概率论与数理统计(第四版)-沈恒范4~6章习题答案

合集下载

概率论与数理统计第四版习题答案全

概率论与数理统计第四版习题答案全

概率论与数理统计习(第四版)题解答第一章 随机事件及其概率·样本空间·事件的关系及运算一、任意抛掷一颗骰子,观察出现的点数。

设事件A 表示“出现偶数点”,事件B 表示“出现的点数能被3整除”.(1)写出试验的样本点及样本空间;(2)把事件A 及B 分别表示为样本点的集合; (3)事件B A AB B A B A ,,,,分别表示什么事件?并把它们表示为样本点的集合.解:设i ω表示“出现i 点”)6,,2,1( =i ,则(1)样本点为654321,,,,,ωωωωωω;样本空间为}.,,,,,{654321ωωωωωω=Ω (2)},,{642ωωωA =; }.,{63ωωB = (3)},,{531ωωωA =,表示“出现奇数点”;},,,{5421ωωωωB =,表示“出现的点数不能被3整除”;},,,{6432ωωωωB A =⋃,表示“出现的点数能被2或3整除”;}{6ωAB =,表示“出现的点数能被2整除且能被3整除”;},{B A 51ωω= ,表示“出现的点数既不能被2整除也不能被3整除”二、写出下列随机试验的样本空间及各个事件中的样本点:(1)同时掷三枚骰子,记录三枚骰子的点数之和.A —“点数之和大于10”,B —“点数之和小于15”.(2)一盒中有5只外形相同的电子元件,分别标有1,2,3,4,5.从中任取3只,A —“最小为1”.解:(1) 设i ω表示“点数之和等于i ”)18,,4,3( =i ,则},,,{1843ωωω =Ω;},,,{181211ωωωA =;}.,,,{1443ωωωB =(2) 设ijk ω表示“出现为k j i ,,”);5,,2,1,,(k j i k j i ≠≠= ,则},,,,,,,,,{345245235234145135134125124123ωωωωωωωωωω=Ω }.,,,,,{145135134125124123ωωωωωωA =三、设C B A ,,为三个事件,用事件之间的运算表示下列事件: (1) A 发生, B 与C 都不发生; (2) C B A ,,都发生;(3) C B A ,,中至少有两个发生; (4) C B A ,,中至多有两个发生. 解:(1) C B A ;(2) ABC ;(3) ABC C AB C B A BC A ⋃⋃⋃或CA BC AB ⋃⋃(4) BC A C B A C AB C B A C B A C B A C B A ⋃⋃⋃⋃⋃⋃或C B A ⋃⋃或.ABC四、一个工人生产了n 个零件,以i A 表示他生产的第 i 个零件是合格品(n i ≤≤1).用i A 表示下列事件:(1)没有一个零件是不合格品; (2)至少有一个零件是不合格品; (3)仅有一个零件是不合格品; (4)至少有一个零件不是不合格品. 解:(1) n A A A 21;(2) n A A A 21或n A A A ⋃⋃⋃ 21; (3) n n n A A A A A A A A A 212121⋃⋃⋃ (4) n A A A ⋃⋃⋃ 21或.21n A A A第二章 概率的古典定义·概率加法定理一、由七个数字组成,每个数字可以是0,1,2,…,9中的任一个数(但第一个数字不能为0),由完全不同的数字组成的概率.解:基本事件总数为611011011011011011019109⨯=C C C C C C C 有利事件总数为456789214151617181919⨯⨯⨯⨯⨯=C C C C C C C 设A 表示“是由完全不同的数字组成”,则0605.0109456789)(62≈⨯⨯⨯⨯⨯⨯=A P 二、把十本书任意地放在书架上,求其中指定的三本书放在一起的概率.解:基本事件总数为!101010=A 指定的三本书按某确定顺序排在书架上的所有可能为!777=A 种;这三本书按确定的顺序放在书架上的所以可能的位置共818=C 种;这三本书的排列顺序数为!333=A ;故有利事件总数为!3!8!38!7⨯=⨯⨯(亦可理解为)3388P P设A 表示“指定的三本书放在一起”,则067.0151!10!3!8)(≈=⨯=A P三、为了减少比赛场次,把二十个队任意分成两组(每组十队)进行比赛,求最强的两个队被分在不同组的概率.解:20个队任意分成两组(每组10队)的所以排法,构成基本事件总数1020C ;两个最强的队不被分在一组的所有排法,构成有利事件总数91812C C 设A 表示“最强的两队被分在不同组”,则526.01910)(102091812≈==C C C A P四、某工厂生产的产品共有100个,其中有5个次品.从这批产品中任取一半来检查,求发现次品不多于1个的概率.解:设i A 表示“出现的次品为i 件”)5,4,3,2,1,0(=i ,A 表示“取出的产品中次品不多于 1个”,则 .10A A A ⋃=因为V A A =10,所以).()()(10A P A P A P +=而0281.0979942347)(5010050950≈⨯⨯⨯==C C A P 1529.09799447255)(501004995151≈⨯⨯⨯⨯==C C C A P 故 181.01529.00281.0)(=+≈A P五、一批产品共有200件, 其中有6件废品.求 (1) 任取3件产品恰有1件是废品的概率; (2) 任取3件产品没有废品的概率; (3) 任取3件产品中废品不少于2件的概率. 解:设A 表示“取出的3件产品中恰有1件废品”;B 表示“取出的3件产品中没有废品”;C 表示“取出的3件产品中废品不少于2件”,则 (1) 0855.019819920019319418)(3200219416≈⨯⨯⨯⨯==C C C A P (2) 912.0198199200192193194)(32003194≈⨯⨯⨯⨯==C C B P(3) 00223.019819920012019490)(3200019436119426≈⨯⨯⨯⨯=+=C C C C C C P六、设41)( ,0 ,31)()()(======BC P P(AC)P(AB)C P B P A P .求A , B , C 至少有一事件发生的 概率.解:因为0==P(AC)P(AB),所以V AC V AB ==,,从而V C AB =)(可推出0)(=ABC P设D 表示“A , B , C 至少有一事件发生”,则C B A D ⋃⋃=,于是有)()()()()()()()()(ABC P CA P BC P AB P C P B P A P C B A P D P +---++=⋃⋃= 75.04341313131==-++=第三章 条件概率与概率乘法定理·全概率公式与贝叶斯公式一、设,6.0)|(,4.0)(,5.0)(===B A P B P A P 求)|(,)(B A A P AB P . 解:因为B A AB B B A A +=+=)(,所以)()()(B A P AB P A P +=,即14.06.0)4.01(5.0)()()()()()(=⨯--=-=-=B A P B P A P B A P A P AB P68.074.05.036.0)4.01(5.05.0)()()()()()]([)|(≈=--+=-+==B A P B P A P A P B A P B A A P B A A P二、某人忘记了的最后一个数字,因而他随意地拨号,求他拨号不超过两次而接通所需的概率.若已知最后一个数字是奇数,那么此概率是多少? 解:设A 表示“第一次拨通”,B 表示“第二次拨通”,C 表示“拨号不超过两次而拨通”(1)2.0101101)()()(19111101911011=+=⋅+=+=C C C C C C A B P A P C P(2)4.05151)()()(2511141511=+=+=+=A A A A A A B P A P C P三、两台车床加工同样的零件,第一台出现废品的概率是0.03,第二台出现废品的概率是0.02.加工出来的零件放在一起,并且已知第一台加工的零件比第二台加工的零件多 一倍.(1)求任意取出的零件是合格品的概率;(2)如果任意取出的零件是废品,求它是第二台车床加工的概率. 解:设i A 表示“第i 台机床加工的零件”)2,1(=i ;B 表示“出现废品”;C 表示“出现合格品”(1))()()()()()()()(22112121A C P A P A C P A P C A P C A P C A C A P C P +=+=+= 973.0)02.01(31)03.01(32≈-⨯+-⨯=(2)25.002.03103.03202.031)()()()()()()()()(22112222=⨯+⨯⨯=+==A B P A P A B P A P A B P A P B P B A P B A P四、猎人在距离100米处射击一动物,击中的概率为0.6;如果第一次未击中,则进行第二次射击,但由于动物逃跑而使距离变为150米;如果第二次又未击中,则进行第三次射击,这时距离变为200米.假定击中的概率与距离成反比,求猎人三次之击中动物的概率.解:设i A 表示“第i 次击中”)3,2,1(=i ,则由题设,有1006.0)(1kA P ==,得60=k ,从而有4.015060150)(2===k A P ,.3.020060200)(3===k A P设A 表示“三次之击中”,则321211A A A A A A A ++=,故有)()()()()()()(321211A P A P A P A P A P A P A P ++=832.03.0)4.01()6.01(4.0)6.01(6.0=⨯-⨯-+⨯-+= (另解)设B 表示“猎人三次均未击中”,则168.0)3.01)(4.01)(6.01()(=---=B P故所求为 832.0)(1)(=-=B P B P五、盒中放有12个乒乓球,其中有9个是新的.第一次比赛时从其中任取3个来用,比赛后仍放回盒中.第二次比赛时再从盒中任取3个,求第二次取出的都是新球的概率. 解:设i A 表示“第一次取得i 个新球”)3,2,1,0(=i ,则2201)(312330==C C A P 22027)(31219231==C C C A P 220108)(31229132==C C C A P 22084)(31239033==C C C A P 设B 表示“第二次取出的都是新球”,则312363123731238312393022084220108220272201)()()(C C C C C C C C A B P A P B P i i i ⋅+⋅+⋅+⋅==∑=146.0532400776161112208444722010855142202755212201≈=⋅+⋅+⋅+⋅=第四章 随机事件的独立性·独立试验序列一、一个工人看管三台车床,在一小时车床不需要工人照管的概率:第一台等于0.9,第二台等于0.8,第三台等于0.7.求在一小时三台车床中最多有一台需要工人照管的概率. 解:设i A 表示“第i 台机床不需要照管”)3,2,1(=i ,则9.0)(1=A P 8.0)(2=A P 7.0)(3=A P再设B 表示“在一小时三台车床中最多有一台需要工人照管”,则321321321321A A A A A A A A A A A A B +++=于是有)()()()()()()()()()()()()(321321321321A P A P A P A P A P A P A P A P A P A P A P A P B P +++= )7.01(8.09.07.0)8.01(9.07.08.0)9.01(7.08.09.0-⨯⨯+⨯-⨯+⨯⨯-+⨯⨯=902.0=.(另解)设i B 表示“有i 台机床需要照管”)1,0(=i ,B 表示“在一小时三台车床中最多有一台需要工人照管”,则10B B B +=且0B 、1B 互斥,另外有 504.07.08.09.0)(0=⨯⨯=B P398.0)7.01(8.09.07.0)8.01(9.07.08.0)9.01()(1=-⨯⨯+⨯-⨯+⨯⨯-=B P 故902.0398.0504.0)()()()(1010=+=+=+=B P B P B B P B P .二、电路由电池a 与两个并联的电池b 及c 串联而成.设电池c b a ,,损坏的概率分别是0.3、0.2、0.2,求电路发生间断的概率. 解:设1A 表示“a 损坏”;2A 表示“b 损坏”;3A 表示“c 损坏”;则3.0)(1=A P 2.0)()(32==A P A P又设B 表示“电路发生间断”,则321A A A B +=于是有)()()()()(321321321A A A P A A P A P A A A P B P -+=+=)()()()()()(321321A P A P A P A P A P A P -+= 328.02.02.03.02.02.03.0=⨯⨯-⨯+=.三、三个人独立地去破译一个密码,他们能译出的概率分别为51、31、41,求能将此密码译出的概率.解:设A 表示“甲能译出”;B 表示“乙能译出”;C 表示“丙能译出”,则51)(=A P 31)(=B P 41)(=C P设D 表示“此密码能被译出”,则C B A D ⋃⋃=,从而有)()()()()()()()()(ABC P CA P BC P AB P C P B P A P C B A P D P +---++=⋃⋃=)()()()()()()()()()()()(C P B P A P A P C P C P B P B P A P C P B P A P +---++=6.0413151415141513151413151=⨯⨯+⨯-⨯-⨯-++=. (另解)52)411)(311)(511()()()()()(=---===C P B P A P C B A P D P ,从而有6.053521)(1)(==-=-=D P D P四、甲、乙、丙三人同时对飞机进行射击,三人的命中概率分别为7.0,5.0,4.0.飞机被一人击中而被击落的概率为2.0,被两人击中而被击落的概率为6.0,若三人都击中,则 飞机必被击落.求飞机被击落的概率. 解:设1A 表示“甲命中”;2A 表示“乙命中”;3A 表示“丙命中”;则4.0)(1=A P5.0)(2=A P 7.0)(3=A P设i B 表示“i 人击中飞机” )3,2,1,0(=i ,则09.0)7.01)(5.01)(4.01()())(()()(3213210=---===A P A P A P A A A P B P)()(3213213211A A A A A A A A A P B P ++=)()()(321321321A A A P A A A P A A A P ++=)()()()()()()()()(321321321A P A P A P A P A P A P A P A P A P ++=36.07.0)5.01)(4.01()7.01(5.0)4.01()7.01)(5.01(4.0=⨯--+-⨯⨯-+--⨯=)()(3213213212A A A A A A A A A P B P ++= )()()(321321321A A A P A A A P A A A P ++=)()()()()()()()()(321321321A P A P A P A P A P A P A P A P A P ++=41.07.0)5.01)(4.01()7.01(5.0)4.01()7.01)(5.01(4.0=⨯--+-⨯⨯-+--⨯=14.07.05.04.0)()()()()(3213213=⨯⨯===A P A P A P A A A P B P 设A 表示“飞机被击落”,则由题设有0)(0=B A P 2.0)(1=B A P 6.0)(2=B A P 1)(3=B A P故有458.0114.06.041.02.036.0009.0)()()(30=⨯+⨯+⨯+⨯==∑=i i i B A P B P A P .五、某机构有一个9人组成的顾问小组,若每个顾问贡献正确意见的概率都是0.7,现在该机构就某事可行与否个别征求每个顾问的意见,并按多数人意见作出决策,求作 出正确决策的概率.解:设i A 表示“第i 人贡献正确意见”,则7.0)(=i A P )9,,2,1( =i .又设m 为作出正确意见的人数,A 表示“作出正确决策”,则 )9()8()7()6()5()5()(99999P P P P P m P A P ++++=≥=+⋅⋅+⋅⋅+⋅⋅=277936694559)3.0()7.0()3.0()7.0()3.0()7.0(C C C 9991889)7.0()3.0()7.0(⋅+⋅⋅+C C+⋅⋅+⋅⋅+⋅⋅=273645)3.0()7.0(36)3.0()7.0(84)3.0()7.0(126918)7.0()3.0()7.0(9+⋅⋅+0403.01556.02668.02668.01715.0++++= 901.0=.六、每次试验中事件A 发生的概率为p ,为了使事件A 在独立试验序列中至少发生一次的概率不小于p ,问至少需要进行多少次试验?解:设做n 次试验,则n p A P A P )1(1}{1}{--=-=一次都不发生至少发生一次要p p n ≥--)1(1,即要p p n -≤-1)1(,从而有.1)1(log )1(=-≥-p n p 答:至少需要进行一次试验.第五章 离散随机变量的概率分布·超几何分布·二项分布·泊松分布一、一批零件中有9个合格品与3个废品.安装机器时从这批零件中任取1个.如果每次取出的废品不再放回去,求在取得合格品以前已取出的废品数的概率分布. 解:设X 表示“在取得合格品以前已取出的废品数”,则X 的概率分布为即亦即二、自动生产线在调整以后出现废品的概率为p .生产过程中出现废品时立即进行调整.求在两次调整之间生产的合格品数的概率分布.解:设X 表示“在两次调整之间生产的合格品数”,且设p q -=1,则ξ的概率分布为三、已知一批产品共20个,其中有4个次品.(1)不放回抽样.抽取6个产品,求样品中次品数的概率分布; (2)放回抽样.抽取6个产品,求样品中次品数的概率分布. 解:(1)设X 表示“取出的样本中的次品数”,则X 服从超几何分布,即X 的概率函数为)4,3,2,0()(6206164===-x C C C x X P xx从而X 的概率分布为即(2)设X 表示“取出的样本中的次品数”,则X 服从超几何分布,即X 的概率函数为)6,5,4,3,2,0()2.01()2.0()(66=-==-x C x X P xx x从而X即四、总机为300个用户服务.在一小时每一用户使用的概率等于0.01,求在一小时有4个用户使用的概率(先用二项分布计算,再用泊松分布近似计算,并求相对误差). 解:(1)用二项分布计算)01.0(=p168877.0)01.01()01.0()1()4(2964430029644300≈-=-==C p p C ξP(2)用泊松分布计算)301.0300(=⨯==np λ168031355.0!43)4(34≈==-e ξP相对误差为.5168877.0168031355.0168877.0000≈-=δ五、设事件A 在每一次试验中发生的概率为0.3,当A 发生次数不少于3次时,指示灯发出信号.现进行了5次独立试验,求指示灯发出信号的概率. 解:设X 表示“事件A 发生的次数”,则3.0)(==p A P ,5=n ,).3.0,5(~B X 于是有)5()4()3()3(=+=+==≥X P X P X P X P5554452335)1()1(p C p p C p p C +-+-=16308.000243.002835.01323.0≈++≈(另解) )2()1()0(1)3(1)3(=-=-=-=<-=≥X P X P X P X P X P322541155005)1()1()1(11p p C p p C p p C ------= 16308.0≈六、设随机变量X 的概率分布为2, 1, ,0 , !)(===k k ak X P kλ;其中λ>0为常数,试确定常数a .解:因为∑∞===01)(k k X P ,即∑∞==01!k kk λa ,亦即1=λae ,所以.λe a -=第六章 随机变量的分布函数·连续随机变量的概率密度一、函数211x +可否是连续随机变量X 的分布函数?为什么?如果X 的可能值充满区间: (1)(∞+∞- ,);(2)(0,∞-).解:(1)设211)(xx F +=,则1)(0<<x F 因为0)(lim =-∞→x F x ,0)(lim =+∞→x F x ,所以)(x F 不能是X 的分布函数.(2)设211)(x x F +=,则1)(0<<x F 且0)(lim =-∞→x F x ,1)(lim 0=-→x F x因为)0( 0)1(2)('22<>+-=x x xx F ,所以)(x F 在(0,∞-)上单增. 综上述,故)(x F 可作为X 的分布函数.二、函数x x f sin )(=可否是连续随机变量X 的概率密度?为什么?如果X 的可能值充满区间:(1)⎥⎦⎤⎢⎣⎡2,0π; (2)[]π,0; (3)⎥⎦⎤⎢⎣⎡23,0π.解:(1)因为⎥⎦⎤⎢⎣⎡∈2,0πx ,所以0sin )(≥=x x f ;又因为1cos )(2020=-=⎰ππx dx x f ,所以当⎥⎦⎤⎢⎣⎡∈2,0πx 时,函数x x f sin )(=可作为某随机变量X 的概率密度.(2)因为[]πx ,0∈,所以0sin )(≥=x x f ;但12cos )(00≠=-=⎰ππx dx x f ,所以当[]πx ,0∈时,函数x x f sin )(=不可能是某随机变量X 的概率密度.(3)因为⎥⎦⎤⎢⎣⎡∈23,0πx ,所以x x f sin )(=不是非负函数,从而它不可能是随机变量X 的概率密度.二、一批零件中有9个合格品与3个废品.安装机器时从这批零件中任取1个.如果每次取出的废品不再放回去,求在取得合格品以前已取出的废品数的分布函数,并作出分布函数的图形. 解:设X 表示“取出的废品数”,则X 的分布律为于是,⎪⎩>3,1x四、(柯西分布)设连续随机变量X 的分布函数为+∞<<∞-+=x x B A x F ,arctan )(.求:(1)系数A 及B ;(2)随机变量X 落在区间)1 ,1(-的概率;(3) X 的概率密度.解:(1) 由0)2()(lim =-⋅+=-∞→πB A x F x ,12)(lim =⋅+=-∞→πB A x F x ,解得.1,21πB A ==即)( ,arctan 121)(+∞<<-∞+=x x πx F .(2) .21)]1arctan(121[]1arctan 121[)1()1()11(=-+-+=--=<<-ππF F X P (3) X 的概率密度为)1(1)()(2x x F x f +='=π. 五、(拉普拉斯分布)设随机变量X 的概率密度为+∞<<∞-=-x Ae x f x,)(.求:(1)系数A ;(2)随机变量X 落在区间)1,0(的概率;(3)随机变量X 的分布函数.解:(1) 由1)(⎰+∞∞-=dx x f ,得1220⎰⎰+∞∞-+∞--===A dx e A dx Ae xx ,解得21=A ,即有).( ,21)(+∞<<-∞=-x e x f x(2) ).11(21)(2121)()10(101010ee dx e dx xf X P x x -=-===<<--⎰⎰(3) 随机变量X 的分布函数为⎪⎩⎪⎨⎧>-≤===-∞--∞-⎰⎰021102121)()(x e x e dx e dx x f x F x xx xx .第七章 均匀分布·指数分布·随机变量函数的概率分布一、公共汽车站每隔5分钟有一辆汽车通过.乘客到达汽车站的任一时刻是等可能的.求乘客候车时间不超过3分钟的概率.解:设随机变量X 表示“乘客的候车时间”,则X 服从]5,0[上的均匀分布,其密度函数为⎩⎨⎧∉∈=]5,0[,0]5,0[,51)(x x x f 于是有.6.053)()30(3===≤≤⎰dx x f X P二、已知某种电子元件的使用寿命X (单位:h)服从指数分布,概率密度为⎪⎩⎪⎨⎧≤>=-.0,0;0,8001)(800x x e x f x任取3个这种电子元件,求至少有1个能使用1000h 以上的概率.解:设A 表示“至少有1个电子元件能使用1000h 以上”;321A 、A 、A 分别表示“元件甲、乙、丙能使用1000h 以上”.则287.08001)1000()()()(4510008001000800321≈=-==>===-∞+-∞+-⎰e e dx e X P A P A P A P xx)()()()()()()()()(321313221321321A A A P A A P A A P A A P A P A P A P A A A P A P +---++=⋃⋃=638.0287.0287.03287.0332≈+⨯-⨯=(另解)设A 表示“至少有1个电子元件能使用1000h 以上”.则287.08001)1000(4510008001000800≈=-==>-∞+-∞+-⎰ee dx e X P xx从而有713.01)1000(1)1000(45≈-=>-=≤-eX P X P ,进一步有638.0713.01)]1000([1)(33≈-≈≤-=X P A P三、(1) 设随机变量X 服从指数分布)(λe .证明:对于任意非负实数s 及t ,有).()(t X P s X t s X P ≥=≥+≥这个性质叫做指数分布的无记忆性.(2) 设电视机的使用年数X 服从指数分布)10(.e .某人买了一台旧电视机,求还能使用5年以上的概率. 解:(1)因为)(~λe X ,所以R x ∈∀,有xex F λ--=1)(,其中)(x F 为X 的分布函数.设t s X A +≥=,t X B ≥=.因为s 及t 都是非负实数,所以B A ⊂,从而A AB =.根据条件概率公式,我们有)(1)(1)()()()()()()()(s X P t s X P s X P t s X P B P A P B P AB P B A P s X t s X P <-+<-=≥+≥====≥+≥tst s e e e λλλ--+-=----=]1[1]1[1)(. 另一方面,我们有t t e e t F t X P t X P t X P λλ--=--=-=≤-=<-=≥)1(1)(1)(1)(1)(.综上所述,故有)()(t X P s X t s X P ≥=≥+≥.(2)由题设,知X 的概率密度为⎩⎨⎧≤>=-.,;,0001.0)(1.0x x e x f x 设某人购买的这台旧电视机已经使用了s 年,则根据上述证明的(1)的结论,该电视机还能使用5年以上的概率为6065.01.0)()5()5(5.051.051.05≈=-===≥=≥+≥-∞+-∞+-∞+⎰⎰e e dx e dx xf X P s X s X P xx .答:该电视机还能使用5年以上的概率约为6065.0.四、设随机变量X 服从二项分布)4.0 ,3(B ,求下列随机变量函数的概率分布: (1)X Y 211-=;(2)2)3(2X X Y -=. 解:X 的分布律为(1)X Y 211-=的分布律为(2)2)3(2X X Y -=的分布律为即五、设随机变量X 的概率密度为⎪⎩⎪⎨⎧≤>+=.0,0;0,)1(2)(2x x x x f π求随机变量函数X Y ln =的概率密度.解:因为)()()(ln )()(yX yY e F e X P y X P y Y P y F =<=<=<= 所以随机变量函数X Y ln =的概率密度为)( )1(2)()()()(2''+∞<<-∞+====y e e e e f e e F y F y f yyyyyyXYY π,即 )( )1(2)(2+∞<<-∞+=y e e y f y yY π.第八章 二维随机变量的联合分布与边缘分布一、把一颗均匀的骰子随机地掷两次.设随机变量X 表示第一次出现的点数,随机变量Y 表示两次出现点数的最大值,求二维随机变量),(Y X 的联合概率分布及Y 的边缘概率分布. 解:二维随机变量),(Y X 的联合概率分布为Y 的边缘概率分布为二、设二维随机变量(X ,Y )的联合分布函数)3arctan )(2arctan (),(yC x B A y x F ++=.求:(1)系数A 、B 及C ;(2)(X ,Y )的联合概率密度:(3)边缘分布函数及边缘概率密度. 解:(1)由0)0,(,0),0(,1),(=-∞=∞-=∞+-∞F F F ,得⎪⎪⎪⎩⎪⎪⎪⎨⎧=-=--=++0)2(0)2)(0(1)2)(2(πB AC πC B A πC πB A 解得2πC B ==,.12πA = (2)因为)3arctan 2)(2arctan 2(1),(2yx y x F ++=πππ,所以(X ,Y )的联合概率密度为.)9)(4(6),(),(222"y x y x F y x f xy ++==π(3)X 及Y 的边缘分布函数分别为xx x X x dx x dy y x f dx x F ∞-∞-∞-+∞∞-=+==⎰⎰⎰2arctan 1)4(2),()(2ππ 2arctan 121xπ+=yx y Y y dy y dx y x f dy x F ∞-∞-∞-+∞∞-=+==⎰⎰⎰3arctan 1)9(3),()(2ππ 3arctan 121yπ+=X 及Y 的边缘概率密度分别为⎰⎰⎰+∞+∞∞-+∞∞-++⋅=++==0222222)9(1)4(112)9)(4(6),()(dy y x dy y x dy y x f x f X ππ )4(2)3arctan 31()4(1122022x y x +=+⋅=∞+ππ ⎰⎰⎰+∞+∞∞-+∞∞-++=++==022222241)9(12)9)(4(6),()(dx x y dx y x dx y x f y f Y ππ)9(3)2arctan 21()9(122022y x y +=+=∞+ππ三、设),(Y X 的联合概率密度为⎩⎨⎧>>=+-., 00;0,,Ae ),(3y)(2x 其它y x y x f求:(1)系数A ;(2)),(Y X 的联合分布函数;(3)X 及Y 的边缘概率密度;(4)),(Y X落在区域R :632 ,0 ,0<+>>y x y x 的概率. 解:(1)由1),(=⎰⎰+∞∞-+∞∞-dy dx y x f ,有16132==⎰⎰∞+∞+--A dy e dx e A y x ,解得.6=A (2)),(Y X 的联合分布函数为⎪⎩⎪⎨⎧>>==⎰⎰⎰⎰--∞-∞-其它0,06),(),(0032y x dy e dx e dy y x f dx y x F x y y x xy⎩⎨⎧>>--=--其它0,0)1)(1(32y x e e y x (3)X 及Y 的边缘概率密度分别为⎩⎨⎧≤>=⎪⎩⎪⎨⎧≤>==-+∞--∞+∞-⎰⎰00020006),()(2032x x ex x dy e e dy y x f x f x y x X⎩⎨⎧≤>=⎪⎩⎪⎨⎧≤>==-+∞--∞+∞-⎰⎰00030006),()(3032y y ex x dx e e dx y x f y f y y x Y(4)⎰⎰⎰⎰---==∈x y xR dy e dx edxdy y x f R Y X P 32203326),(}),{(6306271)(2---⎰-=-=e dx e e x四、设二维随机变量),(Y X 在抛物线2x y =与直线2+=x y 所围成的区域R 上服从均匀分布.求:(1) ),(Y X 的联合概率密度;(2) 概率)2(≥+Y X P . 解:(1) 设),(Y X 的联合概率密度为⎩⎨⎧∉∈=.),(, 0;),(,),(R y x R y x C y x f 则由129)322()2(21322122212==-+=-+==--+-⎰⎰⎰⎰⎰C x x x C dx x x C dy dx C Cdxdy x x R解得92=C .故有⎪⎩⎪⎨⎧∉∈=.),(, 0;),(,92),(R y x R y x y x f(2) ⎰⎰⎰⎰⎰⎰++-≥++==≥+x x x x y x dy dx dy dx dxdy y x f Y X P 2212210229292),()2(⎰⎰-++=21210)2(92292dx x x xdx481.02713)322(92922132102≈=-++=x x x x . 第九章 随机变量的独立性·二维随机变量函数的分布一、设X 与Y 是两个相互独立的随机变量,X 在]1,0[上服从均匀分布,Y 的概率密度为⎪⎩⎪⎨⎧≤>=-.0,0;0,21)(2y y e y f yY求 (1) ),(Y X 的联合概率密度; (2) 概率)(X Y P ≥.解: (1)X 的概率密度为⎩⎨⎧∉∈=)1,0(,0)1,0(,1)(x x x f X ,),(Y X 的联合概率密度为(注意Y X ,相互独立)⎪⎩⎪⎨⎧><<==-其它,00,10,21)()(),(2y x e y f x f y x f yY X(2)dx edx edy e dx dxdy y x f X Y P x xyxyxy ⎰⎰⎰⎰⎰⎰-∞+-∞+-≥=-===≥1021022102)(21),()(7869.0)1(2221122≈-=-=--e e x二、设随机变量X 与Y 独立,并且都服从二项分布:.,,2 ,1 ,0 ,)(; ,,2 ,1 ,0 ,)(212211n j qp C j p n i q p C i p jn jj n Y i n i in X ====--证明它们的和Y X Z +=也服从二项分布.证明: 设j i k +=, 则ik n i k i k n ki i n i i n k i Y X Z q p C q p C i k P i P k Z P k P +---=-=∑∑=-===22110)()()()( ∑=-+=ki k n n k i n in q p C C2121)( 由knm ki ik nk m C C C +=-=∑, 有k n n ki in i n C C C21210+==∑. 于是有 ),,2,1,0( )(212121n n k q p C k P kn n k i n n Z +==-++ 由此知Y X Z +=也服从二项分布.三、设随机变量X 与Y 独立,并且X 在区间[0,1]服从均匀分布,Y 在区间[0,2]服从辛普森分布:⎪⎩⎪⎨⎧><≤<-≤≤=.20 0,; 2 1 ,2;10 ,)(y y y y y y y f Y 或求随机变量Y X Z +=的概率密度.解: X 的概率密度为 ⎩⎨⎧∉∈=]1,0[,0]1,0[,1)(x x y f ξ . 于是),(Y X 的联合概率密度为⎪⎩⎪⎨⎧≤<≤≤-≤≤≤≤=. 0, 2 1,10 ,210,10,),(其它当当y x y y x y y x fY X Z +=的联合分布函数为}),{(}{}{)(D y x P z Y X P z Z P z F Z ∈=≤+=≤=,其中D 是zy x ≤+与),(y x f 的定义域的公共部分.故有 ⎪⎪⎪⎩⎪⎪⎪⎨⎧≤<+-≤<-+-≤≤><=3229321212331023,00)(222z z z z z z z zz z z F Z 从而随机变量Y X Z +=的概率密度为⎪⎪⎩⎪⎪⎨⎧≤<-≤<+-≤≤><=3232132103,00)(z z z z z z z z z f Z三、电子仪器由六个相互独立的部件ij L (3,2,1;2,1==j i )组成,联接方式如右图所示.设各个部件的使用寿命ij X 服从相同的指数分布)(λe ,求仪器使用寿命的概率密度.解: 由题设,知ij X 的分布函数为⎩⎨⎧≤>-=-0,00,1x x e F x X ij λ 先求各个并联组的使用寿命)3,2,1( =i Y i 的分布函数.因为当并联的两个部件都损坏时,第i 个并联组才停止工作,所以有)3,2,1(),m ax (21==i Y i i i ξξ从而有)3,2,1( =i Y i 的分布函数为⎩⎨⎧≤>-==-0,00,)1()(221y y e F F y F y X X Y i i i λ 设Z "仪器使用寿命".因为当三个并联组中任一个损坏时,仪器停止工作.所以有),,min(321Y Y Y Z =.从而有Z 的分布函数为⎩⎨⎧≤>---=⎩⎨⎧≤>----=-0,00,])1(1[10,00)],(1)][(1)][(1[1)(32321z z e z z z F z F z F z F z Y Y Y Z λ 故Z 的概率密度为⎩⎨⎧≤>--=---0,00,)2)(1(6)(23z z e e e z f z z z Z λλλλ第十章 随机变量的数学期望与方差一、一批零件中有9个合格品与3个废品.安装机器时从这批零件中任取一个.如果取出的废品不再放回去,求在取得合格品以前已取出的废品数的数学期望、方差与标准差. 解:设X 表示“在取得合格品以前已取出的废品数”,则X 的概率分布为即1103322013220924491430=⨯+⨯+⨯+⨯=EX 即3.0004.03041.02205.0175.00≈⨯+⨯+⨯+⨯=EX2X 的分布为2X0 1 4 9即于是有229220192209444914302=⨯+⨯+⨯+⨯=EX 即4091.0004.09041.04205.0175.002≈⨯+⨯+⨯+⨯=EX从而有3191.013310042471)11033(229)(222≈=-=-=EX EX DX 565.03191.0≈==DX Xσ二、对某一目标进行射击,直至击中为止.如果每次射击命中率为p ,求射击次数的数学期望及方差. 解:设X 表示“第i 次击中”),2,1( =i ,则X 的分布为p q p q q p q p iqp ipqEX i i i i i i 1)1()1()(211111=-='-='===∑∑∑∞=∞=-∞=- 2X p pp p q q p q p q q p pqi EX i i i ii i 122)1()1()(])([223111122-=-=-+='=''==∑∑∑∞=∞=∞=- 进一步有p pp p p EX EX DX 11)1(12)(22222-=--=-=三、设离散型随机变量X 的概率函数为,,2,1,21]2)1([ ==-=k k X P k k k问X 的数学期望是否存在?若存在,请计算)(X E ;若不存在,请解释为什么.解:因为∑∑∑∑∞=∞=∞=∞=-=⋅-=-=-==1111)1(212)1(]2)1([2)1()(k k k k k k k k k k ki i i k k k X P k x X P x 不绝对收敛,所以ξ没有数学期望.四、设随机变量X 的概率密度为⎪⎩⎪⎨⎧≥<-=.1, 0;1,11)(2x x xx f π 求数学期望)(X E 及方差)(X D .解:011)()(112=-⋅==⎰⎰-+∞∞-dx xx dx x xf X E πdx x x dx x x dx x f x X D ⎰⎰⎰-=-⋅==-∞+∞-1022112221211)()(πππ21]arcsin 2112[2102=+--=x x x π五、(拉普拉斯分布)设随机变量X 的概率密度为 )( ,21)(+∞<<-∞=-x e x f x.求数学期望)(X E 及方差)(X D . 解:021)(===⎰⎰+∞∞--+∞∞-dx xe dx x xf EX x2!2)3(21)(0222==Γ====⎰⎰⎰+∞-+∞∞--+∞∞-dx e x dx e x dx x f x DX x x(分部积分亦可)第十一章 随机变量函数的数学期望·关于数学期望与方差的定理一、设随机变量X 服从二项分布)4.0,3(B ,求2)3(X X Y -=的数学期望及方差. 解:X 的概率分布为Y 的概率分布为2Y 的分布为72.072.0128.00=⨯+⨯=EY 72.072.0128.002=⨯+⨯=EY2016.0)72.0(72.0)(222=-=-=EY EY DY二、过半径为R 的圆周上一点任意作这圆的弦,求所有这些弦的平均长度.解:在圆周上任取一点O ,并通过该点作圆得直径OA .建立平面直角坐标系,以O 为原点,且让OA 在x 轴的正半轴上.通过O 任作圆的一条弦OB ,使OB 与x 轴的夹角为θ,则θ服从]2,2[ππ-上的均匀分布,其概率密度为⎪⎩⎪⎨⎧-∉-∈=]2,2[,0]2,2[,1)(ππθππθπθf .弦OB 的长为 ]2,2[cos 2)(ππθθθ-∈=R L ,故所有弦的平均长度为⎰⎰-∞+∞-⋅==22cos 21)()()]([ππθθπθθθθd R d L f L EπθπθθπππRR d R4sin 4cos 42020===⎰.三、一工厂生产的某种设备的寿命X (以年计)服从指数分布,概率密度为⎪⎩⎪⎨⎧≤>=-. 0,0 ;0 ,41)(4x x e x f x工厂规定,出售的设备若在售出一年之损坏可予以调换.若工厂售出一台设备赢利100元,调换一台设备厂方需花费300元.试求厂方出售一台设备的平均净赢利. 解:由题设,有⎰⎰---∞--=-===<104110441141)()1(e e dx e dx x f X P x x进而有 41)1(1)1(-=<-=≥eX P X P设Y 表示“厂方出售一台设备获得的净赢利”,则Y 的概率分布为从而有64.33200300100)1(200414141≈-⨯=⨯+-⨯-=---ee e EY答:厂方出售一台设备获得的平均净赢利约为64.33元.四、设随机变量n X X X ,,21相互独立,并且服从同一分布,数学期望为μ,方差为2σ.求这些随机变量的算术平均值∑==ni i X n X 11的数学期望与方差.解:因为μ=)(i X E ,2)(σ=i X D ,且随机变量n X X X ,,21相互独立.所以有μμ=====∑∑∑∑====ni n i i ni i n i i n X E n X E n X n E X E 11111)(1)(1)1()(,nn X D n X D n X n D X D ni ni in i i n i i 2122121211)(1)(1)1()(σσ=====∑∑∑∑====.五、一民航送客车载有20位旅客自机场开出,沿途有10个车站可以下车,到达一个车站时如没有旅客下车就不停车.假设每位旅客在各车站下车是等可能的,且各旅客是否下车相互独立.求该车停车次数的数学期望.解: 设i X 表示"第i 站的停车次数" (10,,2,1 =i ). 则i X 服从"10-"分布. 其中⎩⎨⎧=站有人下车若在第站无人下车若在第i i X i ,1,0 于是i X 的概率分布为设∑==ni iXX 1, 则X 表示沿途停车次数, 故有]})10110(1[1)10110(0{10)(2020101101--⨯+-⨯===∑∑==i i i i EX X E EX748.8)9.01(1020≈-= 即停车次数的数学期望为748.8.第十二章 二维随机变量的数字特征·切比雪夫不等式与大数定律一、设二维随机变量),(Y X 的联合概率密度为()(). 1,222++=y xAy x f求:(1)系数A ;(2)数学期望)(X E 及)(Y E ,方差)(X D 及)(Y D ,协方差),cov(Y X .解: (1) 由⎰⎰+∞∞-+∞∞-=1),(dxdy y x f . 有()()⎰⎰⎰⎰∞+∞-∞+∞-∞+==+=++1112022222A dr rrd A dxdy y xAπθπ解得, π1=A .(2) ()011),()(222⎰⎰⎰⎰∞+∞-∞+∞-∞+∞-∞+∞-=++==dx y xxdy dxdy y x xf X E π.由对称性, 知 0)(=Y E .⎰⎰+∞∞-+∞∞-==-=dxdy y x f x EX EX X E X D ),(])[()(222()⎰⎰∞+∞-∞+∞-++=dx y xx dy 222211π()()+∞=+++=+-+=+=∞+∞+∞+⎰⎰⎰022022220223]11)1ln([1)1(211r r dr r rr r dr rr d πθπ同理, 有 +∞=)(Y D .)()])([(),cov(XY E EY Y Ex X E Y X =--=⎰⎰+∞∞-+∞∞-=dxdy y x xyf ),(()011),(222⎰⎰⎰⎰∞+∞-∞+∞-∞+∞-∞+∞-=++==dx y xxydy dxdy y x xyf π.二、设二维随机变量),(Y X 的联合概率密度为⎩⎨⎧<<<=其它.,0;10,,1),(x x y y x f求(1) ),cov(Y X ;(2) X 与Y 是否独立,是否相关,为什么? 解: (1) 因为 ⎰⎰⎰⎰⎰====-∞+∞-∞+∞-1210322),(dx x dy xdx dxdy y x xf EX x x0),(1===⎰⎰⎰⎰-+∞∞-+∞∞-xx ydy dx dxdy y x yf EY0),()(1===⎰⎰⎰⎰-+∞∞-+∞∞-xx ydy xdx dxdy y x xyf XY E所以有])32[()])([(),cov(Y X E EY Y EX X E Y X -=--=⎰⎰+∞∞-+∞∞-=dxdy y x xyf ),(010==⎰⎰-xxydy xdx .(2) 当)1,0(∈x 时,有 ⎰⎰+∞∞--===x dy dy y x f x f xxX 2),()(; 当)1,0(∉x 时, 有0)(=x f X .即⎩⎨⎧∉∈=)1,0(0)1,0(2)(X x x x x f 同理有 ⎩⎨⎧∉+∈-=⎪⎩⎪⎨⎧∉∈=⎰⎰-)1,0(1)1,0(1)1,0()1,0()(11Y x y x y x dx x dx y f y y因为 ),()()(y x f y f x f Y X ≠, 所以X 与Y 不是独立的.又因为0),cov(=Y X , 所以X 与Y 是不相关的.三、利用切比雪夫不等式估计随机变量X 与其数学期望)(X E 的差的绝对值大于三倍标准差)(X σ的概率.解:91)3()3(2=≤>-ξξξξξD D D E P .四、为了确定事件A 的概率,进行10000次重复独立试验.利用切比雪夫不等式估计:用事件A在10000次试验中发生的频率作为事件A 的概率的近似值时,误差小于0.01的概率. 解:设ξ表示“在10000次试验中事件A 的次数”,则)5.0,10000(~B ξ且有50005.010000=⨯==np E ξ 2500)5.01(5.010000=-⨯⨯==npq D ξ于是有npqp npq p np m P p n m P 22)01.0(1)01.0(1)01.0()01.0(-=-≥<-=<- 75.025.011=-=-=pq五、样检查产品质量时,如果发现次品多于10个,则认为这批产品不能接受.应该检查多少个产品,可使次品率为10%的一批产品不被接受的概率达到0.9? 解:设ξ表示“发现的次品件数”,则)1.0,(~n B ξ,现要求.nn ξE 1.0= n ξD 09.0=要使得9.0)10(=>ξP ,即9.0)10(=≤<n ξP ,因为9.0)10(=≤<n ξP ,所以)3.01.03.01.03.01.010()10(nn n n n ξn n P ξD ξE n ξD ξE ξξD ξE P -≤-<-=-≤-<-)3.01.010()3()33.01.03.01.010(1,01,0nn n n n n ξn n P --≈≤-<-=ΦΦ1)3.0101.0()3(1,01,0--+nn n ΦΦ (德莫威尔—Laplace 定理)因为10>n ,所以53>n ,从而有1)3(1,0≈n Φ,故9.0)3.0101.0(1,0≈-nn Φ.查表有8997.0)28.1(1,0=Φ,故有28.13.0101.0≈-nn ,解得.146≈n答:应该检查约146个产品,方可使次品率为10%的一批产品不被接受的概率达到0.9.第十三章 正态分布的概率密度、分布函数、数学期望与方差一、设随机变量X 服从正态分布)2,1(2N ,求(1))8.56.1(<≤-X P ;(2))56.4(≥X P .解:(1) )4.2213.1()8.416.2()8.56.1(<-≤-=<-≤-=<≤-X P X P X P 8950.09032.019918.0)]3.1(1[)4.2()3.1()4.2(1,01,01,01,0=+-=--=--=ΦΦΦΦ(2) )78.12178.2(1)56.4(1)56.4(<-<--=<-=≥X P X P X P )]78.2(1)78.1(1)]78.2()78.1([11,01,01,01,0ΦΦΦΦ-+-=---=.0402.09973.09625.02=--二、已知某种机械零件的直径X (mm )服从正态分布)6.0,100(2N .规定直径在2.1100±(mm )之间为合格品,求这种机械零件的不合格品率. 解:设p 表示这种机械零件的不合格品率,则)2.1100(1)2.1100(≤--=>-=X P X P p .而)26.01002()6.02.16.01006.02.1()2.1100(≤-≤-=≤-≤-=≤-X P X P X P 1)2(2)]2(1[)2()2()2(-Φ=Φ--Φ=-Φ-Φ= 9544.019772.02=-⨯= 故0456.09544.01=-=p .三、测量到某一目标的距离时发生的误差X (m)具有概率密度3200)20(22401)(--=x ex f π求在三次测量中至少有一次误差的绝对值不超过30m 的概率.解:三次测量中每次误差绝对值都超过30米可表为}30{}30{}30{>⋃>⋃>=ξξξD 第三次第二次第一次因为)40,20(~2N ξ,所以由事件的相互独立性,有31,01,033)]25.0(1)25.1([})3030{(})30{()(ΦΦ-+-=>+-<=>=ξξP ξP D P13025.05069.0)8944.05987.02(33≈=--= 于是有86975.013025.01)(1}30{=-=-=<D P P 米至少有一次绝对值三次测量中ξ.四、设随机变量),(~2σμN X ,求随机变量函数Xe Y =的概率密度(所得的概率分布称为对数正态分布).解:由题设,知X 的概率密度为)(21)(222)(+∞<<-∞=--x ex f x X σμσπ从而可得随机变量Y 的分布函数为)()()(y e P y Y P y F X Y ≤=≤=.当0≤y 时,有0)(=y F Y ;此时亦有0)(='y F Y . 当0>y 时,有dx ey X P y F yx Y ⎰∞---=≤=ln 2)(2221)ln ()(σμσπ.此时亦有222)(ln 21)(σμσπ--='y Y eyy F .从而可得随机变量Y 的概率密度为⎪⎩⎪⎨⎧>≤=--.0,21;0,0)(222)(ln y e yy y f y Y σμσπ五、设随机变量X 与Y 独立,),(~211σμN X ,),(~222σμN Y ,求:(1) 随机变量函数bY aX Z +=1的数学期望与方差,其中a 及b 为常数; (2) 随机变量函数XY Z=2的数学期望与方差.解:由题设,有211)(,)(σμ==X D X E ;222)(,)(σμ==Y D Y E .从而有(1)211)()()()()()(μμb a Y bE X aE bY E aX E bY aX E Z E +=+=+=+=; 222212221)()()()()()(σσb a Y D b X D a bY D aX D bY aX D Z D +=+=+=+=. (2)212)()()()(μμ===Y E X E XY E Z E ;)()()()()()()()(22222222Y E X E Y E X E XY E Y X E XY D Z D -=-== )()()]()()][()([2222Y E X E Y E Y D X E X D -++= )()()()()()(22X E Y D Y E X D Y D X D ++= 212222212221μσμσσσ++=.第十四章二维正态分布·正态随机变量线性函数的分布中心极限定理一、设二维随机变量),(Y X 服从二维正态分布,已知0)()(==Y E X E ,16)(=X D ,25)(=Y D ,并且12),cov(=Y X ,求),(Y X 的联合概率密度.解:已知0==y x μμ,416==x σ,525==y σ,53),cov(),(===y x Y X Y X r σσ.从而 2516)53(1122=-=-r ,5412=-r .进一步按公式])())((2)([)1(21222222121),(yy y x y x x x y y x r x r y x ery x f σμσσμμσμσπσ-+-------=,可得),(Y X 的联合概率密度为)2550316((322522321),(y xy x e y x f +--=π.。

