中考数学专题复习题 二元一次方程(组)(含解析)
中考数学总复习《二元一次方程组》专项提升练习(附答案)
中考数学总复习《二元一次方程组》专项提升练习(附答案)学校:___________班级:___________姓名:___________考号:___________知识点复习一、二元一次方程组定义1:含有两个未知数,并且含有未知数的项的次数都是1的方程叫做二元一次方程,它的一般形式是()00,0ax by c a b ++=≠≠。
定义2:把两个方程合在一起,就组成了方程组。
定义3:方程组中有两个未知数,含有每个未知数的项的次数都是1,并且一共有两个方程,这样的方程组叫做二元一次方程组。
定义4:使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解。
定义5:二元一次方程组的两个方程的公共解,叫做二元一次方程组的解。
二、解二元一次方程组的方法(1)代入消元法:把二元一次方程组中一个方程的一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解。
这种方法叫做代入消元法,简称代入法。
(2)加减消元法:当二元一次方程组的两个方程中同一未知数的系数相反或相等时,把这两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程。
这种方法叫做加减消元法,简称加减法。
三、方程(组)与实际问题解有关方程(组)的实际问题的一般步骤:第1步:审题。
认真读题,分析题中各个量之间的关系。
第2步:设未知数。
根据题意及各个量的关系设未知数。
第3步:列方程(组)。
根据题中各个量的关系列出方程(组)。
第4步:解方程(组)。
根据方程(组)的类型采用相应的解法。
第5步:答。
专题练习一、单选题1.已知关于x ,y 的二元一次方程组3221ax y x y +=⎧⎨-=⎩无解,则a 的值是( ) A .2 B .6 C .2- D .6-2.已知23a b -=,1a b +=则36a b -的值为( )A .6B .4C .3D .23.某班有x 人,分y 组活动,若每组7人,则余下3人;每组8人,则有一组差5人,根据题意下列方程组正确的是( )A .7385y x y x =+⎧⎨=+⎩B .7385y x x y =+⎧⎨=-⎩C .7385y x y x =-⎧⎨=+⎩D .7385x y x y =-⎧⎨=+⎩ 4.文峰超市以同样的价格卖出同样的牙刷和牙膏,以下是4天的记录:第1天,卖出13支牙刷和7盒牙膏,收入144元;第2天,卖出18支牙刷和11盒牙膏,收入219元;第3天,卖出23支牙刷和20盒牙膏,收入368元;第4天,卖出17支牙刷和11盒牙膏,收入216元.已知第1天和第2天的记录无误,第3天和第4天有一天的记录有误,则记录有误的一天收入( )A .多记1元B .多记2元C .少记1元D .少记2元5.两位同学在解方程组273ax by cx y +=⎧⎨+=⎩时,甲同学正确地解出11x y =-⎧⎨=-⎩,乙同学因把c 抄错了解得32x y =-⎧⎨=-⎩,则a 、b 、c 正确的值应为( )A .315a b c =-=-=-,,B .115a b c ==-=-,,C .2410a b c ==-=-,,D .315a b c ===-,,6.小华准备购买单价分别为4元和5元的两种瓶装饮料,且每种瓶装饮料的购买数量不为0.若小华将50元恰好用完,则购买方案共有( )A .2种B .3种C .4种D .5种7.在一个停车场,停了小轿车和摩托车一共32辆,这些车一共有108个轮子,则该停车场小轿车和摩托车的辆数分别为( )A .21,11B .22,10C .23,9D .24,8 8.已知关于x ,y 的方程2|18|(26)(2)0n m m x n y +--++=是二元一次方程,则m n +的值(若29m =,则3m =±)是( )A .5-B .3-C .1D .3二、填空题9.当方程组2520x ay x y +=⎧⎨-=⎩解是正整数时,整数a 值为 . 10.如果35x y =⎧⎨=-⎩是方程22mx y +=-的一组解,那么m 的值为 . 11.若关于x y ,的方程组1235x y c x y c +=⎧⎨+=⎩的解为56x y =⎧⎨=⎩,则方程组()()()()12113151x y c x y c ⎧-++=⎪⎨-++=⎪⎩的解为 .12.A,B两地相距80千米,一船从A出发顺水行驶4小时到达B,而从B出发逆水行驶5小时才能到达A,则船在静水中的航行速度是千米/时.13.若关于x的不等式组20,21xx m-<⎧⎨-≥-⎩恰有三个整数解,关于x的方程组26,3x yx y m+=⎧⎨-=⎩的解是正数,则m的取值范围是.三、解答题14.解方程组:(1)25 328 y xx y=-⎧⎨-=⎩(2)434 2312x yx y⎧+=⎪⎨⎪-=⎩15.已知方程组45321x yx y+=⎧⎨-=⎩和31ax byax by+=⎧⎨-=⎩有相同的解,求222a ab b-+的值.16.用加减法解方程组344328x y x y -=⎧⎨-=⎩①②其解题过程如下: 第一步:-①②,得4248y y --=-,解得23y =. 第二步:把23y =,代入①,得8343x -=,解得209x =. 第三步:所以这个方程组的解为20923x y ⎧=⎪⎪⎨⎪=⎪⎩上述解题过程是否正确?若不正确,则从第几步开始出现错误?请写出正确的解题过程.17.印江河是印江的母亲河,为了确保河道畅通,现需要对一段长为180米的河道进行清淤处理,清淤任务由A 、B 两个工程队先后接力完成,A 工程队每天完成12米,B 工程队每天完成8米,共用时20天. 根据题意,甲、乙两个同学分别列出了尚不完整的方程组如下:甲:128x y x y ⎧+=⎪⎨+=⎪⎩ 乙:128x y x y ⎧+=⎪⎨+=⎪⎩(1)根据甲同学所列的方程组,请你指出未知数x 、y 表示的意义.x 表示______,y 表示______;请你补全乙同学所列的方程组______(2)求A 、B 两工程队分别完成河道清淤多少米?(写出完整的解答过程)18.“一盔一带”安全守护行动在我县开展以来,市场上头盔出现了热销,某商场购进了一批头盔.已知购进6个A型头盔和4个B型头盔需要440元,购进4个A型头盔和6个B型头盔需要510元.(1)购进1个A型头盔和1个B型头盔分别需要多少元?(2)若该商场准备购进200个这两种型号的头盔,总费用不超过10200元,那么最多可购买B型头盔多少个?(3)在(2)的条件下,若该商场分别以售价为58元/个、98元/个的售价销售完A、B两类型号的头盔共200个,能否实现利润不少于6190元的目标?若能,直接写出相应的采购方案;若不能,请说明理由.参考答案:1.D2.A3.C4.C5.C6.A7.B8.B9.1或3-10.83/22311.65 xy⎧=⎨=⎩12.1813.21m-<≤-14.(1)21 xy=⎧⎨=-⎩(2)1083 xy=⎧⎪⎨=⎪⎩15.116.不正确,从第一步开始出现错误;正确的解题过程见解析,原方程组的解为:42 xy=⎧⎨=⎩17.(1)x表示A工程队工作的天数,y表示B工程队工作的天数,18020 128x yx y+=⎧⎪⎨+=⎪⎩(2)A工程队完成河道清淤60米,B工程队完成河道清淤120米18.(1)购进1个A型头盔30元,1个B型头盔65元;(2)最多可购买B型头盔120个;(3)三种购买方案。
2025年中考数学总复习专题07 二元一次方程组(附答案解析)
数(除数不能为 0),
(1)若 a=b,则a/c=b/c. (×)
所得结果仍是等式.即若 a=b,则 ac=(2)若 a/c=b/c,则a=b.(√)
bc, a b (c≠0). cc
性质 3:(对称性)若 a=b,则 b=a. 性质 4:(传递性)若 a=b,b=c,则 a=c.
2.关于方程 的基本概念
2025 年中考数学总复习专题 07 二元一次方程组
知识点一:方程及其相关概念
关键点拨及对应举例
1.等式的基 本性质
性质 1:等式两边加或减同一个数或同
一个整式,所得结果仍是等式.即若 a=失分点警示:在等式的两边同除以一个数时,这
b,则 a±c=b±c .
个数必须不为 0.
性质 2:等式两边同乘(或除)同一个例:判断正误.
根据题意,列出的方程组是()
8y x 3 A. 7 y x 4
8y x 3 B. 7 y x 4
y 8x 3
C.
7
y
x
4
8y x 3
D.
7
y
x
4
【答案】B
【分析】
设该物品的价格是 x 钱,共同购买该商品的由 y 人,根据题意每人出 8 钱,则多 3 钱;每人出 7 钱,则差 4
钱列出二元一次方程组.
【详解】
设该物品的价格是 x 钱,共同购买该商品的由 y 人,
8y x 3 依题意可得 7 y x 4
故选:B
【点睛】
本题考查由实际问题抽象出二元一次方程组以及数学常识,找准等量关系,正确列出二元一次方程组.
二、解答题 3.某工厂计划生产 A、B 两种产品共 60 件,需购买甲、乙两种材料.生产一件 A 产品需甲种材料 4 千克, 乙种材料 1 千克;生产一件 B 产品需甲、乙两种材料各 3 千克.经测算,购买甲、乙两种材料各 1 千克共 需资金 60 元;购买甲种材料 2 千克和乙种材料 3 千克共需资金 155 元. (1)甲、乙两种材料每千克分别是多少元? (2)现工厂用于购买甲、乙两种材料的资金不能超过 10000 元,且生产 B 产品要超过 38 件,问有哪几种 符合条件的生产方案?
中考数学总复习《二元一次方程组》专项测试卷(附答案)
中考数学总复习《二元一次方程组》专项测试卷(附答案)一、单选题(共12题;共24分)1.方程组 {y =2x 3x +y =15,的解是( ) A .{x =3y =6,B .{x =4y =3, C .{x =4y =8,D .{x =2y =3,2.以下是方程3x +2y =12的一个解的是( )A .{x =−1y =2B .{x =2y =−1C .{x =2y =3D .{x =3y =23.如图,在某张桌子上放相同的木块, R =32 , S =96 ,则桌子的高度是( )A .63B .58C .60D .644.已知{x =1,y =−2是关于x ,y 的二元一次方程ax +y =1的一个解,那么a 的值为( ) A .3B .1C .-1D .-35.已知关于x 、y 的方程组 {x +y =1−ax −y =3a +5 ,满足 x ≥12y ,则下列结论:①a ≥−2 ;②a =−53时, x =y ;③当 a =−1 时,关于x 、y 的方程组{x +y =1−ax −y =3a +5 的解也是方程 x +y =2 的解;④若 y ≤1 ,则 a ≤−1 ,其中正确的有( ) A .1个B .2个C .3个D .4个6.一个长方形的长减少3cm ,宽增加2cm ,就成为一个正方形,并且长方形的面积与正方形的面积相等.如果设这个长方形的长为xcm ,宽为ycm ,那么所列方程组正确的是( )A .{x +3=y −2(x +3)(y −2)=xyB .{x −3=y +2(x −3)(y +2)=xyC .{3−x =y +2(3−x)(y +2)=xyD .{x −2=y +3(x −2)(y +3)=xy7.若 |b +2|+(a −3)2=0 ,则 b a 的值为( )A .﹣bB .−18C .﹣8D .88.已知关于 x,y 的二元一次方程组 {3x +y =−4m +2x −y =6 的解满足 x +y <3 ,则m 的取值范围是( ) A .m >−52B .m <−52C .m >52D .m <529.已知关于x ,y 的二元一次方程ax +b =y ,当x 取不同值时,对应y 的值分别如下表所示:x … -1 0 1 2 3 … y…321-1…A .x <0B .x >0C .x <2D .x >210.《九章算术》是我国东汉初年编订的一部数学经典著作.在它的“方程”一章里,一次方程组是由算筹布置而成的.《九章算术》中的算筹图是竖排的,为看图方便,我们把它改为横排,如图1、图2(见下页).图中各行从左到右列出的算筹数分别表示未知数x ,y 的系数与相应的常数项.把图1所示的算筹图用我们现在所熟悉的方程组形式表述出来,就是{3x +2y =19x +4y =23,类似地,图2所示的算筹图我们可以表述为A .{2x +y =114x +3y =27B .{2x =y =114x +3y =22C .{3x +2y =19x +4y =23D .{2x +y =64x +3y =2711.一个两位数,个位数字与十位数字的和是9,如果将个位数字与十位数字对调后所得的新数比原数大9,则原来的两位数为( ) A .54B .45C .27D .7212.用代入消元法解方程组 {3x −y =2,①y =1−2x ,② 时,把②代入①,得( )A .3x-1-2x= 2B .3x-(1-2x )= 2C .3x+(1-2x )=2D .3(1-2x )-y=2二、填空题(共6题;共6分)13.若 (a −1)2+|b −2|=5 ,则以a 、b 为边长的等腰三角形的周长为 14.如图,将长方形ABCD 分割成1个灰色长方形与148个面积相等的小正方形.若灰色长方形的长与宽之比为5:3,则AD :AB=15.为了开展阳光体育活动,某班计划购买毽子和跳绳两种体育用品(必须保证买两种),共花35元.毽子单价3元,跳绳单价5元,关于购买毽子和跳绳两种体育用品的数量购买的方案共有种.16.如果√x−2+(2y+1)2=0,那么xy=17.方程x2-y2=31的正整数解为。
中考数学总复习二元一次方程组专题复习(含答案)
中考数学总复习二元一次方程组专题复习(含答案)一、选择题。
(在每小题给出的四个选项中,只有一个选项是符合题目要求的。
)1、下列各式中是二元一次方程的是()。
A、6x+2y=zB、+2=3yC、x-5=y2D、2x+5y=132、二元一次方程组的解是()。
3、若方程4x-3ky=12有一组解是,则k的值等于()。
A、-4B、4C、5D、-54、当方程kx+4y=9x-8是二元一次方程时,k的取值为()。
A、k≠0B、k≠-9C、k≠9D、k≠45、如果是二元一次方程组的解,那么m+n=()。
A、-1B、1C、-5D、56、可以使得方程x+5y=8和3x+y=-4同时成立的x、y的值分别为()。
A、x=2且y=2B、x=-2且y=2C、x=2且y=-2D、x=-2且y=27、方程5x-y=8的非负整数解有()。
A、2组B、3组C、4组D、无数组8、已知新星学校和山泉中学相距4千米,苏兰和肖英两人分别从新星学校和山泉中学同时出发,若同向而行,苏兰2小时可追上肖英;若两人相向而行,1小时相遇。
求苏兰、肖英两人的速度各是多少?如果设苏兰的速度为x千米/时,肖英的速度为y千米/时,则可以得一个二元一次方程组为()。
9、有一个两位数,它的十位数字与个位数字之和为8,则符合条件的两位数有()。
A、6个B、7个C、8个D、9个10、已知是二元一次方程组的解,则(3m+n)3的值为()。
A、1B、-1C、2D、-2二、填空题。
(将正确的答案填在括号里。
)1、若是二元一次方程,则m=(),n=()。
2、若是二元一次方程2x-ky=11的一个解,则k=()。
3、如果关于x、y的二元一次方程组的解满足2(x+y)-16≤0,则t的取值范围为()。
4、若(4x+y-13)2+│3x+2y-1│=0 则x-4y=()。
5、育龙中学组织一场知识竞赛。
规定知识竞赛的记分为:答对一题得3分,答错一题扣1分。
已知九(1)班答了12道题,共得24分,那么九(1)班答对了()道题。
