高考数学总复习第十讲:抽象函数问题的题型综述

合集下载

抽象函数常见题型及解法综述

抽象函数常见题型及解法综述

是[- 1, 1]; ③在其定义域上递减; ④ f( x) +f( y) = f( xy) 对于
任意实数 x, y 都成立.解不等式 f-1( x)·f-1( 1 ) ≤ 1 . 1- x 2
联想
因 为 loga( x·y) =logax+logay, 而 log 1

1 2
=1, y=
log 1 x 在其定义域内为减函数, 所以猜测它的模型函数
#!f -1( x+ 1 ) ≤f -1( 1) , #x+ 1 ≥1,
% 1- x
% 1- x
%%- 1≤x+ 1 ≤1,
$
1- x
%%- 1≤x+ 1 ≤1,
∴(
1- x
∴x=0.
%- 1≤x≤1,
%- 1≤x≤1,
&%%- 1≤
1 1- x
≤1.
&%%- 1≤
1 1- x
≤1.
故 原 不 等 式 的 解 集 为 {0}.
二 、寻 觅 特 殊 函 数 的 模 型
1.指 数 函 数 模 型
例 6 设 f( x) 定义于实数集 R 上, 当 x>0 时, f( x) >1,
且对于任意实数 x, y, 有 f( x+y) = f( x)·f( y) , 同时 f( 1) =2,
解不等式 f( 3x- x2) >4.
联 想 由于 ax+y=a·x ay( a>0, a≠1) , 于是猜测它的模型
x- 1
x- 1
x- 1
①- ②+③并化简得 f( x) = x3- x2- 1 . 2x( x- 1)
小 结 把 x 和 x- 1 分 别 看 作 两 个 变 量 , 怎 样 实 现 由 x

抽象函数常见题型解法

抽象函数常见题型解法

高考数学总复习第十讲:抽象函数问题的题型综述抽象函数是指没有明确给出具体的函数表达式,只是给出一些特殊关系式的函数,它是中学数学中的一个难点,因为抽象,学生解题时思维常常受阻,思路难以展开,教师对教材也难以处理,而高考中又出现过这一题型,有鉴于此,本文对这一问题进行了初步整理、归类,大概有以下几种题型:一. 求某些特殊值这类抽象函数一般给出定义域,某些性质及运算式而求特殊值。

其解法常用“特殊值法”,即在其定义域内令变量取某特殊值而获解,关键是抽象问题具体化。

例1 定义在R 上的函数f x ()满足:f x f x ()()=-4且f x f x ()()220-+-=,求f ()2000的值。

解:由f x f x ()()220-+-=,以t x =-2代入,有f t f t ()()-=,∴f x ()为奇函数且有f ()00=又由f x f x ()[()]+=--44=-=-∴+=-+=f x f x f x f x f x ()()()()()84故f x ()是周期为8的周期函数,∴==f f ()()200000例2 已知函数f x ()对任意实数x y ,都有f x y f x f y ()()()+=+,且当x >0时,f x f ()()>-=-012,,求f x ()在[]-21,上的值域。

解:设x x 12<且x x R 12,∈,则x x 210->,由条件当x >0时,f x ()>0∴->f x x ()210又f x f x x x ()[()]2211=-+=-+>f x x f x f x ()()()2111∴f x ()为增函数,令y x =-,则f f x f x ()()()0=+-又令x y ==0得f ()00=∴-=-f x f x ()(),故f x ()为奇函数,∴=-=f f ()()112,f f ()()-=-=-2214∴-f x ()[]在,21上的值域为[]-42,二. 求参数范围这类参数隐含在抽象函数给出的运算式中,关键是利用函数的奇偶性和它在定义域内的增减性,去掉“f ”符号,转化为代数不等式组求解,但要特别注意函数定义域的作用。