概率论与数理统计(第四版)习题答案全

概率论与数理统计(第四版)习题答案全

概率论与数理统计习(第四版)题解答第一章 随机事件及其概率·样本空间·事件的关系及运算一、任意抛掷一颗骰子,观察出现的点数。

设事件A 表示“出现偶数点”,事件B 表示“出现的点数能被3整除”.(1)写出试验的样本点及样本空间;(2)把事件A 及B 分别表示为样本点的集合;(3)事件B A AB B A B A ,,,,分别表示什么事件?并把它们表示为样本点的集合.解:设i ω表示“出现i 点”)6,,2,1( =i ,则(1)样本点为654321,,,,,ωωωωωω;样本空间为}.,,,,,{654321ωωωωωω=Ω (2)},,{642ωωωA =; }.,{63ωωB =(3)},,{531ωωωA =,表示“出现奇数点”;},,,{5421ωωωωB =,表示“出现的点数不能被3整除”;},,,{6432ωωωωB A =⋃,表示“出现的点数能被2或3整除”;}{6ωAB =,表示“出现的点数能被2整除且能被3整除”;},{B A 51ωω= ,表示“出现的点数既不能被2整除也不能被3整除”二、写出下列随机试验的样本空间及各个事件中的样本点:(1)同时掷三枚骰子,记录三枚骰子的点数之和.A —“点数之和大于10”,B —“点数之和小于15”.(2)一盒中有5只外形相同的电子元件,分别标有号码1,2,3,4,5.从中任取3只,A —“最小号码为1”.解:(1) 设i ω表示“点数之和等于i ”)18,,4,3( =i ,则},,,{1843ωωω =Ω;},,,{181211ωωωA =;}.,,,{1443ωωωB =(2) 设ijk ω表示“出现号码为k j i ,,”);5,,2,1,,(k j i k j i ≠≠= ,则},,,,,,,,,{345245235234145135134125124123ωωωωωωωωωω=Ω }.,,,,,{145135134125124123ωωωωωωA =三、设C B A ,,为三个事件,用事件之间的运算表示下列事件: (1) A 发生, B 与C 都不发生; (2) C B A ,,都发生;(3) C B A ,,中至少有两个发生; (4) C B A ,,中至多有两个发生. 解:(1) C B A ;(2) ABC ;(3) ABC C AB C B A BC A ⋃⋃⋃或CA BC AB ⋃⋃(4) BC A C B A C AB C B A C B A C B A C B A ⋃⋃⋃⋃⋃⋃或C B A ⋃⋃或.ABC四、一个工人生产了n 个零件,以i A 表示他生产的第 i 个零件是合格品(n i ≤≤1).用i A 表示下列事件:(1)没有一个零件是不合格品; (2)至少有一个零件是不合格品; (3)仅有一个零件是不合格品; (4)至少有一个零件不是不合格品. 解:(1) n A A A 21;(2) n A A A 21或n A A A ⋃⋃⋃ 21; (3) n n n A A A A A A A A A 212121⋃⋃⋃ (4) n A A A ⋃⋃⋃ 21或.21n A A A第二章 概率的古典定义·概率加法定理一、电话号码由七个数字组成,每个数字可以是0,1,2,…,9中的任一个数(但第一个数字不能为0),求电话号码是由完全不同的数字组成的概率.解:基本事件总数为611011011011011011019109⨯=C C C C C C C 有利事件总数为456789214151617181919⨯⨯⨯⨯⨯=C C C C C C C 设A 表示“电话号码是由完全不同的数字组成”,则0605.0109456789)(62≈⨯⨯⨯⨯⨯⨯=A P二、把十本书任意地放在书架上,求其中指定的三本书放在一起的概率.解:基本事件总数为!101010=A 指定的三本书按某确定顺序排在书架上的所有可能为!777=A 种;这三本书按确定的顺序放在书架上的所以可能的位置共818=C 种;这三本书的排列顺序数为!333=A ;故有利事件总数为!3!8!38!7⨯=⨯⨯(亦可理解为)3388P P设A 表示“指定的三本书放在一起”,则067.0151!10!3!8)(≈=⨯=A P三、为了减少比赛场次,把二十个队任意分成两组(每组十队)进行比赛,求最强的两个队被分在不同组内的概率.解:20个队任意分成两组(每组10队)的所以排法,构成基本事件总数1020C ;两个最强的队不被分在一组的所有排法,构成有利事件总数91812C C 设A 表示“最强的两队被分在不同组”,则526.01910)(102091812≈==C C C A P四、某工厂生产的产品共有100个,其中有5个次品.从这批产品中任取一半来检查,求发现次品不多于1个的概率.解:设i A 表示“出现的次品为i 件”)5,4,3,2,1,0(=i ,A 表示“取出的产品中次品不多于 1个”,则 .10A A A ⋃=因为V A A =10,所以).()()(10A P A P A P +=而0281.0979942347)(5010050950≈⨯⨯⨯==C C A P 1529.09799447255)(501004995151≈⨯⨯⨯⨯==C C C A P故 181.01529.00281.0)(=+≈A P 五、一批产品共有200件, 其中有6件废品.求 (1) 任取3件产品恰有1件是废品的概率; (2) 任取3件产品没有废品的概率; (3) 任取3件产品中废品不少于2件的概率. 解:设A 表示“取出的3件产品中恰有1件废品”;B 表示“取出的3件产品中没有废品”;C 表示“取出的3件产品中废品不少于2件”,则 (1) 0855.019819920019319418)(3200219416≈⨯⨯⨯⨯==C C C A P (2) 912.0198199200192193194)(32003194≈⨯⨯⨯⨯==C C B P(3) 00223.019819920012019490)(3200019436119426≈⨯⨯⨯⨯=+=C C C C C C P六、设41)( ,0 ,31)()()(======BC P P(AC)P(AB)C P B P A P .求A , B , C 至少有一事件发生的 概率.解:因为0==P(AC)P(AB),所以V AC V AB ==,,从而V C AB =)(可推出0)(=ABC P设D 表示“A , B , C 至少有一事件发生”,则C B A D ⋃⋃=,于是有)()()()()()()()()(ABC P CA P BC P AB P C P B P A P C B A P D P +---++=⋃⋃= 75.04341313131==-++=第三章 条件概率与概率乘法定理·全概率公式与贝叶斯公式一、设,6.0)|(,4.0)(,5.0)(===B A P B P A P 求)|(,)(B A A P AB P . 解:因为B A AB B B A A +=+=)(,所以)()()(B A P AB P A P +=,即14.06.0)4.01(5.0)()()()()()(=⨯--=-=-=B A P B P A P B A P A P AB P68.074.05.036.0)4.01(5.05.0)()()()()()]([)|(≈=--+=-+==B A P B P A P A P B A P B A A P B A A P二、某人忘记了电话号码的最后一个数字,因而他随意地拨号,求他拨号不超过两次而接通所需电话的概率.若已知最后一个数字是奇数,那么此概率是多少? 解:设A 表示“第一次拨通”,B 表示“第二次拨通”,C 表示“拨号不超过两次而拨通”(1)2.0101101)()()(19111101911011=+=⋅+=+=C C C C C C A B P A P C P(2)4.05151)()()(2511141511=+=+=+=A A A A A A B P A P C P三、两台车床加工同样的零件,第一台出现废品的概率是0.03,第二台出现废品的概率是0.02.加工出来的零件放在一起,并且已知第一台加工的零件比第二台加工的零件多 一倍.(1)求任意取出的零件是合格品的概率;(2)如果任意取出的零件是废品,求它是第二台车床加工的概率. 解:设i A 表示“第i 台机床加工的零件”)2,1(=i ;B 表示“出现废品”;C 表示“出现合 格品”(1))()()()()()()()(22112121A C P A P A C P A P C A P C A P C A C A P C P +=+=+= 973.0)02.01(31)03.01(32≈-⨯+-⨯=(2)25.002.03103.03202.031)()()()()()()()()(22112222=⨯+⨯⨯=+==A B P A P A B P A P A B P A P B P B A P B A P四、猎人在距离100米处射击一动物,击中的概率为0.6;如果第一次未击中,则进行第二次射击,但由于动物逃跑而使距离变为150米;如果第二次又未击中,则进行第三次射击,这时距离变为200米.假定击中的概率与距离成反比,求猎人三次之内击中动物的概率.解:设i A 表示“第i 次击中”)3,2,1(=i ,则由题设,有1006.0)(1kA P ==,得60=k ,从而有4.015060150)(2===k A P ,.3.020060200)(3===k A P设A 表示“三次之内击中”,则321211A A A A A A A ++=,故有)()()()()()()(321211A P A P A P A P A P A P A P ++=832.03.0)4.01()6.01(4.0)6.01(6.0=⨯-⨯-+⨯-+= (另解)设B 表示“猎人三次均未击中”,则168.0)3.01)(4.01)(6.01()(=---=B P故所求为 832.0)(1)(=-=B P B P五、盒中放有12个乒乓球,其中有9个是新的.第一次比赛时从其中任取3个来用,比赛后仍放回盒中.第二次比赛时再从盒中任取3个,求第二次取出的都是新球的概率. 解:设i A 表示“第一次取得i 个新球”)3,2,1,0(=i ,则2201)(312330==C C A P 22027)(31219231==C C C A P 220108)(31229132==C C C A P 22084)(31239033==C C C A P 设B 表示“第二次取出的都是新球”,则312363123731238312393022084220108220272201)()()(C C C C C C C C A B P A P B P i i i ⋅+⋅+⋅+⋅==∑=146.0532400776161112208444722010855142202755212201≈=⋅+⋅+⋅+⋅=第四章 随机事件的独立性·独立试验序列一、一个工人看管三台车床,在一小时内车床不需要工人照管的概率:第一台等于0.9,第二台等于0.8,第三台等于0.7.求在一小时内三台车床中最多有一台需要工人照管的概率. 解:设i A 表示“第i 台机床不需要照管”)3,2,1(=i ,则9.0)(1=A P 8.0)(2=A P 7.0)(3=A P再设B 表示“在一小时内三台车床中最多有一台需要工人照管”,则321321321321A A A A A A A A A A A A B +++=于是有)()()()()()()()()()()()()(321321321321A P A P A P A P A P A P A P A P A P A P A P A P B P +++= )7.01(8.09.07.0)8.01(9.07.08.0)9.01(7.08.09.0-⨯⨯+⨯-⨯+⨯⨯-+⨯⨯=902.0=.(另解)设i B 表示“有i 台机床需要照管”)1,0(=i ,B 表示“在一小时内三台车床中最多有一台需要工人照管”,则10B B B +=且0B 、1B 互斥,另外有 504.07.08.09.0)(0=⨯⨯=B P398.0)7.01(8.09.07.0)8.01(9.07.08.0)9.01()(1=-⨯⨯+⨯-⨯+⨯⨯-=B P 故902.0398.0504.0)()()()(1010=+=+=+=B P B P B B P B P .二、电路由电池a 与两个并联的电池b 及c 串联而成.设电池c b a ,,损坏的概率分别是0.3、0.2、0.2,求电路发生间断的概率. 解:设1A 表示“a 损坏”;2A 表示“b 损坏”;3A 表示“c 损坏”;则3.0)(1=A P 2.0)()(32==A P A P又设B 表示“电路发生间断”,则321A A A B +=于是有)()()()()(321321321A A A P A A P A P A A A P B P -+=+=)()()()()()(321321A P A P A P A P A P A P -+= 328.02.02.03.02.02.03.0=⨯⨯-⨯+=.三、三个人独立地去破译一个密码,他们能译出的概率分别为51、31、41,求能将此密码译出的概率.解:设A 表示“甲能译出”;B 表示“乙能译出”;C 表示“丙能译出”,则51)(=A P 31)(=B P 41)(=C P设D 表示“此密码能被译出”,则C B A D ⋃⋃=,从而有)()()()()()()()()(ABC P CA P BC P AB P C P B P A P C B A P D P +---++=⋃⋃=)()()()()()()()()()()()(C P B P A P A P C P C P B P B P A P C P B P A P +---++= 6.0413151415141513151413151=⨯⨯+⨯-⨯-⨯-++=. (另解)52)411)(311)(511()()()()()(=---===C P B P A P C B A P D P ,从而有6.053521)(1)(==-=-=D P D P四、甲、乙、丙三人同时对飞机进行射击,三人的命中概率分别为7.0,5.0,4.0.飞机被一人击中而被击落的概率为2.0,被两人击中而被击落的概率为6.0,若三人都击中,则 飞机必被击落.求飞机被击落的概率. 解:设1A 表示“甲命中”;2A 表示“乙命中”;3A 表示“丙命中”;则4.0)(1=A P5.0)(2=A P 7.0)(3=A P设i B 表示“i 人击中飞机” )3,2,1,0(=i ,则09.0)7.01)(5.01)(4.01()())(()()(3213210=---===A P A P A P A A A P B P )()(3213213211A A A A A A A A A P B P ++=)()()(321321321A A A P A A A P A A A P ++=)()()()()()()()()(321321321A P A P A P A P A P A P A P A P A P ++=36.07.0)5.01)(4.01()7.01(5.0)4.01()7.01)(5.01(4.0=⨯--+-⨯⨯-+--⨯=)()(3213213212A A A A A A A A A P B P ++= )()()(321321321A A A P A A A P A A A P ++=)()()()()()()()()(321321321A P A P A P A P A P A P A P A P A P ++=41.07.0)5.01)(4.01()7.01(5.0)4.01()7.01)(5.01(4.0=⨯--+-⨯⨯-+--⨯=14.07.05.04.0)()()()()(3213213=⨯⨯===A P A P A P A A A P B P 设A 表示“飞机被击落”,则由题设有0)(0=B A P 2.0)(1=B A P 6.0)(2=B A P 1)(3=B A P故有458.0114.06.041.02.036.0009.0)()()(30=⨯+⨯+⨯+⨯==∑=i i i B A P B P A P .五、某机构有一个9人组成的顾问小组,若每个顾问贡献正确意见的概率都是0.7,现在该机构内就某事可行与否个别征求每个顾问的意见,并按多数人意见作出决策,求作 出正确决策的概率.解:设i A 表示“第i 人贡献正确意见”,则7.0)(=i A P )9,,2,1( =i .又设m 为作出正确意见的人数,A 表示“作出正确决策”,则 )9()8()7()6()5()5()(99999P P P P P m P A P ++++=≥=+⋅⋅+⋅⋅+⋅⋅=277936694559)3.0()7.0()3.0()7.0()3.0()7.0(C C C 9991889)7.0()3.0()7.0(⋅+⋅⋅+C C+⋅⋅+⋅⋅+⋅⋅=273645)3.0()7.0(36)3.0()7.0(84)3.0()7.0(126918)7.0()3.0()7.0(9+⋅⋅+0403.01556.02668.02668.01715.0++++= 901.0=.六、每次试验中事件A 发生的概率为p ,为了使事件A 在独立试验序列中至少发生一次的概率不小于p ,问至少需要进行多少次试验? 解:设做n 次试验,则n p A P A P )1(1}{1}{--=-=一次都不发生至少发生一次要p p n ≥--)1(1,即要p p n -≤-1)1(,从而有.1)1(log )1(=-≥-p n p 答:至少需要进行一次试验.第五章 离散随机变量的概率分布·超几何分布·二项分布·泊松分布一、一批零件中有9个合格品与3个废品.安装机器时从这批零件中任取1个.如果每次取出的废品不再放回去,求在取得合格品以前已取出的废品数的概率分布. 解:设X 表示“在取得合格品以前已取出的废品数”,则X 的概率分布为即亦即二、自动生产线在调整以后出现废品的概率为p .生产过程中出现废品时立即进行调整.求在两次调整之间生产的合格品数的概率分布.解:设X 表示“在两次调整之间生产的合格品数”,且设p q -=1,则ξ的概率分布为三、已知一批产品共20个,其中有4个次品.(1)不放回抽样.抽取6个产品,求样品中次品数的概率分布; (2)放回抽样.抽取6个产品,求样品中次品数的概率分布. 解:(1)设X 表示“取出的样本中的次品数”,则X 服从超几何分布,即X 的概率函数为)4,3,2,0()(6206164===-x C C C x X P xx从而X 的概率分布为即(2)设X 表示“取出的样本中的次品数”,则X 服从超几何分布,即X 的概率函数为)6,5,4,3,2,0()2.01()2.0()(66=-==-x C x X P xx x从而X即四、电话总机为300个电话用户服务.在一小时内每一电话用户使用电话的概率等于0.01,求在一小时内有4个用户使用电话的概率(先用二项分布计算,再用泊松分布近似计算,并求相对误差). 解:(1)用二项分布计算)01.0(=p168877.0)01.01()01.0()1()4(2964430029644300≈-=-==C p p C ξP(2)用泊松分布计算)301.0300(=⨯==np λ168031355.0!43)4(34≈==-e ξP相对误差为.5168877.0168031355.0168877.0000≈-=δ五、设事件A 在每一次试验中发生的概率为0.3,当A 发生次数不少于3次时,指示灯发出信号.现进行了5次独立试验,求指示灯发出信号的概率. 解:设X 表示“事件A 发生的次数”,则3.0)(==p A P ,5=n ,).3.0,5(~B X 于是有)5()4()3()3(=+=+==≥X P X P X P X P5554452335)1()1(p C p p C p p C +-+-=16308.000243.002835.01323.0≈++≈(另解) )2()1()0(1)3(1)3(=-=-=-=<-=≥X P X P X P X P X P322541155005)1()1()1(11p p C p p C p p C ------= 16308.0≈六、设随机变量X 的概率分布为2, 1, ,0 , !)(===k k ak X P kλ;其中λ>0为常数,试确定常数a .解:因为∑∞===01)(k k X P ,即∑∞==01!k kk λa ,亦即1=λae ,所以.λe a -=第六章 随机变量的分布函数·连续随机变量的概率密度一、函数211x +可否是连续随机变量X 的分布函数?为什么?如果X 的可能值充满区间: (1)(∞+∞- ,);(2)(0,∞-).解:(1)设211)(xx F +=,则1)(0<<x F 因为0)(lim =-∞→x F x ,0)(lim =+∞→x F x ,所以)(x F 不能是X 的分布函数.(2)设211)(x x F +=,则1)(0<<x F 且0)(lim =-∞→x F x ,1)(lim 0=-→x F x因为)0( 0)1(2)('22<>+-=x x xx F ,所以)(x F 在(0,∞-)上单增. 综上述,故)(x F 可作为X 的分布函数.二、函数x x f sin )(=可否是连续随机变量X 的概率密度?为什么?如果X 的可能值充满区间:(1)⎥⎦⎤⎢⎣⎡2,0π; (2)[]π,0; (3)⎥⎦⎤⎢⎣⎡23,0π.解:(1)因为⎥⎦⎤⎢⎣⎡∈2,0πx ,所以0sin )(≥=x x f ;又因为1cos )(2020=-=⎰ππx dx x f ,所以当⎥⎦⎤⎢⎣⎡∈2,0πx 时,函数x x f sin )(=可作为某随机变量X 的概率密度.(2)因为[]πx ,0∈,所以0sin )(≥=x x f ;但12cos )(00≠=-=⎰ππx dx x f ,所以当[]πx ,0∈时,函数x x f sin )(=不可能是某随机变量X 的概率密度.(3)因为⎥⎦⎤⎢⎣⎡∈23,0πx ,所以x x f sin )(=不是非负函数,从而它不可能是随机变量X 的概率密度.二、一批零件中有9个合格品与3个废品.安装机器时从这批零件中任取1个.如果每次取出的废品不再放回去,求在取得合格品以前已取出的废品数的分布函数,并作出分布函数的图形. 解:设X 表示“取出的废品数”,则X 的分布律为于是,⎪⎩>3,1x四、(柯西分布)设连续随机变量X 的分布函数为+∞<<∞-+=x x B A x F ,arctan )(.求:(1)系数A 及B ;(2)随机变量X 落在区间)1 ,1(-内的概率;(3) X 的概率密度.解:(1) 由0)2()(lim =-⋅+=-∞→πB A x F x ,12)(lim =⋅+=-∞→πB A x F x ,解得.1,21πB A ==即)( ,arctan 121)(+∞<<-∞+=x x πx F .(2) .21)]1arctan(121[]1arctan 121[)1()1()11(=-+-+=--=<<-ππF F X P(3) X 的概率密度为)1(1)()(2x x F x f +='=π.五、(拉普拉斯分布)设随机变量X 的概率密度为+∞<<∞-=-x Ae x f x,)(.求:(1)系数A ;(2)随机变量X 落在区间)1,0(内的概率;(3)随机变量X 的分布函数.解:(1) 由1)(⎰+∞∞-=dx x f ,得1220⎰⎰+∞∞-+∞--===A dx e A dx Aex x,解得21=A ,即有 ).( ,21)(+∞<<-∞=-x e x f x(2) ).11(21)(2121)()10(101010ee dx e dx xf X P x x -=-===<<--⎰⎰(3) 随机变量X 的分布函数为⎪⎩⎪⎨⎧>-≤===-∞--∞-⎰⎰021102121)()(x e x e dx e dx x f x F x xx xx .第七章 均匀分布·指数分布·随机变量函数的概率分布一、公共汽车站每隔5分钟有一辆汽车通过.乘客到达汽车站的任一时刻是等可能的.求乘客候车时间不超过3分钟的概率.解:设随机变量X 表示“乘客的候车时间”,则X 服从]5,0[上的均匀分布,其密度函数为⎩⎨⎧∉∈=]5,0[,0]5,0[,51)(x x x f 于是有.6.053)()30(3===≤≤⎰dx x f X P二、已知某种电子元件的使用寿命X (单位:h)服从指数分布,概率密度为⎪⎩⎪⎨⎧≤>=-.0,0;0,8001)(800x x e x f x任取3个这种电子元件,求至少有1个能使用1000h 以上的概率.解:设A 表示“至少有1个电子元件能使用1000h 以上”;321A 、A 、A 分别表示“元件甲、乙、丙能使用1000h 以上”.则287.08001)1000()()()(4510008001000800321≈=-==>===-∞+-∞+-⎰e e dx e X P A P A P A P xx)()()()()()()()()(321313221321321A A A P A A P A A P A A P A P A P A P A A A P A P +---++=⋃⋃=638.0287.0287.03287.0332≈+⨯-⨯=(另解)设A 表示“至少有1个电子元件能使用1000h 以上”.则287.08001)1000(4510008001000800≈=-==>-∞+-∞+-⎰ee dx e X P xx从而有713.01)1000(1)1000(45≈-=>-=≤-eX P X P ,进一步有638.0713.01)]1000([1)(33≈-≈≤-=X P A P三、(1) 设随机变量X 服从指数分布)(λe .证明:对于任意非负实数s 及t ,有).()(t X P s X t s X P ≥=≥+≥这个性质叫做指数分布的无记忆性.(2) 设电视机的使用年数X 服从指数分布)10(.e .某人买了一台旧电视机,求还能使用5年以上的概率. 解:(1)因为)(~λe X ,所以R x ∈∀,有xex F λ--=1)(,其中)(x F 为X 的分布函数.设t s X A +≥=,t X B ≥=.因为s 及t 都是非负实数,所以B A ⊂,从而A AB =.根据条件概率公式,我们有)(1)(1)()()()()()()()(s X P t s X P s X P t s X P B P A P B P AB P B A P s X t s X P <-+<-=≥+≥====≥+≥t st s e e e λλλ--+-=----=]1[1]1[1)(. 另一方面,我们有t t e e t F t X P t X P t X P λλ--=--=-=≤-=<-=≥)1(1)(1)(1)(1)(.综上所述,故有)()(t X P s X t s X P ≥=≥+≥.(2)由题设,知X 的概率密度为⎩⎨⎧≤>=-.,;,0001.0)(1.0x x e x f x 设某人购买的这台旧电视机已经使用了s 年,则根据上述证明的(1)的结论,该电视机还能使用5年以上的概率为6065.01.0)()5()5(5.051.051.05≈=-===≥=≥+≥-∞+-∞+-∞+⎰⎰e e dx e dx xf X P s X s X P xx .答:该电视机还能使用5年以上的概率约为6065.0.四、设随机变量X 服从二项分布)4.0 ,3(B ,求下列随机变量函数的概率分布: (1)X Y 211-=;(2)2)3(2X X Y -=. 解:X 的分布律为(1)X Y 211-=的分布律为(2)2)3(2X XY -=的分布律为即五、设随机变量X 的概率密度为⎪⎩⎪⎨⎧≤>+=.0,0;0,)1(2)(2x x x x f π求随机变量函数X Y ln =的概率密度.解:因为)()()(ln )()(yX yY e F e X P y X P y Y P y F =<=<=<=所以随机变量函数X Y ln =的概率密度为)( )1(2)()()()(2''+∞<<-∞+====y e e e e f e e F y F y f yyyyyyXYY π,即 )( )1(2)(2+∞<<-∞+=y e e y f y yY π.第八章 二维随机变量的联合分布与边缘分布一、把一颗均匀的骰子随机地掷两次.设随机变量X 表示第一次出现的点数,随机变量Y 表示两次出现点数的最大值,求二维随机变量),(Y X 的联合概率分布及Y 的边缘概率分布. 解:二维随机变量),(Y X 的联合概率分布为Y 的边缘概率分布为二、设二维随机变量(X ,Y )的联合分布函数)3arctan )(2arctan (),(yC x B A y x F ++=.求:(1)系数A 、B 及C ;(2)(X ,Y )的联合概率密度:(3)边缘分布函数及边缘概率密度. 解:(1)由0)0,(,0),0(,1),(=-∞=∞-=∞+-∞F F F ,得⎪⎪⎪⎩⎪⎪⎪⎨⎧=-=--=++0)2(0)2)(0(1)2)(2(πB AC πC B A πC πB A 解得2πC B ==,.12πA = (2)因为)3arctan 2)(2arctan 2(1),(2yx y x F ++=πππ,所以(X ,Y )的联合概率密度为.)9)(4(6),(),(222"y x y x F y x f xy ++==π (3)X 及Y 的边缘分布函数分别为 x xxX xdx x dy y x f dx x F ∞-∞-∞-+∞∞-=+==⎰⎰⎰2arctan1)4(2),()(2ππ2arctan 121xπ+=yxyY ydy y dx y x f dy x F ∞-∞-∞-+∞∞-=+==⎰⎰⎰3arctan1)9(3),()(2ππ3arctan 121y π+=X 及Y 的边缘概率密度分别为⎰⎰⎰+∞+∞∞-+∞∞-++⋅=++==0222222)9(1)4(112)9)(4(6),()(dy y x dy y x dy y x f x f X ππ)4(2)3arctan 31()4(1122022x y x +=+⋅=∞+ππ ⎰⎰⎰+∞+∞∞-+∞∞-++=++==022222241)9(12)9)(4(6),()(dx xy dx y x dx y x f y f Y ππ )9(3)2arctan 21()9(122022y x y +=+=∞+ππ三、设),(Y X 的联合概率密度为⎩⎨⎧>>=+-.,00;0,,Ae ),(3y)(2x 其它y x y x f求:(1)系数A ;(2)),(Y X 的联合分布函数;(3)X 及Y 的边缘概率密度;(4)),(Y X落在区域R :632 ,0 ,0<+>>y x y x 内的概率. 解:(1)由1),(=⎰⎰+∞∞-+∞∞-dy dx y x f ,有16132==⎰⎰∞+∞+--A dy e dx e A y x ,解得.6=A (2)),(Y X 的联合分布函数为⎪⎩⎪⎨⎧>>==⎰⎰⎰⎰--∞-∞-其它0,06),(),(0032y x dy e dx e dy y x f dx y x F x y y x xy⎩⎨⎧>>--=--其它00,0)1)(1(32y x e e y x(3)X 及Y 的边缘概率密度分别为⎩⎨⎧≤>=⎪⎩⎪⎨⎧≤>==-+∞--∞+∞-⎰⎰00020006),()(2032x x ex x dy e e dy y x f x f x y x X⎩⎨⎧≤>=⎪⎩⎪⎨⎧≤>==-+∞--∞+∞-⎰⎰30006),()(3032y y ex x dxe e dx y xf y f yy x Y (4)⎰⎰⎰⎰---==∈x y xR dy e dx edxdy y x f R Y X P 32203326),(}),{(6306271)(2---⎰-=-=e dx e e x四、设二维随机变量),(Y X 在抛物线2x y =与直线2+=x y 所围成的区域R 上服从均匀分布.求:(1) ),(Y X 的联合概率密度;(2) 概率)2(≥+Y X P . 解:(1) 设),(Y X 的联合概率密度为⎩⎨⎧∉∈=.),(, 0;),(,),(R y x R y x C y x f 则由129)322()2(21322122212==-+=-+==--+-⎰⎰⎰⎰⎰C x x x C dx x x C dy dx C Cdxdy x x R解得92=C .故有⎪⎩⎪⎨⎧∉∈=.),(, 0;),(,92),(R y x R y x y x f(2) ⎰⎰⎰⎰⎰⎰++-≥++==≥+x x x x y x dy dx dy dx dxdy y x f Y X P 2212210229292),()2(⎰⎰-++=21210)2(92292dx x x xdx481.02713)322(92922132102≈=-++=x x x x . 第九章 随机变量的独立性·二维随机变量函数的分布一、设X 与Y 是两个相互独立的随机变量,X 在]1,0[上服从均匀分布,Y 的概率密度为⎪⎩⎪⎨⎧≤>=-.0,0;0,21)(2y y e y f yY求 (1) ),(Y X 的联合概率密度; (2) 概率)(X Y P ≥.解: (1)X 的概率密度为⎩⎨⎧∉∈=)1,0(,0)1,0(,1)(x x x f X ,),(Y X 的联合概率密度为(注意Y X ,相互独立)⎪⎩⎪⎨⎧><<==-其它,00,10,21)()(),(2y x e y f x f y x f yY X(2)dx edx e dy e dx dxdy y x f X Y P x xyxy xy ⎰⎰⎰⎰⎰⎰-∞+-∞+-≥=-===≥1021022102)(21),()(7869.0)1(2221122≈-=-=--e ex二、设随机变量X 与Y 独立,并且都服从二项分布:.,,2 ,1 ,0 ,)(; ,,2 ,1 ,0 ,)(212211n j qp C j p n i q p C i p jn jj n Y in i i n X ====--证明它们的和Y X Z +=也服从二项分布.证明: 设j i k +=, 则ik n i k i k n ki i n i i n ki Y X Z q p C q p C i k P i P k Z P k P +---=-=∑∑=-===2211)()()()( ∑=-+=ki k n n k i n in q p C C2121)( 由knm ki ik nk m C C C +=-=∑, 有k n n ki in i n C C C21210+==∑. 于是有 ),,2,1,0( )(212121n n k q p C k P kn n k i n n Z +==-++ 由此知Y X Z +=也服从二项分布.三、设随机变量X 与Y 独立,并且X 在区间[0,1]内服从均匀分布,Y 在区间[0,2]内服从辛普森分布:⎪⎩⎪⎨⎧><≤<-≤≤=.20 0,; 2 1 ,2;10 ,)(y y y y y y y f Y 或求随机变量Y X Z +=的概率密度. 解: X 的概率密度为 ⎩⎨⎧∉∈=]1,0[,0]1,0[,1)(x x y f ξ . 于是),(Y X 的联合概率密度为⎪⎩⎪⎨⎧≤<≤≤-≤≤≤≤=. 0, 2 1,10 ,210,10,),(其它当当y x y y x y y x fY X Z +=的联合分布函数为}),{(}{}{)(D y x P z Y X P z Z P z F Z ∈=≤+=≤=,其中D 是zy x ≤+与),(y x f 的定义域的公共部分.故有 ⎪⎪⎪⎩⎪⎪⎪⎨⎧≤<+-≤<-+-≤≤><=3229321212331023,00)(222z z z z z z z zz z z F Z 从而随机变量Y X Z +=的概率密度为⎪⎪⎩⎪⎪⎨⎧≤<-≤<+-≤≤><=3232132103,00)(z z z z z z z z z f Z三、电子仪器由六个相互独立的部件ij L (3,2,1;2,1==j i )组成,联接方式如右图所示.设各个部件的使用寿命ij X 服从相同的指数分布)(λe ,求仪器使用寿命的概率密度.解: 由题设,知ij X 的分布函数为⎩⎨⎧≤>-=-0,00,1x x e F x X ijλ先求各个并联组的使用寿命)3,2,1( =i Y i 的分布函数.因为当并联的两个部件都损坏时,第i 个并联组才停止工作,所以有)3,2,1(),m ax (21==i Y i i i ξξ从而有)3,2,1( =i Y i 的分布函数为⎩⎨⎧≤>-==-0,00,)1()(221y y e F F y F y X X Y i i i λ 设Z "仪器使用寿命".因为当三个并联组中任一个损坏时,仪器停止工作.所以有),,min (321Y Y Y Z =.从而有Z 的分布函数为⎩⎨⎧≤>---=⎩⎨⎧≤>----=-0,00,])1(1[10,00)],(1)][(1)][(1[1)(32321z z e z z z F z F z F z F z Y Y Y Z λ 故Z 的概率密度为⎩⎨⎧≤>--=---0,00,)2)(1(6)(23z z e e e z f z z z Z λλλλ第十章 随机变量的数学期望与方差一、一批零件中有9个合格品与3个废品.安装机器时从这批零件中任取一个.如果取出的废品不再放回去,求在取得合格品以前已取出的废品数的数学期望、方差与标准差. 解:设X 表示“在取得合格品以前已取出的废品数”,则X 的概率分布为即1103322013220924491430=⨯+⨯+⨯+⨯=EX 即3.0004.03041.02205.0175.00≈⨯+⨯+⨯+⨯=EX2X 的分布为即于是有229220192209444914302=⨯+⨯+⨯+⨯=EX 即4091.0004.09041.04205.0175.002≈⨯+⨯+⨯+⨯=EX从而有3191.013310042471)11033(229)(222≈=-=-=EX EX DX 565.03191.0≈==DX Xσ二、对某一目标进行射击,直至击中为止.如果每次射击命中率为p ,求射击次数的数学期望及方差. 解:设X 表示“第i 次击中”),2,1( =i ,则X 的分布为p q p q q p q p iqp ipqEX i i i i i i 1)1()1()(211111=-='-='===∑∑∑∞=∞=-∞=- 2Xp pp p q q p q p q q p pqi EX i i i ii i 122)1()1()(])([223111122-=-=-+='=''==∑∑∑∞=∞=∞=- 进一步有pp p p p EX EX DX 11)1(12)(22222-=--=-=三、设离散型随机变量X 的概率函数为,,2,1,21]2)1([ ==-=k k X P k k k问X 的数学期望是否存在?若存在,请计算)(X E ;若不存在,请解释为什么.解:因为∑∑∑∑∞=∞=∞=∞=-=⋅-=-=-==1111)1(212)1(]2)1([2)1()(k k k k k k k k k k ki i i k k k X P k x X P x 不绝对收敛,所以ξ没有数学期望.四、设随机变量X 的概率密度为⎪⎩⎪⎨⎧≥<-=.1, 0;1,11)(2x x x x f π 求数学期望)(X E 及方差)(X D .解:011)()(112=-⋅==⎰⎰-+∞∞-dx xx dx x xf X E πdx x x dx x x dx x f x X D ⎰⎰⎰-=-⋅==-∞+∞-1022112221211)()(πππ21]arcsin 2112[2102=+--=x x x π五、(拉普拉斯分布)设随机变量X 的概率密度为 )( ,21)(+∞<<-∞=-x e x f x.求数学期望)(X E 及方差)(X D . 解:021)(===⎰⎰+∞∞--+∞∞-dx xe dx x xf EX x2!2)3(21)(0222==Γ====⎰⎰⎰+∞-+∞∞--+∞∞-dx e x dx e x dx x f x DX x x(分部积分亦可)第十一章 随机变量函数的数学期望·关于数学期望与方差的定理一、设随机变量X 服从二项分布)4.0,3(B ,求2)3(X X Y -=的数学期望及方差. 解:X 的概率分布为Y 的概率分布为2Y 的分布为72.072.0128.00=⨯+⨯=EY 72.072.0128.002=⨯+⨯=EY2016.0)72.0(72.0)(222=-=-=EY EY DY二、过半径为R 的圆周上一点任意作这圆的弦,求所有这些弦的平均长度.解:在圆周上任取一点O ,并通过该点作圆得直径OA .建立平面直角坐标系,以O 为原点,且让OA 在x 轴的正半轴上.通过O 任作圆的一条弦OB ,使OB 与x 轴的夹角为θ,则θ服从]2,2[ππ-上的均匀分布,其概率密度为⎪⎩⎪⎨⎧-∉-∈=]2,2[,0]2,2[,1)(ππθππθπθf .弦OB 的长为 ]2,2[cos 2)(ππθθθ-∈=R L ,故所有弦的平均长度为⎰⎰-∞+∞-⋅==22cos 21)()()]([ππθθπθθθθd R d L f L EπθπθθπππRR d R4sin 4cos 42020===⎰.三、一工厂生产的某种设备的寿命X (以年计)服从指数分布,概率密度为⎪⎩⎪⎨⎧≤>=-. 0,0 ;0 ,41)(4x x e x f x工厂规定,出售的设备若在售出一年之内损坏可予以调换.若工厂售出一台设备赢利100元,调换一台设备厂方需花费300元.试求厂方出售一台设备的平均净赢利. 解:由题设,有⎰⎰---∞--=-===<104110441141)()1(e e dx e dx x f X P x x 进而有 41)1(1)1(-=<-=≥eX P X P设Y 表示“厂方出售一台设备获得的净赢利”,则Y 的概率分布为从而有64.33200300100)1(200414141≈-⨯=⨯+-⨯-=---ee e EY答:厂方出售一台设备获得的平均净赢利约为64.33元.四、设随机变量n X X X ,,21相互独立,并且服从同一分布,数学期望为μ,方差为2σ.求这些随机变量的算术平均值∑==ni i X n X 11的数学期望与方差.解:因为μ=)(i X E ,2)(σ=i X D ,且随机变量n X X X ,,21相互独立.所以有μμ=====∑∑∑∑====ni n i i ni i n i i n X E n X E n X n E X E 11111)(1)(1)1()(,nn X D n X D n X n D X D ni ni in i i n i i 2122121211)(1)(1)1()(σσ=====∑∑∑∑====.五、一民航送客车载有20位旅客自机场开出,沿途有10个车站可以下车,到达一个车站时如没有旅客下车就不停车.假设每位旅客在各车站下车是等可能的,且各旅客是否下车相互独立.求该车停车次数的数学期望.解: 设i X 表示"第i 站的停车次数" (10,,2,1 =i ). 则i X 服从"10-"分布. 其中⎩⎨⎧=站有人下车若在第站无人下车若在第i i X i ,1,0于是i X 的概率分布为设∑==ni iXX 1, 则X 表示沿途停车次数, 故有]})10110(1[1)10110(0{10)(2020101101--⨯+-⨯===∑∑==i i i i EX X E EX748.8)9.01(1020≈-=即停车次数的数学期望为748.8.第十二章 二维随机变量的数字特征·切比雪夫不等式与大数定律一、设二维随机变量),(Y X 的联合概率密度为()(). 1,222++=y xAy x f求:(1)系数A ;(2)数学期望)(X E 及)(Y E ,方差)(X D 及)(Y D ,协方差),cov(Y X .解: (1) 由⎰⎰+∞∞-+∞∞-=1),(dxdy y x f . 有()()⎰⎰⎰⎰∞+∞-∞+∞-∞+==+=++1112022222A dr rrd A dxdy y xAπθπ解得, π1=A .(2) ()011),()(222⎰⎰⎰⎰∞+∞-∞+∞-∞+∞-∞+∞-=++==dx y xxdy dxdy y x xf X E π.由对称性, 知 0)(=Y E .⎰⎰+∞∞-+∞∞-==-=dxdy y x f x EX EX X E X D ),(])[()(222()⎰⎰∞+∞-∞+∞-++=dx y xx dy 222211π()()+∞=+++=+-+=+=∞+∞+∞+⎰⎰⎰22022220223]11)1ln([1)1(211rr dr r rr r dr rr d πθπ同理, 有 +∞=)(Y D .)()])([(),cov(XY E EY Y Ex X E Y X =--=⎰⎰+∞∞-+∞∞-=dxdy y x xyf ),(()011),(222⎰⎰⎰⎰∞+∞-∞+∞-∞+∞-∞+∞-=++==dx y xxydy dxdy y x xyf π.二、设二维随机变量),(Y X 的联合概率密度为⎩⎨⎧<<<=其它.,0;10,,1),(x x y y x f求(1) ),cov(Y X ;(2) X 与Y 是否独立,是否相关,为什么?解: (1) 因为 ⎰⎰⎰⎰⎰====-∞+∞-∞+∞-10210322),(dx x dy xdx dxdy y x xf EX x x0),(10===⎰⎰⎰⎰-+∞∞-+∞∞-xx ydy dx dxdy y x yf EY0),()(1===⎰⎰⎰⎰-+∞∞-+∞∞-xxydy xdx dxdy y x xyf XY E所以有])32[()])([(),cov(Y X E EY Y EX X E Y X -=--=⎰⎰+∞∞-+∞∞-=dxdy y x xyf ),(010==⎰⎰-xxydy xdx .(2) 当)1,0(∈x 时,有 ⎰⎰+∞∞--===x dy dy y x f x f xxX 2),()(; 当)1,0(∉x 时, 有0)(=x f X .即⎩⎨⎧∉∈=)1,0(0)1,0(2)(X x x x x f 同理有 ⎩⎨⎧∉+∈-=⎪⎩⎪⎨⎧∉∈=⎰⎰-)1,0(1)1,0(1)1,0()1,0()(11Y x y x y x dx x dx y f yy因为 ),()()(y x f y f x f Y X ≠, 所以X 与Y 不是独立的.又因为0),cov(=Y X , 所以X 与Y 是不相关的.三、利用切比雪夫不等式估计随机变量X 与其数学期望)(X E 的差的绝对值大于三倍标准差)(X σ的概率.解:91)3()3(2=≤>-ξξξξξD D D E P .四、为了确定事件A 的概率,进行10000次重复独立试验.利用切比雪夫不等式估计:用事件A在10000次试验中发生的频率作为事件A 的概率的近似值时,误差小于0.01的概率. 解:设ξ表示“在10000次试验中事件A 的次数”,则)5.0,10000(~B ξ且有50005.010000=⨯==np E ξ 2500)5.01(5.010000=-⨯⨯==n p q D ξ 于是有npqp npq p np m P p n m P 22)01.0(1)01.0(1)01.0()01.0(-=-≥<-=<- 75.025.011=-=-=pq五、样检查产品质量时,如果发现次品多于10个,则认为这批产品不能接受.应该检查多少个产品,可使次品率为10%的一批产品不被接受的概率达到0.9? 解:设ξ表示“发现的次品件数”,则)1.0,(~n B ξ,现要求.nn ξE 1.0= n ξD 09.0=要使得9.0)10(=>ξP ,即9.0)10(=≤<n ξP ,因为9.0)10(=≤<n ξP ,所以 )3.01.03.01.03.01.010()10(nn n n n ξn n P ξD ξE n ξD ξE ξξD ξE P -≤-<-=-≤-<-)3.01.010()3()33.01.03.01.010(1,01,0nn n n n n ξn n P --≈≤-<-=ΦΦ1)3.0101.0()3(1,01,0--+nn n ΦΦ (德莫威尔—Laplace 定理)因为10>n ,所以53>n ,从而有1)3(1,0≈n Φ,故9.0)3.0101.0(1,0≈-nn Φ. 查表有8997.0)28.1(1,0=Φ,故有28.13.0101.0≈-nn ,解得.146≈n 答:应该检查约146个产品,方可使次品率为10%的一批产品不被接受的概率达到0.9.第十三章 正态分布的概率密度、分布函数、数学期望与方差一、设随机变量X 服从正态分布)2,1(2N ,求(1))8.56.1(<≤-X P ;(2))56.4(≥X P .解:(1) )4.2213.1()8.416.2()8.56.1(<-≤-=<-≤-=<≤-X P X P X P 8950.09032.019918.0)]3.1(1[)4.2()3.1()4.2(1,01,01,01,0=+-=--=--=ΦΦΦΦ(2) )78.12178.2(1)56.4(1)56.4(<-<--=<-=≥X P X P X P )]78.2(1)78.1(1)]78.2()78.1([11,01,01,01,0ΦΦΦΦ-+-=---=.0402.09973.09625.02=--二、已知某种机械零件的直径X (mm )服从正态分布)6.0,100(2N .规定直径在2.1100±(mm )之间为合格品,求这种机械零件的不合格品率. 解:设p 表示这种机械零件的不合格品率,则)2.1100(1)2.1100(≤--=>-=X P X P p .而)26.01002()6.02.16.01006.02.1()2.1100(≤-≤-=≤-≤-=≤-X P X P X P 1)2(2)]2(1[)2()2()2(-Φ=Φ--Φ=-Φ-Φ= 9544.019772.02=-⨯= 故0456.09544.01=-=p .三、测量到某一目标的距离时发生的误差X (m)具有概率密度3200)20(22401)(--=x ex f π求在三次测量中至少有一次误差的绝对值不超过30m 的概率.解:三次测量中每次误差绝对值都超过30米可表为}30{}30{}30{>⋃>⋃>=ξξξD 第三次第二次第一次因为)40,20(~2N ξ,所以由事件的相互独立性,有31,01,033)]25.0(1)25.1([})3030{(})30{()(ΦΦ-+-=>+-<=>=ξξP ξP D P13025.05069.0)8944.05987.02(33≈=--= 于是有86975.013025.01)(1}30{=-=-=<D P P 米至少有一次绝对值三次测量中ξ.四、设随机变量),(~2σμN X ,求随机变量函数Xe Y =的概率密度(所得的概率分布称为对数正态分布).解:由题设,知X 的概率密度为)(21)(222)(+∞<<-∞=--x ex f x X σμσπ从而可得随机变量Y 的分布函数为)()()(y e P y Y P y F X Y ≤=≤=.当0≤y 时,有0)(=y F Y ;此时亦有0)(='y F Y . 当0>y 时,有dx ey X P y F yx Y ⎰∞---=≤=ln 2)(2221)ln ()(σμσπ.此时亦有222)(ln 21)(σμσπ--='y Y eyy F .从而可得随机变量Y 的概率密度为⎪⎩⎪⎨⎧>≤=--.0,21;0,0)(222)(ln y e yy y f y Y σμσπ五、设随机变量X 与Y 独立,),(~211σμN X ,),(~222σμN Y ,求: (1) 随机变量函数bY aX Z +=1的数学期望与方差,其中a 及b 为常数; (2) 随机变量函数XY Z=2的数学期望与方差.解:由题设,有211)(,)(σμ==X D X E ;222)(,)(σμ==Y D Y E .从而有(1)211)()()()()()(μμb a Y bE X aE bY E aX E bY aX E Z E +=+=+=+=;222212221)()()()()()(σσb a Y D b X D a bY D aX D bY aX D Z D +=+=+=+=.(2)212)()()()(μμ===Y E X E XY E Z E ;)()()()()()()()(22222222Y E X E Y E X E XY E Y X E XY D Z D -=-== )()()]()()][()([2222Y E X E Y E Y D X E X D -++= )()()()()()(22X E Y D Y E X D Y D X D ++= 212222212221μσμσσσ++=.第十四章二维正态分布·正态随机变量线性函数的分布中心极限定理一、设二维随机变量),(Y X 服从二维正态分布,已知0)()(==Y E X E ,16)(=X D ,25)(=Y D ,并且12),cov(=Y X ,求),(Y X 的联合概率密度.解:已知0==y x μμ,416==x σ,525==y σ,53),cov(),(===y x Y X Y X r σσ.从而 2516)53(1122=-=-r ,5412=-r . 进一步按公式])())((2)([)1(21222222121),(yy y x y x x x y y x r x r y x ery x f σμσσμμσμσπσ-+-------=,可得),(Y X 的联合概率密度为)2550316((322522321),(y xy x e y x f +--=π.二、设随机变量X 与Y 独立,并且)1,0(~N X ,)2,1(~2N Y .求随机变量32+-=Y X Z 的概率密度. 解:由题设,有0)(=X E ,1)(=X D ,1)(=Y E ,4)(=Y D .又根据关于数学期望的定理和方差的定理以及独立正态随机变量线性组合的分布,我们有2)3()()(2)32()(=+-=+-=E Y E X E Y X E Z E . 8)3()()(4)32()(=++=+-=D Y D X D Y X D Z D .且)8,2())(,)((~N Z D Z E N Z =,故随机变量32+-=Y X Z 的概率密度为16)2(82)2(2241821)(--⨯--==z z Z eez f ππ )(+∞<<-∞z .。

