北师大版初中数学九年级上学期期末考试复习专题测试:反比例函数

合集下载

北师大版九年级上册数学第五章反比例函数复习题及答案

北师大版九年级上册数学第五章反比例函数复习题及答案

xyOA图2九年级数学上第五章反比例函数一、选择题 题号 1 2 3 4 5 6 7 8 9 10 答案1、(2010内蒙呼和浩特)已知:点A (x 1,y 1)、B (x 2,y 2)、C (x 3,y 3)是函数y=-x3图像上的三点,且x 1<0<x 2<x 3则y 1、y 2、y 3的大小关系是( ) A .y 1< y 2< y 3 B. y 2<y 3<y 1 C. y 3<y 2<y 1 D.无法确定2、已知函数1y x=的图象如图所示,当x≥-1时,y 的取值范围是( ) A.y <-1B.y≤-1C. y≤-1或y >0D. y <-1或y≥03、(2010吉林)反比例函数xky =的图象如图所示,则k 的值可能是( ) A .-1B .21C .1D .24、(2010云南曲靖)函数y=kx-k 与y )0(≠=k xk在同一坐标系中的大致图像是( )5、(2010湖北黄石)如图,反比例函数xk=y (k >0)与一次函数b x 21y +=的图象相交于两点A (1x ,1y ),B (2x ,2y ),线段AB 交y 轴与C ,当|1x -2x |=2 且AC = 2BC 时,k 、b 的值分别为( ) A.k =21,b =2 B.k =94,b =1 C.k =13,b =13 D.k =94,b =136、(2010辽宁大连)如图2,反比例函数11k y x=和正比例函数22y k x = 的图像都经过点(1,2)A -,若12y y >,则x 的取值范围是( ) A. 10x -<< B. 11x -<< C. 1x <-或01x << D. 10x -<<或1x >7、(2010 广西玉林、防城港)直线l 与双曲线C 在第一象限相交于A 、B 两点,AOy xB COAB Cxyy =x y1 xOA BC图3D P B y其图象信息如图4所示,则阴影部分(包括边界)横、纵坐标都是整数的点 (俗称格点)有( )A .4个B .5 个C .6个D .8个 8、(2010四川攀枝花)如图,等腰直角三角形ABC 位于第一象限,AB=AC=2, 直角顶点A 在直线y = x 上,其中A 点的横坐标为1,且两条直角边AB 、AC 分 别平行于x 轴、y 轴。

九年级数学上册第六章《反比例函数》测试卷-北师大版(含答案)

九年级数学上册第六章《反比例函数》测试卷-北师大版(含答案)

九年级数学上册第六章《反比例函数》测试卷-北师大版(含答案)(满分 120 分)一、选择题(每题3分,共30分) 1.下列函数中,是反比例函数的是( )A. y = -2xB. y =-12xC. y =11x- D. y =21x 2.已知点 P (-1,4)在反比例函数y = kx(k =0)的图象上,则K 值是( ) A. -14B.14 C. 4 D. -4 3.下列各点中,在函数y = -6x图象上的是( )A. (-2,-4)B.(2,3)C.(-1,6)D.(-12,3)4.反比例函数y =5m x-的图象在第二、四象限内,那么m 的取值范围是( ) A. m <0B. m >0C.m >5D. m <55. 函数4y=-x,当x >0时的图象为下图中的( )6.已知点(1,y 1),B (2,y 2),C (-3,y 3)都在反比例函数y =6x 的图象上,则y 1,y 2 ,y 3;的大小关系是( ) A. y 3<y 1 <y 2; B. y 1<y 2<y 3; C. y 2,y 1,y 3; D. y 3<y 2<y 1;7.关于反比例函数y = 4x的图象,下列说法正确的是( ) A.必经过点(1,1)B.两个分支分布在第二、四象限C.两个分支关于x 轴成轴对称D.两个分支关于原点成中心对称8.三角形的面积为4 c m²,底边上的高y(c m)与底边x(c m)之间的函数关系图象大致应为()9. 函数y= ax与y=αx-a(a≠0)在同一坐标系中的大致图象是()10.如图,函数y1=x-1和函数y2=-2x的图象相交于点M(2,m),N(-1,n),若y1<y2,则x的取值范围是()A.x<-1或0<x<2B.x<-1或x>2C.-1<x<0或0<x<2D.-1<x<0或x>2二、填空题(每题4分,共28分)11.反比例函数y=- 1x的图象在第__________象限,在每个象限内,y随x的增大而________ .12. 反比例函数y= kx过A(-1,4)和B(2,m)两点,则m= ___________________.13.对于函数y= 3x,当x>0时y__________0,这部分图象在第_____________象限.14.完成某项任务可获得500 元报酬,考虑由x人完成这项任务,试写出人均报酬y(元)与人数x(人)之间的函数关系式_________________________________.15.若点P(1,m),P,(2,n)在反比例函数y=kx(k<0)的图象上,则m_____n(填">""<"或"=").16.如图,已知点A在反比例函数图象上,A M⊥x轴于点M,且⊥AO M的面积为1,则反比例函数的解析式为______________________.17.如图,一次函数y= kx+b与反比例函数y=mx的图象交于A(2,1),B(-1,n)两点.连接OA,OB,则三角形OAB 的面积为____________.三、解答题(一)(每题6分,共18 分)18.某打印店要完成一批电脑打字任务,如果每天完成100 页,需8天完成任务.(1)每天完成的页数y与所需天数x之间是什么函数关系?(2)要求4天完成,每天应完成几页?19.已知反比例函数y =kx(k为常数,k≠0)的图象经过A(2,3).(1)求这个函数的解析式;(2)判断点B(-1,6)是否在这个函数的图象上,并说明理由.20.如图,反比例函数y =kx(k为常数,且k≠0)经过点A(1,3).(1)求反比例函数的解析式;(2)在x轴正半轴上有一点B,若⊥AOB 的面积为6,求直线AB的解析式.四、解答题(二)(每题8 分,共24 分)21.码头工人以每天30 吨的速度往一艘轮船上装载货物,装载完毕恰好用了8 天时间.(1)轮船到达目的地后开始卸货,卸货速度ν(单位:吨/天)与卸货时间t(单位:天)之间有怎样的函数关系?(2)由于遇到紧急情况,船上的货物必须在不超过5天内卸载完毕,那么平均每天至少要卸多少吨货物?22.如图,已知A (-4,2),B (n ,-4)是一次函数y =kx +b 的图象与反比例函数y =mx的图象的两个交点. (1)求此反比例函数和一次函数的解析式;(2)根据图象写出使一次函数的值小于反比例函数的值的x 的取值范围.23.如图,已知在平面直角坐标系x O y 中,0是坐标原点,点A (2,5)在反比例函数y =kx的图象上,过点A 的直线y =x +b 交x 轴于点 B. (1)求k 和b 的值; (2)求⊥OAB 的面积;(3)当-3≤x ≤-1时,反比例函数值的范围为_________________.五、解答题(三)(每题10 分,共 20 分) 24.一次函数y =k 1x +b 与反比例函数y =2k x(x <0)的图象相交于A ,B 两点,且与坐标轴的交点为(-6,0),(0,6),点B 的横坐标为-4. (1)试确定反比例函数的解析式;(2)求⊥AOB 的面积; (3)直接写出不等式后k 1x +b>2k x的解.25.对教室进行"薰药消毒".已知药物在燃烧释放过程中,室内空气中每立方米含药量y (毫克)与燃烧时间x (分钟)之间的关系如图所示(即图中线段 OA 和双曲线在 A 点及其右侧的部分),根据图象所示信息,解答下列问题: (1)写出从药物释放开始,y 与x 之间的函数关系式及自变量的取值范围; (2)据测定,当空气中每立方米的含药量低于 2 毫克时,对人体无毒害作用,那么从消毒开始,至少在多长时间内,师生不能进入教室?参考答案一、1.B 2.D 3.C 4.D 5.B 6.D 7.D 8.B 9.A 10. A 二、11.二、四 增大 12. -2 13. > 一 14.500y x= 15. <16. y =-2x 17. 32三、18.解:(1)800y x=,反比例函数 (2)当x =4,800y x== 200(页) 19.解:(1) 6y x= (2)不在,理由如下: 当x = -1,61y =-= -6≠6 ⊥点B(-1,6)不在y =6x 的图象上。

BS北师版 初三九年级数学 上册第一学期秋(期末考试总复习 拔高专题)反比例函数(含中考真题解析)

BS北师版 初三九年级数学 上册第一学期秋(期末考试总复习 拔高专题)反比例函数(含中考真题解析)

反比例函数☞解读考点☞2年中考1.若反比例函数kyx=的图象经过点(2,-6),则k的值为()A.-12 B.12 C.-3 D.3 【答案】A.【解析】试题分析:∵反比例函数kyx=的图象经过点(2,﹣6),∴2(6)12k=⨯-=-,解得k=﹣12.故选A.考点:反比例函数图象上点的坐标特征.2.若点A(a,b)在反比例函数2yx=的图象上,则代数式ab﹣4的值为()A.0 B.﹣2 C.2 D.﹣6 【答案】B.【解析】试题分析:∵点(a,b)反比例函数2yx=上,∴2ba=,即ab=2,∴原式=2﹣4=﹣2.故选B.考点:反比例函数图象上点的坐标特征.3.已知矩形的面积为10,长和宽分别为x和y,则y关于x的函数图象大致是()A.B.C.D.【答案】C.考点:1.反比例函数的应用;2.反比例函数的图象.4.反比例函数1myx=(0x>)的图象与一次函数2y x b=-+的图象交于A,B两点,其中A(1,2),当21y y>时,x的取值范围是()A.x<1 B.1<x<2 C.x>2 D.x<1或x>2【答案】B.【解析】试题分析:根据双曲线关于直线y=x对称易求B(2,1).依题意得:如图所示,当1<x<2时,21y y>.故选B.考点:反比例函数与一次函数的交点问题.5.已知120k k <<,则函数1k y x =和21y k x =-的图象大致是( )A .B .C .D .【答案】C .考点:1.反比例函数的图象;2.一次函数的图象.6.在平面直角坐标系中,点A ,B 的坐标分别为(﹣3,0),(3,0),点P 在反比例函数xy 2=的图象上,若△PAB 为直角三角形,则满足条件的点P 的个数为( ) A .2个 B .4个 C .5个 D .6个 【答案】D . 【解析】试题分析:①当∠PAB=90°时,P 点的横坐标为﹣3,把x=﹣3代入x y 2=得23y =-,所以此时P 点有1个;②当∠APB=90°,设P (x ,2x ),2PA =222(3)()x x ++,2PB =222(3)()x x -+,2AB =2(33)+=36,因为222PA PB AB +=,所以222222(3)()(3)()x x x x +++-+=36,整理得42940x x -+=,所以2x =,或2x =,所以此时P 点有4个;③当∠PBA=90°时,P 点的横坐标为3,把x=3代入x y 2=得23y =,所以此时P 点有1个;综上所述,满足条件的P 点有6个.故选D .考点:1.反比例函数图象上点的坐标特征;2.圆周角定理;3.分类讨论;4.综合题.7.若点(1x ,1y ),(2x ,2y ),(3x ,3y ),都是反比例函数x y 1-=图象上的点,并且1230y y y <<<,则下列各式中正确的是( )A .123x x x <<B .132x x x <<C .213x x x <<D .231x x x <<【答案】D . 【解析】试题分析:由题意得,点(1x ,1y ),(2x ,2y ),(3x ,3y )都是反比例函数x y 1-=上的点, 且1230y y y <<<,则(2x ,2y ),(3x ,3y )位于第三象限,y 随x 的增大而增大,23x x <,(1x ,1y )位于第一象限,1x 最大,故1x 、2x 、3x 的大小关系是231x x x <<.故选D .考点:反比例函数图象上点的坐标特征.8.以正方形ABCD 两条对角线的交点O 为坐标原点,建立如图所示的平面直角坐标系,双曲线3y x =经过点D ,则正方形ABCD 的面积是( )A .10B .11C .12D .13 【答案】C .考点:反比例函数系数k 的几何意义.9.如图,A 、B 是双曲线x ky =上的两点,过A 点作AC ⊥x 轴,交OB 于D 点,垂足为C .若△ADO 的面积为1,D 为OB 的中点,则k 的值为( )A .34B .38C .3D .4【答案】B.考点:1.反比例函数系数k的几何意义;2.相似三角形的判定与性质.10.如图,正方形ABCD位于第一象限,边长为3,点A在直线y=x上,点A的横坐标为1,正方形ABCD的边分别平行于x轴、y轴.若双曲线kyx=与正方形ABCD有公共点,则k的取值范围为()A.1<k<9 B.2≤k≤34 C.1≤k≤16 D.4≤k<16【答案】C.【解析】试题分析:点A在直线y=x上,其中A点的横坐标为1,则把x=1代入y=x解得y=1,则A的坐标是(1,1),∵AB=BC=3,∴C点的坐标是(4,4),∴当双曲线kyx=经过点(1,1)时,k=1;当双曲线kyx=经过点(4,4)时,k=16,因而1≤k≤16.故选C.考点:1.反比例函数与一次函数的交点问题;2.综合题.11.如图,△AOB是直角三角形,∠AOB=90°,OB=2OA,点A在反比例函数1yx=的图象上.若点B在反比例函数kyx=的图象上,则k的值为()A.﹣4 B.4 C.﹣2 D.2【答案】A.考点:1.反比例函数图象上点的坐标特征;2.相似三角形的判定与性质;3.综合题.12.如图,市煤气公司计划在地下修建一个容积为410m3的圆柱形煤气储存室,则储存室的底面积S(单位:m2)与其深度d(单位:m)的函数图象大致是()A .B .C .D .【答案】A .考点:1.反比例函数的应用;2.反比例函数的图象.13.如图,已知点A 是双曲线2y x =在第一象限的分支上的一个动点,连接AO 并延长交另一分支于点B ,过点A 作y 轴的垂线,过点B 作x 轴的垂线,两垂线交于点C ,随着点A 的运动,点C 的位置也随之变化.设点C 的坐标为(m ,n ),则m ,n 满足的关系式为( )A .2n m =-B .2n m =-C .4n m =-D .4n m =-【答案】B . 【解析】试题分析:∵点C 的坐标为(m ,n ),∴点A 的纵坐标是n ,横坐标是:2n ,∴点A 的坐标为(2n ,n ),∵点C 的坐标为(m ,n ),∴点B 的横坐标是m ,纵坐标是:2m ,∴点B的坐标为(m,2m),又∵22n mmn=,∴22mnm n=⋅,∴224m n=,又∵m<0,n>0,∴2mn=-,∴2nm=-,故选B.考点:反比例函数图象上点的坐标特征.14.从2,3,4,5中任意选两个数,记作a和b,那么点(a,b)在函数12yx=图象上的概率是()A.12B.13C.14D.16【答案】D.考点:1.列表法与树状图法;2.反比例函数图象上点的坐标特征.15.如图,在直角坐标系xOy中,点A,B分别在x轴和y轴,34OAOB=.∠AOB的角平分线与OA的垂直平分线交于点C,与AB交于点D,反比例函数kyx=的图象过点C.当以CD为边的正方形的面积为27时,k的值是()A.2 B.3 C.5 D.7【答案】D.考点:1.反比例函数综合题;2.综合题;3.压轴题.16.如图,在平面直角坐标系中,菱形ABCD在第一象限内,边BC与x轴平行,A,B两点的纵坐标分别为3,1.反比例函数3yx=的图象经过A,B两点,则菱形ABCD的面积为()A.2 B.4 C.D.【答案】D.【解析】试题分析:过点A作x轴的垂线,与CB的延长线交于点E,∵A,B两点在反比例函数3 yx =的图象上且纵坐标分别为3,1,∴A,B横坐标分别为1,3,∴AE=2,BE=2,∴AB=,S菱形ABCD=底×高=×2=D.考点:1.菱形的性质;2.反比例函数图象上点的坐标特征;3.综合题.17.在平面直角坐标系中,直线2y x=-+与反比例函数1yx=的图象有唯一公共点,若直线y x b=-+与反比例函数1yx=的图象有2个公共点,则b的取值范围是()A.b>2 B.﹣2<b<2 C.b>2或b<﹣2 D.b<﹣2【答案】C.考点:反比例函数与一次函数的交点问题.18.如图,在x轴的上方,直角∠BOA绕原点O按顺时针方向旋转,若∠BOA的两边分别与函数1yx=-、2yx=的图象交于B、A两点,则∠OAB的大小的变化趋势为()A .逐渐变小B .逐渐变大C .时大时小D .保持不变 【答案】D .考点:1.相似三角形的判定与性质;2.反比例函数图象上点的坐标特征;3.综合题. 19.已知一个正比例函数的图象与一个反比例函数的一个交点坐标为(1,3),则另一个交点坐标是 . 【答案】(﹣1,﹣3). 【解析】 试题分析:∵反比例函数的图象与经过原点的直线的两个交点一定关于原点对称,∴另一个交点的坐标与点(1,3)关于原点对称,∴该点的坐标为(﹣1,﹣3).故答案为:(﹣1,﹣3).考点:反比例函数图象的对称性.20.点(a ﹣1,1y )、(a+1,2y )在反比例函数()0>=k x ky 的图象上,若21y y <,则a的范围是 . 【答案】﹣1<a <1.考点:1.反比例函数图象上点的坐标特征;2.分类讨论.21.如图,点A在双曲线y =0x >)上,点B 在双曲线ky x =(0x >)上(点B在点A 的右侧),且AB ∥x 轴.若四边形OABC 是菱形,且∠AOC=60°,则k= .【答案】 【解析】试题分析:因为点A在双曲线y =0x >)上,设A 点坐标为(a,因为四边形OABC 是菱形,且∠AOC=60°,所以OA=2a ,可得B 点坐标为(3a),可得:k=3a,故答案为:考点:1.菱形的性质;2.反比例函数图象上点的坐标特征;3.综合题.22.如图,以▱ABCO 的顶点O 为原点,边OC 所在直线为x 轴,建立平面直角坐标系,顶点A 、C 的坐标分别是(2,4)、(3,0),过点A 的反比例函数ky x =的图象交BC 于D ,连接AD ,则四边形AOCD 的面积是 .【答案】9.考点:1.平行四边形的性质;2.反比例函数系数k的几何意义;3.综合题;4.压轴题.23.如图,已知点A1,A2,…,An均在直线1y x=-上,点B1,B2,…,Bn均在双曲线1yx=-上,并且满足:A1B1⊥x轴,B1A2⊥y轴,A2B2⊥x轴,B2A3⊥y轴,…,AnBn⊥x轴,BnAn+1⊥y轴,…,记点An的横坐标为an(n为正整数).若11a=-,则a2015= .【答案】2.考点:1.反比例函数图象上点的坐标特征;2.一次函数图象上点的坐标特征;3.规律型;4.综合题.24.如图,过原点O 的直线与反比例函数1y ,2y 的图象在第一象限内分别交于点A ,B ,且A 为OB 的中点,若函数11y x =,则2y 与x 的函数表达式是 .【答案】24y x =.【解析】试题分析:过A 作AC ⊥x 轴于C ,过B 作BD ⊥x 轴于D ,∵点A 在反比例函数11y x =上,∴设A (a ,1a ),∴OC=a ,AC=1a ,∵AC ⊥x 轴,BD ⊥x 轴,∴AC ∥BD ,∴△OAC ∽△OBD ,∴AC OC OA BD OD OB ==,∵A 为OB 的中点,∴12AC OC OA BD OD OB ===,∴BD=2AC=2a ,OD=2OC=2a ,∴B (2a ,2a ),设2k y x =,∴k=224a a ⋅=,∴2y 与x 的函数表达式是:24y x =.故答案为:24y x =.考点:1.反比例函数与一次函数的交点问题;2.综合题;3.压轴题.25.如图,若双曲线ky x =(0k >)与边长为3的等边△AOB (O 为坐标原点)的边OA 、AB 分别交于C 、D 两点,且OC=2BD ,则k 的值为 ..考点:1.反比例函数图象上点的坐标特征;2.等边三角形的性质;3.综合题.26.如图,点1A ,2A 依次在0)y x >的图象上,点1B ,2B 依次在x 轴的正半轴上,若11A OB △,212A B B △均为等边三角形,则点2B 的坐标为 .【答案】(,0).考点:1.反比例函数图象上点的坐标特征;2.等边三角形的性质;3.综合题;4.压轴题.27.(2015南平)如图,在平面直角坐标系xOy中,△OAB的顶点A在x轴正半轴上,OC是△OAB的中线,点B,C在反比例函数3yx=(0x>)的图象上,则△OAB的面积等于.【答案】9 2.考点:1.反比例函数系数k的几何意义;2.综合题.28.(2015烟台)如图,矩形OABC的顶点A、C的坐标分别是(4,0)和(0,2),反比例函数kyx=(x>0)的图象过对角线的交点P并且与AB,BC分别交于D,E两点,连接OD,OE,DE,则△ODE的面积为.【答案】15 4.考点:1.反比例函数系数k的几何意义;2.反比例函数综合题;3.综合题.29.(2015玉林防城港)已知:一次函数210y x=-+的图象与反比例函数kyx=(0k>)的图象相交于A,B两点(A在B的右侧).(1)当A(4,2)时,求反比例函数的解析式及B点的坐标;(2)在(1)的条件下,反比例函数图象的另一支上是否存在一点P,使△PAB是以AB为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由.(3)当A(a,﹣2a+10),B(b,﹣2b+10)时,直线OA与此反比例函数图象的另一支交于另一点C,连接BC交y轴于点D.若52BCBD=,求△ABC的面积.【答案】(1)8yx=,B(1,8);(2)(﹣4,﹣2)、(﹣16,12-);(3)10.【解析】试题分析:(1)把点A 的坐标代入ky x =,就可求出反比例函数的解析式;解一次函数与反比例函数的解析式组成的方程组,就可得到点B 的坐标;(2)①若∠BAP=90°,过点A 作AH ⊥OE 于H ,设AP 与x 轴的交点为M ,如图1,对于y=﹣2x+10,当y=0时,﹣2x+10=0,解得x=5,∴点E (5,0),OE=5.∵A (4,2),∴OH=4,AH=2,∴HE=5﹣4=1.∵AH ⊥OE ,∴∠AHM=∠AHE=90°.又∵∠BAP=90°,∴∠AME+∠AEM=90°,∠AME+∠MAH=90°,∴∠MAH=∠AEM ,∴△AHM ∽△EHA ,∴AH MH EH AH =,∴212MH=,∴MH=4,∴M (0,0),可设直线AP 的解析式为y mx =,则有42m =,解得m=12,∴直线AP 的解析式为12y x=,解方程组128y x y x ⎧=⎪⎪⎨⎪=⎪⎩,得:42x y =⎧⎨=⎩或42x y =-⎧⎨=-⎩,∴点P 的坐标为(﹣4,﹣2).②若∠ABP=90°,同理可得:点P 的坐标为(﹣16,12-).综上所述:符合条件的点P的坐标为(﹣4,﹣2)、(﹣16,12-);(3)过点B作BS⊥y轴于S,过点C作CT⊥y轴于T,连接OB,如图2,则有BS∥CT,∴△CTD∽△BSD,∴CD CTBD BS=.∵52BCBD=,∴32CT CDBS BD==.∵A(a,﹣2a+10),B(b,﹣2b+10),∴C(﹣a,2a﹣考点:1.反比例函数综合题;2.待定系数法求一次函数解析式;3.反比例函数与一次函数的交点问题;4.相似三角形的判定与性质;5.压轴题.【2014年题组】1. (2014年湖南湘潭)如图,A、B两点在双曲线4yx=上,分别经过A、B两点向轴作垂线段,已知S阴影=1,则S1+S2=()A. 3B. 4C. 5D. 6【答案】D.【解析】试题分析:∵点A、B是双曲线4yx=上的点,分别经过A、B两点向x轴、y轴作垂线段,∴根据反比例函数的图象的性质得两个矩形的面积都等于|k|=4,∵S阴影=1,∴S1+S2=4+4﹣1×2=6.故选D.考点:反比例函数系数k的几何意义.2. (2014年吉林长春)如图,在平面直角坐标系中,点A、B均在函数kyx=(k>0,x>0)的图象上,⊙A与x轴相切,⊙B与y轴相切.若点B的坐标为(1,6),⊙A的半径是⊙B的半径的2倍,则点A的坐标为()A. (2,2)B. (2,3)C. (3,2)D.3 4,2⎛⎫ ⎪⎝⎭【答案】C.考点:1.切线的性质;2.曲线上点的坐标与方程的关系.3. (2014年江苏连云港)如图,△ABC的三个顶点分别为A(1,2),B(2,5),C(6,1).若函数ky x =在第一象限内的图像与△ABC 有交点,则k 的取值范围是( )A. 2≤k ≤449B. 6≤k ≤10C. 2≤k ≤6D. 2≤k ≤225【答案】A . .考点:1.反比例函数图象上点的坐标特征;2.待定系数法的应用;23.曲线上点的坐标与方程的关系;一元二次方程根的判别式.4. (2014年江苏盐城)如图,反比例函数ky x =(x <0)的图象经过点A (﹣1,1),过点A 作AB ⊥y 轴,垂足为B ,在y 轴的正半轴上取一点P (0,t ),过点P 作直线OA 的垂线l ,以直线l 为对称轴,点B 经轴对称变换得到的点B′在此反比例函数的图象上,则t 的值是( )B.32C.43 D.【答案】A .【解析】考点:1.反比例函数的综合题;2.曲线上点的坐标与方程的关系;3.等腰直角三角形的性质;4.轴对称的性质;5.方程思想的应用.5. (2014年重庆市B卷)如图,正方形ABCD的顶点B、C在x轴的正半轴上,反比例函数ky(k0)x=≠在第一象限的图象经过顶点A(m,2)和CD边上的点E(n,23),过点E的直线l交x轴于点F,交y轴于点G(0,-2),则点F的坐标是()A、5(,0)4B、7(,0)4C、9(,0)4D、11(,0)4【答案】C.【解析】试题分析:∵A (m ,2),∴正方形ABCD 的边长为2.∵E (n ,23),∴n m 2=+.∵反比例函数ky (k 0)x =≠在第一象限的图象经过A ,E ,∴k 2k 2m 22m m m 12k 3m 23m 2⎧=⇒=⎪⎪−−−−→=⇒=⎨+⎪=⎪+⎩把①代入②① ②.∴n m 23=+=,即点E 的坐标为(3,23).设直线EG 的解析式为y ax b =+,∵G (0,-2),∴283a b a 39b 2b 2⎧⎧+==⎪⎪⇒⎨⎨⎪⎪=-=-⎩⎩.∴直线EG 的解析式为8y x 29=-.令y=0得89x 20x 94-=⇒=.∴点F 的坐标是9,04⎛⎫ ⎪⎝⎭ .故选C . 考点:1.反比例函数和一次函数交点问题;2.待定系数法的应用;3.曲线上点的坐标与方程的关系;4.正方形的性质.6. (2014年广西北海)如图,反比例函数ky x =(x >0)的图象交Rt △OAB 的斜边OA 于点D ,交直角边AB 于点C ,点B 在x 轴上.若△OAC 的面积为5,AD :OD=1:2,则k 的值为【答案】20.考点:1.反比例函数系数k 的几何意义;2.相似三角形的判定和性质. 7. (2014年广西崇左)如图,A (4,0),B (3,3),以AO ,AB 为边作平行四边形OABC ,则经过C 点的反比例函数的解析式为 .【答案】3y x =-.考点:1.平行四边形的性质;2.待定系数法的应用;3.曲线上点的坐标与方程的关系.8. (2014年广西玉林、防城港)如图,OABC 是平行四边形,对角线OB 在轴正半轴上,位于第一象限的点A 和第二象限的点C 分别在双曲线1k y x =和2ky x =的一支上,分别过点A 、C 作x 轴的垂线,垂足分别为M 和N ,则有以下的结论:①12k AM CN k =;②阴影部分面积是()121k k 2+;③当∠AOC=90°时12k k =;④若OABC是菱形,则两双曲线既关于x轴对称,也关于y轴对称.其中正确的结论是(把所有正确的结论的序号都填上).【答案】①④.考点:1.反比例函数综合题;2. 反比例函数的图象和k的几何意义;3.平行四边形、矩形的性质和菱形的性质.9. (2014年湖北荆州)如图,已知点A是双曲线2yx=在第一象限的分支上的一个动点,连结AO并延长交另一分支于点B,以AB为边作等边△ABC,点C在第四象限.随着点A的运动,点C的位置也不断变化,但点C始终在双曲线kyx=(k<0)上运动,则k的值是.【答案】﹣6.考点:1.单动点问题;2.曲线上点的坐标与方程的关系;3. 等边三角形的性质;4.相似三角形的判定和性质;5.锐角三角函数定义;6.特殊角的三角函数值.10. (2014年江苏淮安)如图,点A(1,6)和点M(m,n)都在反比例函数kyx(x>0)的图象上,(1)k的值为;(2)当m=3,求直线AM的解析式;(3)当m>1时,过点M作MP⊥x轴,垂足为P,过点A作AB⊥y轴,垂足为B,试判断直线BP与直线AM的位置关系,并说明理由.【答案】(1)6;(2)y=﹣2x+8;(3)直线BP与直线AM的位置关系为平行,.考点:1.反比例函数综合题;2.待定系数法的应用;3.曲线上点的坐标与方程的关系;4.相似三角形的判定和性质;5.平行的判定.☞考点归纳归纳1:反比例函数的概念基础知识归纳:一般地,函数(k是常数,k0)叫做反比例函数。

北师大版九年级数学上册《6.1反比例函数》同步测试题及答案

北师大版九年级数学上册《6.1反比例函数》同步测试题及答案

北师大版九年级数学上册《6.1反比例函数》同步测试题及答案一、单选题1.下列函数:①y=x−2,②y=3x ,③y=x−1,④y=2x+1,⑤xy=11,⑥y=kx,⑦y=5x2,⑧yx=1.其中y是x的反比例函数的有()A.1个B.2个C.3个D.4个2.下列问题中,两个变量成反比例的是()A.商一定时(不为零),被除数与除数;B.等腰三角形周长一定时,它的腰长与它底边的长;C.一个因数(不为零)不变时,另一个因数与它们的积;D.货物的总价A一定时,货物的单价a与货物的数量x.3.当x=−3时,反比例函数y=−12x的函数值为()A.−14B.4C.−4D.144.下列各点在反比例函数y=−8x的图象上的是()A.(−2,−4)B.(2,4)C.(13,24)D.(−12,16)5.若一个反比例函数的图象经过A(2,−4)、B(m,−2)两点,则m的值为()A.−4B.4C.8D.−86.如果点A(a,−b)在反比例函数y=2x的图象上,则代数式ab−4的值为()A.0B.−2C.2D.−67.已知点A(3,m)和点B(n,2)关于x轴对称,则下列各点不在反比例函数y=mnx的图象上的点是()A.(3,−2)B.(−3,2)C.(−1,−6)D.(−1,6)8.现有A、B两枚均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).用小莉掷A立方体朝上的数字为x、小明掷B立方体朝上的数字为y来确定点P(x,y),那么他们各掷一次所确定的点P落在双曲线y=6x上的概率为()A.19B.23C.118D.16二、填空题9.已知反比例函数y=−8x的图像经过(−2,m),则m=10.已知反比例函数y=8x的图象经过点A(m,−2),则A关于原点对称点A′坐标为.11.已知y与x-2成反比例,且比例系数为k≠0,若x=3时,y=4,则k=.12.已知y−3与x+2成反比例,且x=2时y=7,则当y=1时,x的值为13.已知点A(x1,y1),B(x2,y2)都在反比例函数y=4x的图象上.若x1⋅x2=−2,则y1⋅y2的值为.14.点A(x1,y1),B(x2,y2)在反比例函数y=kx(k≠0)的图象上,若x1+x2=0,则y1+y2=.15.已知点P(a,b)是反比例函数y=1x 图像上异于点(-1,-1)的一个动点,则21+a+21+b=.16.如图,平面直角坐标系中,若反比例函数y=kx(k≠0)的图象过点A和点B,则a的值为.三、解答题17.已知y=(a−2)x a2−a−1,当a为何值时,y为x的正比例函数?当a为何值时,y为x的反比例函数?18.写出下列问题中的函数关系式,并指出其比例系数.(1)当圆锥的体积是150cm³时,它的高ℎ(cm)与底面积S(cm²)的函数关系式;(2)功是常数W时,力F与物体在力的方向上通过的距离s的函数关系式;(3)某实验中学八(2)班同学为校运动会制作小红花1000朵,完成的天数y与该班同学每天制作的数量x 之间的函数关系式;(4)某商场推出分期付款购买电脑的活动,一台电脑售价1.2万元,首期付款4千元后,分x次付清,每次付款相同. 每次的付款数y(元)与付款次数x的函数关系式.19.已知反比例函数y=−12x.(1)说出这个函数的比例系数和自变量的取值范围.(2)求当x=−3时函数的值.(3)求当y=−√3时自变量x的值.20.已知函数y=y1+y2,其中y1与x成正比例,y2与x−3成反比例,当x=2时y=16;当x=4时,y=20.求:(1)y关于x的函数解析式及定义域;(2)当x=5时的函数值.21.已知y−3与x+1成反比例关系,且当x=2时y=1.(1)求y与x的函数表达式.)是否在该函数图象上,并说明理由.(2)试判断点B(3,−1222.在面积为定值的一组矩形中,当矩形的一边长为7.5cm时,它的另一边长为8cm.(1)设矩形相邻的两边长分别为x(cm),y(cm),求y关于x的函数表达式.这个函数是反比例函数吗?如果是,指出比例系数.(2)若其中一个矩形的一条边长为5cm,求这个矩形与之相邻的另一边长.23.服装厂承揽一项生产1600件夏凉小衫的任务,计划用t天完成.(1)写出每天生产夏凉小衫w(件)与生产时间t(天)(t>4)之间的函数关系式;(2)服装厂按计划每天生产100件夏凉小衫,那么需要多少天能够完成任务?(3)由于气温提前升高,商家与服装厂商议调整计划,决定提前6天交货,那么服装厂每天要多做多少件夏凉小衫才能完成任务?参考答案:题号 1 2 3 4 5 6 7 8答案 C D B D B D C A(k≠0),xy=k(k≠0),y=kx−1(k≠0).1.解:反比例的三种形式分别为:y=kx①中x的次数是1,是一次函数,不是反比例函数;②,③是反比例函数;④中分母是x+1,故不是反比例函数;⑤是反比例函数;⑥中没有k≠0,故不是反比例函数;⑦分母是x2,故不是反比例函数;⑧中x的次数是1,是一次函数,不是反比例函数.故有三个是反比例函数.故选C.2.解:A、商一定时(不为零),被除数和除数成正比例关系,故A错误;B、等腰三角形周长一定时,它的腰长与它底边的长成一次函数关系;故B错误;C 、一个因数(不为零)不变时,另一个因数与它们的积成正比例关系;故C 错误;D 、货物的总价A 一定时,货物的单价a 与货物的数量x 成反比例关系;故D 正确. 故选D3.解:当x =−3时 故选:B .4.解:A.当x =−2时y =−8−2=4,故该点不在反比例函数y =−8x图象上;B. 当x =2时y =−82=−4,故该点不在反比例函数y =−8x 图象上; C. 当x =13时y =−813=−24,故该点不在反比例函数y =−8x 图象上;D. 当x =−12时y =−8−12=16,故该点在反比例函数y =−8x 图象上;故选:D .5.解:设反比例函数的表达式为y =kx(k ≠0)∵反比例函数的图象经过A(2,−4)、B(m ,−2)两点 ∵k =2×(−4)=−2m 解得:m =4 故选:B .6.解:∵点A(a ,−b)在反比例函数y =2x 的图象上 ∵−b =2a ∵ab =−2∵ab −4=−2−4=−6 故选D .7.解:∵点A (3,m )和点B (n,2)关于x 轴对称 ∵{m =−2n =3∵反比例函数解析式为y =mn x=−6x∵在反比例函数图象上的点一定满足横纵坐标的乘积为−6 ∵四个选项中只有C 选项符合题意 故选C .8.解:表格列示所有投掷情况如下小明小莉12345611,11,21,31,41,51,622,12,22,32,42,52,633,13,23,33,43,53,644,14,24,34,44,54,655,15,25,35,45,55,666,16,26,36,46,56,6点P若落在y=6x上,则xy=6.如上表,两人掷的组合情况共有6×6=36种,其中满足要求的有4种:2,3;3,2;1,6;6,1,故概率为436=19;故选:A9.解:把(−2,m)代入y=−8x即m=−8−2=4故答案为:4.10.解:∵反比例函数y=8x的图象经过点A(m,−2)∵−2m=8解得m=−4∴A(−4,−2)则A关于原点对称点A′(4,2)故答案为:(4,2).11.解:由题意知k=y(x-2)∵x=3时,y=4∵k=4×(3-2)=4.故答案为:412.解:∵y −3与x +2成反比例 ∵可设:y −3=k x+2(k ≠0)又∵x =2,y =7 ∵7−3=k 2+2解之得:k =16 ∵得:y −3=16x+2,即:y =16x+2+3∵当y =1时得:1=16x+2+3 解之得:x =−10 故答案为:−10.13.解:∵点A (x 1,y 1),B (x 2,y 2)都在反比例函数y =4x 的图象上∴x 1y 1=4,x 2y 2=4 ∴x 1y 1x 2y 2=16且x 1⋅x 2=−2 ∴y 1⋅y 2=−8. 故答案为:−8.14.解:∵点A(x 1,y 1),B(x 2,y 2)在反比例函数y =k x (k ≠0)的图象上 ∵y 1=k x 1,y 2=k x 2∵y 1+y 2=kx 1+kx 2=k(x 1+x 2)x 1x 2.∵x 1+x 2=0 ∵k(x 1+x 2)x 1x 2=0,即y 1+y 2=0.故答案为:0.15.解:∵点P(a,b)是反比例函数y =1x 图象上异于点(−1,−1)的一个动点∴ab =1∴ 21+a +21+b =2(1+b)(1+a)(1+b)+2(1+a)(1+a)(1+b)=2(1+b+1+a)1+b+a+ab=2(2+a+b)2+a+b=2.故答案为2.16.解:依题意,将点A (1,−3)代入y =kx ,得出k =−3∵反比例数解析式为y =−3x当x =−2时y =32即a =32 故答案为:32.17.解:当y 为x 的正比例函数时{a −2≠0a 2−a −1=1解得:a =−1.所以:当a =−1时,y 为x 的正比例函数. 当y 为x 的反比例函数时{a −2≠0a 2−a −1=−1解得:a =0或a =1.所以:当a =0或a =1时,y 为x 的反比例函数. 18.解:(1)∵hS=450,∵ℎ=450S,∵比例系数为450.(2)∵Fs=W ,∵F =W s,∵比例系数为W . (3)∵xy=1000,∵y =1000x,∵比例系数为1000.(4)∵xy=12000-4000,∵y =8000x,∵比例系数为8000.19.(1)解:∵y =−12x∵k =−12,x ≠0;(2)解:把x =−3,代入y =−12x 得:y =−12−3=4; ∵当x =−3时函数的值为:4;(3)解:把y =−√3,代入y =−12x 得:−√3=−12x ,解得:x =4√3;∵当y =−√3时x 的值为:4√3.20.(1)解:∵ y 1与x 成正比例,y 2与x −3成反比例 ∴设y 1=ax(a ≠0)∴y =y 1+y 2=ax +bx −3∵当x =2时y =16;当x =4时∴{2a +b2−3=164a +b4−3=20解得:a =6∴y =6x −4x −3∵x −3≠0 ∴x ≠3∴y =6x −4x −3(x ≠3) (2)解:由(1)可知y =6x −4x−3,则当x =5时y =6×5−45−3=28. 21.(1)解:设y −3=k x+1∵当x =2时y =1 ∵1−3=k2+1 ∵k =−6 ∵y =−6x+1+3; (2)不在;理由如下: 当x =3时y =−63+1+3=32∵B (3,−12)不在该函数图象上.22.(1)解:设矩形的面积为Scm 2,则S =7.5×8=60 即xy =60,y =60x即y 关于x 的函数解析式是y =60x,这个函数是反比例函数,系数为60;(2)解:当x =5时y =60x=12故这个矩形与之相邻的另一边长为12cm . 23.解:(1)根据题意,得wt =1600 所以w =1600t(t >4);(2)当w=100时1600t=100,解得t=16.即服装厂需要16天能够完成任务.(3)当t=16−6=10时w=1600t =160010=160(件).160−100=60(件)即服装厂每天要多做60件夏凉小衫才能完成任务.。

