 5 9 2(1)小明和小新转出的四位数最大分别是多少?(2)小明可能得到的四位数中“千位数字是9”的有哪几个?小新呢?(3)小明一定能获胜吗?请说明理由.27、图中第一排表示各盒中球的情况,请用第二排的语言来描述摸到黄球的可能性大小(选择最恰当的描述),并用线连起来.28、妈妈给小红和弟弟买了一本刘慈欣的小说《流浪地球》,姐弟俩都想先睹为快.是小红对弟弟说:我们利用下面中心涂黑的九宫格图案(如图所示)玩一个游戏,规则如下:我从第一行,你从第三行,同时各自任意选取一个方格,涂黑,如果得到的新图案是轴对称图形.我就先读,否则你先读.小红设计的游戏对弟弟是否公平?请用画树状图或列表的方法说明理由.(第一行的小方格从左至右分别用A,B,C表示,第三行的小方格从左至右分别用D,E,F表示)29、一个不透明的袋中装有20个只有颜色不同的球,其中5个黄球,8个黑球,7个红球.(1)求从袋中摸出一个球是黄球的概率;(2)现从袋中取出若干个黑球,搅匀后,使从袋中摸出一个球是黑球的概率是,求从袋中取出黑球的个数.30、 4件同型号的产品中,有1件不合格品和3件合格品.在这4件产品中加入件合格品后,进行如下试验:随机抽取1件进行检测,然后放回,多次重复这个试验,通过大量重复试验后发现,抽到合格品的频率稳定在0.95,由此可以推算出的值大约是多少?参考答案一、单选题(共15题,共计45分)1、C2、C3、C4、D5、C6、A7、C8、A9、D10、C11、C12、A13、D15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共6题,共计25分)27、29、。

北师大版七年级数学下册第六章概率初步专题练习(附答案)

北师大版七年级数学下册第六章概率初步专题练习(附答案)

第六章 概率初步 专题练习一、选择题1.“投掷一枚均匀的骰子,掷出的点数不超过 6”,这一事件是 ()A.必然事件 B .不确定事件 C .不可能事件 D .随机事件2.如图,在 4×4 的正方形网格中,任选一个白色的小正方形并涂黑,使图中黑色部分的图形构成一个正方形的概率是3.在综合实践活动中,小明、小亮、小颖、小静四位同学用投 掷图钉的方法估计针尖朝上的概率,他们的试验次数分别为 20,50, 150,200.其中哪位同学的试验相对科学 ( )A .小明B .小亮A. 4A.13 .3 .13 2 C.13 1 D.13C.小颖 D.小静4.抛掷一枚质地均匀的硬币 2 000 次,正面朝上的次数最有可能为 ( )A .500 B.800C.1 000 D.1 2005.桌面上有 A,B两球及 5个指定的点,若将 B球分别射向这 5个点,则 B 球一次反弹后击中 A 球的概率为 ( )1234A.5B.5C.5D.56.正方形地板由 9 块边长均相等的小正方形组成,将米粒随机地撒在如图的正方形地板上 (落在正方形外的不计 ),那么米粒最终停留在黑色区域的概率是 (1224A.3B.9C.3D.9二、填空题7.袋中装有除颜色外其余均相同的 5 个红球和 3 个白球.从袋中任意摸出一个球,则摸出的球是红球的概率为_ .8.有一枚质地均匀的骰子,骰子各面上的点数分别为 1,2,3,4,5,6.若任意抛掷一次骰子,朝上的面的点数记为 x,计算|x-4|,其结果恰为 2 的概率是___ .9.如图,转动的转盘停止转动后,指针指向白色区域的概率是10.小明将飞镖随意投中如图的正方体木框中,那么投中阴影部分的概率为______ .11.柳州市某校的生物兴趣小组在老师的指导下,进行了多项有意义的生物研究并取得成果.下面是这个兴趣小组在相同的实验条件下,对某植物种子发芽率进行研究时所得到的数据:依据上面的数据可以估计,这种植物种子在该实验条件下发芽率约是(结果精确到 0.01).12.有 7 张卡片,分别写有 1~7 这 7 个数,将它们背面朝上洗匀后,任意抽出 1 张.求:(1)抽到的数为偶数的概率;(2)抽到的数小于 5 的概率.三、解答题13.小华与爸爸用一个如图所示的五等分、可以自由转动的转盘来玩游戏.将转盘随机转一次,指针指向的数字如果是奇数,爸爸获胜;如果是偶数,则小华获胜 (指针指到线上则重新转 ).(1) 转完转盘后指针指向数字 2 的概率是少?(2)这个游戏公平吗?请你说明理由.14.如图是计算机中的一种益智小游戏“扫雷”的画面:在一个角第一个方格,出现了数字“1,”其外围区域(图中阴影部分)记为 B 区域;“A区域与 B 区域以及出现数字‘ 1'和‘ 3'两格”以外的部分记为 C 区域.小红在下一步点击时要尽可能地避开地雷,那么她应点击 A, B,C 中的哪个区域?请说明理由.15.某甜品店计划订购一种鲜奶,根据以往的销售经验,当天的 需求量与当天的最高气温 T 有关,现将去年六月份 (按 30 天计算 )的 有关情况统计如下:最高气温与需求量统计表最高气温T/℃ 需求量 /杯 T<25 200 25≤T<30250 T ≥30400最高气温与天数的统计图9× 9 的小方格的正方形雷区中,随机埋藏着 10 颗地雷,每个小方格 内最多只能埋藏 1 颗地.(图中阴影部分,记为 A 区域)有 3颗地雷;接着,小红又(1) 求去年六月份最高气温不低于 30 ℃的天数;(2)若以最高气温位于各区间的频率估计最高气温位于该区间的概率,求去年六月份这种鲜奶一天的需求量不超过 200 杯的概率;(3)若今年六月份每天的进货量均为 350 杯,每杯的进价为 4 元,售价为 8元,未售出的这种鲜奶厂家以 1 元的价格收回销毁.假设今年与去年的情况大致一样,若今年六月份某天的最高气温 T 满足 25≤T< 30(单位:℃ ),试估计这一天销售这种鲜奶所获得的利润为多少元?参考答案一、选择题1. A2.3. D 4.C 5. B 6. B 二、填空题7.5 88.1 39.3 1010 5 1811.0.9512.解:(1)1,2, 3,4,5,6,7 中,偶数为2,4,6,抽到的数3 为偶数的概率为73.(2)在 1,2,3, 4,5,6, 7 中,小于 5 的数有 1,2,3,4,抽4 到的数小于5 的概率为47.三、解答题13解: (1)将转盘随机转一次,指针指向的数字所有可能的结果有 1,2,3,4,5,共五种.每种出现可能性相等,因此指向数字 2 的1 概率 P =51.3 2 3 2 (2)爸爸获胜的概率 P = 35,小华获胜的概率 P =52,∵53≠52,∴不公平.14.3 1 6 3 解: P(A)=8,P(B)=3, P(C)=68=34,3 1 3∵ > > ,∵8>3>34,∴P(A)>P(B)>P(C),∴小红应点击 C 区域,能尽可能避开地雷 .15. 解: (1)最高温度不低于 30 ℃天数为 6+2=8(天)(2)由表格知每日鲜奶需求量不超过 200 杯时,当日最高气温低于 25 ℃.由条形统计图可得,最高气温低于 25 ℃的天数有 (9+3)天,9+3 2所以一天的需求量不超过 200 杯的概率是 3+0 =52.(3)由表格知某天的最高气温 T 满足 25≤T<30时,销售量为 250 杯,则利润为 250×8+ (350-250)×1-350×4=700(元).。

北师大版七年级下册第六章《概率初步》真题演练(含答案)

北师大版七年级下册第六章《概率初步》真题演练(含答案)

概率初步真题演练一、选择题1.某校举行“中国梦•我的梦”演讲比赛,需要在初三年级选取一名主持人,共有12名同学报名参加,其中初三(1)班有2名,初三(2)班有4名,初三(3)班有6名,现从这12名同学中随机选取一名主持人,则选中的这名同学恰好是初三(1)班同学的概率是()A. B. C. D.2.在不透明口袋内有形状、大小、质地完全一样的5个小球,其中红球3个,白球2个,随机抽取一个小球是红球的概率是()A. B. C. D.3.下列说法正确的是()A. 袋中有形状、大小、质地完全一样的5个红球和1个白球,从中随机抽出一个球,一定是红球B. 天气预报“明天降水概率10%”,是指明天有10%的时间会下雨C. 某地发行一种福利彩票,中奖率是千分之一,那么,买这种彩票1000张,一定会中奖D. 连续掷一枚均匀硬币,若5次都是正面朝上,则第六次仍然可能正面朝上4.已知袋中有若干个球,其中只有2个红球,它们除颜色外其它都相同.若随机从中摸出一个,摸到红球的概率是,则袋中球的总个数是()A. 2B. 4C. 6D. 85.在一个不透明的袋子中装有4个红球和3个黑球,它们除颜色外其他均相同,从中任意摸出一个球,则摸出黑球的概率是()A. B. C. D.6.在英文单词“parallcl“(平行)中任意选择一个字母是“a“的概率为()A. B. C. D.7.下列事件中,是必然事件的是()A. 购买一张彩票,中奖B. 通常温度降到0℃以下,纯净的水结冰C. 明天一定是晴天D. 经过有交通信号灯的路口,遇到红灯8.在一个不透明的盒子中装有8个白球,若干个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为,则黄球的个数为()A. 2B. 4C. 12D. 169.甲、乙、丙三人站成一排拍照,则甲站在中间的概率是()A. B. C. D.10.一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4随机摸出一个小球,不放回,再随机摸出一个小球,两次摸出的小球标号的积小于4的概率是()A. B. C. D.二、填空题11.在一个不透明的袋子中装有除颜色外其他均相同的3个红球和2个白球,从中任意摸出一个球,则摸出白球的概率是______.12.在一个不透明的盒子中,有五个完全相同的小球,把它们分别标号为1,2,3,4,5,随机摸出一个小球,摸出的小球标号为偶数的概率是______ .13.甲盒装有3个乒乓球,分别标号为:1,2,3;乙盒装有2个乒乓球,分别标号为1,2现分别从每个盒中随机地取出1个球,则取出的两球标号之和为4的概率是______.14.一个口袋中装有10个红球和若干个黄球.在不允许将球倒出来数的前提下,为估计口袋中黄球的个数,小明采用了如下的方法:每次先从口袋中摸出10个球,求出其中红球数与10的比值,再把球放回口袋中摇匀.不断重复上述过程20次,得到红球数与10的比值的平均数为0.4.根据上述数据,估计口袋中大约有______个黄球.15.发芽频率那么这种油菜籽发概率是______ (精确到0.01).三、解答题16.在一个不透明的口袋里装有白、红、黑三种颜色的小球,其中白球2只,红球1只,黑球1只,它们除了颜色之外没有其它区别,从袋中随机地摸出1只球,记录下颜色后放回搅匀,再摸出第二只球并记录颜色,求两次都摸出白球的概率.17.从甲地到乙地有A1、A2两条路线,从乙地到丙地有B1、B2、B3三条路线,从丙地到丁地有C1、C2两条路线.一个人任意选了一条从甲地到丁地的路线,求他恰好选到B2路线的概率是多少?18.甲、乙两队进行打乒乓球团体赛,比赛规则规定:两队之间进行3局比赛,3局比赛必须全部打完,只要赢满2局的队为获胜队,假如甲、乙两队之间每局比赛输赢的机会相同,且甲队已经赢得了第1局比赛,那么甲队最终获胜的概率是多少?(请用“画树状图”或“列表”等方法写出分析过程)19.小明、小林是三河中学九年级的同班同学,在四月份举行的自主招生考试中,他俩都被同一所高中提前录取,并将被编入A、B、C三个班,他俩希望能再次成为同班同学.(1)请你用画树状图法或列举法,列出所有可能的结果;(2)求两人再次成为同班同学的概率.答案和解析【答案】1. D2. C3. D4. D5. B6. C7. B8. B9. B10. C11. 12. 13. 14. 1515. 0.954种情况,∴两次都摸出白球的概率是:=.17. 解:用树状图分析如下:所以P(选到B2路线)==.答:他恰好选到B2路线的概率是.18. 解:根据题意画出树状图如下:一共有4种情况,确保两局胜的有3种,所以,P=.19. 解:(1)画树状图如下:由树形图可知所以可能的结果为AA,AB,AC,BA,BB,BC,CA,CB,CC;(2)由(1)可知两人再次成为同班同学的概率==.【解析】1. 解:∵初三(1)班有2名,初三(2)班有4名,初三(3)班有6名,∴共有12名同学,∵初三(1)班有2名,∴P(初三一班)==;故选D.用初三一班的学生数除以所有报名学生数的和即可求得答案.此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.2. 解:∵共有5个球,其中红球有3个,∴P(摸到红球)=,故选C.用红球的个数除以所有球的个数即可求得抽到红球的概率.此题主要考查概率的意义及求法.用到的知识点为:概率=所求情况数与总情况数之比.3. 解:A、袋中有形状、大小、质地完全一样的5个红球和1个白球,从中随机抽出一个球,一定是红球的概率是,故本选项错误;B、天气预报“明天降水概率10%”,是指明天有10%的概率会下雨,故本选项错误;C、某地发行一种福利彩票,中奖率是千分之一,那么,买这种彩票1000张,可能会中奖,故本选项错误;D、连续掷一枚均匀硬币,若5次都是正面朝上,则第六次仍然可能正面朝上,故本选项正确.故选D.根据概率的意义对各选项进行逐一分析即可.本题考查的是概率的意义,熟知一般地,在大量重复实验中,如果事件A发生的频率mn会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率是解答此题的关键.4. 解:袋中球的总个数是:2÷=8(个).故选:D.根据概率公式结合取出红球的概率即可求出袋中球的总个数.本题考查了概率公式,根据概率公式算出球的总个数是解题的关键.5. 解:∵在一个不透明的袋子中装有除颜色外其他均相同的4个红球和3个黑球,∴从中任意摸出一个球,则摸出黑球的概率是.故选B.根据随机事件概率大小的求法,找准两点:①符合条件的情况数目;②全部情况的总数.二者的比值就是其发生的概率的大小.本题考查概率的求法与运用,一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.6. 解:单词中共有8个字母,a有两个,所以在英文单词“parallcl“(平行)中任意选择一个字母是“a“的概率==,故选C.可先找出单词中字母的个数,再找出a的个数,用a的个数除以总个数即可得出本题的答案.本题考查的是概率的公式,要求准确找出字母的总数和含n的个数.用到的知识点为:概率=所求情况数与总情况数之比.7. 解:(A)购买一张彩票中奖是随机事件;(B)根据物理学可知0℃以下,纯净的水结冰是必然事件;(C)明天是晴天是随机事件;(D)经过路口遇到红灯是随机事件;故选(B)根据随机事件与必然事件的定义即可求出答案.本题考查随机事件的定义,解题的关键是正确理解随机事件与必然事件,本题属于基础题型.8. 解:设黄球的个数为x个,根据题意得:=,解得:x=4.∴黄球的个数为4.故选:B.首先设黄球的个数为x个,然后根据概率公式列方程即可求得答案.此题考查了概率公式的应用.解此题的关键是设黄球的个数为x个,利用方程思想求解.9. 解:画树状图为:共有6种等可能的结果数,其中甲站在中间的结果数为2,所以甲站在中间的概率==.故选:B.画树状图展示所有6种等可能的结果数,再找出甲站在中间的结果数,然后根据概率公式求解.本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.10. 解:画树状图得:∵共有12种等可能的结果,两次摸出的小球标号的积小于4的有4种情况,∴两次摸出的小球标号的积小于4的概率是:=.故选C.首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的小球标号的积小于4的情况,再利用概率公式求解即可求得答案.此题考查了列表法或树状图法求概率.注意此题是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.11. 解:∵在一个不透明的袋子中装有除颜色外其他均相同的3个红球和2个白球,∴从中任意摸出一个球,则摸出白球的概率是.故答案为.根据随机事件概率大小的求法,找准两点:①符合条件的情况数目;②全部情况的总数.二者的比值就是其发生的概率的大小.本题考查概率的求法与运用,一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.12. 解:∵5个小球中,标号为偶数的有2、4这2个,∴摸出的小球标号为偶数的概率是,故答案为:确定出偶数有2个,然后根据概率公式列式计算即可得解.本题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.13. 解:列树状图得:共有6种等可能的情况,取出的两球标号之和为4的情况有2种,所以概率是.列举出所有情况,看取出的两球标号之和为4的情况占总情况的多少即可.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.14. 解:∵小明通过多次摸球实验后发现其中摸到红色球的频率稳定在0.4,设黄球有x个,∴0.4(x+10)=10,解得x=15.答:口袋中黄色球的个数很可能是15个.在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,先求得红球的频率,再乘以总球数求解.解答此题的关键是要估计出口袋中红色球所占的比例,得到相应的等量关系.15. 解:观格得到这种油菜籽发芽的频率稳095附近,则种油菜发芽概率是0.95,故答为:.95.观察表格得到这油菜发的频率稳定在.95,即可估计出这种油菜的概率.题查利用率估率,从表格中的数确定出这种油菜籽芽的频率是解本题的关键.16. 首先根据题意列出表格,然后表格求得所有等可能的结果与两次都摸出白球的情况,再利用概率公式求解即可求得答案.此题考查的是用列表法或树状图法求概率.注意画树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意此题属于放回实验.17. 用树状图列举出所有情况,看所求的情况占总情况的多少即可.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=,注意本题是放回实验.18. 根据甲队第1局胜画出第2局和第3局的树状图,然后根据概率公式列式计算即可得解.本题考查了用树状图列举随机事件出现的所有情况,并求出某些事件的概率,但应注意在求概率时各种情况出现的可能性务必相同.用到的知识点为:概率=所求情况数与总情况数之比.19. (1)画树状图法或列举法,即可得到所有可能的结果;(2)由(1)可知两人再次成为同班同学的概率.本题涉及列表法和树状图法以及相关概率知识,用到的知识点为:概率=所求情况数与总情况数之比.。