概率论与数理统计第四章课后习题及参考答案

概率论与数理统计第四章课后习题及参考答案

概率论与数理统计第四章课后习题及参考答案1.在下列句子中随机地取一个单词,以X 表示取到的单词包含的字母的个数,试写出X 的分布律,并求)(X E .Have a good time解:本题的随机试验属于古典概型.所给句子共4个单词,其中有一个单词含一个字母,有3个单词含4个字母,则X 的所有可能取值为1,4,有41)1(==X P ,43)4(==X P ,从而413434411)(=⋅+⋅=X E .2.在上述句子的13个字母中随机地取一个字母,以Y 表示取到的字母所在的单词所含的字母数,写出Y 的分布律,并求)(Y E .解:本题的随机试验属于古典概型.Y 的所有可能取值为1,4,样本空间Ω由13个字母组成,即共有13个样本点,则131)1(==Y P ,1312)4(==Y P ,从而1349131241311)(=⋅+⋅=Y E .3.一批产品有一、二、三等品及废品4种,所占比例分别为60%,20%,10%和10%,各级产品的出厂价分别为6元、8.4元、4元和2元,求产品的平均出厂价.解:设产品的出厂价为X (元),则X 的所有可能取值为6,8.4,4,2,由题设可知X 的分布律为X 68.442P6.02.01.01.0则16.51.021.042.08.46.06)(=⨯+⨯+⨯+⨯=X E (元).4.设随机变量X 具有分布:51)(==k X P ,5,4,3,2,1=k ,求)(X E ,)(2X E 及2)2(+X E .解:3)54321(51)(=++++=X E ,11)54321(51)(222222=++++=X E ,274)(4)()44()2(222=++=++=+X E X E X X E X E .5.设离散型随机变量X 的分布列为k k kk X P 21)!2)1((=-=, ,2,1=k ,问X 是否有数学期望.解:因为∑∑∞=∞==⋅-111212)1(k k k k kkk 发散,所以X 的数学期望不存在.6.设随机变量X 具有密度函数⎪⎩⎪⎨⎧≤≤-=其他.,0,22,cos 2)(2πππx x x f 求)(X E 及)(X D .解:因为x x 2cos 在]2,2[ππ-上为奇函数,所以0d cos 2d )()(222=⋅==⎰⎰-∞+∞-πππx x x x x f x X E ,2112d cos 2d )()(2222222-=⋅==⎰⎰-∞+∞-ππππx x x x x f x X E ,故2112)]([)()(222-=-=πX E X E X D .7.设随机变量X 具有密度函数⎪⎩⎪⎨⎧<<-≤<=其他.,0,21,2,10,)(x x x x x f 求)(X E 及)(X D .解:1d )2(d d )()(2112=-+==⎰⎰⎰∞+∞-x x x x x x x f x X E ,67d )2(d d )()(2121322=-+==⎰⎰⎰∞+∞-x x x x x x x f x X E ,61)]([)()(22=-=X E X E X D .8.设随机变量X 在)21,21(-上服从均匀分布,求)sin(X Y π=的数学期望与方差.解:由题可知X 的密度函数为⎪⎩⎪⎨⎧<<-=其他.,0,2121,1)(x x f 则0d 1sin d )(sin )][sin()(2121=⋅===⎰⎰-∞+∞-x x x x f x X E Y E πππ,21d 1sin d )(sin )]([sin )(21212222=⋅===⎰⎰-∞+∞-x x x x f x X E Y E πππ,21)]([)()(22=-=Y E Y E Y D .9.某正方形场地,按照航空测量的数据,它的边长的数学期望为350m ,又知航空测量的误差随机变量X 的分布列为X (m)30-20-10-0102030P05.008.016.042.016.008.005.0而场地边长随机变量Y 等于边长的数学期望与测量误差之和,即X Y +=350,求场地面积的数学期望.解:设场地面积为S ,则2Y S =,16.01042.0016.0)10(08.0)20(05.030)(⨯+⨯+⨯-+⨯-+⨯-=X E 005.03008.020=⨯+⨯+,16.01042.0016.0)10(08.0)20(05.0)30()(222222⨯+⨯+⨯-+⨯-+⨯-=X E 18605.03008.02022=⨯+⨯+,故)350700(])350[()()(2222++=+==X X E X E Y E S E 122686350)(700)(22=++=X E X E .10.A ,B 两台机床同时加工零件,每生产一批较大的产品时,出次品的概率如下表所示:A 机床次品数X 0123概率P7.02.006.004.0B 机床次品数X 0123概率P8.006.004.010.0问哪一台机床加工质量较好.解:44.004.0306.022.017.00)(=⨯+⨯+⨯+⨯=X E ,8.004.0306.022.017.00)(22222=⨯+⨯+⨯+⨯=X E ,6064.0)]([)()(22=-=X E X E X D ,44.010.0304.0206.018.00)(=⨯+⨯+⨯+⨯=Y E ,12.110.0304.0206.018.00)(22222=⨯+⨯+⨯+⨯=Y E ,9264.0)]([)()(22=-=Y E Y E Y D ,)()(Y E X E =,但)()(Y D X D <,故A 机床加工质量较好.11.设随机变量X 与Y 相互独立,且方差存在,试证:22)]()[()()]([)()()(Y E X D Y D X E Y D X D XY D ++=,由此得出)()()(Y D X D XY D ≥.证:22)]([])[()(XY E XY E XY D -=222)]()([)(Y E X E Y X E -=2222)]([)]([)()(Y E X E Y E X E -=2222)]([)]([})]([)(}{)]([)({Y E X E Y E Y D X E X D -++=22)]()[()()]([)()(Y E X D Y D X E Y D X D ++=.因为)(X D ,)(Y D ,2)]([X E ,2)]([Y E 非负,所以)()()(Y D X D XY D ≥.12.已知随机变量X 的密度函数为⎩⎨⎧≤≤++=其他.,010,)(2x c bx x a x f又已知5.0)(=X E ,15.0)(=X D ,求a ,b ,c .解:c b a x c bx x a x x f ++=++==⎰⎰∞+∞-2131d )(d )(1102,c b a x c bx x a x x x f x X E 213141d )(d )()(5.0102++=++===⎰⎰∞+∞-,⎰⎰++-=-==∞+∞-1222d )()5.0(d )()]([)(15.0xc bx x a x x x f X E x X D 41314151-++=c b a ,解之得12=a ,12-=b ,3=c .13.设),(Y X 的分布律为(1)求)(X E 及)(Y E ;(2)设XYZ =,求)(Z E ;(3)设2)(Y X Z -=,求)(Z E .解:(1)2)13.00(3)1.001.0(2)1.01.02.0(1)(=++⨯+++⨯+++⨯=X E ,0)1.01.01.0(1)3.001.0(0)01.02.0()1()(=++⨯+++⨯+++⨯-=Y E ,(2)1.01)3.001.0(00)31(1.021(2.01)(⨯+++⨯+⨯-+⨯-+⨯-=Z E 1511.0311.021-=⨯+⨯+,(3)1.0)01(0)]1(3[1.0)]1(2[2.0)]1(1[)(2222⨯-+⨯--+⨯--+⨯--=Z E 51.0)13(1.0)12(1.0)11(3.0)03(0)02(22222=⨯-+⨯-+⨯-+⨯-+⨯-+.14.设随机变量),(Y X 的概率密度函数为⎪⎩⎪⎨⎧≤≤≤≤+=其他.,0,10,20,3),(y x yx y x f求)(X E ,)(Y E ,)(Y X E +及)(22Y X E +.解:⎰⎰∞+∞-∞+∞-=y x y x f x X E d d ),()(911d d 31020=+⋅=⎰⎰y x y x x ,⎰⎰∞+∞-∞+∞-=y x y x yf Y E d d ),()(95d d 31020=+⋅=⎰⎰y x y x y ,⎰⎰∞+∞-∞+∞-+=+y x y x f y x Y X E d d ),()()(916d d 3)(1020=+⋅+=⎰⎰y x y x y x ,⎰⎰∞+∞-∞+∞-+=+y x y x f y x Y X E d d ),()()(2222613d d 3)(102022=+⋅+=⎰⎰y x y x y x .15.),(Y X 在区域}1,0,0|),{(≤+≥≥=y x y x y x D 上服从均匀分布,求)(X E ,)23(Y X E -及)(XY E .解:由题可知),(Y X 的联合密度函数为⎩⎨⎧≤≤-≤≤=其他.,0,10,10,2),(y y x y x f ⎰⎰∞+∞-∞+∞-=y x y x f x X E d d ),()(31d d 21010==⎰⎰-yy x x ,⎰⎰∞+∞-∞+∞--=-y x y x f y x Y X E d d ),()23()23(31d d )23(21010=-=⎰⎰-yy x y x ,⎰⎰∞+∞-∞+∞-=y x y x xyf XY E d d ),()(121d d 21010==⎰⎰-y y x xy .16.设二维随机变量),(Y X 的概率密度函数为⎪⎩⎪⎨⎧>+≤+=.1,0,1,1),(2222y x y x y x f π证明:随机变量X 与Y 不相关,也不相互独立.证:⎰⎰⎰⎰⋅=⋅=∞+∞-∞+∞-πθθππ201d d cos 1d d 1)(r r r y x x X E ,同理,0)(=Y E ,⎰⎰⎰⎰⋅⋅=⋅=∞+∞-∞+∞-πθθθππ201d d sin cos 1d d 1)(r r r r y x xy XY E ,0)()()(),cov(=-=Y E X E XY E Y X ,故随机变量X 与Y 不相关.当11≤≤-x 时,ππ21112d 1d ),()(22x y y y x f x f x x X -===⎰⎰---∞+∞-,其他,0)(=x f X ,故⎪⎩⎪⎨⎧≤≤--=其他.,0,11,12)(2x x x f X π同理,⎪⎩⎪⎨⎧≤≤--=其他.,0,11,12)(2y y y f Y π易得)()(),(y f x f y x f Y X ≠,故随机变量X 与Y 不相互独立.17.设随机变量1X ,2X 的概率密度分别为⎩⎨⎧≤>=-.0,0,0,e 2)(21x x x f x ,⎩⎨⎧≤>=-.0,0,0,e 4)(42y y y f y 试用数学期望的性质求:(1))(21X X E +及)32(221X X E -;(2)又设1X ,2X 相互独立,求)(21X X E .解:由题可知1X ~)2(E ,2X ~)4(E ,则21)(1=X E ,41)(2=X E ,161)(2=X D ,81)]([)()(22222=+=X E X D X E .(1)43)()()(2121=+=+X E X E X X E ,85)(3)(2)32(221221=-=-X E X E X X E .(2)81)()()(2121==X E X E X X E .18.(1)设1X ,2X ,3X 及4X 独立同在)1,0(上服从均匀分布,求)51(41∑=k k kX D ;(2)已知随机变量X ,Y 的方差分别为25和36,相关系数为4.0,求Y X U 23+=的方差.解:(1)由题易得121)(=i X D ,)51(41∑=k k kX D )(5141∑==k kkX D )](4)(3)(2)([514321X D X D X D X D +++=21)4321(121512222=+++⋅=.(2)由已知25)(=X D ,36)(=Y D ,4.0)()(),cov(==Y D X D Y X XY ρ,得12),cov(=Y X ,)2,3cov(2)2()3()23()(Y X Y D X D Y X D U D ++=+=513),cov(232)(2)(322=⋅⋅++=Y X Y D X D .19.一民航送客车载有20位旅客自机场开出,旅客有10个车站可以下车,如果到达一个车站没有旅客下车就不停车,以X 表示停车的次数,求)(X E (设每位旅客在各个车站下车是等可能的,并设各旅客是否下车相互独立).解:引入随机变量⎩⎨⎧=站无人下车.,在第站有人下车;,在第i i X i 01,10,,2,1 =i .易知1021X X X X +++= .按题意,任一旅客在第i 站不下车的概率为9.0,因此20位旅客都不在第i 站下车的概率为209.0,在第i 站有人下车的概率为209.01-,也就是209.0)0(==i X P ,209.01)1(-==i X P ,10,,2,1 =i .由此209.01)(-=i X E ,10,,2,1 =i .进而)()()()()(10211021X E X E X E X X X E X E +++=+++= 784.8)9.01(1020=-=(次).20.将n 只球(1~n 号)随机地放进n 只盒子(1~n 号)中去,一只盒子装一只球.若一只球装入与球同号的盒子中,称为一个配对,记X 为总的配对数,求)(X E .解:引入随机变量⎩⎨⎧=号盒子.号球未放入第第号盒子号球放入第第i i i i X i ,0,,1,n i ,,2,1 =,则n X X X X +++= 21,显然n X P i 1)1(==,则nX P i 11)0(-==,n i ,,2,1 =,从而nX E i 1)(=,n i ,,2,1 =,于是1)()()()()(2121=+++=+++=n n X E X E X E X X X E X E .21.设随机变量),(Y X 的分布律为试验证X 和Y 是不相关的,但X 和Y 不是相互独立的.证:0)25.00(2)025.0(1)025.0()1()25.00(2)(=+⨯++⨯++⨯-++⨯-=X E ,5)25.00025.0(4)025.025.00(1)(=+++⨯++++⨯=Y E ,0)4(25.0)8(0225.0125.0)1(02)(⨯-+⨯-+⨯+⨯+⨯-+⨯-=XY E 025.0804=⨯+⨯+,所以0)()()(),cov(=-=Y E X E XY E Y X ,故X 与Y 不相关.易知25.025.00)2(=+=-=X P ,5.0025.025.00)1(=+++==Y P ,0)1,2(==-=Y X P ,有)1()2()1,2(=-=≠=-=Y P X P Y X P ,故X 与Y 不相互独立.22.设二维随机变量),(Y X 的概率密度为⎩⎨⎧≤≤≤≤+=其他.,0,10,10,),(y x y x y x f 求)(X E ,)(Y E ,)(X D ,)(Y D ,)(XY E ,),cov(Y X 及XY ρ.解:127d d )(d d ),()(1010=+==⎰⎰⎰⎰∞+∞-∞+∞-y x y x x y x y x f x X E ,125d d )(d d ),()(1010222=+==⎰⎰⎰⎰∞+∞-∞+∞-y x y x x y x y x f x X E ,14411)]([)()(22=-=X E X E X D ,由轮换对称性,得127)(=Y E ,14411)(=Y D ,31d d )(d d ),()(1010=+==⎰⎰⎰⎰∞+∞-∞+∞-y x y x xy y x y x xyf XY E ,1441)()()(),cov(-=-=Y E X E XY E Y X ,111)()(),cov(-==Y D X D Y X XY ρ.23.设X ~),(2σμN ,Y ~),(2σμN ,且X ,Y 相互独立.求Y X Z βα+=1和Y X Z βα-=2的相关系数(α,β是不为0的常数).解:由题可知μ==)()(Y E X E ,2)()(σ==Y D X D ,则2222)]([)()(σμ+=+=X E X D X E ,2222)]([)()(σμ+=+=Y E Y D Y E ,μβαβα)()()(1+=+=Y X E Z E ,μβαβα)()()(2-=-=Y X E Z E ,222221)()()()()(σβαβαβα+=+=+=Y D X D Y X D Z D ,222222)()()()()(σβαβαβα+=+=-=Y D X D Y X D Z D ,)()])([()(222221Y X E Y X Y X E Z Z E βαβαβα-=-+=))(()()(22222222σμβαβα+-=-=Y E X E ,222212121)()()()(),cov(σβα-=-=Z E Z E Z Z E Z Z ,22222121)()(),cov(21βαβαρ+-==Z D Z D Z Z Z Z .24.设),(Y X 的联合概率密度为⎩⎨⎧≤≤≤≤--=.,0,10,10,2),(其他y x y x y x f (1)求),cov(Y X ,XY ρ和)32(Y X D -;11(2)X 与Y 是否独立?解:(1)125d d )2(d d ),()(1010=--==⎰⎰⎰⎰∞+∞-∞+∞-y x y x x y x y x f x X E ,41d d )2(d d ),()(1010222=--==⎰⎰⎰⎰∞+∞-∞+∞-y x y x x y x y x f x X E ,61d d )2(d d ),()(1010=--==⎰⎰⎰⎰∞+∞-∞+∞-y x y x xy y x y x xyf XY E ,14411)]([)()(22=-=X E X E X D ,由轮换对称性,125)(=Y E ,14411)(=Y D ,1441)()()(),cov(-=-=Y E X E XY E Y X ,111)()(),cov(-==Y D X D Y X XY ρ,)3,2cov(2)3()2()32(Y X Y D X D Y X D -+-+=-144155),cov(12)(3)(222=-+=Y X Y D X D .(2)当10≤≤x 时,x y y x y y x f x f X -=--==⎰⎰∞+∞-23d )2(d ),()(10,其他,0)(=x f X ,故⎪⎩⎪⎨⎧≤≤-=其他.,0,10,23)(x x x f X 同理,⎪⎩⎪⎨⎧≤≤-=其他.,0,10,23)(y y y f Y 因为)()(),(y f x f y x f Y X ≠,故X 与Y 不相互独立.。

概率论与数理统计教程第四版(沈恒范)(超全免费版)

概率论与数理统计教程第四版(沈恒范)(超全免费版)
若事件 、 相互独立,且 ,则有
若事件 、 相互独立,则可得到 与 、 与 、 与 也都相互独立。
必然事件 和不可能事件Ø与任何事件都相互独立。
Ø与任何事件都互斥。
②多个事件的独立性
设ABC是三个事件,如果满足两两独立的条件,
P(AB)=P(A)P(B);P(BC)=P(B)P(C);P(CA)=P(C)P(A)
分布函数具有如下性质:
1° ;
2° 是单调不减的函数,即 时,有 ;
3° , ;
4° ,即 是右连续的;
5° 。
对于离散型随机变量, ;
对于连续型随机变量, 。
(5)八大分布
0-1分布
P(X=1)=p, P(X=0)=q
二项分布
在 重贝努里试验中,设事件 发生的概率为 。事件 发生的次数是随机变量,设为 ,则 可能取值为 。
记为(X,Y)~N(
由边缘密度的计算公式,可以推出二维正态分布的两个边缘分布仍为正态分布,
即X~N(
但是若X~N( ,(X,Y)未必是二维正态分布。
(10)函数分布
Z=X+Y
根据定义计算:
对于连续型,fZ(z)=
两个独立的正态分布的和仍为正态分布( )。
n个相互独立的正态分布的线性组合,仍服从正态分布。
若 ,则 的分布函数为
。。
参数 、 时的正态分布称为标准正态分布,记为 ,其密度函数记为
, ,
分布函数为

是不可求积函数,其函数值,已编制成表可供查用。
Φ(-x)=1-Φ(x)且Φ(0)= 。
如果 ~ ,则 ~ 。

(6)分位数
下分位表: ;
上分位表: 。
(7)函数分布

《概率论与数理统计》习题及答案第四章

《概率论与数理统计》习题及答案第四章

·34·《概率论与数理统计》习题及答案第四章1.一个袋子中装有四个球,它们上面分别标有数字1,2,2,3,今从袋中任取一球后不放回,再从袋中任取一球,以,X Y 分别表示第一次,第二次取出的球上的标号,求(,)X Y 的分布列.解(,)X Y的分布列为12311106121112666113126其中(1,1)(1)(1|1)P X Y P X P Y X (1,2)(1)(2|P XYP X P Y X 121436余者类推。

2.将一枚硬币连掷三次,以X 表示在三次中出现正面的次数,以Y 表示三次中出现正面次数与出现反面次数之差的绝对值,试写出(,)X Y 的分布列及边缘分布列。

解一枚硬币连掷三次相当于三重贝努里试验,故1~(3,).2X B 331()(),0,1,2,32kP Xk C k,于是(,)X Y 的分布列和边缘分布为XY·35·012333610088811230088813318888jip p 其中(0,1)(0)(1|0)P X Y P X P Y X ,13313(1,1)(1)(1|1)()128P XYP XP YXC ,余者类推。

3.设(,)X Y 的概率密度为1(6),02,24,(,)8,.x y x y f x y 其它又(1){(,)|1,3}D x y x y;(2){(,)|3}Dx y xy。

求{(,)}P X Y D 解(1)1321{(,)}(6)8P x y D xy d xd x y1194368228;(2)1321{(,)}(6)8xP X Y D x y d x d y112113(1)[(3)4]82x x d xx d x524.4.设(,)X Y 的概率密度为22222(),,(,),.C Rxy xyR f x y 其他求(1)系数C ;(2)(,)X Y 落在圆222()xyr rR 内的概率.解(1)22222232001()RxyRCRxy d xd y C R Cr d rdYX xx+y=3422y·36·333233R R C RC,33CR.(2)设222{(,)|}Dx y x yr ,所求概率为2222233{(,)}()xyrP X Y D R xy d x d yR322323232133r r r R rRRR.5.已知随机变量X 和Y 的联合概率密度为4,1,01(,)0,.x y xyf x y 其它求X 和Y 的联合分布函数.解1设(,)X Y 的分布函数为(,)F x y ,则(,)(,)xyF x y f u v d u d v01001000,00,4,1,01,4,01,1,4,1,01,1,1, 1.xyxyxy uv du d v xyu yd u d y x y xvd xd v x y xy 或22220,00,,01,01,,01,1,,1,01,1,1,1.x yx y x y x xy yx y xy或解2由联合密度可见,,X Y 独立,边缘密度分别为2,1,()0,;X x xf x 其他2,01,()0,.Y y yf y 其它边缘分布函数分别为(),()X Y F x F y ,则·37·20,0,()(),01,1, 1.xX X x F x f u d u x x x 20,0,()(),01,1,1.yY Xy F y fv d v y y y设(,)X Y 的分布函数为(,)F x y ,则22220,00,,01,01(,)()(),01,1,,1,01,1,1,1.X Y x y x y x y F x y F x F y x xy y x y x y或6.设二维随机变量(,)X Y 在区域:01D x,||y x 内服从均匀分布,求边缘概率密度。