北师大版九年级上数学第五章反比例函数单元测试题

北师大版九年级上数学第五章反比例函数单元测试题

九年级上数学第五章《反比例函数》测试题(一)一、精心选一选,相信自己的判断!(每题2分共20分)1、下列函数中,反比例函数是( )A 、1)1(=-y xB 、11+=x y C 、21xy = D 、x y 31= 2、函数x k y =的图象经过点(-4,6),则下列各点中在xky =图象上的是( )A 、(3,8)B 、(3,-8)C 、(-8,-3)D 、(-4,-6) 3、若y 与-3x 成反比例,x 与z4成正比例,则y 是z 的( ) A 、正比例函数 B 、反比例函数 C 、一次函数 D 、不能确定 4、如果反比例函数xky =的图像经过点(-3,-4),那么函数的图像应在( ) A 、第一、三象限 B 、第一、二象限 C 、第二、四象限 D 、第三、四象限5、在同一坐标系中,函数ky =和3+=kxy 的图像大致是 ()6、正方形ABOC 的边长为2,反比例函数ky x=过点A ,则k 的值是( ) A .2B .2-C .4D .4-7、已知反比例函数的图像经过点(a ,b ),则它的图像一定也经过( ) A 、 (-a ,-b ) B 、 (a ,-b ) C 、 (-a ,b ) D 、 (0,0) 8、如上图,A 为反比例函数xky =图象上一点,AB 垂直x 轴于B 点,若S △AOB =3,则k 的值为( ) A 、6B 、3C 、23D 、不能确定9、若反比例函数22)12(--=m xm y 的图像在第二、四象限,则m 的值是( A 、-1或1 B 、小于21的任意实数 C 、-1 D、不能确定10、在同一直角坐标平面内,如果直线x k y 1=与双曲线xky 2=没有交点,那么1k 和2k 的关系一定是( )A 、1k <0,2k >0B 、1k >0,2k <0C 、1k 、2k 同号D 、1k 、2k 异号二、耐心填一填:(30分) 1、函数1y x a=-,当2x =时没有意义,则a 的值为 2、某物体对地面的压力为定值,物体对地面的压强p (Pa )与受力面积S (㎡)之间的函数关系如图所示.这一函数表达式为p=________3、反比例函数xky =的图像经过(-23,5)点、(a ,-3)及(10,b )点,则k = ,a = ,b = ;4、已知正比例函数kx y =与反比例函数3y x=的图象都过A (m ,1),则m = ,正比例函数与反比例函数的解析式分别是 、 ;5、反比例函数()0>=k xky 在第一象限内的图象如图,点M 是图像上一点,MP 垂直x 轴于点P ,如果 △MOP 的面积为1,那么k 的值是 ;6.在下列函数表达式中,表示y 是x 的反比例函数的有 。

初中数学 北师大版 九年级上学期期末备考压轴题专项习题:反比例函数(含答案)

初中数学 北师大版 九年级上学期期末备考压轴题专项习题:反比例函数(含答案)

数学九年级(北师大版)上学期期末备考压轴题专项习题:反比例函数1.如图,O为坐标原点,点B在x轴的正半轴上,四边形OACB是平行四边形,OA=10,sin∠AOB=,反比例函数y=kx﹣1(k>0)在第一象限内的图象经过点A,与BC交于点F.(1)求反比例函数的表达式;(2)若点F为BC的中点,求△OBF的面积.2.如图,已知一次函数y=kx+b的图象交反比例函数的图象于点A(2,﹣4)和点B(n,﹣2),交x轴于点C.(1)求这两个函数的表达式;(2)求△AOB的面积;(3)请直接写出使一次函数值大于反比例函数值的x的范围.3.如图,A(4,3)是反比例函数y=在第一象限图象上一点,连接OA,过A作AB∥x 轴,截取AB=OA(B在A右侧),连接OB,交反比例函数y=的图象于点P.(1)求反比例函数y=的表达式;(2)求点B的坐标及OB所在直线解析式;(3)求△OAP的面积.4.如图,在平面直角坐标系中,四边形ABCD为正方形,已知点A(﹣6,0)、D(﹣7,3),点B、C在第二象限内.(1)点B的坐标;(2)将正方形ABCD以每秒2个单位的速度沿x轴向右平移t秒,若存在某一时刻t,使在第一象限内点B、D两点的对应点B'、D'正好落在某反比例函数的图象上,请求出此时t的值以及这个反比例函数的解析式;(3)在(2)的情况下,问是否存在y轴上的点P和反比例函数图象上的点Q,使得以P、Q、B'、D'四个点为顶点的四边形是平行四边形?若存在,请直接写出符合题意的点P、Q的坐标;若不存在,请说明理由.5.如图,直线y=x与反比例函数y=(x>0)的图象相交于点D,点A为直线y=x上一点,过点A作AC⊥x轴于点C,交反比例函数y=(x>0)的图象于点B,连接BD.(1)若点B的坐标为(8,2),则k=,点D的坐标为;(2)若AB=2BC,且△OAC的面积为18,求k的值及△ABD的面积.6.如图,已知反比例函数y=与一次函数y=x+b的图象在第一象限相交于点A(1,﹣k+4).(1)试确定这两个函数的表达式;(2)求△AOB的面积;(3)直接写出一次函数值大于反比例函数值的自变量x的取值范围.7.如图,在平面直角坐标系中,△ABC的顶点A在x轴负半轴上,顶点C在x轴正半轴上,顶点B在第一象限,过点B作BD⊥y于点D,A(﹣6,0),C(6,0),tan∠ACB =2,∠BAC=45°(1)则AC=;(2)反比例函数y=的图象经过点B,求k的值;(3)在线段OD上是否存在点P,使以P,B,D为顶点的三角形与以P,O,A为顶点的三角形相似?若存在,请直接写出满足条件的点P的坐标(不用写过程);若不存在,请说明理由.8.“凡此变数中函彼变数者,则此为彼之函数”这是我国著名数学家李善兰给出的“(function)函数”翻译,一次函数、二次函数、反比例函数是初中阶段必须掌握的三大初等函数.(1)已知一次函数y=kx+b与反比例函数相交于A(1,6),B(n,2)两点,求这两个函数的解析式及由坐标系原点O,A,B围成的三角形的面积;(2)已知实数m,n(m<n)在二次函数y=x2+3x﹣4对称轴的同一侧,当m≤x≤n时,y的取值范围为,求出m,n的值;(3)已知直线y=2tx﹣2和抛物线y=(t2﹣1)x2﹣1在y轴左边相交于A,B两点,点C是线段AB的中点,经过C,D(﹣2,0)的直线交y轴于点H(0,h),求h取值范围.9.如图,在平面直角坐标系中,OA⊥OB,AB⊥x轴于点C,点A(,1)在反比例函数y=的图象上.(1)求反比例函数y=的表达式;(2)求△AOB的面积;(3)在坐标轴上是否存在一点P,使得以O、B、P三点为顶点的三角形是等腰三角形若存在,请直接写出所有符合条件的点P的坐标:若不存在,简述你的理由.10.如图,点A(a,b)是双曲线y=(x>0)上的一点,点P是x轴负半轴上的一动点,AC⊥y轴于C点,过A作AD⊥x轴于D点,连接AP交y轴于B点.(1)△P AC的面积是;(2)当a=2,P点的坐标为(﹣2,0)时,求△ACB的面积;(3)当a=2,P点的坐标为(x,0)时,设△ACB的面积为S,试求S与x之间的函数关系.11.直线y=kx+b与反比例函数(x>0)的图象分别交于点A(m,4)和点B(8,n),与坐标轴分别交于点C和点D.(1)求直线AB的解析式;(2)观察图象,当x>0时,直接写出的解集;(3)若点P是x轴上一动点,当△COD与△ADP相似时,求点P的坐标.12.已知一次函数y=kx+b的图象与反比例函数y=的图象交于点A,与x轴交于点B(5,0),若OB=AB,且S=.△OAB(1)求反比例函数与一次函数的表达式;(2)若点P为x轴上一点,△ABP是等腰三角形,求点P的坐标.13.如图,双曲线y=(x>0)经过△AOB的点顶A(2,3),AB∥x轴,OB交双曲线于点C,且OB=3OC(1)求k的值;(2)连接AC,求点C的坐标和△ABC的面积.14.如图,在平面直角坐标系xOy中,菱形ABCD的对角线AC与BD交于点P(﹣1,2),AB⊥x轴于点E,正比例函数y=mx的图象与反比例函数y=的图象相交于A,P两点.(1)求m,n的值与点A的坐标;(2)求证:△CPD∽△AEO;(3)求sin∠CDB的值.15.如图,已知一次函数y=mx﹣4(m≠0)的图象分别交x轴,y轴于A(﹣4,0),B两点,与反比例函数y=(k≠0)的图象在第二象限的交点为C(﹣5,n)(1)分别求一次函数和反比例函数的表达式;(2)点P在该反比例函数的图象上,点Q在x轴上,且P,Q两点在直线AB的同侧,若以B,C,P,Q为顶点的四边形是平行四边形,求满足条件的点P和点Q的坐标.参考答案1.解:(1)如图,过点A 作AH ⊥OB 于H , ∵sin ∠AOB =,OA =10, ∴AH =8,OH =6, ∴A 点坐标为(6,8),代入反比例函数y =kx ﹣1(k >0)可得:k =6×8=48, ∴反比例函数解析式:y =;(2)如图,过点F 作FM ⊥x 轴于M , ∵四边形AOBC 是平行四边形, ∴AO ∥BC ,AO =CB =10, ∴∠AOB =∠FBM , ∵sin ∠AOB =, ∴sin ∠FBM =, ∵点F 为BC 的中点, ∴BF =5,∵AH =8,OH =6, ∴FM =4,BM =3, ∴S △BFM =6,∵F 在反比例函数图象上, ∴S △OFM =24,∴S △OBF =S △OFM ﹣S △BFM =18.2.解:(1)把A(2,﹣4)的坐标代入得:,∴4﹣2m=﹣8,反比例函数的表达式是;把B(n,﹣2)的坐标代入得,解得:n=4,∴B点坐标为(4,﹣2),把A(2,﹣4)、B(4,﹣2)的坐标代入y=kx+b得,解得,∴一次函数表达式为y=x﹣6;(2)当y=0时,x=0+6=6,∴OC=6,∴△AOB的面积=×6×4﹣×6×2=6;(3)由图象知,一次函数值大于反比例函数值的x的范围为0<x<2或x>4.3.解:(1)将点A(4,3)代入y=(k≠0),得:k=12,则反比例函数解析式为y=;(2)如图,过点A作AC⊥x轴于点C,则OC=4、AC=3,∴OA==5,∵AB∥x轴,且AB=OA=5,∴点B的坐标为(9,3);设OB所在直线解析式为y=mx(m≠0),将点B(9,3)代入得m=,∴OB所在直线解析式为y=x;(3)联立解析式:解得:,可得点P坐标为(6,2),过点P作PD⊥x轴,延长DP交AB于点E,连接AP,则点E坐标为(6,3),∴AE=2,PE=1,PD=2,则△OAP的面积=×(2+6)×3﹣×6×2﹣×2×1=5.4.解:(1)如图,过点B、D分别作BH⊥x轴、DG⊥x轴交于点H、G,∵点A(﹣6,0)、D(﹣7,3),∴OA=6,OG=7,DG=3,∴AG=OG﹣OA=1,∵∠DAG+∠BAH=90°,∠DAG+∠GDA=90°,∴∠GDA=∠BAH,又∠DGA=∠AHB=90°,AD=AB,∴△DGA≌△AHB(AAS),∴DG=AH=3,BH=AG=1,∴点B坐标为(﹣3,1);(2)由(1)知,B(﹣3,1),∵D(﹣7,3)∴运动t秒时,点D'(﹣7+2t,3)、B'(﹣3+2t,1),设反比例函数解析式为y=,∵点B',D'在反比例函数图象上,∴k=(﹣7+2t)×3=(﹣3+2t)×1,∴,k=6,∴反比例函数解析式为;(3)存在,理由:由(2)知,点D'(﹣7+2t,3)、B'(﹣3+2t,1),t=,∴D'(2,3)、B'(6,1),由(2)知,反比例函数解析式为y=,设点Q(m,),点P(0,s),以P、Q、B'、D'四个点为顶点的四边形是平行四边形,∴①当PQ与B'D'是对角线时,∴(0+m)=(2+6),(s+)=(3+1),∴m=8,s=,∴Q(8,),P(0,),②当PB'与QD'是对角线时,∴(0+6)=(2+m),(s+1)=(+3),∴m=4,s=,∴Q(4,),P(0,).③当PD'与QB'是对角线时,∴(0+2)=(m+6),(s+3)=(+1),∴m=﹣4,s=﹣,∴Q(﹣4,﹣),P(0,﹣),综上:Q(8,),P(0,)或Q(4,),P(0,)或Q(﹣4,﹣),P(0,﹣).5.解:(1)把B(8,2)代入y=得:k=2×8=16,∴反比例函数的关系式为y=,由题意得:解得:,(舍去)∴点D的坐标为(4,4)故答案为:16,(4,4)(2)过点D作DE⊥OC,DF⊥AC,垂足为E、F,如图所示:∵点A在第一象限y=x上,∴AC=OC,又∵△OAC的面积为18,∴AC=OC=6,∵AB=2BC,∴AB=4,BC=2,∴点B(6,2),代入y=得,k=12;设点D(a,a)代入y=得,a=(a>0)∴D (,),即OE =DE =,∴DF =EC =OC ﹣OE =6﹣,∴△ABD 的面积=AB •DF =×4×(6﹣)=12﹣;因此k 的值为12,∴△ABD 的面积为12﹣.6.解:(1)∵已知反比例函数y =与一次函数y =x +b 的图象在第一象限相交于点A (1,﹣k +4), ∴﹣k +4=k , 解得k =2,故反比例函数的解析式为y =,又知A (1,2)在一次函数y =x +b 的图象上, 故2=1+b , 解得b =1,故一次函数的解析式为y =x +1; (2)由题意得:,解得x =﹣2或1, ∴B (﹣2,﹣1),令y =0,得x +1=0,解得x =﹣1, ∴C (﹣1,0), ∴S △AOB =S △AOC +S △COB =×1×2+×1×1 =1+ =1.5;(3)由图象可知,当一次函数的值大于反比例函数值时,x的取值范围是x>1或﹣2<x <0.7.解:(1)6﹣(﹣6)=12.故答案为:12.(2)过点B作BE⊥x轴,如图1所示.设BE=m,则CE==m,AE==m.∵AE+CE=12,∴m+m=12,∴m=8,∴OE=OC﹣CE=6﹣×8=2.∴点B的坐标为(2,8).(3)∵点B的坐标为(2,8),BD⊥y于点D,∴点D的坐标为(0,8),∴BD=2.∵点A的坐标为(﹣6,0),∴OA=6.设点P的坐标为(0,n)(0<n<8),则OP=n,DP=8﹣n.∵∠AOP=∠BDP=90°,以P,B,D为顶点的三角形与以P,O,A为顶点的三角形相似,∴=或=,即=或=,解得:n=2或n=6,∴在线段OD上存在点P(0,2)或(0,6),使以P,B,D为顶点的三角形与以P,O,A为顶点的三角形相似.8.解:(1)∵A(1,6),B(n,2)在反比例函数的图象上,∴m=6,∴反比例函数的解析式是y=,∴2n=6,解得n=3,∴B(3,2),∵一次函数y=kx+b与反比例函数y=的图象交于A、B两点.∴,解得,∴一次函数解析式为y=﹣2x+8;设直线y=﹣2x+8与x轴相交于点C,C的坐标是(4,0).S△AOB =S△AOC﹣S△BOC=OC|y A|﹣OC|y B)=8;(2)分两种情况讨论:①当m<n<﹣,即m、n在对称轴的左侧时,二次函数y的值随x增大而减小,∵,∴方程组中的第一个方程×n得,n3+3n2﹣4n=12∴(n+2)(n﹣2)(n+3)=0解得n=﹣2或2或﹣3,同理由方程组中的第二个方程×m得m=﹣2或2或3,∵m<n<﹣,∴m=﹣3,n=﹣2;②当﹣<m<n,即m、n在对称轴的右侧时,二次函数y的值随x增大而增大,∵,,方程①×n﹣2×m,得m2n﹣n2m+4(m﹣n)=0,∴(mn+4)(m﹣n)=0,∵m﹣n≠0,∴mn+4=0,m=﹣,将m=﹣代入方程②得,n2+3n﹣4=﹣3n,∴n=﹣3±∵n>﹣n=﹣3+∴m=﹣3﹣<﹣,与上述﹣<m<n矛盾,∴没有满足的m、n.综上,在对称轴的左侧存在实数m、n,当m≤x≤n时,y的取值范围为,此时m=﹣3,n=﹣2;(3)设点A(x1,y1)、B(x2,y2),则x1、x2是方程2tx﹣2=(t2﹣1)x2﹣1即(t2﹣1)x2﹣2tx+1=0,解得x1=,x2=,∴x1+x2=,y1+y2=2tx1﹣2+2tx2﹣2=2t(x1+x2)﹣4=.∵点C是AB的中点,∴点C的坐标为(,)即(,).设直线DC的解析式为y=mx+n,则有,解得.∴直线与y轴的交点纵坐标h=n=.∵点A、B在y轴的左侧,∴x1=<0且x2=<0,解得t<﹣1.设k=2t2+t﹣1,则有h=,k=2(t+)2﹣,∵2>0,∴当t<﹣1时k随着t的增大而减小,∴k>2(﹣1+)2﹣即k>﹣1,对于h=,①当﹣1<k<0时,h<﹣4;②当k>0时,h>0,∴直线与y轴的交点纵坐标h的取值范围是h<﹣4或h>0.9.解:(1)将A(,1)代入y=,得:1=,解得:k=,∴反比例函数的表达式为y=.(2)∵点A的坐标为(,1),AB⊥x轴于点C,∴OC=,AC=1,∴OA==2=2AC,∴∠AOC=30°.∵OA⊥OB,∴∠AOB=90°,∴∠B=∠AOC=30°,∴AB=2OA=4,=AB•OC=×4×=2.∴S△AOB(3)在Rt△AOB中,OA=2,∠AOB=90°,∠ABO=30°,∴OB==2.分三种情况考虑:①当OP=OB时,如图2所示,∵OB=2,∴OP=2,∴点P的坐标为(﹣2,0),(2,0),(0,﹣2),(0,2);②当BP=BO时,如图3,过点B做BD⊥y轴于点D,则OD=BC=AB﹣AC=3,∵BP=BO,∴OP=2OC=2或OP=2OD=6,∴点P的坐标为(2,0),(0,﹣6);③当PO=PB时,如图4所示.若点P在x轴上,∵PO=PB,∠BOP=60°,∴△BOP为等边三角形,∴OP=OB=2,∴点P的坐标为(2,0);若点P在y轴上,设OP=a,则PD=3﹣a,∵PO=PB,∴PB2=PD2+BD2,即a2=(3﹣a)2+12,解得:a=2,∴点P的坐标为(0,﹣2).综上所述:在坐标轴上存在一点P,使得以O、B、P三点为顶点的三角形是等腰三角形,点P的坐标为(﹣2,0),(2,0),(0,﹣2),(0,2),(0,﹣6),(0,﹣2).10.解:(1)∵点A(a,b)是双曲线y=(x>0)上,∴ab=8,∵AC⊥y轴于C点,AD⊥x轴于D点,∴AC=a,AD=b,∴△P AC的面积=AD•AC=ab=4;故答案为:4;(2)∵a=2,∴b=4,∴AC=2,AD=4,A(2,4),设直线AP的解析式为y=kx+b,∴,∴,∴直线AP的解析式为y=x+2,∴B(0,2),∴S=AC•BC==2;△ABC(3)同理直线AP的解析式为y=﹣,∴B(0,﹣),∴BC=4+=∴S=×2×=.11.解:(1)∵点A(m,4)和点B(8,n)在y=图象上,∴m==2,n==1,即A(2,4),B(8,1)把A(2,4),B(8,1)两点代入y=kx+b中得解得:,所以直线AB的解析式为:y=﹣x+5;(2)由图象可得,当x>0时,kx+b>的解集为2<x<8.(3)由(1)得直线AB的解析式为y=﹣x+5,当x=0时,y=5,∴C(0,5),∴OC=5,当y=0时,x=10,∴D点坐标为(10,0)∴OD=10,∴CD==5∵A(2,4),∴AD==4设P点坐标为(a,0),由题可以,点P在点D左侧,则PD=10﹣a 由∠CDO=∠ADP可得①当△COD∽△APD时,,∴,解得a=2,故点P坐标为(2,0)②当△COD∽△P AD时,,∴,解得a=0,即点P的坐标为(0,0)因此,点P的坐标为(2,0)或(0,0)时,△COD与△ADP相似.12.解:(1)如图1,过点A作AD⊥x轴于D,∵B(5,0),∴OB=5,∵S=,△OAB∴×5×AD=,∴AD=3,∵OB=AB,∴AB=5,在Rt△ADB中,BD==4,∴OD=OB+BD=9,∴A(9,3),将点A坐标代入反比例函数y=中得,m=9×3=27,∴反比例函数的解析式为y=,将点A(9,3),B(5,0)代入直线y=kx+b中,,∴,∴直线AB的解析式为y=x﹣;(2)由(1)知,AB=5,∵△ABP是等腰三角形,∴①当AB=PB时,∴PB=5,∴P(0,0)或(10,0),②当AB=AP时,如图2,由(1)知,BD=4,易知,点P与点B关于AD对称,∴DP=BD=4,∴OP=5+4+4=13,∴P(13,0),③当PB=AP时,设P(a,0),∵A(9,3),B(5,0),∴AP2=(9﹣a)2+9,BP2=(5﹣a)2,∴(9﹣a)2+9=(5﹣a)2∴a=,∴P(,0),即:满足条件的点P的坐标为(0,0)或(10,0)或(13,0)或(,0).13.解:(1)把A (2,3)代入y =得:k =2×3=6, 答:k 的值为:6.(2)过点A 、C 、B 分别作AF ⊥x 轴,CD ⊥x 轴,BE ⊥x 轴,垂足为F 、D 、E , ∵A (2,3) ∴OF =2,AF =3, 由△OCD ∽△OBE 得:,∴CD =1,把y =1代入y =得:x =6, ∴C (6,1), ∴OE =18,∴S △OAB =S 梯形OABE ﹣S △OBE =(18+16)×3﹣×18×3=24, ∵OB =3OC , ∴S △ABC =S △AOB ==16.答:点C 的坐标为(6,1),△ABC 的面积为16.14.(1)解:将点P(﹣1,2)代入y=mx,得:2=﹣m,解得:m=﹣2,∴正比例函数解析式为y=﹣2x;将点P(﹣1,2)代入y=,得:2=﹣(n﹣3),解得:n=1,∴反比例函数解析式为y=﹣.联立正、反比例函数解析式成方程组,得:,解得:,,∴点A的坐标为(1,﹣2).(2)证明:∵四边形ABCD是菱形,∴AC⊥BD,AB∥CD,∴∠DCP=∠BAP,即∠DCP=∠OAE.∵AB⊥x轴,∴∠AEO=∠CPD=90°,∴△CPD∽△AEO.(3)解:∵点A的坐标为(1,﹣2),∴AE=2,OE=1,AO==.∵△CPD∽△AEO,∴∠CDP=∠AOE,∴sin∠CDB=sin∠AOE===.15.解:(1)∵点A是一次函数y=mx﹣4的图象上,∴﹣4m﹣4=0,∴m=﹣1,∴一次函数的解析式为y=﹣x﹣4,∵点C(﹣5,n)是直线y=﹣x﹣4上,∴n=﹣(﹣5)﹣4=1,∴C(﹣5,1),∵点C(﹣5,1)是反比例函数y=(k≠0)的图象上,∴k=﹣5×1=﹣5,∴反比例函数的解析式为y=﹣;(2)由(1)知,C(﹣5,1),直线AB的解析式为y=﹣x﹣4,∴B(0,﹣4),设点Q(q,0),P(p,﹣),∵以B,C,P,Q为顶点的四边形是平行四边形,且P,Q两点在直线AB的同侧,∴①当BP与CQ是对角线时,∴BP与CQ互相平分,∴,∴,∴P(﹣1,5),Q(4,0)②当BQ与CP是对角线时,∴BQ与CP互相平分,∴,∴,∴P(﹣1,5),Q(﹣4,0),此时,点C,Q,B,P在同一条线上,不符合题意,舍去,即以B,C,P,Q为顶点的四边形是平行四边形,点P(﹣1,5),点Q(4,0).。

北师大版数学九年级上册期末复习压轴专题:反比例函数综合(四)

北师大版数学九年级上册期末复习压轴专题:反比例函数综合(四)