中考数学专项练习解二元一次方程组(含解析)
中考数学专项练习解二元一次方程组(含解析)【一】单项选择题1.方程﹣x+4y=﹣15用含y的代数式表示x是〔〕A.﹣x=4y﹣15B.x=﹣15+4yC.x=4 y+15D.x=﹣4y+152.方程3x+y=7的正整数解的个数是〔〕A.1个B.2个C.3个D.4个3.关于的二元一次方程的正整数解的个数有〔〕个A.1B.2C.3D.44.将方程中的x的系数化为整数,那么以下结果正确的选项是〔〕A.B.C.D.5.在二元一次方程x+3y=1的解中,当x=4时,对应的y的值是〔〕A.﹣B.C.﹣1D.46.在方程2(x+y)-3(y-x)=3中,用含x的代数式表示y,那么〔〕A.y=5x-3 B.y=-x-3 C.y=5x+3 D.y=-5x-37.方程2x﹣3y=7,用含x的代数式表示y为〔〕A.y=B.y=C.x=D.x=8.方程组将②×3-①×2得〔〕A.-3y=2B.4y+1=C.y=D.7y=-89.二元一次方程3x﹣y=1,当x=2时,y﹣8等于〔〕A.5B.-3C.-7D.710.方程2x﹣y=3和2x+y=9的公共解是〔〕A.B.C.D.11.二元一次方程x+2y=3的解的个数是〔〕A.1B.2C.3D.无数12.二元一次方程x+2y=3的解的个数是〔〕A.1B.2C.3D.无数13.二元一次方程3x+y=9的正整数解的组数是〔〕A.1B.2C.3D.不确定14.关于x,y的二元一次方程2x+3y=18的正整数解的个数为〔〕A.1B.2C.3D.415.假设方程2x+3y=﹣7,那么假设x=2,那么y值为〔〕A.﹣1B.﹣C.1D.【二】填空题16.二元一次方程3x+2y=11的所有正整数解是________.17. ,用含x的代数式表示y为:________.18.方程2x+3y﹣4=0,用含x的代数式表示y为:y=________;用含y的代数式表示x为:x=________19.在2x﹣y=5中,用y的代数式表示x,那么x=________20.在方程2x﹣y=1中,假设x=﹣4,那么y=________.21.在x+3y=3中,用含x的代数式表示y,那么y=________.22.在二元一次方程2y+x=8中,假设x=0,那么y=________;假设x= 2,那么y=________.23.在方程7x﹣2y=8中用含x的代数式表示y=________.【三】计算题24.解方程组25.解方程:x2+4x﹣2=0.26.解方程组:【四】解答题27.〔开放题〕是否存在整数m,使关于x的方程2x+9=2﹣〔m﹣2〕x 在整数范围内有解,你能找到几个m的值?你能求出相应的x的解吗?28.怎样运用一个字母代数式表示另一个字母呢?如:4x﹣3y=20,用含y的式子表示x.解:4x﹣3y=20.〔把常数项,含y的式子放在方程等式右边〕移项,得4x=20﹣3y.两边除以4,得x=﹣y+5.以上过程对吗?为什么?【五】综合题29.有理数x、y满足等式:2x+y=3.〔1〕假设x=,求y的值.〔2〕假设x≥,求y的取值范围30.先用一个未知数的代数式表示另一个未知数,然后再求出以下每个方程的三组解:〔1〕2〔x﹣y〕=5〔2〕4x+2y=x﹣y+1【一】单项选择题1.方程﹣x+4y=﹣15用含y的代数式表示x是〔〕A.﹣x=4y﹣15B.x=﹣15+4yC.x=4 y+15D.x=﹣4y+15【考点】解二元一次方程【解析】【解答】解:移项,得﹣x=﹣15﹣4y,系数化为1,得x=4y +15.应选C、【分析】将原方程进行移项、系数化为1,变换成x=ay+b的形式.2.方程3x+y=7的正整数解的个数是〔〕A.1个B.2个C.3个D.4个【考点】解二元一次方程【解析】【解答】由得:y=7﹣3x,要使x,y都是正整数,∴x=1,2时,相应的y=4,1.∴正整数解为.应选B、【分析】要先把其中一个未知数用另一个未知数表示出来.然后根据解为正整数分析它的解的情况.3.关于的二元一次方程的正整数解的个数有〔〕个A.1B.2C.3D.4【考点】解二元一次方程4.将方程中的x的系数化为整数,那么以下结果正确的选项是〔〕A.B.C.D.【考点】解二元一次方程【解析】【分析】由题意把原方程两边同时乘以-2即可得到结果.【解答】方程两边同时乘以-2可得,应选B.【点评】此题属于基础应用题,只需学生熟练掌握解二元一次方程的方法,即可完成.5.在二元一次方程x+3y=1的解中,当x=4时,对应的y的值是〔〕A.﹣B.C.﹣1D.4【考点】解二元一次方程【解析】【解答】解:把x=4代入方程x+3y=1得:4+3y=1,y=﹣1.应选C、【分析】把x=4代入方程x+3y=1求出y即可.6.在方程2(x+y)-3(y-x)=3中,用含x的代数式表示y,那么〔〕A.y=5x-3 B.y=-x-3 C.y=5x+3 D.y=-5x-3【考点】解二元一次方程【解析】【解答】去括号,得2x+2y-3y+3x=3,化简,得5x-y=3,移项,得y=5x-3.应选A、【点评】此题考查方程的基本变形,能够熟练运用等式的性质进行变形.7.方程2x﹣3y=7,用含x的代数式表示y为〔〕A.y=B.y=C.x=D.x=【考点】解二元一次方程【解析】【解答】解:移项,得﹣3y=7﹣2x,系数化为1,得y=,即y=.应选:B、【分析】此题是将二元一次方程变形,先移项、再系数化为1即可.8.方程组将②×3-①×2得〔〕A.-3y=2B.4y+1=C.y=D.7y=-8【考点】解二元一次方程【解析】【分析】此题考查的是解二元一次方程组时的加减消元法,只要把原方程中每一项都和3或2相乘,然后进行加减即可.【解答】(2)×3得:6x-9y=12(3),(1)×2得:6x-10y=12(4),(3)-(4)得:y=0.应选C、【点评】此题应注意:-9y-〔-10y)=y.9.二元一次方程3x﹣y=1,当x=2时,y﹣8等于〔〕A.5B.-3C.-7D.7【考点】解二元一次方程10.方程2x﹣y=3和2x+y=9的公共解是〔〕A.B.C.D.【考点】解二元一次方程【解析】【解答】解:联立得:,①+②得:4x=12,解得:x=3,把x=3代入①得:y=3,那么方程组的解为,应选D【分析】联立两方程组成方程组,求出方程组的解即可.11.二元一次方程x+2y=3的解的个数是〔〕A.1B.2C.3D.无数【考点】解二元一次方程【解析】【解答】由二元一次方程的解的定义知,任意一个二元一次方程都有无数个解.应选:D、【分析】由于二元一次方程x+2y=3是不定方程,所以有无数组解.12.二元一次方程x+2y=3的解的个数是〔〕A.1B.2C.3D.无数【考点】解二元一次方程【解析】【解答】解:由二元一次方程的解的定义知,任意一个二元一次方程都有无数个解.应选:D、【分析】由于二元一次方程x+2y=3是不定方程,所以有无数组解.13.二元一次方程3x+y=9的正整数解的组数是〔〕A.1B.2C.3D.不确定【解析】【解答】解:方程3x+y=9变形得y=9﹣3x.要使x,y都是正整数,那么,,所以原方程的正整数解有2组,应选B、【分析】此题是求不定方程的整数解,先将方程做适当变形,确定其中一个未知数的值,然后再求出另一个未知数的值.14.关于x,y的二元一次方程2x+3y=18的正整数解的个数为〔〕A.1B.2C.3D.4【考点】解二元一次方程【解析】【解答】解:2x+3y=18,解得:x=,当y=2时,x=6;当y=4时,x=3,那么方程的正整数解有2对.应选B、【分析】将y看做数求出x,即可确定出方程的正整数解.15.假设方程2x+3y=﹣7,那么假设x=2,那么y值为〔〕A.﹣1B.﹣C.1D.【解析】【解答】解:方程2x+3y=﹣7,把x=2代入得:4+3y=﹣7,解得:y=﹣,应选B【分析】把x的值代入方程计算即可求出y的值.【二】填空题16.二元一次方程3x+2y=11的所有正整数解是________.【考点】解二元一次方程17. ,用含x的代数式表示y为:________.【考点】解二元一次方程18.方程2x+3y﹣4=0,用含x的代数式表示y为:y=________;用含y的代数式表示x为:x=________【考点】解二元一次方程【解析】【解答】解:〔1〕移项得:3y=4﹣2x,系数化为1得:y=;〔2〕移项得:2x=4﹣3y,系数化为1得:x=.【分析】把方程2x+3y﹣4=0写成用含x的式子表示y的形式,需要把含有y的项移到等号一边,其他的项移到另一边,然后系数化1就可用含x的式子表示y的形式:y=;写成用含y的式子表示x的形式,需要把含有x 的项移到等号一边,其他的项移到另一边,然后系数化1就可用y的式子表示x的形式:x=.19.在2x﹣y=5中,用y的代数式表示x,那么x=________【考点】解二元一次方程20.在方程2x﹣y=1中,假设x=﹣4,那么y=________.【考点】解二元一次方程21.在x+3y=3中,用含x的代数式表示y,那么y=________.【考点】解二元一次方程22.在二元一次方程2y+x=8中,假设x=0,那么y=________;假设x= 2,那么y=________.【考点】解二元一次方程23.在方程7x﹣2y=8中用含x的代数式表示y=________.【考点】解二元一次方程【三】计算题24.解方程组【考点】解二元一次方程【解析】【分析】运用加减消元法解方程组。
中考数学复习专题练2-3 二元一次方程组1
§2.3 二元一次方程组一、选择题1.(改编题)若⎩⎨⎧x =1,y =2是关于x ,y 的二元一次方程ax -3y =1的解,则a 的值为( ) A .-5 B .-1 C .2 D .7解析 将⎩⎨⎧x =1,y =2代入方程ax -3y =1,得a -6=1,解得a =7,故选D. 答案 D2.(原创题)已知⎩⎨⎧x =2,y =1是二元一次方程组⎩⎨⎧mx +ny =8,nx -my =1的解,则m +3n 的平方根为( )A .±9B .±3C .3D .-3 解析 把⎩⎨⎧x =2,y =1代入方程组⎩⎨⎧mx +ny =8,nx -my =1得⎩⎨⎧2m +n =8,①2n -m =1,②①+②,得m +3n =9,∴m +3n 的平方根是±3.故选B.答案 B3.(原创题)以方程2x -y =3和3x +4y =10的公共解为横纵坐标的点所在的象限为( ) A .第一象限 B .第二象限C .第三象限D .第四象限 解析 方程2x -y =3和3x +4y =10的公共解就是方程组⎩⎨⎧2x -y =3,3x +4y =10的解,解得⎩⎨⎧x =2,y =1.以⎩⎨⎧x =2,y =1为横、纵坐标的点为(2,1),在第一象限,故选A. 答案 A4.(原创题)解方程组⎩⎨⎧ax +by =2,cx -7y =8时,小虎把c 看错而得到⎩⎨⎧x =-2,y =2,而正确的解是⎩⎨⎧x =3,y =-2.那么a ,b ,c 的值应是 ( ) A .a =4,b =5,c =-2B .a =4,b =7,c =2C .a ,b 不能确定,c =-2D .不能确定解析 把c 看错而得到⎩⎨⎧x =-2,y =2,则⎩⎨⎧x =-2,y =2是ax +by =2的解;正确的解是⎩⎨⎧x =3,y =-2,则⎩⎨⎧x =3,y =-2既是ax +by =2的解也是cx -7y =8的解.∴把⎩⎨⎧x =3,y =-2代入cx -7y =8,得3c +14=8,解得c =-2;把⎩⎨⎧x =-2,y =2和⎩⎨⎧x =3,y =-2分别代入ax +by =2,得⎩⎨⎧-2a +2b =2,3a -2b =2,解得⎩⎨⎧a =4,b =5.故选A. 答案 A5.(原创题)已知|2x -y -1|+x +y -2=0,则(x -2y )2 015等于( )A .2 015B .-2 015C .1D .-1 解析 根据题意,得⎩⎨⎧2x -y -1=0,①x +y -2=0,②①-②,得x -2y =-1.∴(x -2y )2 015=(-1)2 015=-1,故选D.答案 D二、填空题6.(原创题)形如⎪⎪⎪⎪⎪⎪a c b d 的式子,定义它的运算规则为⎪⎪⎪⎪⎪⎪a c b d =ad -bc ;则方程⎪⎪⎪⎪⎪⎪2 y 4 x =0与⎪⎪⎪⎪⎪⎪ 3 y -5 x =11的公共解是________.解析 根据题意,得⎩⎨⎧2x -4y =0,3x +5y =11,解得⎩⎨⎧x =2,y =1.答案 ⎩⎨⎧x =2y =17.(原创题)为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密).安全员是数学爱好者,制定加密规则为:明文x ,y ,z 对应密文x +y +z ,x -y +z ,x -y -z .例如:明文1,2,3对应密文6,2,-4.当接收方收到密文12,4,-6时,则解密得到的明文为________.解析 根据题意,得⎩⎨⎧x +y +z =12,x -y +z =4,x -y -z =-6,解得⎩⎨⎧x =3,y =4,z =5.∴解密得到的明文为3,4,5.答案 3,4,5三、解答题8.(原创题)小明的妈妈在菜市场买回3斤萝卜、2斤排骨,准备做萝卜排骨汤. 妈妈:“今天买这两样菜共花了45元,上月买同重量的这两种菜只要36元”; 爸爸:“报纸上说了萝卜的单价上涨了50%,排骨的单价上涨了20%”;小明:“爸爸、妈妈,我想知道今天买的萝卜和排骨的单价分别是多少?” 请你通过列方程(组)求解这天萝卜、排骨的单价(单位:元/斤).解 设上月萝卜的单价是x 元/斤,排骨的单价是y 元/斤,根据题意,得⎩⎨⎧3x +2y =36,3(1+50%)x +2(1+20%)y =45,解得⎩⎨⎧x =2,y =15.∴这天萝卜的单价是(1+50%)x =(1+50%)×2=3,这天排骨的单价是(1+20%)y =(1+20%)×15=18.答:这天萝卜的单价是3元/斤,排骨的单价是18元/斤.9.(改编题)某学校组织学生乘汽车去自然保护区野营,先以60 km/h 的速度走平路,后又以30 km/h 的速度爬坡,共用了6.5 h ;原路返回时,汽车以40 km/h 的速度下坡,又以50 km/h 的速度走平路,共用了6 h .问平路和坡路各有多远?解 设平路x km ,坡路y km ,根据题意,得⎩⎪⎨⎪⎧x 60+y 30=6.5,x 50+y 40=6,即⎩⎨⎧4x +8y =1 560,4x +5y =1 200,解得⎩⎨⎧x =150,y =120. 答:平路150 km ,坡路120 km.。
【文库精品】中考数学专题复习 二元一次方程练习(含解析)