概率论与数理统计(理工类_第四版)课后习题答案

概率论与数理统计(理工类_第四版)课后习题答案

1.随机事件习题1试说明随机试验应具有的三个特点.习题2将一枚均匀的硬币抛两次,事件A,B,C分别表示“第一次出现正面”,“两次出现同一面”,“至少有一次出现正面”,试写出样本空间及事件A,B,C中的样本点.1.2 随机事件的概率1.3 古典概型与几何概型1.4 条件概率1.5 事件的独立性复习总结与总习题解答习题3. 证明下列等式:习题6.习题7习题9习题10习题12习题13习题14习题15习题16习题18习题20习题21习题23习题24习题26第二章随机变量及其分布2.1 随机变量习题1随机变量的特征是什么?解答:①随机变量是定义在样本空间上的一个实值函数.②随机变量的取值是随机的,事先或试验前不知道取哪个值.③随机变量取特定值的概率大小是确定的.习题2试述随机变量的分类.解答:①若随机变量X的所有可能取值能够一一列举出来,则称X为离散型随机变量;否则称为非离散型随机变量.②若X的可能值不能一一列出,但可在一段连续区间上取值,则称X为连续型随机变量.习题3盒中装有大小相同的球10个,编号为0,1,2,⋯,9, 从中任取1个,观察号码是“小于5”,“等于5”,“大于5”的情况,试定义一个随机变量来表达上述随机试验结果,并写出该随机变量取每一个特定值的概率.解答:分别用ω1,ω2,ω3表示试验的三个结果“小于5”,“等于5”,“大于5”,则样本空间S={ω1,ω2,ω3}, 定义随机变量X如下:X=X(ω)={0,ω=ω11,ω=ω2,2,ω=ω3则X取每个值的概率为P{X=0}=P{取出球的号码小于5}=5/10,P{X=1}=P{取出球的号码等于5}=1/10,P{X=2}=P{取出球的号码大于5}=4/10.2.2 离散型随机变量及其概率分布习题1设随机变量X服从参数为λ的泊松分布,且P{X=1}=P{X=2}, 求λ.解答:由P{X=1}=P{X=2}, 得λe-λ=λ^2/2e^-λ,解得λ=2.习题2设随机变量X的分布律为P{X=k}=k15,k=1,2,3,4,5,试求(1)P{12<X<52; (2)P{1≤X≤3};(3)P{X>3}.解答:(1)P{12<X<52=P{X=1}+P{X=2}=115+215=15;(2)P{≤X≤3}=P{X=1}+P{X=2}+P{X=3}=115+215+315=25;(3)P{X>3}=P{X=4}+P{X=5}=415+515=35.习题3已知随机变量X只能取-1,0,1,2四个值,相应概率依次为12c,34c,58c,716c, 试确定常数c, 并计算P{X<1∣X≠0}.解答:依题意知,12c+34c+58c+716c=1, 即3716c=1,解得c=3716=2.3125.由条件概率知P{X<1∣X≠0}=P{X<1,X≠0}P{X≠0}=P{X=-1}P{X≠0}=12c1-34c=24c-3=26.25=0.32.习题4一袋中装有5只球,编号为1,2,3,4,5. 在袋中同时取3只,以X表示取出的3只球中的最大号码,写出随机变量X的分布律.解答:随机变量X的可能取值为3,4,5.P{X=3}=C22⋅1C53=110, P{X=4}=C32⋅1C53=310, P{X=5}=C42⋅1C53=35,所以X的分布律为习题8某种产品共10件,其中有3件次品,现从中任取3件,求取出的3件产品中次品的概率分布.解答:设X表示取出3件产品的次品数,则X的所有可能取值为0,1,2,3. 对应概率分布为P{X=0}=C73C103=35120, P{X=1}=C73C31C103=36120,P{X=2}=C71C32C103=21120, P{X=3}=C33C103=1120.X的分布律为X0123P351203612021120112 0习题9一批产品共10件,其中有7件正品,3件次品,每次从这批产品中任取一件,取出的产品仍放回去,求直至取到正品为止所需次数X的概率分布.解答:由于每次取出的产品仍放回去,各次抽取相互独立,下次抽取时情况与前一次抽取时完全相同,所以X的可能取值是所有正整数1,2,⋯,k,⋯.设第k次才取到正品(前k-1次都取到次品), 则随机变量X的分布律为P{X=k}=310×310×⋯×310×710=(310)k-1×710,k=1,2,⋯.习题10设随机变量X∼b(2,p),Y∼b(3,p), 若P{X≥1}=59,求P{Y≥1}.解答:因为X∼b(2,p),P{X=0}=(1-p)2=1-P{X≥1}=1-5/9=4/9,所以p=1/3.因为Y∼b(3,p), 所以P{Y≥1}=1-P{Y=0}=1-(2/3)3=19/27.习题11纺织厂女工照顾800个纺绽,每一纺锭在某一段时间τ内断头的概率为0.005, 在τ这段时间内断头次数不大于2的概率.解答:以X记纺锭断头数, n=800,p=0.005,np=4,应用泊松定理,所求概率为:P{0≤X≤2}=P{⋃0≤xi≤2{X=xi}=∑k=02b(k;800,0.005)≈∑k=02P(k;4)=e-4(1+41!+422!)≈0.2381.习题12设书籍上每页的印刷错误的个数X服从泊松分布,经统计发现在某本书上,有一个印刷错误与有两个印刷错误的页数相同,求任意检验4页,每页上都没有印刷错误的概率.解答:\becauseP{X=1}=P{X=2}, 即λ11!e-λ=λ22!e-λ⇒λ=2,∴P{X=0}=e-2,∴p=(e-2)4=e-8.2.3 随机变量的分布函数习题1F(X)={0,x<-20.4,-2≤x<01,x≥0,是随机变量X的分布函数,则X是___________型的随机变量.解答:离散.由于F(x)是一个阶梯函数,故知X是一个离散型随机变量.习题2设F(x)={0x<0x20≤1,1x≥1问F(x)是否为某随机变量的分布函数.解答:首先,因为0≤F(x)≤1,∀x∈(-∞,+∞).其次,F(x)单调不减且右连续,即F(0+0)=F(0)=0, F(1+0)=F(1)=1,且F(-∞)=0,F(+∞)=1,所以F(x)是随机变量的分布函数.习题3已知离散型随机变量X的概率分布为P{X=1}=0.3,P{X=3}=0.5,P{X=5}=0.2,试写出X的分布函数F(x),并画出图形.解答:由题意知X的分布律为:X 135P k0.30.50. 2所以其分布函数F(x)=P{X≤x}={0,x<10.3,1≤x<30.8,3≤x<51,x≥5.F(x)的图形见图.习题4设离散型随机变量X的分布函数为F(x)={0,x<-10.4,-1≤x<10.8,1≤x<31,x≥3,试求:(1)X的概率分布;(2)P{X<2∣X≠1}.解答:(1)X -113p k0.40.40. 2(2)P{X<2∣X≠1}=P{X=-1}P{X≠1}=23.习题5设X的分布函数为F(x)={0,x<0x2,0≤x<1x-12,1≤x<1.51,x≥1.5,求P{0.4<X≤1.3},P{X>0.5},P{1.7<X≤2}.解答:P{0.4<X≥1.3}=P{1.3}-F(0.4)=(1.3-0.5)-0.4/2=0.6,P{X>0.5}=1-P{X≤0.5}=1-F(0.5)=1-0.5/2=0.75,P{1.7<X≤2}=F(2)-F(1.7)=1-1=0.习题6设随机变量X的分布函数为F(x)=A+Barctanx(-∞<x<+∞),试求:(1)系数A与B; (2)X落在(-1,1]内的概率.解答:(1)由于F(-∞)=0,F(+∞)=1,可知{A+B(-π2)A+B(π2)=1=0⇒A=12,B=1π,于是F(x)=12+1πarctanx, -∞<x<+∞;(2)P{-1<X≤1}=F(1)-F(-1)=(12+1πarctan1)-[12+1πarctanx(-1)]=12+1π⋅π4-12-1π(-π4)=12.习题7在区间[0,a]上任意投掷一个质点,以X表示这个质点的坐标.设这个质点落在[0,a]中任意小区间内的概率与这个小区间的长度成正比例,试求X的分布函数.解答:F(x)=P{X≤x}={0,x<0xa,0≤x<a.1,x≥a2.4 连续型随机变量及其概率密度习题1设随机变量X的概率密度为f(x)=12πe-(x+3)24(-∞<x<+∞),则Y=¯∼N(0,1).解答:应填3+X2.由正态分布的概率密度知μ=-3,σ=2由Y=X-μσ∼N(0,1), 所以Y=3+X2∼N(0,1).习题2已知X∼f(x)={2x,0<x<10,其它, 求P{X≤0.5};P{X=0.5};F(x).解答:P{X≤0.5}=∫-∞0.5f(x)dx=∫-∞00dx+∫00.52xdx=x2∣00.5=0.25,P{X=0.5}=P{X≤0.5}-P{X<0.5}=∫-∞0.5f(x)dx-∫-∞0.5f(x)dx=0.当X≤0时,F(x)=0;当0<x<1时,F(x)=∫-∞xf(t)dt=∫-∞00dt+∫0x2tdt=t2∣0x=x2;当X≥1时,F(x)=∫-∞xf(t)dt=∫-∞00dt+∫0x2tdt+∫1x0dt=t2∣01=1,故F(x)={0,x≤0x2,0<x<1.1,x≥1习题3设连续型随机变量X的分布函数为F(x)={A+Be-2x,x>00,x≤0,试求:(1)A,B的值;(2)P{-1<X<1}; (3)概率密度函数F(x).解答:(1)\becauseF(+∞)=limx→+∞(A+Be-2x)=1, ∴A=1;又\becauselimx→0+(A+Be-2x)=F(0)=0, ∴B=-1.(2) P{-1<X<1}=F(1)-F(-1)=1-e-2.(3)f(x)=F′(x)={2e-x,x>00,x≤0.习题4服从拉普拉斯分布的随机变量X的概率密度f(x)=Ae-∣x∣, 求系数A及分布函数F(x).解答:由概率密度函数的性质知,∫-∞+∞f(x)dx=1,即∫-∞+∞Ae-∣x∣dx=1,而∫-∞+∞Ae-∣x∣dx=∫-∞0Aexdx+∫0+∞Ae-xdx=Aex∣-∞0+(-Ae-x∣0+∞)=A+A=2A或∫-∞+∞Ae-xdx=2∫0+∞Ae-xdx=-2Ae-x∣0+∞=2A,所以2A=1, 即A=1/2.从而f(x)=12e-∣x∣,-∞<x<+∞,又因为F(x)=∫-∞xf(t)dt,所以当x<0时,F(x)=∫-∞x12e-∣t∣dt=12∫-∞xetdt=12et∣-∞x=12ex;当x≥0时,F(x)=∫-∞x12e-∣x∣dt=∫-∞012etdt+∫0x12e-tdt=12et∣-∞0-12e-t∣0x=12-12e-x+12=1-12e-x,从而F(x)={12ex,x<01-12e-x,x≥0.习题5某型号电子管,其寿命(以小时计)为一随机变量,概率密度f(x)={100x2,x≥1000,其它,某一电子管的使用寿命为X, 则三个电子管使用150小时都不需要更换的概率.解答:设电子管的使用寿命为X, 则电子管使用150小时以上的概率为P{X>150}=∫150+∞f(x)dx=∫150+∞100x2dx=-100x∣150+∞=100150=23,从而三个电子管在使用150小时以上不需要更换的概率为p=(2/3)3=8/27.习题6设一个汽车站上,某路公共汽车每5分钟有一辆车到达,设乘客在5分钟内任一时间到达是等可能的,试计算在车站候车的10位乘客中只有1位等待时间超过4分钟的概率.解答:设X为每位乘客的候车时间,则X服从[0,5]上的均匀分布. 设Y表示车站上10位乘客中等待时间超过4分钟的人数. 由于每人到达时间是相互独立的.这是10重伯努力概型. Y服从二项分布,其参数n=10,p=P{X≥4}=15=0.2,所以P{Y=1}=C101×0.2×0.89≈0.268.习题7设X∼N(3,22).(1)确定C, 使得P{X>c}=P{X≤c};(2)设d满足P{X>d}≥0.9,问d至多为多少?解答:因为X∼N(3,22), 所以X-32=Z∼N(0,1).(1)欲使P{X>c}=P{X≤c},必有1-P{X≤c}=P{X≤c},即P{X≤c}=1/2,亦即Φ(c-32)=12, 所以 c-32=0, 故c=3.(2)由P{X>d}≥0.9可得1-P{X≤d}≥0.9,即P{X≤d}≤0.1.于是Φ(d-32)≤0.1,Φ(3-d2)≥0.9.查表得3-d2≥1.282, 所以d≤0.436.习题8设测量误差X∼N(0,102), 先进行100次独立测量,求误差的绝对值超过19.6的次数不小于3的概率. 解答:先求任意误差的绝对值超过19.6的概率p,p=P{∣X∣>19.6}=1-P{∣X∣≤19.6}=1-P{∣X10∣≤1.96=1-[Φ(1.96)-Φ(-1.96)]=1-[2Φ(1.96)-1]=1-[2×0.975-1]=1-0.95=0.05.设Y为100次测量中误差绝对值超过19.6的次数,则Y∼b(100,0.05).因为n很大,p很小,可用泊松分布近似,np=5=λ, 所以P{Y≥3}≈1-50e-50!-51e-51!-52e-52!=1-3722-5≈0.87.习题9某玩具厂装配车间准备实行计件超产奖,为此需对生产定额作出规定. 根据以往记录,各工人每月装配产品数服从正态分布N(4000,3600).假定车间主任希望10%的工人获得超产奖,求:工人每月需完成多少件产品才能获奖?解答:用X表示工人每月需装配的产品数,则X∼N(4000,3600).设工人每月需完成x件产品才能获奖,依题意得P{X≥x}=0.1,即1-P{X<x}=0.1,所以1-F(x)=0.1, 即1-Φ(x-400060)=0.1, 所以Φ(x-400060)=0.9.查标准正态人分布表得Φ(1.28)=0.8997, 因此x-400060≈1.28,即x=4077件,就是说,想获超产奖的工人,每月必须装配4077件以上.习题10某地区18岁女青年的血压(收缩压,以mm-HG计)服从N(110,122). 在该地区任选一18岁女青年,测量她的血压X.(1)求P{X≤105},P{100<X≤120};(2)确定最小的x, 使P{X>x}≤0.005.解答:已知血压X∼N(110,122).(1)P{X≤105}=P{X-11012≤-512≈1-Φ(0.42)=0.3372,P{100<X≤120}=Φ(120-11012)-Φ(100-11012)=Φ(0.833)-Φ(-0.833)=2Φ(0.833)-1≈0.595.(2)使P{X>x}≤0.05,求x, 即1-P{X≤x}≤0.05,亦即Φ(x-11012)≥0.95,查表得x-10012≥1.645,从而x≥129.74.习题11设某城市男子身高X∼N(170,36), 问应如何选择公共汽车车门的高度使男子与车门碰头的机会小于0.01.解答:X∼N(170,36), 则X-1706∼N(0,1).设公共汽车门的高度为xcm,由题意P{X>x}<0.01, 而P{X>x}=1-P{X≤x}=1-Φ(x-1706)<0.01,即Φ(x-1706)>0.99, 查标准正态表得x-1706>2.33, 故x>183.98cm.因此,车门的高度超过183.98cm时,男子与车门碰头的机会小于0.01.习题12某人去火车站乘车,有两条路可以走. 第一条路程较短,但交通拥挤,所需时间(单位:分钟)服从正态分布N(40,102); 第二条路程较长,但意外阻塞较少,所需时间服从正态分布N(50,42), 求:(1)若动身时离开车时间只有60分钟,应走哪一条路线?(2)若动身时离开车时间只有45分钟,应走哪一条路线?解答:设X,Y分别为该人走第一、二条路到达火车站所用时间,则X∼N(40,102),Y∼N(50,42).哪一条路线在开车之前到达火车站的可能性大就走哪一条路线.(1)因为P{X<60}=Φ(60-4010)=Φ(2)=0.97725, P{Y<60}=Φ(60-504)=Φ(2.5)=0.99379,所以有60分钟时应走第二条路.(2)因为P{X<45}=Φ(45-4010)=Φ(0.5)=0.6915,P{X<45}=Φ(45-504)=Φ(-1.25)=1-Φ(1.25)=1-0.8925=0.1075所以只有45分钟应走第一条路.所以Y=sin(π2X)只有三个可能值-1,0,1. 容易求得P{Y=-1}=215,P{=0}=13,P{Y=1}=815 故Y的分布律列表表示为Y-101P2151381 5习题3设随机变量X服从[a,b]上的均匀分布,令Y=cX+d(c≠0),试求随机变量Y的密度函数.解答:fY(y)={fX(y-dc)⋅1∣c∣,a≤y-dc≤b0,其它,当c>0时,fY(y)={1c(b-a),ca+d≤y≤cb+d0,其它,当c<0时,fY(y)={-1c(b-a),cb+d≤y≤ca+d0,其它.习题4设随机变量X服从[0,1]上的均匀分布,求随机变量函数Y=eX的概率密度fY(y).解答:f(x)={1,0≤x≤10,其它,f=ex,x∈(0,1)是单调可导函数,y∈(1,e), 其反函数为x=lny, 可得f(x)={fX(lny)∣ln′y,1<y<e0,其它={1y,1<y<e0,其它.习题5设X∼N(0,1),求Y=2X2+1的概率密度.解答:因y=2x2+1是非单调函数,故用分布函数法先求FY(y).FY(y)=P{Y≤y}=P{2X2+1≤y}(当y>1时)=P{-y-12≤X≤y-12=∫-y-12y-1212πe-x2dx,所以fY(y)=F′Y(y)=22πe-12⋅y-12⋅122y-1,y>1, 于是fY(y)={12π(y-1)e-y-14,y>10,y≤1.习题6设连续型随机变量X的概率密度为f(x), 分布函数为F(x), 求下列随机变量Y的概率密度:(1)Y=1X; (2)Y=∣X∣.解答:(1)FY(y)=P{Y≤y}=P{1/X≤y}.①当y>0时,FY(y)=P{1/X≤0}+P{0<1/X≤y}=P{X≤0}+P{X≥1/y}=F(0)+1-F(1/y),故这时fY(y)=[-F(1y)]′=1y2f(1y);;②当y<0时,FY(y)=P{1/y≤X<0}=F(0)-F(1/y),故这时fY(y)=1y2f(1y);③当y=0时,FY(y)=P{1/X≤0}=P{X<0}=F(0),故这时取fY(0)=0, 综上所述fY(y)={1y2⋅f(1y),y≠00,y=0.(2)FY(y)=P{Y≤y}=P{∣X∣≤y}.①当y>0时,FY(y)=P{-y≤X≤y}=F(y)-F(-y)这时fY(y)=f(y)+f(-y);②当y<0时,FY(y)=P{∅}=0, 这时fY(y)=0;③当y=0时,FY(y)=P{Y≤0}=P{∣X∣≤0}=P{X=0}=0,故这时取FY(y)=0, 综上所述fY(y)={f(y)+f(-y),y>00,y≤0.习题7某物体的温度T(∘F)是一个随机变量, 且有T∼N(98.6,2), 已知θ=5(T-32)/9, 试求θ(∘F)的概率密度.解答:已知T∼N(98.6,2). θ=59(T-32), 反函数为T=59θ+32, 是单调函数,所以fθ(y)=fT(95y+32)⋅95=12π⋅2e-(95y+32-98.6)24⋅95=910πe-81100(y-37)2.习题8设随机变量X在任一区间[a,b]上的概率均大于0, 其分布函数为FY(x), 又Y在[0,1]上服从均匀分布,证明:Z=FX-1(Y)的分布函数与X的分布函数相同.解答:因X在任一有限区间[a,b]上的概率均大于0, 故FX(x)是单调增加函数,其反函数FX-1(y)存在,又Y在[0,1]上服从均匀分布,故Y的分布函数为FY(y)=P{Y≤y}={0,y<0y,0≤y≤11,y>0,于是,Z的分布函数为FZ(z)=P{Z≤z}=P{FX-1(Y)≤z}=P{Y≤FX(z)}={0,FX(z)<0FX(z),0≤FX(z)≤1,1,FX(z)>1由于FX(z)为X的分布函数,故0≤FX(z)≤1.FX(z)<0和FX(z)>1均匀不可能,故上式仅有FZ(z)=FX(z), 因此,Z与X的分布函数相同.总习题解答习题1从1∼20的整数中取一个数,若取到整数k的概率与k成正比,求取到偶数的概率.解答:设Ak为取到整数k, P(Ak)=ck, k=1,2,⋯,20.因为P(⋃K=120Ak)=∑k=120P(Ak)=c∑k=120k=1,所以c=1210,P{取到偶数}=P{A2∪A4∪⋯∪A20} =1210(2+4+⋯+20)=1121.习题2若每次射击中靶的概率为0.7, 求射击10炮,(1)命中3炮的概率;(2)至少命中3炮的概率;(3)最可能命中几炮.解答:若随机变量X表示射击10炮中中靶的次数. 由于各炮是否中靶相互独立,所以是一个10重伯努利概型,X服从二项分布,其参数为n=10,p=0.7, 故(1)P{X=3}=C103(0.7)3(0.3)7≈0.009;(2)P{X≥3}=1-P{X<3}=1-[C100(0.7)0(0.3)10+C101(0.7)1(0.3)9+C102(0.7)2(0.3)8]≈0.998;(3)因X∼b(10,0.7), 而k0=[(n+1)p]=[(10+1)]×0.7=[7.7]=7,故最可能命中7炮.习题3在保险公司里有2500名同一年龄和同社会阶层的人参加了人寿保险,在1年中每个人死亡的概率为0.002,每个参加保险的人在1月1日须交120元保险费,而在死亡时家属可从保险公司里领20000元赔偿金,求:(1)保险公司亏本的概率;(2)保险公司获利分别不少于100000元, 200000元的概率.解答:1)以“年”为单位来考虑,在1年的1月1日,保险公司总收入为2500×120元=30000元.设1年中死亡人数为X, 则X∼b(2500,0.002), 则保险公司在这一年中应付出200000X(元),要使保险公司亏本,则必须200000X>300000即X>15(人).因此,P{保险公司亏本}=P{X>15}=∑k=162500C2500k(0.002)k×(0.998)2500-k≈1-∑k=015e-55kk!≈0.000069,由此可见,在1年里保险公司亏本的概率是很小的.(2)P{保险公司获利不少于100000元}=P{300000-200000X≥100000}=P{X≤10}=∑k=010C2500k(0.002)×(0.998)2500-k≈∑k=010e-55kk!≈0.986305,即保险公司获利不少于100000元的概率在98%以上.P{保险公司获利不少于200000元}=P{300000-200000X≥200000}=P{X≤5}=∑k=05C2500k(0.002)k×(0.998)2500-k≈∑k=05e-55kk!≈0.615961,即保险公司获利不少于200000元的概率接近于62%.习题4一台总机共有300台分机,总机拥有13条外线,假设每台分机向总机要外线的概率为3%, 试求每台分机向总机要外线时,能及时得到满足的概率和同时向总机要外线的分机的最可能台数.解答:设分机向总机要到外线的台数为X, 300台分机可看成300次伯努利试验,一次试验是否要到外线. 设要到外线的事件为A, 则P(A)=0.03, 显然X∼b(300,0.03), 即P{X=k}=C300k(0.03)k(0.97)300-k(k=0,1,2,⋯,300),因n=300很大,p=0.03又很小,λ=np=300×0.03=9,可用泊松近似公式计算上面的概率. 因总共只有13条外线,要到外线的台数不超过13,故P{X≤13}≈∑k=0139kk!e-9≈0.9265,(查泊松分布表)且同时向总机要外线的分机的最可能台数k0=[(n+1)p]=[301×0.03]=9.习题5在长度为t的时间间隔内,某急救中心收到紧急呼救的次数X服从参数t2的泊松分布,而与时间间隔的起点无关(时间以小时计), 求:(1)某一天从中午12至下午3时没有收到紧急呼救的概率;(2)某一天从中午12时至下午5时至少收到1次紧急呼救的概率.解答:(1)t=3,λ=3/2, P{X=0}=e-3/2≈0.223;(2)t=5,λ=5/2, P{X≥1}=1-P{X=0}=1-e-5/2≈0.918.习题6设X为一离散型随机变量,其分布律为X -101p i1/21-2qq 2试求:(1)q的值;(2)X的分布函数.解答:(1)\because离散型随机变量的概率函数P{X=xi}=pi, 满足∑ipi=1,且0≤pi≤1,∴{1/2+1-2q+q2=10≤1-2q≤1q2≤1,解得q=1-1/2. 从而X的分布律为下表所示:p i1/22-13/2-2(2)由F(x)=P{X≤x}计算X的分布函数F(x)={0,1/2,2-1/2,1,x<-1-1≤x<00≤x<0x≥1.习题7设随机变量X的分布函数F(x)为F(x)={0,x<0Asinx,0≤x≤π/2,1,x>π/2则A=¯,P{∣X∣<π/6}=¯.解答:应填1;1/2.由分布函数F(x)的右连续性,有F(π2+0)=F(π2)⇒A=1.因F(x)在x=π6处连续,故P{X=π6=12, 于是有P{∣X∣<π6=P{-π6<X<π6=P{-π6<X≤π6=F(π6)-F(-π6)=12..习题8使用了x小时的电子管,在以后的Δx小时内损坏的概率等于λΔx+o(Δx), 其中λ>0是常数,求电子管在损坏前已使用时数X的分布函数F(x),并求电子管在T小时内损坏的概率.解答:因X的可能取值充满区间(0,+∞),故应分段求F(x)=P{X≤x}.当x≤0时,F(x)=P{X≤x}=P(∅)=0;当x>0时,由题设知P{x<X≤x+Δx/X}=λΔx+o(Δx), 而P{x<X≤x+Δx/X}=P{x<X≤x+Δx,X>x}P{X>x}=P{x<X≤x+Δx}1-P{X≤x}=F(x+Δx)-F(x)1-F(x),故F(X+Δx)-F(x)1-F(x)=λΔx+o(Δx), 即F(x+Δx)-F(x)Δx=[1-F(x)][λ+o(Δx)Δx],令o(Δx)→0,得F′(x)=λ[1-F(x)].这是关于F(x)的变量可分离微分方程,分离变量dF(x)1-F(x)=λdx, 积分之得通解为C[1-F(x)]=e-λx(C为任意常数).注意到初始条件F(0)=0, 故C=1.于是F(x)=1-e-λx,x>0,λ>0, 故X的分布函数为F(x)={0,x≤01-e-λx,x>0(λ>0),从而电子管在T小时内损坏的概率为P{X≤T}=F(T)=1-e-λT.习题9设连续型随机变量X的分布密度为f(x)={x,0<x≤12-x,1<x≤20,其它,求其分布函数F(x).解答:当x≤0时,F(x)=∫-∞x0dt=0;当0<x≤1时,F(x)=∫-∞xf(t)dt=∫-∞00tdt+∫0xtdt=12x2;当1<x≤2时,F(x)=∫-∞xf(t)dt=∫-∞00dt+∫01tdt+∫1x(2-t)dt=0+12+(2t-12t2)∣1x=-1+2x-x22;当x>2时,F(x)=∫-∞00dt+∫01tdt+∫12(2-t)dt+∫2x0dt=1,故F(x)={0,x≤212x2,0<x≤1-1+2x-x22,1<x≤21,x>2.习题10某城市饮用水的日消费量X(单位:百万升)是随机变量,其密度函数为:f(x)={19xe-x3,x>00,其它,试求:(1)该城市的水日消费量不低于600万升的概率;(2)水日消费量介于600万升到900万升的概率.解答:先求X的分布函数F(x). 显然,当x<0时,F(x)=0, 当x≥0时有F(x)=∫0x19te-t3dt=1-(1+x3)e-x3故F(x)={1-(1+x3)e-x3,x≥00,x<0,所以P{X≥6}=1-P{X<6}=1-P(X≤6}=1-F(6)=1-[1-(1+x3)e-x3]x=6=3e-2,P{6<X≤9}=F(9)-F(6)=(1-4e-3)-(1-3e-2)=3e-2-4e-3.习题11已知X∼f(x)={cλe-λx,x>a0,其它(λ>0), 求常数c及P{a-1<X≤a+1}.解答:由概率密度函数的性质知∫-∞+∞f(x)dx=1,而∫-∞+∞f(x)dx=∫-∞a0dx+∫a+∞cλe-λxdx=c∫a+∞e-λxd(λx)=-ce-λx\vlinea+∞=ce-λa,所以ce-λa=1, 从而c=eλa. 于是P{a-1<X≤a+1}=∫a-1a+1f(x)dx=∫a-1a0dx+∫aa+1λeλae-λxdx=-eλae-λx\vlineaa+1=-eλa(e-λ(a+1)-e-λa)=1 -e-λ.注意,a-1<a, 而当x<a时,f(x)=0.习题12已知X∼f(x)={12x2-12x+3,0<x<10,其它, 计算P{X≤0.2∣0.1<X≤0.5}.解答:根据条件概率;有P{X≤0.2∣0.1<X≤0.5}=P{X≤0.2,0.1<X≤0.5}P{0.1<X≤0.5}=P{0.1<X≤0.2}P{0.1<X≤0.5}=∫0.10.2(12x2-12x+2) dx∫0.10.5(12x2-12x+3)dx=(4x3-6x2+3x)∣0.10.2(4x3-6x2+3x)∣0.10.5=0.1480.256=0.578125.习题13若F1(x),F2(x)为分布函数,(1)判断F1(x)+F2(x)是不是分布函数,为什么?(2)若a1,a2是正常数,且a1+a2=1. 证明:a1F1(x)+a2F2(x)是分布函数.解答:(1)F(+∞)=limx→+∞F(x)=limx→+∞F1(x)+limx→+∞F2(x)=1+1=2≠1故F(x)不是分布函数.(2)由F1(x),F2(x)单调非减,右连续,且F1(-∞)=F2(-∞)=0,F1(+∞)=F2(+∞)=1,可知a1F1(x)+a2F2(x)单调非减,右连续,且a1F1(-∞)+a2F2(-∞)=0,a1F1(+∞)+a2F2(+∞)=1.从而a1F1(x)+a2F2(x)是分布函数.习题14设随机变量X的概率密度ϕ(x)为偶函数,试证对任意的a>0, 分布函数F(x)满足:(1)F(-a)=1-F(a); (2)P{∣X∣>a}=2[1-F(a)].解答:(1)F(-a)=∫-∞-aϕ(x)dx=∫a+∞ϕ(-t)dt=∫a+∞ϕ(x)dx=1-∫-∞aϕ(x)dx=1-F(a).(2)P{∣X∣>a}=P{X<-a}+P{X>a}=F(-a)+P{X≥a}F(-a)+1-F(a)=2[1-F(a)].习题15设K在(0,5)上服从均匀分布,求x的方程4x2+4Kx+K+2=0有实根的概率.解答:因为K∼U(0,5), 所以fK(k)={1/5,0<k<50,其它,方程4x2+4Kx+K+2=0有实根的充要条件为(4K)2-4⋅4(K+2)≥0,即K2-K-2≥0,亦即(k-2)(K+1)≥0,解得K≥2(K≤-1舍去), 所以P{方程有实根}=P{K≥2}=∫2515dx=35.习题16某单位招聘155人,按考试成绩录用,共有526人报名,假设报名者考试成绩X∼N(μ,σ2), 已知90分以上12人,60分以下83人,若从高分到低分依次录取,某人成绩为78分,问此人是否能被录取?解答:要解决此问题首先确定μ,σ2, 因为考试人数很多,可用频率近似概率.根据已知条件P{X>90}=12/526≈0.0228,P{X≤90}=1-P{X>90}≈1-0.0228}=0.9772;又因为P{X≤90}=P{X-μσ≤90-μσ, 所以有Φ(90-μσ)=0.9772, 反查标准正态表得90-μσ=2 ①同理:P{X≤60}=83/526≈0.1578; 又因为P{X≤60}=P{X-μσ≤60-μσ,故Φ(60-μσ)≈0.1578.因为0.1578<0.5,所以60-μσ<0, 故Φ(μ-60σ)≈1-0.1578=0.8422, 反查标准正态表得μ-60σ≈1.0 ②联立①,②解得σ=10,μ=70, 所以,X∼N(70,100).某人是否能被录取,关键看录取率. 已知录取率为155526≈0.2947, 看某人是否能被录取,解法有两种:方法1:P{X>78}=1-P{X≤78}=1-P{x-7010≤78-7010=1-Φ(0.8)≈1-0.7881=0.2119,因为0.2119<0.2947(录取率), 所以此人能被录取.方法2:看录取分数线. 设录取者最低分为x0, 则P{X≥x0}=0.2947(录取率),P{X≤x0}=1-P{X≥x0}=1-0.2947=0.7053,P{X≤x0}=P{x-7010≤x0-7010=Φ{x0-7010=0.7053,反查标准正态表得x0-7010≈0.54, 解得x0≈75. 此人成绩78分高于最低分,所以可以录取.习题17假设某地在任何长为t(年)的时间间隔内发生地震的次数N(t)服从参数为λ=0.1t的泊松分布,X表示连续两次地震之间间隔的时间(单位:年).(1)证明X服从指数分布并求出X的分布函数;(2)求今后3年内再次发生地震的概率;(3)求今后3年到5年内再次发生地震的概率.解答:(1)当t≥0时,P{X>t}=P{N(t)=0}=e-0.1t,∴F(t)=P{X≤t}=1-P{X>t}=1-e-0.1t;当t<0时,F(t)=0,∴F(x)={1-e-0.1t,x≥00,x<0,X服从指数分布(λ=0.1);(2)F(3)=1-e-0.1×3≈0.26;(3)F(5)-F(3)≈0.13.习题18100件产品中,90个一等品,10个二等品,随机取2个安装在一台设备上,若一台设备中有i个(i=0,1,2)二等品,则此设备的使用寿命服从参数为λ=i+1的指数分布.(1)试求设备寿命超过1的概率;(2)已知设备寿命超过1,求安装在设备上的两个零件都是一等品的概率 .解答:(1)设X表示设备寿命. A表示“设备寿命超过1”,Bi表示“取出i个二等品”(i=0,1,2),则X的密度函数为fX(x)={λe-λx,x>00,x≤0 (λ=i+1,i=0,1,2),P(B0)=C902C1002, P(B1)=C901C102C1002, P(B2)=C102C1002,P(A∣B0)=∫1+∞e-xdx=e-1, P(A∣B1)=∫1+∞2e-2xdx=e-2,P(A∣B2)=∫1+∞3e-3xdx=e-3,由全概率公式:P(A)=∑i=02P(Bi)P(A∣Bi)≈0.32.(2)由贝叶斯公式:P(B0∣A)=P(B0)P(A∣B0)P(A)≈0.93.fX(x)={e-x,x>00,其它,求Y=eX的概率密度.解答:因为α=min{y(0),y(+∞)}=min{1,+∞}=1,β=max{y(0),y(+∞)}=max{1,+∞}=+∞.类似上题可得fY(y)={fX[h(y)]∣h′(y)∣,1<y<+∞0,其它={1/y2,1<y<+∞0,其它.习题22设随便机变量X的密度函数为fX(x)={1-∣x∣,-1<x<10,其它,求随机变量Y=X2+1的分布函数与密度函数.解答:X的取值范围为(-1,1), 则Y的取值范围为[1,2). 当1≤y<2时,FY(y)=P{Y≤y}=P{X2+1≤y}=P{-Y-1≤x≤y-1}=∫-y-1y-1(1-∣x∣)dx=2∫0y-1(1-x)dx=1-(1-y-1)2,从而Y的分布函数为FY(y)={0,y<11-(1-y-1)2,1≤y<2,1,其它Y的概率密度为fY(y)={1y-1-1,1<y<20,其它.第三章多维随机变量及其分布解答:P{1≤X≤2,3≤Y≤4}=P{X=1,Y=3}+P{X=1,Y=4}+P{X=2,Y=3}+P{X=2,Y=4}=0+116+0+14=516.习题3(3)3.设二维离散型随机变量的联合分布如下表:试求:(3)F(2,3).解答:F(2,3)=P(1,1)+P(1,2)+P(1,3)+P(2,1)+P(2,2)+P(2,3)=14+0+0+116+14+0=916.习题4设X,Y为随机变量,且P{X≥0,Y≥0}=37,P{X≥0}=P{Y≥0}=47,求P{max{X,Y}≥0}.解答:P{max{X,Y}≥0}=P{X,Y至少一个大于等于0} =P{X≥0}+P{Y≥0}-P{X≥0,Y≥0}=47+47-37=57.习题5(X,Y)只取下列数值中的值:(0,0),(-1,1),(-1,13),(2,0)且相应概率依次为16,13,112,512, 请列出(X,Y)的概率分布表,并写出关于Y的边缘分布.解答:(1)因为所给的一组概率实数显然均大于零,且有16+13+112+512=1, 故所给的一组实数必是某二维随机变量(X,Y)的联合概率分布. 因(X,Y)只取上述四组可能值,故事件:{X=-1,Y=0}, {X=0,Y=13, {X=0,Y=1},{X=2,Y=13,{X=2,Y=1}均为不可能事件,其概率必为零. 因而得到下表:习题8已知X和Y的联合密度为f(x,y)={cxy,0≤x≤1,0≤y≤10,其它,试求:(1)常数c; (2)X和Y的联合分布函数F(x,y).解答:(1)由于1=∫-∞+∞∫-∞+∞f(x,y)dxdy=c∫01∫01xydxdy=c4,c=4.(2)当x≤0或y≤0时,显然F(x,y)=0;当x≥1,y≥1时,显然F(x,y)=1;设0≤x≤1,0≤y≤1,有F(x,y)=∫-∞x∫-∞yf(u,v)dudv=4∫0xudu∫0yvdv=x2y2.设0≤x≤1,y>1,有F(x,y)=P{X≤1,Y≤y}=4∫0xudu∫01ydy=x2.最后,设x>1,0≤y≤1,有F(x,y)=P{X≤1,Y≤y}=4∫01xdx∫0yvdv=y2.函数F(x,y)在平面各区域的表达式F(x,y)={0,x≤0或y≤0x2,0≤x≤1,y>1x2y2,0≤x≤1,0≤y≤1.y2,x>习题9设二维随机变量(X,Y)的概率密度为f(x,y)={4.8y(2-x),0≤x≤1,x≤y≤10,其它,求边缘概率密度fY(y).解答:fX(x)=∫-∞+∞f(x,y)dy={∫0x4.8y(2-x)dy,0≤x≤10,其它={2.4x2(2-x),0≤x≤10,其它.fY(y)=∫-∞+∞f(x,y)dx={∫0y4.8y(2-x)dx,0≤y≤10,其它={2.4y(4y-y2),0≤y≤10,其它.习题10设(X,Y)在曲线y=x2,y=x所围成的区域G里服从均匀分布,求联合分布密度和边缘分布密度.解答:区域G的面积A=∫01(x-x2)dx=16, 由题设知(X,Y)的联合分布密度为f(x,y)={6,0≤x≤1,x2≤y≤x0,其它,从而fX(x)=∫-∞+∞f(x,y)dy=6∫x2xdy=6(x-x2),0≤x≤1,即fX(x)={6(x-x2),0≤x≤10,其它fY(y)=∫-∞+∞f(x,y)dx=6∫yydx=6(y-y),0≤y≤1,即fY(y)={6(y-y),0≤y≤10,其它.习题7设随机变量X与Y都服从N(0,1)分布,且X与Y相互独立,求(X,Y)的联合概率密度函数.解答:由题意知,随机变量X,Y的概率密度函数分别是fX(x)=12πe-x22,fY(y)=12πe-y22因为X与Y相互独立,所以(X,Y)的联合概率密度函数是f(x,y)=12πe-12(x+y)2.习题8设随机变量X的概率密度f(x)=12e-∣x∣(-∞<x<+∞),问:X与∣X∣是否相互独立?解答:若X与∣X∣相互独立,则∀a>0, 各有P{X≤a,∣X∣≤a}=P{X≤a}⋅P{∣X∣≤a},而事件{∣X∣≤a}⊂{X≤a},故由上式有P{∣X∣≤a}==P{X≤a}⋅P{∣X∣≤a},⇒P{∣X∣≤a}(1-P{X≤a})=0⇒P{∣X≤a∣}=0或1=P{X≤a}⋅(∀a>0)但当a>0时,两者均不成立,出现矛盾,故X与∣X∣不独立.习题9设X和Y是两个相互独立的随机变量,X在(0,1)上服从均匀分布,Y的概率密度为fY(y)={12e-y2,y>00,y≤0,(1)求X与Y的联合概率密度;(2)设有a的二次方程a2+2Xa+Y=0, 求它有实根的概率.解答:(1)由题设易知fX(x)={1,0<x<10,其它,又X,Y相互独立,故X与Y的联合概率密度为f(x,y)=fX(x)⋅fY(y)={12e-y2,0<x<1,y>00,其它;(2)因{a有实根}={判别式Δ2=4X2-4Y≥0}={X2≥Y},故如图所示得到:P{a有实根}=P{X2≥Y}=∫∫x2>yf(x,y)dxdy=∫01dx∫0x212e-y2dy=-∫01e-x22dx=1-[∫-∞1e-x22dx-∫-∞0e-x22dx] =1-2π[12π∫-∞1e-x22dx-12π∫-∞0e-x22dx]=1-2π[Φ(1)-Φ(0),又Φ(1)=0.8413, Φ(0)=0.5, 于是Φ(1)-Φ(0)=0.3413, 所以P{a有实根}=1-2π[Φ(1)-Φ(0)]≈1-2.51×0.3413=0.1433.3.3 二维随机变量函数的分布习题1设随机变量X和Y相互独立,且都等可能地取1,2,3为值,求随机变量U=max{X,Y}和V=min{X,Y}的联合分布.解答:由于U≥V,可见P{U=i,V=j}=0(i<j).此外,有P{U=V=i}=P{X=Y=i}=1/9(i=1,2,3), P{U=i,V=j}=P{X=i,Y=j}+P{X=j,Y=i}=2/9(i>j),于是,随机变量U和V的联合概率分布为。