北师大版数学九年级上期末复习压轴专题:反比例函数综合(四)1.如图,点A 是反比例图数y =(x <0)图象上一点,AC ⊥x 轴于点C ,与反比例函数y =(x <0)图象交于点B ,AB =2BC ,连接OA 、OB ,若△OAB 的面积为2,则m +n =( )A .﹣3B .﹣4C .﹣6D .﹣82.如图,点A ,B 在反比例函数y =﹣(x <0)的图象上,连结OA ,AB ,以OA ,AB 为边作▱OABC ,若点C 恰好落在反比例函数y =(x >0)的图象上,此时▱OABC 的面积是( )A .3B .C .2D .63.如图,是反比例函数y 1=和y 2=(k 1<k 2)在第一象限的图象,直线AB ∥x 轴,并分别交两条曲于A 、B 两点,若S △AOB =3,则k 2﹣k 1的值是( )A.8 B.6 C.4 D.24.如图,曲线C2是双曲线C1:y=(x>0)绕原点O逆时针旋转45°得到的图形,P是曲线C2上任意一点,点A在直线l:y=x上,且PA=PO,则△POA的面积等于()A.B.6 C.3 D.125.如图,A、B是双曲线y=(k>0)上的点,A、B两点的横坐标分别是a、3a,线段AB的延长线交x轴于点C,若S△AOC=3.则k的值为()A.2 B.1.5 C.4 D.66.如图,在平面直角坐标系中,反比例函数y=(k≠0)经过▱ABCD的顶点B、D,点A 的坐标为(0,﹣1),AB∥x轴,CD经过点(0,2),▱ABCD的面积是18,则点D的坐标是()A.(﹣2,2)B.(3,2)C.(﹣3,2)D.(﹣6,1)7.已知:如图四边形OACB是菱形,OB在X轴的正半轴上,sin∠AOB=.反比例函数y =在第一象限图象经过点A,与BC交于点F.S=,则k=()△AOFA.15 B.13 C.12 D.58.正方形ABCD的顶点A(2,2),B(﹣2,2),C(﹣2,﹣2),反比例函数y=与y =﹣的图象均与正方形ABCD的边相交,如图,则图中的阴影部分的面积是()A.2 B.4 C.8 D.69.如图,在平面直角坐标系中,点A在x轴的正半轴上,点B在第一象限,点C在线段AB 上,点D在AB的右侧,△OAB和△BCD都是等腰直角三角形,∠OAB=∠BCD=90°,若函数y=(x>0)的图象经过点D,则△OAB与△BCD的面积之差为()A.12 B.6 C.3 D.210.双曲线与在第一象限内的图象如图所示,作一条平行于y轴的直线分别交双曲线于A、B两点,连接OA、OB,则△AOB的面积为()A.1 B.2 C.3 D.411.如图,反比例函数的图象经过矩形OABC对角线的交点M,分别与AB、BC 相交于点D、E.若四边形ODBE的面积为6,则k的值为()A.1 B.2 C.3 D.412.如图,梯形AOBC的顶点A,C在反比例函数图象上,OA∥BC,上底边OA在直线y=x 上,下底边BC交x轴于E(2,0),则四边形AOEC的面积为()A.3 B.C.﹣1 D.+113.如图所示,正方形ABCD的边长为2,AB∥x轴,AD∥y轴,顶点A在双曲线y=上,边CD,BC分别交双曲线于E,F,线段AB,CD分别交y轴于G,H,且线段AE恰好经过原点,下列结论:=,其中①E是CD中点:②点F坐标为(,);③△AEF是直角三角形;④S△AEF 正确结论的个数是()A.1个B.2个C.3个D.4个14.如图,平面直角坐标系中,O为原点,点A,B分别在y轴、x轴的正半轴上.△AOB的两条外角平分线交于点P,且点P在反比例函数y=的图象上.PA,PB的延长线分别交x轴、y轴于点C,D,连结CD.则△OCD的面积是()A.8 B.8C.16 D.1615.如图,平行四边形AOBC中,对角线交于点E,双曲线y=(k>0)经过A、E两点,若平行四边形AOBC的面积为12,则k的值是()A.2 B.4 C.6 D.816.如图,△AOB的内心在x轴上,顶点A在函数y=(k1>0,x>0)的图象上,顶点B在函数y=(k2<0,x>0)的图象上,若△AOB的面积为4,则k1•k2的值为()A.﹣8 B.﹣12 C.﹣14 D.﹣1617.如图,已知三角形的顶点C在反比例函数y=位于第一象限的图象上,顶点A在x的负半轴上,顶点B在反比例函数y=(k≠0)位于第四象限的图象上,BC边与x轴交于点D,CD=2BD,AC边与y轴交于点E,AE=CE,若△ABD面积为,则k=()A.﹣4 B.﹣C.﹣2D.318.如图:A,B是函数y=的图象上关于原点O点对称的任意两点,AC垂直于x轴于点C,BD垂直于x轴于点D,设四边形ADBC的面积为S,则()A.S=2 B.2<S<4 C.S=4 D.S>419.如图,已知点A(m,m+3),点B(n,n﹣3)是反比例函数y=(k>0)在第一象限的图象上的两点,连接AB.将直线AB向下平移3个单位得到直线l,在直线l上任取一点C,则△ABC的面积为()A.B.6 C.D.920.如图,四边形OABC为平行四边形,A在x轴上,且∠AOC=60°,反比例函数y=(k >0)在第一象限内过点C,且与AB交于点E.若E为AB的中点,且S=8,则OC△OCE的长为()A.8 B.4 C.D.参考答案1.解:设B(a,),A(a,)∵AB=2BC,∴=,∴m=3n,∵△OAB的面积为2,∴根据反比例函数k的几何意义可知:△AOC的面积为﹣,△BOC的面积为﹣,∴△AOB的面积为﹣+=2,∴n﹣m=4,∴n﹣3n=4,∴n=﹣2,∴m=﹣6,∴m+n=﹣8故选:D.2.解:如图,连接AC,BO交于点E,作AG⊥x轴,CF⊥x轴,设点A(a,﹣),点C(m,)(a<0,m>0)∵四边形ABCO是平行四边形∴AC与BO互相平分∴点E()∵点O坐标(0,0)∴点B[(a+m),(﹣)]∵点B在反比例函数y=﹣(x<0)的图象上,∴﹣+=﹣∴a=﹣2m,a=m(不合题意舍去)∴点A(﹣2m,)∴S=()(m+2m)﹣﹣1=△AOC=3∴▱OABC的面积=2×S△AOC故选:A.3.解:由反比例函数比例系数k的几何意义可知,S△BOC=S△AOC=∵S△BOC ﹣S△AOC=S△AOB=3∴﹣=3∴k2﹣k1=6故选:B.4.解:如图,将C2及直线y=x绕点O逆时针旋转45°,则得到双曲线C3,直线l与y轴重合.双曲线C3,的解析式为y=﹣过点P作PB⊥y轴于点B∵PA=PO∴B为OA中点.∴S△PAB =S△POB由反比例函数比例系数k的性质,S△POB=3 ∴△POA的面积是6故选:B.5.解:如图,分别过点A、B作AF⊥y轴于点F,AD⊥x轴于点D,BG⊥y轴于点G,BE⊥x 轴于点E,∵k>0,点A是反比例函数图象上的点,∴S△AOD =S△AOF=|k|,∵A、B两点的横坐标分别是a、3a,∴AD=3BE,∴点B是AC的三等分点,∴DE=2a,CE=a,∴S△AOC =S梯形ACOF﹣S△AOF=(OE+CE+AF)×OF﹣|k|=×5a×﹣|k|=3,解得k=1.5.故选:B.6.解:如图,∵点A的坐标为(0,﹣1),AB∥x轴,反比例函数y=(k≠0)经过▱ABCD 的顶点B,∴点B的坐标为(﹣k,﹣1),即AB=﹣k,又∵点E(0,2),∴AE=2+1=3,又∵平行四边形ABCD的面积是18,∴AB×AE=18,∴﹣k×3=18,∴k=﹣6,∴y=﹣,∵CD经过点(0,2),∴令y=2,可得x=﹣3,∴点D的坐标为(﹣3,2),故选:C.7.解:过点A作AM⊥x轴于点M,如图所示.设OA=a=OB,则在Rt△OAM中,∠AMO=90°,OA=a,sin∠AOB=,∴AM=OA•sin∠AOB=a,OM=a,∴点A的坐标为(a,a).=,∵四边形OACB是菱形,S△AOF∴OB×AM=,即×a×a=39,解得a=±,而a>0,∴a=,即A(,6),∵点A在反比例函数y=的图象上,∴k=×6=15.故选:A.8.解:根据对称性可知,阴影部分的面积=正方形ABCD的面积的=×4×4=8,故选:C.9.解:∵△OAB和△BCD都是等腰直角三角形,∴OA=AB,CD=BC.设OA=a,CD=b,则点D的坐标为(a+b,a﹣b),∵反比例函数y=在第一象限的图象经过点D,∴(a+b)(a﹣b)=a2﹣b2=6,∴△OAB与△BCD的面积之差=a2﹣b2=×6=3.故选:C.10.解:设直线AB与x轴交于点C.∵AB∥y轴,∴AC⊥x轴,BC⊥x轴.∵点A在双曲线y=的图象上,∴△AOC的面积=×5=.点B在双曲线y=的图象上,∴△COB的面积=×3=.∴△AOB的面积=△AOC的面积﹣△COB的面积=﹣=1.故选:A.11.解:由题意得:E、M、D位于反比例函数图象上,则S△OCE =,S△OAD=,过点M作MG⊥y轴于点G,作MN⊥x轴于点N,则S□ONMG=|k|,又∵M为矩形ABCO对角线的交点,则S矩形ABCO=4S□ONMG=4|k|,由于函数图象在第一象限,k>0,则++6=4k,k=2.故选:B.12.解:因为AO∥BC,上底边OA在直线y=x上,则可设BE的解析式为y=x+b,将E(2,0)代入上式得,b=﹣2,BE的解析式为y=x﹣2.把y=1代入y=x﹣2,得x=3,C点坐标为(3,1),则反比例函数解析式为y=,将它与y=x组成方程组得:,解得x=,x=﹣(负值舍去).代入y=x得,y=.A点坐标为(,),OA==,BC==3,∵B(0,﹣2),E(2,0),∴BE=2,∴BE边上的高为,∴梯形AOBC高为:,梯形AOBC面积为:×(3+)×=3+,△OBE的面积为:×2×2=2,则四边形AOEC的面积为3+﹣2=1+.故选:D.13.解:①∵线段AE过原点,且点A、E均在双曲线y=上,∴点A、E关于原点对称,∵正方形ABCD边长为2,∴点A的坐标为(﹣,﹣1),点E的坐标为(,1),∴AG=DH=EH=,∵CD=2,∴CE=DE=1,∴E是CD中点;故①正确;②∵CH=,∴F(,),故②正确;③∵点A的坐标为(﹣,﹣1),点E的坐标为(,1),F(,),∴AE2==5,AF2==,EF2==1,∴AE2+EF2≠AF2,∴△AEF不是直角三角形;故③不正确;=2×2﹣﹣﹣=,④∵S△AEF故④正确;故选:C.14.解:如图,作PM⊥OA于M,PN⊥OB于N,PH⊥AB于H.∴∠PMA=∠PHA=90°,∵∠PAM=∠PAH,PA=PA,∴△PAM≌△PAH(AAS),∴PM=PH,∠APM=∠APH,同理可证:△BPN≌△BPH,∴PH=PN,∠BPN=∠BPH,∴PM=PN,∵∠PMO=∠MON=∠PNO=90°,∴四边形PMON是矩形,∵PM=PN,∴可以假设P(m,m),∵P(m,m)在y=上,∴m2=16,∵m>0,∴m=4,∴P(4,4).设OA=a,OB=b,则AM=AH=4﹣a,BN=BH=4﹣b,∴AB=AH+BH=8﹣a﹣b,∵AB2=OA2+OB2,∴a2+b2=(8﹣a﹣b)2,可得ab=8a+8b﹣32,∴4a+4b﹣16=ab,∵PM∥OC,∴,∴,∴OC=,同法可得OD=,=•OC•DO=•=•=•=16.∴S△COD故选:C.15.解:过A作AD⊥OB于D,过E作EF⊥OB于F,如图,设A(x,y=),B(a,0),∵四边形AOBC为平行四边形,∴AE=BE,∴EF为△BAD的中位线,∴EF=AD=,∴DF=(a﹣x),OF=OD+DF=,∴E(,),∵E点在双曲线上,∴•=k,∴a=3x,∵平行四边形的面积是12,∴AD•OB=12,即•a=12,∴•3x=12,∴k=4.故选:B.16.解:∵△AOB的内心在x轴上,∴∠AOE=∠BOE,∴∠AOC=∠BOD,过作AC⊥y轴于C,BD⊥y轴于D,∴△ACO∽△BDO,∴=,设A(a,b),B(c,d),∴AC=a,OC=b,BD=c,OD=﹣d,∴=,∴bc=﹣ad,∴S△AOB =S梯形ACDB﹣S△AOC﹣S△BDO=(BD+AC)(OC+OD)﹣AC•OC﹣BD•OD=(a+c)(b﹣d)﹣ab+cd=4,∴bc﹣ad=8,∴bc=4,∴c=,d=,∴点B(,),∴•=k2,∴k2•ab=﹣16又∵ab=k1,∴k2•k1=﹣16.故选:D.17.解:如图,过点C,点B分别作x轴的垂线,垂足分别为M,N,则EO∥CM,∴△AEO∽△ACM,∴,设AO=OM=a,OE=b,CM=2b,∴点C的坐标为(a,2b),∵顶点C在反比例函数y=位于第一象限的图象上,∴2ab=4,即ab=2,∵CM∥BN,∴△CMD∽△BND,∴,设DN=m,则MD=2m,BN=b,∴点B的坐标为(a+3m,﹣b),∵顶点B在反比例函数y=(k≠0)位于第四象限的图象上,∴﹣b(a+3m)=k,∵△ABD面积为,∴,即ab+mb=,∴mb=0.5,∴k=﹣b(a+3m)=﹣ab﹣3mb=﹣2﹣1.5=﹣3.5,故选:B.18.解:∵A ,B 是函数y =的图象上关于原点O 对称的任意两点,且AC 垂直于x 轴于点C ,BD 垂直于x 轴于点D ,∴S △AOC =S △BOD =×2=1,假设A 点坐标为(x ,y ),则B 点坐标为(﹣x ,﹣y ),则OC =OD =x ,∴S △AOD =S △AOC =1,S △BOC =S △BOD =1,∴四边形ADBC 面积=S △AOD +S △AOC +S △BOC +S △BOD =4.故选:C .19.解:∵点A (m ,m +3),点B (n ,n ﹣3)在反比例函数y =(k >0)第一象限的图象上,∴k =m (m +3)=n (n ﹣3),即:(m +n )(m ﹣n +3)=0,∵m +n >0,∴m ﹣n +3=0,即:m ﹣n =﹣3,过点A 、B 分别作x 轴、y 轴的平行线相交于点D ,∴BD =x B ﹣x A =n ﹣m =3,AD =y A ﹣y B =m +3﹣(n ﹣3)=m ﹣n +6=3,又∵直线l 是由直线AB 向下平移3个单位得到的,∴平移后点A与点D重合,因此,点D在直线l上,∴S△ACB =S△ADB=AD•BD=,故选:A.20.解:过点C作CD⊥x轴于点D,过点E作EF⊥x轴于点F,如图:∵四边形OABC为平行四边形,∴OC=AB,OC∥AB,∴∠EAF=∠AOC=60°,在Rt△COD中,∵∠DOC=60°,∴∠DOC=30°,设OD=t,则CD=t,OC=AB=2t,在Rt△EAF中,∵∠EAF=60°,AE=AB=t,∴AF=,EF=AF=t,∵点C 与点E 都在反比例函数y =的图象上,∴OD ×CD =OF ×EF ,∴OF ==2t , ∴OA =2t ﹣=t , ∴S 四边形OABC =2S △OCE ,∴t ×t =2×8,∴解得:t =(舍负), ∴OC =.故选:D .。

新北师大版九年级上册反比例函数测试题

新北师大版九年级上册反比例函数测试题

新北师大版九年级上册反 比 例 函 数 测 试 题一、选择题1.下列函数中,y 是x 的反比例函数的是( )(A )y=-x 21 (B )y=-21x(C)y=11 x (D)y=1-x 12.已知y 与x 成正比例,z 与y 成反比例,那么z 与x 之间的关系是( )(A)成正比例 (B )成反比例 (C)有可能成正比例,也有可能成反比例 (D)无法确定3.如图,函数y=k(x+1)与y=1在同一坐标系中,图像只能是下图中的( )4.已知反比例函数y=xk(k ﹤0)的图象上有两点A(1x ,1y ),B(2x ,2y ),且1x ﹤2x ,则1y -2y 的值是( )(A)正数 (B)负数 (C)非正数 (D)不能确定 5.三角形的面积为4c㎡,底边上的高y(㎝)与底边x(㎝)之间的函数关系图象大致应为( )(A) (C) 6.已知反比例函数y=xk的图象经过点(1,2),则函数y=-kx 为( )(A)y=-2x (B)y=-21x (C)y=21x (D)y=2x7.对于反比例函数y=x2,下列说法不正确的是( ) (A)点(-2,-1)在它的图象上 (B)它的图象在弟一、三象限 (C)当x ﹥0时,y 随x 的增大而增大 (D )当x ﹤0时,y 随x 的增大而减少8.已知(-2,1y ),(-1,2y ),(1,3y )在反比例函数y=-x 1的图象上,则下列结论正确的是二、填空题9.某奶粉生产厂要制造一种容积为2升(1升=1立方分米)的圆柱形桶,桶的底面积s 与桶高h 有怎样的函数关系式 10.一水桶的下底面积是盖面积的2倍,如果将其底朝下放在桌上,它对桌面的压强是600Pa,翻过来放,对桌面的压强是11.设有反比例函数y=xk 1,(1x ,1y )、(2x ,2y )为其图象上两点,若 1x ﹤0﹤2x ,1y ﹥2y ,则k 的取值范围12.直线y=kx+b 过一、三、四象限,则函数y=kxb的图象在象限,并且在每一象限内y 随x 的增大而 13.如图所示是三个反比例函数y=x k 1,y=x k2, y=xk 3的图象,由此观察1k 、2k 、3k 的大小关系是(用“﹤”连接)14.若反比例函数的图象经过点(2,-2),(m,1), m=三、解答下列问题15.已知变量y 与(x+1)成反比例,且当x=2时,y=-1,求y 和x 之间的函数关系。

北师大版九年级数学上册期末专题《第六章反比例函数》单元检测试卷(含答案)

北师大版九年级数学上册期末专题《第六章反比例函数》单元检测试卷(含答案)
䁥 䁥
(−xA)•yA=4,
即可得:k=xA•yA=﹣8, 令 x=2,得:m=4; (Ⅱ)当 1≤x≤4 时,y 随 x 的增大而增大,
令 x=1,得:y=﹣8; 令 x=4,得:y=﹣2, 所以﹣8≤y≤﹣2 即为所求.
27.如图,已知反比例函数 y= 的面积为 4.
(k≠0)的图象经过点 A(﹣2,m),过点 A 作 AB⊥x 轴于点 B,且△AOB
(Ⅰ)求 k 和 m 的值; (Ⅱ)设 C(x,y)是该反比例函数图象上一点,当 1≤x≤4 时,求函数值 y 的取值范围.
答案解析部分
一、单选题 1.【答案】C 2.【答案】C 3.【答案】D 4.【答案】A 5.【答案】D 6.【答案】C 7.【答案】C 8.【答案】B 9.【答案】C 10.【答案】C 二、填空题 11.【答案】y=﹣ 12.【答案】m<-2 13.【答案】 答 䁥

其函数图象如图所示; 当 x>4 时,y 的取值范围﹣䁥<y<0;

当 y<1 时,x 的取值范围是 x<﹣2 或 x>0. 故答案为:﹣ <y<0,x<﹣2 或 x>0.
22.【答案】解:(1)|m|﹣2=﹣1 且 m﹣1≠0, 解得:m=±1 且 m≠1, ∴m=﹣1. (2)当 m=﹣1 时,原方程变为 y=﹣ , 当 x=3 时,y=﹣ . 考点:反比例函数的定义. 23.【答案】解:因为过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角 形面积 S 是个定值,S= |k|=2. 所以 S1=2,S2= S1=1,S3= S1= ,S4= S1= ,S5= S1= . 依此类推:Sn 的值为 . 故答案是: . 24.【答案】解:(1)由 y=(m2+2m) m2﹣m﹣1=1 且 m2+2m≠0, 解得 m=2 或 m=﹣1;

北师大版九年级上册数学期末复习:反比例函数综合 压轴题专项练习题(含答案)

北师大版九年级上册数学期末复习:反比例函数综合 压轴题专项练习题(含答案)

北师大版九年级上册数学期末复习:反比例函数综合压轴题专项练习题11.如图,反比例函数y=(x>0)的图象经过矩形OABC对角线的交点M,分别与AB、BC相交于点D、E.(1)证明:△OCE与△OAD面积相等;(2)若CE:EB=1:3,求BD:BA的值;(3)若四边形ODBE面积为6,求反比例函数的解析式.2.如图,A、B两点在反比例函数y=(x>0)的图象上,其中k>0,AC⊥y轴于点C,BD⊥x轴于点D,且AC=1(1)若k=2,则AO的长为,△BOD的面积为;(2)若点B的横坐标为k,且k>1,当AO=AB时,求k的值.3.如图,点A在函数y=(x>0)图象上,过点A作x轴和y轴的平行线分别交函数y=图象于点B、C,直线BC与坐标轴的交点为D、E.当点A在函数y=(x>0)图象上运动时,(1)设点A横坐标为a,则点B的坐标为,点C的坐标为(用含a的字母表示);(2)△ABC的面积是否发生变化?若不变,求出△ABC的面积,若变化,请说明理由;(3)请直接写出BD与CE满足的数量关系.4.如图,△AOB在平面直角坐标系xOy中,反比例函数y1=的图象经过点A,反比例函数y2=的图象经过点B,作直线x=1分别交y1,y2于C,D两点,已知A(2,3),B(3,1).(1)求反比例函数y1,y2的解析式;(2)求△COD的面积.5.如图,在平面直角坐标系中,四边形ABCD为矩形,已知点A(﹣2,0)、B(﹣1,1),=,点C、D在第二象限内.(1)点C的坐标;点D的坐标;(2)将矩形ABCD向右平移m个单位,得到矩形A′B′C′D′,若B′、D′恰好落在反比例函数y=的图象上,求出此时m的值和反比例函数的解析式;(3)在(2)的情况下,问是否存在y轴上的点P和反比例函数图象上的点Q,使得以P、Q、B、D 四个点为顶点的四边形是平行四边形?若存在,请求出符合题意的点Q的坐标;若不存在,请说明理由.6.如图,在平面直角坐标系中,点A(2,m)在正比例函数y=x(x>0)的图象上,反比例函数y=(x>0)的图象经过点A,点P是x轴正半轴上一动点,过点P作x轴的垂线,与正比例函数y=x(x>0)的图象交于点C,点B是线段CP与反比例函数的交点,连接AP、AB.(1)求该反比例函数的表达式;(2)观察图象,请直接写出当x>0时,x≤的解集;(3)若S△ABP=1,求B点坐标;(4)点Q是A点右侧双曲线上一动点,是否存在△APQ为以P为直角顶点的等腰直角三角形?若存在,求出点Q坐标;若不存在,请说明理由.。

北师大版九年级上册数学期末考试试卷及答案

北师大版九年级上册数学期末考试试卷及答案

北师大版九年级上册数学期末考试试题一、单选题1.下列关系式中y 是x 的反比例函数的是()A .5y x=B .k y x=C .25y x =D .3xy =2.如图,三视图正确的是()A .主视图B .左视图C .左视图D .俯视图3.用配方法解方程2250x x --=时,原方程应变形为()A .()216x +=B .()216x -=C .()229x +=D .()229x -=4.反比例函数ky x=的图象如图所示,则k 值可能是()A .-2B .2C .4D .85.已知四边形ABCD 是平行四边形,下列结论:①当AB =BC 时,它是菱形;②当AC ⊥BD 时,它是菱形;③当∠ABC =90°时,它是矩形;④当AC =BD 时,它是正方形,其中错误的有()A .1个B .2个C .3个D .4个6.如图,在△ABC 中,点D 、E 在边AB 上,点F 、G 在边AC 上,且DF ∥EG ∥BC ,AD=DE =EB ,若Δ1ADF S =,则EBCG S =四边形()A .3B .4C .5D .67.若关于x 的方程()()22222280x x x x +++-=有实数根,则22x x +的值为()A .-4B .2C .-4或2D .4或-28.在一只不透明的口袋中放入红球5个,黑球1个,黄球n 个,这些球除颜色不同外,其它无任何差别.搅匀后随机从中摸出一个恰好是黄球的概率为13,则放入口袋中的黄球总数n 是()A .3B .4C .5D .69.如图,O 是矩形ABCD 对角线AC 的中点,M 是AD 的中点,若BC =8,OB =5,则OM 的长为()A .1B .2C .3D .410.如图,将矩形ABCD 沿对角线BD 折叠,点A 落在点E 处,DE 交BC 于点F ,若∠CFD =40°,则∠ABD 的度数为()A .50°B .60°C .70°D .80°二、填空题11.反比例函数ky x=图象上有两点A (-3,4)、B (m ,2),则m =_____.12.为了估计池塘里有多少条鱼,从池塘里捕捞了1000条鱼做上标记,然后放回池塘里,经过一段时间,等有标记的鱼完全混合于鱼群中以后,再捕捞200条,若其中有标记的鱼有10条,则估计池塘里有鱼_____条.13.已知一元二次方程(m -2)m x +3x -4=0,那么m 的值是_____.14.在平面直角坐标系中,△ABC 中点A 的坐标是(2,3),以原点O 为位似中心把△ABC 放大,使放大后的三角形与△ABC 的相似比为3:1,则点A 的对应点A′的坐标为_____.15.若一元二次方程220x -=的两根分别为m 与n ,则m nn m+=_____.16.在矩形ABCD 中,AB =6,BC =8,BD ⊥DE 交AC 的延长线于点E ,则DE =_____.17.如图,在平行四边形ABCD 中,CE ⊥AB 且E 为垂足,如果∠A =125°,则∠BCE =____.三、解答题18.如图,在矩形ABCD 中,对角线BD 的垂直平分线MN 与AD 相交于点M ,与BC 相交于点N ,连接BM ,DN .(1)求证:四边形BMDN 是菱形;(2)若AB =4,AD =8,求菱形BMDN 的面积.19.等腰三角形的三边长分别为a 、b 、c ,若6a =,b 与c 是方程22(31)220x m x m m -+++=的两根,求此三角形的周长.20.如图,一次函数2y kx =+与y 轴交于点A ,与反比例函数my x=的图象相交于B 、C 两点,BD ⊥y 轴交y 轴于点D ,OA =OD ,8ABDS ∆=.(1)求一次函数与反比例函数的表达式;(2)求点C 的坐标,并直接写出不等式2mkx x+>的解集;(3)在所在平面内,存在点E 使以点B 、C 、D 、E 为顶点的四边形为平行四边形,请直接写出所有满足条件的点E 的坐标.21.如图,在四边形ABCD 中,BD 为一条对角线,//AD BC ,2AD BC =,90ABD ∠=︒,E 为AD 的中点,连接BE .(1)求证:四边形BCDE 为菱形;(2)连接AC ,若AC 平分BAD ∠,1BC =,求AC 的长.22.某数学小组为调查实验学校周五放学时学生的回家方式,随机抽取了部分学生进行调查,所有被调查的学生都需从“A :乘坐电动车,B :乘坐普通公交车或地铁,C :乘坐学校的定制公交车,D :乘坐家庭汽车,E :步行或其他”这五种方式中选择最常用的一种,随后该数学小组将所有调查结果整理后绘制成如图不完整的条形统计图和扇形统计图,请结合统计图回答下列问题.(1)本次调查中一共调查了名学生;扇形统计图中,E选项对应的扇形圆心角是度;(2)请补全条形统计图;(3)若甲、乙两名学生放学时从A、B、C三种方式中随机选择一种,请用列表法或画树状图的方法,求出甲、乙两名学生恰好选择同一种交通工具上班的概率.23.如图,在▱ABCD中过点A作AE⊥DC,垂足为E,连接BE,F为BE上一点,且∠AFE=∠D.(1)求证:△ABF∽△BEC;(2)若AD=5,AB=8,sinD=45,求AF的长.24.已知:如图,△ABO与△BCD都是等边三角形,点O为坐标原点,点B、D在x轴上,AO=2,点A、C在一反比例函数图象上.(1)求此反比例函数解析式;(2)求点C的坐标;(3)问:以点A为顶点,且经过点C的抛物线是否经过点(0?请说明理由.25.如图,矩形ABCD中,点E在边CD上,将△BCE沿BE折叠,点C落在AD边上的点F处,过点F作FG∥CD交BE于点G,连接CG.(1)求证:四边形CEFG是菱形;(2)若AB=6,AD=10,求四边形CEFG的面积.26.如图,点A、B在反比例函数kyx的图象上,且点A、B的横坐标分别为a、2a(a>0),AC⊥x轴,垂足为点C,且△AOC的面积为2(1)求该反比例函数的解析式;(2)若点(﹣a,y1),(﹣2a,y2)在该反比例函数的图象上,试比较y1与y2的大小;(3)求△AOB的面积.参考答案1.D 【分析】根据反比例函数的定义:(0)ky k x=≠且k 为比例系数,即可作出判断.【详解】A 、此函数为一次函数,故不符合题意;B 、不一定反比例函数,当k=0时,则y=0,故不符合题意;C 、不是反比例函数,未知数x 的指数不满足反比例函数的定义,故不符合题意;D 、由3xy =得:3y x=,符合反比例函数的定义,故符合题意;故选:D【点睛】本题主要考查了反比例函数的定义,掌握其解析形式是关键,特别注意k 是不为零的常数.2.A 【分析】根据几何体的形状,从三个角度得到其三视图即可.【详解】解:主视图是一个矩形,内部有两条纵向的实线,故选项A 符合题意;左视图是一个矩形,内部有一条纵向的实线,故选项B 、C 不符合题意;俯视图是一个“T ”字,故选项D 不符合题意;故选:A .【点睛】此题主要考查了画三视图的知识,解题的关键是掌握主视图,左视图,俯视图分别是从物体的正面,左面,上面看得到的图形.3.B 【分析】根据配方法解一元二次方程的步骤首先把常数项移到右边,方程两边同时加上一次项系数一半的平方配成完全平方公式.【详解】解:2250x x --=移项得:225x x -=方程两边同时加上一次项系数一半的平方得:22151x x -+=+配方得:()216x -=.故选:B .【点睛】此题考查了配方法解一元二次方程的步骤,解题的关键是熟练掌握配方法解一元二次方程的步骤.配方法的步骤:配方法的一般步骤为:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.4.B 【分析】根据函数所在象限和反比例函数上的点的横纵坐标的积小于4判断.【详解】解:∵反比例函数图象在第一、三象限,∴k >0,∵当图象上的点的横坐标为2时,纵坐标小于2,∴k <4,故选:B .【点睛】本题考查了反比例函数图象上点的坐标特点,反比例函数的图象与性质,比例系数等于在它上面的点的横纵坐标的积,熟练掌握反比例函数的图象与性质是解答本题的关键.5.A 【分析】根据矩形、菱形、正方形的判定可以判断题目中的各个小题的结论是否正确,从而可以解答本题.【详解】解: 四边形ABCD 是平行四边形,A 、当AB BC =时,它是菱形,选项不符合题意,B 、当AC BD ⊥时,它是菱形,选项不符合题意,C 、当90ABC ∠=︒时,它是矩形,选项不符合题意,D 、当AC BD =时,它是矩形,不一定是正方形,选项符合题意,故选:A .【点睛】本题考查正方形、菱形、矩形的判定,解答本题的关键是熟练掌握矩形、菱形、正方形的判定定理.6.C 【分析】利用////DF EG BC ,得到ADF ABC ∆∆∽,ADF AEG ∆∆∽,利用AD DE EB ==,得到13AD AB =,12AD AE =,利用相似三角形的性质,相似三角形的面积比等于相似比的平方,分别求得AEG ∆和ABC ∆的面积,利用ABC AEG EBCG S S S ∆∆=-四边形即可求得结论.【详解】解:AD DE EB == ,∴13AD AB =,12AD AE =.////DF EG BC ,ADF ABC ∴∆∆∽,ADF AEG ∆∆∽.∴2(ADF ABC S AD S AB∆∆=,2(ADF AEG S AD S AE ∆∆=.99ABC ADF S S ∆∆∴==,44AEG ADF S S ∆∆==.945ABC AEG EBCG S S S ∆∆∴=-=-=四边形.故选:C .【点睛】本题主要考查了相似三角形的判定与性质,解题的关键是利用相似三角形的面积比等于相似比的平方,用ABC AEG EBCGS S S ∆∆=-四边形解答.7.B 【分析】设22x x y +=,则原方程可化为2280y y +-=,解得y 的值,即可得到22x x +的值.【详解】解:设22x x y +=,则原方程可化为2280y y +-=,解得:14y =-,22y =,当4y =-时,224x x +=-,即2240x x ++=,△224140=-⨯⨯<,方程无解,当2y =时,222x x +=,即2220x x +-=,△()22412=120=-⨯⨯->,方程有实数根,22x x ∴+的值为2,故选:B .【点睛】本题考查了换元法解一元二次方程,的关键是把22x x +看成一个整体来计算,即换元法思想.8.A 【分析】根据概率公式列出关于n 的分式方程,解方程即可得.【详解】解:根据题意可得51n n ++=13,解得:n =3,经检验n =3是分式方程的解,即放入口袋中的黄球总数n =3,故选:A .【点睛】此题考查概率的求法:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n.9.C 【分析】由O 是矩形ABCD 对角线AC 的中点,可求得AC 的长,然后运用勾股定理求得AB 、CD 的长,又由M 是AD 的中点,可得OM 是△ACD 的中位线,即可解答.【详解】解:∵O 是矩形ABCD 对角线AC 的中点,OB =5,∴AC =2OB =10,∴CD =AB 6,∵M 是AD 的中点,∴OM =12CD =3.故答案为:C .【点睛】本题考查了矩形的性质、直角三角形的性质以及三角形中位线的性质,掌握直角三角形斜边上的中线等于斜边的一半是解题的关键.10.C 【分析】根据矩形的性质和平行线的性质得到∠FDA =40°,根据翻折变换的性质得到∠ADB =∠EDB =20°,根据直角三角形的性质可求出∠ABD 的度数,即可求出答案.【详解】∵四边形ABCD 是矩形,∴AD ∥BC ,∠A =90°,∴∠FDA =∠CFD =40°,由翻折变换的性质得到∠ADB =∠EDB =20°∴∠ABD =70°故选C .【点睛】本题考查平行线的性质、图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.11.6-【分析】由点A 的坐标得到反比例函数的解析式,再把点B 的坐标代入可得m 的值.【详解】解:把(3,4)A -代入ky x =可得3412k =-⨯=-,所以反比例函数的解析式是12y x=-,当2y =时,6m =-.故答案为:6-.【点睛】本题考查反比例函数图象上点的坐标特征,解题的关键是掌握待定系数法求得解析式.12.20000【详解】试题分析:1000÷10200=20000(条).考点:用样本估计总体.13.2-【分析】根据一元二次方程的定义进行计算即可.【详解】解:由题意可得:||2m =且20m -≠,2m ∴=±且2m ≠,2m ∴=-,故答案为:2-.【点睛】本题考查了绝对值,一元二次方程的定义,解题的关键是熟练掌握一元二次方程的定义,即()200ax bx c a ++=≠.14.(6,9)或(6,9)--【分析】根据如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或k -进行解答.【详解】解:以原点O 为位似中心,把ABC ∆放大,使放大后的三角形与ABC ∆的相似比为3:1,则点(2,3)A 的对应点A '的坐标为(6,9)或(6,9)--.故答案为:(6,9)或(6,9)--.【点睛】本题考查了位似变换:位似图形与坐标,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或k -.15.72-【分析】先根据根与系数的关系得m n +=mn=-2,再把原式变形为2()2m n mn mn+-,然后利用整体代入的方法计算.【详解】解:∵一元二次方程220x -=的两根分别为m 与n ,根据根与系数的关系得m n +=,mn=-2,所以原式=()(()2222222722m n mn m n mn mn -⨯-+-+===--.故答案为:72-.16.1207【分析】由勾股定理可求AC 的长,由矩形的性质可得5OD OB ==,由面积法可求DH 的长,通过证明OD DE OH DH =,即可求解.【详解】解:如图:过点D 作DH AC ⊥于H ,6AB = ,8BC =,10AC ∴==,四边形ABCD 是矩形,152AO CO BO DO AC ∴=====, 11··22ADC S AD CD AC DH == ,6810DH ∴⨯=,245DH ∴=,75OH ∴===,∵=90DOH ODH ∠+︒∠,=90DOH E ∠+︒∠,∴ODH E∠=∠90DHO EHD ∠=∠=︒Q ,ODH DEH ∴∆∆∽,∴OD DE OH DH=,∴572455DE =,1207DE ∴=,故答案为:1207.17.35【详解】分析:根据平行四边形的性质和已知,可求出∠B ,再进一步利用直角三角形的性质求解即可.详解:∵AD ∥BC ,∴∠A+∠B=180°,∴∠B=180°-125°=55°,∵CE ⊥AB ,∴在Rt △BCE 中,∠BCE=90°-∠B=90°-55°=35°.故答案为35.点睛:本题主要考查了平行四边形的性质,运用平行四边形对边平行的性质,得到邻角互补的结论,这是运用定义求四边形内角度数的常用方法.18.(1)见解析;(2)菱形BMDN 的面积是20【分析】(1)证△DMO ≌△BNO ,得出OM =ON ,根据对角线互相平分证四边形BMDN 是平行四边形,再根据对角线互相垂直证菱形即可;(2)设BM=x ,根据勾股定理列出方程,求出菱形边长,再用面积公式求解即可.【详解】解:(1)证明:∵四边形ABCD 是矩形,MN 垂直平分BD ,∴AD ∥BC ,∠A =90°,OB =OD ,∴∠MDO =∠NBO ,∠DMO =∠BNO ,∵在△DMO 和△BNO 中,DMO BNO MDO NBO OB OD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△DMO ≌△BNO (AAS )∴OM =ON又∵OB =OD∴四边形BMDN 是平行四边形∵MN 垂直平分BD ,即MN ⊥BD∴平行四边形BMDN 是菱形.(2)解:∵四边形BMDN 是菱形∴MB =MD在Rt △AMB 中,设BM=x ,BM 2=AM 2+AB 2即x 2=(8﹣x )2+42解得:x =5,MD=5∴BN=MD=5∴5420BMDN S BN AB =⨯=⨯=菱形答:菱形BMDN 的面积是20.19.此三角形的周长为16或22.【分析】分两种情况进行讨论分析:①若6a =是三角形的腰,则b 与c 中至少有一边长为6;若6a =是三角形的底边,则b 、c 为腰,即b c =;根据题意,代入方程确定m 的值,然后代入方程求解,确定三边长度,考虑三边关系判定能否构成三角形,然后求周长即可得.【详解】解:①若6a =是三角形的腰,则b 与c 中至少有一边长为6,代入方程得:()226316220m m m -+⨯++=,解得3m =或5m =,∴当3m =时,方程可化为210240x x -+=,解得14x =,26x =,∴三角形三边长分别为4、6、6,周长为:46616++=;当5m =时,方程可化为216600x x -+=,解得16x =,210x =;三角形三边长分别为6、6、10,周长为:106622++=;∴三角形的周长为16或22;②若6a =是三角形的底边,则b 、c 为腰,即b c =,则方程有两个相等的实数根,∴()()22314220m m m ⎡⎤-+-+=⎣⎦,解得1m =,∴原方程可化为2440x x -+=,解得122x x ==,此时,6a =,2b c ==,不能构成三角形,舍去;综上所述,三角形的周长为16或22.【点睛】题目主要考查等腰三角形的定义及一元二次方程的解法,三角形的三边关系等,理解题意,进行分类讨论是解题关键.20.(1)一次函数的解析式为:2y x =+;反比例函数的解析式为:8y x=(2)40x -<<或2x >(3)(6,4)、(-6,-8)、(-2,4)【分析】(1)首先求出点D 的坐标,从而得出AD 的长,由8ABD S ∆=,得出BD 的长,从而得出点B 的坐标,从而解决问题;(2)由(1)可联立方程组28y x y x =+⎧⎪⎨=⎪⎩,解方程组得出点C 的坐标,根据图象可得答案;(3)分当BC 、CD 、BD 为对角线三种情形,分别通过对角互相平分进行求解.(1)解: 点A 是一次函数2y kx =+与y 轴的交点,∴令0x =,则022y k =⨯+=,即(0,2)A 2OA ∴=,又OD OA =Q ,2OD ∴=,(0,2)D ∴-,24AD OD ∴==.BD y ⊥ 轴,∴点B 的纵坐标为2-,8ABD S ∆= ,∴182AD BD ⋅=,∴1482BD ⨯⨯=,4BD ∴=,∴点B 的坐标为(4,2)--,把点(4,2)B --分别代入一次函数2y kx =+与反比例函数my x =,可得:422k -=-+,24m-=-,1k ∴=,8m =,∴一次函数的解析式为:2y x =+,反比例函数的解析式为:8y x =;(2)解:由(1)可联立方程组28y x y x=+⎧⎪⎨=⎪⎩,解这个方程组得:42x y =-⎧⎨=-⎩或24xy =⎧⎨=⎩,点C 在第一象限,故点C 坐标为(2,4),由图象可得当40x -<<或2x >时,2mkx x +>;(3)解:如图,当BC 为对角线时,取对角线的交点为(,)F x y ,根据对角线互相平分,即(,)F x y 为1,BC DE 的中点,(4,2),(2,4),(0.2)B C D --- ,42241,122x y -+-+==-==,设111(,)E x y ,11021,122x y+-+-==,解得:112,4x y =-=,1(2,4)E ∴-;如图,当CD 为对角线时,取对角线的交点为(,)F x y ,根据对角线互相平分,即(,)F x y 为2,CD BE 的中点,(4,2),(2,4),(0.2)B C D --- ,20421,122x y +-====,设222(,)E x y ,22421,122x y --==,解得:116,4x y ==,2(6,4)E ∴;如图,当BD 为对角线时,取对角线的交点为(,)F x y ,根据对角线互相平分,即(,)F x y 为3,BD CE 的中点,(4,2),(2,4),(0.2)B C D --- ,40222,222x y -+--==-==-,设333(,)E x y ,33242,222x y ++-=-=,解得:336,8x y =-=-,3(6,8)E ∴--;∴符合条件的点E 的坐标为:(6,4)、(6,8)--、(2,4)-.【点睛】本题是反比例函数综合题,主要考查了反比例函数图象与一次函数图象交点问题,平行四边形的性质,函数与不等式的关系等知识,解题的关键是运用分类思想来解答.21.(1)见解析;(2)AC =(1)根据2AD BC =,E 为AD 的中点,证得四边形BCDE 是平行四边形,再根据BE=DE 即可证得结论;(2)根据AD ∥BC ,AC 平分BAD ∠,求出AD=2BC=2=2AB ,得到30ADB ∠=︒,60ADC ∠=︒,90ACD ∠=︒,根据Rt ACD ∆求出答案即可.【详解】(1)证明:2AD BC = ,E 为AD 的中点,DE BC ∴=.//AD BC ,∴四边形BCDE 是平行四边形.90ABD ∠=︒ ,AE DE =,BE DE ∴=,则四边形BCDE 是菱形;(2)解:如答图所示,连接AC ,//AD BC ,AC 平分BAD ∠,BAC DAC BCA ∴∠=∠=∠.1AB BC ∴==.22AD BC ∴==,2AD AB ∴=,∴在Rt ABD ∆中,30ADB ∠=︒.30DAC ∴∠=︒,60ADC ∠=︒,90ACD ∠=︒.在Rt ACD ∆中2AD = ,1CD ∴=,∴AC ==.22.(1)200,72;(2)见解析;(3)13.【分析】(1)根据B 的人数以及百分比得到被调查的人数,再根据扇形圆心角的度数=部分占总体的百分比×360°进行计算即可;(2)求出C 组的人数即可补全图形;(3)列表得出所有等可能结果,即可运用概率公式得甲、乙两名学生恰好选择同一种交通工具回家的概率.【详解】解:(1)本次调查的学生人数为6030%200÷=(名),扇形统计图中,B项对应的扇形圆心角是40 36072200︒⨯=︒,故答案为:200;72;(2)C选项的人数为200(20603040)50-+++=(名),补全条形图如下:(3)画树状图如图:共有9个等可能的结果,甲、乙两名学生恰好选择同一种交通工具上班的结果有3个,∴甲、乙两名学生恰好选择同一种交通工具上班的概率为31 93=.【点睛】此题考查了列表法与树状图法、条形统计图、扇形统计图和概率公式,解题的关键是仔细观察统计图并从中整理出解题的有关信息,正确画出树状图.23.(1)证明见解析;(2)【分析】(1)由平行四边形的性质得出AB∥CD,AD∥BC,AD=BC,得出∠D+∠C=180°,∠ABF=∠BEC,证出∠C=∠AFB,即可得出结论;(2)由勾股定理求出BE,由三角函数求出AE,再由相似三角形的性质求出AF的长.【详解】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,AD=BC,∴∠D+∠C=180°,∠ABF=∠BEC,∵∠AFB+∠AFE=180°,∴∠C=∠AFB ,∴△ABF ∽△BEC ;(2)解:∵AE ⊥DC ,AB ∥DC ,∴∠AED=∠BAE=90°,在Rt △ABE 中,根据勾股定理得:=在Rt △ADE 中,AE=AD•sinD=5×45=4,∵BC=AD=5,由(1)得:△ABF ∽△BEC ,∴AF AB BC BE=,即5AF =解得:.24.(1)y =(2)(1C -;(3)是,理由见解析.【分析】(1)首先过点A 、C 分别作AF ⊥OB 于点F ,CE ⊥DB 于点E ,根据AO =2,△ABO 与△BCD 是等边三角形,得出A 点坐标,进而求出反比例函数解析式;(2)首先表示出C 点坐标,进而代入函数解析式求出即可;(3)首先设y =a (x +1)2C 坐标代入得出a 的值,进而将点(0答案.【详解】解:(1)过点A 、C 分别作AF ⊥OB 于点F ,CE ⊥DB 于点E ,∵AO =2,△ABO 与△BCD 是等边三角形,∴OF =1,FAA 的坐标是(-1,把(-1k y x=,得k∴反比例函数的解析式是y =(2)设BE =a ,则CE∴点C 的坐标是(-2-a),把点C 的坐标代入y=2-a a 1,∴点C的坐标是(-1-);(3)过点C的抛物线是经过点(0.理由:设y=a(x+1)2把点C坐标代入得a,∴y(x+1)2当x=0时,代入上式得y=2,∴点C的抛物线是经过点(0,2).【点睛】此题主要考查了反比例函数的综合应用以及图象上点的坐标特点等知识,根据已知表示出C点坐标是解题关键.25.(1)见解析(2)四边形CEFG的面积为20 3.【分析】(1)根据题意和翻折的性质,可以得到△BCE≌△BFE,再根据全等三角形的性质和菱形的判定方法即可证明结论成立;(2)根据题意和勾股定理,可以求得AF的长,进而求得EF和DF的值,从而可以得到四边形CEFG的面积.(1)证明:由题意可得,△BCE≌△BFE,∴∠BEC=∠BEF,FE=CE,∵FG∥CE,∴∠FGE=∠CEB,∴∠FGE=∠FEG,∴FG=FE,∴FG=EC,∴四边形CEFG 是平行四边形,又∵CE=FE ,∴四边形CEFG 是菱形;(2)解:∵矩形ABCD 中,AB=6,AD=10,BC=BF ,∴∠BAF=90°,AD=BC=BF=10,∴AF=8,∴DF=2,设EF=x ,则CE=x ,DE=6-x ,∵∠FDE=90°,∴22+(6-x )2=x 2,解得,x=103,∴CE=103,∴四边形CEFG 的面积是:CE•DF=103×2=203.【点睛】本题考查翻折变化、菱形的性质和判定、矩形的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.26.(1)4y x =(2)y 1<y 2(3)3【分析】(1)由122AOC S xy ∆==,设反比例函数的解析式k y x =,则4k xy ==;(2)由于反比例函数的性质是:在0x <时,y 随x 的增大而减小,2a a ->-,则12y y <;(3)连接AB ,过点B 作BE x ⊥轴,交x 轴于E 点,通过分割面积法AOB AOC BOE ACEB S S S S ∆∆∆=+-梯形求得.(1)解:2AOC S ∆= ,24AOC k S ∆∴==;4y x ∴=;(2)解:0k > ,∴函数y 的值在各自象限内随x 的增大而减小;0a > ,2a a ∴-<-;12y y ∴<;(3)解:连接AB ,过点B 作BE x ⊥轴,2AOC BOE S S ∆∆==,4(,)A a a ∴,2(2,)B a a ;()124232ACEB S a a a a ⎛⎫=+⨯-= ⎪⎝⎭梯形,3AOB AOC BOE ACEB S S S S ∆∆∆∴=+-=梯形.。