二元一次方程专题练习一、单选题1.用含盐15%与含盐8%的盐水配含盐10%的盐水300千克,设需含盐15%的盐水x千克,含盐8%盐水y千克,则所列方程组为()A.B.C.D.2.若二元一次方程组的解也是二元一次方程3x-4y=6的解,则k的值为()A. 4B. 8C. 6D. -63.已知,且,则k的取值范围为A. B.C.D.4.已知实数a,b分别满足,且a≠b,则的值是( )A. 7B. -7C. 11D. -115.二元一次方程组的解是()A. B.C.D.6.方程组的解为,则“△”、“□”代表的两个数分别为()A. 5,2 B. 1,3 C. 4,2 D. 2,37.若x4﹣3|m|+y|n|﹣2=2015是关于x,y的二元一次方程,且mn<0,0<m+n≤3,则m﹣n的值是()A. -4B. 2C. 4D. -28.一块长方形菜园,长是宽的3倍,如果长减少3米,宽增加4米,这个长方形就变成一个正方形.设这个长方形菜园的长为x米,宽为y米,根据题意,得()A. B.C.D.9.若m、n满足|m﹣2|+(n+3)2=0,则n m的值为()A. 9B. -8C. 8D. -910.如果,其中xyz≠0,那么x:y:z=()A. 1:2:3B. 2:3:4 C. 2:3:1 D. 3:2:111.2辆大卡车和5辆小卡车工作2小时可运送垃圾36吨,3辆大卡车和2辆小卡车工作5小时可运输垃圾80吨,那么1辆大卡车和1辆小卡每小时分别运x吨与y吨垃圾,则可列方程组()A. B. C. D.12.二元一次方程x+2y=5有无数多个解,但它的正整数解只有()组.A. 1B. 2C. 3D. 413.下列方程是二元一次方程的是()A. B.C.D.14.若是方程2mx﹣ny=﹣2的一个解,则3m+3n﹣5的值等于()A. ﹣8B. ﹣4C. ﹣2D. 2二、填空题15.已知二元一次方程2x-3y=-4,用含x代数式表示y,y= .16.三个同学对问题“若方程组的解是,求方程组的解.”提出各自的想法.甲说:“这个题目好象条件不够,不能求解”;乙说:“它们的系数有一定的规律,可以试试”;丙说:“能不能把第二个方程组的两个方程的两边都除以5,通过换元替换的方法来解决”.参考他们的讨论,你认为这个题目的解应该是________.17.某超市将甲、乙两种商品进价各自提价30%后,又同时降价30元出售,售出后两种商品的总利润为60元,则甲、乙两种商品进价之和为________ 元.18.若方程组是关于x,y的二元一次方程组,则代数式a+b+c的值是________.19.由3x﹣2y=5,得到用x表示y的式子为:y=________.20.把方程2(x+y)﹣3(x﹣y)=3改写成用含y代数式表示x的形式,得________三、计算题21.(1)计算 (-2)2+( -π)0+|1—|;(2)解方程组:22.方程组的解x、y满足x是y的2倍,求a的值.23.综合题(1)计算(﹣)﹣| ﹣|(2)解方程组(3)解不等式1﹣>(4)解不等式组,并把它的解集表示在数轴上.24.计算。
二元一次方程组(40题)【真题实战】 中考数学一轮复习精讲+热考题型(全国通用)(原卷版)
专题07 二元一次方程组1.(2020·黑龙江齐齐哈尔·中考真题)母亲节来临,小明去花店为妈妈准备节日礼物.已知康乃馨每支2元,百合每支3元.小明将30元钱全部用于购买这两种花(两种花都买),小明的购买方案共有()A.3种B.4种C.5种D.6种2.(2020·黑龙江牡丹江·中考真题)在抗击疫情网络知识竞赛中,为奖励成绩突出的学生,学校计划用200元钱购买A、B、C三种奖品,A种每个10元,B种每个20元,C种每个30元,在C种奖品不超过两个且钱全部用完的情况下,有多少种购买方案()A.12种B.15种C.16种D.14种3.(2021·四川德阳·中考真题)关于x,y的方程组3212331x y kx y k+=-⎧⎨+=+⎩的解为x ay b=⎧⎨=⎩,若点P(a,b)总在直线y=x上方,那么k的取值范围是()A.k>1B.k>﹣1C.k<1D.k<﹣14.(2021·湖南郴州·中考真题)已知二元一次方程组2521x yx y-=⎧⎨-=⎩,则x y-的值为()A.2B.6C.2-D.6-5.(热考)(2021·湖北荆门·中考真题)我国古代数学古典名著《孙子算经》中记载:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”其大意是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量,木条还剩余1尺;问长木多少尺?如果设木条长为x尺,绳子长为y尺,则下面所列方程组正确的是()A.4.5112y xy x=+⎧⎪⎨=-⎪⎩B.4.5112y xy x=-⎧⎪⎨=+⎪⎩C.4.521y xy x=+⎧⎨=-⎩D.4.521y xy x=-⎧⎨=+⎩6.(2021·广西来宾·中考真题)《九章算术》是人类科学史上应用数学的“算经之首”,书中记载:今有三人共车,二车空;二人共车,九人步.问:人与车各几何?译文:若3人坐一辆车,则两辆车是空的;若2人坐一辆车,则9人需要步行.问:人与车各多少?设有x辆车,人数为y,根据题意可列方程组为()A.3229y xy x=-⎧⎨=+⎩B.3(2)29y xy x=-⎧⎨=+⎩C.3229y xy x=-⎧⎨=-⎩D.3(2)29y xy x=-⎧⎨=-⎩7.(2021·黑龙江齐齐哈尔·中考真题)周末,小明的妈妈让他到药店购买口罩和消精湿巾,已知口罩每包3元,酒精湿巾每包2元,共用了30元钱(两种物品都买),小明的购买方案共有()A.3种B.4种C.5种D.6种8.(2021·甘肃武威·中考真题)我国古代数学著作《孙子算经》有“多人共车”问题:“今有三人共车,二车空;二人共车,九人步.问:人与车各几何”其大意如下:有若干人要坐车,如果每3人坐一辆车,那么有2辆空车;如果每2人坐一辆车,那么有9人需要步行,问人与车各多少?设共有x人,y辆车,则可列方程组为()A.3(2)29y xy x-=⎧⎨-=⎩B.3(2)29y xy x+=⎧⎨+=⎩C.3(2)29y xy x-=⎧⎨+=⎩D.3(2)29y xy x-=⎧⎨+=⎩9.(2020·辽宁葫芦岛·中考真题)我市在落实国家“精准扶贫”政策的过程中,为某村修建一条长为400米的公路,由甲、乙两个工程队负责施工.甲工程队独立施工2天后,乙工程队加入两工程队联合施工3天后,还剩50米的工程.已知甲工程队每天比乙工程队多施工2米,求甲、乙工程队每天各施工多少米?设甲工程队每天施工x米,乙工程队每天施工y米,根据题意,所列方程组正确的是()A.223400x yx y=-⎧⎨+=⎩B.223()40050x yx x y=-⎧⎨++=-⎩C.22340050x yx y=+⎧⎨+=-⎩D.223()40050x yx x y=+⎧⎨++=-⎩10.(2020·山东临沂·中考真题)《孙子算经》是中国古代重要的数学著作,纸书大约在一千五百年前,其中一道题,原文是:“今三人共车,两车空;二人共车,九人步.问人与车各几何?”意思是:现有若干人和车,若每辆车乘坐3人,则空余两辆车:若每辆车乘坐2人,则有9人步行,问人与车各多少?设有x人,y辆车,可列方程组为()A.2392xyxy⎧=+⎪⎪⎨⎪+=⎪⎩B.2392xyxy⎧=-⎪⎪⎨-⎪=⎪⎩C.2392xyxy⎧=+⎪⎪⎨-⎪=⎪⎩D.2392xyxy⎧=-⎪⎪⎨⎪-=⎪⎩11.(2020·浙江绍兴·中考真题)同型号的甲、乙两辆车加满气体燃料后均可行驶210km.它们各自单独行驶并返回的最远距离是105km.现在它们都从A地出发,行驶途中停下来从甲车的气体燃料桶抽一些气体燃料注入乙车的气体燃料桶,然后甲车再行驶返回A地,而乙车继续行驶,到B地后再行驶返回A地.则B地最远可距离A地()A.120km B.140km C.160km D.180km12.(2021·四川广安·中考真题)若x、y满足2223x yx y-=-⎧⎨+=⎩,则代数式224x y-的值为______.13.(2021·四川凉山·中考真题)已知13xy=⎧⎨=⎩是方程2ax y+=的解,则a的值为______________.14.(2021·浙江金华·中考真题)已知2xy m=⎧⎨=⎩是方程3210x y+=的一个解,则m的值是____________.15.(2021·浙江嘉兴·中考真题)已知二元一次方程314+=x y ,请写出该方程的一组整数解__________________.16.(2021·四川绵阳·中考真题)端午节是中国传统节日,人们有吃粽子的习俗.某商场从6月12日起开始打折促销,肉粽六折,白粽七折,打折前购买4盒肉粽和5盒白粽需350元,打折后购买5盒肉粽和10盒白粽需360元.轩轩同学想在今天中考结束后,为敬老院送肉粽和白粽各5盒,则他6月13日购买的花费比在打折前购买节省_____元.17.(2021·内蒙古呼伦贝尔·中考真题)《九章算术》是我国东汉初年编订的一部数学经典著作,其中一次方程组是用算筹布置而成,如图(1)所示的算筹图用我们现在所熟悉的方程组表示出来,就是3217423x y x y +=⎧⎨+=⎩,类似的,图(2)所示的算筹图用方程组表示出来,就是______________.18.(2021·黑龙江绥化·中考真题)某学校计划为“建党百年,铭记党史”演讲比赛购买奖品.已知购买2个A 种奖品和4个B 种奖品共需100元;购买5个A 种奖品和2个B 种奖品共需130元.学校准备购买,A B 两种奖品共20个,且A 种奖品的数量不小于B 种奖品数量的25,则在购买方案中最少费用是_____元. 19.(2021·北京·中考真题)某企业有,A B 两条加工相同原材料的生产线.在一天内,A 生产线共加工a 吨原材料,加工时间为()41a +小时;在一天内,B 生产线共加工b 吨原材料,加工时间为()23b +小时.第一天,该企业将5吨原材料分配到,A B 两条生产线,两条生产线都在一天内完成了加工,且加工时间相同,则分配到A 生产线的吨数与分配到B 生产线的吨数的比为______________.第二天开工前,该企业按第一天的分配结果分配了5吨原材料后,又给A 生产线分配了m 吨原材料,给B 生产线分配了n 吨原材料.若两条生产线都能在一天内加工完各自分配到的所有原材料,且加工时间相同,则m n的值为______________. 20.(2021·山东泰安·中考真题)《九章算术》中记载:“今有甲乙二人持钱不知其数,甲得乙半而钱五十,乙得甲太半而钱亦五十,问甲、乙持钱各几何?”译文:“假设有甲乙二人,不知其钱包里有多少钱,若乙把自己一半的钱给甲,则甲的钱数为50;而甲把自己23的钱给乙,则乙的钱数也能为50.问甲、乙各有多少钱?”设甲持钱数为x ,乙持钱数为y ,可列方程组为________.21.(2020·山东日照·中考真题)《孙子算经》记载:今有3人共车,二车空;二人共车,九人步,问人与车各几何?译文:今有若干人乘车,若每三人共乘一辆车,最终剩余2辆车;若每2人共乘一辆车,最终剩余9人无车可乘.问共有多少人?多少辆车?若设有x 辆车,有y 人,则可列方程组为_____.22.(2020·贵州黔南·中考真题)《九章算术》是我国古代一部著名的算书,它的出现标志着中国古代数学形成了完整的体系其中卷八方程[七]中记载:“今有牛五、羊二,直金十两.牛二、羊五,直金八两.牛、羊各直金几何?”题目大意是:5头牛、2只羊共值金10两.2头牛、5只羊共值金8两.每头牛、每只羊各值金多少两?设1头牛值金x 两,1只羊值金y 两,则可列方程组为_________.23.(2020·湖南·中考真题)今年新冠病毒疫情初期,口罩供应短缺,某地规定:每人每次限购5只.李红出门买口罩时,无论是否买到,都会消耗家里库存的口罩一只,如果有口罩买,他将买回5只.已知李红家原有库存15只,出门10次购买后,家里现有口罩35只.请问李红出门没有买到口罩的次数是_____次. 24.(2020·湖南岳阳·中考真题)《九章算术》中有这样一个题:“今有醇酒一斗,直钱五十;行酒一斗,直钱一十.今将钱三十,得酒二斗.问醇、行酒各得几何?”其译文是:今有醇酒(优质酒)1斗,价值50钱;行酒(劣质酒)1斗,价值10钱.现有30钱,买得2斗酒.问醇酒、行酒各能买得多少?设醇酒为x 斗,行酒为y 斗,则可列二元一次方程组为_____.25.(2021·重庆·中考真题)对于任意一个四位数m ,若千位上的数字与个位上的数字之和是百位上的数字与十位上的数字之和的2倍,则称这个四位数m 为“共生数”例如:3507m =,因为372(50)+=⨯+,所以3507是“共生数”:4135m =,因为452(13)+≠⨯+,所以4135不是“共生数”;(1)判断5313,6437是否为“共生数”?并说明理由;(2)对于“共生数”n ,当十位上的数字是千位上的数字的2倍,百位上的数字与个位上的数字之和能被9整除时,记()3n F n =.求满足()F n 各数位上的数字之和是偶数的所有n . 26.(2021·内蒙古呼和浩特·中考真题)计算求解(1)计算11()303--︒ (2)解方程组 1.5(2010)150001.2(110120)97200x y x y +=⎧⎨+=⎩27.(2021·江苏扬州·中考真题)已知方程组271x y x y +=⎧⎨=-⎩的解也是关于x 、y 的方程4ax y +=的一个解,求a 的值.28.(2021·四川眉山·中考真题)解方程组3220021530x y x y -+=⎧⎨+-=⎩29.(2021·湖南湘西·中考真题)2020年以来,新冠肺炎的蔓延促使世界各国在线教育用户规模不断增大.网络教师小李抓住时机,开始组建团队,制作面向A、B两个不同需求学生群体的微课视频.已知制作3个A 类微课和5个B类微课需要4600元成本,制作5个A类微课和10个B类微课需要8500元成本.李老师又把做好的微课出售给某视频播放网站,每个A类微课售价1500元,每个B类微课售价1000元.该团队每天可以制作1个A类微课或者1.5个B类微课,且团队每月制作的B类微课数不少于A类微课数的2倍(注:每月制作的A、B两类微课的个数均为整数).假设团队每月有22天制作微课,其中制作A类微课a天,制作A、B两类微课的月利润为w元.(1)求团队制作一个A类微课和一个B类微课的成本分别是多少元?(2)求w与a之间的函数关系式,并写出a的取值范围;(3)每月制作A类微课多少个时,该团队月利润w最大,最大利润是多少元?30.(2021·辽宁大连·中考真题)某校为实现垃圾分类投放,准备在校园内摆放大、小两种垃圾桶购买2个大垃圾桶和4个小垃圾桶共需600元;购买6个大垃圾桶和8个小垃圾桶共需1560元.(1)求大、小两种垃圾桶的单价;(2)该校购买8个大垃圾桶和24个小垃圾桶共需多少元?31.(2021·内蒙古赤峰·中考真题)为传承优秀传统文化,某地青少年活动中心计划分批次购进四大名著:《西游记》、《水浒传》、《三国演义》、《红楼梦》.第一次购进《西游记》50本,《水浒传》60本,共花费6600元,第二次购进《西游记》40本,《水浒传》30本,共花费4200元.(1)求《西游记》和《水浒传》每本的售价分别是多少元;(2)青少年活动中心决定再购买上述四种图书,总费用不超过32000元.如果《西游记》比《三国演义》每本售价多10元,《水浒传》比《红楼梦》每本售价少10元(四大名著各一本为一套),那么这次最多购买《西游记》多少本?32.(2021·辽宁本溪·中考真题)某班计划购买两种毕业纪念册,已知购买1本手绘纪念册和4本图片纪念册共需135元,购买5本手绘纪念册和2本图片纪念册共需225元.(1)求每本手绘纪念册和每本图片纪念册的价格分别为多少元?(2)该班计划购买手绘纪念册和图片纪念册共40本,总费用不超过1100元,那么最多能购买手绘纪念册多少本?33.(2021·湖北襄阳·中考真题)为了切实保护汉江生态环境,襄阳市政府对汉江襄阳段实施全面禁渔.禁渔后,某水库自然生态养殖的鱼在市场上热销,经销商老李每天从该水库购进草鱼和鲢鱼进行销售,两种鱼的进价和售价如下表所示:已知老李购进10斤鲢鱼和20斤草鱼需要155元,购进20斤鲢鱼和10斤草鱼需要130元.(1)求a ,b 的值;(2)老李每天购进两种鱼共300斤,并在当天都销售完,其中销售鲢鱼不少于80斤且不超过120斤,设每天销售鲢鱼x 斤(销售过程中损耗不计).①分别求出每天销售鲢鱼获利1y (元),销售草鱼获利2y (元)与x 的函数关系式,并写出x 的取值范围; ①端午节这天,老李让利销售,将鲢鱼售价每斤降低m 元,草鱼售价全部定为7元斤,为了保证当天销售这两种鱼总获利W (元)的最小值不少于320元,求m 的最大值.34.(2021·贵州铜仁·中考真题)某快递公司为了提高工作效率,计划购买A 、B 两种型号的机器人来搬运货物,已知每台A 型机器人比每台B 型机器人每天多搬运20吨,并且3台A 型机器人和2台B 型机器人每天共搬运货物460吨.(1)求每台A 型机器人和每台B 型机器人每天分别微运货物多少吨?