北师大版七年级下册数学第六章 概率初步含答案(有一套)

北师大版七年级下册数学第六章 概率初步含答案(有一套)

北师大版七年级下册数学第六章概率初步含答案一、单选题(共15题,共计45分)1、在一只不透明的口袋中放入红球5个,黑球1个,黄球n个,这些球除颜色不同外,其它无任何差别.搅匀后随机从中摸出一个恰好是黄球的概率为,则放入口袋中的黄球总数n是()A.3B.4C.5D.62、分别写有数字0,﹣1,﹣2,1,3的五张卡片,除数字不同外其他均相同,从中任抽一张,那么抽到负数的概率是()A. B. C. D.3、如图所示,电路图上有A,B,C三个开关和一个小灯泡,闭合开关C或者同时闭合开关A、B,都可使小灯泡发光.现在任意闭合其中一个开关,则小灯泡发光的概率等于()A. B. C. D.4、一个密码箱的密码,每个数位上的数都是从0到9的自然数.若要使不知道密码的人一次就拨对密码的概率小于,则密码的位数至少是( )A.3位B.4位C.5位D.6位5、甲、乙、丙、丁四名选手参加100米决赛,赛场只设1、2、3、4四个跑道,选手以随机抽签的方式决定各自的跑道,若甲首先抽签,则甲抽到1号跑道的概率是()A.1B.C.D.6、一个不透明的袋子里装有6个只有颜色可以不同的球,其中4个红球,2个白球.从袋中任意摸出1个球,则摸出的球是红球的概率为()A. B. C. D.7、同时抛掷两枚硬币,正面都朝上的概率为()A. B. C. D.8、从1~9这九个自然数中任取一个,是2的倍数的概率是( )A. B. C. D.9、甲盒子中有编号为1、2、3的3个白色乒乓球,乙盒子中有编号为4、5、6的3个黄色乒乓球.现分别从每个盒子中随机地取出1个乒乓球,则取出乒乓球的编号之和大于6的概率为().A. B. C. D.10、在一个不透明的布袋中装有3个白球和5个红球,它们除了颜色不同外,其余均相同.从中随机摸出一个球,摸到红球的概率是()A. B. C. D.11、从长为10cm、7cm、5cm、3cm的四条线段中任选三条能够组成三角形的概率是()A. B. C. D.12、从连续正整数10-99中选出一个数,其中每个数被选出的机会相等,求选出的数其十位数字与个位数字的和为9的概率是()A. B. C. D.13、从-2、-1、0、1、2 、3这六个数中,随机抽取一个数,记作a,关于x的方程的解是正数,那么这 6 个数中所有满足条件的 a 的值有()个.A.1B.2C.3D.414、有四张背面一模一样的卡片,卡片正面分别写着一个函数关系式,分别是,将卡片顺序打乱后,随意从中抽取一张,取出的卡片上的函数是随的增大而增大的概率是()A. B. C. D.115、小亮、小莹、大刚三位同学随机地站成一排合影留念,小亮恰好站在中间的概率是()A. B. C. D.二、填空题(共10题,共计30分)16、如图是一个游戏转盘,自由转动转盘,当转盘停止转动后,指针落在数字“Ⅱ”所示区域内的概率是________.17、以下事件:①明天要下雨;②打开电视机,正在直播足球比赛;③拋掷一枚正方体骰子,掷得的点数不会小于1;④花2元钱买彩票,中500万元大奖;⑤守株待兔;⑥生老病死;⑦长生不老.其中是必然事件的有________,是不可能事件的有________(填序号)18、在一个不透明的袋子中装有除颜色外其他均相同的4个红球,3个白球,2个绿球,则摸出绿球的概率是________.19、在数学课外活动中,小明同学在相同的条件下做了某种作物种子发芽的实验,结果如下表所示:种子数(粒) 100 200 300 400发芽种子数(粒) 94 187 282 376由此估计这种作物种子发芽率约为________(精确到0.01).20、判断下面的说法:如果一件事发生的可能性为百万分之一,那么它就不可能发生________(填“正确”或“错误”)21、已知四个点的坐标分别是(﹣1,1),(2,2),(,),(﹣5,﹣),从中随机选取一个点,在反比例函数y= 图象上的概率是________.22、我们规定把同一副扑g牌中的红桃,黑桃,梅花三张牌背面朝上放在桌子上,将扑g牌洗匀后从中随机抽取一张,记下扑g牌的花色后放回,洗匀后再随机抽取一张,则两次抽取的扑g牌为同一张的概率为________.23、在数字1,2,3中任选两个组成一个两位数,则这个两位数能被3整除的概率是________。

北师大版七年级数学下册第六章 概率初步 单元测试卷(含答案)

北师大版七年级数学下册第六章 概率初步 单元测试卷(含答案)

北师大版七年级数学下册第六章 概率初步 单元测试卷(含答案)一、选择题(30分)1.下列说法中,正确的是( )A .不可能事件发生的概率为0B .随机事件发生的概率为12C .概率很小的事件不可能发生D .投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50 2.下列事件中,属于必然事件的是( )A .随意抛掷一枚骰子,掷得偶数点B .从一副扑克牌中抽出一张,抽得红桃牌C .任意选择电视的某一频道,正在播放动画片D .在同一年出生的367名学生中,至少有两个人同月同日生3.在相同条件下重复试验,若事件A 发生的概率是7100,则下列说法中正确的是( )A .事件A 发生的频率是7100 B .反复大量做这种试验,事件A 只发生了7次C .做100次这种试验,事件A 一定发生了7次D .做100次这种试验,事件A 可能发生了7次4.(2019·东营)从1,2,3,4中任取两个不同的数,分别记为a 和b ,则a 2+b 2>19的概率是( ) A .12 B .512 C .712 D .135.班主任王老师将6份奖品分别放在6个完全相同的不透明礼盒中,准备将它们奖给小英等6位获“爱集体标兵”称号的同学.这些奖品中3份是学习文具,2份是科普读物,1份是科技馆通票.小英同学从中随机取一份奖品,恰好取到科普读物的概率是( )A .16B .13C .12D .236.小军旅行箱的密码是一个六位数,由于他忘记了密码的末位数字,则小军能一次打开旅行箱的概率是( )A .110B .19C .16D .157.如图,一个可以自由转动的转盘被等分成6个扇形区域,并涂上了相应的颜色,转动转盘,转盘停止后,指针指向黄色区域的概率是( )A .16B .13C .12D .238.如图,在空白网格内将某一个小正方形涂成阴影部分,且所涂的小正方形与原阴影图形的小正方形至少有一边重合.小红按要求涂了一个正方形,所得到的阴影图形恰好是轴对称图形的概率为( )A .15B .4115C .49D .139.下列说法正确的是( )A .“明天降雨的概率是60%”表示明天有60%的时间都在降雨B .“抛一枚硬币正面朝上的概率为12”表示每抛两次就有一次正面朝上C .“彩票中奖的概率为1%”表示买100张彩票肯定会中奖D .“抛一枚正方体骰子,朝上的点数为2的概率为16”表示随着抛掷次数的增加,“抛出朝上的点数为2”这一事件发生的频率稳定在16附近10.某学习小组在做“用频率估计概率”的试验时,统计了某一结果出现的频率,绘制了如下的表格,则符合这一结果的试验最有可能的是( )试验 次数 100 200 300 500 800 1000 2000 频率0.3650.3280.3300.3340.3360.3320.333B .在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”C .抛一个质地均匀的正六面体骰子,向上的面点数是5D .抛一枚硬币,出现反面的概率 二、填空题(16分)11.抛掷一枚质地均匀的硬币,落地后正面朝上的概率是______.12.从分别标有1,2,3,4的四张卡片中任意抽取1张,抽到奇数的概率是______. 13.一个不透明的盒子中装有10个黑球和若干个白球,它们除了颜色不同外,其余均相同,从盒子中随机摸出一球并记下其颜色,再把它放回盒子中摇匀,重复上述过程,共试验400次,其中有240次摸到白球,由此估计盒子中的白球有________个.14.若将分别写有“生活”“城市”的2张卡片,随机放入“ 让 更美好”中的两个 内(每个 只放1张卡片),则其中的文字恰好组成“城市让生活更美好”的概率是________.15.下列事件:①随意翻到一本书的某页,这页的页码是奇数;②测得某天的最高气温是100 ℃;③掷一次骰子,朝上一面的数字是2;④度量四边形的内角和,结果是360°.其中是随机事件的是________.(填序号)16.如图,转盘中8个扇形的面积都相等.任意转动转盘1次,当转盘停止转动时,指针指向的数大于6的概率为________.17.如图,转盘中6个扇形的面积相等,任意转动转盘1次,当转盘停止转动时,指针指向的数小于5的概率为________.18.如图是由大小完全相同的正六边形组成的图形,小军准备用红色、黄色、蓝色随机给每个正六边形分别涂上其中的一种颜色,则上方的正六边形涂红色的概率是________.三、简答题(54分)19.(9分)一个口袋中有10个红球和若干个白球,请通过以下试验估计口袋中白球的个数:从口袋中随机摸出一球,记下其颜色,再把它放回口袋中.不断重复上述过程,试验中总共摸了200次,其中有50次摸到红球.20.(9分)在一个不透明的袋子中装有仅颜色不同的10个小球,其中红球4个,黑球6个.(1)先从袋子中取出m(m>1)个红球,再从袋子中随机摸出1个球,将“摸出黑球”记为事件A,请完成下列表格:事件A必然事件随机事件m的值(2)于45,求m的值.21.(12分)(2018·苏州期末)暑假将至,某商场为了吸引顾客,设计了可以自由转动的转盘(如图所示,转盘被均匀地分为20份),并规定:顾客每买够200元的商品,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么顾客就可以分别获得200元、100元、50元的购物券,凭购物券可以在该商场继续购物.若某顾客购物300元.(1)求他此时获得购物券的概率是多少;(2)他获得哪种购物券的概率最大?请说明理由.22.(12分)有一个质地均匀的小正方体,正方体的六个面上分别标有1,2,3,4,5,6这六个数字.现在有甲、乙两位同学做游戏,游戏规则是:任意掷出正方体后,如果朝上的数字是6,甲是胜利者;如果朝上的数字不是6,乙是胜利者.你认为这个游戏规则对甲、乙双方公平吗?为什么?如果不公平,你打算怎样修改才能使游戏规则对甲、乙双方公平?23.(12分)一个小球分别在如图①②所示的地板上自由地滚动,并随机地停留在某块方砖上,那么小球停留在白色区域的概率分别是多少?参考答案1~10:ADDDB AACDB 11.1/2 12. 1/2 13. 15 14. 1/2 15. ①③ 16. 1/4 17. 2/3 18. 1/3 19.解:试验中总共摸了200次,其中50次摸到红球,则摸出一球是红球的概率估计值是50200=14,因为红球有10个,则袋中共有球10÷14=40(个),故口袋中白球的个数为40-10=30(个).20. (1)4 2,3(2)解:根据题意得6+m 10=45,解得m =2,所以m 的值为2.21.(1)解:因为转盘被均匀地分为20份,转动转盘获得购物券的有10种情况,所以他此时获得购物券的概率是1020=12.(2)解:他获得50元购物券的概率最大.理由:因为P (获得200元购物券)=120,P (获得100元购物券)=320,P (获得50元购物券)=620=310,所以他获得50元购物券的概率最大.22.解:这个游戏不公平.因为正方体的六个面上分别标有1,2,3,4,5,6这六个数字,其中数字6只有1个,也就是说甲胜利的概率是16;不是6的数字有5个,也就是说乙胜利的概率是56,双方胜利的机会不是均等的,所以说这个游戏不公平.可以把游戏规则改为:任意掷出正方体后,如果朝上的数字是奇数(1,3,5),甲是胜利者;如果朝上的数字是偶数(2,4,6),乙是胜利者,按这样的游戏规则对甲、乙双方是公平的.(答案不唯一) 23.解:图①:P =34;图②:P =23.。