新北师版初中数学九年级上册反比例函数期末复习题和解析答案

新北师版初中数学九年级上册反比例函数期末复习题和解析答案

反比例函数☞解读考点☞2年中考【2015年题组】1.(2015崇左)若反比例函数kyx=的图象经过点(2,-6),则k的值为()A.-12 B.12 C.-3 D.3 【答案】A.【解析】试题分析:∵反比例函数kyx=的图象经过点(2,﹣6),∴2(6)12k=⨯-=-,解得k=﹣12.故选A.考点:反比例函数图象上点的坐标特征.2.(2015苏州)若点A (a ,b )在反比例函数2y x =的图象上,则代数式ab ﹣4的值为( )A .0B .﹣2C .2D .﹣6 【答案】B . 【解析】试题分析:∵点(a ,b )反比例函数2y x =上,∴2b a =,即ab=2,∴原式=2﹣4=﹣2.故选B .考点:反比例函数图象上点的坐标特征.3.(2015来宾)已知矩形的面积为10,长和宽分别为x 和y ,则y 关于x 的函数图象大致是( )A. B. C.D .【答案】C .考点:1.反比例函数的应用;2.反比例函数的图象.4.(2015河池)反比例函数1my x =(0x >)的图象与一次函数2y x b =-+的图象交于A ,B两点,其中A (1,2),当21y y >时,x 的取值范围是( )A .x <1B .1<x <2C .x >2D .x <1或x >2 【答案】B .【解析】试题分析:根据双曲线关于直线y=x 对称易求B (2,1).依题意得:如图所示,当1<x <2时,21y y >.故选B .考点:反比例函数与一次函数的交点问题.5.(2015贺州)已知120k k <<,则函数1k y x =和21y k x =-的图象大致是( )A .B .C .D .【答案】C .考点:1.反比例函数的图象;2.一次函数的图象.6.(2015宿迁)在平面直角坐标系中,点A ,B 的坐标分别为(﹣3,0),(3,0),点P 在反比例函数x y 2=的图象上,若△PAB 为直角三角形,则满足条件的点P 的个数为( )A .2个B .4个C .5个D .6个 【答案】D . 【解析】试题分析:①当∠PAB=90°时,P 点的横坐标为﹣3,把x=﹣3代入x y 2=得23y =-,所以此时P 点有1个;②当∠APB=90°,设P (x ,2x ),2PA =222(3)()x x ++,2PB =222(3)()x x -+,2AB =2(33)+=36,因为222PA PB AB +=,所以222222(3)()(3)()x x x x +++-+=36,整理得42940x x -+=,所以2x =2x =,所以此时P 点有4个;③当∠PBA=90°时,P 点的横坐标为3,把x=3代入x y 2=得23y =,所以此时P 点有1个;综上所述,满足条件的P 点有6个.故选D .考点:1.反比例函数图象上点的坐标特征;2.圆周角定理;3.分类讨论;4.综合题.7.(2015自贡)若点(1x ,1y ),(2x ,2y ),(3x ,3y ),都是反比例函数x y 1-=图象上的点,并且1230y y y <<<,则下列各式中正确的是( )A .123x x x << B .132x x x << C .213x x x << D .231x x x <<【答案】D . 【解析】试题分析:由题意得,点(1x ,1y ),(2x ,2y ),(3x ,3y )都是反比例函数x y 1-=上的点,且1230y y y <<<,则(2x ,2y ),(3x ,3y )位于第三象限,y 随x 的增大而增大,23x x <,(1x ,1y )位于第一象限,1x 最大,故1x 、2x 、3x 的大小关系是231x x x <<.故选D .考点:反比例函数图象上点的坐标特征.8.(2015凉山州)以正方形ABCD 两条对角线的交点O 为坐标原点,建立如图所示的平面直角坐标系,双曲线3y x =经过点D ,则正方形ABCD 的面积是( )A .10B .11C .12D .13 【答案】C .考点:反比例函数系数k 的几何意义.9.(2015眉山)如图,A 、B 是双曲线x ky上的两点,过A 点作AC ⊥x 轴,交OB 于D 点,垂足为C .若△ADO 的面积为1,D 为OB 的中点,则k 的值为( )A .34B .38C .3D .4【答案】B .考点:1.反比例函数系数k的几何意义;2.相似三角形的判定与性质.10.(2015内江)如图,正方形ABCD位于第一象限,边长为3,点A在直线y=x上,点A的横坐标为1,正方形ABCD的边分别平行于x轴、y轴.若双曲线kyx=与正方形ABCD有公共点,则k的取值范围为()A.1<k<9 B.2≤k≤34 C.1≤k≤16 D.4≤k<16【答案】C.【解析】试题分析:点A在直线y=x上,其中A点的横坐标为1,则把x=1代入y=x解得y=1,则A的坐标是(1,1),∵AB=BC=3,∴C点的坐标是(4,4),∴当双曲线kyx=经过点(1,1)时,k=1;当双曲线kyx=经过点(4,4)时,k=16,因而1≤k≤16.故选C.考点:1.反比例函数与一次函数的交点问题;2.综合题.11.(2015孝感)如图,△AOB是直角三角形,∠AOB=90°,OB=2OA,点A在反比例函数1yx =的图象上.若点B在反比例函数kyx的图象上,则k的值为()A.﹣4 B.4 C.﹣2 D.2【答案】A.考点:1.反比例函数图象上点的坐标特征;2.相似三角形的判定与性质;3.综合题.12.(2015宜昌)如图,市煤气公司计划在地下修建一个容积为410m3的圆柱形煤气储存室,则储存室的底面积S(单位:m2)与其深度d(单位:m)的函数图象大致是()A .B .C .D .【答案】A .考点:1.反比例函数的应用;2.反比例函数的图象.13.(2015三明)如图,已知点A 是双曲线2y x =在第一象限的分支上的一个动点,连接AO 并延长交另一分支于点B ,过点A 作y 轴的垂线,过点B 作x 轴的垂线,两垂线交于点C ,随着点A 的运动,点C 的位置也随之变化.设点C 的坐标为(m ,n ),则m ,n 满足的关系式为( )A .2n m =-B .2n m =-C .4n m =-D .4n m =-【答案】B . 【解析】试题分析:∵点C 的坐标为(m ,n ),∴点A 的纵坐标是n ,横坐标是:2n ,∴点A 的坐标为(2n ,n ),∵点C 的坐标为(m ,n ),∴点B 的横坐标是m ,纵坐标是:2m ,∴点B 的坐标为(m ,2m ),又∵22n mmn=,∴22mnm n=⋅,∴224m n=,又∵m<0,n>0,∴2mn=-,∴2nm=-,故选B.考点:反比例函数图象上点的坐标特征.14.(2015株洲)从2,3,4,5中任意选两个数,记作a和b,那么点(a,b)在函数12yx=图象上的概率是()A.12 B.13 C.14 D.16【答案】D.考点:1.列表法与树状图法;2.反比例函数图象上点的坐标特征.15.(2015乌鲁木齐)如图,在直角坐标系xOy中,点A,B分别在x轴和y轴,34OAOB=.∠AOB的角平分线与OA的垂直平分线交于点C,与AB交于点D,反比例函数kyx=的图象过点C.当以CD为边的正方形的面积为27时,k的值是()A.2 B.3 C.5 D.7【答案】D.考点:1.反比例函数综合题;2.综合题;3.压轴题.16.(2015重庆市)如图,在平面直角坐标系中,菱形ABCD在第一象限内,边BC与x轴平行,A,B两点的纵坐标分别为3,1.反比例函数3yx的图象经过A,B两点,则菱形ABCD的面积为()A.2 B.4 C. D.【答案】D.【解析】试题分析:过点A作x轴的垂线,与CB的延长线交于点E,∵A,B两点在反比例函数3yx =的图象上且纵坐标分别为3,1,∴A,B横坐标分别为1,3,∴AE=2,BE=2,∴AB=,S菱形ABCD=底×高=2=,故选D.考点:1.菱形的性质;2.反比例函数图象上点的坐标特征;3.综合题.17.(2015临沂)在平面直角坐标系中,直线2y x=-+与反比例函数1yx=的图象有唯一公共点,若直线y x b=-+与反比例函数1yx=的图象有2个公共点,则b的取值范围是()A.b>2 B.﹣2<b<2 C.b>2或b<﹣2 D.b<﹣2【答案】C.考点:反比例函数与一次函数的交点问题.18.(2015滨州)如图,在x轴的上方,直角∠BOA绕原点O按顺时针方向旋转,若∠BOA的两边分别与函数1yx=-、2yx=的图象交于B、A两点,则∠OAB的大小的变化趋势为()A.逐渐变小 B.逐渐变大 C.时大时小 D.保持不变【答案】D.考点:1.相似三角形的判定与性质;2.反比例函数图象上点的坐标特征;3.综合题.19.(2015扬州)已知一个正比例函数的图象与一个反比例函数的一个交点坐标为(1,3),则另一个交点坐标是.【答案】(﹣1,﹣3).【解析】试题分析:∵反比例函数的图象与经过原点的直线的两个交点一定关于原点对称,∴另一个交点的坐标与点(1,3)关于原点对称,∴该点的坐标为(﹣1,﹣3).故答案为:(﹣1,﹣3). 考点:反比例函数图象的对称性.20.(2015泰州)点(a ﹣1,1y )、(a+1,2y )在反比例函数()0>=k x ky 的图象上,若21y y <,则a 的范围是 . 【答案】﹣1<a <1.考点:1.反比例函数图象上点的坐标特征;2.分类讨论.21.(2015南宁)如图,点A在双曲线y =0x >)上,点B 在双曲线ky x =(0x >)上(点B 在点A 的右侧),且AB ∥x 轴.若四边形OABC 是菱形,且∠AOC=60°,则k= .【答案】. 【解析】试题分析:因为点A在双曲线y =(0x >)上,设A 点坐标为(a),因为四边形OABC 是菱形,且∠AOC=60°,所以OA=2a ,可得B 点坐标为(3a),可得:k=3a故答案为:.考点:1.菱形的性质;2.反比例函数图象上点的坐标特征;3.综合题.22.(2015桂林)如图,以▱ABCO的顶点O为原点,边OC所在直线为x轴,建立平面直角坐标系,顶点A、C的坐标分别是(2,4)、(3,0),过点A的反比例函数kyx=的图象交BC于D,连接AD,则四边形AOCD的面积是.【答案】9.考点:1.平行四边形的性质;2.反比例函数系数k的几何意义;3.综合题;4.压轴题.23.(2015贵港)如图,已知点A1,A2,…,An均在直线1y x=-上,点B1,B2,…,Bn均在双曲线1yx=-上,并且满足:A1B1⊥x轴,B1A2⊥y轴,A2B2⊥x轴,B2A3⊥y轴,…,AnBn⊥x轴,BnAn+1⊥y轴,…,记点An的横坐标为an(n为正整数).若11a=-,则a2015= .【答案】2.考点:1.反比例函数图象上点的坐标特征;2.一次函数图象上点的坐标特征;3.规律型;4.综合题.24.(2015南京)如图,过原点O 的直线与反比例函数1y ,2y 的图象在第一象限内分别交于点A ,B ,且A 为OB 的中点,若函数11y x =,则2y 与x 的函数表达式是 .【答案】24y x =.【解析】试题分析:过A 作AC ⊥x 轴于C ,过B 作BD ⊥x 轴于D ,∵点A 在反比例函数11y x =上,∴设A(a ,1a ),∴OC=a ,AC=1a ,∵AC ⊥x 轴,BD ⊥x 轴,∴AC ∥BD ,∴△OAC ∽△OBD ,∴AC OC OABD OD OB ==,∵A 为OB 的中点,∴12AC OC OA BD OD OB ===,∴BD=2AC=2a ,OD=2OC=2a ,∴B (2a ,2a ),设2ky x =,∴k=224a a ⋅=,∴2y 与x 的函数表达式是:24y x =.故答案为:24y x =.考点:1.反比例函数与一次函数的交点问题;2.综合题;3.压轴题.25.(2015攀枝花)如图,若双曲线ky x =(0k >)与边长为3的等边△AOB (O 为坐标原点)的边OA 、AB 分别交于C 、D 两点,且OC=2BD ,则k 的值为 ..考点:1.反比例函数图象上点的坐标特征;2.等边三角形的性质;3.综合题.26.(2015荆门)如图,点1A ,2A 依次在0)y x >的图象上,点1B ,2B 依次在x 轴的正半轴上,若11A OB △,212A B B △均为等边三角形,则点2B 的坐标为 .【答案】(,0).考点:1.反比例函数图象上点的坐标特征;2.等边三角形的性质;3.综合题;4.压轴题.27.(2015南平)如图,在平面直角坐标系xOy中,△OAB的顶点A在x轴正半轴上,OC是△OAB的中线,点B,C在反比例函数3yx=(0x>)的图象上,则△OAB的面积等于.【答案】9 2.考点:1.反比例函数系数k的几何意义;2.综合题.28.(2015烟台)如图,矩形OABC的顶点A、C的坐标分别是(4,0)和(0,2),反比例函数k yx(x>0)的图象过对角线的交点P并且与AB,BC分别交于D,E两点,连接OD,OE,DE,则△ODE的面积为.【答案】15 4.考点:1.反比例函数系数k的几何意义;2.反比例函数综合题;3.综合题.29.(2015玉林防城港)已知:一次函数210y x=-+的图象与反比例函数kyx=(0k>)的图象相交于A,B两点(A在B的右侧).(1)当A(4,2)时,求反比例函数的解析式及B点的坐标;(2)在(1)的条件下,反比例函数图象的另一支上是否存在一点P,使△PAB是以AB为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由.(3)当A(a,﹣2a+10),B(b,﹣2b+10)时,直线OA与此反比例函数图象的另一支交于另一点C,连接BC交y轴于点D.若52BCBD=,求△ABC的面积.【答案】(1)8yx=,B(1,8);(2)(﹣4,﹣2)、(﹣16,12-);(3)10.【解析】试题分析:(1)把点A的坐标代入kyx=,就可求出反比例函数的解析式;解一次函数与反比例函数的解析式组成的方程组,就可得到点B的坐标;(2)①若∠BAP=90°,过点A作AH⊥OE于H,设AP与x轴的交点为M,如图1,对于y=﹣2x+10,当y=0时,﹣2x+10=0,解得x=5,∴点E(5,0),OE=5.∵A(4,2),∴OH=4,AH=2,∴HE=5﹣4=1.∵AH⊥OE,∴∠AHM=∠AHE=90°.又∵∠BAP=90°,∴∠AME+∠AEM=90°,∠AME+∠MAH=90°,∴∠MAH=∠AEM,∴△AHM∽△EHA,∴AH MHEH AH=,∴212MH=,∴MH=4,∴M(0,0),可设直线AP的解析式为y mx=,则有42m=,解得m=12,∴直线AP的解析式为12y x=,解方程组128y xyx⎧=⎪⎪⎨⎪=⎪⎩,得:42xy=⎧⎨=⎩或42xy=-⎧⎨=-⎩,∴点P的坐标为(﹣4,﹣2).②若∠ABP=90°,同理可得:点P的坐标为(﹣16,12-).综上所述:符合条件的点P的坐标为(﹣4,﹣2)、(﹣16,12-);(3)过点B作BS⊥y轴于S,过点C作CT⊥y轴于T,连接OB,如图2,则有BS∥CT,∴△CTD∽△BSD,∴CD CTBD BS=.∵52BCBD=,∴32CT CDBS BD==.∵A(a,﹣2a+10),B(b,﹣2b+10),∴C(﹣a,2a﹣考点:1.反比例函数综合题;2.待定系数法求一次函数解析式;3.反比例函数与一次函数的交点问题;4.相似三角形的判定与性质;5.压轴题.【2014年题组】1. (2014年湖南湘潭)如图,A、B两点在双曲线4yx=上,分别经过A、B两点向轴作垂线段,已知S阴影=1,则S1+S2=()A. 3B. 4C. 5D. 6【答案】D.【解析】试题分析:∵点A、B是双曲线4yx=上的点,分别经过A、B两点向x轴、y轴作垂线段,∴根据反比例函数的图象的性质得两个矩形的面积都等于|k|=4,∵S阴影=1,∴S1+S2=4+4﹣1×2=6.故选D.考点:反比例函数系数k的几何意义.2. (2014年吉林长春)如图,在平面直角坐标系中,点A、B均在函数kyx=(k>0,x>0)的图象上,⊙A与x轴相切,⊙B与y轴相切.若点B的坐标为(1,6),⊙A的半径是⊙B的半径的2倍,则点A的坐标为()A. (2,2)B. (2,3)C. (3,2)D.3 4,2⎛⎫ ⎪⎝⎭【答案】C.考点:1.切线的性质;2.曲线上点的坐标与方程的关系.3. (2014年江苏连云港)如图,△ABC 的三个顶点分别为A (1,2),B (2,5),C (6,1).若函数ky x在第一象限内的图像与△ABC 有交点,则k 的取值范围是( )A. 2≤k ≤449B. 6≤k ≤10C. 2≤k ≤6D. 2≤k ≤225【答案】A . .考点:1.反比例函数图象上点的坐标特征;2.待定系数法的应用;23.曲线上点的坐标与方程的关系;一元二次方程根的判别式.4. (2014年江苏盐城)如图,反比例函数ky x =(x <0)的图象经过点A (﹣1,1),过点A 作AB ⊥y 轴,垂足为B ,在y 轴的正半轴上取一点P (0,t ),过点P 作直线OA 的垂线l ,以直线l 为对称轴,点B 经轴对称变换得到的点B ′在此反比例函数的图象上,则t 的值是( )B.32C.43【答案】A . 【解析】考点:1.反比例函数的综合题;2.曲线上点的坐标与方程的关系;3.等腰直角三角形的性质;4.轴对称的性质;5.方程思想的应用.5. (2014年重庆市B 卷)如图,正方形ABCD 的顶点B 、C 在x 轴的正半轴上,反比例函数k y (k 0)x =≠在第一象限的图象经过顶点A (m ,2)和CD 边上的点E (n ,23),过点E 的直线l交x 轴于点F ,交y 轴于点G (0,-2),则点F 的坐标是( )A 、5(,0)4B 、7(,0)4C 、9(,0)4D 、11(,0)4【答案】C . 【解析】试题分析:∵A (m ,2),∴正方形ABCD 的边长为2.∵E (n ,23),∴n m 2=+.∵反比例函数k y (k 0)x =≠在第一象限的图象经过A ,E ,∴k 2k 2m 22m m m 12k 3m 23m 2⎧=⇒=⎪⎪−−−−→=⇒=⎨+⎪=⎪+⎩把①代入②① ②.∴n m 23=+=,即点E 的坐标为(3,23).设直线EG 的解析式为y ax b =+,∵G (0,-2),∴283a b a 39b 2b 2⎧⎧+==⎪⎪⇒⎨⎨⎪⎪=-=-⎩⎩.∴直线EG 的解析式为8y x 29=-.令y=0得89x 20x 94-=⇒=.∴点F 的坐标是9,04⎛⎫⎪⎝⎭ .故选C . 考点:1.反比例函数和一次函数交点问题;2.待定系数法的应用;3.曲线上点的坐标与方程的关系;4.正方形的性质.6. (2014年广西北海)如图,反比例函数ky x =(x >0)的图象交Rt △OAB 的斜边OA 于点D ,交直角边AB 于点C ,点B 在x 轴上.若△OAC 的面积为5,AD :OD=1:2,则k 的值为【答案】20.考点:1.反比例函数系数k的几何意义;2.相似三角形的判定和性质.7. (2014年广西崇左)如图,A(4,0),B(3,3),以AO,AB为边作平行四边形OABC,则经过C点的反比例函数的解析式为.【答案】3yx=-.考点:1.平行四边形的性质;2.待定系数法的应用;3.曲线上点的坐标与方程的关系. 8. (2014年广西玉林、防城港)如图,OABC 是平行四边形,对角线OB 在轴正半轴上,位于第一象限的点A 和第二象限的点C 分别在双曲线1k y x =和2ky x =的一支上,分别过点A 、C 作x 轴的垂线,垂足分别为M 和N ,则有以下的结论:①12k AM CN k =;②阴影部分面积是()121k k 2+;③当∠AOC=90°时12k k =;④若OABC 是菱形,则两双曲线既关于x 轴对称,也关于y 轴对称. 其中正确的结论是 (把所有正确的结论的序号都填上).【答案】①④.考点:1.反比例函数综合题;2. 反比例函数的图象和k的几何意义;3.平行四边形、矩形的性质和菱形的性质.9. (2014年湖北荆州)如图,已知点A是双曲线2yx=在第一象限的分支上的一个动点,连结AO并延长交另一分支于点B,以AB为边作等边△ABC,点C在第四象限.随着点A的运动,点C的位置也不断变化,但点C始终在双曲线kyx=(k<0)上运动,则k的值是.【答案】﹣6.考点:1.单动点问题;2.曲线上点的坐标与方程的关系;3. 等边三角形的性质;4.相似三角形的判定和性质;5.锐角三角函数定义;6.特殊角的三角函数值.10. (2014年江苏淮安)如图,点A(1,6)和点M(m,n)都在反比例函数kyx(x>0)的图象上,(1)k的值为;(2)当m=3,求直线AM的解析式;(3)当m>1时,过点M作MP⊥x轴,垂足为P,过点A作AB⊥y轴,垂足为B,试判断直线BP与直线AM的位置关系,并说明理由.【答案】(1)6;(2)y=﹣2x+8;(3)直线BP与直线AM的位置关系为平行,.考点:1.反比例函数综合题;2.待定系数法的应用;3.曲线上点的坐标与方程的关系;4.相似三角形的判定和性质;5.平行的判定.☞考点归纳归纳 1:反比例函数的概念基础知识归纳:一般地,函数(k是常数,k0)叫做反比例函数。

北师大版数学九年级上期末复习压轴专题:反比例函数综合(三)

北师大版数学九年级上期末复习压轴专题:反比例函数综合(三)

北师大版数学九年级上期末复习压轴专题:反比例函数综合(三)1.如图,在平面直角坐标系中,A是第一象限内一点,过A作AC∥y轴交反比例函数y=(x>0)的图象于B点,E是y轴上一点,AE交反比例函数的图象于点D,若B是AC的中点,DE:AD=3:2,且△BDE的面积为,则k的值为()A.7 B.C.8 D.2.如图,在平面直角坐标系中,反比例函数y=(k>0,x>0)的图象上有A、B两点,它们的横坐标分别为2和4,△ABO的面积为3,则k的值为()A.2 B.4 C.6 D.83.如图,▱ABCD的顶点A的坐标为(﹣),顶点B在y轴上,顶点C、D在双曲线y =(x>0)上,AD交y轴于点E(0,2),且四边形BCDE的面积是△ABE面积的3倍,则▱ABCD面积为()A.8 B.10 C.12 D.164.如图,在平面直角坐标系中,△ABE的顶点E在y轴上,原点O在AB边上,反比例函数y=(k≠0)的图象恰好经过顶点A和B,并与BE边交于点C,若BC:CE=3:1,△OBE 的面积为,则k的值为()A.﹣2 B.﹣4 C.﹣6 D.﹣75.如图,在平面直角坐标系中,反比例函数y=(x>0)的图象与边长是6的正方形OABC 的两边AB,BC分别相交于M,N两点.△OMN的面积为10.若动点P在x轴上,则PM+PN 的最小值是()A.6B.10 C.2D.26.如图,反比例函数y=的图象与矩形ABCO的边AB,BC相交于E,F两点,点A,C在坐标轴上.若BE=nAE.则四边形OEBF的面积为()A.n+1 B.n C.D.7.如图,已知点A是一次函数y=x(x≥0)图象上一点,过点A作x轴的垂线l,B是l 上一点(B在A上方),在AB的右侧以AB为斜边作等腰直角三角形ABC,反比例函数y =(x>0)的图象过点B、C,若△ABC的面积为1,则k的值为()A.1 B.2 C.3 D.68.如图,面积为1的矩形ABCD在第二象限,BC与x轴平行,反比例函数y=﹣(k≠0)经过B、D两点,直线BD所在直线y=kx+b与x轴、y轴交于E、F两点,且B、D为线段EF的三等分点,则b的值为()A.2B.2C.3D.39.如图,矩形OABC的边OA=2,OC=4,点E是边AB上的一个动点(不与点A、B重合),过点E的反比例函数y=(x>0)的图象与边BC交于点F.当四边形AOFE的面积最大时,FC的长度为()A.0.8 B.1 C.1.6 D.1.810.如图,在平面直角坐标系xOy中,Rt△OAB的直角顶点A在x轴上,∠B=30°,反比例函数y=(k≠0)在第一象限的图象经过OB边上的点C和AB的中点D,连接AC.已知S=4,则实数k的值为()△OACA.4B.6C.8D.1011.如图,等腰三角形ABC的底边BC在x轴正半轴上,点A在第一象限,延长AB交y轴负半轴于点D,延长CA到点E,使AE=AC,双曲线y=(x>0)的图象过点E.若△BCD 的面积为2,则k的值为()A.4B.4 C.2D.212.如图,矩形ABCD的顶点D在反比例函数y=(x<0)的图象上,顶点B,C在x轴上,对角线AC的延长线交y轴于点E,连接BE,若△BCE的面积是6,则k的值为()A.﹣6 B.﹣8 C.﹣9 D.﹣1213.如图,点A、B在反比例函数y=(k>0,x>0)的图象上,过点A、B作x轴的垂线,垂足分别为M,N,延长线段AB交x轴于点C,若OM=MN=NC,S=2,则k的值为()△BNCA.4 B.6 C.8 D.1214.如图,平行四边形OABC的顶点O,B在y轴上,顶点A在y=(k1<0)上,顶点C在y=(k2>0)上,则平行四边形OABC的面积是()A.﹣2k1B.2k2C.k1+k2D.k2﹣k115.如图,Rt△ABC的顶点B在反比例函数的图象上,AC边在x轴上,已知∠ACB=90°,∠A=30°,BC=4,则图中阴影部分的面积是()A.12 B.C.D.16.如图,两个反比例函数y=和y=(其中k1>0>k2)在第一象限内的图象是C1,第二、四象限内的图象是C2,设点P在C1上,PC⊥x轴于点M,交C2于点C,PA⊥y轴于点N,交C2于点A,AB∥PC,CB∥AP相交于点B,则四边形ODBE的面积为()A .|k 1﹣k 2|B .C .|k 1•k 2|D .17.如图,在平面直角坐标系中,点O 为坐标原点,点P 在直线y =﹣2x +8上,且点P 的横坐标是2,过点P 分别向x 轴、y 轴作垂线,交反比例函数y =的图象于点A 、点B ,则四边形OAPB 的面积是( )A .4B .C .D .518.如图,反比例函数y =(x >0)的图象经过Rt △BOC 斜边上的中点A ,与边BC 交于点D ,连接AD ,则△ADB 的面积为( )A .12B .16C .20D .2419.如图,矩形AOBC的面积为4,反比例函数y=的图象的一支经过矩形对角线的交点P,则k的值是()A.1 B.﹣2 C.﹣1 D.﹣20.如图,正方形ABCD的顶点A,B分别在x轴和y轴上,与双曲线y=恰好交于BC的中点E,若OB=2OA,则S的值为()△ABOA.6 B.8 C.12 D.16参考答案1.解:∵DE:AD=3:2,∴S△BDE :S△ADB=3:2∵△BDE的面积为,∴△ABD的面积为,∴S△ABE=+=,设OC=m,AB=n=BC,∴S△ABE=+==AB•OC=mn,即:mn=∵点B(m,n)在反比例函数y=图象上,∴k=mn=,故选:B.2.解:∵反比例函数y=(k>0,x>0)的图象上有A、B两点,它们的横坐标分别为2和4,∴A(2,),B(4,),作AC⊥x轴于C,BD⊥x轴于D,∵S△ABO =S△AOC+S梯形ACDB﹣S△BOD=S梯形ACDB=3,∴(+)(4﹣2)=3,解得k=4,故选:B.3.解:过点D作DF⊥x轴,垂足为F,过C、B作x、y轴的垂线相交于点G,连接BD,∵A(﹣),E(0,2),∴OA=,OE=2,AE==,∵▱ABCD,∴S△ABD =S△BCD,又∵四边形BCDE的面积是△ABE面积的3倍,∴S△ABE =S△BDE,∴AE=ED=2.5,∵△AEO∽△ADF,∴,∴DF=2•EO=4,∴D(,4)∴反比例函数的关系式为:y=,在Rt△ADF中,AF=,易证△ADF≌△BCG,∴BG=AF=3,CG=DF=4,当x=BG=3时,y=2,∴C(3,2)∴OB=CG﹣CH=4﹣2=2,=×4×=3,∴S△ABE又∵四边形BCDE的面积是△ABE面积的3倍,=4×3=12,∴▱ABCD的面积=4S△ABE故选:C.4.解:连接OC.作CK⊥x轴于K,BF⊥x轴于F.∵BC:CE=3:1,△OBE的面积为,=×=,∴S△OBC设C(m,),则B(4m,),∵S△OBC =S四边形OCBF﹣S△OBF=S四边形OCBF﹣S△OKC=S梯形CKFB,∴=•(﹣﹣)×3m,∴k=﹣7,故选:D.5.解:∵正方形OABC的边长是6,∴点M的横坐标和点N的纵坐标为6,∴M(6,),N(,6),∴BN=6﹣,BM=6﹣,∵△OMN的面积为10,∴6×6﹣×6×﹣6×﹣×(6﹣)2=10,∴k=24或﹣24(舍去),∴M(6,4),N(4,6),作M关于x轴的对称点M′,连接NM′交x轴于P,则NM′的长=PM+PN的最小值,∵AM=AM′=4,∴BM′=10,BN=2,∴NM′===2,故选:C.6.解:如图,连接OB.∵BE=nAE,∴S△OBE =n•S△OAE,∵E、F在y=上,四边形AOCB是矩形,∴S△AEO =S△OCF=,S△OBC=S△OBA,∴S△OBE =S△OBF=n,∴S四边形OFBE=n.故选:B.7.如图,过C作CD⊥y轴于D,交AB于E,∵AB⊥x轴,∴CD⊥AB,∵△ABC是等腰直角三角形,∴BE=AE=CE,设AB=2a,则BE=AE=CE=a,设A(x,x),则B(x,x+2a),C(x+a,x+a),∵B,C在反比例函数的图象上,∴x(x+2a)=(x+a)(x+a),x=2a,=AB•CE=•2a•a=1,∵S△ABC∴a=1,∴x=2,∴B(2,3),∴k=6故选:D.8.解:延长AB、DC交x轴于点Q、P,延长AD、BC交y轴于点M、N,∵B、D为线段EF的三等分点,∴BE =BD =DF ,∵AM ∥BC ∥EO ,∴OP =PQ =QE ,ON =MN =MF ,∵ABCD 的面积为1,∴S 矩形QBNO =S 矩形ABCD =2,∴|k |=2,∴反比例函数的关系式为y =﹣,∴k =2,一次函数的关系式为y =2x +b ,即:F (0,b ),E (﹣,0),由题意得△EOF 的面积为, ∴×b ×=,解得,b =3,b =﹣3(舍去),故选:C .9.解:∵四边形OABC 为矩形,OA =2,OC =4,∴E (k ,2),F (4,k ),∴BE =4﹣k ,BF =2﹣k ,∴S △BEF =(4﹣k )(2﹣k )=k 2﹣k +4,∵S △OAE =S △OCF =×4×k =k ,S 矩形OABC =2×4=8,∴S 四边形AOFE =S 矩形OABC ﹣S △BEF ﹣S △OCF=8﹣(k 2﹣k +4)﹣k =﹣k 2+k +4 =﹣(k ﹣4)2+5, ∵﹣<0,∴当k =4时,四边形AOFE 的面积最大,∴CF =k =1.故选:B .10.解:在Rt △OAB 中,∠B =30°,∴可设OA =a ,则AB =OA =a , ∴点B 的坐标为(a ,a ), ∴直线OB 的解析是为∵D 是AB 的中点∴点D 的坐标为(a ,)∴k =又∵S=4,△OAC∴OA•y c=4,即•a•y c=4,∴y c=∴C(,)∴k=•=∴=∴a2=16,∴k==8.故选:C.11.解:如图,连接BE,∵等腰三角形ABC中,AB=AC,∴∠ABC=∠ACB,∵AE=AC,∴AE=AB,∴∠AEB=∠ABE,又∵∠AEB+∠ABE+∠ABC+∠ACB=180°,∴∠ABE+∠ABC=90°,即BE⊥BC,∴∠CBE=∠BOD=90°,又∵∠ACB=∠ABC=∠OBD,∴△CBE∽△BOD,∴=,即BC×OD=OB×BE,又∵△BCD的面积为2,∴BC×OD=4,∴OB×BE=4,又∵双曲线y=(x>0)的图象过点E,∴k=OB×BE=4,故选:A.12.解:设D(a,b),则CO=﹣a,CD=AB=b,∵矩形ABCD的顶点D在反比例函数y=(x<0)的图象上,∴k=ab,∵△BCE的面积是6,∴×BC×OE=6,即BC×OE=12,∵AB∥OE,∴=,即BC•EO=AB•CO,∴12=b×(﹣a),即ab=﹣12,∴k=﹣12,故选:D.13.解:∵BN∥AM,MN=NC,∴△CNB∽△CMA,∴S△CNB :S△CMA=()2=()2=,而S△BNC=2,∴S△CMA=8,∵OM=MN=NC,∴OM=MC,∴S△AOM =S△AMC=4,∵S△AOM=|k|,∴|k|=4,∴k=8.故选:C.14.解:过点A作AE⊥y轴于点E,过点C作CD⊥y轴于点D,根据∠AEB=∠CD0=90°,∠ABE=∠COD,AB=CO可得:△ABE≌△COD(AAS),∴△ABE与△COD的面积相等,又∵点C在y=的图象上,∴△ABE的面积=△COD的面积相等=|k2|,同理可得:△AOE的面积=△CBD的面积相等=|k1|,∴平行四边形OABC的面积=2(|k2|+|k1|)=|k2|+|k1|=k2﹣k1,故选:D.15.解:∵∠ACB=90°,BC=4,∴B点纵坐标为4,∵点B在反比例函数的图象上,∴当y=4时,x=3,即B点坐标为(3,4),∴OC=3.在Rt△ABC中,∠ACB=90°,∠A=30°,BC=4,∴AB=2BC=8,AC=BC=4,OA=AC﹣OC=4﹣3.设AB与y轴交于点D.∵OD∥BC,∴=,即=,解得OD=4﹣,∴阴影部分的面积是:(OD+BC)•OC=(4﹣+4)×3=12﹣.故选:D.16.解:∵AB∥PC,CB∥AP,∠APC=90°,∴四边形APCB是矩形.设P(x,),则A(,),C(x,),∴S矩形APCB=AP•PC=(x﹣)(﹣)=,∴四边形ODBE的面积=S矩形APCB ﹣S矩形PNOM﹣S矩形MCDO﹣S矩形AEON=﹣k1﹣|k2|﹣|k2|=.故选:D.17.解:如图,当x=2时,y=﹣2×2+8=4,即点P(2,4),∴S矩形OCPD=2×4=8,又∵点A、点B在反比例函数y=的图象上,∴S△AOC =S△BOD=|k|=×4=2,∴S四边形OAPB=8﹣2﹣2=4,故选:A.18.解:过A作AE⊥OC于E,设A(a,b),∵当A是OB的中点,∴B(2a,2b),∵反比例函数y=(x>0)的图象经过Rt△BOC斜边上的中点A,∴ab=16,∴S△BCO=2ab=32,∵点D在反比例函数数y=(x>0)的图象上,∴S=8,△OCD=32﹣8=24,∴S△BOD=12,∴△ADB的面积=S△BOD故选:A.19.解:作PE⊥x轴于E,PF⊥y轴于F,如图,∵点P为矩形AOBC对角线的交点,∴矩形OEPF的面积=矩形AOBC的面积=×4=1,∴|k|=1,而k<0,∴k=﹣1,故选:C.20.解:如图,过点B作x轴的平行线,过点A,C分别作y轴的平行线,两线相交于M,N,∵四边形ABCD为正方形,∴∠ABC=90°,AB=BC,∴∠ABM=90°﹣∠CBN=∠BCN,∵∠M=∠N=90°,∴△ABM≌△BCN(AAS),∵OB=2OA,∴设OA=a,OB=2a,则BN=AM=2a,CN=BM=a,∴点C坐标为(2a,a),∵E为BC的中点,B(0,2a),∴E(a,1.5a),把点E代入双曲线y=得1.5a2=18,a2=12,=a•2a=12,∴S△ABO故选:C.。