(2)每台A 型机器人售价3万元,每台B 型机器人售价2万元,该公司计划采购A 、B 两种型号的机器人共20台,必须满足每天搬运的货物不低于1800吨,请根据以上要求,求出A 、B 两种机器人分别采购多少台时,所需费用最低﹖最低费用是多少?35.(2021·福建·中考真题)某公司经营某种农产品,零售一箱该农产品的利润是70元,批发一箱该农产品的利润是40元.(1)已知该公司某月卖出100箱这种农产品共获利润4600元,问:该公司当月零售、批发这种农产品的箱数分别是多少?(2)经营性质规定,该公司零售的数量不能多于总数量的30%.现该公司要经营1000箱这种农产品,问:应如何规划零售和批发的数量,才能使总利润最大?最大总利润是多少?36.(2021·广西柳州·中考真题)如今,柳州螺蛳粉已经成为名副其实的“国民小吃”,螺蛳粉小镇对A 、B 两种品牌的螺蛳粉举行展销活动.若购买20箱A 品牌螺蛳粉和30箱B 品牌螺蛳粉共需要4400元,购买10箱A 品牌螺蛳粉和40箱B 品牌螺蛳粉则需要4200元.(1)求A 、B 品牌螺蛳粉每箱售价各为多少元?(2)小李计划购买A 、B 品牌螺蛳粉共100箱,预算总费用不超过9200元,则A 品牌螺蛳粉最多购买多少箱?37.(2021·浙江温州·中考真题)某公司生产的一种营养品信息如下表.已知甲食材每千克的进价是乙食材的2倍,用80元购买的甲食材比用20元购买的乙食材多1千克.(1)问甲、乙两种食材每千克进价分别是多少元?(2)该公司每日用18000元购进甲、乙两种食材并恰好全部用完.①问每日购进甲、乙两种食材各多少千克?①已知每日其他费用为2000元,且生产的营养品当日全部售出.若A的数量不低于B的数量,则A为多少包时,每日所获总利润最大?最大总利润为多少元?38.(2021·四川资阳·中考真题)我市某中学计划举行以“奋斗百年路,启航新征程”为主题的知识竞赛,并对获奖的同学给予奖励.现要购买甲、乙两种奖品,已知1件甲种奖品和2件乙种奖品共需40元,2件甲种奖品和3件乙种奖品共需70元.(1)求甲、乙两种奖品的单价;,应(2)根据颁奖计划,该中学需甲、乙两种奖品共60件,且甲种奖品的数量不少于乙种奖品数量的12如何购买才能使总费用最少?并求出最少费用.39.(2021·四川泸州·中考真题)某运输公司有A、B两种货车,3辆A货车与2辆B货车一次可以运货90吨,5辆A货车与4辆B货车一次可以运货160吨.(1)请问1辆A货车和1辆B货车一次可以分别运货多少吨?(2)目前有190吨货物需要运输,该运输公司计划安排A、B两种货车将全部货物一次运完(A、B两种货车均满载),其中每辆A货车一次运货花费500元,每辆B货车一次运货花费400元.请你列出所有的运输方案,并指出哪种运输方案费用最少.40.(2021·重庆·中考真题)重庆小面是重庆美食的名片之一,深受外地游客和本地民众欢迎.某面馆向食客推出经典特色重庆小面,顾客可到店食用(简称“堂食”小面),也可购买搭配佐料的袋装生面(简称“生食”小面).已知3份“堂食”小面和2份“生食”小面的总售价为31元,4份“堂食”小面和1份“生食”小面的总售价为33元.(1)求每份“堂食”小面和“生食”小面的价格分别是多少元?(2)该面馆在4月共卖出“堂食”小面4500份,“生食”小面2500份,为回馈广大食客,该面馆从5月1日起每份“堂食”小面的价格保持不变,每份“生食”小面的价格降低3a%4.统计5月的销量和销售额发现:“堂食”小面的销量与4月相同,“生食”小面的销量在4月的基础上增加5%2a,这两种小面的总销售额在4月的基础上增加5%11a.求a的值.。
中考数学专题练习 二元一次方程组(含解析)
二元一次方程组一、填空题1.用加减消元法解方程组,由①×2﹣②得.2.在方程3x﹣y=5中,用含x的代数式表示y为:y= ,当x=3时,y= .3.在代数式3m+5n﹣k中,当m=﹣2,n=1时,它的值为1,则k= ;当m=2,n=﹣3时代数式的值是.4.已知方程组与有相同的解,则m= ,n= .5.若(2x﹣3y+5)2+|x+y﹣2|=0,则x= ,y= .6.有一个两位数,它的两个数字之和为11,把这个两位数的个位数字与十位数字对调,所得的新数比原数大63,设原两位数的个位数字为x,十位数字为y,则用代数式表示原两位数为,根据题意得方程组.7.如果是方程6x+by=32的解,则b= .8.若是关于x、y的方程ax﹣by=1的一个解,且a+b=﹣3,则5a﹣2b= .9.已知a2﹣a+1=2,那么a﹣a2+1的值是.10.若|3a+4b﹣c|+(c﹣2b)2=0,则a:b:c= .二、选择题11.如果3a7x b y+7和﹣7a2﹣4y b2x是同类项,则x,y的值是()A.x=﹣3,y=2 B.x=2,y=﹣3 C.x=﹣2,y=3 D.x=3,y=﹣212.已知是方程组的解,则a,b间的关系是()A.4b﹣9a=1 B.3a+2b=1 C.4b﹣9a=﹣1 D.9a+4b=113.若二元一次方程3x﹣y=7,2x+3y=1,y=kx﹣9有公共解,则k的取值为()A.3 B.﹣3 C.﹣4 D.414.若二元一次方程3x﹣2y=1有正整数解,则x的取值应为()A.正奇数B.正偶数C.正奇数或正偶数D.015.关于x、y的二元一次方程组的解满足不等式x+y>0,则a的取值范围是()A.a<﹣1 B.a<1 C.a>﹣1 D.a>116.方程ax﹣4y=x﹣1是二元一次方程,则a的取值为()A.a≠0 B.a≠﹣1 C.a≠1 D.a≠217.当x=2时,代数式ax3+bx+1的值为6,那么当x=﹣2时这个式子的值为()A.6 B.﹣4 C.5 D.118.设A、B两镇相距x千米,甲从A镇、乙从B镇同时出发,相向而行,甲、乙行驶的速度分别为u千米/小时、v千米/小时,并有:①出发后30分钟相遇;②甲到B镇后立即返回,追上乙时又经过了30分钟;③当甲追上乙时他俩离A镇还有4千米.求x、u、v.根据题意,由条件③,有四位同学各得到第3个方程如下,其中错误的一个是()A.x=u+4 B.x=v+4 C.2x﹣u=4 D.x﹣v=4三、解答题19.解方程组:.20.解方程组:.21.解方程组:.22.王大伯承包了25亩土地,今年春季改种黄瓜和西红柿两种大棚蔬菜,用去了44 000元,其中种黄瓜每亩用了1700元,获纯利润2600元;种西红柿每亩用了1800元,获纯利润2800元,问王大伯一共获纯利润多少元?23.在社会实践活动中,某校甲、乙、丙三位同学一同调查了高峰时段某市的一环路、二环路、三环路的车流量已知关于x、y的方程组与有相同的解,求a、b的值.28.一批货物要运往某地,货主准备租用汽车运输公司的甲、乙两种货车,已知过去两次租用这种货车的情况如表所示.现租用该公司的甲种货车3辆乙种货车5辆,一次刚好运完这批货物,如果按每吨付运费30元计算,问货主应付运费多少元?第一次第二次甲种货车辆(辆) 2 5 乙种货车辆(辆) 3 6 累计运货吨数(吨)15.5 35二元一次方程组参考答案与试题解析一、填空题1.用加减消元法解方程组,由①×2﹣②得2x=﹣3 .【考点】解二元一次方程组.【专题】计算题.【分析】此题主要考查加减消元法的应用,按照题目要求解答即可.【解答】解:①×2﹣②得,6x+2y﹣(4x+2y)=﹣2﹣1,合并同类项得,2x=﹣3.【点评】注意掌握二元一次方程的加减消元法.2.在方程3x﹣y=5中,用含x的代数式表示y为:y= 12x﹣20 ,当x=3时,y= 16 .【考点】解二元一次方程.【分析】本题是将二元一次方程变形,用一个未知数表示另一个未知数,可先移项,再系数化为1,得到y的表达式,最后把x的值代入方程求出y值.【解答】解:①由已知方程3x﹣y=5,移项,得,系数化为1,得y=12x﹣20;②当x=3代入y=12x﹣20,得y=16.【点评】本题考查的是方程的基本运算技能:移项,合并同类项,系数化为1等.3.在代数式3m+5n﹣k中,当m=﹣2,n=1时,它的值为1,则k= ﹣2 ;当m=2,n=﹣3时代数式的值是﹣7 .【考点】代数式求值.【分析】直接把m=﹣2,n=1代入代数式,求得k,再利用代入法求代数式的解.【解答】解:∵m=﹣2,n=1∴3m+5n﹣k=1∴k=﹣2∵m=2,n=﹣3,k=﹣2∴3m+5n﹣k=3×2+5×(﹣3)﹣(﹣2)=﹣7.【点评】解题关键是先把m=﹣2,n=1代入代数式求出k的值,再把k的值,m=2,n=﹣3代入代数式求值.4.已知方程组与有相同的解,则m= ,n= 12 .【考点】同解方程组.【专题】计算题.【分析】解此题可先将第二个方程组解出x、y的值,再代入第一个方程组,化为只有m、n的方程组,即可求出n、m.【解答】解:由(1)×2+(2),得10x=20,x=2,代入,得y=0.将x、y代入第一个方程组可得,解,得.【点评】此题考查的是考生对二元一次方程组的解的理解和二元一次方程组的解法,解出x、y的值,再代入方程组求出m、n的值、最重要的是将方程化简到只含有两个未知数.5.若(2x﹣3y+5)2+|x+y﹣2|=0,则x= ,y= .【考点】解二元一次方程组;非负数的性质:绝对值;非负数的性质:偶次方.【分析】本题可根据非负数的性质“两个非负数相加,和为0,这两个非负数的值都为0”解出x、y的值.【解答】解:∵(2x﹣3y+5)2+|x+y﹣2|=0,∴,解,得x=,y=.【点评】本题考查了非负数的性质.初中阶段有三种类型的非负数:(1)绝对值;(2)偶次方;(3)二次根式(算术平方根).当它们相加和为0时,必须满足其中的每一项都等于0.根据这个结论可以求解这类题目.6.有一个两位数,它的两个数字之和为11,把这个两位数的个位数字与十位数字对调,所得的新数比原数大63,设原两位数的个位数字为x,十位数字为y,则用代数式表示原两位数为10y+x ,根据题意得方程组.【考点】由实际问题抽象出二元一次方程组.【分析】如果设原两位数的个位数字为x,十位数字为y,那么原两位数可表示为10y+x.此题中的等量关系有:①有一个两位数,它的两个数字之和为11可得出方程x+y=11;②根据“把这个两位数的个位数字与十位数字对调,所得的新数比原数大63”,可得出方程为(10x+y)﹣(10y+x)=63,那么方程组是.【解答】解:根据数位的意义,该两位数可表示为10y+x.根据有一个两位数,它的两个数字之和为11,可得方程x+y=11;根据把这个两位数的个位数字与十位数字对调,所得的新数比原数大63,可得方程(10x+y)﹣(10y+x)=63.那么方程组是.故答案为:10y+x,.【点评】根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.本题要注意两位数的表示方法.7.如果是方程6x+by=32的解,则b= 7 .【考点】二元一次方程的解.【专题】方程思想.【分析】将x=3,y=2代入方程6x+by=32,把未知数转化为已知数,然后解关于未知系数b的方程.【解答】解:把x=3,y=2代入方程6x+by=32,得6×3+2b=32,移项,得2b=32﹣18,合并同类项,系数化为1,得b=7.【点评】本题的关键是将方程的解代入原方程,把关于x、y的方程转化为关于系数b的方程,此法叫做待定系数法,在以后的学习中,经常用此方法求函数解析式.8.若是关于x、y的方程ax﹣by=1的一个解,且a+b=﹣3,则5a﹣2b= ﹣43 .【考点】二元一次方程的解.【分析】要求5a﹣2b的值,要先求出a和b的值.根据题意得到关于a和b的二元一次方程组,再求出a和b的值.【解答】解:把代入方程ax﹣by=1,得到a+2b=1,因为a+b=﹣3,所以得到关于a和b的二元一次方程组,解这个方程组,得b=4,a=﹣7,所以5a﹣2b=5×(﹣7)﹣2×4=﹣35﹣8=﹣43.【点评】运用代入法,得关于a和b的二元一次方程组,再解方程组求解是解决此类问题的关键.9.已知a2﹣a+1=2,那么a﹣a2+1的值是0 .【考点】代数式求值.【专题】整体思想.【分析】先求出a2﹣a的值,再把原式化为﹣(a2﹣a)+1的形式进行解答.【解答】解:∵a2﹣a+1=2,∴a2﹣a=1,∴a﹣a2+1=﹣(a2﹣a)+1,=﹣1+1=0.【点评】代数式中的字母表示的数没有明确告知,而是隐含在题设中,首先应从题设中获取代数式a2﹣a的值,然后利用“整体代入法”求代数式的值.10.若|3a+4b﹣c|+(c﹣2b)2=0,则a:b:c= ﹣2:3:6 .【考点】解三元一次方程组;非负数的性质:绝对值;非负数的性质:偶次方.【分析】解此题可以根据函数的非负性进行求解,含不等式的式子必大于0,含平方的式子也必大于0,因此可知|3a+4b﹣c|=0,且(c﹣2b)2=0,据此可以求出a,b,c的比.【解答】解:依题意得:|3a+4b﹣c|=0,且(c﹣2b)2=0,∴,∴由②得3a=﹣2b,即a=﹣b,∴a:b:c=﹣b:b:2b=﹣2:3:6.故答案为:﹣2:3:6.【点评】此题考查的是非负数的性质,据此可以列出二元一次方程组,求出相应的比,就可以计算出此题.二、选择题11.如果3a7x b y+7和﹣7a2﹣4y b2x是同类项,则x,y的值是()A.x=﹣3,y=2 B.x=2,y=﹣3 C.x=﹣2,y=3 D.x=3,y=﹣2【考点】同类项;解二元一次方程组.【专题】计算题.【分析】本题根据同类项的定义,即相同字母的指数相同,可以列出方程组,然后求出方程组的解即可.【解答】解:由同类项的定义,得,解这个方程组,得.故选B.【点评】根据同类项的定义列出方程组,是解本题的关键.12.已知是方程组的解,则a,b间的关系是()A.4b﹣9a=1 B.3a+2b=1 C.4b﹣9a=﹣1 D.9a+4b=1【考点】二元一次方程组的解.【分析】解此题时可将x,y的值代入方程,化简可得出结论.【解答】解:根据题意得,原方程可化为要确定a和b的关系,只需消去c即可,则有9a+4b=1.故选D.【点评】此题考查的是对方程组性质的理解,运用加减消元法来求解.13.若二元一次方程3x﹣y=7,2x+3y=1,y=kx﹣9有公共解,则k的取值为()A.3 B.﹣3 C.﹣4 D.4【考点】解三元一次方程组.【专题】计算题.【分析】由题意建立关于x,y的方程组,求得x,y的值,再代入y=kx﹣9中,求得k的值.【解答】解:解得:,代入y=kx﹣9得:﹣1=2k﹣9,解得:k=4.故选D.【点评】本题先通过解二元一次方程组,求得后再代入关于k的方程而求解的.14.若二元一次方程3x﹣2y=1有正整数解,则x的取值应为()A.正奇数B.正偶数C.正奇数或正偶数D.0【考点】解二元一次方程.【分析】应先用方程表示y的值,然后再根据解为正整数分析解的情况.【解答】解:由题意,得,要使x,y都是正整数,必须满足3x﹣1大于0,且是2的倍数.根据以上两个条件可知,合适的x值为正奇数.故选A.【点评】解题关键是把方程做适当的变形,再确定符合条件的x的取值范围.15.关于x、y的二元一次方程组的解满足不等式x+y>0,则a的取值范围是()A.a<﹣1 B.a<1 C.a>﹣1 D.a>1【考点】解二元一次方程组;解一元一次不等式.【分析】解此题时可以解出二元一次方程组中x,y关于a的式子,代入x+y>0,然后解出a的取值范围.【解答】解:方程组中两个方程相加得4x+4y=2+2a,即x+y=,又x+y>0,即>0,解一元一次不等式得a>﹣1,故选C.【点评】本题是综合考查了二元一次方程组和一元一次不等式的综合运用,灵活运用二元一次方程组的解法是解决本题的关键.16.方程ax﹣4y=x﹣1是二元一次方程,则a的取值为()A.a≠0 B.a≠﹣1 C.a≠1 D.a≠2【考点】二元一次方程的定义.【专题】计算题.【分析】根据二元一次方程的定义,从二元一次方程的未知数的个数和次数方面考虑求a的取值.