《概率论与数理统计》浙江大学第四版课后习题答案-概率论第四版

《概率论与数理统计》浙江大学第四版课后习题答案-概率论第四版

概率论与数理统计习题答案第四版盛骤(浙江大学)之司秆蘸矗创作浙大第四版(高等教育出版社)第一章概率论的基本概念1.[一] 写出下列随机试验的样本空间(1)记录一个小班一次数学考试的平均分数(充以百分制记分)([一] 1)n表小班人数(3)生产产品直到得到10件正品,记录生产产品的总件数。

([一] 2)S={10,11,12,………,n,………}(4)对某工厂出厂的产品进行检查,合格的盖上“正品”,分歧格的盖上“次品”,如连续查出二个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。

查出合格品记为“1”,查出次品记为“0”,连续出现两个“0”就停止检查,或查满4次才停止检查。

([一] (3))S={00,100,0100,0101,1010,0110,1100,0111,1011,1101,1110,1111,}2.[二] 设A,B,C为三事件,用A,B,C的运算关系暗示下列事件。

(1)A发生,B与C不发生。

A-(AB+AC)或A-(B∪C)(2)A,B都发生,而C不发生。

AB-ABC或AB-C(3)A,B,C中至少有一个发生暗示为:A+B+C(4)A,B,C都发生,暗示为:ABC(5)A,B,C S-(A+B+C)(6)A,B,C中未几于一个发生,即A,B,C中至少有两个同时不发生(7)A,B,C中未几于二个发生。

(8)A,B,C中至少有二个发生。

相当于:AB,BC,AC中至少有一个发生。

故暗示为:AB+BC+AC6.[三] 设A,B是两事件且P (A,P (B)=0.7. 问(1)在什么条件下P (AB)取到最大值,最大值是多少?(2)在什么条件下P (AB)取到最小值,最小值是多少?解:由P(A,P (B即知AB≠φ,(否则AB=φ依互斥事件加法定理,P(A∪B)=P (A)+P (B)=0.6+0.7=1.3>1与P (A∪B)≤1矛盾).从而由加法定理得P (AB)=P (A)+P (B)-P (A∪B)(*)(1)从0≤P(AB)≤P(A)知,当AB=A,即A∩B时P(AB)取到最大值,最大值为P(AB)=P(A,(2)从(*)式知,当A∪B=S时,P(AB)取最小值,最小值为P(AB-。

概率论与数理统计》课后习题答案第四章

概率论与数理统计》课后习题答案第四章

习题4.11.设10个零件中有3个不合格. 现任取一个使用,若取到不合格品,则丢弃重新抽取一个,试求取到合格品之前取出的不合格品数X 的数学期望.解 可得X 的概率分布为0123~77711030120120X ⎡⎤⎢⎥⎢⎥⎣⎦于是X 的数学期望为7771()012310301201204531208E X =⨯+⨯+⨯+⨯==2..某人有n 把外形相似的钥匙,其中只有1把能打开房门,但他不知道是哪一把,只好逐把试开.求此人直至将门打开所需的试开次数X 的数学期望.解 可得X 的概率分布为12~111n X nn n ⎡⎤⎢⎥⎢⎥⎣⎦于是X 的数学期望为111()121(1)122E X n n n nn n n n =⨯+⨯++⨯++==3.设5次重复独立试验中每次试验的成功率为0.9,若记失败次数为X ,求X 的数学期望。

解 由题意~(5,0.1)X B ,则X 的数学期望为 ()50.10.E X =⨯= 4.设某地每年因交通事故死亡的人数服从泊松分布.据统计,在一年中因交通事故死亡一人的概率是死亡两人的概率的21,求该地每年因交通事故死亡的平均人数。

解 设该地每年因交通事故死亡的人数为X ,由题意X 服从泊松分布() (0)P λλ>.因1{1}{2}2P X P X === 即121 41!22!ee λλλλλ--=⇒= 于是X 的数学期望为()4E X λ== 所以地每年因交通事故死亡的平均人数为4人。

5.设随机变量X 在区间(1,7)上服从均匀分布,求2{()}P X E X <. 解 因X 在区间(1,7)上服从均匀分布,故X 的数学期望为17()42E X +== 于是22{()}{4}1 {22}6P X E X P X P X <=<=<-<<=6.设连续型随机变量X 的概率密度为01() (,0)0 b ax x p x a b ⎧<<=>⎨⎩其它又知()0.75E X =,求,a b 的值解 由密度函数的性质可得()1p x dx +∞-∞=⎰即1111b aax dx b =⇒=+⎰又由()0.75E X =,可得1()0.75b xp x dx x ax dx +∞-∞=⋅=⎰⎰即0.752ab =+ 求解110.752ab a b ⎧=⎪⎪+⎨⎪=⎪+⎩可得 3,2a b ==.7.设随机变量X 的概率密度为0<1()2 120 x x p x x x <⎧⎪=-≤<⎨⎪⎩其它求数学期望()E X解1201331221()() (2) ()133E X xp x dxx xdx x x dx x x x +∞-∞==⋅+⋅-=+-=⎰⎰⎰8.设随机变量X 的概率分布为X -2 -1 0 1 P 0.2 0.3 0.1 0.4 求 (1)(21)E X -;(2)2()E X .解 (1) (21)2()1E X E X -=- 其中()20.210.3010.40.3E X =-⨯-⨯++⨯=-则(21)2()12(0.3)1 1.6E X E X -=-=⨯--=-(2)22222()0.2(2)0.3(1)0.100.41 1.5E X =⨯-+⨯-+⨯+⨯=9.假设一部机器在一天内发生故障的概率为0.2,机器发生故障时全天停止工作。

概率论第4-6章课后习题答案

概率论第4-6章课后习题答案

习题四1.设随机变量X的分布律为1 0 12求E(X),E(X2),E(2X+3).【解】(1)11111 ()(1)012;82842 E X=-⨯+⨯+⨯+⨯=(2)2222211115 ()(1)012;82844 E X=-⨯+⨯+⨯+⨯=(3)1 (23)2()32342E X E X+=+=⨯+=2.已知100个产品中有10个次品,求任意取出的5个产品中的次品数的数学期望、方差.【解】设任取出的5个产品中的次品数为X,则X的分布律为故()0.58300.34010.07020.00730405E X=⨯+⨯+⨯+⨯+⨯+⨯0.501,=52()[()]i iiD X xE X P==-∑222(00.501)0.583(10.501)0.340(50.501)00.432.=-⨯+-⨯++-⨯=3.设随机变量X的分布律为1 0 1P p1 p2 p3且已知E (X )=,E(X2)=,求P1,P2,P3. 【解】因1231P P P ++=……①,又12331()(1)010.1E X P P P P P =-++=-=……②, 222212313()(1)010.9E X P P P P P =-++=+=……③由①②③联立解得1230.4,0.1,0.5.P P P ===4.袋中有N 只球,其中的白球数X 为一随机变量,已知E (X )=n ,问从袋中任取1球为白球的概率是多少【解】记A={从袋中任取1球为白球},则(){|}{}Nk P A P A X k P X k ===∑全概率公式001{}{}1().NNk k k P X k kP X k NN n E X NN ========∑∑5.设随机变量X 的概率密度为f (x )=⎪⎩⎪⎨⎧≤≤-<≤.,0,21,2,10,其他x x x x求E (X ),D (X ). 【解】1221()()d d (2)d E X xf x x x x x x x+∞-∞==+-⎰⎰⎰21332011 1.33x x x ⎡⎤⎡⎤=+-=⎢⎥⎢⎥⎣⎦⎣⎦122232017()()d d (2)d 6E X x f x x x x x x x +∞-∞==+-=⎰⎰⎰故221()()[()].6D X E X E X =-= 6.设随机变量X ,Y ,Z 相互独立,且E (X )=5,E (Y )=11,E (Z )=8,求下列随机变量的数学期望. (1) U=2X+3Y+1; (2) V=YZ4X.【解】(1) [](231)2()3()1E U E X Y E X E Y =++=++ 25311144.=⨯+⨯+= (2) [][4][]4()E V E YZ X E YZ E X =-=-,()()4()Y Z E Y E Z E X -因独立1184568.=⨯-⨯=7.设随机变量X ,Y 相互独立,且E (X )=E (Y )=3,D (X )=12,D (Y )=16,求E (3X 2Y ),D (2X3Y ).【解】(1) (32)3()2()3323 3.E X Y E X E Y -=-=⨯-⨯=(2)22(23)2()(3)412916192.D X Y D X DY -=+-=⨯+⨯= 8.设随机变量(X ,Y )的概率密度为f (x ,y )=⎩⎨⎧<<<<.,0,0,10,其他x y x k试确定常数k ,并求E (XY ).【解】因1001(,)d d d d 1,2x f x y x y x k y k +∞+∞-∞-∞===⎰⎰⎰⎰故k=210()(,)d d d 2d 0.25xE XY xyf x y x y x x y y +∞+∞-∞-∞===⎰⎰⎰⎰.9.设X ,Y 是相互独立的随机变量,其概率密度分别为fX (x )=⎩⎨⎧≤≤;,0,10,2其他x x fY (y )=(5)e ,5,0,.y y --⎧>⎨⎩其他求E (XY ).【解】方法一:先求X 与Y 的均值102()2d ,3E X x x x ==⎰5(5)5()ed 5e d e d 51 6.z y y zz E Y y yz z z +∞+∞+∞=-----=+=+=⎰⎰⎰令由X 与Y 的独立性,得2()()()6 4.3E XY E X E Y ==⨯=方法二:利用随机变量函数的均值公式.因X 与Y 独立,故联合密度为(5)2e ,01,5,(,)()()0,,y X Y x x y f x y f x f y --⎧≤≤>==⎨⎩其他于是11(5)2(5)552()2e d d 2d e d 6 4.3y y E XY xy x x y x xy y +∞+∞----===⨯=⎰⎰⎰⎰10.设随机变量X ,Y 的概率密度分别为fX (x )=⎩⎨⎧≤>-;0,0,0,22x x x e fY (y )=⎩⎨⎧≤>-.0,0,0,44y y y e求(1) E (X+Y );(2) E (2X 3Y2).【解】22-200()()d 2e d [e ]e d x x xX X xf x x x x x x+∞+∞+∞--+∞-∞==-⎰⎰⎰201e d .2x x +∞-==⎰ 401()()d 4e dy .4y Y E Y yf y y y +∞+∞--∞==⎰⎰22242021()()d 4e d .48y Y E Y y f y y y y +∞+∞--∞====⎰⎰从而(1)113()()().244E X Y E X E Y +=+=+=(2)22115(23)2()3()23288E X Y E X E Y -=-=⨯-⨯=11.设随机变量X 的概率密度为f (x )=⎪⎩⎪⎨⎧<≥-.0,0,0,22x x cx xke求(1) 系数c;(2) E (X );(3) D (X ).【解】(1) 由222()d e d 12k x c f x x cx x k +∞+∞--∞===⎰⎰得22c k =.(2)2220()()d()2e d k x E X xf x x x k x x+∞+∞--∞==⎰⎰22220π2e d .2k x k x x k +∞-==⎰(3)222222201()()d()2e.k x E X x f x x x k x k +∞+∞--∞==⎰⎰故 222221π4π()()[()].4D X E X E X k k ⎛⎫-=-=-= ⎪ ⎪⎝⎭12.袋中有12个零件,其中9个合格品,3个废品.安装机器时,从袋中一个一个地取出(取出后不放回),设在取出合格品之前已取出的废品数为随机变量X ,求E (X )和D (X ). 【解】设随机变量X 表示在取得合格品以前已取出的废品数,则X 的可能取值为0,1,2,3.为求其分布律,下面求取这些可能值的概率,易知9{0}0.750,12P X === 39{1}0.204,1211P X ==⨯= 329{2}0.041,121110P X ==⨯⨯= 3219{3}0.005.1211109P X ==⨯⨯⨯=于是,得到X 的概率分布表如下: X 0 1 2 3 P由此可得()00.75010.20420.04130.0050.301.E X =⨯+⨯+⨯+⨯=22222222()075010.20420.04130.0050.413()()[()]0.413(0.301)0.322.E X D X E X E X =⨯+⨯+⨯+⨯==-=-=13.一工厂生产某种设备的寿命X (以年计)服从指数分布,概率密度为f (x )=⎪⎩⎪⎨⎧≤>-.0,0,0,414x x xe为确保消费者的利益,工厂规定出售的设备若在一年内损坏可以调换.若售出一台设备,工厂获利100元,而调换一台则损失200元,试求工厂出售一台设备赢利的数学期望. 【解】厂方出售一台设备净盈利Y 只有两个值:100元和200元/41/411{100}{1}e d e 4x P Y P X x +∞--==≥==⎰1/4{200}{1}1e .P Y P X -=-=<=-故1/41/41/4()100e (200)(1e )300e 20033.64E Y ---=⨯+-⨯-=-= (元). 14.设X1,X2,…,Xn 是相互独立的随机变量,且有E (Xi )=μ,D (Xi )=σ2,i=1,2,…,n ,记∑==n i i S X n X 12,1,S2=∑=--n i i X X n 12)(11.(1) 验证)(X E =μ,)(X D =n 2σ;(2) 验证S2=)(11122∑=--ni i X n X n ;(3) 验证E (S2)=σ2.【证】(1) 1111111()()().n nn i i i i i i E X E X E X E X nu u n n n n ===⎛⎫===== ⎪⎝⎭∑∑∑ 22111111()()n nni i i ii i i D X D X D X X DXn nn ===⎛⎫== ⎪⎝⎭∑∑∑之间相互独立2221.n n n σσ==(2) 因222221111()(2)2nnnniii iii i i i XX X X X X X nX X X ====-=+-=+-∑∑∑∑2222112nnii i i X nX X nX X nX===+-=-∑∑故22211()1ni i S X nX n ==--∑.(3) 因2(),()i i E X u D X σ==,故2222()()().i i i E X D X EX u σ=+=+同理因2(),()E X u D X n σ==,故222()E X u nσ=+.从而222221111()()[()()]11n ni i i i E s E X nX E X nE X n n ==⎡⎤=-=-⎢⎥--⎣⎦∑∑221222221[()()]11().1ni i E X nE X n n u n u n n σσσ==--⎡⎤⎛⎫=+-+=⎢⎥⎪-⎝⎭⎣⎦∑15.对随机变量X 和Y ,已知D (X )=2,D (Y )=3,Cov(X,Y)=1,计算:Cov (3X2Y+1,X+4Y3).【解】Cov(321,43)3()10Cov(,)8()X Y X Y D X X Y D Y -++-=+- 3210(1)8328=⨯+⨯--⨯=- (因常数与任一随机变量独立,故Cov(X,3)=Cov(Y,3)=0,其余类似). 16.设二维随机变量(X ,Y )的概率密度为f (x ,y )=221,1,π0,.x y ⎧+≤⎪⎨⎪⎩其他试验证X 和Y 是不相关的,但X 和Y 不是相互独立的.【解】设22{(,)|1}D x y x y =+≤. 2211()(,)d d d d πx y E X xf x y x y x x y +∞+∞-∞-∞+≤==⎰⎰⎰⎰2π1001=cos d d 0.πr r r θθ=⎰⎰同理E(Y)=0. 而Cov(,)[()][()](,)d d X Y x E x y E Y f x y x y+∞+∞-∞-∞=--⎰⎰222π1200111d d sin cos d d 0ππx y xy x y r r r θθθ+≤===⎰⎰⎰⎰,由此得XY ρ=,故X 与Y 不相关.下面讨论独立性,当|x|≤1时,2212112()1.ππx X x f x y x ----当|y|≤1时,1()Yf y x.显然()()(,). X Yf x f y f x y≠故X和Y不是相互独立的.17.设随机变量(X,Y)的分布律为1 0 111验证X和Y是不相关的,但X和Y不是相互独立的.【解】联合分布表中含有零元素,X与Y显然不独立,由联合分布律易求得X,Y及XY的分布律,其分布律如下表111由期望定义易得E(X)=E(Y)=E(XY)=0.从而E(XY)=E(X)·E(Y),再由相关系数性质知ρXY=0,即X与Y的相关系数为0,从而X和Y是不相关的.又331{1}{1}{1,1}888P X P Y P X Y =-=-=⨯≠==-=-从而X 与Y 不是相互独立的.18.设二维随机变量(X ,Y )在以(0,0),(0,1),(1,0)为顶点的三角形区域上服从均匀分布,求Cov (X ,Y ),ρXY.【解】如图,SD=12,故(X ,Y )的概率密度为题18图2,(,),(,)0,x y D f x y ∈⎧=⎨⎩其他.()(,)d d D E X xf x y x y =⎰⎰1101d 2d 3xx x y -==⎰⎰22()(,)d d DE X x f x y x y =⎰⎰11201d 2d 6xxx y -==⎰⎰从而222111()()[()].6318D X E X E X ⎛⎫=-=-= ⎪⎝⎭ 同理11(),().318E Y D Y == 而 11001()(,)d d 2d d d 2d .12xDDE XY xyf x y x y xy x y x xy y -====⎰⎰⎰⎰⎰⎰所以1111Cov(,)()()()123336X Y E XY E X E Y =-=-⨯=-.从而11362()()111818XY D X D Y ρ-===-⨯19.设(X ,Y )的概率密度为f (x ,y )=1ππsin(),0,0,2220.x y x y ,⎧+≤≤≤≤⎪⎨⎪⎩其他求协方差Cov (X ,Y )和相关系数ρXY.【解】π/2π/21π()(,)d d d sin()d .24E X xf x y x y x xx y y +∞+∞-∞-∞==+=⎰⎰⎰⎰ππ2222201ππ()d sin()d 2.282E X x x x y y =+=+-⎰⎰从而222ππ()()[()] 2.162D X E X E X =-=+-同理 2πππ(),() 2.4162E Y D Y ==+-又π/2π/2π()d sin()d d 1,2E XY x xy x y x y =+=-⎰⎰故2ππππ4Cov(,)()()()1.2444X Y E XY E X E Y -⎛⎫⎛⎫=-=--⨯=- ⎪ ⎪⎝⎭⎝⎭ 222222π4(π4)π8π164.πππ8π32π8π32()()2162XY D X D Y ρ-⎛⎫- ⎪--+⎝⎭===-=-+-+-+-20.已知二维随机变量(X ,Y )的协方差矩阵为⎥⎦⎤⎢⎣⎡4111,试求Z1=X 2Y 和Z2=2X Y 的相关系数.【解】由已知知:D(X)=1,D(Y)=4,Cov(X,Y)=1. 从而12()(2)()4()4Cov(,)1444113,()(2)4()()4Cov(,)414414,D Z D X Y D X D Y X Y D Z D X Y D X D Y X Y =-=+-=+⨯-⨯==-=+-=⨯+-⨯=12Cov(,)Cov(2,2)Z Z X Y X Y =--2Cov(,)4Cov(,)Cov(,)2Cov(,)2()5Cov(,)2()215124 5.X X Y X X Y Y Y D X X Y D Y =--+=-+=⨯-⨯+⨯=故121212Cov(,)5513.26()()134Z Z Z Z D Z D Z ρ===⨯21.对于两个随机变量V ,W ,若E (V2),E (W2)存在,证明: [E (VW )]2≤E(V2)E (W2). 这一不等式称为柯西许瓦兹(CouchySchwarz )不等式.【证】令2(){[]},.g t E V tW t R =+∈ 显然22220()[()][2]g t E V tW E V tVW t W ≤=+=++222[]2[][],.E V t E VW t E W t R =++∀∈ 可见此关于t 的二次式非负,故其判别式Δ≤0,即2220[2()]4()()E VW E W E V ≥∆=-2224{[()]()()}.E VW E V E W =- 故222[()]()()}.E VW E V E W ≤ 22.假设一设备开机后无故障工作的时间X 服从参数λ=1/5的指数分布.设备定时开机,出现故障时自动关机,而在无故障的情况下工作2小时便关机.试求该设备每次开机无故障工作的时间Y 的分布函数F (y ).【解】设Y 表示每次开机后无故障的工作时间,由题设知设备首次发生故障的等待时间X~E(λ),E(X)=1λ=5.依题意Y=min(X,2). 对于y<0,f(y)=P{Y≤y}=0. 对于y≥2,F(y)=P(X≤y)=1.对于0≤y<2,当x≥0时,在(0,x)内无故障的概率分布为 P{X≤x}=1eλx,所以F(y)=P{Y≤y}=P{min(X,2)≤y}=P{X≤y}=1e y/5.23.已知甲、乙两箱中装有同种产品,其中甲箱中装有3件合格品和3件次品,乙箱中仅装有3件合格品.从甲箱中任取3件产品放乙箱后,求:(1)乙箱中次品件数Z 的数学期望;(2)从乙箱中任取一件产品是次品的概率.【解】(1) Z 的可能取值为0,1,2,3,Z 的概率分布为33336C C {}C k kP Z k -==, 0,1,2,3.k =Z=k 0 1 2 3Pk120 920 920 120因此,19913()0123.202020202E Z =⨯+⨯+⨯+⨯=(2) 设A 表示事件“从乙箱中任取出一件产品是次品”,根据全概率公式有3(){}{|}k P A P Z k P A Z k ====∑191921310.202062062064=⨯+⨯+⨯+⨯=24.假设由自动线加工的某种零件的内径X (毫米)服从正态分布N (μ,1),内径小于10或大于12为不合格品,其余为合格品.销售每件合格品获利,销售每件不合格品亏损,已知销售利润T (单位:元)与销售零件的内径X 有如下关系T=⎪⎩⎪⎨⎧>-≤≤<-.12,5,1210,20,10,1X X X 若若若问:平均直径μ取何值时,销售一个零件的平均利润最大 【解】(){10}20{1012}5{12}E T P X P X P X =-<+≤≤->{10}20{1012}5{12}(10)20[(12)(10)]5[1(12)]25(12)21(10) 5.P X u u P u X u u P X u u u u u u u u =--<-+-≤-≤--->-=-Φ-+Φ--Φ---Φ-=Φ--Φ--故2/2d ()125(12)(1)21(10)(1)0(()e ),d 2x E T u u x u ϕϕϕπ-=-⨯---⨯-= 令这里得 22(12)/2(10)/225e 21eu u ----=两边取对数有2211ln 25(12)ln 21(10).22u u --=--解得 125111ln 11ln1.1910.91282212u =-=-≈(毫米)由此可得,当u=10.9毫米时,平均利润最大. 25.设随机变量X 的概率密度为f(x)=⎪⎩⎪⎨⎧≤≤.,0,0,2cos 21其他πx x 对X 独立地重复观察4次,用Y 表示观察值大于π/3的次数,求Y2的数学期望. (2002研考)【解】令 π1,,3(1,2,3,4)π0,3i X Y i ⎧>⎪⎪==⎨⎪≤⎪⎩X .则41~(4,)i i Y Y B p ==∑.因为ππ{}1{}33p P X P X =>=-≤及π/30π11{}cos d 3222x P X x ≤==⎰,所以111(),(),()42,242i i E Y D Y E Y ===⨯= 2211()41()()22D Y E Y EY =⨯⨯==-,从而222()()[()]12 5.E Y D Y E Y =+=+= 26.两台同样的自动记录仪,每台无故障工作的时间Ti(i=1,2)服从参数为5的指数分布,首先开动其中一台,当其发生故障时停用而另一台自动开启.试求两台记录仪无故障工作的总时间T=T1+T2的概率密度fT(t),数学期望E (T )及方差D (T ). 【解】由题意知:55e ,0,()0,0t i t f t t -⎧≥=⎨<⎩. 因T1,T2独立,所以fT(t)=f1(t)*f2(t). 当t<0时,fT(t)=0; 当t≥0时,利用卷积公式得55()5120()()()d 5e 5e d 25e tx t x tT f t f x f t x x x t +∞-----∞=-==⎰⎰故得525e ,0,()0,0.t T t t f t t -⎧≥=⎨<⎩ 由于Ti ~E(5),故知E(Ti)=15,D(Ti)=125(i=1,2)因此,有E(T)=E(T1+T2)=25.又因T1,T2独立,所以D (T )=D (T1+T2)=225.27.设两个随机变量X ,Y 相互独立,且都服从均值为0,方差为1/2的正态分布,求随机变量|XY|的方差.【解】设Z=XY ,由于22~0,,~0,,22X N Y N ⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ 且X 和Y 相互独立,故Z~N (0,1). 因22()()(||)[(||)]D X Y D Z E Z E Z -==-22()[()],E Z E Z =- 而22/21()()1,(||)||e d 2πz EZ D Z E Z z z +∞--∞===⎰2/2022e d π2πz z z +∞-==⎰,所以2(||)1πD X Y -=-.28.