2023年北师大版七年级数学下册第六章《概率初步》试题卷附答案解析

2023年北师大版七年级数学下册第六章《概率初步》试题卷附答案解析

2023年北师大版七年级数学下册第六章《概率初步》试题卷一、单选题1.下列事件中,是确定事件的是()A.掷一枚硬币,正面朝上B.三角形的内角和是180C.明天会下雨D.明天的数学测验,小明会得满分2.下列语句所描述的事件是随机事件的是()A.两点决定一直线B.清明时节雨纷纷C.没有水分,种子发芽D.太阳从东方升起3.小明过马路时,恰好是红灯.这个事件是()A.必然事件B.随机事件C.不可能事件D.不确定事件4.在“石头、剪刀、布”游戏中,对方出“剪刀”.这个事件是()A.必然事件B.随机事件C.不可能事件D.确定性事件5.一个不透明的袋子里装有3个红球,2个黄球,1个白球,这些球除颜色外无其他差别,从袋子中随机取出一个球,取出球的颜色可能性最大的是()A.红色B.黄色C.白色D.可能性一样大6.一个不透明的袋子中只装有8个除颜色外完全相同的小球,其中4个红球,3个黄球,1个黑球.从中随机摸出一个小球,摸到红球的概率是()A.12B.14C.18D.387.不透明的袋子中装有3个红球和2个白球,这些球除了颜色外都相同,从袋子中随机地摸出1个球,则这个球都是红球..的概率是()A.15B.35C.23D.138.有20瓶饮料,其中有2瓶已过保质期,小明从20瓶饮料中任取1瓶,那么他取到没有过保质期的饮料的概率是()A.910 B.110 C.118 D.1209.某小组在“用频率估计概率”的实验中,统计了某种结果出现的频率,绘制了如图所示的折线图,那么符合这一结果的实验最有可能的是()A.袋子中有1个红球和2个黄球,它们只有颜色上的区别,从中随机地取出一个球是黄球B.掷一枚质地均匀的硬币,落地时结果是“正面向上”C.掷一个质地均匀的正六面体骰子,落地时面朝上的点数是2D.从一副扑克牌中随机抽取一张,抽到的牌是梅花10.一个布袋里装有2个红球,3个白球和a个黄球,这些球除颜色外其余都相同,若从布袋里任意摸出1个球是红球的概率为14,则a等于()A.1B.2C.3D.4二、填空题11.一只不透明的袋子中有1个白球,100个黄球,这些球除颜色外都相同,将球搅匀,从中任意摸出一个球是白球;这一事件是___________事件.(填“必然”、“随机”、“不可能”)12.一个不透明的布袋里装有6个只有颜色不同的球,其中有1个黑球、2个白球、3个红球,从布袋里随机摸出1个球,摸出白球的概率为_________.13.现分别有长2cm和5cm的两条线段,再从下列长度:1cm、2cm、3cm、4cm、5cm、6cm、7cm、8cm的线段中随机选取一条组成一个三角形,那么能组成三角形的概率是_____.14.在一个不透明的箱子中有黄球和红球共6个,它们除颜色外都相同,若任意摸出一个球,摸到红球的概率为23,则这个箱子中红球的个数为________个.15.某公司组织内部抽奖活动,共准备了100张奖券,设一等奖10个,二等奖20个,三等奖30个.若每张奖券获奖的可能性相同,则随机抽一张奖券中一等奖的概率为______.16.如图,一块飞镖游戏板由大小相等的小正方形格子构成.向游戏板随机投掷一枚飞镖(每次飞镖均落在纸板上),则击中阴影区域的概率是___________.17.一个不透明的口袋中装有红色、黄色、蓝色玻璃球共200个,这些球除颜色外都相同.小明通过大量随机摸球试验后,发现摸到红球的频率稳定在30%左右,则可估计红球的个数约为_______.18.不透明的布袋中装有除颜色外完全相同的10个球,其中红色球有m个,如果从布袋中任意摸出一个球恰好为红色球的概率是15,那么m ________.19.不透明袋子中装有7个球,其中有4个红球,3个白球,这些球除颜色外无其他差别,从袋子中随机取出1个球,则它是红球的概率是_____.20.因疫情原因,杭州亚运会定于2023年9月23日至10月8日举行,名称仍为杭州2022年第19届亚运会.莲莲从网上购买杭州2022年第19届亚运会吉祥物(如图)一件,则物流配送的恰好是“莲莲”的概率为________.三、解答题21.在一个不透明的盒子里装有除颜色外完全相同的红、白、黑三种颜色的球.其中红球3个,白球5个,黑球若干个,若从中任意摸出一个白球的概率是1 3.(1)求任意摸出一个球是黑球的概率;(2)能否通过只改变盒子中白球的数量,使得任意摸出一个球是红球的概率1 4若能,请写出如何调整白球数量;若不能,请说明理由.21.如图,转盘被分成六个相同的扇形,并在上面依次写上数字:2,3,4,5,6,7.指针的位置固定,转动转盘后任其自由停止.(1)当转盘停止时,指针指向奇数区域的概率是多少?(2)当转盘停止时,指针指向的数小于或等于5的概率是多少?23.“十一”黄金周期间,某购物广场举办迎国庆有奖销售活动,每购物满100元,就会有一次转动大转盘的机会,请你根据大转盘(如图)来计算:(1)享受七折优惠的概率;(2)得20元的概率;(3)得10元的概率;(4)中奖得钱的概率是多少?24.如图,转盘被分成六个相同的扇形,并在上面依次写上数字:2,3,4,5,6,7.指针的位置固定,转动转盘后任其自由停止.(1)当转盘停止时,指针指向奇数区域的概率是多少?(2)当转盘停止时,指针指向的数小于或等于5的概率是多少?25.如图,有一个可以自由转动的转盘,被均匀分成5等份,分别标上1、2、3、4、5五个数字,转动转盘一次,当转盘停止后,指针指向的数字即为转出的数字.(1)转出的数字是3的概率是多少?(2)转出的数字小于4的概率是多少?(3)转出的数字是偶数的概率是多少?(4)甲乙两人玩一个游戏,其规则如下:任意转动转盘一次,如果转出的数字是偶数,则甲胜;如果转出的数字是奇数,则乙胜.你认为这样的游戏规则对甲、乙两人是否公平?为什么?26如图,转盘被分成六个相同的扇形,并在上面依次写上数字:2,3,4,5,6,7.指针的位置固定,转动转盘后任其自由停止.(1)当转盘停止时,指针指向奇数区域的概率是多少?(2)当转盘停止时,指针指向的数小于或等于5的概率是多少?解答1.B2.B3.B4.B5.A6.A7.B8.A9.C10.C11.随机12.1313.3814.415.0.116.5917.6018.2194720.1321.在一个不透明的盒子里装有除颜色外完全相同的红、白、黑三种颜色的球.其中红球3个,白球5个,黑球若干个,若从中任意摸出一个白球的概率是1 3.(1)求任意摸出一个球是黑球的概率;(2)能否通过只改变盒子中白球的数量,使得任意摸出一个球是红球的概率1 4若能,请写出如何调整白球数量;若不能,请说明理由.(1)解:∵红球3个,白球5个,黑球若干个,从中任意摸出一个白球的概率是1 3,∴盒子中球的总数为:15153÷=(个),∴盒子中黑球的个数为:15357--=(个);∴任意摸出一个球是黑球的概率为:7 15;(2)解:∵任意摸出一个球是红球的概率为1 4∴盒子中球的总量为:13124÷=,∴可以将盒子中的白球拿出3个.14.如图,转盘被分成六个相同的扇形,并在上面依次写上数字:2,3,4,5,6,7.指针的位置固定,转动转盘后任其自由停止.(1)当转盘停止时,指针指向奇数区域的概率是多少?(2)当转盘停止时,指针指向的数小于或等于5的概率是多少?(1)解:当转盘停止转动时,指针指向数字区域2,3,4,5,6,7的机会是均等的,故共有6种均等的结果,其中指针指向奇数区域3,5,7有3种结果,所以指针指向奇数区域的概率是31 62 =;(2)解:当转盘停止转动时,指针指向数字区域2,3,4,5,6,7的机会是均等的,故共有6种均等的结果,其中指针指向的数小于或等于5区域2,3,4,5有4种结果,所以指针指向的数小于或等于5的概率是42 63 =.23.“十一”黄金周期间,某购物广场举办迎国庆有奖销售活动,每购物满100元,就会有一次转动大转盘的机会,请你根据大转盘(如图)来计算:(1)享受七折优惠的概率;(2)得20元的概率;(3)得10元的概率;(4)中奖得钱的概率是多少?解:(1)享受七折优惠的概率为802 3609=;(2)得20元的概率为901 3604=;(3)得10元的概率为1201 3603=;(4)中奖得钱的概率是906060736012++=.24.如图,转盘被分成六个相同的扇形,并在上面依次写上数字:2,3,4,5,6,7.指针的位置固定,转动转盘后任其自由停止.(1)当转盘停止时,指针指向奇数区域的概率是多少?(2)当转盘停止时,指针指向的数小于或等于5的概率是多少?(1)解:当转盘停止转动时,指针指向数字区域2,3,4,5,6,7的机会是均等的,故共有6种均等的结果,其中指针指向奇数区域3,5,7有3种结果,所以指针指向奇数区域的概率是3162=;(3)解:当转盘停止转动时,指针指向数字区域2,3,4,5,6,7的机会是均等的,故共有6种均等的结果,其中指针指向的数小于或等于5区域2,3,4,5有4种结果,所以指针指向的数小于或等于5的概率是4263=.25.如图,有一个可以自由转动的转盘,被均匀分成5等份,分别标上1、2、3、4、5五个数字,转动转盘一次,当转盘停止后,指针指向的数字即为转出的数字.(1)转出的数字是3的概率是多少?(2)转出的数字小于4的概率是多少?(3)转出的数字是偶数的概率是多少?(4)甲乙两人玩一个游戏,其规则如下:任意转动转盘一次,如果转出的数字是偶数,则甲胜;如果转出的数字是奇数,则乙胜.你认为这样的游戏规则对甲、乙两人是否公平?为什么?解:(1)转盘共分为5份,数字3占其中一份,故转出的数字是3的概率为15(2)共有5种等可能结果,转出的数字小于4的有1、2、3共3个,所以转出的数字小于4的概率为35(3)共有5种等可能结果,转出的数字是偶数的有2、4两个数字,所以转出的数字是偶数的概率为25(4)不公平,转出的数字是偶数的概率为5转出的数字是奇数的概率为35.2355<,所以这样的游戏规则对甲、乙两人不公平26.如图,转盘被分成六个相同的扇形,并在上面依次写上数字:2,3,4,5,6,7.指针的位置固定,转动转盘后任其自由停止.(1)当转盘停止时,指针指向奇数区域的概率是多少?(2)当转盘停止时,指针指向的数小于或等于5的概率是多少?(1)解:当转盘停止转动时,指针指向数字区域2,3,4,5,6,7的机会是均等的,故共有6种均等的结果,其中指针指向奇数区域3,5,7有3种结果,所以指针指向奇数区域的概率是31 62 =;(2)解:当转盘停止转动时,指针指向数字区域2,3,4,5,6,7的机会是均等的,故共有6种均等的结果,其中指针指向的数小于或等于5区域2,3,4,5有4种结果,所以指针指向的数小于或等于5的概率是42 63 =.。

七年级数学下册《第六章 概率初步》测试卷-附答案(北师大版)

七年级数学下册《第六章 概率初步》测试卷-附答案(北师大版)

七年级数学下册《第六章 概率初步》测试卷-附答案(北师大版)一、选择题(共10小题,每小题3分,共30分) 1. 下列事件中,是必然事件的是( ) A .小菊上学一定乘坐公共汽车B .某种彩票中奖率为415,买10 000张该种彩票一定会中奖C .一年中,大、小月份数刚好一样多D .将豆油滴入水中,豆油会浮在水面上2. 在一个布袋里装有白、红、黑三种颜色的小球,它们除颜色外没有任何区别,其中白球2个、红球6个、黑球4个.将布袋中的球搅匀,闭上眼睛随机从布袋中取出1个球,则取出黑球的概率是( ) A .12 B .14 C .13 D .163. 一个布袋中有10个球,其中6个红球、4个黑球,每个球除颜色不同外其余均相同.现在甲、乙进行摸球游戏,从中随机摸出一球,摸到红球,乙胜;摸到黑球,甲胜,则下列说法你认为正确的是( ) A .甲获胜的可能性大B .乙获胜的可能性大C .甲、乙获胜的可能性相等D .以上说法都不对4. 如图是一个可以自由转动的正六边形转盘,其中三个正三角形涂有阴影,转动转盘,当转盘停止时,指针落在有阴影的区域内的概率为a(若指针落在分界线上,则重转);如果投掷一枚质地均匀的硬币,正面向上的概率为b.关于a ,b 大小的判断正确的是( )A .a >bB .a =bC .a <bD .不能判断5. 有4张正面分别写有1、3、4、6的卡片,除数字外其他完全相同.将卡片的背面朝上并洗匀,从中抽取一张,抽到的数是奇数的概率为( ) A.14B.12C.34D .16. 某小组在“用频率估计概率”的试验中,统计了某种结果出现的频率,绘制了如图所示的折线图,那么符合这一结果的试验最有可能的是( )A .在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”B .掷一个质地均匀的正方体骰子,落地时面朝上的点数是6C .一次掷两枚质地均匀的硬币,出现两枚硬币都正面朝上D .用2,3,4三个数字随机排成一个三位数,排成的数是偶数7. 在下列四个转盘中,若让转盘自由转动一次,转盘停止后,指针落在阴影区域内的概率最大的转盘是( )8. 一个不透明的口袋中有红球和黑球若干个,这些球除颜色外都相同,每次摸出1个球,记下颜色后放回,进行大量的摸球试验后,发现摸到黑球的频率在0.4附近摆动,据此估计摸到红球的概率约为( ) A .0.4 B .0.5 C .0.6 D .0.79. 在边长为1的小正方形组成的网格中,有如图所示的A ,B 两点,在格点上任意放置点C ,恰好能使△ABC 的面积为1的概率为( )A.316B.38C.14D.51610. 在同样的条件下对某种小麦种子进行发芽试验,统计发芽种子数,获得如下频数分布表:试验种子数n(粒) 5 50 100 200 500 1000 2000 3000 发芽频数m 4 45 92 188 476 951 1900 2850 发芽频率mn0.800.900.920.940.9520.9510.950.95A .2700B .2800C .3000D .4000二.填空题(共8小题,每小题3分,共24分)11. “一只不透明的袋子共装有3个小球,它们的标号分别为1,2,3,从中摸出1个小球,标号为“4”,这个事件是_____________.(填“必然事件”、“不可能事件”或“随机事件”)12. 将“定理”的英文单词theorem中的7个字母分别写在7张相同的卡片上,字面朝下随意放在桌子上,任取一张,那么取到字母e的概率为______.13. 某足球运动员在同一条件下进行射门,结果如下表所示:射门次数n2050100200500800踢进球门频数m133558104255400踢进球门频率0.650.70.580.520.520.514. 如图,质地均匀的小立方体的一个面上标有数字1,两个面上标有数字2,三个面上标有数字3,抛掷这个小立方体一次,则向上一面的数字是________的可能性最大.15. 一个袋子中装有5个白球和3个红球,甲摸到白球胜,乙摸到红球胜,为使甲、乙两人获胜的可能性一样大,那么必须往袋中再放入________个________球(只能再放入同一颜色的球).16. 现有50张大小、质地及背面图案均相同的《西游记》人物卡片,正面朝下放置在桌面上,从中随机抽取一张并记下卡片正面所绘人物的名字后原样放回,洗匀后再抽.通过多次试验后,发现抽到绘有孙悟空这个人物卡片的频率约为0.3.估计这些卡片中绘有孙悟空这个人物的卡片约有________张.17. 小明正在玩飞镖游戏,如果小明将飞镖随意投中如图所示的正方形木框中,那么投中阴影部分的概率为________.18. 若正整数n使得在计算n+(n+1)+(n+2)的过程中,各数位均不产生进位现象,则称n为“本位数”.例如2和30是“本位数”,而5和91不是“本位数”.现从所有大于0且小于100的“本位数”中,任意抽取一个数,抽到偶数的概率为________ .三.解答题(共7小题,66分)19.(8分) 下列事件中,哪个是必然事件?哪个是不可能事件?哪个是随机事件?(1)打开电视机,正在播放新闻;(2)种瓜得瓜;(3)三角形三边之长为4 cm,5 cm,10 cm.20.(8分) 手机微信抢红包有多种玩法,其中一种为“拼手气红包”,用户设定好总金额以及红包个数后,可以随机生成不等金额的红包.现有一用户设定“拼手气红包”的红包个数为4,且随机被甲、乙、丙、丁四人抢到.(1)以下说法正确是__________. A .甲抢到的红包金额一定最多 B .乙抢到的红包金额一定最多 C .丙抢到的红包金额一定最多 D .丁不一定抢到金额最少的红包(2)若这四个红包的金额分别为35元、33元、20元、12元,则甲抢到红包的金额超过30元的概率是多少?21.(8分) 如图,在一个大的圆形区域内包含一个小的圆形区域,大圆的半径为2,小圆的半径为1.一只在天空自由飞翔的小鸟要落在它的上面,那么小鸟落在小圆区域外大圆区域内(阴影部分)的概率是多少?22.(8分) 在同样条件下对某种小麦种子进行发芽试验,统计发芽种子数,获得如下频数表.试验种子n(粒) 1 5 50 100 200 500 1 000 2 000 3 000 发芽频数m 1 4 45 92 188 476 951 1 900 2 850 发芽频率mn10.800.900.920.940.9520.951ab(1)(2)估计该小麦种子的发芽概率;(3)如果该小麦种子发芽后,只有87%的麦芽可以成活,现有100 kg 小麦种子,则有多少千克的小麦种子可以成活为秧苗?23.(10分) 将一副扑克牌中的13张红桃牌洗匀后正面向下放在桌子上,从中任意抽取1张,给出下列事件:(1)抽出的牌的点数是8; (2)抽出的牌的点数是0; (3)抽出的牌是“人像”; (4)抽出的牌的点数小于6; (5)抽出的牌是“红色的”.上述事件发生的可能性哪个最大?哪个最小?将这些事件的序号按发生的可能性从大到小的顺序排列.24.(10分) 经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转,由于该十字路口右拐弯处是通往新建经济开发区的,因此交管部门在汽车行驶高峰时段对车流量作了统计,发现汽车在该十字路口向右转的频率为25,向左转和直行的频率都为310.(1)假设平均每天通过路口的汽车为5000辆,求汽车在此左转、右转、直行的车辆是多少辆;(2)目前在此路口,汽车左转、右转、直行的绿灯的时间分别为30秒,在绿灯总时间不变的条件下,为了缓解交通拥挤,请你利用概率的知识对此路口三个方向的路灯亮的时间做出合理的调整.25.(14分) 综合与探究: 问题再现:(1)图①是一个可以自由转动的转盘,转动转盘,当转盘停止时,指针落在红色区域和白色区域的概率分别是多少? 类比设计:(2)请在图②中设计一个转盘:自由转动这个转盘,当它停止转动时,三等奖:指针落在红色区域的概率为38,二等奖:指针落在白色区域的概率为38,一等奖:指针落在黄色区域的概率为14.拓展运用:(3)某书城为了吸引顾客,设立了一个可以自由转动的转盘(如图,转盘被平均分成12份),并规定:顾客每购买100元的图书,就可获得一次转动转盘的机会,如果转盘停止后,指针正好对准红色、黄色、绿色区域(若指针恰好指在分割线上,则重转一次,直到指针指向某一扇形区域为止),那么顾客就可以分别获得50元、30元、20元的购书券,凭购书券可以在书城继续购书.若甲顾客购书130元,转动一次转盘,求他获得购书券的概率.参考答案1-5DCBBB 6-10BACDA 11. 不可能事件 12. 2713. 0.52 14. 3 15. 2;红 16. 15 17. 518 18.71119. 解:(2)是必然事件,(3)是不可能事件,(1)是随机事件.20.解:(1)D(2)一共有4种可能出现的结果,其中红包的金额超过30元的有2种,所以甲抢到红包的金额超过30元的概率是24=12.21. 解:小圆的面积为π,大圆的面积为4π,所以阴影部分的面积为3π.所以小鸟落在小圆区域外大圆区域内的概率为3π4π=34.22. 解:(1)a =1 900÷2 000=0.95,b =2 850÷3 000=0.95.(2)观察发现:随着大量重复试验,发芽频率逐渐稳定到常数0.95附近,所以该小麦种子的发芽概率约为0.95. (3)100×0.95×87%=82.65(kg),所以约有82.65千克的小麦种子可以成活为秧苗. 23. 解:(1)抽出的牌的点数是8;发生的概率为113(2)抽出的牌的点数是0;发生的概率为0 (3)抽出的牌是“人像”;发生的概率为313(4)抽出的牌的点数小于6;发生的概率是513(5)抽出的牌是“红色的”,发生的概率为100%.由此可知:事件(5)可能性最大,事件(2)可能性最小;发生的可能性从大到小的顺序为(5)(4)(3)(1)(2) 24. 解:(1)汽车在此左转的车辆数为5000×310=1500(辆),在此右转的车辆数为5000×25=2000(辆),在此直行的车辆数为5000×310=1500(辆).(2)根据频率估计概率的知识,得P(汽车向左转绿灯时间)=30×310=9秒,P(汽车向右转绿灯时间)=30×25=12秒,P(汽车直行绿灯时间)=30×310=9秒.25. 解:(1)P(红色)=120360=13;P(白色)=240360=23.(2)(答案不唯一)如图.(3)因为转盘被平均分成12份,共有12种等可能的情况,其中红色占1份,黄色占2份,绿色占3份,所以任意转动一次转盘获得购书券的概率是1+2+312=12.。