【解答】解:方程ax﹣4y=x﹣1变形得(a﹣1)x﹣4y=﹣1,根据二元一次方程的概念,方程中必须含有两个未知数,所以a﹣1≠0,即a≠1.故选C.【点评】二元一次方程必须符合以下三个条件:(1)方程中必须只含有2个未知数;(2)含未知数项的最高次数为一次;(3)方程是整式方程.解本题时是根据条件(1).17.(2013春•苏州期末)当x=2时,代数式ax3+bx+1的值为6,那么当x=﹣2时这个式子的值为()A.6 B.﹣4 C.5 D.1【考点】代数式求值.【专题】整体思想.【分析】把x=2代入ax3+bx+1=6,得到8a+2b=5;又当x=﹣2时,ax3+bx+1=﹣8a﹣2b+1=﹣(8a+2b)+1.所以把8a+2b当成一个整体代入即可.【解答】解:当x=2时,代数式ax3+bx+1的值为6,即8a+2b+1=6,∴8a+2b=5①当x=﹣2时,ax3+bx+1=﹣8a﹣2b+1=﹣(8a+2b)+1②把①代入②得:ax3+bx+1=﹣5+1=﹣4.故选B.【点评】此题考查的是代数式的性质,将已知变形然后求解.18.设A、B两镇相距x千米,甲从A镇、乙从B镇同时出发,相向而行,甲、乙行驶的速度分别为u千米/小时、v千米/小时,并有:①出发后30分钟相遇;②甲到B镇后立即返回,追上乙时又经过了30分钟;③当甲追上乙时他俩离A镇还有4千米.求x、u、v.根据题意,由条件③,有四位同学各得到第3个方程如下,其中错误的一个是()A.x=u+4 B.x=v+4 C.2x﹣u=4 D.x﹣v=4【考点】由实际问题抽象出二元一次方程.【专题】行程问题.【分析】首先由题意可得,甲乙各走了一小时的路程.根据题意,得甲走的路程差4千米不到2x千米,即u=2x﹣4或2x﹣u=4;乙走的路程差4千米不到x千米,则v=x﹣4或x=v+4、x﹣v=4.【解答】解:根据甲走的路程差4千米不到2x千米,得u=2x﹣4或2x﹣u=4.则C正确;根据乙走的路程差4千米不到x千米,则v=x﹣4或x=v+4、x﹣v=4.则B,D正确,A错误.故选:A.【点评】此题的关键是用代数式表示甲、乙走一小时的路程,同时用到了路程公式,关键是能够根据题中的第三个条件得到甲、乙所走的路程分别和总路程之间的关系.三、解答题19.解方程组:.【考点】解二元一次方程组.【专题】计算题.【分析】观察本题可知x的系数的最小公倍数较小,应考虑消去x,具体用加减消元法.【解答】解:(1)×7+(2)×2得:﹣11y=66,y=﹣6,把y=﹣6代入(1)得:2x+18=8,x=﹣5,∴原方程组的解为.【点评】两个未知数系数的符号都相反,可考虑消去最小公倍数较小的未知数.20.解方程组:.【考点】解二元一次方程组.【专题】计算题.【分析】在方程2中,y的系数为1,所以可用含x的式子表示y,即用代入消元法比较简单.【解答】解:由(2)变形得:y=3x+1,代入(1)得:x+2(3x+1)=9,解得:x=1.代入y=3x+1得:y=4.∴方程组的解为.【点评】这类题目的解题关键是掌握方程组解法中的加减消元法和代入法.21.解方程组:.【考点】解二元一次方程组.【专题】计算题.【分析】本题为了计算方便,可先把(2)去分母,然后运用加减消元法解本题.【解答】解:原方程变形为:,两个方程相加,得4x=12,x=3.把x=3代入第一个方程,得4y=11,y=.解之得.【点评】本题考查的是二元一次方程组的解法,方程中含有分母的要先化去分母,再对方程进行化简、消元,即可解出此类题目.22.王大伯承包了25亩土地,今年春季改种黄瓜和西红柿两种大棚蔬菜,用去了44 000元,其中种黄瓜每亩用了1700元,获纯利润2600元;种西红柿每亩用了1800元,获纯利润2800元,问王大伯一共获纯利润多少元?【考点】二元一次方程组的应用.【专题】应用题.【分析】根据建立方程组,先求到两种蔬菜种植的亩数,再求一共获的纯利润.【解答】解:设王大伯种了x亩黄瓜,y亩西红柿,根据题意可得.共获纯利润=2600×10+2800×15=68 000(元)答:王大伯一共获纯利润68 000元.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.本题一共获的纯利润指黄瓜和西红柿的利润和.23.在社会实践活动中,某校甲、乙、丙三位同学一同调查了高峰时段某市的一环路、二环路、三环路的车流量(2014春•惠山区校级期末)已知关于x、y的方程组与有相同的解,求a、b的值.【考点】同解方程组.【分析】因为两个方程组有相同的解,故只需把两个方程组中不含未知数和含未知数的方程分别组成方程组,求出未知数的值,再代入另一组方程组即可.【解答】解:据题意得,解得,代入其他两个方程,可得方程组为,解得.【点评】此题比较复杂,考查了学生对方程组有公共解定义的理解能力及应用能力,是一道好题.28.一批货物要运往某地,货主准备租用汽车运输公司的甲、乙两种货车,已知过去两次租用这种货车的情况如表所示.现租用该公司的甲种货车3辆乙种货车5辆,一次刚好运完这批货物,如果按每吨付运费30元计算,问货主应付运费多少元?第一次第二次甲种货车辆(辆) 2 5乙种货车辆(辆) 3 6累计运货吨数(吨)15.5 35【考点】二元一次方程组的应用.【分析】应先算出甲种货车和乙种货车一次各运多少吨货物.等量关系为:2×每辆甲种车的载重+3×每辆乙种车的载重=15.5;5×每辆甲种车的载重+6×每辆乙种车的载重=35.【解答】解:设甲种车每辆装x吨,乙种车每辆装y吨.则解得,运费为30×(3×4+5×2.5)=735(元).答:货主应付运费735元.【点评】根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.。
中考数学专项复习《二元一次方程组》练习题(附答案)
中考数学专项复习《二元一次方程组》练习题(附答案)一、单选题1.某校举行篮球赛,每场比赛都要分出胜负,每队胜一场得2分,负一场得 1分.七年级一班在16场比赛中得26分.设该班胜x 场,负y 场,则根据题意,下列方程组中正确的是( ) A .{y =−x +2y =x −1B .{y =−x +2y =x −1C .{x +y =16x +2y =26D .{x +y =162x +y =262.有甲乙两种债券,年利率分别是10%与12%,现有400元债券,一年后获利45元,问甲乙债券各有多少?( ) A .150,350 B .250,200 C .350,150 D .150,2503.如图小亮拿了一个天平,测量饼干和糖果的质量(每块饼干质量相同,每颗糖果质量相同),第一次,左盘放两块饼干,右盘放三颗糖果,结果天平平衡;第二次,左盘放10g 砝码,右盘放一块饼干和一颗糖果,结果天平平衡;第三次,左盘放一颗糖果,右盘放一块饼干,下列哪一种方法可使天平再次平衡( )A .在糖果的秤盘上加2g 砝码B .在饼干的秤盘上加2g 砝码C .在糖果的秤盘上加5g 砝码D .在饼干的秤盘上加5g 砝码4.小明在解关于x 、y 的二元一次方程组{x +y =△2x −3y =5时解得{x =4y =⊗,则△和△代表的数分别是( ) A .△=1,△=5 B .△=5,△=1 C .△=﹣1,△=3D .△=3,△=﹣15.已知 △ABC 三边为 abc ,满足 (a −17)2+√b −15+c 2−16c +64=0 ,则△ABC 是( )A .以a 为斜边的直角三角形B .以b 为斜边的直角三角形以C .以c 为斜边的直角三角形D .不是直角三角形6.已知关于x ,y 的二元一次方程组{ax −by =−2cx +dy =4的解为{x =3y =2,则方程组{ax −by +2a +b =−2cx +dy −d =4−2c的解为( )A .{x =1y =2B .{x =1y =3C .{x =2y =2D .{x =2y =37.方程组 {3x +y =3,−4x −y =3 的解是( )A .{x =0,y =3B .{x =0,y =−3 C .{x =6,y =−15D .{x =−6,y =218.已知关于x ,y 的方程组{x +2y =5−2ax −y =4a −1给出下列结论:①当a =1时方程组的解也是x +y =2a +1的解; ②无论a 取何值x ,y 的值不可能是互为相反数; ③x ,y 都为自然数的解有4对; ④若2x +y =8,则a =2. 正确的有几个( ) A .1B .2C .3D .49.对于实数,规定新运算:x△y=ax+by ﹣xy ,其中a 、b 是常数,等式右边是通常的加减乘除运算.已知: √2 △1=﹣ √2 ,(﹣3)△ √2 =8 √2 ,则a△b 的值为( ) A .6﹣2 √2B .6+2 √2C .4+ √2D .4﹣3√210.△ABC 中|sinA −√32|+(cosB −12)2=0,则△ABC 是( )A .等腰但不等边三角形B .等边三角形C .直角三角形D .等腰直角三角形11.已知方程组 {ax −by =4ax +by =2 的解为 {x =2y =1 则 2a −5b 的立方根是( )A .-2B .2C .√53D .−√2312.若满足方程组 {3x +y =m +32x −y =2m −1 的x 与y 互为相反数,则m 的值为( )A .1B .-1C .11D .-11二、填空题13.已知方程组{ax +by =4bx +ay =5的解是{x =2y =1,则a −b 的值为 .14.若|2x-3y-7|+ √x −2y −3 =0,则x-y=15.若3x 2m ﹣3﹣y 2n ﹣1=5是二元一次方程,则m= ,n= . 16.已如等腰 ΔABC 的两边长 a , b 满足 |a −4|+√b −2=0 ,则第三边长 c的值为17.若实数m 、n 满足 (m −3)2+√n +2=0 ,则m n = .18.关于x ,y 的二元一次方程组 {x +y =1−mx −3y =5+3m 中 m 与 方程组的解中的或相等,则m 的值为 .三、综合题19.一批机器零件共558个,甲先做3天后,乙再加入,两人共同再做6天刚好完成.设甲每天做x 个,乙每天做y 个. (1)列出关于x ,y 的二元一次方程.(2)用含x 的代数式表示y ,并求当x =32时y 的值是多少? (3)若乙每天做48个,则甲每天做多少个?20.已知关于x 、y 的方程组 {2x +y =m +12x −y =3m −9 的解都不小于1(1)求m 的取值范围; (2)化简|2m ﹣6|﹣|m ﹣4|.21.解下列方程组:(1){2x +3y =7x =−2y +3 (2){2s +3t =−14s −9t =822.如图,在数轴上点A 表示的数是a ,点C 表示的数是c ,且 |a +10|+(c −20)2=0 .(点A 与点C 之间的距离记作AC )(1)求a 和c 的值(2)若数轴上有一点D ,满足CD =2AD ,则点D 表示的数是 ; (3)动点B 从数1对应的点以每秒1个单位长度的速度开始向右匀速运动,同时点A ,C 分别以每秒2个单位长度、每秒3个单位长度的速度在数轴上匀速运动.设运动时间为t 秒.若点A 向右运动,点C 向左运动,当AB =BC 时求t 的值;23.在平面直角坐标系中已知点A(0,m),点B(n ,0),且m ,n 满足(m −n)2+√n −4=0.(1)求点A ,B 的坐标;(2)若点E(x ,4)为第二象限内一点,且满足S 三角形AOE =13S 三角形AOB ,求点E 的坐标;(3)把线段AB 向左平移a(a >0)个单位长度得到线段A 1B 1. ①直接写出点B 1的坐标: ▲ (用含a 的式子表示) ②若S 四边形ABB 1A 1=3S 三角形AOB ,求a 的值.24.已知代数式 A =x 2−xy B =2x 2+3xy +2y −1 .(1)(x +1)2+|y −2|=0 求 2A −B 的值. (2)若 2A −B 的值与 y 的取值无关,求 x 的值.参考答案1.【答案】D 2.【答案】D 3.【答案】A 4.【答案】B 5.【答案】A 6.【答案】B 7.【答案】D 8.【答案】D 9.【答案】B 10.【答案】B 11.【答案】B 12.【答案】C 13.【答案】-1 14.【答案】4 15.【答案】2;1 16.【答案】4 17.【答案】1918.【答案】2或 −1219.【答案】(1)解:由题意可得(3+6)x +6y =558(2)解:由(1)可得y =−32x +93,当x =32时y =−32×32+93=45.(3)解:当y =48时(3+6)x +6×48=558,x =30.答:若乙每天做48个,则甲每天做30个.20.【答案】(1)解:解:(1)解原方程组可得: {x =m −2y =−m +5 因为方程组的解为一对正数所以有 {m −2≥1−m +5≥1 解得:3≤m≤4即a 的取值范围为:3≤m≤4;(2)解:由(1)可知:2m ﹣6>0,m ﹣4<0 所以|2m ﹣6|﹣|m ﹣4|. =(2m ﹣6)﹣(m ﹣4) =m ﹣2.21.【答案】(1){2x +3y =7(1)x =−2y +3(2)将(2)代入(1)中得2(-2y+3)+3y=7,去括号得-4y+6+3y=7,解得y=-1,将y=-1代入(2)得x=-2×(-1)+3=5 则方程组的解为{x =5y =−1. (2){2s +3t =−1(1)4s −9t =8(2)由3×(1)+(2)得6s+4s=-3+8,解得s=12将s=12,代入(1)中得1+3t=-1,解得y=-23则方程组的解为{s =12t =−23. 22.【答案】(1)解:由非负性得出a+10=0;c-20=0∴a=-10;c=20; (2)-40或0(3)解:当时间为t 时 点A 表示的数为-10+2t 点B 表示的数为1+t 点C 表示的数为20-3tAB= |1+t −(−10+2t)| = |11−t| BC= |1+t −(20−3t)| = |4t −19| ∴|11−t| = |4t −19| 解得:t= 83或t=6.23.【答案】(1)解:∵(m −n)2+√n −4=0∴{m −n =0n −4=0 解得{m =4n =4∴A(0,4),B(4,0);(2)解:∵点E(x ,4)为第二象限内一点,且满足S 三角形AOE =13S 三角形AOB∴12OE ×OA =13×12OB ×OA 12|x|×4=13×12×4×4 ∵点E(x ,4)为第二象限内 ∴x<0∴x=−43∴E(−43,4)(3)①(4−a ,0);②∵S 四边形ABB 1A 1=3S 三角形AOB∴BB 1×OA =3×12×OA ×OB4a =3×12×4×4 解得a=624.【答案】(1)∵A =x 2−xy , B =2x 2+3xy +2y −1∴2A −B=2(x 2−xy)−(2x 2+3xy +2y −1) =2x 2−2xy −2x 2−3xy −2y +1=−5xy −2y +1∵(x +1)2+|y −2|=0 ∴x +1=0 ∴x =−1∴原式 =−5×(−1)×2−2×2+1=10−4+1=7(2)若 2A −B 的值与 y 的取值无关 即 −5xy −2y +1 的值与 y 的取值无关 ∴−5xy −2y =(−5x −2)y =0 ∴−5x −2=0∴x =−25。
中考数学复习考点题型专题练习3---《二元一次方程组实际应用》(解析版)
保护环境 决定 台全 混合动力 8.为了
,某市公交公司 购买一批共 10 新的
公交车,现有 A、B
台 省油 两种型号,其中每 的价格,年 量如表:
A
B
台 价格(万元/ )
a
b
节省的油量(万升/年•台)
.2 4
2
经调查 台 台 台 台 ,购买一 A 型车比购买一 B 型车多 20 万元,购买 2 A 型车比购买 3 B 型
(1)请求出 a 和 b 的值.