北师大版数学九年级上学期期末备考压轴题培优:反比例函数(含答案)

北师大版数学九年级上学期期末备考压轴题培优:反比例函数(含答案)

期末备考压轴题培优:反比例函数1.如图,在直角坐标系xOy中,直线y=mx与双曲线y=相交于A(﹣1,a)、B两点,BC⊥x轴,垂足为C,△AOC的面积是1.(1)求m、n的值;(2)求直线AC的解析式.(3)点P在双曲线上,且△POC的面积等于△ABC面积的,求点P的坐标.2.如图,一次函数y=﹣x+的图象与反比例函数y=(k>0)的图象交于A,B两点,过点A做x轴的垂线,垂足为M,△AOM面积为1.(1)求反比例函数的解析式;并直接写出不等式≤﹣+的解集.(2)在x轴上求一点P,使|P A﹣PB|的值最大,并求出其最大值和P点坐标.(3)连接OB,求三角形AOB的面积.3.如图,一次函数y=﹣x+3的图象与反比例函数y=(k≠0)在第一象限的图象交于A (1,a)和B两点,与x轴交于点C.(1)求反比例函数的解析式;(2)若点P在x轴上,且△APC的面积为5,求点P的坐标;(3)直接写出不等式﹣x+3<的解集.4.已知A(a,﹣2a)、B(﹣2,a)两点是反比例函数y=与一次函数y=kx+b图象的两个交点.(1)求一次函数和反比例函数的解析式;(2)求△ABO的面积;(3)观察图象,直接写出不等式kx+b﹣>0的解集.5.如图,在平面直角坐标系中,直线l1:y=﹣x与反比例函数y=的图象交于A,B两点(点A在点B左侧),已知A点的纵坐标是2;(1)求反比例函数的表达式;(2)根据图象直接写出﹣x>的解集;(3)将直线l1:y=x沿y向上平移后的直线l2与反比例函数y=在第二象限内交于点C,如果△ABC的面积为30,求平移后的直线l2的函数表达式.6.如图所示,双曲线y=(x>0,k>0)与直线y=ax+b(a≠0,b为常数)交于A(2,4),B(m,2)两点.(1)求m的值;(2)若C点坐标为(n,0),当AC+BC的值最小时,求出n的值;(3)求△AOB的面积.7.如图,在平面直角坐标系xOy内,点P在直线y=x上(点P在第一象限),过点P作P A⊥x轴,垂足为点A,且OP=2.(1)求点P的坐标;(2)如果点Q在直线OP上,且S=6,求点Q的坐标;△APQ(3)如果点M和点P都在反比例函数y=(k≠0)图象上,过点M作MN⊥x轴,垂足为点N,如果△MNA和△OAP全等(点M、N、A分别和点O、A、P对应),求点M 的坐标.8.如图,在平面直角坐标系xOy中,反比例函数y=(k≠0)的图象经过等边三角形BOC 的顶点B,OC=2,点A在反比例函数图象上,连接AC,OA.(1)求反比例函数y=(k≠0)的表达式;(2)若四边形ACBO的面积是3,求点A的坐标.9.如图,反比例函数y1=的图象与一次函数y2=ax+b的图象相交于点A(1,4)和B(﹣2,n).(1)求反比例函数与一次函数的解析式;(2)请根据图象直接写出y1<y2时,x的取值范围.10.如图,在平面直角坐标系中,已知点A(8,1),B(0,﹣3),反比例函数(x>0)的图象经过点A,动直线x=t(0<t<8)与反比例函数的图象交于点M,与直线AB交于点N.(1)求k的值;(2)当t=4时,求△BMA面积;(3)若MA⊥AB,求t的值.12(1)求A、B两点的坐标和反比例函数的解析式;(2)求△AOB的面积.12.如图1,点A(0,8)、点B(2,a)在直线y=﹣2x+b上,反比例函数y=(x>0)的图象经过点B.(1)求a和k的值;(2)将线段AB向右平移m个单位长度(m>0),得到对应线段CD,连接AC、BD.①如图2,当m=3时,过D作DF⊥x轴于点F,交反比例函数图象于点E,求E点的坐标;②在线段AB运动过程中,连接BC,若△BCD是等腰三形,求所有满足条件的m的值.12两点.(1)求反比例函数的解析式;(2)观察图象,直接写出使一次函数值不大于反比例函数值的x的取值范围;(3)求△AOB的面积.14.如图,一次函数y=k1x﹣3(k1>0)的图象与x轴、y轴分别交于A,B两点,与反比例函y=(k2>0)的图象交于C,D两点,作CE⊥y轴,垂足为点E,作DF⊥y轴,垂足为点F,已知CE=1.(1)①直接写出点C的坐标(用k1来表示)②k2﹣k1=;(2)若B为AC的中点,求反比例函数的表达式;(3)在(2)的条件下,设点M是x轴负半轴上一点,将线段MF绕点M旋转90°,得到线段MN,当点M滑动时,点N能否在反比例函数的图象上?如果能,求出点N的坐标;如果不能,请说明理由.15.对于一个函数给出如下定义:对于函数y,当a≤x≤b,函数值y满足c≤y≤d,且满足k(b﹣a)=d﹣c,则称此函数为“k属函数”.例如:正比例函数y=﹣3x,当1≤x≤3,﹣9≤y≤﹣3,则k(3﹣1)=﹣3﹣(﹣9),求得:k=3,所以函数y=﹣3x为“3属函数”.(1)反比例函数y=(1≤x≤5)为“k属函数”,求k的值;(2)若一次函数y=ax﹣1(1≤x≤5)为“2属函数”,求a的值.16.如图,已知一次函数y=kx+b的图象交反比例函数的图象于点A(2,﹣4)和点B(n,﹣2),交x轴于点C.(1)求这两个函数的表达式;(2)求△AOB的面积;(3)请直接写出使一次函数值大于反比例函数值的x的范围.17.如图,在平面直角坐标系中,直线y=k1x(x≥0)与双曲线y=(x>0)相交于P (2,4),已知点A、B的坐标分别为(4,0)、(0,3),连结AB.将Rt△AOB沿OP方向平移,得到△A′PB′,点O与点P是对应点.过点A′作A′C∥y轴交双曲线于点C.(1)求k1、k2的值;(2)求点C的坐标;(3)判断四边形PCA′B′是否为平行四边形,请说明理由.18.探索函数y=x+(x>0)的图象和性质.已知正比例函数y=x与反比例函数y=在第一象限内的图象如图所示.若P为函数y =x+(其中x>0)图象上任意一点,过P作PC垂直于x轴且与已知函数的图象、x 轴分别交于点A、B、C,则PC=x+=AC+BC,从而发现下述结论:“点P可以看作点A沿竖直方向向上平移BC个长度单位(P A=BC)而得到”.(1)根据该结论,在图中作出函数y=x+(x>0)图象上的一些点,并画出该函数的图象;(2)观察图象,写出函数y=x+(x>0)两条不同类型的性质.19.如图,在平面直角坐标系xOy中,函数的图象经过点A(﹣1,6),直线y =mx﹣2与x轴交于点B(﹣1,0).(1)求k,m的值;(2)过第二象限的点P(n,﹣2n)作平行于x轴的直线,交直线y=mx﹣2于点C,交函数的图象于点D.①当n=﹣1时,判断线段PD与PC的数量关系,并说明理由;②若PD≥2PC,结合函数的图象,直接写出n的取值范围.参考答案1.解:(1)∵直线y=mx与双曲线y=相交于A(﹣1,a)、B两点,∴B点横坐标为1,即C(1,0),∵△AOC的面积为1,∴A(﹣1,2),将A(﹣1,2)代入y=mx,y=可得m=﹣2,n=﹣2;(2)设直线AC的解析式为y=kx+b,∵y=kx+b经过点A(﹣1,2)、C(1,0)∴,解得k=﹣1,b=1,∴直线AC的解析式为y=﹣x+1;(3)∵A(﹣1,2),C(1,0),∴B(1,﹣2),∴S=×2×2=2,△ABC∵△POC的面积等于△ABC面积的,=,∴S△POC∵S=OC•|y P|,△POC∴=•|y P|,解得y P=±1,∴P(﹣2,1)或(2,﹣1).2.解:(1)∵反比例函数y=(k>0)的图象过点A,过A点作x轴的垂线,垂足为M,△AOM面积为1,∴|k|=1,∵k>0,∴k=2,故反比例函数的解析式为:y=,由,解得或,∴A(1,2),B(4,),∴不等式≤﹣+的解集为1≤x≤4或x≤0;(2)一次函数y=﹣x+的图象与x轴的交点即为P点,此时|P A﹣PB|的值最大,最大值为AB的长.∵A(1,2),B(4,),∴AB==,∴|P A﹣PB|的最大值为;∵一次函数y=﹣x+,令y=0,则﹣x+=0,解得x=5,∴P点坐标为(5,0);(3)∵P (5,0),∴OP =5,∴S △AOB =S △AOP ﹣S △BOP =×5×2﹣=.3.解:(1)把点A (1,a )代入y =﹣x +3,得a =2,∴A (1,2)把A (1,2)代入反比例函数y =,∴k =1×2=2;∴反比例函数的表达式为y =;(2)∵一次函数y =﹣x +3的图象与x 轴交于点C ,∴C (3,0),设P (x ,0),∴PC =|3﹣x |,∴S △APC =|3﹣x |×2=5,∴x =﹣2或x =8,∴P 的坐标为(﹣2,0)或(8,0);(3)解得或,∴B (2,1),由图象可知:不等式﹣x +3<的解集是0<x <1或x >2.4.解:(1)∵A (a ,﹣2a )、B (﹣2,a )两点在反比例函数y =的图象上, ∴m =﹣2a •a =﹣2a ,解得a =1,m =﹣2,∴A (1,﹣2),B (﹣2,1),反比例函数的解析式为y =﹣.将点A (1,﹣2)、点B (﹣2,1)代入到y =kx +b 中, 得:,解得:,∴一次函数的解析式为y =﹣x ﹣1.(2)在直线y =﹣x ﹣1中,令y =0,则﹣x ﹣1=0,解得x =﹣1,∴C (﹣1,0),∴S △AOB =S △AOC +S △BOC =×1×2+×1=;(3)观察函数图象,发现:当x <﹣2或0<x <1时,反比例函数图象在一次函数图象的上方,∴不等式kx +b ﹣>0的解集为x <﹣2或0<x <1.5.解:(1)∵直线l 1:y =﹣x 经过点A ,A 点的纵坐标是2,∴当y =2时,x =﹣4,∴A (﹣4,2),∵反比例函数y =的图象经过点A ,∴k =﹣4×2=﹣8,∴反比例函数的表达式为y =﹣;(2)∵直线l 1:y =﹣x 与反比例函数y =的图象交于A ,B 两点, ∴B (4,﹣2), ∴不等式﹣x >的解集为x <﹣4或0<x <4;(3)如图,设平移后的直线l 2与x 轴交于点D ,连接AD ,BD ,∵CD ∥AB ,∴△ABC 的面积与△ABD 的面积相等,∵△ABC 的面积为30,∴S △AOD +S △BOD =30,即OD (|y A |+|y B |)=30, ∴×OD ×4=30,∴OD =15,∴D(15,0),设平移后的直线l2的函数表达式为y=﹣x+b,把D(15,0)代入,可得0=﹣×15+b,解得b=,∴平移后的直线l2的函数表达式为y=﹣x+.6.解:(1)把A(2,4)代入y=(x>0,k>0),∴k=2×4=8,∴反比例函数的解析式为y=,把B(m,2)代入y=得,2=,解得m=4;(2)由(1)可知:A(2,4),B(4,2),∴B点关于x轴的对称点B′(4,﹣2),连接AB′,交x轴与C,此时AC+BC=AB′,AC+BC的值最小,设直线AB′的解析式为y=mx+t,把A(2,4),B′(4,﹣2)代入得,解得:,∴直线AB′的解析式为y=﹣3x+10,把(n,0)代入得y=﹣3n+10,∴n=;(3)把A(2,4),B(4,2)代入y=ax+b得,解得,∴直线AB的解析式为y=﹣x+6,∴直线AB 与x 轴的交点C (6,0),∴S △AOB =S △AOC ﹣S △BOC =×6×4﹣×6×2=6.7.解:(1)设AP =h ,则OA =2h ,由勾股定理得,OP 2=AP 2+OA 2,即(2)2=h 2+(2h )2, 解得,h =2,∴AP =h =2,则OA =2h =4,∴点P 的坐标为(4,2);(2)设点Q 到AP 的距离为a , 由题意得,×2×a =6, 解得,a =6,∴点Q 的横坐标为4﹣6或4+6, 当x =4﹣6时,y =2﹣3, 当x =4+6,y =2+3,综上所述,点Q 的坐标为(4﹣6,2﹣3)或(4+6,2+3); (3))∵点P (4,2)在反比例函数y =的图象上,∴2=,解得,k =8,∴y =,在Rt △P AO 中,∠P AO =90°,P A =2,AO =4,∵∠MNA =90°,∴当△MNA 和△APO 全等时,分以下两种情况:①点N 在点A 的左侧时,MN =AO =4,AN =AP =2,∴ON =OA ﹣AN =4﹣2=2,∴M(2,4),且点M在反比例函数y=的图象上.②点N在点A的右侧时,AO=MN=4,AN=AP=2,∴ON=AN+AO=4+2=6.∴M(6,4),但点M不在反比例函数y=的图象上,综合①②,满足条件的点M的坐标为(2,4).8.解:(1)作BD⊥OC于D,∵△BOC是等边三角形,∴OB=OC=2,OD=OC=1,∴BD==,=OD×BD=,∴S△OBDS=|k|,△OBD∴|k|=,∵反比例函数y=(k≠0)的图象在一三象限,∴k=,∴反比例函数的表达式为y=;=OC•BD==,(2)∵S△OBC∴S=3﹣=2,△AOC=OC•y A=2,∵S△AOC∴y A=2,把y=2代入y=,求得x=,∴点A的坐标为(,2).9.解:(1)∵反比例函数y1=的图过点A(1,4),∴4=,即k=4,∴反比例函数的解析式为:y1=,∵反比例函数y1=的图象过点B(﹣2,n),∴n==﹣2,∴B(﹣2,﹣2),∵一次函数y2=ax+b的图象过点A(1,4)和点B(﹣2,﹣2),∴,解得:∴一次函数的解析式为:y2=2x+2;(2)由图象可知:当﹣2<x<0或x>1.10.解:(1)∵反比例函数(x>0)的图象经过点A,∴1=,解得k=8;(2)设直线AB的解析式为y=kx+b,把点A(8,1),B(0,﹣3)代入得,解得,∴直线AB的解析式为y=x﹣3,当t=4时,则M(4,2),N(4,﹣1),∴MN=2﹣(﹣1)=3,∴S△BMA=×3×8=12;(3)由题意可知M(t,),∵A(8,1),B(0,﹣3),∴MA2=(t﹣8)2+(﹣1)2,MB2=t2+(+3)2,AB2=82+(1+3)2=80,∵MA⊥AB,∴MB2=MA2+AB2,即t2+(+3)2=(t﹣8)2+(﹣1)2+80,整理得:2t+=17,解得t=或t=8(舍去),故若MA⊥AB,t的值为.11.解:(1)分别把A(1,m)、B(4,n)代入y1=﹣x+5,得m=﹣1+5=4,n=﹣4+5=1,所以A点坐标为(1,4),B点坐标为(4,1),把A(1,4)代入y2=,得k=1×4=4,所以反比例函数解析式为y2=;(2)如图,设一次函数图象与x轴交于点C,当y=0时,﹣x+5=0,解得x=5,则C点坐标为(5,0),所以S△AOB =S△AOC﹣S△BOC=×5×4﹣×5×1=7.5.12.解:(1)∵点A(0,8)在直线y=﹣2x+b上,∴﹣2×0+b=8,∴b=8,∴直线AB的解析式为y=﹣2x+8,将点B(2,a)代入直线AB的解析式y=﹣2x+8中,得﹣2×2+8=a,∴a=4,∴B(2,4),将B(2,4)代入反比例函数解析式y=(x>0)中,得k=xy=2×4=8;(2)①由(1)知,B(2,4),k=8,∴反比例函数解析式为y=,当m=3时,将线段AB向右平移3个单位长度,得到对应线段CD,∴D(2+3,4),即D(5,4),∵DF⊥x轴于点F,交反比例函数y=的图象于点E,∴E(5,);②如图,∵将线段AB向右平移m个单位长度(m>0),得到对应线段CD,∴CD=AB,AC=BD=m,∵A(0,8),B(2,4),∴C(m,8),D((m+2,4),∵△BCD是以BC为腰的等腰三形,当BC=CD时,BC=AB,∴点B在线段AC的垂直平分线上,∴m=2×2=4,当BC=BD时,B(2,4),C(m,8),∴BC=,∴=m,∴m=5,当BD=AB时,m=AB==2,综上所述,△BCD是以BC为腰的等腰三角形,满足条件的m的值为4或5或2.13.解:(1)∵点A(2,4)在反比例函数y2=的图象上,∴k=2×4=8,∴反比例函数的解析式为y2=.(2)∵点B(﹣4,n)在反比例函数y2=的图象上,∴n==﹣2,∴点B的坐标为(﹣4,﹣2).观察函数图象,发现:使一次函数值不大于反比例函数值的x的取值范围为x≤﹣4或0<x≤2.(3)将点A(2,4)、B(﹣4,﹣2)代入到y1=ax+b中,得:解得:,∴一次函数的解析式为y=x+2,令y=0,求得x=﹣2,∴S △AOB =S △AOC +S △BOC =×2×2+2×4=6.14.解:(1)如图1,∵CE ⊥y 轴于点E 且CE =1,∴C 的横坐标为1,当x =﹣1时,y =﹣k 1﹣3∴C (﹣1,﹣k 1﹣3),∵C 在反比例函数的图象上,∴﹣1×(﹣k 1﹣3)=k 2,∴k 2﹣k 1=3;故答案为(﹣1,﹣k 1﹣3),3;(2)如图1,∵CE ⊥y 轴,DF ⊥y 轴,∴CE ∥DF ,∵B 为AC 的中点,∴AB =BC ,∵∠AOB =∠BEC =90°,∠ABO =∠CBE ,∴△ABO ≌△CBE (AAS ),∴AO =CE =1,∴A (1,0),当x =1时,y =k 1+3=0,∴k 1=3,由(1)得:k 2﹣k 1=3,∴k 2=6;∴反比例函数的解析式:y =;(3)当点M 滑动时,点N 能在反比例函数的图象上如图2,MF =MN ,∠FMN =90°过N 作NH ⊥x 轴于H ,易得:△MNH ≌△FMO ,∴FO =MH ,OM =NH ,由(2)知:反比例函数的解析式:y=;设D(m,),∵tan∠ABO===,∴=,解得:m=2,m=﹣1(舍去),∴N(2,3),∴OF=MH=3,设M(x,0),∴N(x+3,x),当点N落在反比例函数的图象上时,x(x+3)=6,x2+3x﹣6=0,解得x=(舍去),x=,∴点N的坐标为(,).15.解:(1)∵反比例函数y=中,k=5>0,∴y随x的增大而减小,当1≤x≤5时,1≤y≤5,∴k(5﹣1)=5﹣1,∴k=1;(2)①a>0时,对于一次函数y=ax﹣1,y随x增大而增大,当1≤x≤5时,a﹣1≤y≤5a﹣1,∴k(5﹣1)=4a,∵k=2,∴a=2;②当a<0时,y随x增大而减小,当1≤x≤5时,a﹣1≤y≤5a﹣1,∴k(5﹣1)=﹣4a,∵k=2,∴a=﹣2.16.解:(1)把A(2,﹣4)的坐标代入得:,∴4﹣2m=﹣8,反比例函数的表达式是;把B(n,﹣2)的坐标代入得,解得:n=4,∴B点坐标为(4,﹣2),把A(2,﹣4)、B(4,﹣2)的坐标代入y=kx+b得,解得,∴一次函数表达式为y=x﹣6;(2)当y=0时,x=0+6=6,∴OC=6,∴△AOB的面积=×6×4﹣×6×2=6;(3)由图象知,一次函数值大于反比例函数值的x的范围为0<x<2或x>4.17.解:(1)∵直线y=k1x过点P(2,4),∴4=2k1,∴k1=2,∵双曲线y=(x>0)过点P(2,4),∴k2=2×4=8;(2)由平移知,点O(0,2)向右平移2个单位,再向上平移4个单位得到点P(2,4),∴点A(4,0)也向右平移2个单位,再向上平移4个单位得到点A'(6,4),∵A'C∥y轴,∴点C的横坐标为6,由(1)知,k2=8,双曲线的解析式为y=,∵点C在双曲线y=上,∴y==,∴C(6,);(3)四边形PCA′B′不是平行四边形,理由:∵B(0,3),∴OB=3,由平移知,PB'=OB=3,PB'∥y轴,∵A'C∥y轴,∴PB'∥A'C,由(2)知,A'(6,4),C(6,),∴A'C=4﹣=≠PB',∴四边形PCA′B′不是平行四边形.18.解:(1)如图所示:(2)函数两条不同类型的性质是:①图象是轴对称图形:②当0<x<1时,y随x的增大而减小,当x>1时,y随x的增大而增大;③当x=1时,函数y=x+(x>0)的最小值是2;19.解:(1)∵函数的图象经过点A(﹣1,6),∴k=﹣6.∵直线y=mx﹣2与x轴交于点B(﹣1,0),∴m=﹣2.(2)①判断:PD=2PC.理由如下:当n=﹣1时,点P的坐标为(﹣1,2),∵y=﹣2x﹣2交于于点C,且点P(﹣1,2)作平行于x轴的直线,∴点C的坐标为(﹣2,2),∵函数的图象于点D,且点P(﹣1,2)作平行于x轴的直线,点D的坐标为(﹣3,2).∴PC=1,PD=2.∴PD=2PC.②当PD=2PC时,有两种情况,分别为:y=2,或者y=6.若PD≥2PC,0<y≤2,或y≥6即0<﹣2n≤2,或﹣2n≤6解得﹣1≤n<0.或n≤﹣3。

北师大版九年级上数学反比例函数专题练习题(含答案)

北师大版九年级上数学反比例函数专题练习题(含答案)