SX2020A093高考数学必修_抽象函数常见题型例析

SX2020A093高考数学必修_抽象函数常见题型例析

抽象函数常见题型例析抽象函数是指没有给出函数的具体解析式,只给出了一些体现函数特征的式子的一类函数.由于抽象函数表现形式的抽象性,使得这类问题是函数内容的难点之一,其性质常常是隐而不漏,但一般情况下大多是以学过的常见函数为背景,对函数性质通过代数表述给出.抽象函数的相关题目往往是在知识网络的交汇处设计,高考对抽象函数的要求是考查函数的概念和知识的内涵及外延的掌握情况、逻辑推理能力、抽象思维能力和数学后继学习的潜能.为了扩大读者的视野,特就抽象函数常见题型及解法评析如下.一、函数的基本概念问题 1.抽象函数的定义域问题例1 已知函数)(2x f 的定义域是[1,2],求)(x f 的定义域. 解:由)(2x f 的定义域是[1,2],是指1≤x ≤2,所以1≤x 2≤4, 即函数)(x f 的定义域是[1,4].评析:一般地,已知函数))((x f ϕ的定义域是A ,求)(x f 的定义域问题,相当于已知))((x f ϕ中x 的取值范围为A ,据此求)(x ϕ的值域问题.评析:这类问题的一般形式是:已知函数)(x f 的定义域是A ,求函数))((x f ϕ的定义域.正确理解函数符号及其定义域的含义是求解此类问题的关键.一般地,若函数)(x f 的定义域是A ,则x 必须是A 中的元素,而不能是A 以外的元素,否则,)(x f 无意义.因此,如果)(0x f 有意义,则必有x 0∈A .所以,这类问题实质上相当于已知)(x ϕ的值域是A ,据此求x 的取值范围,即由)(x ϕ∈A 建立不等式,解出x 的范围.例2和例1形式上正相反.2.抽象函数的求值问题例2 已知定义域为R +的函数)(x f ,同时满足下列条件:①)2(f = 1,)6(f =51;②)(y x f ⋅=)(x f +)(y f ,求)3(f 、)9(f 的值.解:取x = 2,y = 3,得)6(f =)2(f +)3(f ,∵)2(f = 1,)6(f =51,∴)3(f =-54.又取x = y = 3,得)9(f =)3(f +)3(f =-58.评析:通过观察已知与未知的联系,巧妙地取x = 2,y = 3,这样便把已知条件)2(f = 1,)6(f =51与欲求的)3(f 沟通了起来.这是解此类问题的常用技巧.3.抽象函数的值域问题例3 已知函数f (x) 在定义域R +上是增函数,且满足f (x y) =f (x) +f (y) (x 、y ∈R +),求f (x) 的值域.解:当 x = y = 1 时 ,f (1) = 2f (1) ,即f (1) = 0 ,又∵ f (x) 在定义域R +上是增函数 ,∴x 1>x 2>0 时 ,令x 1= mx 2 (m >1), 则 f (x 1)-f ( x 2) =f (mx 2)-f ( x 2) =f (m) +f ( x 2)-f ( x 2) =f (m)>0, ∴对于x >1有f (x)>0 .又设x 1= mx 2 (0<m <1),则 0<x 1<x 2 . ∵ f (x) 在定义域R +上是增函数 ,∴f (x 1)-f ( x 2)<0 , 即f (mx 2)-f ( x 2) =f (m) +f ( x 2)-f ( x 2) =f (m)<0 , ∴ 对于0 <x <1 有f ( x)<0 .综上所述,当x ∈R + 时 ,f (x) 的值域为全体实数.评析:在处理抽象函数的问题时,往往需要对某些变量进行适当的赋值,这是一般向特殊转化的必要手段.4.抽象函数的解析式问题例4 设对满足 x ≠0,x ≠1的所有实数 x ,函数f (x) 满足f (x) +f (xx 1-) = 1 + x ,求f (x) 的解析式.解:在f (x) +f (x x 1-) = 1 + x , (1) 中以xx 1-代换其中 x ,得:f (x x 1-) +f (-11-x ) =xx -12 , ⑵再在(1)中以-11-x 代换x ,得 :f (-11-x ) +f (x) =12--x x , ⑶ (1)-(2) + ⑶ 化简得:f (x) =)1(2123x -x x x --.评析:如果把x 和xx 1-分别看作两个变量,怎样实现由两个变量向一个变量的转化是解题关键.通常情况下,给某些变量适当赋值,使之在关系中“消失”,进而保留一个变量,是实现这种转化的重要策略.5.抽象函数的单调性问题例5 设f (x) 定义于实数集上,当x >0时,f (x)>1 ,且对于任意实数x 、y ,有f (x + y) =f (x) ·f (y),求证:f (x) 在R 上为增函数.证明:由 f (x + y) =f (x)f (y) 中取x = y = 0,得f (0) =)0(2f ,若f (0) = 0,令x >0,y = 0,则 f (x) = 0,与f (x)>1 矛盾.∴ f (0)≠0,即有f (0) = 1. 当x >0时,f (x)>1>0,当x <0时,-x >0,f (-x)>1>0, 而f (x) ·f (-x) =f (0) = 1,∴ f (x) =)(1x f ->0 . 又当x = 0 时,f (0) = 1>0 ,∴x ∈R ,f (x)>0.设 -∞<x 1<x 2<+∞,则x 2-x 1>0,f ( x 2-x 1)>1. ∴ f ( x 2) =f [ x 1+ ( x 2-x 1)] =f (x 1)f ( x 2-x 1)>f ( x 1). ∴ y =f (x) 在R 上为增函数.评析:一般地,抽象函数所满足的关系式,应看作给定的运算法则,而变量的赋值或变量及数值的分解与组合都应尽量与已知式或所给关系式及所求的结果相关联.。

抽象函数问题常见题型及解法综述

抽象函数问题常见题型及解法综述
f( x) +厂( ) , 求 ,( 3 ) 、 厂( 9 ) 的值 。
解: 取 z一 2 , 一3 , 得 f( 6 ) 一 f( 2 ) + f( 3 ) 。 又
,( 2 ) 一 1 , 厂( 6 ) 一 1


函 数的 基本 概念 问 题 .
1 . 抽 象 函数 的定义 域 问题
已知 函数 厂( z) 满足: 对 任 意 z、 ∈R,
3 . 抽 象 函 数 的 值 域 问 题
侧 2 已知函数 厂 ( z ) 的定义域是[ 一1 , 2 ] , 求
函数 f( 1 o g  ̄( 3 一z) ) 的定义 域 。 解: 由函数 厂( ) 的定义域是[ 一1 , 2 ] , 得: 在 函
的定 义域是 A, 求 函 数 f( ( z) ) 的 定 义 域 。 正 确 理 解 函 数 符 号 及 其 定 义 域 的 含 义 是 求 解 此 类 问 题 的 关
对 任 意 的 z∈R, 有 f( O ) 一f( z) +f( 一 ) 一0
厂( 一. 2 C ) 一 一 ,( ) 。
( 1 ) 求证 : f( x ) 是 奇 函数 。
( 2 ) 证明 : 厂( ) 是 减 函数 。 ( 3 ) 当 z∈[ 一3 , 3 ] 时, 求 f( x ) 的值 域 。
解: ( 1 ) 令 z: 一0 , 得 f( 0 ) 一f( 0 ) +f( 0 )
f( O ) 一0 。
质 通过 代 数表 述 给 出 。抽 象 函数 的相 关 题 目往 往 是
是 A 中的元 素 , 而不能是 以外 的元 素 , 否则 , f( x)
无 意 义。 因此 , 如 果 ,( 。 ) 有 意义 , 则 必有 z 。 ∈A。

抽象函数常见题型解法

抽象函数常见题型解法

如果您需要使用本文档,请点击下载按钮下载!抽象函数常见题型解法抽象函数是指没有给出函数的具体解析式,只给出了一些体现函数特征的式子的一类函数。

由于抽象函数表现形式的抽象性,使得这类问题成为函数内容的难点之一.抽象性较强,灵活性大,解抽象函数重要的一点要抓住函数中的某些性质,通过局部性质或图象的局部特征,利用常规数学思想方法(如化归法、数形结合法等),这样就能突破“抽象”带来的困难,做到胸有成竹.另外还要通过对题目的特征进行观察、分析、类比和联想,寻找具体的函数模型,再由具体函数模型的图象和性质来指导我们解决抽象函数问题的方法。