(2)小明家离电影院有 7 千米,他有 15 元,请问他的钱够吗?如果不够,还差多少.
米 环形跑道 点 发 匀速运动 反向而 17.在 400 的
上,甲、乙两人从同一起 同时出 做
,若
行,40
秒后 遇 向而 秒后 追 两人第一次相 ;若同 行,200 甲第一次 上乙.
速度吗 (1)你能求出甲、乙两人的
?
(2)若甲乙同向而行时,丙也在跑道上匀速前行,且与甲乙的方向一致,出发后 20 秒
追 丙 发后 秒 追 丙 发 丙 米 丙 速度 甲 上 ,出 100 乙 上 ,请问出 时, 在甲乙前方多少 ? 的 是多
少?
图 宽 形被 割 块 除 块外 余 块 18.如 ,长为 60cm, 为 xcm 的大长方 分 为 10 , A、B 两 ,其 8 是
元;
自己 提 提 金 手 (2)小亮用 的微信账户共 现 3 次,3 次 现 额和 续费分别如下:
提 第一次 现
提 第二次 现
提 第三次 现
提 金现 额(元)
a
b
+3a 2b
手续费(元)
0
.0 4
.3 4
① 程 关知识 用二元一次方 组的相
中考数学专题练习 二元一次方程组(含解析)-人教版初中九年级全册数学试题
二元一次方程组一、选择题1.已知|x+y|+(x﹣y+5)2=0,那么x和y的值分别是()A.﹣,B.,﹣C.,D.﹣,﹣2.如果是二元一次方程组的解,那么a,b的值是()A.B.C.D.3.如果,其中xyz≠0,那么x:y:z=()A.1:2:3 B.2:3:4 C.2:3:1 D.3:2:14.直线kx﹣3y=8,2x+5y=﹣4交点的纵坐标为0,则k的值为()A.4 B.﹣4 C.2 D.﹣25.如果方程组的解中的x与y的值相等,那么a的值是()A.1 B.2 C.3 D.46.如图,AB⊥BC,∠ABD的度数比∠DBC的度数的两倍少15°,设∠ABD和∠DBC的度数分别为x°、y°,那么下面可以求出这两个角的度数的方程组是()A.B.C.D.7.如果是方程组的解,则一次函数y=mx+n的解析式为(()A.y=﹣x+2 B.y=x﹣2 C.y=﹣x﹣2 D.y=x+28.已知是二元一次方程组的解,则2m﹣n的算术平方根为()A.±2 B.C.2 D.49.无论m为何实数,直线y=2x+m与y=﹣x+4的交点不可能在()A.第一象限 B.第二象限 C.第三象限 D.第四象限10.一副三角板按如图方式摆放,且∠1的度数比∠2的度数大50°,若设∠1=x°,∠2=y°,则可得到方程组为()A.B.C.D.二、填空题11.若关于x,y的二元一次方程组的解满足x+y=1,则k=.12.若直线y=ax+7经过一次函数y=4﹣3x和y=2x﹣1的交点,则a的值是.13.已知2x﹣3y=1,用含x的代数式表示y,则y=,当x=0时,y=.14.一个两位数的十位数字与个位数字的和为8,若把这个两位数加上18,正好等于将这个两位数的十位数字与个位数字对调后所组成的新两位数,则原来的两位数为.15.已知x=2a+4,y=2a+3,如果用x表示y,则y=.三、解答题16.解方程组.17.某高校共有5个大餐厅和2个小餐厅.经过测试:同时开放1个大餐厅、2个小餐厅,可供1680名学生就餐;同时开放2个大餐厅、1个小餐厅,可供2280名学生就餐.(1)求1个大餐厅、1个小餐厅分别可供多少名学生就餐;(2)若7个餐厅同时开放,能否供全校的5300名学生就餐?请说明理由.18.甲对乙说:“当我的岁数是你现在的岁数时,你才4岁”.乙对甲说:“当我的岁数是你现在的岁数时,你将61岁”.请你算一算,甲、乙现在各多少岁.19.有甲乙两种铜和银的合金,甲种合金含银25%,乙种合金含银37.5%,现在要熔制含银30%的合金100千克,甲、乙两种合金各应取多少?20.甲乙两地相距160千米,一辆汽车和一辆拖拉机从两地同时出发相向而行,1小时20分后相遇.相遇后,拖拉机继续前进,汽车在相遇处停留1小时后原速返回,在汽车再次出发半小时后追上了拖拉机,这时汽车、拖拉机从开始到现在各自行驶了多少千米?21.如图,某化工厂与A,B两地有公路和铁路相连,这家工厂从A地购买一批每吨1 000元的原料运回工厂,制成每吨8 000元的产品运到B地.已知公路运价为1.5元/(吨•千米),铁路运价为1.2元/(吨•千米),这两次运输共支出公路运费15 000元,铁路运费97 200元,请计算这批产品的销售款比原料费和运输费的和多多少元?(1)根据题意,甲、乙两名同学分别列出尚不完整的方程组如下:甲:乙:根据甲,乙两名同学所列方程组,请你分别指出未知数x,y表示的意义,然后在等式右边的方框内补全甲、乙两名同学所列方程组.甲:x表示,y表示乙:x表示,y表示(2)甲同学根据他所列方程组解得x=300,请你帮他解出y的值,并解决该实际问题.二元一次方程组参考答案与试题解析一、选择题1.已知|x+y|+(x﹣y+5)2=0,那么x和y的值分别是()A.﹣,B.,﹣C.,D.﹣,﹣【考点】解二元一次方程组;非负数的性质:绝对值;非负数的性质:偶次方.【分析】根据绝对值和偶次方得出关于x、y的方程组,求出方程组的解即可.【解答】解:∵|x+y|+(x﹣y+5)2=0,∴x+y=0,x﹣y+5=0,即,①+②得:2x=﹣5,解得:x=﹣,把x=﹣代入①得:y=,即方程组的解为,故选A.【点评】本题考查了解二元一次方程组和解一元一次方程的应用,关键是能得出关于x、y的方程组.2.如果是二元一次方程组的解,那么a,b的值是()A.B.C.D.【考点】二元一次方程组的解.【专题】计算题.【分析】将x=1,y=2代入方程组得到关于a与b的方程组,即可求出a与b的值.【解答】解:将x=1,y=2代入方程组得:,①×2﹣②得:3b=3,即b=0,将b=1代入①得:a=1,则.故选B.【点评】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.3.如果,其中xyz≠0,那么x:y:z=()A.1:2:3 B.2:3:4 C.2:3:1 D.3:2:1【考点】解三元一次方程组.【分析】理解清楚题意,运用三元一次方程组的知识,把x,y用z表示出来,代入代数式求值.【解答】解:已知,①×2﹣②得,7y﹣21z=0,∴y=3z,代入①得,x=8z﹣6z=2z,∴x:y:z=2z:3z:z=2:3:1.故选C.【点评】本题的实质是解三元一次方程组,用加减法或代入法来解答.4.直线kx﹣3y=8,2x+5y=﹣4交点的纵坐标为0,则k的值为()A.4 B.﹣4 C.2 D.﹣2【考点】两条直线相交或平行问题.【专题】计算题.【分析】本题可先根据函数2x+5y=﹣4求出交点的坐标,然后将交点坐标代入直线kx﹣3y=8中,即可求出k的值.【解答】解:在直线2x+5y=﹣4中,当y=0时,2x=﹣4,∴x=﹣2.∴这两条直线的交点坐标为(﹣2,0).将(﹣2,0)代入kx﹣3y=8中,得:﹣2k=8,∴k=﹣4.故选B.【点评】解答此题应根据两直线相交时,函数图象的交点应同时满足两个函数的解析式.5.如果方程组的解中的x与y的值相等,那么a的值是()A.1 B.2 C.3 D.4【考点】解三元一次方程组.【分析】理解清楚题意,运用三元一次方程组的知识,解出a的数值【解答】解:根据题意得,把(3)代入(1)得:3y+7y=10,解得:y=1,x=1,代入(2)得:a+(a﹣1)=5,解得:a=3.故选C.【点评】本题的实质是解三元一次方程组,用加减法或代入法来解答.6.如图,AB⊥BC,∠ABD的度数比∠DBC的度数的两倍少15°,设∠ABD和∠DBC的度数分别为x°、y°,那么下面可以求出这两个角的度数的方程组是()A.B.C.D.【考点】由实际问题抽象出二元一次方程组.【专题】计算题.【分析】根据两角互余和题目所给的关系,列出方程组.【解答】解:设∠ABD和∠DBC的度数分别为x°、y°,由题意得,.故选B.【点评】本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是根据题意找出合适的等量关系列方程组.7.如果是方程组的解,则一次函数y=mx+n的解析式为(()A.y=﹣x+2 B.y=x﹣2 C.y=﹣x﹣2 D.y=x+2【考点】一次函数与二元一次方程(组).【分析】把方程组的解代入方程组得到关于m、n的方程组,然后求出m、n的值,再代入函数解析式即可得解.【解答】解:根据题意,将代入方程组,得,即,①×2得,6m﹣2n=2…③,②﹣③得,3m=3,∴m=1,把m=1代入①,得,3﹣n=1,∴n=2,∴一次函数解析式为y=x+2.【点评】本题考查了一次函数与二元一次方程组,根据方程组的解的定义得到关于m、n的方程组并求出m、n的值是解题的关键.8.已知是二元一次方程组的解,则2m﹣n的算术平方根为()A.±2 B.C.2 D.4【考点】二元一次方程组的解;算术平方根.【分析】由是二元一次方程组的解,根据二元一次方程根的定义,可得,即可求得m与n的值,继而求得2m﹣n的算术平方根.【解答】解:∵是二元一次方程组的解,∴,解得:,∴2m﹣n=4,∴2m﹣n的算术平方根为2.故选C.【点评】此题考查了二元一次方程组的解、二元一次方程组的解法以及算术平方根的定义.此题难度不大,注意理解方程组的解的定义.9.无论m为何实数,直线y=2x+m与y=﹣x+4的交点不可能在()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】两条直线相交或平行问题.【专题】计算题.【分析】直线y=﹣x+4经过第一,二,四象限,一定不经过第三象限,因而直线y=2x+m与直线y=﹣x+4的交点不可能在第三象限.【解答】解:由于直线y=﹣x+4的图象不经过第三象限.因此无论m取何值,直线y=2x+m与直线y=﹣x+3的交点不可能在第三象限.【点评】本题考查了两条直线相交的问题,需注意应找到完整的函数,进而找到它不经过的象限,那么交点就一定不在那个象限.10.一副三角板按如图方式摆放,且∠1的度数比∠2的度数大50°,若设∠1=x°,∠2=y°,则可得到方程组为()A.B.C.D.【考点】由实际问题抽象出二元一次方程组;余角和补角.【分析】此题中的等量关系有:①三角板中最大的角是90°,从图中可看出∠1+∠2+90°=180°;②∠1比∠2的度数大50°,则∠1=∠2+50°.【解答】解:根据平角和直角定义,得方程x+y=90;根据∠1比∠2的度数大50°,得方程x=y+50.可列方程组为,故选:C.【点评】此题考查了学生对二元一次方程组的灵活运用,学生应该重视培养对应用题的理解能力,准确地列出二元一次方程组.二、填空题11.若关于x,y的二元一次方程组的解满足x+y=1,则k= 2 .【考点】二元一次方程组的解.【分析】直接将方程组中两方程相加得出3x+3y=3k﹣3,进而求出k的值.【解答】解:∵关于x,y的二元一次方程组的解满足x+y=1,∴3x+3y=3k﹣3,∴x+y=k﹣1=1,解得:k=2.故答案为:2.【点评】此题主要考查了二元一次方程组的解,将两方程相加得出k的值是解题关键.12.若直线y=ax+7经过一次函数y=4﹣3x和y=2x﹣1的交点,则a的值是﹣6 .【考点】两条直线相交或平行问题;待定系数法求一次函数解析式.【分析】首先联立解方程组,求得直线y=4﹣3x和y=2x﹣1的交点,再进一步代入y=ax+7中求解.【解答】解:根据题意,得4﹣3x=2x﹣1,解得x=1,∴y=1.把(1,1)代入y=ax+7,得a+7=1,解得a=﹣6.故答案为:﹣6.【点评】此题考查了两条直线的交点的求法,即联立解方程组求解即可.13.已知2x﹣3y=1,用含x的代数式表示y,则y=,当x=0时,y= ﹣.【考点】解二元一次方程.【专题】计算题.【分析】将x看做已知数,求出y即可;将x=0代入计算即可求出y的值.【解答】解:2x﹣3y=1,变形得:y=,将x=0代入,得:y=﹣.故答案为:;﹣【点评】此题考查了解二元一次方程,解题的关键是将x看做已知数,y看做未知数.14.一个两位数的十位数字与个位数字的和为8,若把这个两位数加上18,正好等于将这个两位数的十位数字与个位数字对调后所组成的新两位数,则原来的两位数为35 .【考点】二元一次方程组的应用.【分析】设这个两位数的十位数字为x,个位数字为y,等量关系为:十位数字与个位数字的和为8,两位数加上18=这个两位数的十位数字与个位数字对调后所组成的新两位数,列方程组求解.【解答】解:设这个两位数的十位数字为x,个位数字为y,由题意得,,解得:,则这个两位数为:35.故答案为:35.【点评】本题考查了二元一次方程组的应用,解答本题的关键是找出等量关系,根据等量关系列方程组求解.15.已知x=2a+4,y=2a+3,如果用x表示y,则y= x﹣1 .【考点】解二元一次方程.【专题】计算题.【分析】由x=2a+4,y=2a+3,两式相减,即可得出关于x与y的关系式,然后移项即可得出答案.【解答】解:由x=2a+4,y=2a+3,两式相减得:x﹣y=1,移项得:y=x﹣1.故答案为:x﹣1.【点评】本题考查了解二元一次方程,难度不大,关键是两式相减后建立关于x与y的关系式.三、解答题16.解方程组.【考点】解二元一次方程组.【专题】计算题.【分析】方程组整理后两方程相减消去y求出x的值,进而求出y的值,即可确定出方程组的解.【解答】解:方程组整理得:,①﹣②得:2x=﹣6,即x=﹣3,将x=﹣3代入①,得:y=﹣,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:加减消元法与代入消元法.17.某高校共有5个大餐厅和2个小餐厅.经过测试:同时开放1个大餐厅、2个小餐厅,可供1680名学生就餐;同时开放2个大餐厅、1个小餐厅,可供2280名学生就餐.(1)求1个大餐厅、1个小餐厅分别可供多少名学生就餐;(2)若7个餐厅同时开放,能否供全校的5300名学生就餐?请说明理由.【考点】二元一次方程组的应用.【分析】(1)根据题意可知本题的等量关系有,1个大餐厅容纳的学生人数+2个小餐厅容纳的学生人数=1680,2个大餐厅容纳的学生人数+1个小餐厅容纳的学生人数=2280.根据这两个等量关系,可列出方程组.(2)根据题(1)得到1个大餐厅和1个小餐厅分别可容纳学生的人数,可以求出5个大餐厅和2个小餐厅一共可容纳学生的人数,再和5300比较.【解答】解:(1)设1个大餐厅可供x名学生就餐,1个小餐厅可供y名学生就餐,根据题意,得解这个方程组,得答:1个大餐厅可供960名学生就餐,1个小餐厅可供360名学生就餐.