某流水生产线上每个产品不合格的概率为p(0<p<1),各产品合格与否相互独立,当出现一个不合格产品时,即停机检修.设开机后第一次停机时已生产了的产品个数为X ,求E (X )和D (X ). 【解】记q=1p,X 的概率分布为P{X=i}=qi1p,i=1,2,…,故12111()().1(1)i ii i q p E X iq p p q p q q p ∞∞-=='⎛⎫'===== ⎪--⎝⎭∑∑ 又221211121()()i i i i i i E X i q p i i q p iq p∞∞∞---=====-+∑∑∑2232211()12112.(1)ii q pq q pq p q p pq q p q p p p ∞=''⎛⎫''=+=+⎪-⎝⎭+-=+==-∑所以22222211()()[()].p pD XE X E X p p p --=-=-=题29图29.设随机变量X 和Y 的联合分布在点(0,1),(1,0)及(1,1)为顶点的三角形区域上服从均匀分布.(如图),试求随机变量U=X+Y 的方差. 【解】D(U)=D(X+Y)=D(X)+D(Y)+2Cov(X,Y) =D(X)+D(Y)+2[E(XY)E(X)·E(Y)].由条件知X 和Y 的联合密度为2,(,),(,)0,0.x y G f x y t ∈⎧=⎨<⎩ {(,)|01,01,1}.G x y x y x y =≤≤≤≤+≥从而11()(,)d 2d 2.X xf x f x y y y x +∞-∞-===⎰⎰因此11122300031()()d 2d ,()2d ,22X E X xf x x x x E X x x =====⎰⎰⎰22141()()[()].2918D X E X E X =-=-=同理可得31(),().218E Y D Y == 11015()2d d 2d d ,12xGE XY xy x y x x y y -===⎰⎰⎰⎰541Cov(,)()()(),12936X Y E XY E X E Y =-=-=-于是 1121()().18183618D U D X Y =+=+-=30.设随机变量U 在区间[2,2]上服从均匀分布,随机变量X=1,1,1,1,U U -≤-⎧⎨>-⎩ Y=1,1,1, 1.U U -≤⎧⎨>⎩若 试求(1)X 和Y 的联合概率分布;(2)D (X+Y ).【解】(1) 为求X 和Y 的联合概率分布,就要计算(X ,Y )的4个可能取值(1,1),(1,1),(1,1)及(1,1)的概率. P{x=1,Y=1}=P{U≤1,U≤1}112d d 1{1}444x x P U ---∞-=≤-===⎰⎰ P{X=1,Y=1}=P{U≤1,U>1}=P{∅}=0, P{X=1,Y=1}=P{U>1,U≤1}11d 1{11}44x P U -=-<≤==⎰21d 1{1,1}{1,1}{1}44x P X Y P U U P U ===>->=>=⎰.故得X 与Y 的联合概率分布为(1,1)(1,1)(1,1)(1,1)(,)~1110424X Y ----⎡⎤⎢⎥⎢⎥⎣⎦.(2) 因22()[()][()]D X Y E X Y E X Y +=+-+,而X+Y 及(X+Y )2的概率分布相应为202~111424X Y -⎡⎤⎢⎥+⎢⎥⎣⎦, 204()~1122X Y ⎡⎤⎢⎥+⎢⎥⎣⎦.从而11()(2)20,44E X Y +=-⨯+⨯=211[()]042,22E X Y +=⨯+⨯=所以22()[()][()] 2.D X Y E X Y E X Y +=+-+= 31.设随机变量X 的概率密度为f(x)=x-e 21,(∞<x<+∞)(1) 求E (X )及D (X );(2) 求Cov(X,|X|),并问X 与|X|是否不相关 (3) 问X 与|X|是否相互独立,为什么【解】(1)||1()e d 0.2x E X xx +∞--∞==⎰2||201()(0)e d 0e d 2.2x x D X x x x x +∞+∞---∞=-==⎰⎰(2) Cov(,|)(||)()(||)(||)X X E X X E X E X E X X =-=||1||e d 0,2x x x x +∞--∞==⎰所以X 与|X|互不相关.(3) 为判断|X|与X 的独立性,需依定义构造适当事件后再作出判断,为此,对定义域∞<x<+∞中的子区间(0,+∞)上给出任意点x0,则有0000{}{||}{}.x X x X x X x -<<=<⊂<所以000{||}{} 1.P X x P X x <<<<<故由00000{,||}{||}{||}{}P X x X x P X x P X x P X x <<=<><<得出X 与|X|不相互独立.32.已知随机变量X 和Y 分别服从正态分布N (1,32)和N (0,42),且X 与Y 的相关系数ρXY=1/2,设Z=23YX +. (1) 求Z 的数学期望E (Z )和方差D (Z ); (2) 求X 与Z 的相关系数ρXZ; (3) 问X 与Z 是否相互独立,为什么【解】(1) 1().323X Y E Z E ⎛⎫=+= ⎪⎝⎭()2Cov ,3232XY X Y D Z D D ⎛⎫⎛⎫⎛⎫=++⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭11119162Cov(,),9432X Y =⨯+⨯+⨯⨯而1Cov(,)()()3462XY X Y D X D Y ρ⎛⎫==-⨯⨯=- ⎪⎝⎭所以 1()146 3.3D Z =+-⨯=(2) 因()()11Cov(,)Cov ,Cov ,Cov ,3232X Y X Z X X X X Y ⎛⎫=+=+ ⎪⎝⎭119()(6)3=0,323D X =+⨯-=- 所以0.()()XZ D X D Z ρ==(3) 由0XZρ==,得X 与Z 不相关.又因1~,3,~(1,9)3Z N X N ⎛⎫⎪⎝⎭,所以X 与Z 也相互独立.33.将一枚硬币重复掷n 次,以X 和Y 表示正面向上和反面向上的次数.试求X 和Y 的相关系数XY ρ.【解】由条件知X+Y=n ,则有D (X+Y )=D (n )=0.再由X~B(n,p),Y~B(n,q),且p=q=12,从而有 ()()4nD X npq D Y ===所以0()()()2()()XY D X Y D X D Y D X D Y ρ=+=++2,24XY n nρ=+ 故XY ρ= 1.34.设随机变量X 和Y 的联合概率分布为1 0 10 1试求X 和Y 的相关系数ρ.【解】由已知知E(X)=,E(Y)=,而XY 的概率分布为YX 10 1 P所以E (XY )=+= Cov(X,Y)=E(XY)E(X)·E(Y)=×=0从而XY ρ=035.对于任意两事件A 和B ,0<P(A)<1,0<P(B)<1,则称Y Xρ=())()()()()()(B P A P B P A P B P A P AB P ⋅-为事件A 和B 的相关系数.试证:(1) 事件A 和B 独立的充分必要条件是ρ=0; (2) |ρ|≤1.【证】(1)由ρ的定义知,ρ=0当且仅当P(AB)P(A)·P(B)=0.而这恰好是两事件A 、B 独立的定义,即ρ=0是A 和B 独立的充分必要条件. (2) 引入随机变量X 与Y 为1,,0,A X A ⎧⎪=⎨⎪⎩若发生若发生; 1,,0,B Y B ⎧⎪=⎨⎪⎩若发生若发生.由条件知,X 和Y 都服从01分布,即01~1()()X P A P A ⎧⎨-⎩ 01~1()()Y P B P B ⎧⎨-⎩从而有E(X)=P(A),E(Y)=P(B),D(X)=P(A)·P(A ),D(Y)=P(B)·P(B ), Cov(X,Y)=P(AB)P(A)·P(B)所以,事件A 和B 的相关系数就是随机变量X 和Y 的相关系数.于是由二元随机变量相关系数的基本性质可得|ρ|≤1. 36. 设随机变量X 的概率密度为fX(x)=⎪⎪⎪⎩⎪⎪⎪⎨⎧<≤<<-.,0,20,41,01,21其他x x令Y=X2,F (x,y )为二维随机变量(X ,Y )的分布函数,求: (1) Y 的概率密度fY(y); (2) Cov(X,Y);(3)1(,4)2F -.解: (1) Y 的分布函数为2(){}{}Y F y P Y y P X y =≤=≤.当y≤0时, ()0Y F y =,()0Y f y =;当0<y <1时,(){{0}{0Y F y P X P X P X =≤≤=≤<+≤≤=,()Y f y =;当1≤y<4时,1(){10}{02Y F y P X P X =-≤<+≤≤=()Y f y =;当y≥4时,()1Y F y =,()0Y f y =.故Y 的概率密度为1,()04,0,.Y y f y y <<=≤<⎪⎩其他(2)210111()()d d d 244+X E X =xf x x x x x x ∞∞=+=⎰⎰⎰--,2222210115()()()d d d )246+X E Y =E X =x f x x x x x x ∞∞=+=⎰⎰⎰--,2233310117()()()d d d 248+X E XY =E Y =x f x x x x x x ∞∞=+=⎰⎰⎰--, 故 Cov(X,Y) =2()()()3E XY E X E Y =⋅-.(3) 2111(,4){,4}{,4}222F P X Y P X X -=≤-≤=≤-≤11{,22}{2}22P X X P X =≤--≤≤=-≤≤-11{1}24P X =-≤≤-=. 37. 习题五1.一颗骰子连续掷4次,点数总和记为X.估计P{10<X<18}.【解】设iX 表每次掷的点数,则41ii X X ==∑22222221111117()123456,666666211111191()123456,6666666i i E X E X =⨯+⨯+⨯+⨯+⨯+⨯==⨯+⨯+⨯+⨯+⨯+⨯= 从而22291735()()[()].6212i ii D X E X E X ⎛⎫=-=-= ⎪⎝⎭ 又X1,X2,X3,X4独立同分布.从而44117()()()414,2i i i i E X E X E X =====⨯=∑∑44113535()()()4.123i i i i D X D X D X =====⨯=∑∑所以235/3{1018}{|14|4}10.271,4P X P X <<=-<≥-≈2. 假设一条生产线生产的产品合格率是.要使一批产品的合格率达到在76%与84%之间的概率不小于90%,问这批产品至少要生产多少件【解】令1,,0,i i X ⎧⎨⎩若第个产品是合格品其他情形.而至少要生产n 件,则i=1,2,…,n,且 X1,X2,…,Xn 独立同分布,p=P{Xi=1}=. 现要求n,使得1{0.760.84}0.9.nii XP n=≤≤≥∑即0.80.9niXnP -≤≤≥∑由中心极限定理得0.9,Φ-Φ≥整理得0.95,10⎛Φ≥ ⎝⎭查表 1.64,≥n≥, 故取n=269.3. 某车间有同型号机床200部,每部机床开动的概率为,假定各机床开动与否互不影响,开动时每部机床消耗电能15个单位.问至少供应多少单位电能才可以95%的概率保证不致因供电不足而影响生产.【解】要确定最低的供应的电能量,应先确定此车间同时开动的机床数目最大值m ,而m 要满足200部机床中同时开动的机床数目不超过m 的概率为95%,于是我们只要供应15m 单位电能就可满足要求.令X 表同时开动机床数目,则X~B (200,),()140,()42,E X D X ==0.95{0}().P X m P X m =≤≤=≤=Φ 查表知1.64,= ,m=151.所以供电能151×15=2265(单位).4. 一加法器同时收到20个噪声电压Vk (k=1,2,…,20),设它们是相互独立的随机变量,且都在区间(0,10)上服从均匀分布.记V=∑=201k kV,求P{V >105}的近似值.【解】易知:E(Vk)=5,D(Vk)=10012,k=1,2,…,20由中心极限定理知,随机变量201205~(0,1).10010020201212kk VZ N =-⨯==⨯⨯∑近似的于是105205{105}1010020201212P V P ⎧⎫⎪⎪-⨯⎪>=>⎨⎬⎪⎪⨯⨯⎪⎪⎩⎭ 1000.3871(0.387)0.348,102012V P ⎧⎫⎪⎪-⎪⎪=>≈-Φ=⎨⎬⎪⎪⨯⎪⎪⎩⎭即有 P{V>105}≈5. 有一批建筑房屋用的木柱,其中80%的长度不小于3m.现从这批木柱中随机地取出100根,问其中至少有30根短于3m 的概率是多少 【解】设100根中有X 根短于3m ,则X~B (100,) 从而{30}1{30}11000.20.8P X P X ≥=-<≈-Φ⨯⨯1(2.5)10.99380.0062.=-Φ=-=6. 某药厂断言,该厂生产的某种药品对于医治一种疑难的血液病的治愈率为.医院检验员任意抽查100个服用此药品的病人,如果其中多于75人治愈,就接受这一断言,否则就拒绝这一断言.(1) 若实际上此药品对这种疾病的治愈率是,问接受这一断言的概率是多少 (2) 若实际上此药品对这种疾病的治愈率是,问接受这一断言的概率是多少【解】1,,1,2,,100.0,.i i X i ⎧==⎨⎩第人治愈其他令1001.i i X X ==∑(1) X~B(100,,1001{75}1{75}1i i P X P X =>=-≤≈-Φ∑1( 1.25)(1.25)0.8944.=-Φ-=Φ= (2) X~B(100,,1001{75}1{75}1i i P X P X =>=-≤≈-Φ∑11(1.09)0.1379.=-Φ=-Φ=7. 用Laplace 中心极限定理近似计算从一批废品率为的产品中,任取1000件,其中有20件废品的概率.【解】令1000件中废品数X ,则 p=,n=1000,X~B(1000,, E(X)=50,D(X)=. 故130{20} 6.895 6.895P X ϕ⎛⎫===- ⎪⎝⎭6130 4.510.6.895 6.895ϕ-⎛⎫==⨯ ⎪⎝⎭8. 设有30个电子器件.它们的使用寿命T1,…,T30服从参数λ=[单位:(小时)-1]的指数分布,其使用情况是第一个损坏第二个立即使用,以此类推.令T 为30个器件使用的总计时间,求T 超过350小时的概率.【解】11()10,0.1i E T λ=== 21()100,i D T λ==()1030300,E T =⨯= ()3000.D T = 故{350}111(0.913)0.1814.P T >≈-Φ=-Φ=-Φ=9. 上题中的电子器件若每件为a 元,那么在年计划中一年至少需多少元才能以95%的概率保证够用(假定一年有306个工作日,每个工作日为8小时). 【解】设至少需n 件才够用.则E(Ti)=10,D(Ti)=100, E(T)=10n ,D(T)=100n.从而1{3068}0.95,ni i P T =≥⨯=∑即0.05.≈Φ 故0.95,1.64272.n =Φ=≈所以需272a 元.10. 对于一个学生而言,来参加家长会的家长人数是一个随机变量,设一个学生无家长、1 名家长、2名家长来参加会议的概率分别为,,.若学校共有400名学生,设各学生参加会议的家长数相与独立,且服从同一分布. (1) 求参加会议的家长数X 超过450的概率(2) 求有1名家长来参加会议的学生数不多于340的概率.【解】(1) 以Xi(i=1,2,…,400)记第i 个学生来参加会议的家长数.则Xi 的分布律为易知E (Xi=),D(Xi)=,i=1,2, (400)而400iiX X =∑,由中心极限定理得400400 1.1~(0,1).iXN -⨯=∑近似地于是{450}1{450}1P X P X >=-≤≈-Φ1(1.147)0.1357.=-Φ=(2) 以Y 记有一名家长来参加会议的学生数.则Y~B(400,由拉普拉斯中心极限定理得3404000.8{340(2.5)0.9938.4000.80.2P Y -⨯⎛⎫≤≈Φ=Φ= ⎪⨯⨯⎝⎭11. 设男孩出生率为,求在10000个新生婴儿中女孩不少于男孩的概率【解】用X 表10000个婴儿中男孩的个数,则X~B (10000,)要求女孩个数不少于男孩个数的概率,即求P{X≤5000}. 由中心极限定理有{5000}(3)1(3)0.00135.100000.5150.485P X ≤≈Φ=Φ-=-Φ= ⎪⨯⨯⎝⎭12. 设有1000个人独立行动,每个人能够按时进入掩蔽体的概率为.以95%概率估计,在一次行动中:(1)至少有多少个人能够进入 (2)至多有多少人能够进入【解】用Xi 表第i 个人能够按时进入掩蔽体(i=1,2,...,1000). 令 Sn=X 1+X2+ (X1000)(1) 设至少有m 人能够进入掩蔽体,要求P{m≤Sn≤1000}≥,事件{}.10000.90.190nn m S ≤=≤ ⎪⨯⨯⎝⎭ 由中心极限定理知:{}1{}10.95.10000.90.1n n P m S P S m ≤=-<≈-Φ≥ ⎪⨯⨯⎝⎭ 从而 0.05,90Φ≤ ⎪⎝⎭故 1.65,90=-所以 m==≈884人(2) 设至多有M 人能进入掩蔽体,要求P{0≤Sn≤M}≥.{}0.95.90n P S M ≤≈Φ= ⎪⎝⎭查表知90=,M=900+=≈916人. 13. 在一定保险公司里有10000人参加保险,每人每年付12元保险费,在一年内一个人死亡的概率为,死亡者其家属可向保险公司领得1000元赔偿费.求: (1) 保险公司没有利润的概率为多大;(2) 保险公司一年的利润不少于60000元的概率为多大 【解】设X 为在一年中参加保险者的死亡人数,则X~B (10000,).(1) 公司没有利润当且仅当“1000X=10000×12”即“X=120”. 于是所求概率为{120}100000.0060.994100000.0060.994P X ϕ=≈⎪⨯⨯⨯⨯⎝⎭21(60/59.64)230.1811e 59.6459.64259.640.0517eϕπ--== ⎪⎝⎭=⨯≈(2) 因为“公司利润≥60000”当且仅当“0≤X≤60”于是所求概率为{060}100000.0060.994100000.0060.994P X ≤≤≈Φ-Φ⨯⨯⨯⨯ (0)0.5.59.64⎛=Φ-Φ≈ ⎝14. 设随机变量X 和Y 的数学期望都是2,方差分别为1和4,而相关系数为试根据契比雪夫不等式给出P{|X-Y|≥6}的估计. (2001研考) 【解】令Z=X-Y ,有()0,()()()()2()() 3.E Z D Z D X Y D X D Y D X D Y ρ==-=+-=所以2()31{|()|6}{||6}.63612D X Y P Z E Z P X Y --≥=-≥≤==15. 某保险公司多年统计资料表明,在索赔户中,被盗索赔户占20%,以X 表示在随机抽查的100个索赔户中,因被盗向保险公司索赔的户数. (1) 写出X 的概率分布;(2) 利用中心极限定理,求被盗索赔户不少于14户且不多于30户的概率近似值. (1988研考)【解】(1) X 可看作100次重复独立试验中,被盗户数出现的次数,而在每次试验中被盗户出现的概率是,因此,X~B(100,,故X 的概率分布是100100{}C 0.20.8,1,2,,100.k k k P X k k -===(2) 被盗索赔户不少于14户且不多于30户的概率即为事件{14≤X≤30}的概率.由中心极限定理,得{1430}P X ≤≤≈Φ-Φ(2.5)( 1.5)0.994[9.33]0.927.=Φ-Φ-=--=16. 一生产线生产的产品成箱包装,每箱的重量是随机的.假设每箱平均重50千克,标准差为5千克,若用最大载重量为5吨的汽车承运,试利用中心极限定理说明每辆车最多可以装多少箱,才能保障不超载的概率大于.【解】设Xi (i=1,2,…,n)是装运i 箱的重量(单位:千克),n 为所求的箱数,由条件知,可把X1,X2,…,Xn 视为独立同分布的随机变量,而n 箱的总重量Tn=X1+X2+…+Xn 是独立同分布随机变量之和,由条件知:()50,i E X =5,=()50,n E T n ==依中心极限定理,当n~(0,1)N 近似地,故箱数n 取决于条件{5000}n P T P ≤=≤0.977(2).n ≈Φ>=Φ ⎪⎝⎭因此可从2n >解出n<,即最多可装98箱. 习题六1.设总体X~N (60,152),从总体X 中抽取一个容量为100的样本,求样本均值与总体均值之差的绝对值大于3的概率. 【解】μ=60,σ2=152,n=100~(0,1)/X Z N n σ-=即60~(0,1)15/10X Z N -=(|60|3)(||30/15)1(||2)P X P Z P Z ->=>=-<2[1(2)]2(10.9772)0.0456.=-Φ=-=2.从正态总体N (,52)中抽取容量为n 的样本,若要求其样本均值位于区间(,)内的概率不小于,则样本容量n 至少取多大 【解】~(0,1)5/X Z N n -=2.2 4.2 6.2 4.2(2.2 6.2)()55P X P n Z n --<<=<< 2(0.4)10.95,n =Φ-=则Φn =,故n >, 即n>,所以n 至少应取253.设某厂生产的灯泡的使用寿命X~N (1000,σ2)(单位:小时),随机抽取一容量为9的样本,并测得样本均值及样本方差.但是由于工作上的失误,事后失去了此试验的结果,只记得样本方差为S2=1002,试求P(X>1062).【解】μ=1000,n=9,S2=10021000~(8)100/3X Xt t-==10621000(1062)()( 1.86)0.05100/3P X P t P t->=>=>=4.从一正态总体中抽取容量为10的样本,假定有2%的样本均值与总体均值之差的绝对值在4以上,求总体的标准差.【解】~(0,1)Z N=,由P(|X-μ|>4)=得P|Z|>4(σ/n)=,故210.02σ⎡⎤⎛-Φ=⎢⎥⎢⎥⎝⎭⎣⎦,即0.99.Φ=⎝⎭查表得2.33,σ=所以5.43.σ==5.设总体X~N(μ,16),X1,X2,…,X10是来自总体X的一个容量为10的简单随机样本,S2为其样本方差,且P(S2>a)=,求a之值.【解】2222299~(9),()0.1.1616S aP S a Pχχχ⎛⎫=>=>=⎪⎝⎭查表得914.684,16a=所以14.6841626.105.9a⨯==6.设总体X服从标准正态分布,X1,X2,…,Xn是来自总体X的一个简单随机样本,试问统计量Y=∑∑==-ni ii i X X n 62512)15(,n >5服从何种分布【解】2522222211~(5),~(5)inii i i X X X n χχχ====-∑∑且12χ与22χ相互独立.所以2122/5~(5,5)/5X Y F n X n =--7.求总体X~N (20,3)的容量分别为10,15的两个独立随机样本平均值差的绝对值大于的概率.【解】令X 的容量为10的样本均值,Y 为容量为15的样本均值,则X ~N(20,310),Y ~N(20,315),且X 与Y 相互独立.则33~0,(0,0.5),1015X Y N N ⎛⎫-+= ⎪⎝⎭那么~(0,1),X YZ N =所以(||0.3)||2[1(0.424)]P X Y P Z Φ⎛->=>=- ⎝2(10.6628)0.6744.=-=8.设总体X~N (0,σ2),X1,…,X10,…,X15为总体的一个样本.则Y=()21521221121022212X X X X X X ++++++ 服从 分布,参数为 .【解】~(0,1),iX N σi=1,2, (15)那么122210152222111~(10),~(5)i i i i X X χχχχσσ==⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭∑∑且12χ与22χ相互独立,所以222110122211152/10~(10,5)2()/5X X X Y F X X X ++==++所以Y~F 分布,参数为(10,5).9.设总体X~N (μ1,σ2),总体Y~N(μ2,σ2),X1,X2,…,1n X 和Y1,Y2,…,2n X 分别来自总体X 和Y 的简单随机样本,则⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-+-+-∑∑==2)()(21121221n n Y Y X X E n j j n i i = .【解】令 1222212111211(),(),11n n i i i j S X X S Y Y n n ===-=---∑∑则122222112211()(1),()(1),n n i j i j X X n S y y n S ==-=--=-∑∑又2222221122112222(1)(1)~(1),~(1),n S n S n n χχχχσσ--=-=-那么1222112222121212()()1()22n n i j i j X X Y Y E E n n n n σχσχ==⎡⎤-+-⎢⎥⎢⎥=+⎢⎥+-+-⎢⎥⎣⎦∑∑2221212221212[()()]2[(1)(1)]2E E n n n n n n σχχσσ=++-=-+-=+-10.设总体X~N (μ,σ2),X1,X2,…,X2n (n≥2)是总体X 的一个样本,∑==ni i X n X 2121,令Y=∑=+-+ni i n iX X X12)2(,求E(Y).【解】令Zi=Xi+Xn+i, i=1,2,…,n.则Zi~N(2μ,2σ2)(1≤i≤n),且Z1,Z2,…,Zn 相互独立.令 2211, ()/1,nni i i i Z Z S Z Z n n ====--∑∑则21111,222nn i i i i X X Z Z n n =====∑∑ 故 2Z X = 那么22211(2)()(1),n ni n i i i i Y X X X Z Z n S +===+-=-=-∑∑所以22()(1)2(1).E Y n ES n σ=-=-11. 设总体X 的概率密度为f(x)=x-e 21 (-∞<x<+∞),X1,X2,…,Xn 为总体X 的简单随机样本,其样本方差为S2,求E(S2). 解: 由题意,得1e , 0,2()1e ,0,2xx x f x x -⎧<⎪⎪=⎨⎪≥⎪⎩于是 22222220()()()()1()()d e d 021()()d e d e d 2,2xx x E S D X E X E X E X xf x x x x E X x f x x x x x x +∞+∞--∞-∞+∞+∞+∞---∞-∞==-=======⎰⎰⎰⎰⎰所以2()2E S =.。