常见的特殊模型:特殊模型抽象函数正比例函数f(x)=kx (k ≠0) f(x+y)=f(x)+f(y)幂函数 f(x)=x nf(xy)=f(x)f(y) [或)y (f )x (f )yx (f =]指数函数 f(x)=a x (a>0且a ≠1) f(x+y)=f(x)f(y) [)y (f )x (f )y x (f =-或对数函数 f(x)=log a x (a>0且a ≠1) f(xy)=f(x)+f(y) [)]y (f )x (f )yx (f -=或正、余弦函数 f(x)=sinx f(x)=cosx f(x+T)=f(x)正切函数 f(x)=tanx )y (f )x (f 1)y (f )x (f )y x (f -+=+ 余切函数 f(x)=cotx)y (f )x (f )y (f )x (f 1)y x (f +-=+目录:一、定义域问题 二、求值问题 三、值域问题 四、解析式问题 五、单调性问题 六、奇偶性问题七、周期性与对称性问题 八、综合问题一、定义域问题 --------多为简单函数与复合函数的定义域互求。

例1.若函数y = f (x )的定义域是[-2,2],则函数y = f (x+1)+f (x -1)的定义域为11≤≤-x 。

抽象函数常见题型解法宝典

抽象函数常见题型解法宝典

抽象函数常见题型解法抽象函数是指没有给出函数的具体解析式,只给出了一些体现函数特征的式子的一类函数。

由于抽象函数表现形式的抽象性,使得这类问题成为函数内容的难点之一.抽象性较强,灵活性大,解抽象函数重要的一点要抓住函数中的某些性质,通过局部性质或图象的局部特征,利用常规数学思想方法(如化归法、数形结合法等),这样就能突破“抽象”带来的困难,做到胸有成竹.另外还要通过对题目的特征进行观察、分析、类比和联想,寻找具体的函数模型,再由具体函数模型的图象和性质来指导我们解决抽象函数问题的方法。

常见的特殊模型:目录:一.定义域问题二、求值问题三、值域问题四、解析式问题五、单调性问题六、奇偶性问题七、周期性与对称性问题一.定义域问题 --------多为简单函数与复合函数的定义域互求。

例1.若函数y = f (x )的定义域是[-2,2],则函数y = f (x+1)+f (x -1)的定义域为 。

解:f(x)的定义域是[]2,2-,意思是凡被f 作用的对象都在[]2,2- 中。

二、求值问题-----抽象函数的性质是用条件恒等式给出的,可通过赋特殊值法使问题得以解决。

怎样赋值?需要明确目标,细心研究,反复试验;例3.①对任意实数x,y ,均满足f(x+y 2)=f(x)+2[f(y)]2且f(1)≠0,则f(2001)=_______.解析:这种求较大自变量对应的函数值,一般从找周期或递推式着手:,)]1([2)()1(,1,2f n f n f y n x +=+==得令 令x=0,y=1,得f(0+12)=f(0)+2f[(1)]2, 令x=y=0,得:f(0)=0, ∴f(1)=21,.22001)2001(f ,2n )n (f ,21f (n)-1)f (n =∴==+故即 ②R 上的奇函数y=f(x)有反函数y=f -1(x),由y=f(x+1)与y=f -1(x+2)互为反函数,则f(2009)= .解析:由于求的是f(2009),可由y=f -1(x+2)求其反函数y=f(x)-2,所以f(x+1)= f(x)-2,又f(0)=0,通过递推可得f(2009)=-4918.三、值域问题例4.设函数f(x)定义于实数集上,对于任意实数x 、y ,f(x+y)=f(x)f(y)总成立,且存在21x x ≠,使得)()(21x f x f ≠,求函数f(x)的值域。

SXA230高考数学必修_抽象函数问题的常见题型与解法

SXA230高考数学必修_抽象函数问题的常见题型与解法

抽象函数问题的常见题型与解法抽象函数问题是函数中的重要题型,学好抽象函数问题的解法,对于切实掌握函数的定义、性质等重要内容都有着举足轻重的作用。

因此,近几年,抽象函数问题以它的抽象、灵活,常常出现在高考中,而现行中学数学教材涉及此内容的部分甚少,学生解决此类函数问题时往往不知所措。

为此,本文对此类函数问题进行分类,并结合实例进行解析。

1.判断函数的奇偶性例1已知函数)(x f 的定义域为R ,对任意R x x ∈21,,都有++=⋅)([21)()(2121x x f x f x f )](21x x f -成立,且)(x f 不恒为零,试判断)(x f 的奇偶性。

解:因为函数)(x f 的定义域为R ,它关于原点对称。

令x x x x -==21,,得:+=-⋅)0([21)()(f x f x f )]2(x f ① 令x x x x ==21,,得:+=)2([21)(2x f x f )]0(f ② 由①②得:)()()(2x f x f x f =-⋅,即0)]()()[(=--x f x f x f 恒成立。

因为)(x f 不恒为零,0)()(=--∴x f x f ,即)()(x f x f =-,)(x f ∴为偶函数。

评注:判断函数的奇偶性,可先考察函数定义域是否关于原点对称,再研究)()(x f x f =-或)()(x f x f -=-是否恒成立。

2.确定函数的单调性例2设函数)(x f 的定义域为R ,且对任意实数n m 、总有)()()(n f m f n m f =+,且当0>x 时,1)(0<<x f 。

(1)证明:1)0(=f ,且当0<x 时,1)(>x f ;(2)证明:R x f 在)(上单调递减。

证明:(1)因为函数)(x f 对任意实数n m 、总有)()()(n f m f n m f =+,所以令0,1==n m 得:)0()1()1(f f f =,即0]1)0()[1(=-f f ,但0)1(≠f ,故必有1)0(=f 。