北师大版数学七年级下册数学第6章概率初步单元练习卷含解析

北师大版数学七年级下册数学第6章概率初步单元练习卷含解析

第6章概率初步一.选择题(共10小题)1.下列事件中,是必然事件的是()A.直角三角形的两个锐角互余B.买一张电影票,座位号是偶数号C.投掷一个骰子,正面朝上的点数是7D.打开“学习强国APP”,正在播放歌曲《我和我的祖国》2.下列说法正确的是()A.一颗质地均匀的骰子已连续抛掷了2000次,其中抛掷出5点的次数最少,则第2001次一定抛掷出5点B.抛掷一枚图钉,钉尖触地和钉尖朝上的概率不相等C.明天降雨的概率是80%,表示明天有80%的时间降雨D.某种彩票中奖的概率是1%,因此买100张该种彩票一定会中奖3.只有1和它本身两个因数且大于1的自然数叫做素数,我国数学家陈景润在有关素数的“哥德巴赫猜想”的研究中取得了世界领先的成果.从5,7,11这3个素数中随机抽取一个,则抽到的数是7的概率是()A.B.C.D.14.下列说法正确的是()A.可能性很大的事件在一次试验中一定发生B.可能性很大的事件在一次试验中不一定会发生C.必然事件在一次试验中有可能不会发生D.不可能事件在一次试验中也可能发生5.如图显示了用计算机模拟随机抛掷一枚硬币的某次实验的结果下面有三个推断:①当抛掷次数是100时,计算机记录“正面向上”的次数是47,所以“正面向上”的概率是0.47;②随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5;③若再次用计算机模拟此实验,则当抛掷次数为150时,“正面向上”的频率一定是0.45.其中合理的是()A.①B.②C.①②D.①③6.如图,在一个不透明的小瓶里装有两种只有颜色不同的果味VC,其中白色的有30颗,橘色的有10颗,小宇摇匀后倒出一颗,回答:倒出哪种颜色的可能性大、可能性大概是()A.白色,B.白色,C.橘色,D.橘色,7.七巧板是我国古代劳动人民的发明之一,被誉为“东方模板”,它是由五块等腰直角三角形、一块正方形和一块平行四边形共七块板组成的.如图是一个用七巧板拼成的正方形,如果在此正方形中随机取一点,那么此点取自黑色部分的概率为()A .B .C.D.8.某农科所在相相条件下做某作物种子发芽率的实验,结果如表所示:种子个数200 300 500 700 800 900 1000 发芽种子个数187 282 435 624 718 814 901发芽种子频率0.935 0.940 0.870 0.891 0.898 0.904 0.901下面有四个推断:①种子个数是700时,发芽种子的个数是624.所以种子发芽的概率是0.891;②随着参加实验的种子数量的增加,发芽种子的频率在0.9附近摆动,显示出一定的稳定性.可以估计种子发芽的概率约为0.9(精确到0.1);③实验的种子个数最多的那次实验得到的发芽种子的频率一定是种子发芽的概率;④若用频率估计种子发芽的概率约为0.9,则可以估计1000kg种子大约有100kg的种子不能发芽.其中合理的是()A.①②B.③④C.②③D.②④9.2018年是中国改革开放事业40周年,正在中国国家博物馆展出的《伟大的变革﹣﹣庆祝改革开放40周年大型展览》多角度、全景式集中展示中国改革开放40年的光辉历程、伟大成就和宝贵经验.某邮政局计划在庆祝改革开放40周年之际推出纪念封系列,且所有纪念封均采用形状、大小、质地都相同的卡片,背面分别印有“改革、开放、民族、复兴”的字样,正面完全相同.现将6张纪念封洗匀后正面向上放在桌子上,从中随机抽取一张,抽出的纪念封背面恰好印有“改革”字样的概率是()A.B.C.D.10.在一个不透明的布袋中装有若干个只有颜色不同的小球,如果袋中红球4个,黄球3个,其余的为绿球,从袋子中随机摸出一个球,“摸出黄球”的可能性为,则袋中绿球的个数是()A.12 B.5 C.4 D.2二.填空题(共6小题)11.抛掷一枚质地均匀的骰子(骰子六个面上分别标以1,2,3,4,5,6六个点数),则骰子面朝上的点数大于4的可能性大小是.12.某小组计划在本周的一个下午借用A、B、C三个艺术教室其中的一个进行元旦节目的彩排,他们去教学处查看了上一周A、B、C三个艺术教室每天下午的使用次数(一节课记为一次)情况,列出如下统计表:日期次数教室星期一星期二星期三星期四星期五A教室 4 1 1 2 0B教室 3 4 0 3 2C教室 1 2 1 4 3通过调查,本次彩排安排在星期的下午找到空教室的可能性最大.13.有6张质地、大小、背面完全相同的卡片,它们正面分别写着“我”“参”“与”“我”“快”“乐”这6个汉字,现将卡片正面朝下随机摆放在桌面上,从中随意抽出一张,则抽出的卡片正面写着“我”这个汉字的可能性是.14.一个不透明的摇奖箱内装有20张形状,大小,质地等完全相同的卡片,其中只有5张卡片标有中奖标志.在2020年新年联欢会的抽奖环节中,贝贝从这个摇奖箱内随机抽取一张卡片.则贝贝中奖的概率是.15.在一个不透明的口袋中装有5个除了标号外其余都完全相同的小球,把它们分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号小于4的概率为.16.桌子上有6杯同样型号的杯子,其中1杯白糖水,2杯矿泉水,3杯凉白开,从6个杯子中随机取出1杯,请你将下列事件发生的可能性从大到小排列:.(填序号即可)①取到凉白开②取到白糖水③取到矿泉水④没有取到矿泉水三.解答题(共3小题)17.小明选择一家酒店订春节团圆饭.他借助网络评价,选择了A、B、C三家酒店,对每家酒店随机选择1000条网络评价统计如下:五星四星三星及三星以下合计评价条数等级酒店A412 388 x1000B420 390 190 1000C405 375 220 1000 (1)求x值.(2)当客户给出评价不低于四星时,称客户获得良好用餐体验.①请你为小明从A、B、C中推荐一家酒店,使得能获得良好用餐体验可能性最大.写出你推荐的结果,并说明理由.②如果小明选择了你推荐的酒店,是否一定能够享受到良好用餐体验?18.某地质量监管部门对辖区内的甲、乙两家企业生产的某同类产品进行检查,分别随机抽取了50件产品并对某一项关键质量指标做检测,获得了它们的质量指标值s,并对样本数据(质量指标值s)进行了整理、描述和分析.下面给出了部分信息.a.该质量指标值对应的产品等级如下:质量指标值20≤s<25 25≤s<30 30≤s<35 35≤s<40 40≤s<45 等级次品二等品一等品二等品次品说明:等级是一等品,二等品为质量合格(其中等级是一等品为质量优秀);等级是次品为质量不合格.b.甲企业样本数据的频数分布统计表如下(不完整):c.乙企业样本数据的频数分布直方图如下:甲企业样本数据的频数分布表分组频数频率20≤s<25 2 0.0425≤s<30 m30≤s<35 32 n35≤s<40 0.1240≤s<45 0 0.00合计50 1.00d.两企业样本数据的平均数、中位数、众数、极差、方差如下:平均数中位数众数极差方差甲企业31.92 32.5 34 15 11.87乙企业31.92 31.5 31 20 15.34根据以上信息,回答下列问题:(1)m的值为,n的值为;(2)若从甲企业生产的产品中任取一件,估计该产品质量合格的概率为;若乙企业生产的某批产品共5万件,估计质量优秀的有万件;(3)根据图表数据,你认为企业生产的产品质量较好,理由为.(从某个角度说明推断的合理性)19.北京市第十五届人大常委会第十六次会议表决通过《关于修改<北京市生活垃圾管理条例>的决定》,规定将生活垃圾分为厨余垃圾、可回收物、有害垃圾、其它垃圾四大基本品类,修改后的条例将于2020年5月1日实施.某小区决定在2020年1月到3月期间在小区内设置四种垃圾分类厢:厨余垃圾、可回收物、有害垃圾、其它垃圾,分别记为A、B、C、D,进行垃圾分类试投放,以增强居民垃圾分类意识.(1)小明家按要求将自家的生活垃圾分成了四类,小明从分好类的垃圾中随机拿了一袋,并随机投入一个垃圾箱中,请用画树状图的方法求垃圾投放正确的概率;(2)为调查居民生活垃圾分类投放情况,现随机抽取了该小区四类垃圾箱中共1000千克生活垃圾,数据统计如下(单位:千克):A B C D厨余垃圾400 100 40 60可回收物25 140 20 15有害垃圾 5 20 60 15其它垃圾25 15 20 40 求“厨余垃圾”投放正确的概率.参考答案与试题解析一.选择题(共10小题)1.下列事件中,是必然事件的是()A.直角三角形的两个锐角互余B.买一张电影票,座位号是偶数号C.投掷一个骰子,正面朝上的点数是7D.打开“学习强国APP”,正在播放歌曲《我和我的祖国》【分析】必然事件就是一定发生的事件,依据定义即可判断.【解答】解:A、直角三角形的两个锐角互余是必然事件,符合题意;B、买一张电影票座位号是偶数号,是随机事件,不合题意;C、投掷一个骰子正面朝上的点数是7,是随机事件,不合题意;D、打开“学习强国APP”,正在播放歌曲《我和我的祖国》是随机事件,不合题意.故选:A.2.下列说法正确的是()A.一颗质地均匀的骰子已连续抛掷了2000次,其中抛掷出5点的次数最少,则第2001次一定抛掷出5点B.抛掷一枚图钉,钉尖触地和钉尖朝上的概率不相等C.明天降雨的概率是80%,表示明天有80%的时间降雨D.某种彩票中奖的概率是1%,因此买100张该种彩票一定会中奖【分析】事件发生的可能性越大,概率越接近与1,事件发生的可能性越小,概率越接近于0.依据概率的意义进行判断即可.【解答】解:A.一颗质地均匀的骰子已连续抛掷了2000次,其中抛掷出5点的次数最少,则第2001次不一定抛掷出5点,本选项错误;B.抛掷一枚图钉,钉尖触地和钉尖朝上的概率不相等,本选项正确;C.明天降雨的概率是80%,表示明天不一定有80%的时间降雨,本选项错误;D.某种彩票中奖的概率是1%,因此买100张该种彩票不一定会中奖,本选项错误;故选:B.3.只有1和它本身两个因数且大于1的自然数叫做素数,我国数学家陈景润在有关素数的“哥德巴赫猜想”的研究中取得了世界领先的成果.从5,7,11这3个素数中随机抽取一个,则抽到的数是7的概率是()A.B.C.D.1【分析】根据概率=所求情况数与总情况数之比解答即可.【解答】解:∵共3个素数,分别是5,7,11,∴抽到的数是7的概率是;故选:C.4.下列说法正确的是()A.可能性很大的事件在一次试验中一定发生B.可能性很大的事件在一次试验中不一定会发生C.必然事件在一次试验中有可能不会发生D.不可能事件在一次试验中也可能发生【分析】根据不可能事件、随机事件、必然事件的有关概念和题意分别对每一项进行判断即可.【解答】解:A、可能性很大的事件在一次试验中不一定会发生,故本选项错误;B、可能性很大的事件在一次试验中不一定会发生,正确;C、必然事件在一次实验中一定会发生,故本选项错误;D、不可能事件在一次实验中不可能发生,故本选项错误;故选:B.5.如图显示了用计算机模拟随机抛掷一枚硬币的某次实验的结果下面有三个推断:①当抛掷次数是100时,计算机记录“正面向上”的次数是47,所以“正面向上”的概率是0.47;②随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5;③若再次用计算机模拟此实验,则当抛掷次数为150时,“正面向上”的频率一定是0.45.其中合理的是()A.①B.②C.①②D.①③【分析】随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5,据此进行判断即可.【解答】解:①当抛掷次数是100时,计算机记录“正面向上”的次数是47,“正面向上”的概率不一定是0.47,故错误;②随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5,故正确;③若再次用计算机模拟此实验,则当抛掷次数为150时,“正面向上”的频率不一定是0.45,故错误.故选:B.6.如图,在一个不透明的小瓶里装有两种只有颜色不同的果味VC,其中白色的有30颗,橘色的有10颗,小宇摇匀后倒出一颗,回答:倒出哪种颜色的可能性大、可能性大概是()A.白色,B.白色,C.橘色,D.橘色,【分析】利用概率公式求得概率后即可解得本题.【解答】解:∵白色的有30颗,橘色的有10颗,∴摇匀后倒出一颗,是白色的可能性为,橘色的可能性为,故选:B.7.七巧板是我国古代劳动人民的发明之一,被誉为“东方模板”,它是由五块等腰直角三角形、一块正方形和一块平行四边形共七块板组成的.如图是一个用七巧板拼成的正方形,如果在此正方形中随机取一点,那么此点取自黑色部分的概率为()A.B.C.D.【分析】首先设设正方形的面积,再表示出阴影部分面积,然后可得概率.【解答】解:设“东方模板”的面积为4,则阴影部分三角形面积为1,平行四边形面积为,则点取自黑色部分的概率为:=,故选:C.8.某农科所在相相条件下做某作物种子发芽率的实验,结果如表所示:种子个数200 300 500 700 800 900 1000 发芽种子187 282 435 624 718 814 901 个数0.935 0.940 0.870 0.891 0.898 0.904 0.901发芽种子频率下面有四个推断:①种子个数是700时,发芽种子的个数是624.所以种子发芽的概率是0.891;②随着参加实验的种子数量的增加,发芽种子的频率在0.9附近摆动,显示出一定的稳定性.可以估计种子发芽的概率约为0.9(精确到0.1);③实验的种子个数最多的那次实验得到的发芽种子的频率一定是种子发芽的概率;④若用频率估计种子发芽的概率约为0.9,则可以估计1000kg种子大约有100kg的种子不能发芽.其中合理的是()A.①②B.③④C.②③D.②④【分析】根据某农科所在相同条件下做某作物种子发芽率的试验表,可得大量重复试验发芽率逐渐稳定在0.9左右,于是得到种子发芽的概率约为0.9,据此求出1000kg种子中大约有100kg种子是不能发芽的即可.【解答】解:①种子个数是700时,发芽种子的个数是624.所以种子发芽的概率大约是0.891;故错误;②随着参加实验的种子数量的增加,发芽种子的频率在0.9附近摆动,显示出一定的稳定性.可以估计种子发芽的概率约为0.9(精确到0.1);故正确;③实验的种子个数最多的那次实验得到的发芽种子的频率不一定是种子发芽的概率;④若用频率估计种子发芽的概率约为0.9,则可以估计1000kg种子大约有100kg的种子不能发芽,故正确;其中合理的是②④,故选:D.9.2018年是中国改革开放事业40周年,正在中国国家博物馆展出的《伟大的变革﹣﹣庆祝改革开放40周年大型展览》多角度、全景式集中展示中国改革开放40年的光辉历程、伟大成就和宝贵经验.某邮政局计划在庆祝改革开放40周年之际推出纪念封系列,且所有纪念封均采用形状、大小、质地都相同的卡片,背面分别印有“改革、开放、民族、复兴”的字样,正面完全相同.现将6张纪念封洗匀后正面向上放在桌子上,从中随机抽取一张,抽出的纪念封背面恰好印有“改革”字样的概率是()A.B.C.D.【分析】分别求出背面印有“改革”字样的卡片数和总的卡片数,再根据概率公式计算即可.【解答】解:∵背面印有“改革”字样的卡片有2张,共有6张卡片,∴从中随机抽取一张,抽出的纪念封背面恰好印有“改革”字样的概率是=.故选:A.10.在一个不透明的布袋中装有若干个只有颜色不同的小球,如果袋中红球4个,黄球3个,其余的为绿球,从袋子中随机摸出一个球,“摸出黄球”的可能性为,则袋中绿球的个数是()A.12 B.5 C.4 D.2【分析】设袋中绿球的个数有x个,根据概率公式列出算式,求出x的值即可得出答案.【解答】解:设袋中绿球的个数有x个,根据题意得:=,解得:x=5,答:袋中绿球的个数有5个;故选:B.二.填空题(共6小题)11.抛掷一枚质地均匀的骰子(骰子六个面上分别标以1,2,3,4,5,6六个点数),则骰子面朝上的点数大于4的可能性大小是.【分析】根据掷得面朝上的点数大于4情况有2种,进而求出概率即可.【解答】解:掷一枚均匀的骰子时,有6种情况,出现点数大于4的情况有2种,掷得面朝上的点数大于4的概率是:=;故答案为:.12.某小组计划在本周的一个下午借用A、B、C三个艺术教室其中的一个进行元旦节目的彩排,他们去教学处查看了上一周A、B、C三个艺术教室每天下午的使用次数(一节课记为一次)情况,列出如下统计表:星期一星期二星期三星期四星期五日期次数教室A教室 4 1 1 2 0B教室 3 4 0 3 2C教室 1 2 1 4 3通过调查,本次彩排安排在星期三的下午找到空教室的可能性最大.【分析】找到使用次数最少的一天下午即可得到答案.【解答】解:观察表格发现星期三下午使用1+0+1=2次,最少,∴本次彩排安排在星期三的下午找到空教室的可能性最大,故答案为:三.13.有6张质地、大小、背面完全相同的卡片,它们正面分别写着“我”“参”“与”“我”“快”“乐”这6个汉字,现将卡片正面朝下随机摆放在桌面上,从中随意抽出一张,则抽出的卡片正面写着“我”这个汉字的可能性是.【分析】直接利用概率公式求解即可求得答案.【解答】解:∵有6张质地、大小、背面完全相同的卡片,在它们正面分别写着:“我”“参”“与”“我”“快”“乐”这6个汉字,∴抽出的卡片正面写着“我”字的可能性是:=.故答案为:.14.一个不透明的摇奖箱内装有20张形状,大小,质地等完全相同的卡片,其中只有5张卡片标有中奖标志.在2020年新年联欢会的抽奖环节中,贝贝从这个摇奖箱内随机抽取一张卡片.则贝贝中奖的概率是.【分析】根据题意分析可得:摇奖箱内装有20个小球,所以随机抽取一个小球共20种情况,其中有5种情况是小球中奖,故其概率是=.【解答】解:P(中奖)==.故本题答案为:.15.在一个不透明的口袋中装有5个除了标号外其余都完全相同的小球,把它们分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号小于4的概率为.【分析】根据随机事件概率大小的求法,找准两点:①符合条件的情况数目,②全部情况的总数,二者的比值就是其发生的概率的大小.【解答】解:根据题意可得:标号小于4的有1,2,3三个球,共5个球,任意摸出1个,摸到标号小于4的概率是.故答案为:16.桌子上有6杯同样型号的杯子,其中1杯白糖水,2杯矿泉水,3杯凉白开,从6个杯子中随机取出1杯,请你将下列事件发生的可能性从大到小排列:④①③②.(填序号即可)①取到凉白开②取到白糖水③取到矿泉水④没有取到矿泉水【分析】要求可能性的大小,只需求出各自所占的比例大小即可.求比例时,应注意记清各自的数目.【解答】解:∵有6杯同样型号的杯子,其中1杯白糖水,2杯矿泉水,3杯凉白开,∴①取到凉白开的概率是=,②取到白糖水的概率是,③取到矿泉水的概率是=,④没有取到矿泉水的概率是=,∴按事件发生的可能性从大到小排列:④①③②;故答案为:④①③②.三.解答题(共3小题)17.小明选择一家酒店订春节团圆饭.他借助网络评价,选择了A、B、C三家酒店,对每家酒店随机选择1000条网络评价统计如下:评价条数等级五星四星三星及三星以下合计酒店A412 388 x1000B420 390 190 1000C405 375 220 1000 (1)求x值.(2)当客户给出评价不低于四星时,称客户获得良好用餐体验.①请你为小明从A、B、C中推荐一家酒店,使得能获得良好用餐体验可能性最大.写出你推荐的结果,并说明理由.②如果小明选择了你推荐的酒店,是否一定能够享受到良好用餐体验?【分析】(1)用1000减去五星和四星的条数,即可得出x的值;(2)①根据概率公式先求出A、B、C获得良好用餐体验的可能性,再进行比较即可得出答案;②根据概率的意义分析即可.【解答】解:(1)x=1000﹣412﹣388=200(条);(2)①选择A酒店获得良好用餐体验的可能性为=0.8,选择B酒店获得良好用餐体验的可能性为=0.81,选择C酒店获得良好用餐体验的可能性为=0.7,∵0.81>0.8>0.78,∴选择B酒店获得良好用餐体验的可能性最大.②不一定,根据可能性只能说明享受到良好用餐体验可能性大,但不一定能够享受到良好用餐体验.18.某地质量监管部门对辖区内的甲、乙两家企业生产的某同类产品进行检查,分别随机抽取了50件产品并对某一项关键质量指标做检测,获得了它们的质量指标值s,并对样本数据(质量指标值s)进行了整理、描述和分析.下面给出了部分信息.a.该质量指标值对应的产品等级如下:质量指标值20≤s<25 25≤s<30 30≤s<35 35≤s<40 40≤s<45 等级次品二等品一等品二等品次品说明:等级是一等品,二等品为质量合格(其中等级是一等品为质量优秀);等级是次品为质量不合格.b.甲企业样本数据的频数分布统计表如下(不完整):c.乙企业样本数据的频数分布直方图如下:甲企业样本数据的频数分布表分组频数频率20≤s<25 2 0.0425≤s<30 m30≤s<35 32 n35≤s<40 0.1240≤s<45 0 0.00合计50 1.00d.两企业样本数据的平均数、中位数、众数、极差、方差如下:平均数中位数众数极差方差甲企业31.92 32.5 34 15 11.87乙企业31.92 31.5 31 20 15.34 根据以上信息,回答下列问题:(1)m的值为10 ,n的值为0.64 ;(2)若从甲企业生产的产品中任取一件,估计该产品质量合格的概率为0.96 ;若乙企业生产的某批产品共5万件,估计质量优秀的有 3.5 万件;(3)根据图表数据,你认为甲企业生产的产品质量较好,理由为甲企业抽样产品的极差与方差都小于乙企业,产品的稳定性更好.(从某个角度说明推断的合理性)【分析】(1)根据题意和频数分布表中的数据,可以先求的n的值,然后再求m的值;(2)根据频数分布表可以求得从甲企业生产的产品中任取一件,估计该产品质量合格的概率,根据频数分布直方图可以求得乙企业生产的某批产品共5万件,质量优秀的有的件数;(3)根据频数分布直方图和分布表可以解答本题,注意本题答案不唯一,只要合理即可.【解答】解:(1)n=32÷50=0.64,m=50×(1﹣0.04﹣0.64﹣0.12﹣0.00)=10,故答案为:10,0.64;(2)若从甲企业生产的产品中任取一件,估计该产品质量合格的概率为:1﹣0.04=0.96,乙企业生产的某批产品共5万件,估计质量优秀的有:5×=3.5(万件),故答案为:0.96,3.5;(3)我认为甲企业生产的产品质量较好,理由:甲企业抽样产品的极差与方差都小于乙企业,产品的稳定性更好,故答案为:甲,甲企业抽样产品的极差与方差都小于乙企业,产品的稳定性更好.19.北京市第十五届人大常委会第十六次会议表决通过《关于修改<北京市生活垃圾管理条例>的决定》,规定将生活垃圾分为厨余垃圾、可回收物、有害垃圾、其它垃圾四大基本品类,修改后的条例将于2020年5月1日实施.某小区决定在2020年1月到3月期间在小区内设置四种垃圾分类厢:厨余垃圾、可回收物、有害垃圾、其它垃圾,分别记为A、B、C、D,进行垃圾分类试投放,以增强居民垃圾分类意识.(1)小明家按要求将自家的生活垃圾分成了四类,小明从分好类的垃圾中随机拿了一袋,并随机投入一个垃圾箱中,请用画树状图的方法求垃圾投放正确的概率;(2)为调查居民生活垃圾分类投放情况,现随机抽取了该小区四类垃圾箱中共1000千克生活垃圾,数据统计如下(单位:千克):A B C D厨余垃圾400 100 40 60可回收物25 140 20 15有害垃圾 5 20 60 15其它垃圾25 15 20 40求“厨余垃圾”投放正确的概率.【分析】(1)根据题意画出树状图得出所有情况数,再求出垃圾投放正确的情况数,最后根据概率公式计算即可.(2)用厨余垃圾数量除以总的数量即可.【解答】解:(1)四类垃圾随机投入四类垃圾箱的所有结果用树状图表示如下:。