概率论与数理统计教程第四版课后答案-文档资料

概率论与数理统计教程第四版课后答案-文档资料
i 1 1 i j n n n 1 P ( A A A ) ( 1 ) P ( A A A ) i j k 1 2 n

1 i j k n
,A 若事件 A 1,A 2, n 互不相容,则
P A A A P A P A P A 4 1 2 n 1 2 n
m m n m n
其中 pq1 。
6
第一章
一、几种概率
1、统计概率
2、古典概率
随机事件及其概率
M P( A) N
随机事件 A 所占的几何度量 ( A ) 3、几何概率 P 试验的总的几何度量 P (AB ) P (A| B ) 4、条件概率 P (B )
( m ) C p q 5、贝努利概率 P n n
3.事件运算的性质
(1). A A ,
A A , A A ;
B C AB AC , (2). A
(3). A B AB , AB A B .
i 1 n n
Ai Ai ,
i 1
i 1
Ai Ai .
i 1
n
n
3
(三) 概率的定义 概率的定义 事件 A 发生的可能性大小 概率的统计定义
第一章
一、基本内容
随机事件及其概率小结
(一)随机试验与样本空间 1.随机试验 具有下列特点的试验称为随机试验 ( 试验 ): (1)试验在相同的条件下可重复进行; 并且可能的结果不止一个; (2)试验前知道试验的所有可能结果, (3)试验前不知道那一个结果会出现。 2.样本空间与样本点
样本空间 随机试验的所有可能的结果所组成的集合, 记作Ω; 样本点 样本空间Ω中的每个元素, 即试验的每一可能的结果, 记作ω。

概率论与数理统计高教版第四版课后习题答案

概率论与数理统计高教版第四版课后习题答案
17
12
数值p,即(P(A))就是在一次试验中对事件A发生可能 性的大小的数量描述。 如上所说,频率的稳定性是概率的经验基础,但并不是 说概率决定于试验。一个事件发生的概率完全决定于事件本 身的结构,是先于试验而客观存在的。 概率的统计定义仅仅指出了事件的概率是客观存在的 但 并不能用这个定义计算P(A)。实际上,人们是采用一次大量 实验的频率或一系列频率的平均值作为P(A)的近似值。 这就是说,概率的统计定义还不是真正意义上的数学定 义。 (二)概率的古典定义 直接计算某一事件的概率有时是非常困难的,甚至是不 可能的。仅在某些情况下,才可以直接计算事件的概率。
5
个事件发生。记作
å
¥
Ai 或
¥
Ai
i= 1
i= 1
4. 事件的交(积) 两个事件A与B同时发生,即“A且B” ,是一个事件,称为 A与B的交(积),它是由既属于A又属于B的所有公共样本点 构成的集合,记作 AB或A∩B 5.事件的差 事件A发生而事件B不发生,是一个事件,称为事件A与事 件B的差。它是由属于A但不属于B的样本点构成的集合。记作 A-B. 6. 互不相容事件
8. 完备事件组 若事件A1,A2,…,An为两两互不相容的事件,并且A1+A2+… +An=Ω ,则称A1,A2,…,An构成一个完备事件组。 例1,例2,例3,例4
7
§1.2 概率 概率论研究的是随机现象量的规律性。因此仅仅知道试验中 可能出现哪些事件是不够的,还需要对事件发生的可能性大小 的问题进行描述。 上面所提到的随机事件在一次试验中是否发生是不确定的, 但是在大量的重复试验中,它的发生确具有统计规律性,所以 应用中从大量的试验出发来研究它。 先来看看两个例子,掷一枚均匀硬币的试验中,出现文字 (反面)或国徽(正面)的事件,总体来看,在试验中两面中 总有一面会出现,而且他们出现的机会是相等的。但是在一次 是一次试验中,这两面中究竟哪一面出现我们无法确定,但我 们可以确定两面出现的机会是相等的。又如,掷一枚均匀的 骨殳子,在一次试验中,1点,2点,3点,4点,5点,6点都可

概率论与数理统计(第四版)习题问题详解全

概率论与数理统计(第四版)习题问题详解全
(2) 或 ;
(3)
(4) 或
第二章
一、由七个数字组成,每个数字可以是0,1,2,…,9中的任一个数(但第一个数字不能为0),由完全不同的数字组成的概率.
解:基本事件总数为
有利事件总数为
设 表示“是由完全不同的数字组成”,则
二、把十本书任意地放在书架上,求其中指定的三本书放在一起的概率.
解:基本事件总数为
设 表示“第二次取出的都是新球”,则
第四章
一、一个工人看管三台车床,在一小时车床不需要工人照管的概率:第一台等于0.9,第二台等于0.8,第三台等于0.7.求在一小时三台车床中最多有一台需要工人照管的概率.
解:设 表示“第 台机床不需要照管” ,则
再设 表示“在一小时三台车床中最多有一台需要工人照管”,则
二、某人忘记了的最后一个数字,因而他随意地拨号,求他拨号不超过两次而接通所需的概率.若已知最后一个数字是奇数,那么此概率是多少?
解:设 表示“第一次拨通”, 表示“第二次拨通”, 表示“拨号不超过两次而拨通”
(1)
(2)
三、两台车床加工同样的零件,第一台出现废品的概率是0.03,第二台出现废品的概率是
落在区域R: 的概率.
解:(1)由 ,有 ,解得
解:(1)由 ,得 ,解得 ,即有
(2)
(3)随机变量 的分布函数为

第七章
一、公共汽车站每隔5分钟有一辆汽车通过.乘客到达汽车站的任一时刻是等可能的.求乘客候车时间
不超过3分钟的概率.
解:设随机变量 表示“乘客的候车时间”,则 服从 上的均匀分布,其密度函数为
于是有
二、已知某种电子元件的使用寿命 (单位:h)服从指数分布,概率密度为
0.02.加工出来的零件放在一起,并且已知第一台加工的零件比第二台加工的零件多