高一数学抽象函数常见题型解法综述

高一数学抽象函数常见题型解法综述

抽象函数常有题型解法综述抽象函数是指没有给出函数的详细分析式,只给出了一些表现函数特点的式子的一类函数。

因为抽象函数表现形式的抽象性,使得这种问题成为函数内容的难点之一。

本文就抽象函数常有题型及解法评析以下:一、定义域问题例 1. 已知函数f ( x 2 ) 的定义域是[ 1 , ],求 f ( )的定义域。

2 x解:( 2 ) 的定义域是[1 x 2222f x 1 , ],是指,所以f ( x ) 中的x 知足1 x42从而函数 f ( x )的定义域是[ 1,4]评析: 一般地,已知函数 f ( ( x)) 的定义域是A ,求 f ( x )的定义域问题,相当于已知f ( (x)) 中 x 的取值范围为 A ,据此求( x) 的值域问题。

例 2. 已知函数 f (x) 的定义域是 [1,2] ,求函数 f [log 1 (3 x)] 的定义域。

2解: f ( x) 的定义域是 [ 1,2] ,意思是凡被 f 作用的对象都在[ 1,2] 中,由此可得1 log 1(3 x)2( 1 ) 2 3 x ( 1) 11 x112224所以函数f [log(3 x )] 的定义域是11,1[1]24评析: 这种问题的一般形式是:已知函数f ( x )的定义域是 A ,求函数 f ( (x)) 的定义域。

正确理解函数符号及其定义域的含义是求解此类问题的重点。

这种问题本质上相当于已知(x) 的值域 B ,且 BA ,据此求 x 的取值范围。

例 2 和例 1 形式上正相反。

二、求值问题例 3. 已知定义域为 R 的函数 f ( x ),同时知足以下条件: ① f (2)1, f (6)1f ( x) f ( y) ,;② f ( x y)5求 f ( 3), f ( 9)的值。

解: 取 x 2, y3,得 f (6) f (2)f (3)因为 f (2)1 ,所以 f4 又取 x y3 ,得 f (9)f (3)f (3)81, f (6) (3)555评析:经过察看已知与未知的联系,奇妙地赋值,取x 2, y3,这样便把已知条件 f (2)1, f (6)1 与5欲求的 f ( 3)交流了起来。

高中常见抽象函数题型归纳

高中常见抽象函数题型归纳

抽象函数常见题型及解法没有明确给出解析式的函数统称为抽象函数。

常见题型及其解法如下:一、函数性质法1.利用奇偶性整体思考;2.利用单调性等价转化;3.利用周期性回归已知;4.利用对称性数形结合;5.借助特殊点.三、常用变换技巧()()()()[()]()()()()()f y f x y f x y f x f x y y f x y f x f y f x f y +-=⇒=+-=⇒+=四、经典例题及易混易错题型(一)定义域问题这类问题只要紧紧抓住:将函数f g x [()]中的g x ()看作一个整体,相当于f x ()中的x 这一特性,问题就会迎刃而解.例1. 函数y f x =()的定义域为(]-∞,1,则函数y f x =-[log ()]222的定义域是___. 分析:因为log ()22x 2-相当于f x ()中的x ,所以log ()2221x -≤,解得22<≤x 或-≤<-22x . 例2. 已知函数)(2x f 的定义域是[1,2],求f (x )的定义域.分析:已知函数的定义域是A ,求函数f(x)的定义域,相当于求内函数的值域.)(2x f 的定义域是[1,2],是指21≤≤x ,所以)(2x f 中的2x 满足412≤≤x ,从而函数f (x )的定义域是[1,4] )()()()()()(y f x f y x f y f x f y x f =-⇔=+()()()()()[()]()()()()f x f x y f x f y f x f x y y f x y f y f x y f y +=⇒=-+=-⇒-=)()()()()()(y f x f y x f y f x f y x f +=⋅⇔-=()()()()()()()()()()x x x f x y f x f y f x f y f f y f f x f y y y y ⋅=+⇒=⋅=+⇒=-()()x f ϕ()x ϕ例3.若函数)1(+=x f y 的定义域为)3,2[-,求函数)21(+=x f y 的定义域.解析:由)1(+=x f y 的定义域为)3,2[-,知1+x 中的)3,2[-∈x ,从而411<+≤-x ,对函数)21(+=x f y 而言,有1124x -≤+<,解之得:),21(]31,(+∞--∞∈ x . 所以函数)21(+=x f y 的定义域为),21(]31,(+∞--∞例4.已知f x ()的定义域为(0),1,则y f x a f x a a =++-≤()()(||)12的定义域是______. 分析:因为x a +及x a -均相当于f x ()中的x ,所以 010111<+<<-<⎧⎨⎩⇒-<<-<<+⎧⎨⎩x a x a a x a a x a (1)当-≤≤120a 时,则x a a ∈-+(),1 (2)当012<≤a 时,则x a a ∈-(),1f x ()的定义域为(0),1,意思是凡被f 作用的对象都在(0),1中.评析:已知f(x)的定义域是A ,求的定义域问题,相当于解内函数的不等式问题.例5.定义在上的函数f(x)的值域为,若它的反函数为f-1(x),则y=f-1(2-3x)的定义域为______,值域为______. 答案:(二)函数值问题1. 赋特殊值法求值例1.已知f x ()的定义域为R +,且f x y f x f y ()()()+=+对一切正实数x ,y 都成立,若f ()84=,则f (2)=_______.分析:在条件f x y f x f y ()()()+=+中,令x y ==4,得f f f f ()()()()844244=+==,∴=f ()42又令x y ==2,得f f f (4)(2)(2)=+=2,∴=f (2)1例2.设函数)(x f 的定义域为()+∞,0,且对于任意正实数y x ,都有)(xy f =)(x f )(y f +恒成立。