北师大版九年级上数学反比例函数专题练习题一.选择题(共18小题)1.若函数y=(m2﹣3m+2)x|m|﹣3是反比例函数,则m的值是()A.1B.﹣2C.2或﹣2D.22.下列函数中,是反比例函数的是()A.y=﹣B.y=﹣C.y=﹣2x2D.y=﹣2x+13.下列关系式中,y是x的反比例函数的是()A.y=4x B.y=C.y=﹣D.y=4.若反比例函数y=的图象经过点(﹣2,﹣3),则该函数图象位于()A.第一、二象限B.第二、四象限C.第三、四象限D.第一、三象限5.已知反比例函数y=(k≠0)的图象经过点(1,﹣3),若x<﹣1,则y的取值范围为()A.y>3B.y<3C.﹣3<y<0D.0<y<36.反比例函数y=的图象在每一象限内,y随x的增大而减小,则k的取值范围是()A.k>1B.k<1C.k=1D.k≠17.对于反比例函数,下列说法不正确的是()A.图象经过点(1,﹣3)B.图象分布在第二、四象限C.点A(x1,y1),B(x2,y2)都在反比例函数的图象上,若x1<x2,则y1<y2D.当x>0时,y随x的增大而增大8.已知反比例函数(k≠0),当x<0时,y随x的增大而增大,那么一次函数y=kx﹣k的图象经过()A.第一、二、三象限B.第一、二、四象限C.第一、三、四象限D.第二、三、四象限9.在同一坐标系中,函数和y=kx+2的图象大致是()A.B.C.D.10.函数y=﹣的图象在()A.第一、三象限B.第二、四象限C.第一、二象限D.第三、四象限11.反比例函数y=的图象如图所示,点A是该函数图象上一点,AB垂直于x轴垂足是点B,如果S△AOB =1,则k的值为()A.1B.﹣1C.2D.﹣212.如图,正比例函数y=kx与反比例函数y=的图象相交于A、C两点,过点A作x轴的垂线交x轴于点B,连接BC,则△ABC的面积等于()A.8B.6C.4D.213.如图,设P是函数y=在第二象限的图象上的任意一点,点P关于原点的对称点P′.过P作P A∥y 轴,过P′作P′A∥x轴,P A与P′A交于点A,则△P AP′的面积是()A.2B.4C.8D.随P的变化而变化14.如图所示,直线l和反比例函数y=(k>0)的图象的一支交于A,B两点,P是线段AB上的点(不与A,B重合),过点A,B,P分别向x轴作垂线,垂足分别是C,D,E,连接OA,OB,OP,设△AOC 面积是S1,△BOD面积是S2,△POE面积是S3,则()A.S1<S2<S3B.S1>S2>S3C.S1=S2>S3D.S1=S2<S315.如图,A、B是双曲线y=上关于原点对称的任意两点,AC∥y轴,BD∥y轴,则四边形ACBD的面积S满足()A.S=1B.1<S<2C.S=2D.S>216.如图,在x轴的正半轴上依次截取OA1=A1A2=A2A3=A3A4=A4A5,过点A1、A2、A3、A4、A5分别作x轴的垂线与反比例函数y=(x>0)的图象相交于点P1、P2、P3、P4、P5,得直角三角形OP1A1、A1P2A2、A2P3A3、A3P3A4、A4P5A5,并设其面积分别为S1、S2、S3、S4、S5,则S1+S2+S3+S4+S5的值为()A.2B.C.3D.17.如图,点A、B是函数y=x与y=的图象的两个交点,作AC⊥x轴于C,作BD⊥x轴于D,则四边形ACBD的面积为()A.S>2B.S>1C.S<1D.S=218.如图,过反比例函数y=(x>0)图象上任意两点A、B分别作x轴的垂线,垂足为C、D,连接OA、OB.设AC与OB的交点为E,△AOE与梯形ECDB的面积分别为S1、S2,则()A.S1>S2B.S1=S2C.S1<S2D.S1、S2的大小关系不确定二.填空题(共13小题)19.如图,已知点A,B在双曲线y=(x>0)上,AC⊥x轴于点C,BD⊥y轴于点D,AC与BD交于点P,P是AC的中点.若△ABP的面积为4,则k=.20.如图,已知矩形OABC的面积为,它的对角线OB与双曲线y=相交于点D,且OB:OD=5:3,则k=.21.如图,已知双曲线y=经过直角三角形OAB斜边OB的中点D,与直角边AB相交于点C,若△OBC 的面积为9,则k=.22.如图,已知双曲线y=(k>0)经过直角三角形OAB斜边OB的中点D,与直角边AB相交于点C,若△OBC的面积为6,则k=.23.如图,已知双曲线y=(k>0)经过Rt△OAB斜边OB的中点D,与直角边AB相交于点C.点A在x轴上.若△DOC的面积为3,则k=.24.双曲线y=(k<0)经过Rt△OAB斜边OB的中点D,与直角边AB相交于点C,若△OAB的面积为3,则k=.25.如图,在平面直角坐标系xOy中,直线AB与x轴、y轴分别交于点A,B,与反比例函数(k为常数,且k>0)在第一象限的图象交于点E,F.过点E作EM⊥y轴于M,过点F作FN⊥x轴于N,直线EM与FN交于点C.若(m为大于l的常数).记△CEF的面积为S1,△OEF的面积为S2,则=.(用含m的代数式表示)26.如图,在边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,N是AB边上的一动点,将△AMN 沿MN所在直线翻折得到△A′MN,连接A′C,则A′C长度的最小值是.27.如图,在平面直角坐标系xOy中,直线y=x与双曲线y=相交于A,B两点,C是第一象限内双曲线上一点,连接CA并延长交y轴于点P,连接BP,BC.若△PBC的面积是20,则点C的坐标为.28.已知菱形A1B1C1D1的边长为2,∠A1B1C1=60°,对角线A1C1,B1D1相交于点O,以点O为坐标原点,分别以OA1,OB1所在直线为x轴、y轴,建立如图所示的直角坐标系,以B1D1为对角线作菱形B1C2D1A2∽菱形A1B1C1D1,再以A2C2为对角线作菱形A2B2C2D2∽菱形B1C2D1A2,再以B2D2为对角线作菱形B2C3D2A3∽菱形A2B2C2D2,…,按此规律继续作下去,在x轴的正半轴上得到点A1,A2,A3,…,A n,则点A n的坐标为.29.在平面直角坐标系xOy中,对于不在坐标轴上的任意一点P(x,y),我们把点P′(,)称为点P的“倒影点”,直线y=﹣x+1上有两点A,B,它们的倒影点A′,B′均在反比例函数y=的图象上.若AB=2,则k=.30.设双曲线y=(k>0)与直线y=x交于A,B两点(点A在第三象限),将双曲线在第一象限的一支沿射线BA的方向平移,使其经过点A,将双曲线在第三象限的一支沿射线AB的方向平移,使其经过点B,平移后的两条曲线相交于P,Q两点,此时我们称平移后的两条曲线所围部分(如图中阴影部分)为双曲线的“眸”,PQ为双曲线的“眸径“,当双曲线y=(k>0)的眸径为6时,k的值为.31.若m,n是一元二次方程x2+2x﹣1=0的两个实数根,则m2+4m+2n的值是.三.解答题(共29小题)32.已知一次函数y=(m﹣1)x+m﹣2与反比例函数y=(k≠0).(1)若一次函数与反比例函数的图象都经过点A(m,﹣1),求m与k的值.(2)已知点B(x1,y1),C(x2,y2)在该一次函数图象上,设k=(x1﹣x2)(y1﹣y2),判断反比例函数y=的图象所在的象限,说明理由.33.如图,一次函数y1=x+4的图象与反比例函数y2=的图象交于A(﹣1,a),B两点,与x轴交于点C.(1)求k.(2)根据图象直接写出y1>y2时,x的取值范围.(3)若反比例函数y2=与一次函数y1=x+4的图象总有交点,求k的取值.34.如图,已知反比例函数y1=的图象与一次函数y2=ax+b的图象交于点A(1,4)和点B(m,﹣2).(1)求这两个函数的解析式;(2)观察图象,写出使得y1<y2成立的自变量x的取值范围.35.已知一次函数y1=x﹣a+2的图象与反比例函数的图象相交.(1)判断y2是否经过点(k,1).(2)若y1的图象过点(k,1),且2a+k=5.①求y2的函数表达式.②当x>0时,比较y1,y2的大小.36.如图,一次函数y1=k1x+b(k1、b为常数,k1≠0)的图象与反比例函数y2=(k2≠0,x>0)的图象交于点A(m,8)与点B(4,2).①求一次函数与反比例函数的解析式.②根据图象说明,当x为何值时,k1x+b﹣<0.37.M(1,a)是一次函数y=3x+2与反比例函数y=图象的公共点,将一次函数y=3x+2的图象向下平移4个单位得到的解析式为y=kʹx+b(1)求y=kʹx+b和y=的解析式;(2)若A1(x1,x2),A2(x2,y2),A3(x3,y3)为双曲线y=上三点,且x1<0<x2<x3,请直接写出y1,y2,y3大小关系;(3)画出图象,观察图象直接写出不等式kʹx+b>的解集.38.心理学家研究发现,一般情况下,一节课40分钟中,学生的注意力随教师讲课的变化而变化.开始上课时,学生的注意力逐步增强,中间有一段时间学生的注意力保持较为理想的稳定状态,随后学生的注意力开始分散.经过实验分析可知,学生的注意力指标数y随时间x(分钟)的变化规律如图所示(其中AB、BC分别为线段,CD为双曲线的一部分):(1)根据图象填空:AB的解析式为(0≤x≤10);BC的解析式为(10≤x≤25);CD的解析式为(x≥25);(2)开始上课后第五分钟时与第三十分钟时相比较,何时学生的注意力更集中?(3)一道数学竞赛题,需要讲19分钟,为了效果较好,要求学生的注意力指标数最低达到36,那么经过适当安排,老师能否在学生注意力达到所需的状态下讲解完这道题目?39.武汉某钢材市场调进1200吨钢材产品,需要入库存放.(1)入库所需要的时间t(单位:天)与入库速度V(单位:吨/天),有怎样的函数关系;(2)市场计划安排40名工人,每天最多可入库300吨,预计这批产品最快可在几天内完成入库工作;(3)这批工人连续工作2天后,接到通知要在第二天之内将剩下的产品全部入库,需要增加多少人帮忙才能完成任务?40.如图,在平面直角坐标系中,反比例函数y=(x>0)的图象经过点A(1,2),B(m,n)(m>1),过点B作y轴的垂线,垂足为C.(1)求该反比例函数解析式;(2)当△ABC面积为2时,求点B的坐标.41.在平面直角坐标系中,反比例函数y=(x>0,k>0)的图象经过点A(m,n),B(2,1),且n>1,过点B作y轴的垂线,垂足为C,若△ABC的面积为2,求点A的坐标.42.将x=代入函数y=﹣中,所得函数值记为y1,又将x=y1+1代入函数y=﹣中,所得的函数值记为y2,再将x=y2+1代入函数中,所得函数值记为y3…,继续下去.y1=;y2=;y3=;y2006=.43.如图,已知动点P在函数y=(x>0)的图象上运动,PM丄x轴于点M,PN丄y轴于点N,线段PM、PN分别与直线AB:y=﹣x+1交于点E,F,求AF•BE的值.44.如图,在平面直角坐标系中,函数(x>0,常数k>0)的图象经过点A(1,2),B(m,n),(m >1),过点B作y轴的垂线,垂足为C.若△ABC的面积为2,求点B的坐标.45.如图,在平面直角坐标系中,反比例函数的图象经过点A(1,2),B(m,n)(m>1),过点B作y轴的垂线,垂足为C.(1)求该反比例函数解析式;(2)当△ABC面积为2时,求点B的坐标.46.将x=代入反比例函数y=﹣中,所得函数值记为y1,又将x=y1+1代入函数中,所得函数值记为y2,再将x=y2+1代入函数中,所得函数值记为y3,…,如此继续下去.(1)完成下表y1y2y3y4y5(2)观察上表,你发现了什么规律?猜想y2004=.47.如图,已知反比例函数的图象上有一点P,过点P分别作x轴和y轴的垂线,垂足分别为A、B,使四边形OAPB为正方形.又在反比例函数的图象上有一点P1,过点P1分别作BP和y轴的垂线,垂足分别为A1、B1,使四边形BA1P1B1为正方形,求点P和点P1的坐标.48.如图,P1(x1,y1),P2(x2,y2),…P n(x n,y n)在函数y=(x>0)的图象上,△P1OA1,△P2A1A2,△P3A2A3,…△P n A n﹣1A n都是等腰直角三角形,斜边OA1、A1A2、A2A3,…A n﹣1A n都在x轴上(1)求P1的坐标;(2)求y1+y2+y3+…y10的值.49.如图,一次函数y=﹣2x+b(b为常数)的图象与反比例函数(k为常数,且k≠0)的图象交于A,B两点,且点A的坐标为(﹣1,4).(1)分别求出反比例函数及一次函数的表达式;(2)求点B的坐标.50.如图,点B在线段AC上,点D、E在AC同侧,∠A=∠C=90°,BD⊥BE,AD=BC.(1)求证:AC=AD+CE;(2)若AD=3,CE=5,点P为线段AB上的动点,连接DP,作PQ⊥DP,交直线BE于点Q;(i)当点P与A、B两点不重合时,求的值;(ii)当点P从A点运动到AC的中点时,求线段DQ的中点所经过的路径(线段)长.(直接写出结果,不必写出解答过程)51.如图,一次函数y=kx+5(k为常数,且k≠0)的图象与反比例函数y=﹣的函数交于A(﹣2,b),B两点.(1)求一次函数的表达式;(2)若将直线AB向下平移m(m>0)个单位长度后与反比例函数的图象有且只有一个公共点,求m 的值.52.如图,矩形ABCD中,AD=2AB,E是AD边上一点,DE=AD(n为大于2的整数),连接BE,作BE的垂直平分线分别交AD,BC于点F,G,FG与BE的交点为O,连接BF和EG.(1)试判断四边形BFEG的形状,并说明理由;(2)当AB=a(a为常数),n=3时,求FG的长;(3)记四边形BFEG的面积为S1,矩形ABCD的面积为S2,当=时,求n的值.(直接写出结果,不必写出解答过程)53.在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28m长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),设AB=xm.(1)若花园的面积为192m2,求x的值;(2)若在P处有一棵树与墙CD,AD的距离分别是15m和6m,要将这棵树围在花园内(含边界,不考虑树的粗细),求花园面积S的最大值.54.如图,一次函数y=﹣x+4的图象与反比例函数y=(k为常数,且k≠0)的图象交于A(1,a),B 两点.(1)求反比例函数的表达式及点B的坐标;(2)在x轴上找一点P,使P A+PB的值最小,求满足条件的点P的坐标及△P AB的面积.55.如图,在平面直角坐标xOy中,正比例函数y=kx的图象与反比例函数y=的图象都经过点A(2,﹣2).(1)分别求这两个函数的表达式;(2)将直线OA向上平移3个单位长度后与y轴交于点B,与反比例函数图象在第四象限内的交点为C,连接AB,AC,求点C的坐标及△ABC的面积.56.如图,在平面直角坐标系xOy中,已知正比例函数y=x的图象与反比例函数y=的图象交于A(a,﹣2),B两点.(1)求反比例函数的表达式和点B的坐标;(2)P是第一象限内反比例函数图象上一点,过点P作y轴的平行线,交直线AB于点C,连接PO,若△POC的面积为3,求点P的坐标.57.如图,在平面直角坐标系xOy中,一次函数y=x+b的图象经过点A(﹣2,0),与反比例函数y=(x >0)的图象交于B(a,4).(1)求一次函数和反比例函数的表达式;(2)设M是直线AB上一点,过M作MN∥x轴,交反比例函数y=(x>0)的图象于点N,若A,O,M,N为顶点的四边形为平行四边形,求点M的坐标.58.如图,在平面直角坐标系xOy中,一次函数y=x+5和y=﹣2x的图象相交于点A,反比例函数y=的图象经过点A.(1)求反比例函数的表达式;(2)设一次函数y=x+5的图象与反比例函数y=的图象的另一个交点为B,连接OB,求△ABO的面积.59.在平面直角坐标系xOy中,反比例函数y=(x>0)的图象经过点A(3,4),过点A的直线y=kx+b 与x轴、y轴分别交于B,C两点.(1)求反比例函数的表达式;(2)若△AOB的面积为△BOC的面积的2倍,求此直线的函数表达式.60.如图,在平面直角坐标系xOy中,一次函数y=x+的图象与反比例函数y=(x>0)的图象相交于点A(a,3),与x轴相交于点B.(1)求反比例函数的表达式;(2)过点A的直线交反比例函数的图象于另一点C,交x轴正半轴于点D,当△ABD是以BD为底的等腰三角形时,求直线AD的函数表达式及点C的坐标.参考答案与试题解析一.选择题(共18小题)1.若函数y=(m2﹣3m+2)x|m|﹣3是反比例函数,则m的值是()A.1B.﹣2C.2或﹣2D.2【解答】解:∵函数y=(m2﹣3m+2)x|m|﹣3是反比例函数,∴|m|﹣3=﹣1,且m2﹣3m+2≠0,∴m=±2,当m=2时,m2﹣3m+2=0,不合题意舍去,当m=﹣2时,m2﹣3m+2=12≠0,∴m=﹣2,故选:B.2.下列函数中,是反比例函数的是()A.y=﹣B.y=﹣C.y=﹣2x2D.y=﹣2x+1【解答】解:A、是正比例函数,不是反比例函数,故此选项不合题意;B、是反比例函数,故此选项符合题意;C、是二次函数,不是反比例函数,故此选项不符合题意;D、是一次函数,不是反比例函数,故此选项不符合题意;故选:B.3.下列关系式中,y是x的反比例函数的是()A.y=4x B.y=C.y=﹣D.y=【解答】解:A、是正比例函数,不是反比例函数,故此选项不合题意;B、不是反比例函数,故此选项不合题意;C、是反比例函数,故此选项符合题意;D、不是反比例函数,故此选项不合题意;故选:C.4.若反比例函数y=的图象经过点(﹣2,﹣3),则该函数图象位于()A.第一、二象限B.第二、四象限C.第三、四象限D.第一、三象限【解答】解:将点(﹣2,﹣3)代入y=得,k=6,可知函数图象位于一、三象限.故选:D.5.已知反比例函数y=(k≠0)的图象经过点(1,﹣3),若x<﹣1,则y的取值范围为()A.y>3B.y<3C.﹣3<y<0D.0<y<3【解答】解:把(1,﹣3)代入y=(k≠0)得k=1×(﹣3)=﹣3,∴反比例函数y=﹣的图象在二、四象限,在每个象限,y随x的增大而增大,当x=﹣1时,y=﹣=3;所以当x<﹣1时,函数值y的取值范围为0<y<3,故选:D.6.反比例函数y=的图象在每一象限内,y随x的增大而减小,则k的取值范围是()A.k>1B.k<1C.k=1D.k≠1【解答】解:∵反比例函数y=的图象在每一象限内,y随x的增大而减小,∴k﹣1>0,解得:k>1,故选:A.7.对于反比例函数,下列说法不正确的是()A.图象经过点(1,﹣3)B.图象分布在第二、四象限C.点A(x1,y1),B(x2,y2)都在反比例函数的图象上,若x1<x2,则y1<y2D.当x>0时,y随x的增大而增大【解答】解:A.把(1,﹣3)代入得:左边=﹣3,右边=﹣3,左边=右边,所以点(1,﹣3)在该函数的图象上,故本选项说法正确;B.∵反比例函数中﹣3<0,∴该函数的图象在第二、四象限,故本选项说法正确;C.∵反比例函数中﹣3<0,∴函数的图象在每个象限内,y随x的增大而增大,∴若A(x1,y1),B(x2,y2)在同一象限,x1<x2,则y1<y2,故本选项说法不正确;D.反比例函数的图象在第四象限,y随x的增大而增大,故本选项说法正确;故选:C.8.已知反比例函数(k≠0),当x<0时,y随x的增大而增大,那么一次函数y=kx﹣k的图象经过()A.第一、二、三象限B.第一、二、四象限C.第一、三、四象限D.第二、三、四象限【解答】解:因为反比例函数(k≠0),当x<0时,y随x的增大而增大,根据反比例函数的性质,k<0,再根据一次函数的性质,一次函数y=kx﹣k的图象经过第一、二、四象限.故选:B.9.在同一坐标系中,函数和y=kx+2的图象大致是()A.B.C.D.【解答】解:∵两个函数的比例系数均为k,∴两个函数图象必有交点,y=kx+2交y轴的正半轴,符合这两个条件的选项只有C,故选:C.10.函数y=﹣的图象在()A.第一、三象限B.第二、四象限C.第一、二象限D.第三、四象限【解答】解:∵反比例函数y=﹣中k=﹣,∴函数y=﹣的图象在第二、四象限.故选:B.11.反比例函数y=的图象如图所示,点A是该函数图象上一点,AB垂直于x轴垂足是点B,如果S△AOB =1,则k的值为()A.1B.﹣1C.2D.﹣2【解答】解:由于点A在反比例函数y=的图象上,则S△AOB=|k|=1,k=±2;又由于函数的图象在第二象限,故k<0,则k=﹣2.故选:D.12.如图,正比例函数y=kx与反比例函数y=的图象相交于A、C两点,过点A作x轴的垂线交x轴于点B,连接BC,则△ABC的面积等于()A.8B.6C.4D.2【解答】解:∵点A、C位于反比例函数图象上且关于原点对称,∴A、C两点到x轴的距离相等,∴S△OBA=S△OBC,∵S△OBA=|k|=×4=2,∴S△OBC=2∴S△ABC=S△OBA+S△OBC=4.故选:C.13.如图,设P是函数y=在第二象限的图象上的任意一点,点P关于原点的对称点P′.过P作P A∥y 轴,过P′作P′A∥x轴,P A与P′A交于点A,则△P AP′的面积是()A.2B.4C.8D.随P的变化而变化【解答】解:连接OA,P A交x轴于B,如图,∵点P关于原点的对称点P′,∴PO=P′0,∵P′A∥x轴,∴OB∥AP′,∴PB=AB,∵S△POB=×|﹣4|=2,∴S△POA=2S△POB=4,∴S△P AP′=2S△POA=8.故选:C.14.如图所示,直线l和反比例函数y=(k>0)的图象的一支交于A,B两点,P是线段AB上的点(不与A,B重合),过点A,B,P分别向x轴作垂线,垂足分别是C,D,E,连接OA,OB,OP,设△AOC 面积是S1,△BOD面积是S2,△POE面积是S3,则()A.S1<S2<S3B.S1>S2>S3C.S1=S2>S3D.S1=S2<S3【解答】解:结合题意可得:AB都在双曲线y=上,则有S1=S2;而线段AB之间,直线在双曲线上方;故S1=S2<S3.故选:D.15.如图,A、B是双曲线y=上关于原点对称的任意两点,AC∥y轴,BD∥y轴,则四边形ACBD的面积S满足()A.S=1B.1<S<2C.S=2D.S>2【解答】解:∵A,B是函数y=的图象上关于原点O对称的任意两点,且AC平行于y轴,BD平行于y轴,∴S△AOC=S△BOD=,假设A点坐标为(x,y),则B点坐标为(﹣x,﹣y),则OC=OD=x,∴S△AOD=S△AOC=,S△BOC=S△BOD=,∴四边形ABCD面积=S△AOD+S△AOC+S△BOC+S△BOD=×4=2.故选:C.16.如图,在x轴的正半轴上依次截取OA1=A1A2=A2A3=A3A4=A4A5,过点A1、A2、A3、A4、A5分别作x轴的垂线与反比例函数y=(x>0)的图象相交于点P1、P2、P3、P4、P5,得直角三角形OP1A1、A1P2A2、A2P3A3、A3P3A4、A4P5A5,并设其面积分别为S1、S2、S3、S4、S5,则S1+S2+S3+S4+S5的值为()A.2B.C.3D.【解答】解:由于OA1=A1A2=A2A3=A3A4=A4A5,S1=|k|,S2=|k|,S3=|k|,S4=|k|,S5=|k|;则S1+S2+S3+S4+S5=(++++)|k|=×2=,故选:B.17.如图,点A、B是函数y=x与y=的图象的两个交点,作AC⊥x轴于C,作BD⊥x轴于D,则四边形ACBD的面积为()A.S>2B.S>1C.S<1D.S=2【解答】解:根据反比例函数的对称性可知:OB=OA,OD=OC,∴四边形ABCD的面积为S△AOC+S△ODA+S△ODB+S△OBC=1×2=2.故选:D.18.如图,过反比例函数y=(x>0)图象上任意两点A、B分别作x轴的垂线,垂足为C、D,连接OA、OB.设AC与OB的交点为E,△AOE与梯形ECDB的面积分别为S1、S2,则()A.S1>S2B.S1=S2C.S1<S2D.S1、S2的大小关系不确定【解答】解:∵S△AOC=S△OBD,即S△AOE+S△OEC=S△OEC+S梯形ECDB,∴S△AOE=S梯形ECDB.即S1=S2.故选:B.二.填空题(共13小题)19.如图,已知点A,B在双曲线y=(x>0)上,AC⊥x轴于点C,BD⊥y轴于点D,AC与BD交于点P,P是AC的中点.若△ABP的面积为4,则k=16.【解答】解:∵△ABP的面积为•BP•AP=4,∴BP•AP=8,∵P是AC的中点,∴A点的纵坐标是B点纵坐标的2倍,又∵点A、B都在双曲线y=(x>0)上,∴B点的横坐标是A点横坐标的2倍,∴OC=DP=BP,∴k=OC•AC=BP•2AP=16.故答案为:16.20.如图,已知矩形OABC的面积为,它的对角线OB与双曲线y=相交于点D,且OB:OD=5:3,则k=6.【解答】解:设D的坐标是(3m,3n),则B的坐标是(5m,5n).∵矩形OABC的面积为,∴5m•5n=,∴mn=.把D的坐标代入函数解析式得:3n=,∴k=9mn=9×=6.故答案为6.21.如图,已知双曲线y=经过直角三角形OAB斜边OB的中点D,与直角边AB相交于点C,若△OBC 的面积为9,则k=6.【解答】解:过D点作x轴的垂线交x轴于E点,∵△ODE的面积和△OAC的面积相等.∴△OBC的面积和四边形DEAB的面积相等且为9.设D点的横坐标为x,纵坐标就为,∵D为OB的中点.∴EA=x,AB=,∴四边形DEAB的面积可表示为:(+)x=9k=6.故答案为:6.22.如图,已知双曲线y=(k>0)经过直角三角形OAB斜边OB的中点D,与直角边AB相交于点C,若△OBC的面积为6,则k=4.【解答】解:过D点作x轴的垂线交x轴于E点,∵△ODE的面积和△OAC的面积相等.∴△OBC的面积和四边形DEAB的面积相等且为6.设D点的横坐标为x,纵坐标就为,∵D为OB的中点.∴EA=x,AB=,∴四边形DEAB的面积可表示为:(+)x=6k=4.故答案为:4.23.如图,已知双曲线y=(k>0)经过Rt△OAB斜边OB的中点D,与直角边AB相交于点C.点A在x轴上.若△DOC的面积为3,则k=4.【解答】解:如图,过D点作DE⊥x轴,垂足为E.∵Rt△OAB中,∠OAB=90°,∴DE∥AB,∵D为Rt△OAB斜边OB的中点D,∴DE为Rt△OAB的中位线,∵△OED∽△OAB,∴=.∵双曲线的解析式是,∴S△AOC=S△DOE=k,∴S△AOB=4S△DOE=2k,由S△AOB﹣S△AOC=S△OBC=2S△DOC=6,得2k﹣k=6,解得k=4.故答案为:4.24.双曲线y=(k<0)经过Rt△OAB斜边OB的中点D,与直角边AB相交于点C,若△OAB的面积为3,则k=﹣.【解答】解:过D点作DE⊥x轴,垂足为E,由双曲线y=(k<0),可知S△AOC=S△DOE=﹣k,∵D为Rt△OAB斜边OB的中点D,∴DE为Rt△OAB的中位线,S△AOB=4S△DOE=﹣2k,由S△AOB=3,得﹣2k=3,解得k=﹣.故答案为:﹣.25.如图,在平面直角坐标系xOy中,直线AB与x轴、y轴分别交于点A,B,与反比例函数(k为常数,且k>0)在第一象限的图象交于点E,F.过点E作EM⊥y轴于M,过点F作FN⊥x轴于N,直线EM与FN交于点C.若(m为大于l的常数).记△CEF的面积为S1,△OEF的面积为S2,则=.(用含m的代数式表示)【解答】解:方法一:过点F作FG⊥y轴于点G,∵S四边形MEFO=S△MEO+S△OEF=+S△OEF,又∵S四边形MEFO=S梯形MEFG+S△FGO=S梯形MEFG+,∴S△OEF=S梯形MEFG=S2,则=,又∵CF=MG,∴=,由=,得:=,∵OB∥NC,∴==,则=,∴=.方法二:如图2,过点F作FD⊥BO于点D,EW⊥AO于点W,∵,∴=,∵ME•EW=FN•DF,∴=,∴=,设E点坐标为:(x,my),则F点坐标为:(mx,y),∴△CEF的面积为:S1=(mx﹣x)(my﹣y)=(m﹣1)2xy,∵△OEF的面积为:S2=S矩形CNOM﹣S1﹣S△MEO﹣S△FON,=MC•CN﹣(m﹣1)2xy﹣ME•MO﹣FN•NO,=mx•my﹣(m﹣1)2xy﹣x•my﹣y•mx,=m2xy﹣(m﹣1)2xy﹣mxy,=(m2﹣1)xy,=(m+1)(m﹣1)xy,∴==.故答案为:.26.如图,在边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,N是AB边上的一动点,将△AMN 沿MN所在直线翻折得到△A′MN,连接A′C,则A′C长度的最小值是﹣1.【解答】解:如图所示:∵MA′是定值,A′C长度取最小值时,即A′在MC上时,过点M作MF⊥DC于点F,∵在边长为2的菱形ABCD中,∠A=60°,M为AD中点,∴2MD=AD=CD=2,∠FDM=60°,∴∠FMD=30°,∴FD=MD=,∴FM=DM×cos30°=,∴MC==,∴A′C=MC﹣MA′=﹣1.故答案为:﹣1.27.如图,在平面直角坐标系xOy中,直线y=x与双曲线y=相交于A,B两点,C是第一象限内双曲线上一点,连接CA并延长交y轴于点P,连接BP,BC.若△PBC的面积是20,则点C的坐标为(,).【解答】解:BC交y轴于D,如图,设C点坐标为(a,)解方程组得或,∴A点坐标为(2,3),B点坐标为(﹣2,﹣3),设直线BC的解析式为y=kx+b,把B(﹣2,﹣3)、C(a,)代入得,解得,∴直线BC的解析式为y=x+﹣3,当x=0时,y=x+﹣3=﹣3,∴D点坐标为(0,﹣3)设直线AC的解析式为y=mx+n,把A(2,3)、C(a,)代入得,解得,∴直线AC的解析式为y=﹣x++3,当x=0时,y=x++3=+3,∴P点坐标为(0,+3)∵S△PBC=S△PBD+S△CPD,∴×2×6+×a×6=20,解得a=,∴C点坐标为(,).故答案为:(,).28.已知菱形A1B1C1D1的边长为2,∠A1B1C1=60°,对角线A1C1,B1D1相交于点O,以点O为坐标原点,分别以OA1,OB1所在直线为x轴、y轴,建立如图所示的直角坐标系,以B1D1为对角线作菱形B1C2D1A2∽菱形A1B1C1D1,再以A2C2为对角线作菱形A2B2C2D2∽菱形B1C2D1A2,再以B2D2为对角线作菱形B2C3D2A3∽菱形A2B2C2D2,…,按此规律继续作下去,在x轴的正半轴上得到点A1,A2,A3,…,A n,则点A n的坐标为(3n﹣1,0).【解答】解:∵菱形A1B1C1D1的边长为2,∠A1B1C1=60°,∴OA1=A1B1•sin30°=2×=1,OB1=A1B1•cos30°=2×=,∴A1(1,0).∵菱形B1C2D1A2∽菱形A1B1C1D1,∴OA2===3,∴A2(3,0).同理可得A3(9,0)…∴A n(3n﹣1,0).故答案为:(3n﹣1,0).29.在平面直角坐标系xOy中,对于不在坐标轴上的任意一点P(x,y),我们把点P′(,)称为点P的“倒影点”,直线y=﹣x+1上有两点A,B,它们的倒影点A′,B′均在反比例函数y=的图象上.若AB=2,则k=﹣.【解答】解:(方法一)设点A(a,﹣a+1),B(b,﹣b+1)(a<b),则A′(,),B′(,),∵AB===(b﹣a)=2,∴b﹣a=2,即b=a+2.∵点A′,B′均在反比例函数y=的图象上,∴,解得:k=﹣.(方法二)∵直线y=﹣x+1上有两点A、B,且AB=2,∴设点A的坐标为(a,﹣a+1),则点B的坐标为(a+2,﹣a﹣1),点A′的坐标为(,),点B′的坐标为(,﹣).∵点A′,B′均在反比例函数y=的图象上,∴,解得:.故答案为:﹣.30.设双曲线y=(k>0)与直线y=x交于A,B两点(点A在第三象限),将双曲线在第一象限的一支沿射线BA的方向平移,使其经过点A,将双曲线在第三象限的一支沿射线AB的方向平移,使其经过点B,平移后的两条曲线相交于P,Q两点,此时我们称平移后的两条曲线所围部分(如图中阴影部分)为双曲线的“眸”,PQ为双曲线的“眸径“,当双曲线y=(k>0)的眸径为6时,k的值为.【解答】解:以PQ为边,作矩形PQQ′P′交双曲线于点P′、Q′,如图所示.联立直线AB及双曲线解析式成方程组,,解得:,,∴点A的坐标为(﹣,﹣),点B的坐标为(,).∵PQ=6,∴OP=3,点P的坐标为(﹣,).根据图形的对称性可知:PP′=AB=QQ′,∴点P′的坐标为(﹣+2,+2).又∵点P′在双曲线y=上,∴(﹣+2)•(+2)=k,解得:k=.故答案为:.31.若m,n是一元二次方程x2+2x﹣1=0的两个实数根,则m2+4m+2n的值是﹣3.【解答】解:∵m是一元二次方程x2+2x﹣1=0的根,∴m2+2m﹣1=0,∴m2+2m=1,∵m、n是一元二次方程x2+2x﹣1=0的两个根,∴m+n=﹣2,∴m2+4m+2n=m2+2m+2m+2n=1+2×(﹣2)=﹣3.故答案为:﹣3.三.解答题(共29小题)32.已知一次函数y=(m﹣1)x+m﹣2与反比例函数y=(k≠0).(1)若一次函数与反比例函数的图象都经过点A(m,﹣1),求m与k的值.(2)已知点B(x1,y1),C(x2,y2)在该一次函数图象上,设k=(x1﹣x2)(y1﹣y2),判断反比例函数y=的图象所在的象限,说明理由.【解答】解:(1)一次函数的图象都经过点A(m,﹣1),∴﹣1=m(m﹣1)+m﹣2且m﹣1≠0,∴m=﹣1,∴A(﹣1,﹣1),∵反比例函数的图象都经过点A(﹣1,﹣1),∴k=1;(2)∵点B(x1,y1),C(x2,y2)在该一次函数图象上,∴①﹣②得y1﹣y2=(m﹣1)(x1﹣x2),∵k=(x1﹣x2)(y1﹣y2),∴k=(m﹣1)(x1﹣x2)2,∴当m>1时,k>0,反比例函数的图象在一三象限;当m<1时,k<0,反比例函数的图象在二四象限.33.如图,一次函数y1=x+4的图象与反比例函数y2=的图象交于A(﹣1,a),B两点,与x轴交于点C.(1)求k.(2)根据图象直接写出y1>y2时,x的取值范围.(3)若反比例函数y2=与一次函数y1=x+4的图象总有交点,求k的取值.【解答】解:(1)一次函数y1=x+4的图象过A(﹣1,a),∴a=﹣1+4=3,∴A(﹣1,3)代入反比例函数y2=得,k=﹣3(2)反比例函数y2=﹣,由题意得,,解得,,,∴点B(﹣3,1)当y1>y2,即一次函数的图象位于反比例函数图象上方时,自变量的取值范围为:﹣3<x<﹣1或x>0;(3)若反比例函数y2=与一次函数y1=x+4的图象总有交点,即,方程=x+4有实数根,也就是x2+4x﹣k=0有实数根,∴16+4k≥0,解得,k≥﹣4,∵k≠0,∴k的取值范围为:k≥﹣4且k≠0.34.如图,已知反比例函数y1=的图象与一次函数y2=ax+b的图象交于点A(1,4)和点B(m,﹣2).(1)求这两个函数的解析式;(2)观察图象,写出使得y1<y2成立的自变量x的取值范围.【解答】解:(1)∵A(1,4)在反比例函数y1=的图象上,∴k=4,∴反比例函数解析式为y1=,∵点B(m,﹣2)在反比例函数y1=的图象上,∴﹣2m=4,解得m=﹣2,∴B点坐标为(﹣2,﹣2),∴一次函数y2=ax+b的图象过点A(1,4)和点B(﹣2,﹣2),∴,解得,∴一次函数解析式为y2=2x+2;(2)由图象可知当反比例函数图象在一次函数图象下方时,对应的x的取值范围为﹣2<x<0或x>1,∴使得y1<y2成立的自变量x的取值范围﹣2<x<0或x>1.35.已知一次函数y1=x﹣a+2的图象与反比例函数的图象相交.(1)判断y2是否经过点(k,1).(2)若y1的图象过点(k,1),且2a+k=5.①求y2的函数表达式.②当x>0时,比较y1,y2的大小.【解答】解:(1)点(k,1)满足反比例函数的关系式,因此y2经过点(k,1).(2)①把(k,1)代入一次函数y1=x﹣a+2得,k﹣a+2=1,又∵2a+k=5,解得:a=2,k=1,∴y2的函数表达式为y2=.②由函数的图象可知:当0<x<1时,y1<y2,当x=1时,y1=y2,当x>1时,y1>y2.36.如图,一次函数y1=k1x+b(k1、b为常数,k1≠0)的图象与反比例函数y2=(k2≠0,x>0)的图象交于点A(m,8)与点B(4,2).①求一次函数与反比例函数的解析式.②根据图象说明,当x为何值时,k1x+b﹣<0.【解答】解:①把点B(4,2)代入反比例函数y2=(k2≠0,x>0)得,k2=4×2=8,∴反比例函数的解析式为y2=,将点A(m,8)代入y2得,8=,解得m=1,∴A(1,8),将A、B的坐标代入y1=k1x+b(k1、b为常数,k1≠0)得,解得,∴一次函数的解析式为y1=﹣2x+10;②由图象可知:当0<x<1或x>4时,y1<y2,即k1x+b﹣<0.37.M(1,a)是一次函数y=3x+2与反比例函数y=图象的公共点,将一次函数y=3x+2的图象向下平移4个单位得到的解析式为y=kʹx+b(1)求y=kʹx+b和y=的解析式;。

(典型题)北师大版九年级上册数学第六章 反比例函数含答案

(典型题)北师大版九年级上册数学第六章 反比例函数含答案

北师大版九年级上册数学第六章反比例函数含答案一、单选题(共15题,共计45分)1、如图,在平面直角坐标系中,函数与的图象交于点,则代数式的值为()A. B. C. D.2、若反比例函数的图象经过点(1,-2),则k=()A.-2B.2C.D.-3、已知点A(,),B(1,),C(2,)是函数图象上的三点,则,,的大小关系是()A. <<B. <<C. <<D.无法确定4、若反比例函数y=的图象位于第二、四象限,则k的取值可能是()A.4B.3C.2D.05、在反比例函数的每一条曲线上,y都随着x的增大而增大,则k的值可以是()A.-1B.0C.1D.26、设有反比例函数y=,(x1, y1)、(x2, y2)为其图象上的两点,若x1<0<x2时y1>y2,则k的取值范围是()A.k>0B.k<0C.k>-1D.k<-17、直线y=3x与双曲线的一个分支(k≠0、x>0)相交,则该分支所在象限为()A.1B.2C.3D.48、点A(x1, y1),B(x2, y2),C(x3, y3)都是反比例函数的图象上,若x1<x2<0<x3,则y1, y2, y3的大小关系是()A.y3<y1<y2B.y1<y2<y3C.y3<y2<y1D.y2<y1<y39、点A为反比例函数图象上一点,它到原点的距离为5,则x轴的距离为3,若点A第二象限内,则这个函数的解析式为()A.y=B.y=﹣C.y=D.y=﹣10、当x<0时,函数的图象在( )A.第四象限B.第三象限C.第二象限D.第一象限11、若,点M(a,b)在反比例函数的图象上,则反比例函数的解析式为()A. B. C. D.12、函数是反比例函数,则m的值为()A.0B.-1C.0或-1D.0或113、如图,点在双曲线上,点在双曲线上,轴,过点作轴于.连接,与相交于点,若,则的值为()A.6B.9C.10D.1214、如图,在同一平面直角坐标系中,直线与双曲线相交于两点,已知点A的坐标为,则点B的坐标为()A. B. C. D.15、如图,点A的反比例函数y=(x>0)的图象上,点B在反比例函数y =(x>0)的图象上,AB∥x轴,BC⊥x轴,垂足为C,连接AC,若△ABC 的面积是6,则k的值为()A.10B.12C.14D.16二、填空题(共10题,共计30分)16、已知直线y= x+2与y轴交于点A,与双曲线y= 有一个交点为B(2,3),将直线AB向下平移,与x轴.y轴分别交于点C,D,与双曲线的一个交点为P,若,则点D的坐标为________.17、如图,矩形ABCD的边AB与x轴平行,顶点A的坐标为(2,1),点B与点D都在反比例函数的图象上,则矩形ABCD的周长为________.18、正比例函数与反比例函数的图象交于A,B两点,若点A的坐标是(1,2),则点B的坐标是________.19、如图,正方形ABOC的边长为2,反比例函数y= 过点A,则k的值是________.20、在平面直角坐标系中,O为坐标原点,设点P(1,t)在反比例函数y=的图象上,过点P作直线l与x轴平行,点Q在直线l上,满足QP=OP.若反比例函数y=的图象经过点Q,则k=________ .21、如图,过原点的直线与反比例函数的图象相交于点、,根据图中提供的信息可知,这个反比例函数的解析式为________.22、如图,在平面直角坐标系中,已知直线y=kx(k>0)分别交反比例函数y= 和y= 在第一象限的图象于点A、B,过点B作BD⊥x轴于点D,交y= 的图象于点C,连结AC.若△ABC是等腰三角形,则k的值是________ .23、如图,平面直角坐标系中,⊙O1过原点O,且⊙O1与⊙O2相外切,圆心O1与O 2在x轴正半轴上,⊙O1的半径O1P1、⊙O2的半径O2P2都与x轴垂直,且点P1、P2在反比例函数(x>0)的图象上,则________.24、如图,平面直角坐标系中,OB在x轴上,∠ABO=90°,点A的坐标为(﹣1,2),将△AOB绕点A顺时针旋转90°,点O的对应点D恰好落在双曲线y=上,则k的值为________.25、若反比例函数的图象经过第一、三象限,则 k的取值范围是________.三、解答题(共5题,共计25分)26、已知, 与成正比例, 与成反比例,且当时,; 时, .试求当时, 的值.27、如图,△OAP、△ABQ是等腰直角三角形,点P、Q在函数(k≠0)第一象限的图像上,直角顶点A、B均在x轴上,若OA=3,求点Q的坐标.28、如图所示,Rt△AOB中,∠AOB=90°,OA=10,点B在反比例函数y=图象上,且点B的横坐标为3.(1)求OB的长;(2)求过点A的双曲线的解析式.29、按要求完成下列各小题.(1)解方程:x2+6x+2=2x+7;(2)如图是反比例函数y=在第三象限的图案,点M在该图象上,且点M到点x轴,y轴的距离都等于|k|,求k的值.30、美美用300元钱全部用来买营养品送给她妈妈,写出她所能购买营养品的数量y(kg)与单价x(元/kg)之间的关系式.问y是x的函数吗?y是x的反比例函数吗?参考答案一、单选题(共15题,共计45分)1、C2、A3、B4、D5、D6、D7、A8、A9、B10、C11、A12、A13、B14、A15、D二、填空题(共10题,共计30分)16、17、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、27、29、30、。