(必考题)初中数学七年级数学下册第六单元《概率初步》测试(包含答案解析)

(必考题)初中数学七年级数学下册第六单元《概率初步》测试(包含答案解析)

一、选择题1.下列说法正确的是( )A .抛掷一枚质地均匀的硬币两次,必有一次正面朝上B .“汽车累积行驶10000km ,从未出现故障”是不可能事件C .湖州气象局预报说“明天的降水概率为70%”,意味着湖州明天一定下雨D .“0a ≥”是必然事件2.下列事件中,为必然事件的是( ) A .明天早晨,大家能看到太阳从东方冉冉升起 B .成绩一直优秀的小华后天的测试成绩也一定优秀C .从能被2整除的数中,随机抽取一个数能被8整除D .从10本图书中随机抽取一本是小说3.下列事件中,确定事件是( )A .向量BC 与向量CD 是平行向量B 40=有实数根;C .直线()20y ax a =+≠与直线23y x =+相交D .一组对边平行,另一组对边相等的四边形是等腰梯形4.下列事件中,是必然事件的是( ) A .多边形的外角和等于360° B .车辆随机到达一个路口,遇到红灯 C .如果a 2=b 2,那么a =bD .掷一枚质地均匀的硬币,正面向上 5.下列事件为必然事件的是( ) A .掷一枚硬币,正面朝上 B .打开电视机,正在播放动画片C .三根长度为2cm 、3cm 、5cm 的木棒首尾相接能摆成三角形D .两角及一边对应相等的两个三角形全等 6.下列事件中,是确定事件的是( ) A .车辆随机经过一个路口,遇到红灯 B .三条线段能组成一个三角形C .将油滴入水中,油会浮在水面D .掷一枚质地均匀的骰子,掷出的点数是质数7.在一个不透明的口袋中装有红、黄、蓝三种颜色的球,如果口袋中有 5 个红球,且摸出红球的概率为13,那么袋中总共球的个数为() A .15 个B .12 个C .8 个D .6 个8.如图,在方格纸中,随机选择标有序号①②③④⑤⑥中的一个小正方形涂黑,与图中阴影部分构成轴对称图形的概率是( )A .16B .13C .12D .239.一个不透明的袋中有若干个红球,为了估计袋中红球的个数,小林在袋中放入10个与红球形状大小完全相同的白球,每次摇匀后随机从袋中摸出一个球,记下颜色后放回袋中,通过大量重复试验后发现,摸到红球的频率稳定在,则袋中的红球个数约为( ) A .6B .16C .22D .2410.为了估计抛掷同一枚啤酒瓶盖落地后凸面向上的概率,小明做了大量重复试验.经过统计得到凸面向上的次数为420次,凸面向下的次数为580次,由此可估计抛掷这枚啤酒瓶盖落地后凸面向上的概率约为( ) A .0.42 B .0.50C .0.58D .0.7211.下列事件:(1)打开电视机,正在播放新闻; (2)下个星期天会下雨;(3)抛掷两枚质地均匀的骰子,向上一面的点数之和是1; (4)一个有理数的平方一定是非负数; (5)若a ,b 异号,则0a b +<; 属于确定事件的有( )个. A .1B .2C .3D .412.以下事件为必然事件的是( )A .掷一枚质地均匀的骰子,向上一面的点数小于6B .多边形的内角和是360︒C .二次函数的图象不过原点D .半径为2的圆的周长是4π二、填空题13.一个袋中装有m 个红球,10个黄球,n 个白球,每个球除颜色外都相同,任意摸出一个球,摸到黄球的概率与不是黄球的概率相同,那么m 与n 的关系是________. 14.一个不透明的布袋中放有大小、质地都相同四个红球和五个白球,小敏第一次从布袋中摸出一个红球后放回布袋中,接看第二次从布袋中摸球,那么小敏第二次还是摸出红球的可能性为_____.15.小芸一家计划去某城市旅行,需要做自由行的攻略,父母给她分配了一项任务:借助网络评价选取该城市的一家餐厅用餐.小芸根据家人的喜好,选择了甲、乙、丙三家餐厅,对每家餐厅随机选取了1000条网络评价,统计如下: 评价条数 等级 餐厅五星四星三星二星一星合计甲53821096129271000乙460187154169301000丙4863888113321000芸选择在________(填"甲”、“乙"或“丙”)餐厅用餐,能获得良好用餐体验(即评价不低于四星)的可能性最大.16.一个口袋里有相同的红、绿、黄三种颜色的小球,其中有6个红球,5个绿球.若任意摸出一个绿球的概率是14,则任意摸出一个黄球的概率是_____.17.有四张质地、大小、反面完全相同的不透明卡片,正面分别写着数字1,2,3,4,现把它们的正面向下,随机摆放在桌面上,从中任意抽出一张,则抽出的数字是奇数的概率是_______.18.如图:同学们在操场的一个圆形区域内玩投掷沙包的游戏,圆形区域由5个过同一点且半径不同的圆组成.经过多次实验,发现沙包如果都能落在区域内时,落在2、4两个阴影内的概率分别是0.36和0.21,设最大的圆的直径是5米,则1、3、5三个区域的面积和是_____.19.一袋中装有5个红球、4个白球和3个黄球,每个球除颜色外都相同.从中任意摸出一个球,则:P(摸到红球)=______,P(摸到白球)=_______.20.一个不透明的盒子中装有3个红球,2个黄球,这些球除了颜色外其余都相同,从中随机摸出3个小球,则事件“所摸3个球中必含一个红球”是_____(填“必然事件”、“随机事件”或“不可能事件”)三、解答题21.口袋里有红,黄,绿,三种颜色的球,这些球除颜色外完全相同,其中有红球4个,绿球5个,从中任意摸出一个球是绿色的概率是14.求:(1)口袋里黄球的个数;(2)任意摸出一个球是黄球的概率.22.同时抛掷两枚材质均匀的正方体骰子,(1)通过画树状图或列表,列举出所有向上点数之和的等可能结果;(2)求向上点数之和为8的概率1P;(3)求向上点数之和不超过5的概率2P.23.在一个不透明的袋子中装有 4 个红球和 6 个黄球,这些球除颜色外都相同,将袋子中的球充分摇匀后,随机摸出一球.(1)分别求摸出红球和摸出黄球的概率(2)为了使摸出两种球的概率相同,再放进去 8 个同样的红球或黄球,那么这 8 个球中红球和黄球的数量分别是多少?24.将表示下列事件发生的概率的字母标在下图中:(1)投掷一枚骰子,掷出7点的概率1P;(2)在数学测验中做一道四个选项的选择题(单选题),由于不知道那个是正确选项,现任选一个,做对的概率2P;(3)袋子中有两个红球,一个黄球,从袋子中任取一球是红球的概率3P;(4)太阳每天东升西落4P;(5)在1---100之间,随机抽出一个整数是偶数的概率5P.25.“初中生骑电动车上学”的现象越来越受到社会的关注,某校利用“五一”假期,随机抽查了本校若干名学生和部分家长对“初中生骑电动车上学”现象的看法,统计整理制作了的统计图,请回答下列问题:(1)这次抽查的家长总人数是多少?(2)请补全条形统计图和扇形统计图;(3)从这次接受调查的学生中,随机抽查一个学生,则抽到持哪一类态度学生的可能性大?26.经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转,如果这三种情况是等可能的,当三辆汽车经过这个十字路口时:(1)求三辆车全部同向而行的概率;(2)求至少有两辆车向左转的概率;(3)由于十字路口右拐弯处是通往新建经济开发区的,因此交管部门在汽车行驶高峰时段对车流量作了统计,发现汽车在此十字路口向右转的频率为25,向左转和直行的频率均为310.目前在此路口,汽车左转、右转、直行的绿灯亮的时间分别为30秒,在绿灯亮总时间不变的条件下,为了缓解交通拥挤,请你用统计的知识对此路口三个方向的绿灯亮的时间做出合理的调整.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据题意逐项分析,即可求解.【详解】解:A.“抛掷一枚质地均匀的硬币两次,必有一次正面朝上”,不一定发生,不是必然事件,判断错误,不合题意;B. “汽车累积行驶10000km,从未出现故障”,有可能发生,是随机事件,判断错误,不合题意;C. 湖州气象局预报说“明天的降水概率为70%”,意味着湖州明天一定下雨,70%意味着降雨的可能性较大,但不一定下雨,判断错误,不合题意;a ”是必然事件,判断正确,符合题意.D. “0故选:D【点睛】本题考查了必然事件、不可能事件、可能性大小等知识,理解题意,熟知相关概念,知识,理解可能性的意义是解题关键.2.A解析:A【分析】必然发生的事件是必然事件,根据定义解答A.【详解】A、明天早晨,大家能看到太阳从东方冉冉升起是必然事件;B、成绩一直优秀的小华后天的测试成绩也一定优秀是随机事件;C、从能被2整除的数中,随机抽取一个数能被8整除是随机事件;D、从10本图书中随机抽取一本是小说是随机事件;故选:A.【点睛】此题考查必然事件定义,熟记定义、理解必然事件与随机事件发生的可能性的大小是解题的关键.3.B解析:B根据“必然事件和不可能事件统称确定事件”逐一判断即可. 【详解】A. 向量BC 与向量CD 是平行向量,是随机事件,故该选项错误;B. 40=有实数根,是确定事件,故该选项正确;C. 直线()20y ax a =+≠与直线23y x =+相交,是随机事件,故该选项错误;D. 一组对边平行,另一组对边相等的四边形是等腰梯形,是随机事件,故该选项错误; 故选:B . 【点睛】本题主要考查确定事件,掌握确定事件和随机事件的区别是解题的关键.4.A解析:A 【分析】根据事件发生的可能性大小判断相应事件的即可. 【详解】解:A 、多边形的外角和等于360°,是必然事件; B 、车辆随机到达一个路口,遇到红灯,是随机事件; C 、如果a 2=b 2,那么a =b ,是随机事件;D 、掷一枚质地均匀的硬币,正面向上,是随机事件; 故答案为A . 【点睛】本题考查了随机事件,解决本题的关键是正确理解必然事件、不可能事件、随机事件的概念.5.D解析:D 【分析】根据事件发生的可能性大小判断相应事件的类型即可. 【详解】A .掷一枚硬币,正面朝上是随机事件,;B .打开电视机,正在播放动画片是随机事件;C .三根长度为2cm 、3cm 、5cm 的木棒首尾相接能摆成三角形是不可能事件;D .两角及一边对应相等的两个三角形全等是必然事件. 故选D . 【点睛】本题考查了必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.6.C【解析】【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】A选项:车辆随机经过一个路口,遇到红灯,可能事件;B选项:三条线段能组成一个三角形,可能事件;C选项:将油滴入水中,油会浮在水面,确定事件;D选项:掷一枚质地均匀的骰子,掷出的点数是质数,可能事件;故选:C.【点睛】考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.7.A解析:A【解析】【分析】根据红球的概率公式列出方程求解即可.【详解】解:根据题意设袋中共有球m个,则513 m=所以m=15.故袋中有15个球.故选:A.【点睛】本题考查了随机事件概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.8.C解析:C【解析】【分析】利用轴对称图形的定义得出符合题意的图形,再利用概率公式求出答案.【详解】如图所示:当涂黑②④⑤时,与图中阴影部分构成轴对称图形,则构成轴对称图形的概率为:31 62 =故选:C.此题主要考查了几何概率以及轴对称图形的定义,正确得出符合题意的图形是解题关键.9.A解析:A【解析】【分析】根据口袋中有10个白球,利用红色小球在总数中所占比例得出与实验比例应该相等求出即可.【详解】解:设袋中的红球的个数为x,根据题意,得:解得:x=6,经检验:x=6是原分式方程的解,∴袋中红球的个数为6,故选:A.【点睛】本题考查用样本估计总体,根据已知得出小球在总数中所占比例得出与实验比例应该相等是解题关键.10.A解析:A【解析】【分析】根据多次重复试验中事件发生的频率估计事件发生的概率即可.【详解】∵抛掷同一枚啤酒瓶盖420+580=1000次.经过统计得“凸面向上”的次数约为420次,∴抛掷这枚啤酒瓶盖出现“凸面向上”的概率约为420=0.42,1000故选A.【点睛】本题主要考查概率的意义、等可能事件的概率,大量重复试验事件发生的频率约等于概率.11.B解析:B【分析】根据事件发生的可能性大小逐一判断相应事件的类型,即可得答案.【详解】(1)打开电视机,正在播放新闻是随机事件,(2)下个星期天会下雨是随机事件,(3)抛掷两枚质地均匀的骰子,向上一面的点数之和是1是不可能事件,是确定事件, (4)一个有理数的平方一定是非负数是确定事件, (5)若a 、b 异号,则a+b <0是随机事件. 综上所述:属于确定事件的有(3)(4),共2个, 故选:B . 【点睛】本题考查的是必然条件、不可能事件、随机事件的概念,必然事件指在一定条件下,一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.熟练掌握基础知识是解题的关键.12.D解析:D 【分析】必然事件是指一定会发生的事件,概率为1,根据该性质判断即可. 【详解】掷一枚质地均匀的骰子,每一面朝上的概率为16,而小于6的情况有5种,因此概率为56,不是必然事件,所以A 选项错误; 多边形内角和公式为()2180n -︒,不是一个定值,而是随着多边形的边数n 的变化而变化,所以B 选项错误;二次函数解析式的一般形式为2y ax bx c =++()0a ≠,而当c=0时,二次函数图象经过原点,因此不是必然事件,所以C 选项错误;圆周长公式为2C r π=,当r=2时,圆的周长为4π,所以D 选项正确. 故选D . 【点睛】本题考查了必然事件的概念,关键是根据不同选项所包含的知识点的概念进行判断对错;必然事件发生的概率为1,随机事件发生的概率为0<P<1,不可能事件发生的概率为0.二、填空题13.m+n =10【分析】直接利用概率相同的频数相同进而得出答案【详解】∵一个袋中装有m 个红球10个黄球n 个白球摸到黄球的概率与不是黄球的概率相同∴m 与n 的关系是:m+n =10故答案为m+n =10【点睛】解析:m +n =10.【分析】直接利用概率相同的频数相同进而得出答案. 【详解】∵一个袋中装有m 个红球,10个黄球,n 个白球,摸到黄球的概率与不是黄球的概率相同,∴m与n的关系是:m+n=10.故答案为m+n=10.【点睛】此题主要考查了概率公式,正确理解概率求法是解题关键.14.【分析】小敏第一次从布袋中摸出一个红球的概率为第二次从布袋中摸出一个红球的概率为据此可得两次摸出的球都是红球的概率【详解】∵小敏第一次从布袋中摸出一个红球的概率为第二次从布袋中摸出一个红球的概率为∴解析:16 81.【分析】小敏第一次从布袋中摸出一个红球的概率为49,第二次从布袋中摸出一个红球的概率为49,据此可得两次摸出的球都是红球的概率.【详解】∵小敏第一次从布袋中摸出一个红球的概率为49,第二次从布袋中摸出一个红球的概率为49,∴两次摸出的球都是红球的概率为:49×49=1681.故答案为16 81.【点睛】本题主要考查了概率的计算,用到的知识点为:概率=所求情况数与总情况数之比.15.丙【分析】不低于四星即四星与五星的和居多为符合题意的餐厅【详解】不低于四星即比较四星和五星的和丙最多故答案是:丙【点睛】考查了可能性的大小和统计表解题的关键是将问题转化为比较四星和五星的和的多少解析:丙【分析】不低于四星,即四星与五星的和居多为符合题意的餐厅.【详解】不低于四星,即比较四星和五星的和,丙最多.故答案是:丙.【点睛】考查了可能性的大小和统计表.解题的关键是将问题转化为比较四星和五星的和的多少.16.【解析】【分析】由一个口袋里有相同的红绿黄三种颜色的小球其中有6个红球5个绿球若任意摸出一个绿球的概率是可求得球的总个数继而求得黄球的个数然后利用概率公式求解即可求得答案【详解】解:∵一个口袋里有相解析:9 20【解析】【分析】由一个口袋里有相同的红、绿、黄三种颜色的小球,其中有6个红球,5个绿球.若任意摸出一个绿球的概率是14,可求得球的总个数,继而求得黄球的个数,然后利用概率公式求解即可求得答案.【详解】解:∵一个口袋里有相同的红、绿、黄三种颜色的小球,其中有6个红球,5个绿球.任意摸出一个绿球的概率是14,∴共有球:5÷14=20(个),∴黄球有:20﹣6﹣5=9(个),∴任意摸出一个黄球的概率是:920.故答案为:9 20.【点睛】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.17.【解析】试题分析:抽出的数字可能是1234总共有4种结果其中是奇数的结果有2种所以抽出的数字是奇数的概率是故答案为考点:概率的计算解析:【解析】试题分析:抽出的数字可能是1,2,3,4,总共有4种结果,其中是奇数的结果有2种,所以抽出的数字是奇数的概率是12.故答案为12.考点:概率的计算.18.6875πm2【解析】【分析】根据题意可得大圆的面积再由几何概率的意义可得第24两个阴影的面积所占的比例进而可得135三个区域的面积和占的比例计算可得其面积之和【详解】根据题意得最大的圆的直径是5米解析:6875πm2.【解析】【分析】根据题意,可得大圆的面积,再由几何概率的意义,可得第2、4两个阴影的面积所占的比例,进而可得1、3、5三个区域的面积和占的比例,计算可得其面积之和.【详解】根据题意得,最大的圆的直径是5米,则大圆的面积为6.25πm2,又有落在2、4两个阴影内的概率分别是0.36和0.21,则第2、4部分的面积和占总面积的0.36+0.21=0.57,即57%,则1、3、5三个区域的面积占总面积的1-0.57=0.43,即43%,故1、3、5三个区域的面积和为6.25π×0.43=2.6875π m2.故答案是:2.6875π m2.【点睛】考查了利用概率解决问题,解题关键是利用:部分数目=总体数目乘以相应概率.19.【解析】∵有5个红球4个白球和3个黄球∴总球数是:5+4+3=12(个)∴P(摸到红球)=;P(摸到白球)==;故答案为:解析:51213【解析】∵有5个红球、4个白球和3个黄球,∴总球数是:5+4+3=12(个),∴P(摸到红球)= 512;P(摸到白球)=412=13;故答案为:512,13.20.随机事件【解析】试题分析:∵盒子中装有3个红球2个黄球∴从中随机摸出3个小球则事件所摸3个球中必含一个红球是随机事件故答案为随机事件考点:随机事件解析:随机事件.【解析】试题分析:∵盒子中装有3个红球,2个黄球,∴从中随机摸出3个小球,则事件“所摸3个球中必含一个红球”是随机事件,故答案为随机事件.考点:随机事件.三、解答题21.(1)口袋中黄球有11个;(2)11 20.【解析】【分析】(1)设有x个黄球,用绿球的个数除总数等于14,即可解答(2)用黄球个数除总数即可解答【详解】(1)设有x个黄球,根据题意,得:51 544x=++,解得:x=11,即口袋中黄球有11个;(2)∵袋子中共有11+4+5=20个小球,其中黄球有11个,∴任意摸出一个球是黄球的概率为1120.【点睛】此题考查概率公式,难度不大22.(1)列表见解析,共有36种等可能的结果;(2)15 36P=(3)25 18P=【解析】【分析】(1)首先根据题意列出表格,注意在列表的时候做到不重不漏,然后由表格求得所有等可能的结果;(2)由(1)可求得向上点数之和为8的情况,再利用概率公式即可求得答案;(3)由(1)可求得向上点数之和不超过5的情况,再利用概率公式即可求得答案.【详解】解:(1)列表得:(2)∵向上点数之和为8的有5种情况,∴15 36P=;(3)∵向上点数之和不超过5的有10种情况,∴2105 3618P==.【点睛】本题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,用到的知识点为:概率=所求情况数与总情况数之比.23.(1)P(摸到红球)=,P(摸到黄球)=;(2)5 个, 3 个.【解析】分析:(1)直接利用概率公式计算即可求出摸出的球是红球和黄球的概率;(2)设放入红球x个,则黄球为(8−x)个,由摸出两种球的概率相同建立方程,解方程即可求出8个球中红球和黄球的数量分别是多少.详解:(1)∵袋子中装有4个红球和6个黄球,∴随机摸出一球是红球和黄球的概率分别是:P(摸到红球)=,P(摸到黄球)=;(2)设放入红球x个,则黄球为(8−x)个,由题意列方程得:解得:x=5.所以这8个球中红球和黄球的数量分别应是5个和3个.点睛:本题考查的是求随机事件的概率,解决这类题目要注意具体情况具体对待.用到的知识点为:可能性等于所求情况数与总情况数之比.24.【解析】试题分析:(1)根据骰子没有7点,所以这种情况不可能发生,可知概率为0;(2)选择题的答案是4选1,因此其概率为14;(3)袋子中摸到红球的概率为23;(4)太阳的东升西落是必然事件,因此其概率为1;(5)由1---100之间有50个偶数可知随机抽取一个数为偶数的概率为501 1002=.试题考点:概率25.(1)这次调查了100个家长;(2)图形见解析;(3)持“赞成”态度的学生估计约有300个.【解析】试题分析:(1)根据“无所谓”的人数除以占的百分比得到调查的总家长数;(2)由调查家长的总数求出“反对”的人数,补全条形统计图,求出“反对”与“赞成”的百分比,补全扇形统计图即可;(3)求出学生中“赞成”的百分比,乘以1200即可得到结果.试题(1)根据题意得:20÷20%=100(个),则这次调查了100个家长;(2)家长“反对”的人数为100﹣(10+20)=70(个);占的百分比为70÷100=70%;“赞成”占的百分比为10÷100=10%;补全统计图,如图所示:(3)根据题意得:1200×=300(个),则持“赞成”态度的学生估计约有300个,考点:1、条形统计图;2、扇形统计图;3、用样本估计总体26.(1)19;(2)727;(3)左转绿灯亮时间为90×310=27(秒),直行绿灯亮时间为90×310=27(秒),右转绿灯亮的时间为90×25=36(秒).【分析】(1)首先根据题意画出树状图,由树状图即可求得所有等可能的结果与三辆车全部同向而行的情况,然后利用概率公式求解即可求得答案;(2)由(1)中的树状图即可求得至少有两辆车向左转的情况,然后利用概率公式求解即可求得答案;(3)由汽车向右转、向左转、直行的概率分别为233,,51010,即可求得答案.【详解】解:(1)分别用A,B,C表示向左转、直行,向右转;根据题意,画出树形图:∵共有27种等可能的结果,三辆车全部同向而行的有3种情况,∴P(三车全部同向而行)=19;(2)∵至少有两辆车向左转的有7种情况,∴P(至少两辆车向左转)=727;(3)∵汽车向右转、向左转、直行的概率分别为233 ,, 51010,∴在不改变各方向绿灯亮的总时间的条件下,可调整绿灯亮的时间如下:左转绿灯亮时间为90×310=27(秒),直行绿灯亮时间为90×310=27(秒),右转绿灯亮的时间为90×25=36(秒).【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意:概率=所求情况数与总情况数之比.。