[实用参考]高一必修一数学抽象函数常见题型解法综述.doc

[实用参考]高一必修一数学抽象函数常见题型解法综述.doc

抽象函数常见题型解法综述抽象函数是指没有给出函数的具体解析式,只给出了一些体现函数特征的式子的一类函数。

由于抽象函数表现形式的抽象性,使得这类问题成为函数内容的难点之一。

本文就抽象函数常见题型及解法评析如下:一、定义域问题例1.已知函数)(2x f 的定义域是[1,2],求f (G )的定义域。

解:)(2x f 的定义域是[1,2],是指21≤≤x ,所以)(2x f 中的2x 满足412≤≤x 从而函数f (G )的定义域是[1,4]评析:一般地,已知函数))((x f ϕ的定义域是A ,求f (G )的定义域问题,相当于已知))((x f ϕ中G 的取值范围为A ,据此求)(x ϕ的值域问题。

例2.已知函数)(x f 的定义域是]21[,-,求函数)]3([log 21x f -的定义域。

解:)(x f 的定义域是]21[,-,意思是凡被f 作用的对象都在]21[,-中,由此可得4111)21(3)21(2)3(log 11221≤≤⇒≤-≤⇒≤-≤--x x x 所以函数)]3([log 21x f -的定义域是]4111[,评析:这类问题的一般形式是:已知函数f (G )的定义域是A ,求函数))((x f ϕ的定义域。

正确理解函数符号及其定义域的含义是求解此类问题的关键。

这类问题实质上相当于已知)(x ϕ的值域B ,且A B ⊆,据此求G 的取值范围。

例2和例1形式上正相反。

二、求值问题例 3.已知定义域为+R 的函数f (G ),同时满足下列条件:①51)6(1)2(==f f ,;②)()()(y f x f y x f +=⋅,求f (3),f (9)的值。

解:取32==y x ,,得)3()2()6(f f f += 因为51)6(1)2(==f f ,,所以54)3(-=f 又取3==y x 得58)3()3()9(-=+=f f f 评析:通过观察已知与未知的联系,巧妙地赋值,取32==y x ,,这样便把已知条件51)6(1)2(==f f ,与欲求的f (3)沟通了起来。

抽象函数问题的题型综述

抽象函数问题的题型综述

高考数学总复习第十讲:抽象函数问题的题型综述抽象函数是指没有明确给出具体的函数表达式,只是给出一些特殊关系式的函数,它是中学数学中的一个难点,因为抽象,学生解题时思维常常受阻,思路难以展开,教师对教材也难以处理,而高考中又出现过这一题型,有鉴于此,本文对这一问题进行了初步整理、归类,大概有以下几种题型:一. 求某些特殊值这类抽象函数一般给出定义域,某些性质及运算式而求特殊值。

其解法常用“特殊值法”,即在其定义域内令变量取某特殊值而获解,关键是抽象问题具体化。

例1 定义在R 上的函数f x ()满足:f x f x ()()=-4且f x f x ()()220-+-=,求f ()2000的值。

例2 已知函数f x ()对任意实数x y ,都有f x y f x f y ()()()+=+,且当x >0时,f x f ()()>-=-012,,求f x ()在[]-21,上的值域。

二. 求参数范围这类参数隐含在抽象函数给出的运算式中,关键是利用函数的奇偶性和它在定义域内的增减性,去掉“f ”符号,转化为代数不等式组求解,但要特别注意函数定义域的作用。

例3 已知f x ()是定义在(-11,)上的偶函数,且在(0,1)上为增函数,满足f a f a ()()---<2402,试确定a 的取值范围。

例4 已知f x ()是定义在(]-∞,1上的减函数,若f m x f m x (sin )(cos )221-≤++对x R ∈恒成立,求实数m 的取值范围。

三. 解不等式这类不等式一般需要将常数表示为函数在某点处的函数值,再通过函数的单调性去掉函数符号“f ”,转化为代数不等式求解。

例5 已知函数f x ()对任意x y R ,∈有f x f y f x y ()()()+=++2,当x >0时,f x ()>2,f ()35=,求不等式f a a ()2223--<的解集。

抽象函数常见题型和解法

抽象函数常见题型和解法

抽象函数的常见题型及解法一、 抽象函数的定义域1. 已知f(x)的定义域,求f[g(x)]的定义域若已知f(x)的定义域x (a,b),求f[g(x)]的定义域,其方法是: 由a<g(x)<b,求得x 的范围,即为f[g(x)]的定义域。

即由内层函数的值域,求内层函数的定义域,即为f[g(x)]的定义域。

例1.已知f(x)的定义域为[1,4],求f()的定义域. 解: 由1≤≤4,得 -1≤≤2 即 -1≤<0 或 0<≤2 解得 X ≤-1 或x ≥∴函数的定义域为:2. 已知f[g(x)]的定义域,求f(x)的定义域若已知f[g(x)]的定义域x (a,b),求f(x)的定义域,其方法是: 由a<x<b,求得g(x)的范围,即为f(x)的定义域。

即由内层函数的定义域,求内层函数的值域,即为f(x)的定义域。

例2. 若已知f(x+2)的定义域为[-2,2],求函数f(x)的定义域. 解:∵f(x+2)的定义域为[-2,2], ∴-2≤x ≤2, ∴ 0≤x+2≤4 故f(x)的定义域为[0,4]3. 已知f[ (x)]的定义域,求f[g(x)]的定义域先由f[ (x)]的定义域,求f(x)的定义域,再由f(x)的定义域,求f[g(x)]的定义域。

即由第一个函数中内层函数的定义域,求得第一个函数内层函数的值域,第一个函数内层函数的值域就是第二个函数内层函数的值域,由第∈21+x21+x x1x 1x121()⎪⎭⎫⎢⎣⎡+∞⋃-∞-,211,∈ϕϕ二个函数内层函数的值域,再求出第二个函数内层函数的定义域。

例3.若已知f(x+1)的定义域为,求函数f ()的定义域. 解:∵f(x+1)的定义域为, ∴-2≤x 3, ∴ -1≤x+1 4 即f(x)的定义域为.∴ -1≤<4,∴ -3≤<2 即 -3≤<0 或 0<<2 解得 X ≤-或 x> ∴函数的定义域为:3. 已知f(x)的定义域,求f[ (x)] + f[g(x)]的定义域若已知f(x)的定义域x (a,b),求f[g(x)]+f[g(x)]的定义域,其方法是:由,求得x 的范围,即为f[ (x)] + f[g(x)]的定义域。