北师大版九年级数学上册期末复习专项:反比例函数综合(一)

北师大版九年级数学上册期末复习专项:反比例函数综合(一)

九年级数学上册期末复习专项:反比例函数综合(一)一.选择题1.已知反比例函数y =和正比例函数y =的图象没有交点,若点(﹣3,y 1).(﹣1,y 2),(1,y 3)在这个反比例函数y =的图象上,则下列结论中正确的是( ) A .y 1>y 2>y 3B .y 2>y 1>y 3C .y 3>y 1>y 2D .y 3>y 2>y 12.如图直线y 1=ax +b 与双曲线y 2=相交于A 、B 两点,则不等式y 1>y 2的解集是( )A .﹣1<x <0或0<x <2B .x <﹣1或0<x <2C .x <﹣1或x <2D .﹣1<x <0或x >23.如图,函数y 1=x +1与函数y 2=的图象相交于点M (m ,2),N (n ,﹣1).若y 1>y 2,则x 的取值范围是( )A .x <﹣2或0<x <1B .x <﹣2或x >1C .﹣2<x <0或0<x <1D .﹣2<x <0或x >14.已知直线y =kx (k >0)与双曲线y =交于A (x 1,y 1),B (x 2,y 2)两点,则x 1y 2﹣x 2y 1的值为( )A .0B .﹣8C .﹣10D .105.若正比例函数y =﹣4x 与反比例函数y =的图象相交于A ,B 两点,其中点A 的横坐标为2,则k 的值为( ) A .﹣16B .﹣8C .16D .86.在平面直角坐标系中,横、纵坐标都是整数的点叫做整点,已知函数y =(x >0)的图象G 经过点A (4,1),直线l :y =x +b 与图象G 交于点B ,与y 轴交于点C .记图象G 在点A ,B 之间的部分与线段OA ,OC ,BC 围成的区域(不含边界)为W ,若区域W 内恰有4个整点,则b 的取值范围是( ) A .﹣<b ≤﹣B .<b ≤C .﹣≤b <﹣或<b ≤D .﹣<b ≤﹣或≤b <7.直线y 1=x +1与双曲线y 2=(k >0)交于A (2,m ),B (﹣3,n )两点,则当y 1>y 2时,x 的取值范围是( ) A .x >﹣3或0<x <2 B .x <﹣3或0<x <2C .﹣3<x <0或x >2D .﹣3<x <28.已知,如图,一次函数y =ax +b 和反比例函数y =的图象相交于A 、B 两点,不等式ax +b >的解集为( )A .x <﹣3B .﹣3<x <0或x >1C .x <﹣3或0<x <1D .﹣3<x <19.将反比例函数y =的图象绕坐标原点O 逆时针旋转30°,得到如图的新曲线,与过点A (﹣3,3),B (,)的直线相交于点C 、D ,则△OCD 的面积为( )A .8B .3C .2D .10.如图.直线y =2x 分别与双曲线y =(x >0)、y =(x >0)交于P ,Q 两点,且OP =2OQ .则k 的值( )A .2B .4C .6D .8二.填空题11.若函数y =与y =﹣2x ﹣4的图象的交点坐标为(a ,b ),则的值是 .12.直线y =ax (a >0)与双曲线y =相交于A (x 1,y 1),B (x 2,y 2)两点,则x 1y 2+x 2y 1的值为 .13.点A (a ,b )是一次函数y =2x ﹣3与反比例函数y =的交点,则2a 2b ﹣ab 2= . 14.如果正比例函数y =ax (a ≠0)与反比例函数y =的图象有两个交点,其中一个交点的坐标为(﹣1,2),那么另一个交点的坐标为 .15.如果一个正比例函数的图象与反比例函数y =交于A (x 1,y 1),B (x 2,y 2),那么(x 1﹣x 2)(y 1﹣y 2)= . 三.解答题16.如图,在平面直角坐标系xOy中,函数y=﹣x+5的图象与函数y=(k<0)的图象=15.点D是线段AC上一点,CD:AC=2:3.相交于点A,并与x轴交于点C,S△AOC(1)求k的值;(2)直接写出不等式>﹣x+5的解集;(3)若将△ODC绕点O逆时针旋转,得到△OD′C′,其中D′落在x轴负半轴上,判断点C′是否落在函数y=(x<0)的图象上,并说明理由.17.在平面直角坐标系xOy中,一次函数y=x+2的图象与反比例函数的图象相交于点A(1,m).(1)求这个反比例函数的表达式;(2)请直接写出当x<1时,反比例函数的函数值y的取值范围是.18.如图,一次函数y=kx+b的图象与反比例函数y=的图象交于点A(n,3)和点B(1,﹣6),与y轴交于点C.(1)求一次函数和反比例函数表达式;(2)请直接写出关于x的不等式kx+b>的解集;(3)把点C绕着点O逆时针旋转90°,得到点C′,连接AC′,BC′,求△ABC′的面积.19.如图,已知在平面直角坐标系中,O 是坐标原点,点A (2,5)在反比例函数y 1=的图象上.一次函数y 2=x +b 的图象过点A ,且与反比例函数图象的另一交点为B . (1)求反比例函数和一次函数的解析式; (2)连结OA 和OB ,求△OAB 的面积;(3)根据图象直接写出y 1>y 2时,x 的取值范围.20.已知一次函数y 1=x +m 的图象与反比例函数y 2=的图象交于A ,B 两点,且A 点的横坐标为1.(1)求一次函数的函数表达式; (2)当y 1>y 2时,求x 的取值范围;(3)过点A 作AD ⊥x 轴于点D ,求△ABD 的面积.参考答案一.选择题1.解:∵正比例函数y =的图象经过一、三象限,反比例函数y =和正比例函数y =的图象没有交点,∴反比例函数y =的图象在二、四象限,∵点(﹣3,y 1)、(﹣1,y 2)、(1,y 3)在这个反比例函数y =的图象上, ∴点(﹣3,y 1)、(﹣1,y 2)在第二象限,点(1,y 3)在第四象限, ∵﹣3<﹣1, ∴0<y 1<y 2, ∵1>0, ∴y 3<0, ∴y 2>y 1>y 3, 故选:B .2.解:由函数图象知,点A 、B 的横坐标分别为2、﹣1,从图象看,﹣1<x <0或x >2时,直线在双曲线上方,即y 1>y 2, 故选:D .3.解:∵点M (m ,2),N (n ,﹣1)分别代入y 1=x +1,求得m =1,n =﹣2, ∴M (1,2),N (﹣2,﹣1),根据图象得到若y 1>y 2,则x 的取值范围是﹣2<x <0或x >1, 故选:D .4.解:∵点A (x 1,y 1),B (x 2,y 2)是双曲线y =上的点, ∴x 1•y 1=x 2•y 2=4①,∵直线y =kx (k >0)与双曲线y =交于点A (x 1,y 1),B (x 2,y 2)两点, ∴x 1=﹣x 2,y 1=﹣y 2②, ∴原式=﹣x 2y 2+x 1y 1=4﹣4=0. 故选:A .5.解:点A 的坐标代入正比例函数表达式得:y =﹣4×2=﹣8,故点A (2,﹣8),将点A的坐标代入反比例函数表达式得:﹣8=,解得:k=﹣16,故选:A.6.解:如图1,直线l在OA的下方时,当直线l:y=x+b过(4,0)时,b=﹣,且经过(0,﹣)点,区域W内有三点整点,当直线l:y=x+b过(5,0)时,b=﹣,且经过(0,﹣),区域W内有5点整点,∴区域W内没有4个整点的情况,如图2,直线l在OA的上方时,∵点(2,2)在函数y=(x>0)的图象G,当直线l:y=x+b过(1,2)时,b=,当直线l :y =x +b 过(1,3)时,b =,∴区域W 内恰有4个整点,b 的取值范围是<b ≤. 综上所述,区域W 内恰有4个整点,b 的取值范围是<b ≤. 故选:B .7.解:画出函数的大致图象如下:从图象看,﹣3<x <0或x >2时,y 1在y 2的上方, 即当y 1>y 2时,x 的取值范围是﹣3<x <0或x >2, 故选:C .8.解:观察函数图象,当x <﹣3或0<x <1时,ax +b >, 故选:C .9.解:连接OA 、OB ,过点A 、B ,分别作AM ⊥x 轴,BN ⊥x 轴,垂足为M 、N , ∵点A (﹣3,3),B (,),∵OM =3,AM =3,BN =,ON =,∴OA ==6,OB ==3,∵tan ∠AOM ==,∴∠AOM =60°, 同理,∠BON =30°,因此,旋转前点A 所对应的点A ′(0,6),点B 所对应的点B ′(3,0), 设直线A ′B ′的关系式为y =kx +b ,故有,,解得,k =﹣2,b =6,∴直线A ′B ′的关系式为y =﹣2x +6,由题意得,,解得,,因此,点C、D在旋转前对应点的坐标为C′(1,4),D′(2,2),如图2所示,过点C′、D′,分别作C′P⊥x轴,D′Q⊥x轴,垂足为P、Q,则,C′P=4,OP=1,D′Q=2,OQ=2,∴S△COD =S△C′OD′=S梯形C′PQD′=(2+4)×(2﹣1)=3,故选:B.10.解:过点Q作QE⊥x轴,垂足为E,过点P作PF⊥x轴,垂足为F,如图,联立,解得:或.∵x>0,∴点P的坐标为(2,4).∴OF=2,PF=4.∵QE⊥x轴,PF⊥x轴,∴QE ∥PF .∴△OEQ ∽△OFP .∴.∵OP =2OQ ,∴OF =2OE =2,PF =2EQ =4.∴OE =1,EQ =2.∴点Q 的坐标为(1,2).∵点Q (1,2)在双曲线y =上,∴k =1×2=2.故选:A .二.填空题(共5小题)11.解:联立两个函数表达式得,整理得:x 2+2x +1=0,解得:x =﹣1,∴y =﹣2,交点坐标是(﹣1,﹣2),∴a =﹣1,b =﹣2,则=﹣1﹣1=﹣2. 故答案为﹣2.12.解:∵点A (x 1,y 1),B (x 2,y 2)是双曲线y =上的点,∴x 1•y 1=x 2•y 2=3,∵直线y =kx (k >0)与双曲线y =交于点A (x 1,y 1),B (x 2,y 2)两点, ∴x 1=﹣x 2,y 1=﹣y 2,∴原式=﹣x 1y 1﹣x 2y 2=﹣3﹣3=﹣6.故答案为:﹣6.13.解:∵点A (a ,b )是一次函数y =2x ﹣3与反比例函数y =的交点, ∴b =2a ﹣3,ab =9,即2a ﹣b =3,ab =9,∴原式=ab (2a ﹣b )=9×3=27.故答案为:27.14.解:∵两个交点在正比例函数上,∴两个交点关于原点对称,故答案为(1,﹣2).15.解:∵正比例函数的图象与反比例函数y =交于A (x 1,y 1),B (x 2,y 2),关于原点对称,依此可得x 1=﹣x 2,y 1=﹣y 2,∴(x 1﹣x 2)(y 1﹣y 2)=(﹣x 2﹣x 2)(﹣y 2﹣y 2)=4x 2y 2=4×5=20.故答案为:20.三.解答题(共5小题)16.解:(1)y =﹣x +5,当y =0时,x =5,即OC =5,C 点的坐标是(5,0),过A 作AN ⊥x 轴于N ,如图1.∵S △AOC =15,∴×5×AN =15,解得:AN=6,即A点的纵坐标是6,把y=6代入y=﹣x+5得:x=﹣1,即A点的坐标是(﹣1,6),把A点的坐标代入y=得:k=﹣6;(2)当x<0时不等式>﹣x+5的解集是﹣1<x<0;(3)点C'不在函数y=﹣的图象上.如图2,过点D作DM⊥x轴,垂足为M,过点A作AN⊥x轴,垂足为N,∴DM∥AN,∴==,又∵点A的坐标为(﹣1,6),∴AN=6,∴DM=4,即点D的纵坐标为4,把y=4代入y=﹣x+5中,解得x=1,∴D(1,4);由题意可知,OD'=OD===,如图3,过点C'作C'G⊥x轴,垂足为G,∵S△ODC =S△OD'C′,∴OC•DM=OD'•C'G,即5×4=C'G,∴C'G=,在Rt△OC'G中,∵OG===,∴C'的坐标为(﹣,),∵(﹣)×≠﹣6,∴点C'不在函数y=﹣的图象上.17.解:(1)把点A(1,m)代入y=x+2得,m=1+2=3.∴A(1,3),∵反比例函数的图象经过点A(1,3).∴k=1×3=3,∴反比例函数的表达式为y=;(2)由图象可知,当x<1时,反比例函数的函数值y的取值范围是y>3或y<0,故答案为y >3或y <0.18.解:(1)将点B 的坐标代入反比例函数表达式得:﹣6=,解得:m =﹣6, 将点A 的坐标代入反比例函数表达式并解得:n =﹣2,故点A (﹣2,3), 将点A 、B 的坐标代入一次函数表达式得:,解得,故一次函数的表达式为:y =﹣3x ﹣3;(2)从图象看,当0<x <1或x <﹣2时,kx +b >,故不等式的解集为0<x <1或x <﹣2;(3)设直线AB 交x 轴于点H ,对于y =﹣3x ﹣3,令x =0,则y =﹣3,令y =0,则x =﹣1,故点H 、C 的坐标分别为(﹣1,0)、(0,﹣3),∵点C 绕着点O 逆时针旋转90°,得到点C ′,故其坐标为:(3,0),△ABC ′的面积S =S △C ′HB +S △C ′HA =C ′H ×(y A ﹣y B )=×(3+1)(3+6)=18.19.解:(1)∵点A (2,5)是直线y =x +b 与反比例函数y =的图象的一个交点, ∴5=2+b ,k =2×5=10,∴b =3,即k 和b 的值分别为10、3,故反比例函数和一次函数的解析式分别为y 1=和y 2=x +3;(2)解方程组,得,∴点B(﹣5,﹣2).∵点C是直线y=x+3与y轴的交点,∴点C(0,3),∴S△OAB =S△OAC+S△OBC=×3×2+×3×5=,即△OAB的面积为;(3)观察函数图象可知,y1>y2时,x的取值范围为:x<﹣5或0<x<2.20.解:(1)在y2=中当x=1时,y=6,即A(1,6),将点A(1,6)代入y1=x+m,得:1+m=6,解得m=5,则一次函数解析式为y1=x+5;(2)联立方程组得,解得,,则点A(1,6)、点B(﹣6,﹣1),由图象可知y1>y2时,﹣6<x<0或x>1;(3)△ABD的面积=×6×(1+6)=21.。

北师大版九年级数学上学期 期末单元复习 第6章 反比例函数 含答案

北师大版九年级数学上学期  期末单元复习 第6章 反比例函数  含答案

第6章反比例函数一.选择题(共10小题)1.下列函数中,是反比例函数的是()A.y=B.y=C.y=x﹣1D.y=2.今年,某公司推出一款新手机深受消费者推崇,但价格不菲.为此,某电子商城推出分期付款购买手机的活动,一部售价为9688元的新手机,前期付款3000元,后期每个月分别付相同的数额,则每个月付款额y(元)与付款月数x(x为正整数)之间的函数关系式是()A.B.C.D.3.函数y=﹣ax+a与y=(a≠0)在同一坐标系中的图象可能是()A.B.C.D.4.对于反比例函数y=,下列说法错误的是()A.函数图象位于第一、三象限B.函数值y随x的增大而减小C.若A(﹣1,y1)、B(1,y2)、C(2,y3)是图象上三个点,则y1<y3<y2D.P为图象上任意一点,过P作PQ⊥y轴于Q,则△OPQ的面积是定值5.如图,菱形ABCD的两个顶点B,D在反比例函数y=的图象上,对角线AC与BD的交点恰好是坐标原点O,已知点A(﹣2,2),∠ABC=60°,则k的值是()A.4 B.6 C.4D.126.如图,正方形ABCD的边长为5,点A的坐标为(0,3),点D在x轴的正半轴上.若反比例函数y=(k≠0)的图象经过点B,则k的值是()A.3 B.4 C.5 D.67.如图,在平面直角坐标系中,Rt△ABC的顶点A,B分别在y轴、x轴上,OA=2,OB=1,斜边AC∥x轴.若反比例函数y=(k>0,x>0)的图象经过AC的中点D,则k的值为()A.4 B.5 C.6 D.88.如图,在正方形ABCD中,点C(8,5),AB边不动,将正方形向左下方推动变形,使点D落在y轴的点D′处,点C落在点C′处,则经过点C′的反比例函数解析式是()A.y=B.y=C.y=D.y=9.设双曲线y=(k>0)与直线y=x交于A\B两点(点A在第三象限),将双曲线在第一象限的一支沿射线BA的方向平移,使其经过点A,将双曲线在第三象限的一支沿射线AB的方向平移,使其经过点B,平移后的两条曲线相交于P、Q两点,此时我们称平移后的两条曲线所围部分(如图中阴影部分)为双曲线的“眸”,PQ为双曲线的“眸径“,当双曲线y=(k>0)的眸径为6时,k的值为()A.B.2 C.D.310.如图,为某公园“水上滑梯”的侧面图,其中BC段可看成是一段双曲线,建立如图的坐标系后,其中,矩形AOEB为向上攀爬的梯子,OA=5米,进口AB∥OD,且AB=2米,出口C点距水面的距离CD为1米,则B、C之间的水平距离DE的长度为()A.5米B.6米C.7米D.8米二.填空题(共7小题)11.已知反比例函数y=(k﹣1)x,那么k的值是.12.如图,矩形OABC的边OA,OC分别在x轴、y轴上,点B在第一象限,点B的坐标为(3,6),反比例函数y=(k>0)的图象分别交边BC、AB于点D、F,连结DF,△DEF与△DBF关于直线DF对称,当点E正好落在边OC上时,则k的值为.13.如图,点A为函数y=(x>0)图象上一点,连结OA,交函数y=(x>0)的图象于点B,点C是x轴上一点,且AO=AC,则△ABC的面积为.14.若反比例函数y=﹣,当y≤,且y≠0时自变量x的取值范围.15.如图,是反比例函数y=和y=(k1>k2)在第一象限的图象,直线AB∥x轴,并分别交两条曲线于A、B两点,若S△AOB=4,则k1﹣k2的值是.16.如图,△ABC在第一象限内,∠C=90°,BC∥x轴,点C(2,2),AB所在直线的函数关系式是y=x+6.当反比例函数y=﹣的图象与△ABC有交点时,k的取值范围是.17.如图,Rt△AOB中,∠OAB=90°,∠OBA=30°,顶点A在反比例函数y=图象上,若Rt△AOB的面积恰好被y轴平分,则进过点B的反比例函数的解析式为.三.解答题(共5小题)18.如图,直线y=2x﹣4分别交坐标轴于A、B两点,交双曲线y=(x>0)于C点,且sin∠COB=;(1)求双曲线的解析式;(2)若过点B的直线y=ax+b(a>0)交y轴于D点,交双曲线于点E,且OD:AD=1:2,求E点横坐标.19.如图,一次函数y=x+b与反比例函数y=的图象交于A(m,3),B(﹣3,n)两点.过点B作BC⊥x轴,垂足为点C,且S△ABC=5.(1)求一次函数与反比例函数的表达式;(2)根据所给条件,请直接写出不等式x+b的解集;(3)若P(p,y1),Q(﹣2,y2)是反比例函数y=图象上的两点,且y1≥y2,求实数P的取值范围.20.如图,在所给的直角坐标系(O是坐标原点)中,每个小方格都是边长为1的正方形,直线y=mx+n与反比例函数y=的图象的交点A,B均在格点上.(1)请直接写出点A,B的坐标为:;当mx+n≥时,x的取值范围是;(2)将直线AB向右平移3个单位,再向上平移5个单位,在图中画出平移后的直线A′B′,并求出直线A′B′的解析式;(3)若点C在函数y=的图象上,且△ABC是以AB为底的等腰三角形,请直接写出点C的坐标.21.如图,在平面直角坐标系中,Rt△OAB的直角顶点A在x轴上,OB=5,OA=4,动点M 从点A出发,以每秒1个单位长度的速度,沿AO向终点O运动,同时点N从点O出发,以每秒2个单位长度的速度,沿OB向终点B移动,当两个动点运动了x(0<x<2.5)秒时,解答下列问题:(1)若点B在反比例函数y=(x>0)的图象上,求出该函数的解析式;(2)在两个动点运动过程中,当x为何值时,使得以O,M,N为顶点的三角形与△OAB 相似?22.冬天即将到来,龙泉某中学的初三学生到某蔬菜生产基地作数学实验.在气温较低时,蔬菜生产基地用装有恒温系统的大棚栽培蔬菜,经收集数据,该班同学将大棚内温度和时间的关系拟合为一个分段函数,如图是某天恒温系统从开启到关闭后,大棚内的温度y(℃)与时间x(h)之间的函数关系,其中线段AB,BC表示恒温系统开启阶段,双曲线的一部分CD表示恒温系统关闭阶段.请根据图中信息解答下列问题:(1)求这天的温度y与时间x(0≤x≤24)的函数关系式;(2)若大棚栽种某种蔬菜,温度低于10℃时会受到伤害.问若栽种这种蔬菜,恒温系统最多可以关闭多少小时就必须再次启动,才能使蔬菜避免受到伤害?参考答案与试题解析一.选择题(共10小题)1.下列函数中,是反比例函数的是()A.y=B.y=C.y=x﹣1D.y=【分析】根据反比例函数的一般形式即可作出判断.【解答】解:A、该函数是常函数,故本选项不符合题意.B、该函数是y与(1﹣x)成反比例函数关系,故本选项不符合题意.C、该函数是反比例函数,故本选项符合题意.D、该函数不是反比例函数,故本选项不符合题意.故选:C.2.今年,某公司推出一款新手机深受消费者推崇,但价格不菲.为此,某电子商城推出分期付款购买手机的活动,一部售价为9688元的新手机,前期付款3000元,后期每个月分别付相同的数额,则每个月付款额y(元)与付款月数x(x为正整数)之间的函数关系式是()A.B.C.D.【分析】直接利用后期每个月分别付相同的数额,进而得出y与x的函数关系式.【解答】解:由题意得y=,即y=,故选:D.3.函数y=﹣ax+a与y=(a≠0)在同一坐标系中的图象可能是()A.B.C.D.【分析】根据反比例函数与一次函数的图象特点解答即可.【解答】解:a>0时,﹣a<0,y=﹣ax+a在一、二、四象限,y=在一、三象限,无选项符合.a<0时,﹣a>0,y=﹣ax+a在一、三、四象限,y=(a≠0)在二、四象限,只有D 符合;故选:D.4.对于反比例函数y=,下列说法错误的是()A.函数图象位于第一、三象限B.函数值y随x的增大而减小C.若A(﹣1,y1)、B(1,y2)、C(2,y3)是图象上三个点,则y1<y3<y2D.P为图象上任意一点,过P作PQ⊥y轴于Q,则△OPQ的面积是定值【分析】先判断出k2+1的符号,再根据反比例函数的性质即可得出结论.【解答】解:A、∵k2+1>0,∴它的图象分布在第一、三象限,故本选项正确;B、∵它的图象分布在第一、三象限,∴在每一象限内y随x的增大而减小,故本选项错误;C、∵它的图象分布在第一、三象限,在每一象限内y随x的增大而减小,∵x1=﹣1<0,∴y1<0,∵x2=1>0,x3=2>0,∴y2>y3,∴y1<y3<y2故本选项正确;D、∵P为图象上任意一点,过P作PQ⊥y轴于Q,∴△OPQ的面积=(k2+1)是定值,故本选项正确.故选:B.5.如图,菱形ABCD的两个顶点B,D在反比例函数y=的图象上,对角线AC与BD的交点恰好是坐标原点O,已知点A(﹣2,2),∠ABC=60°,则k的值是()A.4 B.6 C.4D.12【分析】根据题意可以求得点B的坐标,从而可以求得k的值.【解答】解:∵四边形ABCD是菱形,∴BA=BC,AC⊥BD,∵∠ABC=60°,∴△ABC是等边三角形,∵点A(﹣2,2),∴OA=2,∴BO==,∵直线AC的解析式为y=﹣x,∴直线BD的解析式为y=x,∴点B的坐标为(2,2),∵点B在反比例函数y=的图象上,∴,解得,k=12,故选:D.6.如图,正方形ABCD的边长为5,点A的坐标为(0,3),点D在x轴的正半轴上.若反比例函数y=(k≠0)的图象经过点B,则k的值是()A.3 B.4 C.5 D.6【分析】作BE⊥y轴于E,根据勾股定理求得OD=4,然后证明△ABE≌△DAO,可得BE =AO=3,AE=OD=4,所以点B坐标为(﹣3,﹣1),把点B代入双曲线y=可得k的值.【解答】解:作BE⊥y轴于E,∵正方形ABCD的边长为5,点A的坐标为(0,3),∴AD=5,OA=3,∴OD===4,∵四边形ABCD为正方形,∴∠BAD=90°,AB=AD,∴∠BAE=90°﹣∠DAO=∠ADO,∵∠AEB=∠AOD=90°,∴△ABE≌△DAO(AAS),∴BE=AO=3,AE=OD=4,∴OE=AE﹣OA=1,∴B(﹣3,﹣1),∵反比例函数y=(k≠0)的图象经过点B,∴k=﹣3×(﹣1)=3,故选:A.7.如图,在平面直角坐标系中,Rt△ABC的顶点A,B分别在y轴、x轴上,OA=2,OB=1,斜边AC∥x轴.若反比例函数y=(k>0,x>0)的图象经过AC的中点D,则k的值为()A.4 B.5 C.6 D.8【分析】根据平行于x轴的直线上任意两点纵坐标相同,可设C(x,2).则D(x,4),由勾股定理得出AB2+BC2=AC2,列出方程22+12+(x﹣1)2+22=x2,求出x,得到D点坐标,代入y=,利用待定系数法求出k.【解答】解:∵AC∥x轴,OA=2,OB=1,∴A(0,2),∴C、A两点纵坐标相同,都为2,∴可设C(x,2).∵D为AC中点.∴D(x,2).∵∠ABC=90°,∴AB2+BC2=AC2,∴12+22+(x﹣1)2+22=x2,解得x=5,∴D(,2).∵反比例函数y=(k>0,x>0)的图象经过点D,∴k=×2=5.故选:B.8.如图,在正方形ABCD中,点C(8,5),AB边不动,将正方形向左下方推动变形,使点D落在y轴的点D′处,点C落在点C′处,则经过点C′的反比例函数解析式是()A.y=B.y=C.y=D.y=【分析】由点C(8,5)可知A(3,0),OD'=4,过点C'作C'M⊥OB,可证△AOD'≌△BMC'(HL),可求C'(5,4),即可求反比例函数解析式;【解答】解:∵正方形ABCD中,点C(8,5),∴A(3,0),AB=5,∵AD'=5,∴OD'=4,过点C'作C'M⊥OB,∵BC'=AD',C'M=OD',∴△AOD'≌△BMC'(HL),∴MB=OA=3,∴C'(5,4),∴y=;故选:A.9.设双曲线y=(k>0)与直线y=x交于A\B两点(点A在第三象限),将双曲线在第一象限的一支沿射线BA的方向平移,使其经过点A,将双曲线在第三象限的一支沿射线AB的方向平移,使其经过点B,平移后的两条曲线相交于P、Q两点,此时我们称平移后的两条曲线所围部分(如图中阴影部分)为双曲线的“眸”,PQ为双曲线的“眸径“,当双曲线y=(k>0)的眸径为6时,k的值为()A.B.2 C.D.3【分析】以PQ为边,作矩形PQQ′P′交双曲线于点P′、Q′,联立直线AB及双曲线解析式成方程组,通过解方程组可求出点A、B的坐标,由PQ的长度可得出点P的坐标(点P在直线y=﹣x上找出点P的坐标),由图形的对称性结合点A、B和P的坐标可得出点P′的坐标,再利用反比例函数图象上点的坐标特征即可得出关于k的一元一次方程,解之即可得出结论.【解答】解:以PQ为边,作矩形PQQ′P′交双曲线于点P′、Q′,如图所示.联立直线AB及双曲线解析式成方程组,,解得:,,∴点A的坐标为(﹣,﹣),点B的坐标为(,).∵PQ=6,∴OP=3,点P的坐标为(﹣,).根据图形的对称性可知:PP′=AB=QQ′,∴点P′的坐标为(﹣+2,+2).又∵点P′在双曲线y=上,∴(﹣+2)•(+2)=k,解得:k=.故选:A.10.如图,为某公园“水上滑梯”的侧面图,其中BC段可看成是一段双曲线,建立如图的坐标系后,其中,矩形AOEB为向上攀爬的梯子,OA=5米,进口AB∥OD,且AB=2米,出口C点距水面的距离CD为1米,则B、C之间的水平距离DE的长度为()A.5米B.6米C.7米D.8米【分析】根据矩形的性质得到BE=OA=5,AB=2,求得B(2,5),设双曲线BC的解析式为y=,得到k=10,于是得到结论.【解答】解:∵四边形AOEB是矩形,∴BE=OA=5,AB=2,∴B(2,5),设双曲线BC的解析式为y=,∴k=10,∴y=,∵CD为1∴当y=1时,x=10,∴DE的长=10﹣2=8m,故选:D.二.填空题(共7小题)11.已知反比例函数y=(k﹣1)x,那么k的值是±2 .【分析】根据反比例函数的定义解答.【解答】解:依题意得:k2﹣5=﹣1且k﹣1≠0.解得k=±2.故答案是:±2.12.如图,矩形OABC的边OA,OC分别在x轴、y轴上,点B在第一象限,点B的坐标为(3,6),反比例函数y=(k>0)的图象分别交边BC、AB于点D、F,连结DF,△DEF与△DBF关于直线DF对称,当点E正好落在边OC上时,则k的值为.【分析】过点F作FG⊥OC,垂足为G.由于四边形OABC是矩形,△DEF与△DBF关于直线DF对称,当点E正好落在边OC上,可得△DGF∽△FAE,然后把D、F两点的坐标用含k的代数式表示出来,再由相似三角形对应边成比例求出CE的长,然后利用勾股定理求出k.【解答】解:过点F作FG⊥OC,垂足为G,如图所示.由题意知D(,6),F(3,),FG=3.又∵△DEF与△DBF关于直线DF对称,点E在边OC上,∴DE=DB,∠B=∠DEF=90°,∴∠DEC+∠GEF=90°,∵∠EGF=∠DCE=90°,∠GEF+∠EFG=90°,∴∠DEC=∠EFG,∴△EGF∽△DCE,∴=,即=,解得:CE=,∵DE2=DC2+CE2,即(3﹣)2=()2+()2,解得:k=.故答案为:.13.如图,点A为函数y=(x>0)图象上一点,连结OA,交函数y=(x>0)的图象于点B,点C是x轴上一点,且AO=AC,则△ABC的面积为 6 .【分析】根据题意可以分别设出点A、点B的坐标,根据点O、A、B在同一条直线上可以得到A、B的坐标之间的关系,由AO=AC可知点C的横坐标是点A的横坐标的2倍,从而可以得到△ABC的面积.【解答】解:方法一:设点A的坐标为(a,),点B的坐标为(b,),∵点C是x轴上一点,且AO=AC,∴点C的坐标是(2a,0),设过点O(0,0),A(a,)的直线的解析式为:y=kx,∴,解得,k=,又∵点B(b,)在y=上,∴,解得,或(舍去),∴S△ABC=S△AOC﹣S△OBC==,故答案为:6.方法二:作BD⊥x轴于点D,作AE⊥x轴于点E,∵点A在为函数y=(x>0)图象上一点,AO=AC,∴△AOC的面积是9,∵点A为函数y=(x>0)图象上一点,连结OA,交函数y=(x>0)的图象于点B,∴=,∴,∴,∴S△ABC=6,故答案为:6.14.若反比例函数y=﹣,当y≤,且y≠0时自变量x的取值范围x≤﹣9或x>0 .【分析】首先画出图形,进而利用函数图象得出x的取值范围.【解答】解:如图所示:∵反比例函数y=﹣,当y≤,∴y=时,则x=﹣9,故y≤时,x≤﹣9或x>0.故答案为:x≤﹣9或x>0.15.如图,是反比例函数y=和y=(k1>k2)在第一象限的图象,直线AB∥x轴,并分别交两条曲线于A、B两点,若S△AOB=4,则k1﹣k2的值是8 .【分析】设A(a,b),B(c,d),代入双曲线得到k1=ab,k2=cd,根据三角形的面积公式求出ab﹣cd=8,即可得出答案.【解答】解:设A(a,b),B(c,d),代入得:k1=ab,k2=cd,∵S△AOB=4,∴ab﹣cd=4,∴ab﹣cd=8,∴k1﹣k2=8,故答案为:8.16.如图,△ABC在第一象限内,∠C=90°,BC∥x轴,点C(2,2),AB所在直线的函数关系式是y=x+6.当反比例函数y=﹣的图象与△ABC有交点时,k的取值范围是4≤k≤.【分析】先求出点A、B的坐标,根据反比例函数图象上点的坐标特征可知,当反比例函数图象与△ABC相交于点C时k的取值最小,当与线段AB相交时,k能取到最大值,根据直线y=x+6,设交点为(x,﹣x+6)时k值最大,然后列式利用二次函数的最值问题解答即可得解.【解答】解:∵△ABC在第一象限内,∠C=90°,BC∥x轴,点C(2,2),∴把x=2代入y=x+6得,y=﹣×2+6=,把y=2代入y=x+6得,﹣x+6=2,解得x=6,∴点A、B的坐标分别为A(2,),B(6,2),根据反比例函数系数的几何意义,当反比例函数与点C相交时,k=2×2=4最小,设反比例函数与线段AB相交于点(x,﹣x+6)时k值最大,则k=x(﹣x+6)=﹣x2+6x=﹣(x﹣)2+,∵2≤x≤6,∴当x=时,k值最大,此时交点坐标为(,3),因此,k的取值范围是4≤k≤.故答案为:4≤k≤.17.如图,Rt△AOB中,∠OAB=90°,∠OBA=30°,顶点A在反比例函数y=图象上,若Rt△AOB的面积恰好被y轴平分,则进过点B的反比例函数的解析式为10 .【分析】分别过A、B作AE⊥x轴于E,BD⊥y轴交AE于F.设A(a,b),则ab=﹣4.根据两角对应相等的两三角形相似,得出△OAE∽△ABF,由相似三角形的对应边成比例,则BD、OD都可用含a、b的代数式表示,从而求出B的坐标,进而得出结果.【解答】解:分别过A、B作AE⊥x轴于E,BD⊥y轴交AE于F.设A(a,b).∵顶点A在反比例函数y=图象上,∴ab=﹣4.∵∠OAB=90°,∠OAE=90°﹣∠BAF=∠ABF,∠OEA=∠BFA=90°,∴△OAE∽△ABF,∴OA:AB=OE:AF=AE:BF,在Rt△AOB中,∠AOAB=90°,∠OBA=30°,∴OA:AB=1:,∴﹣a:AF=b:BF=1:,∴AF=﹣,BF=b,∵Rt△AOB的面积恰好被y轴平分,∴AC=BC,∴BD=DF=BF=﹣a,OD=AE+AF=b﹣a,∴b=﹣a,∴A(﹣b,b),B(b,b﹣)∴﹣b•b=﹣4,∴b2=,∴k=b(b﹣)=b2﹣ab=10,故答案为:10.三.解答题(共5小题)18.如图,直线y=2x﹣4分别交坐标轴于A、B两点,交双曲线y=(x>0)于C点,且sin∠COB=;(1)求双曲线的解析式;(2)若过点B的直线y=ax+b(a>0)交y轴于D点,交双曲线于点E,且OD:AD=1:2,求E点横坐标.【分析】(1)根据题意设出点C的坐标,由sin∠COB=可以求得点C的坐标,进而可以求得双曲线的解析式;(2)根据y=2x﹣4求得A、B的坐标,OD:AD=1:2,可知D的坐标,根据待定系数法求得BD的解析式,联立解析式即可求出E横坐标.【解答】解:(1)设点C的坐标是(a,2a﹣4),∵sin∠COB=,∴tan∠COB==,解得,a=6,∴点C为(6,8),∵点C在双曲线y=(x>0)上,∴k=6×8=48,即双曲线的解析式为:y=;(2)∵直线y=ax+b(a>0)交y轴于D点,∴点D的坐标是(0,b),∵直线y=2x﹣4分别交坐标轴于A、B两点,∴点A的坐标是(0,﹣4),B(2,0),∵OD:AD=1:2,∴OD=,∴D(0,﹣),把B(2,0),D(0,﹣)代入y=ax+b得,解得,∴y=x﹣,解x﹣=得x=1+,x=1﹣(舍去),∴E的横坐标为1+.19.如图,一次函数y=x+b与反比例函数y=的图象交于A(m,3),B(﹣3,n)两点.过点B作BC⊥x轴,垂足为点C,且S△ABC=5.(1)求一次函数与反比例函数的表达式;(2)根据所给条件,请直接写出不等式x+b的解集;(3)若P(p,y1),Q(﹣2,y2)是反比例函数y=图象上的两点,且y1≥y2,求实数P的取值范围.【分析】(1)把A、B的坐标代入反比例函数解析式求出m=﹣n,即可得出A(m,3),B (﹣3,﹣m),根据三角形面积求得m、n的值,得到A、B的坐标,代入反比例函数和一次函数的解析式,即可求出答案;(2)根据A、B的横坐标,结合图象即可得出答案;(3)分为两种情况:当点P在第一象限时和当点P在第三象限时,根据坐标和图象即可得出答案.【解答】解:(1)把A(m,3),B(﹣3,n)代入反比例函数y=得:k=3m=﹣3n,即m=﹣n,则B(﹣3,﹣m),∵A(m,3),B(﹣3,﹣m),S△ABC=•BC•(x A﹣x B)∴×m×(m+3)=5,解得:m=2或m=﹣5(舍去),∴n=﹣2,即A(2,3),B(﹣3,﹣2),把A(2,3)代入y=得:k=6,即反比例函数的解析式是y=;把A(2,3)代入y=x+b得:3=2+b,解得:b=1,即一次函数的解析式是y=x+1;(2)∵A(2,3),B(﹣3,﹣2),∴不等式x+b的解集是x≤﹣3或0<x≤2;(3)∵P(p,y1),Q(﹣2,y2)是反比例函数y=图象上,则点Q(﹣2,y2)在第三象限,∴当点P在第一象限时,总有y1>y2,此时p>0;当点P在第三象限时,要使y1≥y2,实数p的取值范围是P≤﹣2,即P的取值范围是p≤﹣2或p>0.20.如图,在所给的直角坐标系(O是坐标原点)中,每个小方格都是边长为1的正方形,直线y=mx+n与反比例函数y=的图象的交点A,B均在格点上.(1)请直接写出点A,B的坐标为:点A(﹣1,﹣4),点B(﹣4,﹣1);当mx+n ≥时,x的取值范围是x>﹣4或﹣1<x<0 ;(2)将直线AB向右平移3个单位,再向上平移5个单位,在图中画出平移后的直线A′B′,并求出直线A′B′的解析式;(3)若点C在函数y=的图象上,且△ABC是以AB为底的等腰三角形,请直接写出点C的坐标.【分析】(1)观察图象,可求解;(2)由题意画出图象,由待定系数法可求直线解析式;(3)由待定系数法可求反比例函数解析式,设点C(a,),由等腰三角形的性质和两点距离公式可求a的值,即可求点C坐标.【解答】解:(1)由图象可知:点A(﹣1,﹣4),点B(﹣4,﹣1),当mx+n≥时,x的取值范围是x>﹣4或﹣1<x<0,故答案为:点A(﹣1,﹣4),点B(﹣4,﹣1),x>﹣4或﹣1<x<0;(2)图象如图:∵点A(﹣1,﹣4),点B(﹣4,﹣1),且直线AB向右平移3个单位,再向上平移5个单位,∴点A'(2,1),点B'(﹣1,4)设直线A'B'解析式为:y=kx+b,∴解得:∴直线A′B′的解析式为:y=﹣x+3;(3)∵反比例函数y=的图象过点A(﹣1,﹣4),∴k=﹣1×(﹣4)=4,∴反比例函数的解析式为:y=,设点C(a,),∵△ABC是以AB为底的等腰三角形,∴CA=CB,∴(a+1)2+(+4)2=(a+4)2+(+1)2,∴a=±2,∴点C(﹣2,﹣2)或(2,2)21.如图,在平面直角坐标系中,Rt△OAB的直角顶点A在x轴上,OB=5,OA=4,动点M 从点A出发,以每秒1个单位长度的速度,沿AO向终点O运动,同时点N从点O出发,以每秒2个单位长度的速度,沿OB向终点B移动,当两个动点运动了x(0<x<2.5)秒时,解答下列问题:(1)若点B在反比例函数y=(x>0)的图象上,求出该函数的解析式;(2)在两个动点运动过程中,当x为何值时,使得以O,M,N为顶点的三角形与△OAB 相似?【分析】(1)由勾股定理可求点B坐标(4,3),代入解析式可求k的值,即可求函数的解析式;(2)分两种情况讨论,由相似三角形的性质可求解.【解答】解:(1)∵△ABC是直角三角形,且BA⊥x轴于A,OA=4,OB=5,∴∴B(4,3),∴将B(4,3)代入得k=12,∴函数的解析式为:;(2)在两个动点运动过程中,分两种情况:①若∠OMN=90°,如图1所示,则MN∥AB,此时OM=4﹣x,ON=2x,∵∠OMN=∠OAB,∠NOM=∠BOA,∴△MON∽△AOB,∴,即:∴;②若∠ONM=90°,如图2所示,则∠ONM=∠OAB,此时OM=4﹣x,ON=2x,∵∠ONM=∠OAB,∠MON=∠BOA,∴△OMN~△OBA,∴即:,∴,综上所述,当或秒时,使得以O,M,N为顶点的三角形与△OAB相似.22.冬天即将到来,龙泉某中学的初三学生到某蔬菜生产基地作数学实验.在气温较低时,蔬菜生产基地用装有恒温系统的大棚栽培蔬菜,经收集数据,该班同学将大棚内温度和时间的关系拟合为一个分段函数,如图是某天恒温系统从开启到关闭后,大棚内的温度y(℃)与时间x(h)之间的函数关系,其中线段AB,BC表示恒温系统开启阶段,双曲线的一部分CD表示恒温系统关闭阶段.请根据图中信息解答下列问题:(1)求这天的温度y与时间x(0≤x≤24)的函数关系式;(2)若大棚栽种某种蔬菜,温度低于10℃时会受到伤害.问若栽种这种蔬菜,恒温系统最多可以关闭多少小时就必须再次启动,才能使蔬菜避免受到伤害?【分析】(1)应用待定系数法分段求函数解析式;(2)代入临界值y=10即可.【解答】解:(1)设线段AB解析式为y=k1x+b(k≠0)∵线段AB过点(0,10),(2,14)代入得,得,AB解析式为:y=2x+10(0≤x<5)∵B在线段AB上当x=5时,y=20∴B坐标为(5,20)∴线段BC的解析式为:y=20(5≤x<10)设双曲线CD解析式为:y=(k2≠0)∵C(10,20)∴k2=200∴双曲线CD解析式为:y=(10≤x≤24)∴y关于x的函数解析式为:y=(2)把y=10代入y=中,解得,x=20∴20﹣10=10答:恒温系统最多关闭10小时,蔬菜才能避免受到伤害.。