北师大版七年级数学下册第6章《概率初步》单元测试试卷及答案(4)

北师大版七年级数学下册第6章《概率初步》单元测试试卷及答案(4)

级数学下册第6章《概率初步》单元测试试卷及答案(4)一、填空题 1.给出以下结论①如果一件事发生的机会只有十万分之一,那么它就不可能发生;②二战时期美国某公司生产的降落伞合格率达99.9%,使用该公司的降落伞不会发生危险;③如果一件事不是必然发生的,那么它就不可能发生;④从1、2、3、4、5中任取一个数是奇数的可能性要大于偶数的可能性. 其中正确的结论是_____.在小华的10次实验中,抛出两个正面_____次,出现两次正面的概率为_____,小明抛出两个正面的概率是_____.3.10名学生计划“五一”这天去郊游,任选其中的一人带20根香肠,则10人中的小亮被选中的概率是_____.4.三名同学站成一排,其中小明站在中间的概率是_____,站在两端的概率是_____.5.从8名男医生和7名女医生中选一人作为医疗小组的组长,是男医生的概率是_____,是女医生的概率是_____.6.某科学考察队有3名老队员,3名新队员,考察某溶洞时,任选其中一人下去考察,是老队员的概率是_____.7.小明和小亮各写一张贺卡,先集中起来,然后每人拿一张贺卡,则他们各自拿到对方送出的贺卡的概率是_____.8.从4台A 型电脑和5台B 型电脑中任选一台,选中A 型电脑的概率为_____,B 型电脑的概率为_____.9.小亮从3本语文书,4本数学书,5本英语书中任选一本,则选中语文书的概率为_____,选中数学书的概率为_____,选中英语书的概率为_____.10.某停车厂共有12个停车位置,今从中任取一个给某车停放,两端停车位置被选中的概率为_____.11.在标号为1、2、3……19的19个同样的小球中任选一个,则选中标号为偶数的小球的可能性_____选中标号为奇数的小球的可能性.12.从小明、小亮、小丽3名同学中选一人,当语文课代表,选中小丽的可能性_____小丽不被选中的可能性.二、选择题13.黑暗中小明从他的一大串钥匙中,随便选择一把,用它开门,下列叙述正确的是( ) A.能开门的可能性大于不能开门的可能性 B.不能开门的可能性大于能开门的可能性 C.能开门的可能性与不能开门的可能性相等 D.无法确定14.给出下列结论①打开电视机它正在播广告的可能性大于不播广告的可能性 ②小明上次的体育测试是“优秀”,这次测试它百分之百的为“优秀” ③小明射中目标的概率为31,因此,小明连射三枪一定能够击中目标 ④随意掷一枚骰子,“掷得的数是奇数”的概率与“掷得的数是偶数”的概率相等其中正确的结论有( )A.1个B.2个C.3个D.4个。