抽象函数问题常见题型及解法

抽象函数问题常见题型及解法

抽象函数问题常见题型及解法江苏省赣榆县海头高级中学 222111 胡继缙抽象函数是指仅给出函数的某些性质,而不给出函数解析式的函数,解题时可以根据已有的性质,如:周期性、奇偶性、单调性、图象对称性等,采用灵活的方法,如:换元法、赋值法、等价转化法、构造方程(组)或不等式(组)等方法。

本文就这类题型及解法作一简单介绍。

一、求函数解析式求解此类问题,通常利用换元法或利用函数的周期性,构造方程组.例1 已知对非零实数x ,恒有x xf x f 3)1(2)(=-,求)(x f . 解 由题意得,用x 1代换x ,可得xx f x f 3)(2)1(=- 于是有⎪⎪⎩⎪⎪⎨⎧=-=-x x f xf x x f x f 3)(2)1(3)1(2)( 将)(x f 视作为未知数,解之得xx x f 2)(--=. 例2 已知函数)(x f 是偶函数,)(x g 是奇函数,且满足11)()(-=+x x g x f , 求)(x f 、)(x g 的解析式.解 由题意得,用x -代换x ,得11)()(--=-+-x x g x f ∵)(x f 是偶函数,)(x g 是奇函数 于是有⎪⎪⎩⎪⎪⎨⎧+-=--=+11)()(11)()(x x g x f x x g x f将)(x f 视作为未知数,解之得11)(2-=x x f ,1)(2-=x x x g . 二、求函数定义域例3 已知函数)23(+x f 的定义域为(-2,1),求函数)3()(2+-x f x f 的定 义域.求解此类问题,通常利用换元法.解 令23+=x t ,由)1,2(-∈x ,可得54<<-t∴函数)(x f 的定义域为(-4,5)又由⎩⎨⎧<+<-<<-534542x x , 得25<<-x∴函数)3()(2+-x f x f 的定义域为)2,5(-.三、求函数值求解此类问题,通常利用函数的周期性,将自变量的值化归到给定的区间上.例4 设)(x f 是),(+∞-∞上的奇函数,)()2(x f x f -=+,当10≤≤x 时, x x f =)(,则)5.7(f 等于( ).(A )0.5 (B )-0.5 (C )1.5 (D )-1.5解 由 )()2(x f x f -=+,可得)()4(x f x f =+∴函数)(x f 是周期函数,且函数最小正周期4=T结合函数是奇函数,则)5.0()5.0()85.0()5.7(f f f f -=-=+-= 又∵10≤≤x 时,x x f =)(∴5.0)5.0(=f , ∴5.0)5.7(-=f , 故选(B ).四、求函数最值问题求解此类问题,通常要确定函数在给定的区间上的单调性,利用单调性求最值.例5 设函数)(x f 为奇函数,对任意R y x ∈,,都有)()()(y f x f y x f +=+,且0>x 时,0)(<x f ,2)1(-=f ,求)(x f 在[-3,3]的最大值和最小值.解 设3321≤<≤-x x ,则012>-x x∵)(x f 为奇函数,且当0>x 时,0)(<x f∴0)()()()()(121212<-=-+=-x x f x f x f x f x f∴)()(12x f x f <,∴)(x f 在[-3,3]上是减函数故6)]1()1()1([)]2()1([)3()3(max =++-=+-=-=-=f f f f f f f y 6)3()3(min -=--==f f y .五、求解函数不等式求解此类不等式,通常利用函数的单调性将抽象的函数不等式等价的转化成一般的不等式(组),有时也可借助数形结合的方法.例 6 若)(x f 是定义在),0(+∞上的增函数,且对一切0>x ,满足)()()(y f x f yx f -=.)1(求)1(f 的值. )2(若,1)6(=f 解不等式2)1()3(<-+af a f . 解 )1(令x y =,则0)()()()1(=-==x f x f xx f f . )2(∵对一切0>x ,满足)()()(y f x f yx f -=,且1)6(=f ∴2)1()3(<-+af a f )6(2)()3(f a f a f <++⇔ )6()63()()6()6()3(af a f a f f f a f <+⇔-<-+⇔ 2173300663+-<<⇔⎪⎩⎪⎨⎧><+⇔a a a a . 例7 若)(x f 是奇函数,且在),0(+∞内是增函数,又0)3(=-f ,则不等式 0)(<⋅x f x 的解集是 .解 根据题意,可以作出函数)(x f 的大致图象,如图1. ∵)(x f 是奇函数,且在),0(+∞内是增函数 ∴)3(0)3(f f -==-,∴0)3(=f∴0)(<⋅x f x 03300)(00)(0<<-<<⇔⎩⎨⎧><⎩⎨⎧<>⇔x x x f x x f x 或或 ∴不等式0)(<⋅x f x 的解集为),(),(3003⋃-.。

高中一年级数学抽象函数常见题型解法综述

高中一年级数学抽象函数常见题型解法综述

抽象函数常见题型解法综述抽象函数是指没有给出函数的具体解析式,只给出了一些体现函数特征的式子的一类函数。

由于抽象函数表现形式的抽象性,使得这类问题成为函数内容的难点之一。

本文就抽象函数常见题型及解法评析如下:一、定义域问题例1. 已知函数)(2x f 的定义域是[1,2],求f (x )的定义域。

解:)(2x f 的定义域是[1,2],是指21≤≤x ,所以)(2x f 中的2x 满足412≤≤x从而函数f (x )的定义域是[1,4]评析:一般地,已知函数))((x f ϕ的定义域是A ,求f (x )的定义域问题,相当于已知))((x f ϕ中x 的取值范围为A ,据此求)(x ϕ的值域问题。