初中数学北师大九年级上《反比例函数》期末复习考试卷含解析

初中数学北师大九年级上《反比例函数》期末复习考试卷含解析

xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)试题1:如图,A、B两点在双曲线y=上,分别经过A、B两点向轴作垂线段,已知S阴影=1,则S1+S2=()A.3 B.4 C.5 D.6试题2:在函数(k为常数)的图象上有三个点(﹣2,y1),(﹣1,y2),(,y3),函数值y1,y2,y3的大小为()A.y1>y2>y3 B.y2>y1>y3 C.y2>y3>y1 D.y3>y1>y2试题3:如图,函数y1=与y2=k2x的图象相交于点A(1,2)和点B,当y1<y2时,自变量x的取值范围是()评卷人得分A.x>1 B.﹣1<x<0 C.﹣1<x<0或x>1 D.x<﹣1或0<x<1试题4:如图,反比例函数y=的图象经过点A(﹣1,﹣2).则当x>1时,函数值y的取值范围是()A.y>1 B.0<y<l C.y>2 D.0<y<2试题5:下列选项中,函数y=对应的图象为()A. B. C.D.试题6:若函数y=(k≠0)的图象过点(,),则此函数图象位于()A.第一、二象限 B.第一、三象限 C.第二、三象限 D.第二、四象限试题7:函数y=kx+1与函数y=在同一坐标系中的大致图象是()A. B. C.D.试题8:已知反比函数y=的图象如图所示,则实数m的取值范围在数轴上应表示为()A. B.C. D.试题9:下列各点中,在函数y=﹣图象上的是()A.(﹣2,4) B.(2,4) C.(﹣2,﹣4) D.(8,1)试题10:如图,O是坐标原点,菱形OABC的顶点A的坐标为(﹣3,4),顶点C在x轴的负半轴上,函数y=(x<0)的图象经过顶点B,则k的值为()A.﹣12 B.﹣27 C.﹣32 D.﹣36试题11:如图,双曲线y=与直线y=﹣x交于A、B两点,且A(﹣2,m),则点B的坐标是()A.(2,﹣1) B.(1,﹣2) C.(,﹣1) D.(﹣1,)试题12:若双曲线y=过点(2,6),则该双曲线一定过点()A.(﹣3,﹣4) B.(4,﹣3) C.(﹣6,2) D.(4,4)试题13:已知某个反比例函数,它在每个象限内,y随x增大而增大,则这个反比例函数可以是______(写出一个即可).若函数反比例函数y=的图象经过点(2,﹣1),则m的值是______.试题15:如图,点M是反比例函数y=(a≠0)的图象上一点,过M点作x轴、y轴的平行线,若S阴影=5,则此反比例函数解析式为______.试题16:如图,函数(x>0)和(x>0)的图象分别是l1和l2.设点P在l2上,PA∥y轴,交l1于点A,PB ∥x轴,交l1于点B,则△PAB的面积为______.试题17:如图,点A在双曲线y=的第一象限的那一支上,AB垂直于y轴于点B,点C在x轴正半轴上,且OC=2AB,点E在线段AC上,且AE=3EC,点D为OB的中点,若△ADE的面积为3,则k的值为______.如图,点A(m,2),B(5,n)在函数y=(k>0,x>0)的图象上,将该函数图象向上平移2个单位长度得到一条新的曲线,点A、B的对应点分别为A′、B′.图中阴影部分的面积为8,则k的值为______.试题19:如图,在平面直角坐标系中,反比例函数y=(x>0)的图象交矩形OABC的边AB于点D,交边BC于点E,且BE=2EC.若四边形ODBE的面积为6,则k=______.试题20:如图,点P、Q是反比例函数y=图象上的两点,PA⊥y轴于点A,QN⊥x轴于点N,作PM⊥x轴于点M,QB⊥y轴于点B,连接PB、QM,△ABP的面积记为S1,△QMN的面积记为S2,则S1______S2.(填“>”或“<”或“=”)试题21:如图,四边形ABCD为正方形.点A的坐标为(0,2),点B的坐标为(0,﹣3),反比例函数y=的图象经过点C,一次函数y=ax+b的图象经过点A、C,(1)求反比例函数与一次函数的解析式;(2)求点P是反比例函数图象上的一点,△OAP的面积恰好等于正方形ABCD的面积,求P点的坐标.试题22:如图,一次函数y1=x+1的图象与反比例函数(k为常数,且k≠0)的图象都经过点A(m,2)(1)求点A的坐标及反比例函数的表达式;(2)结合图象直接比较:当x>0时,y1和y2的大小.试题23:如图,反比例函数与一次函数y2=kx+b的图象交于两点A(1,3)、B(n,﹣1).(1)求这两个函数的解析式;(2)观察图象,请直接写出不等式的解集;(3)点C为x轴正半轴上一点,连接AO、AC,且AO=AC,求△AOC的面积.试题24:病人按规定的剂量服用某种药物,测得服药后2小时,每毫升血液中的含药量达到最大值为4毫克,已知服药后,2小时前每毫升血液中的含药量y(毫克)与时间x(小时)成正比例,2小时后y与x成反比例(如图所示).根据以上信息解答下列问题.(1)求当0≤x≤2时,y与x的函数关系式;(2)求当x>2时,y与x的函数关系式;(3)若每毫升血液中的含药量不低于2毫克时治疗有效,则服药一次,治疗疾病的有效时间是多长?试题25:如图,A(2,1)是矩形OCBD的对角线OB上的一点,点E在BC上,双曲线y=经过点A,交BC于点E,交BD于点F,若CE=.(1)求双曲线的解析式;(2)求点F的坐标;(3)连接EF、DC,求证:EF∥DC.试题1答案:D【考点】反比例函数系数k的几何意义.【分析】欲求S1+S2,只要求出过A、B两点向x轴、y轴作垂线段求出与坐标轴所形成的矩形的面积即可,而矩形面积为双曲线y=的系数k,由此即可求出S1+S2.【解答】解:∵点A、B是双曲线y=上的点,分别经过A、B两点向x轴、y轴作垂线段,则根据反比例函数的图象的性质得两个矩形的面积都等于|k|=4,∴S1+S2=4+4﹣1×2=6.故选:D.【点评】本题主要考查了反比例函数的图象和性质及任一点坐标的意义,有一定的难度.试题2答案:B【考点】反比例函数图象上点的坐标特征.【分析】先判断出﹣k2﹣2<0的符号,再根据反比例函数的性质进行比较.【解答】解:∵﹣k2﹣2<0,∴函数图象位于二、四象限,∵(﹣2,y1),(﹣1,y2)位于第二象限,﹣2<﹣1,∴y2>y1>0;又∵(,y3)位于第四象限,∴y3<0,∴y2>y1>y3.故选B.【点评】本题考查了反比例函数图象上点的坐标特征,要明确,当k<0在每个象限内,y随x的增大而增大.试题3答案:C【考点】反比例函数与一次函数的交点问题.【分析】把A的坐标代入函数的解析式求出函数的解析式,解由两函数解析式组成的方程组,求出方程组的解,得出B的坐标,根据A、B的坐标,结合图象即可得出答案.【解答】解:∵把A(1,2)代入y1=得:k1=2,把A(1,2)代入y2=k2x得:k2=2,∴y1=,y2=2x,解方程组得:,,即B的坐标是(﹣1,﹣2),∴当y1<y2时,自变量x的取值范围是﹣1<x<0或x>1,故选:C.【点评】本题考查了用待定系数法求反比例函数和一次函数的解析式,反比例函数和一次函数的交点问题等知识点的应用,主要考查学生的计算能力和观察图象的能力.试题4答案:D【考点】反比例函数的性质.【分析】依据待定系数法求得解析式,然后求得当x=1时的函数值即可解得.【解答】解:把A(﹣1,﹣2)代入反比例函数y=,则﹣2=﹣k,解得:k=2,∴反比例函数的解析式为:y=,当x=1时,y=2,根据图象可知:当x>1时,函数值y的取值范围是0<y<2.故选:D.【点评】本题考查了待定系数法求解析式以及函数图象的性质.试题5答案:A【考点】反比例函数的图象.【分析】根据x的取值范围讨论函数的图象的位置后即可确定正确的选项.【解答】解:∵y=中x≠0,∴当x>0时,y>0,此时图象位于第一象限;当x<0时,y>0,此时图象位于第二象限.故选A.【点评】本题考查了反比例函数的图象,解题的关键是根据自变量的取值范围确定函数的图象的具体位置,难度不大.试题6答案:B【考点】反比例函数图象上点的坐标特征.【分析】根据反比例函数图象上点的坐标特征求出k的值,然后根据反比例函数的性质判断图象的位置.【解答】解:根据题意得k=×=>0,所以反比例函数得图象分布在第一、三象限.故选B.【点评】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.试题7答案:A【考点】反比例函数的图象;一次函数的图象.【分析】根据一次函数和反比例函数的特点,k≠0,所以分k>0和k<0两种情况讨论.当两函数系数k取相同符号值,两函数图象共存于同一坐标系内的即为正确答案.【解答】解:分两种情况讨论:①当k>0时,y=kx+1与y轴的交点在正半轴,过一、二、三象限,y=的图象在第一、三象限;②当k<0时,y=kx+1与y轴的交点在正半轴,过一、二、四象限,y=的图象在第二、四象限.故选:A.【点评】本题主要考查了反比例函数的图象性质和一次函数的图象性质,关键是由k的取值确定函数所在的象限.试题8答案:C【考点】反比例函数的性质;在数轴上表示不等式的解集.【分析】根据反比例函数的性质得3﹣m>0,然后解不等式即可.【解答】解:∵反比例函数y=的图象位于第一、第三象限,∴3﹣m>0,∴m<3.故选C.【点评】本题考查了反比例函数的性质:反比例函数的图象是双曲线;当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大.试题9答案:A【考点】反比例函数图象上点的坐标特征.【分析】只需把所给点的横纵坐标相乘,结果是﹣8的,就在此函数图象上.【解答】解:∵反比例函数y=﹣中,k=﹣8,∴只需把各点横纵坐标相乘,结果为﹣8的点在函数图象上,四个选项中只有A选项符合.故选A.【点评】本题主要考查反比例函数图象上点的坐标特征,所有在反比例函数上的点的横纵坐标的积应等于比例系数.试题10答案:C【考点】菱形的性质;反比例函数图象上点的坐标特征.【分析】根据点C的坐标以及菱形的性质求出点B的坐标,然后利用待定系数法求出k的值即可.【解答】解:∵A(﹣3,4),∴OC==5,∵四边形OABC是菱形,∴AO=CB=OC=AB=5,则点B的横坐标为﹣3﹣5=﹣8,故B的坐标为:(﹣8,4),将点B的坐标代入y=得,4=,解得:k=﹣32.故选C.【点评】本题考查了菱形的性质以及利用待定系数法求反比例函数解析式,解答本题的关键是根据菱形的性质求出点B的坐标.试题11答案:A【考点】反比例函数与一次函数的交点问题.【分析】根据自变量的值,可得相应的函数值,根据待定系数法,可得反比例函数的解析式,根据解方程组,可得答案.【解答】解:当x=﹣2时,y=﹣×(﹣2)=1,即A(﹣2,1).将A点坐标代入y=,得k=﹣2×1=﹣2,反比例函数的解析式为y=,联立双曲线、直线,得,解得,,B(2,﹣1).故选:A.【点评】本题考查了反比例函数与一次函数的交点问题,利用待定系数法求双曲线函数的解析式,又利用解方程组求图象的交点.试题12答案:A【考点】反比例函数图象上点的坐标特征.【分析】根据反比例函数图象上点的坐标特征进行判断.【解答】解:∵双曲线y=过点(2,6),∴m=2×6=12,而﹣3×(﹣4)=12,4×(﹣3)=﹣12,﹣6×2=﹣12,4×4=16,∴点(﹣3,﹣4)在双曲线y=的图象上.故选A.【点评】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.试题13答案:y=﹣(答案不唯一)(写出一个即可).【考点】反比例函数的性质.【分析】设该反比例函数的解析式是y=,再根据它在每个象限内,y随x增大而增大判断出k的符号,选取合适的k 的值即可.【解答】解:设该反比例函数的解析式是y=,∵它在每个象限内,y随x增大而增大,∴k<0,∴符合条件的反比例函数的解析式可以为:y=﹣(答案不唯一).故答案为:y=﹣(答案不唯一).试题14答案:﹣3 .【考点】反比例函数图象上点的坐标特征.【分析】根据反比例函数图象上点的坐标特征得到m+1=2×(﹣1),然后解关于m的方程即可.【解答】解:根据题意得m+1=2×(﹣1),解得m=﹣3.故答案为﹣3.【点评】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.试题15答案:y=﹣.【考点】反比例函数系数k的几何意义.【分析】根据反比例函数k的几何意义可得|a|=5,再根据图象在二、四象限可确定a=﹣5,进而得到解析式.【解答】解:∵S阴影=5,∴|a|=5,∵图象在二、四象限,∴a<0,∴a=﹣5,∴反比例函数解析式为y=﹣,故答案为:y=﹣.【点评】此题主要考查了反比例函数k的几何意义,关键是掌握y=(k≠0)图象中任取一点,过这一个点向x轴和y 轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.试题16答案:.【考点】反比例函数系数k的几何意义.【分析】将点P(m,n)代入反比例函数(x>0)用m表示出n即可表示出点P的坐标,然后根据PB∥x轴,得到B点的纵坐标为,然后将点B的纵坐标带人反比例函数的解析式(x>0)即可得到点B的坐标,同理得到点A的坐标;根据PB=m﹣=,PA=﹣=,利用S△PAB=PA•PB即可得到答案;【解答】解:设点P(m,n),∵P是反比例函数y=(x>0)图象上的点,∴n=,∴点P(m,);∵PB∥x轴,∴B点的纵坐标为,将点B的纵坐标代入反比例函数的解析式y=(x>0)得:x=,∴B(,),同理可得:A(m,);∵PB=m﹣=,PA=﹣=,∴S△PAB=PA•PB=××=.故答案为.【点评】本题考查了反比例函数的综合知识,题目中根据平行坐标轴的直线上的点的坐标特点表示出有关点的坐标是解答本题的关键,难度中等偏上.试题17答案:.【考点】反比例函数综合题.【分析】由AE=3EC,△ADE的面积为3,得到△CDE的面积为1,则△ADC的面积为4,设A点坐标为(a,b),则k=ab,AB=a,OC=2AB=2a,BD=OD=b,利用S梯形OBAC=S△ABD+S△ADC+S△ODC得(a+2a)×b=a×b+4+×2a×b,整理可得ab=,即可得到k的值.【解答】解:连DC,如图,∵AE=3EC,△ADE的面积为3,∴△CDE的面积为1,∴△ADC的面积为4,设A点坐标为(a,b),则AB=a,OC=2AB=2a,而点D为OB的中点,∴BD=OD=b,∵S梯形OBAC=S△ABD+S△ADC+S△ODC,∴(a+2a)×b=a×b+4+×2a×b,∴ab=,把A(a,b)代入双曲线y=,∴k=ab=.故答案为:.【点评】本题考查了反比例函数综合题:点在反比例函数图象上,则点的横纵坐标满足其解析式;利用三角形的面积公式和梯形的面积公式建立等量关系.试题18答案:2 .【考点】反比例函数系数k的几何意义;平移的性质.【分析】利用平行四边形的面积公式得出M的值,进而利用反比例函数图象上点的性质得出k的值.【解答】解:∵将该函数图象向上平移2个单位长度得到一条新的曲线,点A、B的对应点分别为A′、B′,图中阴影部分的面积为8,∴5﹣m=4,∴m=1,∴A(1,2),∴k=1×2=2.故答案为:2.【点评】此题主要考查了平移的性质和反比例函数系数k的几何意义,得出A点坐标是解题关键.试题19答案:3 .【考点】反比例函数系数k的几何意义.【分析】连接OB,由矩形的性质和已知条件得出△OBD的面积=△OBE的面积=四边形ODBE的面积=3,在求出△OCE的面积,即可得出k的值.【解答】解:连接OB,如图所示:∵四边形OABC是矩形,∴∠OAD=∠OCE=∠DBE=90°,△OAB的面积=△OBC的面积,∵D、E在反比例函数y=(x>0)的图象上,∴△OAD的面积=△OCE的面积,∴△OBD的面积=△OBE的面积=四边形ODBE的面积=3,∵BE=2EC,∴△OCE的面积=△OBE的面积=,∴k=3;故答案为:3.【点评】本题考查了矩形的性质、三角形面积的计算、反比例函数的图象与解析式的求法;熟练掌握矩形的性质和反比例函数解析式的求法是解决问题的关键.试题20答案:=【考点】反比例函数系数k的几何意义.【分析】设p(a,b),Q(m,n),根据三角形的面积公式即可求出结果.【解答】解;设p(a,b),Q(m,n),则S△ABP=AP•AB=a(b﹣n)=ab﹣an,S△QMN=MN•QN=(m﹣a)n=mn﹣an,∵点P,Q在反比例函数的图象上,∴ab=mn=k,∴S1=S2.【点评】本题考查了反比例函数系数k的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|,这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.试题21答案:【考点】反比例函数与一次函数的交点问题.【分析】(1)先根据正方形的性质求出点C的坐标为(5,﹣3),再将C点坐标代入反比例函数y=中,运用待定系数法求出反比例函数的解析式;同理,将点A,C的坐标代入一次函数y=ax+b中,运用待定系数法求出一次函数函数的解析式;(2)设P点的坐标为(x,y),先由△OAP的面积恰好等于正方形ABCD的面积,列出关于x的方程,解方程求出x的值,再将x的值代入y=﹣,即可求出P点的坐标.【解答】解:(1)∵点A的坐标为(0,2),点B的坐标为(0,﹣3),∴AB=5,∵四边形ABCD为正方形,∴点C的坐标为(5,﹣3).∵反比例函数y=的图象经过点C,∴﹣3=,解得k=﹣15,∴反比例函数的解析式为y=﹣;∵一次函数y=ax+b的图象经过点A,C,∴,解得,∴一次函数的解析式为y=﹣x+2;(2)设P点的坐标为(x,y).∵△OAP的面积恰好等于正方形ABCD的面积,∴×OA•|x|=52,∴×2•|x|=25,解得x=±25.当x=25时,y=﹣=﹣;当x=﹣25时,y=﹣=.∴P点的坐标为(25,﹣)或(﹣25,).【点评】本题考查了正方形的性质,反比例函数与一次函数的交点问题,运用待定系数法求反比例函数与一次函数的解析式,三角形的面积,难度适中.运用方程思想是解题的关键.试题22答案:【考点】反比例函数与一次函数的交点问题.【分析】(1)将A点代入一次函数解析式求出m的值,然后将A点坐标代入反比例函数解析式,求出k的值即可得出反比例函数的表达式;(2)结合函数图象即可判断y1和y2的大小.【解答】解:(1)将A的坐标代入y1=x+1,得:m+1=2,解得:m=1,故点A坐标为(1,2),将点A的坐标代入:,得:2=,解得:k=2,则反比例函数的表达式y2=;(2)结合函数图象可得:当0<x<1时,y1<y2;当x=1时,y1=y2;当x>1时,y1>y2.【点评】本题考查了反比例函数与一次函数的交点问题,解答本题注意数形结合思想的运用,数形结合是数学解题中经常用到的,同学们注意熟练掌握.试题23答案:【考点】反比例函数与一次函数的交点问题.【分析】(1)可先把A代入反比例函数解析式,求得m的值,进而求得n的值,把A,B两点分别代入一次函数解析式即可;(2)根据图象即可求得;(3)过A点作AD⊥OC于点D,根据A的坐标得出AD=3,OC=2,根据三角形面积就可求得.【解答】解:(1)把A(1,3)的坐标代入,得m=3,故反比例函数的解析式为,把B(n,﹣1)的坐标代入,得﹣n=3,把A(1,3)和B(﹣3,﹣1)的坐标分别代入y2=kx+b,得,解得k=1,b=2.故一次函数的解析式为y2=x+2;(2)x>1或﹣3<x<0;(3)过A点作AD⊥OC于点D,∵AO=AC,∴OD=CD,∵A(1,3)在双曲线图象上,∴OD•AD=3,∴OC•AD=3,∴S△AOC=3.【点评】本题综合考查一次函数与反比例函数的图象交点,同时考查用待定系数法求函数解析式.本题需要注意无论是自变量的取值范围还是函数值的取值范围,都应该从交点入手思考;需注意反比例函数的自变量不能取0.试题24答案:【考点】反比例函数的应用;一次函数的应用.【分析】(1)根据点(2,4)利用待定系数法求正比例函数解形式;(2)根据点(2,4)利用待定系数法求反比例函数解形式;(3)根据两函数解析式求出函数值是2时的自变量的值,即可求出有效时间.【解答】解:(1)根据图象,正比例函数图象经过点(2,4),设函数解析式为y=kx,则2k=4,解得k=2,所以函数关系为y=2x(0≤x≤2);(2)根据图象,反比例函数图象经过点(2,4),设函数解析式为y=,则=4,解得k=8,所以,函数关系为y=(x>2);(3)当y=2时,2x=2,解得x=1,=2,解得x=4,4﹣1=3小时,∴服药一次,治疗疾病的有效时间是3小时.【点评】本题主要考查图象的识别能力和待定系数法求函数解形式,是近年中考的热点之一.试题25答案:【考点】反比例函数与一次函数的交点问题.【分析】(1)根据反比例函数图象上点的坐标特征,把A(2,1)代入y=中可求出k的值,从而得到双曲线解析式;(2)先利用待定系数法求出直线解析式为y=x,再利用E点的纵坐标为和反比例函数图象上点的坐标特征可确定E(3,),接着根据一次函数图象上点的坐标特征确定B(3,),则F的纵坐标为,然后再利用反比例函数图象上点的坐标特征确定F点坐标;(3)先得到BD=3,BC=,BF=,BE=,再通过计算得到==,加上∠FBE=∠DBC,则可判断△BFE∽△BDC,所以∠BFE=∠BDC,于是可判断EF∥CD.【解答】解:(1)把A(2,1)代入y=得k+1×2=2,所以双曲线解析式为y=;(2)设直线OB解析式为y=ax,把A(2,1)坐标代入得:1=2a,解得a=,∴直线解析式为y=x,∵四边形OCBD为矩形,CE=,∴E点的纵坐标为,当y=时,=,解得x=3,则E(3,),∴B的横坐标为3,当x=3时,y=x=,则B(3,),∴F的纵坐标为,当y=时,=,解得x=,∴F(,);(3)∵B(3,),F(,),E(3,),∴BD=3,BC=,BF=3﹣=,BE=﹣=,∴=,=,∴=,而∠FBE=∠DBC,∴△BFE∽△BDC,∴∠BFE=∠BDC,∴EF∥CD.【点评】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了矩形的性质和相似三角形的判定与性质.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北师大版初中数学九年级上学期期末考试复习专题测试:反比例函数
一、单选题
1.下列关系式中,表示y是x的反比例函数的是()
A. B. C. D.
2.若点,,在反比例函数的图象上,则大小关系是()
A. B. C. D.
3.已知反比例函数,下列说法中正确的是()
A. 该函数的图像分布在第一、三象限
B. 点(-4,-3)在函数图像上
C. y随x的增大而增大
D. 若点(-2,y1)和(-1,y2)在该函数图像上,则y1<y2
4.若反比例函数的图像分布在第二、四象限,则k的取值范围是()
A. k<
B. k>
C. k>1
D. k<1
二、填空题
5.如果反比例函数(为常数)的图象在二、四象限,那么的取值范围是________
6.已知一个反比例函数的图象经过点,若该反比例函数的图象也经过点,则________.
7.如图,在平面直角坐标系中,点O为坐标原点,平行四边形OABC的顶点A在反比例函数的图象上,顶点B在反比例函数的图象上,点C在x轴的正半轴上,则平行四边形OABC的面积是________
三、解答题
8.已知反比例函数的图象分别位于第二、第四象限,化简:.
9.如图,直线y=-2x+4与坐标轴分别交于C、B两点,过点C作CD⊥x轴,点P是x轴下方直线CD上的一点,且△OCP与△OBC相似,求过点P的双曲线解析式.
四、综合题(共4题;共41分)
10.若矩形的长为x,宽为y,面积保持不变,下表给出了x与y的一些值求矩形面积.
1
2
(1)请你根据表格信息写出y与x之间的函数关系式;
(2)根据函数关系式完成上表.
11.已知反比例函数y=.
(1)若点(﹣t+ ,﹣2)在此反比例函数图象上,求t的值.
(2)若点(x1,y1)和(x2,y2)是此反比例函数图象上的任意两点,
①当x1>0,x2>0,且x1=x2+2时,求的值;
②当x1>x2时,试比较y1,y2的大小.
12.阅读理解:
材料一:若三个非零实数x,y,z满足:只要其中一个数的倒数等于另外两个数的倒数的和,则称这三个实教x,y,z构成“和谐三数组”.
材料二:若关于x的一元二次方程ax2+bx +c= 0(a≠0)的两根分别为,,则有,.
问题解决:
(1)请你写出三个能构成“和谐三数组”的实数________;
(2)若,是关于x的方程ax2+bx +c= 0 (a,b,c均不为0)的两根,是关于x的方程bx+c=0(b,c均不为0)的解.求证:x1,x2,x3可以构成“和谐三数组”;
(3)若A(m,y1) ,B(m + 1,y2) ,C(m+3,y3)三个点均在反比例函数的图象上,且三点的纵坐标恰好构成“和谐三数组”,求实数m的值.
13.已知反比例函数()的图象经过点A(2,3).
(1)求函数解析式;
(2)当x=-4时,求反比例函数的值.
参考答案
一、单选题
1. D
2. D
3. D
4. C
二、填空题
5. k>2
6. -3
7.
三、解答题
8. 由题意得k<0.
9. 解:∵直线y=-2x+4与坐标轴分别交于C、B两点,
∴令y=0,可得-2x+4=0,解得x=2,即C(2,0),OC=2,
令x=0,可得y=4,即B(0,4),OB=4,
①如图1,当∠OBC=∠COP时,△OCP与△OBC相似,
∴,即,解得CP=1,
∴P(2,-1),
设过点P的双曲线解析式y= ,把P点代入得-1= ,解得k=-2,∴过点P的双曲线解析式,
②如图2,当∠OBC=∠CPO时,△OCP与△OBC相似,
在△OCP和△COB中,
∴△OCP≌△COB(AAS)
∴CP=BO=4,
∴P(2,-4)
设过点P的双曲线解析式y= ,把P点代入得-4= ,解得k=-8,∴过点P的双曲线解析式.
综上所述,过点P的双曲线解析式为:或.
四、综合题
10. (1)解:设矩形的面积为k,则
把(1,4)代入得:k=1×4=4,
(2)解:当x= 时,y=
当x= 时,y= ,
当x=8时,y= ,
当y=2时,x= =2;
当y= 时,x= ,
11. (1)解:把点(﹣t+ ,﹣2)代入y=﹣得(﹣t+ )×(﹣2)=﹣4,
解得t=
(2)解:①∵点(x1,y1)和(x2,y2)是反比例函数y=﹣图象上的两点,
∴y1=﹣,y2=﹣,
∴=﹣=﹣+ =﹣(x1﹣x2)
∵x1=x2+2,
∴=﹣×2=﹣;
②当x1>x2>0或0>x1>x2,则y1>y2;
当x1>0>x2时,y1<y2.
12. (1),2,3
(2)证明:∵,是关于x的方程ax2+bx +c= 0 (a,b,c均不为0)的两根,
∴,,
∴,
∵是关于x的方程bx+c=0(b,c均不为0)的解,
∴,∴,
∴= ,
∴x1,x2,x3可以构成“和谐三数组”;
(3)解:∵A(m,y1) ,B(m + 1,y2) ,C(m+3,y3)三个点均在反比例函数的图象上,∴,,,
∵三点的纵坐标y1,y2,y3恰好构成“和谐三数组”,
∴或或,
即或或,解得:m=﹣4或﹣2或2.
13. (1)解:∵反比例函数y= 的图象经过点A(2,3),∴,
∴解析式为
(2)解:当时,
.。

相关文档
最新文档