(2)因为960×5+360×2=5520>5300,所以如果同时开放7个餐厅,能够供全校的5300名学生就餐.【点评】本题考查二元一次方程的应用,属于比较基本的应用问题.注意根据题目给出的已知条件,找出合适的等量关系,列出方程组,再求解.18.甲对乙说:“当我的岁数是你现在的岁数时,你才4岁”.乙对甲说:“当我的岁数是你现在的岁数时,你将61岁”.请你算一算,甲、乙现在各多少岁.【考点】二元一次方程组的应用.【专题】年龄问题.【分析】根据题意,有“当我的岁数是你现在的岁数时,你才4岁”可得出:乙的年龄﹣两人的年龄差=4,由“当我的岁数是你现在的岁数时,你将61岁”,可得出:甲的年龄+两人的年龄差=61.由此列出方程组求解.【解答】解:设甲现在年龄x岁,乙现在年龄y岁,则,整理得①+②×2得3y=69,即y=23,把y=23代入②得x=42.∴原方程的解为.答:甲现在42岁,乙现在23岁.【点评】解题关键是弄清题意,合适的等量关系,直接设未知数,列出二元一次方程组求解.19.有甲乙两种铜和银的合金,甲种合金含银25%,乙种合金含银37.5%,现在要熔制含银30%的合金100千克,甲、乙两种合金各应取多少?【考点】二元一次方程组的应用.【专题】应用题.【分析】先设甲、乙两种合金各应取x千克和y千克,再根据混合物中某物质的质量=混合物的质量×混合物中该物质的质量分数进行求解即可得出答案.【解答】解:设需甲合金的质量为x千克,乙合金的质量为y千克,由题意得:,解得:.答:甲合金应取60千克,乙合金应取40千克.【点评】本题主要考查了二元一次方程组的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.本题用到的等量关系是混合物中某物质的质量=混合物的质量×混合物中该物质的质量分数.20.甲乙两地相距160千米,一辆汽车和一辆拖拉机从两地同时出发相向而行,1小时20分后相遇.相遇后,拖拉机继续前进,汽车在相遇处停留1小时后原速返回,在汽车再次出发半小时后追上了拖拉机,这时汽车、拖拉机从开始到现在各自行驶了多少千米?【考点】二元一次方程组的应用.【分析】设汽车的速度是x千米每小时,拖拉机速度y千米每小时,根据甲乙两地相距160千米1小时20分后相遇和拖拉机继续前进,汽车在相遇处停留1小时后原速返回,在汽车再次出发半小时后追上了拖拉机,列出方程,求出x,y的值,再根据路程=速度×时间即可得出答案.【解答】解:设汽车的速度是x千米每小时,拖拉机速度y千米每小时,根据题意得:,解得:,则汽车汽车行驶的路程是:( +)×90=165(千米),拖拉机行驶的路程是:( +)×30=85(千米).答:汽车、拖拉机从开始到现在各自行驶了165千米和85千米.【点评】本题主要考查了二元一次方程组的应用的知识点,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.利用二元一次方程组求解的应用题一般情况下题中要给出2个等量关系,准确的找到等量关系并用方程组表示出来是解题的关键;本题用到的知识点是路程=速度×时间.21.如图,某化工厂与A,B两地有公路和铁路相连,这家工厂从A地购买一批每吨1 000元的原料运回工厂,制成每吨8 000元的产品运到B地.已知公路运价为1.5元/(吨•千米),铁路运价为1.2元/(吨•千米),这两次运输共支出公路运费15 000元,铁路运费97 200元,请计算这批产品的销售款比原料费和运输费的和多多少元?(1)根据题意,甲、乙两名同学分别列出尚不完整的方程组如下:甲:乙:根据甲,乙两名同学所列方程组,请你分别指出未知数x,y表示的意义,然后在等式右边的方框内补全甲、乙两名同学所列方程组.甲:x表示产品的重量,y表示原料的重量乙:x表示产品销售额,y表示原料费(2)甲同学根据他所列方程组解得x=300,请你帮他解出y的值,并解决该实际问题.【考点】二元一次方程组的应用.【分析】(1)仔细分析题意根据题目中的两个方程表示出x,y的值并补全方程组即可;(2)将x的值代入方程组即可得到结论.【解答】解:(1)甲:x表示产品的重量,y表示原料的重量,乙:x表示产品销售额,y表示原料费,甲方程组右边方框内的数分别为:15000,97200,乙同甲;则,.(2)将x=300代入原方程组解得y=400∴产品销售额为300×8000=2400000元原料费为400×1000=400000元∴运费为15000+97200=112200元,∴2400000﹣(400000+112200)=1887800(元)答:这批产品的销售额比原料费和运费的和多1887800元.【点评】本题考查了二元一次方程组的应用,解题的关键是从题目中找到等量关系并写出表示出x、y所表示的实际意义.。
中考数学专题复习 专题09 二元一次方程组及其应用(教师版含解析)
中考专题09 二元一次方程组及其应用1.二元一次方程:含有两个未知数,并且未知数的指数都是1的方程整式方程叫做二元一次方程.一般形式是ax+by=c(a≠0,b≠0)。
2.二元一次方程组:把两个二元一次方程合在一起,就组成一个二元一次方程组。
3.二元一次方程的解:一般地,使二元一次方程两边的值相等的未知数的值叫做二元一次方程组的解。
4.二元一次方程组的解:一般地,二元一次方程组的两个方程的公共解叫做二元一次方程组的解。
5.解二元一次方程组的方法将未知数的个数由多化少,逐一解决的想法,叫做消元思想。
(1)代入消元:将一个未知数用含有另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解,这种方法叫做代入消元法,简称代入法。
(2)加减消元法:当两个方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,这种方法叫做加减消元法,简称加减法。
6.列方程(组)解应用题的一般步骤(1)审:有什么,求什么,干什么;(2)设:设未知数,并注意单位;(3)找:等量关系;(4)列:用数学语言表达出来;(5)解:解方程(组).(6)验:检验方程(组)的解是否符合实际题意.(7)答:完整写出标准答案(包括单位).注意:找出相等关系“未知”转化为“已知”.有几个未知数就列出几个方程,所列方程必须满足:(1)方程两边表示的是同类量;(2)同类量的单位要统一;(3)方程两边的数值要相等【经典例题1】(2020年•嘉兴)用加减消元法解二元一次方程组{x +3y =4,①2x −y =1ㅤ②时,下列方法中无法消元的是( )A .①×2﹣②B .②×(﹣3)﹣①C .①×(﹣2)+②D .①﹣②×3【标准答案】D【分析】方程组利用加减消元法变形即可.【答案剖析】 A.①×2﹣②可以消元x ,不符合题意;B.②×(﹣3)﹣①可以消元y ,不符合题意;C.①×(﹣2)+②可以消元x ,不符合题意;D.①﹣②×3无法消元,符合题意.【知识点练习】(2020年年广州模拟)解方程组:.【标准答案】见答案剖析。
中考专题复习第七讲二元一次方程(组)(含详细参考答案)
2019年中考专题复习第二章方程与不等式第七讲二元一次方程(组)【基础知识回顾】一、等式的概念及性质:1、等式:用“=”连接表示关系的式子叫做等式2、等式的性质:①、性质1:等式两边都加(减)所得结果仍是等式,即:若a=b,那么a±c=②、性质2:等式两边都乘以或除以(除数不为0)所得结果仍是等式即:若a=b,那么a c=,若a=b(c≠o)那么ac =【名师提醒:①用等式性质进行等式变形,必须注意“都”,不能漏项②等式两边都除以一个数或式时必须保证它的值】二、方程的有关概念:1、含有未知数的叫做方程2、使方程左右两边相等的的值,叫做方程的组3、叫做解方程4、一个方程两边都是关于未知数的,这样的方程叫做整式方程三、一元一次方程:1、定义:只含有一个未知数,并且未知数的次数都是的方程叫做一元一次方程,一元一次方程一般可以化成的形式。
2、解一元一次方程的一般步骤:1。
2。
3。
4。
5。
【名师提醒:1、一元一次方程的解法的各个步骤的依据分别是等式的性质和合并同类法则,要注意灵活准确运用;2、特别提醒:去分母时应注意不要漏乘项,移项时要注意。
】四、二元一次方程组及解法:1、二元一次方程的一般形式:ax+by+c=0(a.b.c是常数,a≠0,b≠0);2、由几个含有相同未知数的 合在一起,叫做二元一次方程组;3、二元一次方程组中两个方程的 叫做二元一次方程组的解;4、解二元一次方程组的基本思路是: ;5、二元一次方程组的解法:① 消元法 ② 消元法【名师提醒:1、一个二元一次方程的解有 组,我们通常在实际应用中要求其正整数解2、二元一次方程组的解应写成五、列方程(组)解应用题:一般步骤:1、审:弄清题意,分清题目中的已知量和未知量2、设:直接或间接设未知数3、列:根据题意寻找等量关系列方程(组)4、解:解这个方程(组),求出未知数的值5、验:检验方程(组)的解是否符合题意6:答:写出答案(包括单位名称)【名师提醒:1、列方程(组)解应用题的关键是: 2、几个常用的等量关系:①路程=× ②工作效率=】【重点考点例析】考点一:二元一次方程组的解法 例1(2018•嘉兴)用消元法解方程组35432x y x y --⎧⎨⎩=,①=.②时,两位同学的解法如下:解法一:由①-②,得3x=3.解法二:由②得,3x+(x-3y )=2,③把①代入③,得3x+5=2.(1)反思:上述两个解题过程中有无计算错误?若有误,请在错误处打“ד.(2)请选择一种你喜欢的方法,完成解答.x=a y=b 的形式【思路分析】(1)观察两个解题过程即可求解;(2)根据加减消元法解方程即可求解.【解答】解:(1)解法一中的解题过程有错误,由①-②,得3x=3“×”,应为由①-②,得-3x=3;(2)由①-②,得-3x=3,解得x=-1,把x=-1代入①,得-1-3y=5,解得y=-2.故原方程组的解是12xy-⎩-⎧⎨==.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.考点二:一(二)元一次方程的应用例2 (2018•齐齐哈尔)某抗战纪念馆馆长找到大学生团干部小张,联系青年志愿者在周日参与活动,活动累计56个小时的工作时间,需要每名男生工作5个小时,每名女生工作4个小时,小张可以安排学生参加活动的方案共有()A.1种B.2种C.3种D.4种【思路分析】设安排女生x人,安排男生y人,由“累计56个小时的工作时间”列出方程求得正整数解.【解答】解:设安排女生x人,安排男生y人,依题意得:4x+5y=56,则5654yx-=.当y=4时,x=9.当y=8时,x=4.即安排女生9人,安排男生4人;安排女生4人,安排男生8人.共有2种方案.故选:B.【点评】考查了二元一次方程的应用.注意:根据未知数的实际意义求其整数解.考点三:二元一次方程组的应用例3 (2018•常德)某水果店5月份购进甲、乙两种水果共花费1700元,其中甲种水果8元/千克,乙种水果18元/千克.6月份,这两种水果的进价上调为:甲种水果10元千克,乙种水果20元/千克.(1)若该店6月份购进这两种水果的数量与5月份都相同,将多支付货款300元,求该店5月份购进甲、乙两种水果分别是多少千克?(2)若6月份将这两种水果进货总量减少到120千克,且甲种水果不超过乙种水果的3倍,则6月份该店需要支付这两种水果的货款最少应是多少元?【思路分析】(1)设该店5月份购进甲种水果x千克,购进乙种水果y千克,根据总价=单价×购进数量,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设购进甲种水果a千克,需要支付的货款为w元,则购进乙种水果(120-a)千克,根据总价=单价×购进数量,即可得出w关于a的函数关系式,由甲种水果不超过乙种水果的3倍,即可得出关于a的一元一次不等式,解之即可得出a 的取值范围,再利用一次函数的性质即可解决最值问题.【解答】解:(1)设该店5月份购进甲种水果x千克,购进乙种水果y千克,根据题意得:8181700 10201700300x yx y+++⎧⎨⎩==,解得:19010xy⎧⎨⎩==.答:该店5月份购进甲种水果190千克,购进乙种水果10千克.(2)设购进甲种水果a千克,需要支付的货款为w元,则购进乙种水果(120-a)千克,根据题意得:w=10a+20(120-a)=-10a+2400.∵甲种水果不超过乙种水果的3倍,∴a≤3(120-a),解得:a≤90.∵k=-10<0,∴w随a值的增大而减小,∴当a=90时,w取最小值,最小值-10×90+2400=1500.∴月份该店需要支付这两种水果的货款最少应是1500元.【点评】本题考查了二元一次方程组的应用、一元一次不等式的应用以及一次函数的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,找出w关于a的函数关系式.【聚焦山东中考】1.(2018•泰安)夏季来临,某超市试销A、B两种型号的风扇,两周内共销售30台,销售收入5300元,A型风扇每台200元,B型风扇每台150元,问A、B两种型号的风扇分别销售了多少台?若设A型风扇销售了x台,B型风扇销售了y台,则根据题意列出方程组为()A.530020015030x yx y+⎨⎩+⎧==B.530015020030x yx y+⎨⎩+⎧==C.302001505300x yx y⎨⎩++⎧==D.301502005300x yx y⎨⎩++⎧==2.(2018•东营)小岩打算购买气球装扮学校“毕业典礼”活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同.由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为()A.19 B.18C.16 D.153.(2018•枣庄)若二元一次方程组3354x yx y+-⎧⎨⎩==的解为x ay b⎧⎨⎩==,则a-b=.4.(2018•青岛)5月份,甲、乙两个工厂用水量共为200吨.进入夏季用水高峰期后,两工厂积极响应国家号召,采取节水措施.6月份,甲工厂用水量比5月份减少了15%,乙工厂用水量比5月份减少了10%,两个工厂6月份用水量共为174吨,求两个工厂5月份的用水量各是多少.设甲工厂5月份用水量为x 吨,乙工厂5月份用水量为y吨,根据题意列关于x,y的方程组为.5.(2018•滨州)若关于x、y的二元一次方程组3526x myx ny⎩+⎨-⎧==的解是12xy⎧⎨⎩==,则关于a、b的二元一次方程组()()()3526()a b m a ba b n a b+--+⎧+⎪⎩-⎪⎨==的解是.6.