例2. 已知函数)(x f 的定义域是]21[,-,求函数)]3([log 21x f -的定义域。

解:)(x f 的定义域是]21[,-,意思是凡被f 作用的对象都在]21[,-中,由此可得4111)21(3)21(2)3(log 11221≤≤⇒≤-≤⇒≤-≤--x x x 所以函数)]3([log 21x f -的定义域是]4111[,评析:这类问题的一般形式是:已知函数f (x )的定义域是A ,求函数))((x f ϕ的定义域。

正确理解函数符号及其定义域的含义是求解此类问题的关键。

这类问题实质上相当于已知)(x ϕ的值域B ,且A B ⊆,据此求x 的取值范围。

例2和例1形式上正相反。

二、求值问题例 3. 已知定义域为+R的函数f (x ),同时满足下列条件:①51)6(1)2(==f f ,;②)()()(y f x f y x f +=⋅,求f (3),f (9)的值。

解:取32==y x ,,得)3()2()6(f f f +=因为51)6(1)2(==f f ,,所以54)3(-=f 又取3==y x ,得58)3()3()9(-=+=f f f 评析:通过观察已知与未知的联系,巧妙地赋值,取32==y x ,,这样便把已知条件51)6(1)2(==f f ,与欲求的f (3)沟通了起来。

最新高三高考抽象函数总结

最新高三高考抽象函数总结

最新高三抽象函数总结抽象函数是高中数学的一个难点,也是近几年来高考的热点。

考查方法往往基于一般函数,综合考查函数的各种性质。

本节给出抽象函数中的函数性质的处理策略,供内同学们参考。

抽象函数是指只给出函数的某些性质,而未给出函数具体的解析式及图象的函数。

由于抽象函数概念抽象,性质隐而不显,技巧性强,因此学生在做有关抽象函数的题目时,往往感觉无处下手。

抽象函数常见题型讲解:一、定义域问题:解决抽象函数的定义域问题——明确定义、等价转换。

例一.若函数)1(+=x f y 的定义域为)3,2[-,求函数)21(+=xf y 的定义域。

提示:函数的定义域是指自变量的取值范围,求抽象函数的定义域的关键是括号内式子的地位等同(即同一对应法则后括号内的式子具有相同的取值范围),如本题中的1+x 与21+x的范围等同。

变式训练1:已知函数)(2x f 的定义域是[1,2],求)(x f 的定义域。

变式训练2:已知函数)(x f 的定义域是]2,1[-,求函数)]3([log 21x f -的定义域。

二、求值问题 例二、已知定义域为的函数f(x),同时满足下列条件:①1)2(=f ,51)6(=f ;②)()()(y f x f y x f +=⋅,求f(3),f(9)的值。

注:通过观察已知与未知的联系,巧妙地赋值,赋值法是解此类问题的常用技巧。

变式训练3:已知R x f 是定义在)(上的函数,且R x f ∈=对任意的,1)1(都有下列两式成立:)6(,1)()(.1)()1(;5)()5(g x x f x g x f x f x f x f 则若-+=+≤++≥+的值为变式训练4:设函数))((R x x f ∈为奇函数,),2()()2(,21)1(f x f x f f +=+=则=)5(f _____变式训练5:已知)(),(x g x f 都是定义在R 上的函数,对任意y x ,满足)()()()()(y f x g y g x f y x f ⋅-⋅=- ,且0)1()2(≠=-f f ,则)1()1(-+g g =_________三、值域问题:例三、设函数f(x)定义于实数集上,对于任意实数x 、y ,)()()(y f x f y x f =+总成立,且存在21x x ≠,使得)()(21x f x f ≠,求函数)(x f 的值域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考数学总复习第十讲:抽象函数问题的题型综述抽象函数是指没有明确给出具体的函数表达式,只是给出一些特殊关系式的函数,它是中学数学中的一个难点,因为抽象,学生解题时思维常常受阻,思路难以展开,教师对教材也难以处理,而高考中又出现过这一题型,有鉴于此,本文对这一问题进行了初步整理、归类,大概有以下几种题型:一. 求某些特殊值这类抽象函数一般给出定义域,某些性质及运算式而求特殊值。

其解法常用“特殊值法”,即在其定义域内令变量取某特殊值而获解,关键是抽象问题具体化。

例1 定义在R 上的函数f x ()满足:f x f x ()()=-4且f x f x ()()220-+-=,求f ()2000的值。

解:由f x f x ()()220-+-=, 以t x =-2代入,有f t f t ()()-=, ∴f x ()为奇函数且有f ()00= 又由f x f x ()[()]+=--44=-=-∴+=-+=f x f x f x f x f x ()()()()()84故f x ()是周期为8的周期函数, ∴==f f ()()200000例2 已知函数f x ()对任意实数x y ,都有f x y f x f y ()()()+=+,且当x >0时,f x f ()()>-=-012,,求f x ()在[]-21,上的值域。

解:设x x 12< 且x x R 12,∈, 则x x 210->,由条件当x >0时,f x ()>0 ∴->f x x ()210又f x f x x x ()[()]2211=-+ =-+>f x x f x f x ()()()2111 ∴f x ()为增函数,令y x =-,则f f x f x ()()()0=+- 又令x y ==0 得f ()00= ∴-=-f x f x ()(), 故f x ()为奇函数,∴=-=f f ()()112,f f ()()-=-=-2214 ∴-f x ()[]在,21上的值域为[]-42,二. 求参数范围这类参数隐含在抽象函数给出的运算式中,关键是利用函数的奇偶性和它在定义域内的增减性,去掉“f ”符号,转化为代数不等式组求解,但要特别注意函数定义域的作用。

例3 已知f x ()是定义在(-11,)上的偶函数,且在(0,1)上为增函数,满足f a f a ()()---<2402,试确定a 的取值范围。

解: f x ()是偶函数,且在(0,1)上是增函数, ∴f x ()在()-10,上是减函数,由-<-<-<-<⎧⎨⎩1211412a a 得35<<a 。

(1)当a =2时,f a f a f ()()()-=-=2402,不等式不成立。

(2)当32<<a 时,f a f a f a a a a a a ()()()-<-=-⇔-<-<-<-<->-⎧⎨⎪⎩⎪<<24412014024322222解之得,(3)当25<<a 时, f a f a ()()-<-242=-⇔<-<<-<-<-⎧⎨⎪⎩⎪<<f a a a a a a ()22240210412425解之得,综上所述,所求a 的取值范围是()()3225,, 。