北师大版七年级数学下学期第6章概率初步单元卷包含答案

北师大版七年级数学下学期第6章概率初步单元卷包含答案

第6章概率初步一.选择题〔共12小题〕1.以下事件中为必然事件的是〔〕.翻开电视机,正在播放茂名新闻.早晨的太阳从东方升起C.随机掷一枚硬币,落地后正面朝上.下雨后,天空出现彩虹2.以下事件中,是不可能事件的是〔〕.买一张电影票,座位号是奇数B.射击运发动射击一次,命中9环C.明天会下雨D.度量三角形的内角和,结果是360°3.袋中有红球4个,白球假设干个,它们只有颜色上的区别.从袋中随机地取出一个球,如果取到白球的可能性较大,那么袋中白球的个数可能是〔〕A.3个B.缺乏3个C.4个D.5个或5个以上4.“a是实数,|a|≥0〞这一事件是〔〕A.必然事件B.不确定事件C.不可能事件D.随机事件5.以下说法中不正确的选项是〔〕.抛掷一枚硬币,硬币落地时正面朝上是随机事件B.把4个球放入三个抽屉中,其中一个抽屉中至少有2个球是必然事件C.任意翻开七年级下册数学教科书,正好是97页是确定事件D.一个盒子中有白球m个,红球6个,黑球n个〔每个球除了颜色外都相同〕.如果从中任取一个球,取得的是红球的概率与不是红球的概率相同,那么m与n的和是6 6.在一个不透明的盒子中装有a个除颜色外完全相同的球,这a个球中只有3个红球,假设每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在20%左右,那a的值约为〔〕么A.12B.15C.18D.217.从长为10cm、7cm、5cm、〕3cm的四条线段中任选三条能够组成三角形的概率是〔A.B.C.D.8.如图,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,与图中阴影局部构成轴对称图形的概率是〔〕A.B.C.D.9.对“某市明天下雨的概率是75%〞这句话,理解正确的选项是〔〕A.某市明天将有75%的时间下雨B.某市明天将有75%的地区下雨C.某市明天一定下雨.某市明天下雨的可能性较大10.一个袋子中装有6个黑球3个白球,这些球除颜色外,形状、大小、质地等完全相同,在看不到球的条件下,随机地从这个袋子中摸出一个球,摸到白球的概率为〔〕A.B.C.D.11.如图,飞镖游戏板中每一块小正方形除颜色外都相同.假设某人向游戏板投掷飞镖一次〔假设飞镖落在游戏板上〕,那么飞镖落在阴影局部的概率是〔〕A.B.C.D.12.在一个不透明的盒子里有2个红球和n个白球,这些球除颜色外其余完全相同,摇匀后随机摸出一个,摸到红球的概率是,那么n的值为〔〕A.3B.5C.8D.10二.填空题〔共5小题〕13.一个不透明的盒子里装有除颜色外无其他差异的白珠子6颗和黑珠子假设干颗,每次随机摸出一颗珠子,放回摇匀后再摸,通过屡次试验发现摸到白珠子的频率稳定在左右,那么盒子中黑珠子可能有颗.14.如表记录了一名球员在罚球线上投篮的结果.那么,这名球员投篮一次,投中的概率约为〔精确到〕.投篮次数〔n〕50100150200250300500投中次数〔m〕286078104123152251投中频率〔m/n〕15.小燕抛一枚硬币10次,有7次正面朝上,当她抛第11次时,正面向上的概率为.16.某校学生小明每天骑自行车上学时都要经过一个十字路口,该十字路口有红、黄、绿三色交通信号灯,他在路口遇到红灯的概率为,遇到黄灯的概率为,那么他遇到绿灯的概率为.17.袋中装有6个黑球和n个白球,经过假设干次试验,发现“假设从袋中任摸出一个球,恰是黑球的概率为〞,那么这个袋中白球大约有个.三.解答题〔共5小题〕18.一个口袋中放有290个涂有红、黑、白三种颜色的质地相同的小球.假设红球个数是黑球个数的2倍多40个.从袋中任取一个球是白球的概率是.〔1〕求袋中红球的个数;〔2〕求从袋中任取一个球是黑球的概率.19.如下列图的正三角形区域内投针〔区域中每个小正三角形除颜色外完全相同〕,针随机落在某个正三角形内〔边线忽略不计〕1〕投针一次,针落在图中阴影区域的概率是多少?(2〕要使针落在图中阴影区域和空白区域的概率均为,还要涂黑几个小正三角形?请在图中画出.20.超市举行有奖促销活动:凡一次性购物满300元者即可获得一次摇奖时机.摇奖机是一个圆形转盘,被分成16等分,摇中红、黄、蓝色区域,分获一、二、三获奖,奖金依次为60、50、40元.一次性购物满300元者,如果不摇奖可返还现金15元.〔1〕摇奖一次,获一等奖的概率是多少?〔2〕老李一次性购物满了300元,他是参与摇奖划算还是领15元现金划算,请你帮他算算.21.如图是一个涂有红、黄两种颜色的旋转转盘.有几个同学做转盘实验,他们将实验中获得的数据填入下面的统计表中.〔1〕请将统计表补充完整;转动次1001502005008001000200数n落在681081365607001400“红〞的次数落在“红〞的频率〔2〕请你估计:当n很大时,频率将会接近%〔保存两个有效数字〕.22.〔实践创新题〕小明在操场上做游戏,他发现地上有一个不规那么的封闭图形ABC如图所示,为了求其面积,小明在封闭的图中找出了一个半径为1米的圆,在不远处向圈内掷石子,且记录如下:掷石子次数50次150次300次石子落在区域石子落在⊙O内〔含⊙O上〕次数m144393石子落在阴影内次数n2985186你能否求出封闭图形ABC的面积?试试看.参考答案一.选择题〔共12小题〕1.B.2..3..4.A.5.C.6.B.7.C.8.C.9..10.B.11.C.12.C.二.填空题〔共5小题〕13.14.14..15..16..17.2.三.解答题〔共5小题〕18.解:〔1〕290×=10〔个〕,290﹣10=280〔个〕,280﹣40〕÷〔2+1〕=80〔个〕,280﹣80=200〔个〕.故袋中红球的个数是200个;〔2〕80÷290=.答:从袋中任取一个球是黑球的概率是.19.解:〔1〕因为阴影局部的面积与三角形的面积的比值是=,所以投针一次击中阴影区域的概率等于.〔2〕如下列图:要使针落在图中阴影区域和空白区域的概率均为,还要涂黑2个小正三角形.20.解:〔1〕整个圆周被分成了16份,红色为1份,∴获得一等奖的概率为:,〔2〕转转盘:60×+50×+40×=20元,20元>15元,∴转转盘划算.21.解:〔1〕请将统计表补充完整;转动次1001502005008001000200数n落在681081363455607001400“红〞的次数落在“红〞的频率〔2〕频率将会接近70%〔保存两个有效数字〕.22.解:由记录=1:2,可见P〔落在⊙O内〕==,又P〔落在圆O内〕=,所以=,AB C 2〕.S=3π〔m。

第六章 概率初步单元测试卷(附答案)

第六章 概率初步单元测试卷(附答案)

第六章概率初步一、选择题1.下列说法正确的是()A. 不可能事件发生的概率为0B. 随机事件发生的概率为C. 概率很小的事件不可能发生D. 投掷一枚质地均匀的硬币1000次,正面朝上的次数一定是500次2.在课外实践活动中,甲、乙、丙、丁四个小组用投掷一元硬币的方法估算正面朝上的概率,其实验次数分别为10次、50次、100次,200次,其中实验相对科学的是()A. 甲组B. 乙组C. 丙组D. 丁组3.下列事件中,是必然事件的是()A. 两条线段可以组成一个三角形B. 400人中有两个人的生日在同一天C. 早上的太阳从西方升起D. 打开电视机,它正在播放动画片4.在一个布口袋里装有白、红、黑三种颜色的小球,它们除颜色外没有任何区别,其中白球2只,红球6只,黑球4只,将袋中的球搅匀,闭上眼睛随机从袋中取出1只球,则取出黑球的概率是()A. B. C. D.5.动物学家通过大量的调查估计,某种动物活到20岁的概率为0.8,活到25岁的概率为0.6,则现年20岁的这种动物活到25岁的概率是()A. 0.8B. 0.75C. 0.6D. 0.486.一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有9个黄球.每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么估计盒子中小球的个数n为()A. 20B. 24C. 28D. 307.数学老师将全班分成7个小组开展小组合作学习,采用随机抽签确定一个小组进行展示活动,则第3个小组被抽到的概率是()A. B. C. D.8.从图中的四张印有汽车品牌标志图案的卡片中任取一张,取出印有汽车品牌标志的图案是中心对称图形的卡片的概率是()A. B. C. D. 19.如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任意选取一个白色的小正方形并涂黑,使黑色部分的图形仍然构成一个轴对称图形的概率是()A. B. C. D.10.从正五边形的五个顶点中,任取四个顶点连成四边形,对于事件M,“这个四边形是等腰梯形”.下列推断正确的是()A. 事件M是不可能事件B. 事件M是必然事件C. 事件M发生的概率为D. 事件M发生的概率为二、填空题11.一个盒中装着大小、外形一模一样的x颗白色弹珠和y颗黑色弹珠,从盒中随机取出一颗弹珠,取得白色弹珠的概率是.如果再往盒中放进12颗同样的白色弹珠,取得白色弹珠的概率是,则原来盒中有白色弹珠______ 颗.12.现有50张大小、质地及背面图案均相同的《西游记》任务卡片,正面朝下放置在桌面上,从中随机抽取一张并记下卡片正面所绘人物的名字后原样放回,洗匀后再抽.通过多次试验后,发现抽到绘有孙悟空这个人物卡片的频率约为0.3.估计这些卡片中绘有孙悟空这个人物的卡片张数约为______ .13.不透明的布袋里有2个黄球、3个红球、5个白球,它们除颜色外其它都相同,那么从布袋中任意摸出一球恰好为红球的概率是______.14.从数-2,-,0,4中任取一个数记为m,再从余下的三个数中,任取一个数记为n,若k=mn,则正比例函数y=kx的图象经过第三、第一象限的概率是______ .15.一个均匀的正方体各面上分别标有数字:1、2、3、4、5、6,这个正方体的表面展开图如图所示.抛掷这个正方体,则朝上一面所标数字恰好等于朝下一面所标数字的3倍的概率是______.三、计算题16.全面两孩政策实施后,甲、乙两个家庭有了各自的规划,假定生男生女的概率相同,回答下列问题:(1)甲家庭已有一个男孩,准备再生一个孩子,则第二个孩子是女孩的概率是______;(2)乙家庭没有孩子,准备生两个孩子,求至少有一个孩子是女孩的概率.17.四张扑克牌(方块2、黑桃4、黑桃5、梅花5)的牌面如图l,将扑克牌洗匀后,如图2背面朝上放置在桌面上.小亮和小明设计的游戏规则是两人同时抽取一张扑克牌,两张牌面数字之和为奇数时,小亮获胜;否则小明获胜.请问这个游戏规则公平吗?并说明理由.18.一只口袋中放着3只红球和2只黑球,这两种球除了颜色以外没有任何区别.袋中的球已经搅匀.蒙上眼睛从口袋中取一只球,(1)取出黑球与红球的概率分别是多少?(2)若第一次取出的是一只红球不放回去,第二次取出的是红球的概率是多少?19.在一个不透明的袋中装有5个只有颜色不同的球,其中3个黄球,2个黑球.(1)求从袋中同时摸出的两个球都是黄球的概率;(2)现将黑球和白球若干个(黑球个数是白球个数的2倍)放入袋中,搅匀后,若从袋中摸出一个球是黑球的概率是,求放入袋中的黑球的个数.答案和解析【答案】1. A2. D3. B4. C5. B6. D7. A8. A9. B10. B11. 412. 1513.14.15.16.17. 解:此游戏规则不公平.理由如下:画树状图得:共有12种等可能的结果,其中两张牌面数字之和为奇数的有8种情况,所以P(小亮获胜)==;P(小明获胜)=1-=,因为>,所以这个游戏规则不公平.18. 解:(1)根据题意得:P(黑球)=;P(红球)=;(2)根据题意得:P(第二次为红球)==.19. 解:(1)画树状图为:共有20种等可能的结果数,其中从袋中同时摸出的两个球都是黄球的结果数为6,所以从袋中同时摸出的两个球都是黄球的概率==;(2)设放入袋中的黑球的个数为x,根据题意得=,解得x=2,所以放入袋中的黑球的个数为2.【解析】1. 解:A、不可能事件发生的概率为0,故本选项正确;B、随机事件发生的概率P为0<P<1,故本选项错误;C、概率很小的事件,不是不发生,而是发生的机会少,故本选项错误;D、投掷一枚质地均匀的硬币1000次,是随机事件,正面朝上的次数不确定是多少次,故本选项错误;故选:A.根据不可能事件是指在任何条件下不会发生,随机事件就是可能发生,也可能不发生的事件,发生的机会大于0并且小于1,进行判断.本题考查了不可能事件、随机事件的概念.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.2. 解:根据模拟实验的定义可知,实验相对科学的是次数最多的丁组.故选:D.大量反复试验时,某事件发生的频率会稳定在某个常数的附近,这个常数就叫做事件概率的估计值.考查了模拟实验,选择和抛硬币类似的条件的试验验证抛硬币实验的概率,是一种常用的模拟试验的方法.3. 解:A、两条线段可以组成一个三角形是不可能事件,故A错误;B、400人中有两个人的生日在同一天是必然事件,故B正确;C、早上的太阳从西方升起是不可能事件,故C错误;D、打开电视机,它正在播放动画片是随机事件,故D错误;故选:B.根据必然事件指在一定条件下,一定发生的事件,可得答案.本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4. 解:根据题意可得:口袋里共有12只球,其中白球2只,红球6只,黑球4只,故从袋中取出一个球是黑球的概率:P(黑球)==,故选:C.根据随机事件概率大小的求法,找准两点:①符合条件的情况数目;②全部情况的总数.二者的比值就是其发生的概率的大小.本题考查概率的求法与运用.一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.5. 解:设共有这种动物x只,则活到20岁的只数为0.8x,活到25岁的只数为0.6x,故现年20岁到这种动物活到25岁的概率为=0.75.故选B.先设出所有动物的只数,根据动物活到各年龄阶段的概率求出相应的只数,再根据概率公式解答即可.考查了概率的意义,用到的知识点为:概率=所求情况数与总情况数之比.注意在本题中把20岁时的动物只数看成单位1.6. 解:根据题意得=30%,解得n=30,所以这个不透明的盒子里大约有30个除颜色外其他完全相同的小球.故选D.根据利用频率估计概率得到摸到黄球的概率为30%,然后根据概率公式计算n的值.本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.当实验的所有可能结果不是有限个或结果个数很多,或各种可能结果发生的可能性不相等时,一般通过统计频率来估计概率.7. 解:第3个小组被抽到的概率是,故选:A.根据概率是所求情况数与总情况数之比,可得答案.本题考查了概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.8. 解:在这四个图片中只有第三幅图片是中心对称图形,因此是中心对称称图形的卡片的概率是.故选:A.根据随机事件概率大小的求法,找准两点:①符合条件的情况数目;②全部情况的总数.二者的比值就是其发生的概率的大小.本题将两个简易的知识点,中心对称图形和概率组合在一起,是一个简单的综合问题,其中涉及的中心对称图形是指这个图形绕着对称中心旋转180°后仍然能和这个图形重合的图形,简易概率求法公式:P(A)=,其中0≤P(A)≤1.9. 解:∵根据轴对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合,白色的小正方形有13个,而能构成一个轴对称图形的有5个情况,∴使图中黑色部分的图形仍然构成一个轴对称图形的概率是:.故选:B.由在4×4正方形网格中,任选取一个白色的小正方形并涂黑,共有13种等可能的结果,使图中黑色部分的图形构成一个轴对称图形的有5种情况,直接利用概率公式求解即可求得答案.此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.也考查了轴对称图形的定义.10. 连接BE,根据正五边形ABCDE的性质得到BC=DE=CD=AB=AE,根据多边形的内角和定理求出∠A=∠ABC=∠C=∠D=∠AED=108°,根据等腰三角形的性质求出∠ABE=∠AEB=36°,求出∠CBE=72°,推出BE∥CD,得到四边形BCDE是等腰梯形,即可得出答案.11. 解:∵取得白色棋子的概率是,可得方程=又由再往盒中放进12颗白色棋子,取得白色棋子的概率是∴可得方程=,组成方程组解得:x=4,y=8故答案为4.根据从盒中随机取出一颗棋子,取得白色棋子的概率是,可得方程=又由再往盒中放进12颗白色棋子,取得白色棋子的概率是可得方程=联立即可求得x的值.本题考查的是概率的求法.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.12. 解:因为通过多次试验后,发现抽到绘有孙悟空这个人物卡片的频率约为0.3,所以估计抽到绘有孙悟空这个人物卡片的概率为0.3,则这些卡片中绘有孙悟空这个人物的卡片张数=0.3×50=15(张).所以估计这些卡片中绘有孙悟空这个人物的卡片张数约为15张.故答案为15.利用频率估计概率得到抽到绘有孙悟空这个人物卡片的概率为0.3,则根据概率公式可计算出这些卡片中绘有孙悟空这个人物的卡片张数,于是可估计出这些卡片中绘有孙悟空这个人物的卡片张数.本题考查了频率估计概率:用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.13. 解:∵在不透明的袋中装有2个黄球、3个红球、5个白球,它们除颜色外其它都相同,∴从这不透明的袋里随机摸出一个球,所摸到的球恰好为红球的概率是:=.故答案为:.由在不透明的袋中装有2个黄球、3个红球、5个白球,它们除颜色外其它都相同,直接利用概率公式求解,即可得到任意摸出一球恰好为红球的概率.此题考查了概率公式的应用.解题时注意:概率=所求情况数与总情况数之比.14. 解:从数-2,-,0,4中任取1个数记为m,再从余下,3个数中,任取一个数记为n.根据题意画图如下:共有12种情况,∵正比例函数y=kx的图象经过第三、第一象限,∴k=mn>0.由树状图可知符合mn>0的情况共有2种,∴正比例函数y=kx的图象经过第三、第一象限的概率是=.故答案为:.根据题意先画出图形,求出总的情况数,再求出符合条件的情况数,最后根据概率公式进行计算即可.本题考查了概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.15. 解:由图可知1、3相对,2、6相对,4、5相对,那么3朝上或6朝上时,朝上一面所标数字恰好等于朝下一面所标数字的3倍,共有6种情况,则朝上一面所标数字恰好等于朝下一面所标数字的3倍的概率是.根据随机事件概率大小的求法,找准两点:①朝上一面所标数字恰好等于朝下一面所标数字的3倍的情况数目;②所有标法的总数.二者的比值就是其发生的概率的大小.本题考查概率的求法与运用,一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.16. 解:(1)第二个孩子是女孩的概率=;故答案为;(2)画树状图为:共有4种等可能的结果数,其中至少有一个孩子是女孩的结果数为3,所以至少有一个孩子是女孩的概率=.(1)直接利用概率公式求解;(2)画树状图展示所有4种等可能的结果数,再找出至少有一个孩子是女孩的结果数,然后根据概率公式求解.本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.17. 先利用树状图展示所有有12种等可能的结果,其中两张牌面数字之和为奇数的有8种情况,再根据概率公式求出P(小亮获胜)和P(小明获胜),然后通过比较两概率的大小判断游戏的公平性.本题考查了游戏公平性:判断游戏公平性需要先计算每个事件的概率,然后比较概率的大小,概率相等就公平,否则就不公平.18. (1)根据5只小球中红球与黑球的个数求出所求概率即可;(2)取出一个红球,口袋中红球与黑球个数都为2,即可求出所求概率即可.此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.19. (1)画树状图展示所有20种等可能的结果数,再找出从袋中同时摸出的两个球都是黄球的结果数,然后根据概率公式求解;(2)设放入袋中的黑球的个数为x,利用概率公式得到=,然后解方程即可.本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.。

第6章 概率初步 北师大版七年级数学下册单元测试卷(含答案)

第6章 概率初步 北师大版七年级数学下册单元测试卷(含答案)