(NEW)浙江大学《概率论与数理统计》(第4版)笔记和课后习题(含考研真题)详解

(NEW)浙江大学《概率论与数理统计》(第4版)笔记和课后习题(含考研真题)详解

目 录第1章 概率论的基本概念1.1 复习笔记1.2 课后习题详解1.3 考研真题详解第2章 随机变量及其分布2.1 复习笔记2.2 课后习题详解2.3 考研真题详解第3章 多维随机变量及其分布3.1 复习笔记3.2 课后习题详解3.3 考研真题详解第4章 随机变量的数字特征4.1 复习笔记4.2 课后习题详解4.3 考研真题详解第5章 大数定律及中心极限定理5.1 复习笔记5.2 课后习题详解5.3 考研真题详解第6章 样本及抽样分布6.1 复习笔记6.2 课后习题详解6.3 考研真题详解第7章 参数估计7.1 复习笔记7.2 课后习题详解7.3 考研真题详解第8章 假设检验8.1 复习笔记8.2 课后习题详解8.3 考研真题详解第9章 方差分析及回归分析9.1 复习笔记9.2 课后习题详解9.3 考研真题详解第10章 bootstrap方法10.1 复习笔记10.2 课后习题详解10.3 考研真题详解第11章 在数理统计中应用Excel软件11.1 复习笔记11.2 课后习题详解11.3 考研真题详解第12章 随机过程及其统计描述12.1 复习笔记12.2 课后习题详解12.3 考研真题详解第13章 马尔可夫链13.1 复习笔记13.2 课后习题详解13.3 考研真题详解第14章 平稳随机过程14.1 复习笔记14.2 课后习题详解14.3 考研真题详解第1章 概率论的基本概念1.1 复习笔记在个别试验中其结果呈现出不确定性,在大量重复试验中其结果又具有统计规律性的现象,称为随机现象.一、随机试验1.定义试验包括各种各样的科学实验,甚至对某一事物的某一特征的观察也认为是一种试验.2.试验的特点(1)可以在相同的条件下重复地进行;(2)每次试验的可能结果不止一个,并且能事先明确试验的所有可能结果;(3)进行一次试验之前不能确定哪一个结果会出现.在概率论中,将具有上述三个特点的试验称为随机试验.二、样本空间、随机事件1.样本空间随机试验E的所有可能结果组成的集合称为E的样本空间,记为S.样本空间的元素,即E的每个结果,称为样本点.2.随机事件一般地,称试验E的样本空间S的子集为E的随机事件,简称事件.在每次试验中,当且仅当这一子集中的一个样本点出现时,称这一事件发生.特别地,由一个样本点组成的单点集,称为基本事件.样本空间S包含所有的样本点,它是S自身的子集:(1)在每次试验中它总是发生的,S称为必然事件.(2)空集不包含任何样本点,也是样本空间的子集,它在每次试验中都不发生,称为不可能事件.3.事件间的关系与事件的运算事件间的关系与事件的运算按照集合论中集合之间的关系和集合运算来处理.设试验E的样本空间为S,而A,B,A k(k=1,2,…)是S的子集.(1)包含关系①若,则称事件B包含事件A,即事件A发生必导致事件B发生;②若且,即A=B,则称事件A与事件B相等.(2)和事件事件A∪B={x|x∈A或x∈B)称为事件A与事件B的和事件.当且仅当A,B中至少有一个发生时,事件A B发生.称为n个事件A1,A2,…,A n的和事件;称为可列个事件A1,A2,…的和事件.(3)积事件事件A∩B={x|x∈A且x∈B)称为事件A与事件B的积事件.当且仅当A,B同时发生时,事件A∩B发生.A∩B也记作AB.称为n个事件A1,A2,…,A n的积事件;称为可列个事件A1,A2,…的积事件.(4)差事件事件A-B={x|x∈A且x B)称为事件A与事件B的差事件.当且仅当A发生、B不发生时事件A-B发生.(5)互斥若,则称事件A与B是互不相容的,或互斥的.即事件A与事件B不能同时发生.基本事件是两两互不相容的.(6)逆事件若A∪B=S且,则称事件A与事件B互为逆事件,又称事件A与事件B互为对立事件.对每次试验而言,事件A、B中必有一个发生,且仅有一个发生.A的对立事件记为.(7)定律设A,B,C为事件,则有:①交换律:A∪B=B∪A;A∩B=B∩A;②结合律:A∪(B∪C)=(A∪B)∪C;A∩(B∩C)=(A∩B)∩C;③分配律:A∪(B∩C)=(A∪B)∩(A∪C);A∩(B∪C)=(A∩B)∪(A∩C);④德摩根律:;.三、频率与概率1.频率(1)定义在相同的条件下,进行了n次试验,在这n次试验中,事件A发生的次数n A称为事件A发生的频数,比值n A/n称为事件A发生的频率,并记成.(2)基本性质①;②;③若A1,A2,…,A k是两两互不相容的事件,则2.概率(1)定义设E是随机试验,S是它的样本空间.对于E的每一事件A赋予一个实数,记为P(A),称为事件A的概率,如果集合函数满足下列条件:①非负性:对于每一个事件A,有P(A)≥0;②规范性:对于必然事件S,有P(S)=1;③可列可加性:设A1,A2,…是两两互不相容的事件,即对于,i≠j,i,j=1,2,…,有P(A1∪A2∪…)=P(A1)+P(A2)+….(2)性质①;②(有限可加性)若A1,A2,…,A n是两两互不相容的事件,则有P(A1∪A2∪…∪A n)=P(A1)+P(A2)+…+P(A n)③设A,B是两个事件,若,则有P(B-A)=P(B)-P(A)与P(B)≥P(A)④对于任一事件A,P(A)≤1;⑤(逆事件的概率)对于任一事件A,有;⑥(加法公式)对于任意两事件A,B有P(A∪B)=P(A)+P(B)-P(AB);一般,对于任意n个事件A1,A2,…,A n,可以用归纳法证得四、等可能概型(古典概型)1.定义如果一个试验具有以下两个特点:(1)试验的样本空间只包含有限个元素;(2)试验中每个基本事件发生的可能性相同.则这种试验称为等可能概型,又称古典概型.2.等可能概型的计算公式若事件A包含k个基本事件,即A=,这里,是1,2,…,n中某k个不同的数,则有五、条件概率1.条件概率(1)定义设A,B是两个事件,且P(A)>0,称为在事件A发生的条件下事件B发生的条件概率.(2)性质①非负性:对于每一事件B,有P(B|A)≥0;②规范性:对于必然事件S,有P(S|A)=1;③可列可加性:设B1,B2,…是两两互不相容的事件,则有2.乘法定理(1)设P(A)>0,则有P(AB)=P(B|A)P(A),又称乘法公式.(2)一般,设A1,A2,…,A n为n个事件,n≥2,且,则有3.全概率公式和贝叶斯公式(1)样本空间划分的定义设S为试验E的样本空间,B1,B2,…,B n为E的一组事件.若①,i≠j,i,j=l,2,…,n;②B1∪B2∪…∪B n=S,则称B1,B2,…,B n为样本空间S的一个划分.若B1,B2,…,B n是样本空间的一个划分,则对每次试验,事件B1,B2,…,B n中必有一个且仅有一个发生.(2)全概率公式设试验E的样本空间为S,A为E的事件,B1,B2,…,B n为S的一个划分,且(i=1,2,…,n),则P(A)=P(A|B1)P(B1)+P(A|B2)P(B2)+…+P(A|B n)P(B n)(3)贝叶斯公式设试验E的样本空间为S,A为E的事件,B1,B2,…,B n为S的一个划分,且,(i=1,2,…,n),则注:在n=2的情况下,全概率公式和贝叶斯公式分别成为六、独立性1.两个事件独立(1)定义设A,B是两事件,如果满足等式P(AB)=P(A)P(B),则称事件A,B相互独立.(2)两个定理①设A,B是两事件,且P(A)>0,若A,B相互独立,则P(B|A)=P(B).反之亦然.②若事件A与B相互独立,则下列各对事件也相互独立A与,与B,与2.三个事件独立设A,B,C是三个事件,如果满足等式则称事件A,B,C相互独立.3.n个事件独立(1)定义设A1,A2,…,A n是n(n≥2)个事件,如果对于其中任意2个,任意3个,…,任意n个事件的积事件的概率,都等于各事件概率之积,则称事件A1, A2,…,A n相互独立.(2)两个推论①若事件A1,A2,…,A n(n≥2)相互独立,则其中任意k(2≤k≤n)个事件也是相互独立的.②若n个事件A1,A2,…,A n(n≥2)相互独立,则将A1,A2,…,A n 中任意多个事件换成它们各自的对立事件,所得的n个事件仍相互独立.1.2 课后习题详解1.写出下列随机试验的样本空间S:(1)记录一个班一次数学考试的平均分数(设以百分制记分);(2)生产产品直到有10件正品为止,记录生产产品的总件数;(3)对某工厂出厂的产品进行检查,合格的记上“正品”,不合格的记上“次品”,如连续查出了2件次品就停止检查,或检查了4件产品就停止检查,记录检查的结果;(4)在单位圆内任意取一点,记录它的坐标.解:(1)以n表示该班的学生数,总成绩的可能取值为0,1,2,3,…,100n,试验的样本空间为(2)设在生产第10件正品前共生产了k件不合格品,样本空间为或写成 (3)采用0表示检查到一件次品,以1表示检查到一件正品,例如0110表示第一次与第四次检查到次品,而第二次与第三次检查到的是正品,样本空间可表示为(4)取一直角坐标系,则有,若取极坐标系,则有2.设A,B,C为三个事件,用A,B,C的运算关系表示下列各事件:(1)A发生,B与C不发生;(2)A与B都发生,而C不发生;(3)A,B,C中至少有一个发生;(4)A,B,C都发生;(5)A,B,C都不发生;(6)A,B,C中不多于一个发生;(7)A,B,C中不多于两个发生;(8)A,B,C中至少有两个发生.解:以下分别用表示(1),(2),…,(8)中所给出的事件.一个事件不发生即为它的对立事件发生,例如事件A不发生即为发生.(1)A发生,B与C不发生,表示A,,同时发生,故或写成;(2)A与B都发生而C不发生,表示A,B,同时发生,故或写成;(3)①方法1 由和事件的含义知,事件即表示A,B,C中至少有一个发生,故;②方法2 事件“A,B,C至少有一个发生”是事件“A,B,C都不发生”的对立事件,因此,;③方法3 事件“A,B,C中至少有一个发生”表示三个事件中恰有一个发生或恰有两个发生或三个事件都发生,因此,又可写成(4);(5);(6)“A,B,C中不多于一个发生”表示A,B,C都不发生或A,B,C 中恰有一个发生,因此,;又“A,B,C中不多于一个发生”表示“A,B,C中至少有两个不发生”,亦即,,中至少有一个发生,因此又有;又“A,B,C中不多于一个发生”是事件G=“A,B,C中至少有两个发生”的对立事件.而事件G可写成,因此又可将写成(7)“A,B,C中不多于两个发生”表示A,B,C都不发生或A,B,C 中恰有一个发生或A,B,C中恰有两个发生.因此又“A,B,C中不多于两个发生”表示A,B,C中至少有一个不发生,亦即中至少有一个发生,即有;又“A,B,C中不多于两个发生”是事件“A,B,C三个都发生”的对立事件,因此又有;(8),也可写成.3.(1)设A,B,C是三个事件,且P(A)=P(B)=P(C)=,P(AB)=P(BC)=0,P(AC)=,求A,B,C至少有一个发生的概率.(2)已知P(A)=,P(B)=,P(C)=,P(AB)=,P(AC)=,P(BC)=,P(ABC)=,求,,,,,的概率.(3)已知P(A)=,(i)若A,B互不相容,求;(ii)若P(AB)=,求.解:(1)由,已知,故,得,所求概率为.(2)记,由加法公式(3)(i);(ii).4.设A、B是两个事件(1)已知,验证A=B;(2)验证事件A和事件B恰有一个发生的概率为P(A)+P(B)-2P(AB).解:(1)假设,故有,则,即AS=SB,故有A=B.(2)A,B恰好有一个发生的事件为,其概率为5.10片药片中有5片是安慰剂(1)从中任意抽取5片,求其中至少有2片是安慰剂的概率;(2)从中每次取一片,作不放回抽样,求前3次都取到安慰剂的概率.解:(1)p=1-P(取到的5片药片均不是安慰剂)-P(取到的5片药片中只有1片是安慰剂),即p(2).6.在房间里有10个人,分别佩戴从1号到10号的纪念章,任选3人记录其纪念章的号码.(1)求最小号码为5的概率;(2)求最大号码为5的概率.解:在房间里任选3人,记录其佩戴的纪念章的号码,10人中任选3人共有=种选法,此即为样本点的总数.以A记事件“最小的号码为5”,以B记事件“最大的号码为5”.(1)因选到的最小号码为5,则其中一个号码为5且其余两个号码都大于5,它们可从6~10这5个数中选取,故,从而;(2)同理,,故.7.某油漆公司发出17桶油漆,其中白漆10桶、黑漆4桶、红漆3桶,在搬运中所有标签脱落,交货人随意将这些油漆发给顾客.问一个订货为4桶白漆、3桶黑漆和2桶红漆的顾客,能按所订颜色如数得到订货的概率是多少?解:以S表示:在17桶油漆中任取9桶给顾客.以A表示事件“顾客取到4桶白漆、3桶黑漆与2桶红漆”,则有,,故事件A发生的概率为8.在1500件产品中有400件次品、1100件正品.任取200件.(1)求恰有90件次品的概率;(2)求至少有2件次品的概率.解:总数S:从1500件产品中任取200件产品.以A表示事件“恰有90件次品”,以B i表示事件“恰有i件次品”,i=0,1,以C表示事件“至少有2件次品”.(1)故 ;(2),其中,,互不相容,所以因,故,因此有9.从5双不同的鞋子中任取4只,问这4只鞋子中至少有两只配成一双的概率是多少?解:总数S:从5双不同的鞋子中任取4只.以A表示事件“所取4只鞋子中至少有两只配成一双鞋子”,则表示事件“所取4只鞋子无配对”.先计算P()较为简便.以下按N()的不同求法,列出本题的3种解法,另外还给出一种直接求P(A)的解法.解法一:考虑4只鞋子是有次序一只一只取出的,从5双(10只)鞋子中任取4只共有10×9×8×7种取法,N(S)=10×9×8×7.现在来求N():第一只可以任意取,共有10种取法,第二只只能在剩下的9只中且除去与已取的第一只配对的8只鞋子中任取一只,共8种取法;同理第三只、第四只各有6种、4种取法,从而N()=10×8×6×4.故解法二:从10只鞋子中任取4只,共有种取法,即.为求N(),先从5双鞋子中任取4双共有种取法,再自取出的每双鞋子中各取1只(在一双中取一只共有2种取法),共有种取法,即.故解法三:现在来求N().先从5只左脚鞋子中任取k只(k=0,1,2,3,4),有种取法.而剩下的4-k只鞋子只能从(不能与上述所取的配对的)5-k只右脚鞋子中选取,即对于每个固定的k,有种取法.故,故解法四:以A i表示事件“所取4只鞋子中恰能配成i双”(i=1,2),则,,故,因为4只恰能配成2双,它可直接从5双鞋子中成双地取得,故,的算法是:先从5双中取1双,共有种取法,另外两只能从其他8只中取,共有种取法,不过这种取法中将成双的也算在内了,应去掉.从而.N(S)仍为解法二中的种,故10.在11张卡片上分别写上probability这11个字母,从中任意连抽7张,求其排列结果为ability的概率.解:解法一:总数S:自11个字母中随机地接连抽7个字母并依次排列.将11个字母中的两个b看成是可分辨的,两个i也看成是可分辨的,.以A记事件“排列结果为ability”,则N(A)=4(因b有两种取法,i也有两种取法),因而解法二:本题也可利用乘法定理来计算.以,,,,,,依次表示取得字母a,b,i,l,i,t,y各事件,则所求概率为11.将3只球随机地放入4个杯子中去,求杯子中球的最大个数分别为1,2,3的概率.解:总数S:将3只球随机地放人4个杯子中去,易知共有43种放置法.以A i表示事件“杯子中球的最大个数为i”,i=1,2,3.对于A3,只有当3只球放在同一杯子中时才能发生,有4个杯子可以任意选择,于是,故对于事件A1,只有当每个杯子最多放一只球时才能发生.因而,故对于A2,因,,故,从而12.50只铆钉随机地取来用在10个部件上,其中有3只铆钉强度太弱.每个部件用3只铆钉.若将3只强度太弱的铆钉都装在一个部件上,则这个部件强度就太弱.问发生一个部件强度太弱的概率是多少?解:将部件自1到10编号,随机试验E:随机地取铆钉,使各部件都装3只铆钉.以A i表示事件“第i号部件强度太弱”.由题设,仅当3只强度太弱的铆钉同时装在第i号部件上,才能发生,由于从50只铆钉中任取3只装在第i号部件上共有种取法,强度太弱的铆钉仅有3只,它们都装在第i号部件上,只有种取法,故又知,,…,两两互不相容,因此,10个部件中有一个强度太弱的概率为13.一俱乐部有5名一年级学生,2名二年级学生,3名三年级学生,2名四年级学生.(1)在其中任选4名学生,求一、二、三、四年级的学生各一名的概率;(2)在其中任选5名学生,求一、二、三、四年级的学生均包含在内的概率.解:(1)共有5+2+3+2=12名学生,在其中任选4名共有种选法,其中每年级各选1名的选法有种选法,因此,所求概率为;(2)在12名学生中任选5名的选法共有种,在每个年级中有一个年级取2名,而其他3个年级各取1名的取法共有(种)于是所求的概率为.14.(1)已知,求条件概率;(2)已知,试求.解:(1);由题设得故(2)15.掷两颗骰子,已知两颗骰子点数之和为7,求其中有一颗为1点的概率(用两种方法).解:随机试验E:掷两颗骰子,观察其出现之点数.以A记事件“两骰子点数之和为7”,以B记事件“两颗骰子中有一颗出现1点”.解法一:按条件概率的定义式:来求条件概率,设想两颗骰子是可分辨的,样本空间为事件A为事件AB为现在,因此解法二:按条件概率的含义来求.样本空间原有36个样本点,现在知道了“A已经发生”这一信息,根据这一信息,不在A中的样本点就不可能出现了,因而试验所有可能结果所成的集合就是A,而A中共有6个可能结果,其中只有两个结果(1,6)和(6,1)有一颗骰子出现1点,因此.16.据以往资料表明,某一3口之家,患某种传染病的概率有以下规律:P{孩子得病}=0.6,P{母亲得病|孩子得病}=0.5P{父亲得病|母亲及孩子得病}=0.4求母亲及孩子得病但父亲未得病的概率.解:以A记事件“孩子得病”,以B记事件“母亲得病”,以C记事件“父亲得病”,按题意需要求,已知.由乘法定理得17.已知在10件产品中有2件次品,在其中取两次,每次任取一件,作不放回抽样.求下列事件的概率:(1)两件都是正品;(2)两件都是次品;(3)一件是正品,一件是次品;(4)第二次取出的是次品.解:随机实验E:在10件产品中(其中有2件次品)任取两次,每次取1件,作不放回抽样.以A i(i=1,2)表示事件“第i次抽出的是正品”.因为是不放回抽样,所以:(1)两件都是正品的概率为(2)两件都是次品的概率为(3)一件是正品,一件是次品的概率为(4)第二次取出的是次品的概率为18.某人忘记了电话号码的最后一个数字,因而他随意地拨号.求他拨号不超过三次而接通所需电话的概率.若已知最后一个数字是奇数,那么此概率是多少?解:解法一:以表示事件“第i次拨号拨通电话”,i=1,2,3.以A表示事件“拨号不超过3次拨通电话”,则有.事件,,发生的概率如下所以该人拨号不超过三次而接通所需电话的概率为(2)当已知最后一位数是奇数时,所求概率为.解法二:沿用解法一的记号.(1)该人拨号不超过三次而接通所需电话的概率为:(2)当已知最后一位是奇数时,所求概率为.19.(1)设甲袋中装有n只白球、m只红球;乙袋中装有N只白球、M 只红球.今从甲袋中任意取一只球放入乙袋中,再从乙袋中任意取一只球,问取到白球的概率是多少?(2)第一只盒子装有5只红球,4只白球;第二只盒子装有4只红球,5只白球.先从第一盒中任取2只球放入第二盒中去,然后从第二盒中任取一只球,求取到白球的概率.解:解法一:(1)随机实验E:从甲袋任取一球放人乙袋(试验),再从乙袋任取一球观察其颜色(试验).试验E是由和合成的.以R表示事件“从甲袋取得的是红球”,以W表示事件“从乙袋取得的是白球”,即有而,在计算时,注意在试验中,乙袋球数为N+M+1只;在求P(W|R)时,乙袋白球数为N,但在求时,乙袋白球数为N +1,故从乙袋取到白球的概率为(2)随机实验E:从第一盒中任取2只球放入第二盒(),再从第二盒任取一球观察其颜色().以(i=0,1,2)表示事件“从第一盒中取得的球中有i只是红球”,以W表示事件“从第二盒取得一球是白球”.由于,,两两互不相容,且,故从而而在试验E2中第二盒球的个数为11,故所以解法二:(1)以A表示事件“最后取到的是白球”,以B表示事件“最后取到的是甲袋中的球”,因于是而又有故(2)以A表示事件“最后取到的是白球”,以B表示事件“最后取到的是甲袋中的球”,因故20.某种产品的商标为“MAXAM”,其中有2个字母脱落,有人捡起随意放回,求放回后仍为“MAXAM”的概率.解:以,,,,依次表示事件“脱落M、M”,“脱落A、A”,“脱落M、A”,“脱落X、A”,“脱落X、M”,以G表示事件“放回后仍为MAXAM”,所需求的是P(G).可知,,,,两两不相容,且.已知而由全概率公式得,放回后仍为“MAXAM”的概率为21.已知男子有5%是色盲患者,女子有0.25%是色盲患者.今从男女人数相等的人群中随机地挑选一人,恰好是色盲者,问此人是男性的概率是多少?解:以A表示事件“选出的是男性”,则表示事件“选出的是女性”,以H 表示事件“选出的人患色盲”,则表示“选出的人不患色盲”.由题设可知所需求的概率是P(A|H),由贝叶斯公式得22.一学生接连参加同一课程的两次考试.第一次及格的概率为p,若第一次及格则第二次及格的概率也为p;若第一次不及格则第二次及格的概率为.(1)若至少有一次及格则他能取得某种资格,求他取得该资格的概率;(2)若已知他第二次已经及格,求他第一次及格的概率.解:E:一学生接连参加一门课程的两次考试.以A i表示事件“第i次考试及格”,i=1,2;以A表示“他能取得某种资格”.(1)按题意,且由已知条件故(2)根据贝叶斯公式可知,在第二次及格的条件下,该人第一次及格的概率为23.将两信息分别编码为A和B传送出去,接收站收到时,A被误收作B 的概率为0.02,而B被误收作A的概率为0.01.信息A与信息B传送的频繁程度为2:1.若接收站收到的信息是A,问原发信息是A的概率是多少?解:以D表示事件“将信息A传递出去”,则表示事件“将信息B传递出去”,以R表示“接收到信息A”,则表示事件“接收到信息B”,按题意需求概率为,已知得由贝叶斯公式得到,在接受到信息A的情况下,原发信息是A的概率为24.有两箱同种类的零件,第一箱装50只,其中10只一等品;第二箱装30只,其中18只一等品.今从两箱中任挑出一箱,然后从该箱中取零件两次,每次任取一只,作不放回抽样.求:(1)第一次取到的零件是一等品的概率;(2)在第一次取到的零件是一等品的条件下,第二次取到的也是一等品的概率.解:以H表示事件“从第一箱中取零件”,则表示事件“从第二箱中取零件”.由已知条件知又以A i表示事件“第i次从箱中(不放回抽样)取得的是一等品”,i=1,2.(1)由条件,故(2)需要求的是.因,而由条件概率的含义,表示在第一箱中取两次,每次取一只零件,作不放回抽样,且两次都取得一等品的概率.因第一箱共有50只零件,其中有10只一等品,故有;同理.故有25.某人下午5:00下班,他所积累的资料表明:某日他抛一枚硬币决定乘地铁还是乘汽车,结果他是5:47到家的,试求他是乘地铁回家的概率.解:以H表示事件“乘地铁回家”,则表示事件“乘汽车回家”.因到家时间为5:47,它属于区间5:45~5:49,以T记“到家时间在5:45~5:49之间”,则需要求的是概率P(H|T).已知,又因他是由掷硬币决定乘地铁还是乘汽车,因此,.由贝叶斯公式得26.病树的主人外出,委托邻居浇水,设已知如果不浇水,树死去的概率为0.8.若浇水则树死去的概率为0.15,有0.9的把握确定邻居会记得浇水.(1)求主人回来树还活着的概率.(2)若主人回来树已死去,求邻居忘记浇水的概率.解:(1)记A为事件“树还活着”,记W为事件“邻居记得给树浇水”,即有(2)根据贝叶斯公式可得,在树已死的条件下,邻居忘记浇水的概率为27.设本题涉及的事件均有意义,A,B都是事件:(1)已知P(A)>0,证明;(2)若P(A|B)=1,证明;(3)若C也是事件,且有P(A|C)≥P(B|C),,证明P(A)≥P(B).证:(1)若P(A)>0,要证,该不等式左边等于P(AB)/P(A),右边等于.因为,,故有(2)由,即.所以(3)由假设,即.同样由就有,即,得或 因为,得P(A)≥P(B).28.有两种花籽,发芽率分别为0.8,0.9,从中各取一颗,设各花籽是否发芽相互独立.求(1)这两颗花籽都能发芽的概率;(2)至少有一颗能发芽的概率;(3)恰有一颗能发芽的概率.解:以A,B分别表示事件第一颗、第二颗花籽能发芽,即有P(A)=0.8,P(B)=0.9.(1)由A,B相互独立,得两颗花籽都能发芽的概率为P(AB)=P(A)P(B)=0.8×0.9=0.72(2)至少有一颗花籽能发芽的概率.即事件的概率为(3)恰有一颗花籽能发芽的概率,即为事件的概率,由第4题(2)得29.根据报导美国人血型的分布近似地为:A型为37%,O型为44%,B 型为13%,AB型为6%.夫妻拥有的血型是相互独立的.(1)B型的人只有输入B、O两种血型才安全.若妻为B型,夫为何种血型未知,求夫是妻的安全输血者的概率;(2)随机地取一对夫妇,求妻为B型夫为A型的概率.(3)随机地取一对夫妇,求其中一人为A型,另一人为B型的概率;(4)随机地取一对夫妇,求其中至少有一人是0型的概率.解:(1)由题意知夫血型应为B、O才为安全输血者.因两种血型互不相容,故所求概率为(2)因夫妻拥有血型相互独立,于是所求概率为(3)所求概率为(4)有三种可能,即夫为O,妻为非O;妻为O,夫为非O;夫妻均为O;所求概率为30.(1)给出事件A、B的例子,使得(i)P(A|B)<P(A);(ii)P(A|B)=P(A);(iii)P(A|B)>P(A).(2)设事件A,B,C相互独立,证明:(i)C与AB相互独立;(ii)C 与相互独立.(3)设事件A的概率P(A)=0,证明对于任意另一事件B,有A,B相互独立.(4)证明事件A,B相互独立的充要条件是.解:(1)举例(i)设试验为将骰子投掷一次,事件A“出现偶数点”,B为“出现奇数点”,则(ii)设试验为将骰子掷一次,A同上,B为“掷出点数≥1”,则P(A|B)=,而P(A)=,故P(A|B)=P(A)(iii)设试验为将骰子掷一次,A同上,B为“掷出点数≥4”,则P(A|B)=2/3,而P(A)=,故P(A|B)>P(A)(2)因A,B,C相互独立,故P(AB)=P(A)P(B),P(BC)=P(B)P(C)P(CA)=P(C)P(A),P(ABC)=P(A)P(B)P(C)。

概率论与数理统计作业习题解答第四版

概率论与数理统计作业习题解答第四版

概率论与数理统计作业习题解答(浙大第四版)第一章概率的基本概念习题解析随机试验、样本空间、第二章第1、 2 题随机试验、样本空间、随机事件------------------------------------------------------------------------------1.写出下列随机试验的样本空间:(1)记录一个小班一次数学考试的平均分数(设以百分制记分)。

(2)生产产品直到有10 件正品为止,记录生产产品的总件数。

(3)对某工厂出厂的产品进行检查,合格的记上“正品”,不合格的记上“次品”,如连续查出2 个次品就停止检查,或检查4 个产品就停止检查,记录检查的结果。

(4)在单位圆内任意取一点,记录它的坐标。

解(1)高该小班有n 个人,每个人数学考试的分数的可能取值为0,1,2,…,100,n 个人分数这和的可能取值为0,1,2,…,100n,平均分数的可能取值为样本空间为S= ? 0 1 100n , ,..., ,则n n n ?k ? k = 0,1, 2,? ,100n ? ?n ? (2)样本空间S={10,11,…},S 中含有可数无限多个样本点。

(3)设1 表示正品,0 有示次品,则样本空间为S={(0,0)(1,0,0)(0,1,0,0)(0,1,0,1)(0,1,1,0)(1,1,,,,,,0,0)(1,0,1,0)(1,0,1,1)(0,1,1,1)(1,1,0,1)(1,1,,,,,,1,0)(1,1,1,1)} ,例如(1,1,0,0)表示第一次与第二次检查到正品,而第三次与第四次检查到次品。

(4)设任取一点的坐标为(x,y),则样本空间为S= ( x, y ) x + y ≤ 1 2 2 { } ------------------------------------------------------------------------------2.设A,B,C 为三个事件,用A,B,C 的运算关系表示下列事件。

概率论与数理统计教程第四版课后答案共41页文档

概率论与数理统计教程第四版课后答案共41页文档
概率论与数理统计教程菊开林耀,青松冠岩列。怀此 贞秀姿 ,卓为 霜下杰 。
13、归去来兮,田蜀将芜胡不归。 14、酒能祛百虑,菊为制颓龄。 15、春蚕收长丝,秋熟靡王税。
谢谢你的阅读
❖ 知识就是财富 ❖ 丰富你的人生
71、既然我已经踏上这条道路,那么,任何东西都不应妨碍我沿着这条路走下去。——康德 72、家庭成为快乐的种子在外也不致成为障碍物但在旅行之际却是夜间的伴侣。——西塞罗 73、坚持意志伟大的事业需要始终不渝的精神。——伏尔泰 74、路漫漫其修道远,吾将上下而求索。——屈原 75、内外相应,言行相称。——韩非

概率论与数理统计教程第四版课后答案

概率论与数理统计教程第四版课后答案
i 1
互不相容的完备事件组: 若 A1 , A2 ,, An 满足
n
Ai ,
i 1

Ai Aj (1 i j n).
3.事件运算的性质
(1). A A, A A , A A ;
(2). AB C AB AC,
(3). A B A B, AB A B.
(3)积事件: A B 或 AB : “二事件 A 与 B 都发生”
n 个事件的积
A1 A2 An

n
A1 A2 An . (简记为 Ai )
i 1
(4)互不相容(互斥)事件: AB : 事件 A 与 B 不能同时发生
若 n 个事件A1 , A2 ,, An 中任意两个事件不可能同时发生,即
1
0.0625
43 16
(3)P(C )

C
1 4

C
2 3

C
1 3
43
9 0.5625
16
13. 某工厂生产的100个产品中,有5个次品,从这批产品中任取一
半来检查,设A表示发现次品不多于1个,求A的概率。

P( A)

C
5
C
49 95
C15000
0.1811
nm !
其中 p q 1 。
6
第一章 随机事件及其概率
一、几种概率
1、统计概率 2、古典概率 3、几何概率
P( A) M N
P(A)
随机事件A所占的几何度量 试验的总的几何度量
4、条件概率
P( A | B) P( AB) P(B)
5、贝努利概率

沈恒范第四概率论与数理统计教材习题答案PPT学习教案

沈恒范第四概率论与数理统计教材习题答案PPT学习教案

断的概率为0.005,求在这段时间内断 纱次数 不大于 10的概 率。

设随机变量X 表示在这段时间内断纱次数,
∴所求概率分布为:
X ~ B 800,0.005 .
10
P0 X 10
C m 800
0.005 m
0.095 800m
m0
∵总的纱锭个数n = 800 较大,
且 p = 0.005 较小,
1个。如果每次取出的废品不再放回去 ,求在 取得合 格品以 前已取出的废品数的概率分布。
解 设在取得合格品以前已取出的废品数 为X, 则X的所 有可
能取的值为:
0、1、2、3, PX 0 3
4
PX 1 1 9 9
4 11 44
PX 2 1 2 9 9
4 11 10 220
PX 3 1 2 1 1 1
xdx
f
X
z
yfY
y dy
2. 平方和的分布
FZ (z) f ( x, y)dxdy
x2 y2 z
3.(独立的随机变量)最大值与最小 值的分 布
n
n
Fmax (z) Fi (z),
i 1
Fmin (z) 1 [1 Fi (z)]
第5页/共58页 i1
6
(二)课后习题略解
2 一批零件中有9个合格品与3个废品 。安装 机器时 从中任 取
x
x
(4) 对 离 散 随 机 变 量 , 右连续的阶梯曲线.
(5) 对连续随机变量,是单调上升的连 续曲线
P( X x) 0.
§2.6 连续型随机变量的概率密度
f
x
lim
Fx
x
Fx
F x

概率论答案_沈恒范版

概率论答案_沈恒范版

2 概率的古典定义·概率加法定理一、电话号码由七个数字组成,每个数字可以是0,1,2,…,9中的任一个数(但第一个数字不能为0),求电话号码是由完全不同的数字组成的概率.解:基本事件总数为611011011011011011019109⨯=C C C C C C C有利事件总数为456789214151617181919⨯⨯⨯⨯⨯=C C C C C C C设A 表示“电话号码是由完全不同的数字组成”,则0605.0109456789)(62≈⨯⨯⨯⨯⨯⨯=A P 二、把十本书任意地放在书架上,求其中指定的三本书放在一起的概率.解:基本事件总数为!101010=A指定的三本书按某确定顺序排在书架上的所有可能为!777=A 种;这三本书按确定的顺序放在书架上的所以可能的位置共818=C 种;这三本书的排列顺序数为!333=A ;故有利事件总数为!3!8!38!7⨯=⨯⨯(亦可理解为)3388P P设A 表示“指定的三本书放在一起”,则067.0151!10!3!8)(≈=⨯=A P四、某工厂生产的产品共有100个,其中有5个次品.从这批产品中任取一半来检查,求发现次品不多于1个的概率.解:设i A 表示“出现的次品为i 件”)5,4,3,2,1,0(=i ,A 表示“取出的产品中次品不多于 1个”,则 .10A A A ⋃=因为V A A =10,所以).()()(10A P A P A P +=而0281.0979942347)(5010050950≈⨯⨯⨯==C C A P 1529.09799447255)(501004995151≈⨯⨯⨯⨯==C C C A P 故 181.01529.00281.0)(=+≈A P六、设41)( ,0 ,31)()()(======BC P P(AC)P(AB)C P B P A P .求A , B , C 至少有一事件发生的 概率.解:因为0==P(AC)P(AB),所以V AC V AB ==,,从而V C AB =)(可推出0)(=ABC P设D 表示“A , B , C 至少有一事件发生”,则C B A D ⋃⋃=,于是有)()()()()()()()()(ABC P CA P BC P AB P C P B P A P C B A P D P +---++=⋃⋃=75.04341313131==-++=三、两台车床加工同样的零件,第一台出现废品的概率是0.03,第二台出现废品的概率是0.02.加工出来的零件放在一起,并且已知第一台加工的零件比第二台加工的零件多一倍.(1)求任意取出的零件是合格品的概率;(2)如果任意取出的零件是废品,求它是第二台车床加工的概率.解:设i A 表示“第i 台机床加工的零件”)2,1(=i ;B 表示“出现废品”;C 表示“出现合格品”(1))()()()()()()()(22112121A C P A P A C P A P C A P C A P C A C A P C P +=+=+=973.0)02.01(31)03.01(32≈-⨯+-⨯= (2)25.002.03103.03202.031)()()()()()()()()(22112222=⨯+⨯⨯=+==A B P A P A B P A P A B P A P B P B A P B A P 射击运动中,一次射击最多能得10环。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档