例4 已知f x ()是定义在(]-∞,1上的减函数,若f m x f m x (sin )(cos )221-≤++对x R ∈恒成立,求实数m 的取值范围。

解: m x m x m x m x 22223131-≤++≤-≥++⎧⎨⎪⎩⎪sin cos sin cos对x R ∈恒成立⇔-≤-≥++⎧⎨⎪⎩⎪m x m x m x22231sin sin cos 对x R ∈恒成立⇔m xm m x x x 2222311254-≤--≥+=--+⎧⎨⎪⎩⎪sin sin cos (sin ) 对x R ∈恒成立,∴-≤--≥⎧⎨⎪⎩⎪∴-≤≤-m m m m 223115421102为所求。

三. 解不等式这类不等式一般需要将常数表示为函数在某点处的函数值,再通过函数的单调性去掉函数符号“f ”,转化为代数不等式求解。

例5 已知函数f x ()对任意x y R ,∈有f x f y f x y ()()()+=++2,当x >0时,f x ()>2,f ()35=,求不等式f a a ()2223--<的解集。

解:设x x R 12、∈且x x 12< 则x x 210-> ∴->f x x ()212, 即f x x ()2120-->,∴=-+=-+->∴>f x f x x x f x x f x f x f x f x ()[()]()()()()()22112111212故f x ()为增函数,又f f f f f ()()()()()3212123145=+=+-=-=∴=∴--<=--<∴-<<f f a a f a a a ()()()1322312211322,即因此不等式f a a ()2223--<的解集为{}a a |-<<13。

四. 证明某些问题例6 设f x ()定义在R 上且对任意的x 有f x f x f x ()()()=+-+12,求证:f x ()是周期函数,并找出它的一个周期。

分析:这同样是没有给出函数表达式的抽象函数,其一般解法是根据所给关系式进行递推,若能得出f x T f x ()()+=(T 为非零常数)则f x ()为周期函数,且周期为T 。

证明: f x f x f x ()()()()=+-+121 ∴+=+-+f x f x f x ()()()()1232()()12+得f x f x ()()()=-+33 由(3)得f x f x ()()()+=-+364由(3)和(4)得f x f x ()()=+6。

上式对任意x R ∈都成立,因此f x ()是周期函数,且周期为6。

例7 已知f x ()对一切x y ,,满足f f x y f x f y ()()()()00≠+=⋅,,且当x <0时,f x ()>1,求证:(1)x >0时,01<<f x ();(2)f x ()在R 上为减函数。

证明: 对一切x y R ,∈有f x y f x f y ()()()+=⋅。

且f ()00≠,令x y ==0,得f ()01=, 现设x >0,则-<x 0,f x ()->1, 而f f x f x ()()()01=⋅-=∴-=>f x f x ()()11 ∴<<01f x (), 设x x R 12,∈且x x 12<, 则0121<-<f x x (), f x f x x x ()[()]2211=-+ =-⋅<f x x f x f x ()()()2111 ∴>f x f x ()()12, 即f x ()为减函数。

五. 综合问题求解抽象函数的综合问题一般难度较大,常涉及到多个知识点,抽象思维程度要求较高,解题时需把握好如下三点:一是注意函数定义域的应用,二是利用函数的奇偶性去掉函数符号“f ”前的“负号”,三是利用函数单调性去掉函数符号“f ”。

例8 设函数y f x =()定义在R 上,当x >0时,f x ()>1,且对任意m n ,,有f m n f m f n ()()()+=⋅,当m n ≠时f m f n ()()≠。

(1)证明f ()01=;(2)证明:f x ()在R 上是增函数;(3)设{}A x y f x f y f =⋅<()|()()(),221,B x y f ax by c a b c R a =++=∈≠{()|()},,,,,10,若A B =∅,求a b c ,,满足的条件。

解:(1)令m n ==0得f f f ()()()000=⋅, ∴=f ()00或f ()01=。

若f ()00=,当m ≠0时,有f m f m f ()()()+=⋅00,这与当m n ≠时,f m f n ()()≠矛盾,∴=f ()01。

(2)设x x 12<,则x x 210->,由已知得f x x ()211->,因为x 10≥,f x ()11>,若x 10<时,->->x f x 1101,(),由f f x f x ()()()011=⋅-∴=->=-⋅>∴f x f x f x f x x f x f x f x R ()()()()()()()11221111在上为增函数。

(3)由f x f y f ()()()221⋅<得x y 2211+<() 由f ax by c ()++=1得ax by c ++=0 (2)从(1)、(2)中消去y 得()a b x acx c b 2222220+++-<,因为A B =∅∴=-+-<∆()()()24022222ac a b c b , 即a b c 222+<例9 定义在(-11,)上的函数f x ()满足(1),对任意x y ,,∈-()11都有f x f y f x yxy()()()+=++1, (2)当x ∈-()10,时,有f x ()>0,(1)试判断f x ()的奇偶性;(2)判断f x ()的单调性; (3)求证f f f n n f ()()()()15111131122+++++>…。

分析:这是一道以抽象函数为载体,研究函数的单调性与奇偶性,再以这些性质为基础去研究数列求和的综合题。

解:(1)对条件中的x y ,,令x y ==0,再令y x =-可得f f f f x f x f f x f x ()()()()()()()()000000+=+-=⎧⎨⎩⇒=-=-⎧⎨⎩,所以f x ()是奇函数。

(2)设-<<<1012x x ,则f x f x f x f x f x x x x ()()()()()121212121-=+-=--x x x x 1212001-<<<,, ∴--<x x x x 121210,由条件(2)知f x x x x ()121210-->,从而有f x f x ()()120->,即f x f x ()()12>,故f x ()()在,-10上单调递减,由奇函数性质可知,f x ()在(0,1)上仍是单调减函数。

相关文档
最新文档