北师大新版七年级下册《第6章概率初步》2024年单元测试卷一、选择题1.“任意买一张电影票,座位号是2的倍数”,此事件是( )A.不可能事件B.随机事件C.必然事件D.确定事件2.小军旅行箱的密码是一个三位数,每位上的数字是0至9中的一个,由于他忘记了密码的末位数字,则小军能一次打开该旅行箱的概率是( )A.B.C.D.3.下列事件发生的概率为0的是( )A.随意掷一枚硬币两次,有一次正面朝上B.早晨太阳从东方升起C.|a|=2,a=2D.从三个红球中摸出一个黑球4.在一个不透明的口袋中装有2个红球和若干个白球,它们除颜色外其他完全相同.通过多次摸球试验后发现,摸到红球的频率稳定在20%附近,则口袋中白球可能有( )A.5个B.6个C.7个D.8个5.如图,有甲、乙两种地板样式,如果小球分别在上面自由滚动,设小球在甲种地板上最终停留在黑色区域的概率为P1,在乙种地板上最终停留在黑色区域的概率为P2,则( )A.P1>P2B.P1<P2C.P1=P2D.以上都有可能6.商场举行摸奖促销活动,对于“抽到一等奖的概率为0.1”.下列说法正确的是( )A.抽10次奖必有一次抽到一等奖B.抽一次不可能抽到一等奖C.抽10次也可能没有抽到一等奖D.抽了9次如果没有抽到一等奖,那么再抽一次肯定抽到一等奖7.在a2□4a□4的空格□中,任意填上“+”或“﹣”,在所有得到的代数式中,能构成完全平方式的概率是( )A.1B.C.D.8.小明要给朋友小林打电话,电话号码是七位正整数,他只记住了电话号码前四位顺序,后三位是3,6,7三位数字的某一种排列顺序,但具体顺序忘记了,那么小明第一次就拨对的概率是( )A.B.C.D.9.有一盒水彩笔除了颜色外无其他差别,其中各种颜色的数量统计如图所示.小腾在无法看到盒中水彩笔颜色的情形下随意抽出一支.小腾抽到蓝色水彩笔的概率为( )A.B.C.D.10.如图是两个可以自由转动的转盘,每个转盘被分成两个扇形,同时转动两个转盘,转盘停止后,指针所指区域内的数字之和为3的概率是( )A.B.C.D.二、填空题11.数学试卷的选择题都是四选一的单项选择题,小明对某道选择题完全不会做,只能靠猜测获得结果,则小明答对的概率是 .12.在一个不透明的口袋中装有仅颜色不同的红、白两种小球,其中红球3个,白球n个,若从袋中任取一个球,摸出红球的概率是0.2,则n= .13.小明和爸爸进行射击比赛,他们每人都射击10次.小明击中靶心的概率为0.6,则他击不中靶心的次数为 次;爸爸击中靶心8次,则他击不中靶心的概率为 .14.一个圆形转盘的半径为2cm,现将转盘分成若干个扇形,并分别相间涂上红、黄两种颜色.转盘转动10000次,指针指向红色部分有2500次.转盘上黄色部分的面积大约是 .15.已知一包糖共有5种颜色(糖果只有颜色差别),如图所示是这包糖果分布的百分比的统计图在这包糖中任意取一粒,则取出糖果的颜色为绿色或棕色的概率是 .16.如图所示是一条线段,AB的长为10厘米,MN的长为2厘米,假设可以随意在这条线段上取一个点,那么这个点取在线段MN上的概率为 .17.在世界大学生运动会射击运动员选拔活动中,甲、乙两组各四名选手的射击平均环数如下,甲组:9,9,11,10;乙组:9,8,9,10;分别从甲、乙两组中随机选取一名选手,则这两名选手的射击平均环数为19的概率 .三、解答题18.抛掷一枚均匀的骰子(各面上的点数分别为1﹣6点)1次,落地后:(1)朝上的点数有哪些结果?他们发生的可能性一样吗?(2)朝上的点数是奇数与朝上的点数是偶数,这两个事件的发生可能性大小相等吗?(3)朝上的点数大于4与朝上的点数不大于4,这两个事件的发生可能性大小相等吗?如果不相等,那么哪一个可能性大一些?19.如图是一个可以自由转动的转盘,转动转盘,当转盘停止时,指针落在红色区域和白色区域的概率分别是多少?20.米奇家住宅面积为90平方米,其中客厅30平方米,大卧室18平方米,小卧室15平方米,厨房14平方米,大卫生间9平方米,小卫生间4平方米.如果一只小猫在该住宅内地面上任意跑.求:(1)P (在客厅捉到小猫);(2)P (在小卧室捉到小猫);(3)P (在卫生间捉到小猫);(4)P (不在卧室捉到小猫).21.在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共20只,某学习小组做摸球试验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复.下表是活动进行中的一组统计数据:摸球的次数n1001502005008001000摸到白球的次数m5896116295484601摸到白球的频率0.580.640.580.590.6050.601(1)请估计:当n 很大时,摸到白球的频率将会接近  ;(2)假如你去摸一次,你摸到白球的概率是  ,摸到黑球的概率是  ;(精确到0.1)(3)试估算口袋中黑、白两种颜色的球各有多少只?22.用10个球设计一个摸球游戏,且分别满足下列要求:(1)使摸到红球的概率为;(2)使摸到红球和白球的概率都是.23.将正面分别写有数字1,2,3的三张卡片(卡片的形状、大小、质地、颜色等其他方面完全相同)洗匀后,背面朝上放在桌面上.甲从中随机抽取一张卡片,记该卡片上的数字为a,然后放回洗匀,背面朝上放在桌面上;再由乙从中随机抽取一张卡片,记该卡片上的数字为b,组成数对(a,b).(1)请写出数对(a,b)所有可能出现的结果;(2)甲、乙两人玩游戏,规则如下:按上述要求,两人各抽取一次卡片,按照得到的数对计算ab2的值,若ab2的值为奇数则甲赢;ab2的值为偶数则乙赢.你认为这个游戏公平吗?请说明理由.北师大新版七年级下册《第6章概率初步》2024年单元测试卷参考答案与试题解析一、选择题1.【解答】解:“任意买一张电影票,座位号是2的倍数”,此事件是随机事件.故选:B.2.【解答】解:∵末尾数字是0至9这10个数字中的一个,∴小军能一次打开该旅行箱的概率是,故选:A.3.【解答】解:A、随意掷一枚硬币两次,有一次正面朝上,是随机事件,发生的概率大于0并且小于1,不符合题意;B、早晨太阳从东方升起,是必然事件,发生的概率为1,不符合题意;C、|a|=2,a=2,是随机事件,发生的概率大于0并且小于1,不符合题意;D、从三个红球中摸出一个黑球,是不可能事件,发生的概率为0,符合题意;故选:D.4.【解答】解:设袋中白球的个数为x,根据题意,得:=20%,解得x=8,经检验x=8是分式方程的解,所以口袋中白球可能有8个,故选:D.5.【解答】解:由图甲可知,黑色方砖6块,共有16块方砖,∴黑色方砖在整个地板中所占的比值==,∴在甲种地板上最终停留在黑色区域的概率为P1是,由图乙可知,黑色方砖3块,共有9块方砖,∴黑色方砖在整个地板中所占的比值==,∴在乙种地板上最终停留在黑色区域的概率为P2是,∵>,∴P1>P2;故选:A.6.【解答】解:根据概率的意义可得“抽到一等奖的概率为0.1”就是说抽10次可能抽到一等奖,也可能没有抽到一等奖,故选:C.7.【解答】解:能够凑成完全平方公式,则4a前可是“﹣”,也可以是“+”,但4前面的符号一定是:“+”,此题总共有(﹣,﹣)、(+,+)、(+,﹣)、(﹣,+)四种情况,能构成完全平方公式的有2种,所以概率是.故选:B.8.【解答】解:因为后3位是3,6,7三个数字共6种排列情况,而正确的只有1种,故小明第一次就拨对的概率是.故选:B.9.【解答】解:图中共有水彩笔2+3+4+3+6+2=20支,其中蓝色水彩笔6支,则抽到蓝色水彩笔的概率为=;故选:C.10.【解答】解:列树状图得:共有6种情况,和为3的情况数有3种,所以概率为,故选:A.二、填空题11.【解答】解:P(答对)=.12.【解答】解:根据题意得:=0.2,解得:n=12,经检验:n=12是原分式方程的解.故答案为:12.13.【解答】解:由题意知:小明不中靶心的次数为10×(1﹣0.6)=4次,爸爸击中靶心8次,则他击不中靶心有2次,故其概率为0.2.故本题答案为:4;0.2.14.【解答】解:转盘转动10000次,指针指向红色部分为2500次,指针指向红色的概率2500÷10000=25%,即红色面积占总面积的25%;而黄色面积占75%,其面积为0.75×4π=3π(cm2).故答案为:3πcm2.15.【解答】解:棕色所占的百分比为:1﹣20%﹣15%﹣30%﹣15%=1﹣80%=20%,所以,P(绿色或棕色)=30%+20%=50%=,故答案为:.16.【解答】解:AB间距离为10,MN的长为2,故以随意在这条线段上取一个点,那么这个点取在线段MN上的概率为=.17.【解答】解:画树状图如图:∵共有16种等可能结果,两名同学的射击平均环数为19的结果有5种结果,∴这两名同学的射击平均环数为19的概率为,故答案为:.三、解答题18.【解答】解:(1)因为抛掷一枚均匀的骰子(各面上的点数分别为1﹣6点)1次,落地后朝上的点数可能是1、2、3、4、5、6,所以它们的可能性相同;(2)因为朝上的点数是奇数的有1,3,5,它们发生的可能性是,朝上的点数是偶数的有2,4,6,它们发生的可能性是所以发生的可能性大小相同;(3)因为朝上的点数大于4的数有5,6,发生可能性是=,朝上的点数不大于4的数有1,2,3,4,发生可能性是=,所以朝上的点数大于4与朝上的点数不大于4可能性大小不相等,朝上的点数不大于4发生的可能性大.19.【解答】解:根据几何概率的意义可得:P(红色区域)==,P(白色区域)===,答:指针落在白色区域的概率是,指针落在红色区域的概率是.20.【解答】解:(1)P(在客厅捉到小猫)==.(2)P(在小卧室捉到小猫)==.(3)P(在卫生间捉到小猫)==.(4)P(不在卧室捉到小猫)===.21.【解答】解:(1)根据题意可得当n很大时,摸到白球的频率将会接近0.60,故答案为:0.60;(2)因为当n很大时,摸到白球的频率将会接近0.60;所以摸到白球的概率是0.6;摸到黑球的概率是0.4;故答案为:0.6,0.4;(3)因为摸到白球的概率是0.6,摸到黑球的概率是0.4,所以口袋中黑、白两种颜色的球有白球有30×0.6=18个,黑球有30×0.4=12个.22.【解答】解:(1)10个除颜色外均相同的球,其中2个红球,8个黄球;(2)10个除颜色外均相同的球,其中4个红球,4个白球,2个其他颜色球.23.【解答】解:(1)如图所示:(2)由树状图知,共有9种等可能结果,其中ab2的值为奇数的有1、9、3、27这4种结果,ab2的值为偶数的有4、2、8、18、12这5种结果,所以甲赢的概率为,乙赢的概率为,∵≠,∴这个游戏不公平.。

第六章 概率初步达标测试题(含答案)

第六章  概率初步达标测试题(含答案)

第六章 概率初步达标测试题姓名: 得分:一、选择题(20分)1、“任意买一张电影票,座位号是2的倍数”,此事件是( ) A .不可能事件 B .不确定事件 C .必然事件 D .以上都不是2、任意掷一枚质地均匀的骰子,掷出的点数大于4的概率是 ( )A .21B .31C .32D .613、一个袋中装有2个红球,3个蓝球和5个白球,它们除颜色外完全相同,现在从中任意摸出一个球,则P (摸到红球)等于 ( )A .21B . 32C .51D .1014、如图,有甲、乙两种地板样式,如果小球分别在上面自由滚动,设小球在甲种地板上最终停留在黑色区域的概率为1P ,在乙种地板上最终停留在黑色区域的概率为2P ,则 ( ) A .21P P > B . 21P P < C . 21P P = D .以上都有可能5、100个大小相同的球,用1至100编号,任意摸出一个球,则摸出的是5的倍数编号的球的概率是 ( )A .201B . 10019C .51 D .以上都不对二、填空题(每空3分,共63分)6、必然事件发生的概率是________,即P(必然事件)= _______;不可能事件发生的概率是_______,即P (不可能事件)=_______;若A 是不确定事件,则______)<(<A P ______.7、一副扑克牌去掉大王、小王后随意抽取一张,抽到方块的概率是______,抽到3的概率是______. 8、任意掷一枚质地均匀的骰子,朝上的点数是奇数的概率是______.9、数学试卷的选择题都是四选一的单项选择题,小明对某道选择题完全不会做,只能靠猜测获得结果,则小明答对的概率是_____.10、在数学兴趣小组中有女生4名,男生2名,随机指定一人为组长恰好是女生的概率是_______. 11、布袋中装有2个红球,3个白球,5个黑球,它们除颜色外均相同,则从袋中任意摸出一个球是白球的概率是_________.12、有一组卡片,制作的颜色,大小相同,分别标有0—10这11个数字,现在将它们背面向上任意颠倒次序,然后放好后任取一组,则: (1)P (抽到两位数)= ; (2)P (抽到一位数)= ; (3)P (抽到的数大于8)= ;13、某路口南北方向红绿灯的设置时间为:红灯40s ,绿灯60s ,黄灯3s .小刚的爸爸随机地由南往北开车经过该路口时遇到红灯的概率是_________.14、如图是一个可自由转动的转盘,转动转盘,停止后,指针指向3的概率是_______.15、(2011山东烟台中考题)如图,在两个同心圆中,四条直径把大圆分成八等份,若往圆面投掷飞镖,则飞镖落在黑色区域的概率是 .16、若从一个不透明的口袋中任意摸出一球是白球的概率为61,已知袋中白球有3个,则袋中球的总数是____________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学七年级(下)第六章 概率初步练习题
一、选择题
1、“任意买一张电影票,座位号是2的倍数”,此事件是( )
A .不可能事件
B .不确定事件
C .必然事件
D .以上都不是
2、任意掷一枚质地均匀的骰子,掷出的点数大于4的概率是 ( )
A .21
B .31
C .32
D .6
1
3、一个袋中装有2个红球,3个蓝球和5个白球,它们除颜色外完全相同,现在从中任意摸出一个球,则P (摸到红球)等于 ( )
A .21
B . 32
C .51
D .10
1
4、如图,有甲、乙两种地板样式,如果小球分别在上面自由滚动,设小球在甲种地板上最终停留在黑色区域的概率为1P ,在乙种地板上最终停留在黑色区域的概率为2P ,则 ( )
A .21P P >
B . 21P P <
C . 21P P =
D .以上都有可能
5、100个大小相同的球,用1至100编号,任意摸出一个球,则摸出的是5的倍数编号的球的概率是 ( )
A .201
B . 10019
C .5
1 D .以上都不对
二、填空题
6、必然事件发生的概率是________,即P(必然事件)= _______;不可能事件发生的概率是_______,即
P (不可能事件)=_______;若A 是不确定事件,则______)<(<A P ______.
7、一副扑克牌去掉大王、小王后随意抽取一张,抽到方块的概率是______,抽到3的概率是______.
8、任意掷一枚质地均匀的骰子,朝上的点数是奇数的概率是______.
9、数学试卷的选择题都是四选一的单项选择题,小明对某道选择题完全不会做,只能靠猜测获得结果,则小明答对的概率是_____.
10、在数学兴趣小组中有女生4名,男生2名,随机指定一人为组长恰好是女生的概率是_______.
11、布袋中装有2个红球,3个白球,5个黑球,它们除颜色外均相同,则从袋中任意摸出一个球是白
球的概率是_________.
12、有一组卡片,制作的颜色,大小相同,分别标有0—10这11个数字,现在将它们背面向上任意颠
倒次序,然后放好后任取一组,则:
(1)P (抽到两位数)= ;
(2)P (抽到一位数)= ;
(3)P (抽到的数大于8)= ;
13、某路口南北方向红绿灯的设置时间为:红灯40s ,绿灯60s ,黄灯3s .小刚的爸爸随机地由南往北开车经过该路口时遇到红灯的概率是_________.
14、如图是一个可自由转动的转盘,转动转盘,停止后,指针指向3的概率是_______.
15、(2011山东烟台中考题)如图,在两个同心圆中,四条直径把大圆分成八等份,若往圆面投掷飞镖,则飞镖落在黑色区域的概率是 .
16、若从一个不透明的口袋中任意摸出一球是白球的概率为
61,已知袋中白球有3个,则袋中球的总数是____________。

三、解答题
17、下列事件中,哪些是确定事件?哪些是不确定事件?
(1)任意掷一枚质地均匀的骰子,朝上的点数是6.
(2)在一个平面内,三角形三个内角的和是190度.
(3)线段垂直平分线上的点到线段两端的距离相等.
(4)打开电视机,它正在播动画片.
18、请将下列事件发生的概率标在图中:
(1)随意掷两枚质地均匀的骰子,朝上面的点数之和为1;
(2)抛出的篮球会下落;
(3)从装有3个红球、7个白球的口袋中任取一个球,恰好是红球(这些球除颜色外完全相同);
(4)掷一枚质地均匀的硬币,硬币落下后,正面朝上.
19、下面是两个可以自由转动的转盘,转动转盘,分别计算转盘停止后,指针落在红色区域的概率.
20、用10个球设计一个摸球游戏:
(1)使摸到红球的概率为5
1; (2)使摸到红球和白球的概率都是
5
2.
第六章 概率初步练习题 参考答案
一、选择题答案
1、选B
2、 选B
3、 选C
4、 选A
5、 选C
二、填空题答案
第6题 1,1; 0,0; 0,1 第7题
41; 131
第8题
21 第9题 41 第10题 32 第11题 103
第12题(1)
111; (2)1110; (3)112 第13题 10340
第14题 31 第15题 2
1 第16题 18
三、解答题答案
第17题(1)不确定事件; (2)确定事件,也是不可能事件;
(3)确定事件,也是必然事件; (4)不确定事件;
第18题(1)标在0处; (2)标在1(100%)处;
(3)标在
103(30%)处; (4)标在21(50%)处.
第19题 41; 8
3
第20题 (1)2个红球,8个其他颜色球;
(2)4个红球,4个白球,2个其他颜色球.。

相关文档
最新文档