(2018•烟台)为提高市民的环保意识,倡导“节能减排,绿色出行”,某市计划在城区投放一批“共享单车”这批单车分为A,B两种不同款型,其中A型车单价400元,B型车单价320元.(1)今年年初,“共享单车”试点投放在某市中心城区正式启动.投放A,B两种款型的单车共100辆,总价值36800元.试问本次试点投放的A型车与B型车各多少辆?(2)试点投放活动得到了广大市民的认可,该市决定将此项公益活动在整个城区全面铺开.按照试点投放中A,B两车型的数量比进行投放,且投资总价值不低于184万元.请问城区10万人口平均每100人至少享有A型车与B型车各多少辆?7.(2018•聊城)建设中的大外环路是我市的一项重点民生工程.某工程公司承建的一段路基工程的施工土方量为120万立方,原计划由公司的甲、乙两个工程队从公路的两端同时相向施工150天完成.由于特殊情况需要,公司抽调甲队外援施工,由乙队先单独施工40天后甲队返回,两队又共同施工了110天,这时甲乙两队共完成土方量103.2万立方.(1)问甲、乙两队原计划平均每天的施工土方量分别为多少万立方?(2)在抽调甲队外援施工的情况下,为了保证150天完成任务,公司为乙队新购进了一批机械来提高效率,那么乙队平均每天的施工土方量至少要比原来提高多少万立方才能保证按时完成任务?【备考真题过关】一、选择题A .14x y ⎧⎨⎩==B .20x y ⎧⎨⎩== C .02x y ⎧⎨⎩==D .11x y ⎧⎨⎩==2.(2018•北京)方程组33814x y x y ⎨⎩--⎧== 的解为( ) A .12x y ⎩-⎧⎨==B .12x y -⎧⎨⎩== C .21x y ⎩-⎧⎨==D .21x y -⎧⎨⎩== 3.(2018•乐山)方程组 432x y x y ==+- 的解是( ) A .32x y -⎩-⎧⎨==B .64x y ⎧⎨⎩== C .23x y ⎧⎨⎩==D .32x y ⎧⎨⎩==4.(2018•杭州)某次知识竞赛共有20道题,规定:每答对一道题得+5分,每答错一道题得-2分,不答的题得0分,已知圆圆这次竞赛得了60分,设圆圆答对了x 道题,答错了y 道题,则( )A .x-y=20B .x+y=20C .5x-2y=60D .5x+2y=60 5.(2018•深圳)某旅店一共70个房间,大房间每间住8个人,小房间每间住6个人,一共480个学生刚好住满,设大房间有x 个,小房间有y 个.下列方程正确的是( )A .7086480x y x y ⎨⎩++⎧== B .7068480x y x y ⎨⎩++⎧== C .4806870x y x y ++⎧⎨⎩== D .4808670x y x y ++⎧⎨⎩== 6.(2018•黑龙江)为奖励消防演练活动中表现优异的同学,某校决定用1200元购买篮球和排球,其中篮球每个120元,排球每个90元,在购买资金恰好用尽的情况下,购买方案有( )A .4种B .3种C .2种D .1种元一次方程组111222a x b y c a x b y c ++⎧⎨⎩==的解可以利用2×2阶行列式表示为:x yD x D D y D ⎧⎪⎪⎨⎪⎪⎩==;其中问题:对于用上面的方法解二元一次方程组213212x y x y +-⎧⎨⎩==时,下面说法错误的是( )A .21732D ==--B .D x =-14C .D y =27D .方程组的解为23x y -⎧⎨⎩== 二、填空题 8.(2018•淮安)若关于x 、y 的二元一次方程3x-ay=1有一个解是32x y ⎧⎨⎩== ,则a=. 9.(2018•无锡)方程组225x y x y -+⎧⎨⎩== 的解是. 10.(2018•包头)若a-3b=2,3a-b=6,则b-a 的值为.11.(2018•江西)中国的《九章算术》是世界现代数学的两大源泉之一,其中有一问题:“今有牛五、羊二,直金十两,牛二、羊五,直金八两.问牛羊各直金几何?”译文:今有牛5头,羊2头,共值金10两;牛2头,羊5头,共值金8两.问牛、羊每头各值金多少?设牛、羊每头各值金x 两、y 两,依题意,可列出方程组为.12.(2018•遵义)现有古代数学问题:“今有牛五羊二值金八两;牛二羊五值金六两,则一牛一羊值金两.13.(2018•齐齐哈尔)爸爸沿街匀速行走,发现每隔7分钟从背后驶过一辆103路公交车,每隔5分钟从迎面驶来一辆103路公交车,假设每辆103路公交车行驶速度相同,而且103路公交车总站每隔固定时间发一辆车,那么103路公交车行驶速度是爸爸行走速度的倍.14.(2018•重庆)为实现营养的合理搭配,某电商推出适合不同人群的甲、乙两种袋装混合粗粮.其中,甲种粗粮每袋装有3千克A 粗粮,1千克B 粗粮,1千克C 粗粮;乙种粗粮每袋装有1千克A 粗粮,2千克B 粗粮,2千克C 粗粮.甲、乙两种袋装粗粮每袋成本价分别为袋中的A ,B ,C 三种粗粮的成本价之和.已知A 粗粮每千克成本价为6元,甲种粗粮每袋售价为58.5元,利润率为30%,乙种粗粮的利润率为20%.若这两种袋装粗粮的销售利润率达到24%,则该电商销售甲、乙两种袋装粗粮的数量之比是.(100%-=⨯商品的售价商品的成本价商品的利润率商品的成本价)已知在另一次游戏中,50局比赛后,小光总得分为-6分,则小王总得分为分.三、解答题16.(2018•宿迁)解方程组:20 346x yx y++⎧⎨⎩==.17.(2018•扬州)对于任意实数a,b,定义关于“⊗”的一种运算如下:a⊗b=2a+b.例如3⊗4=2×3+4=10.(1)求2⊗(-5)的值;(2)若x⊗(-y)=2,且2y⊗x=-1,求x+y的值.18.(2018•黄冈)在端午节来临之际,某商店订购了A型和B型两种粽子,A 型粽子28元/千克,B型粽子24元/千克,若B型粽子的数量比A型粽子的2倍少20千克,购进两种粽子共用了2560元,求两种型号粽子各多少千克.19.(2018•白银)《九章算术》是中国古代数学专著,在数学上有其独到的成就,不仅最早提到了分数问题,也首先记录了“盈不足”等问题.如有一道阐述“盈不足”的问题,原文如下:今有共买鸡,人出九,盈十一;人出六,不足十六.问人数、鸡价各几何?译文为:现有若干人合伙出钱买鸡,如果每人出9文钱,就会多11文钱;如果每人出6文钱,又会缺16文钱.问买鸡的人数、鸡的价格各是多少?请解答上述问题.20.(2018•永州)在永州市青少年禁毒教育活动中,某班男生小明与班上同学一起到禁毒教育基地参观,以下是小明和奶奶的对话,请根据对话内容,求小明班上参观禁毒教育基地的男生和女生的人数.21.(2018•咸宁)为拓宽学生视野,引导学生主动适应社会,促进书本知识和生活经验的深度融合,我市某中学决定组织部分班级去赤壁开展研学旅行活动,在参加此次活动的师生中,若每位老师带17个学生,还剩12个学生没人带;若每位老师带18个学生,就有一位老师少带4个学生.现有甲、乙两种大客车,它们的载客量和租金如表所示.甲种客车乙种客车载客量/(人/辆)30 42租金/(元/辆)300 400学校计划此次研学旅行活动的租车总费用不超过3100元,为了安全,每辆客车上至少要有2名老师.(1)参加此次研学旅行活动的老师和学生各有多少人?(2)既要保证所有师生都有车坐,又要保证每辆客车上至少要有2名老师,可知租用客车总数为辆;(3)你能得出哪几种不同的租车方案?其中哪种租车方案最省钱?请说明理由.2019年中考专题复习第二章方程与不等式第七讲二元一次方程(组)参考答案【点评】本题考查二元一次方程组的解,解题的关键是观察两方程的系数,从而求出a-b的值,本题属于基础题型.4.【思路分析】设甲工厂5月份用水量为x吨,乙工厂5月份用水量为y吨,根据两厂5月份的用水量及6月份的用水量,即可得出关于x、y的二元一次方程组,此题得解.【解答】解:设甲工厂5月份用水量为x吨,乙工厂5月份用水量为y吨,根据题意得:200115%110%17 ()()4x yx y+-+⎩-⎧⎨==.故答案为:200115%110%17 ()()4 x yx y+-+⎩-⎧⎨==.【点评】本题考查了二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.5.【思路分析】利用关于x、y的二元一次方程组3526x myx ny⎩+⎨-⎧==的解是12xy⎧⎨⎩==可得m、n的数值,代入关于a、b的方程组即可求解,利用整体的思想整理找到两个方程组的联系求解的方法更好.【解答】解:方法一:∵关于x、y的二元一次方程组3526x myx ny⎩+⎨-⎧==的解是12xy⎧⎨⎩==,∴将解12xy⎧⎨⎩==代入方程组3526x myx ny⎩+⎨-⎧==,可得m=-1,n=2∴关于a、b的二元一次方程组()()()3526()a b m a ba b n a b+--+⎧+⎪⎩-⎪⎨==可整理为:42546a ba⎩+⎧⎨==解得:3212 ab⎧⎪⎪⎨⎪-⎪⎩==方法二:关于x、y的二元一次方程组3526x myx ny⎩+⎨-⎧==的解是12xy⎧⎨⎩==,由关于a、b的二元一次方程组()()()3526()a b m a ba b n a b+--+⎧+⎪⎩-⎪⎨==可知12a ba b+-⎧⎨⎩==解得:3212ab⎧⎪⎪⎨⎪-⎪⎩==,故答案为:3212 ab⎧⎪⎪⎨⎪-⎪⎩==.【点评】本题考查二元一次方程组的求解,重点是整体考虑的数学思想的理解运用在此题体现明显.6.【思路分析】(1)设本次试点投放的A型车x辆、B型车y辆,根据“两种款型的单车共100辆,总价值36800元”列方程组求解可得;(2)由(1)知A、B型车辆的数量比为3:2,据此设整个城区全面铺开时投放的A型车3a辆、B型车2a辆,根据“投资总价值不低于184万元”列出关于a 的不等式,解之求得a的范围,进一步求解可得.【解答】解:(1)设本次试点投放的A型车x辆、B型车y辆,根据题意,得:100 40032036800x yx y⎨⎩++⎧==,解得:6040xy⎧⎨⎩==,答:本次试点投放的A型车60辆、B型车40辆;(2)由(1)知A、B型车辆的数量比为3:2,设整个城区全面铺开时投放的A型车3a辆、B型车2a辆,根据题意,得:3a×400+2a×320≥1840000,解得:a≥1000,即整个城区全面铺开时投放的A型车至少3000辆、B型车至少2000辆,则城区10万人口平均每100人至少享有A型车31000003100000⨯=辆、至少享有B型车1002000100000⨯=2辆.7.(2018•聊城)建设中的大外环路是我市的一项重点民生工程.某工程公司承建的一段路基工程的施工土方量为120万立方,原计划由公司的甲、乙两个工程队从公路的两端同时相向施工150天完成.由于特殊情况需要,公司抽调甲队外援施工,由乙队先单独施工40天后甲队返回,两队又共同施工了110天,这时甲乙两队共完成土方量103.2万立方.(1)问甲、乙两队原计划平均每天的施工土方量分别为多少万立方?(2)在抽调甲队外援施工的情况下,为了保证150天完成任务,公司为乙队新购进了一批机械来提高效率,那么乙队平均每天的施工土方量至少要比原来提高多少万立方才能保证按时完成任务?2.【思路分析】方程组利用加减消元法求出解即可;【解答】解:33814x yx y⎧⎨⎩--=①=②,①×3-②得:5y=-5,即y=-1,将y=-1代入①得:x=2,则方程组的解为21xy-⎧⎨⎩==;故选:D.【点评】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.3.【思路分析】先把原方程组化为23142x yx y⎧⎪+⎪⎨⎩==,进而利用代入消元法得到方程组的解为32xy⎧⎨⎩==.【解答】解:由题可得,23142x yx y⎧⎪+⎪⎨⎩==,消去x,可得12432y y-=(),解得y=2,把y=2代入2x=3y,可得x=3,∴方程组的解为32xy⎧⎨⎩==.故选:D.【点评】本题主要考查了解二元一次方程组,用代入法解二元一次方程组的一般步骤:从方程组中选一个系数比较简单的方程,将这个方程组中的一个未知数用含另一个未知数的代数式表示出来.将变形后的关系式代入另一个方程,消去一个未知数,得到一个一元一次方程.解这个一元一次方程,求出x(或y)的值.4.【思路分析】设圆圆答对了x道题,答错了y道题,根据“每答对一道题得+5分,每答错一道题得-2分,不答的题得0分,已知圆圆这次竞赛得了60分”列出方程.【解答】解:设圆圆答对了x道题,答错了y道题,依题意得:5x-2y+(20-x-y)×0=60.故选:C.【点评】考查了由实际问题抽象出二元一次方程.关键是读懂题意,根据题目中的数量关系,列出方程,注意:本题中的等量关系之一为:答对的题目数量+答错的题目数量+不答的题目数量=20,避免误选B.5.【思路分析】根据题意可得等量关系:①大房间数+小房间数=70;②大房间住的学生数+小房间住的学生数=480,根据等量关系列出方程组即可.【解答】解:设大房间有x个,小房间有y个,由题意得:70 86480x yx y⎨⎩++⎧==,故选:A.【点评】此题主要考查了由实际问题抽象出二元二一方程组,关键是正确理解题二、填空题8.【思路分析】把x与y的值代入方程计算即可求出a的值.【解答】解:把32xy⎧⎨⎩==代入方程得:9-2a=1,解得:a=4,故答案为:4.【点评】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.9.【思路分析】利用加减消元法求解可得.【解答】解:225x yx y⎧⎩-⎨+=①=②,②-①,得:3y=3,解得:y=1,将y=1代入①,得:x-1=2,解得:x=3,所以方程组的解为31xy⎧⎨⎩==,故答案为:31xy⎧⎨⎩==.【点评】此题主要考查了解二元一次方程组的方法,要熟练掌握,注意代入法和加减法的应用.10.【思路分析】将两方程相加可得4a-4b=8,再两边都除以2得出a-b的值,继而由相反数定义或等式的性质即可得出答案.【解答】解:由题意知3236a ba b--⎧⎨⎩=①=②,①+②,得:4a-4b=8,则a-b=2,∴b-a=-2,故答案为:-2.【点评】本题主要考查解二元一次方程组,解题的关键是掌握等式的基本性质的灵活运用及两方程未知数系数与待求代数式间的特点.11.【思路分析】设每头牛值金x两,每头羊值金y两,根据“牛5头,羊2头,共值金10两;牛2头,羊5头,共值金8两”,即可得出关于x、y的二元一次方程组,此题得解.【解答】解:设每头牛值金x两,每头羊值金y两,根据题意得:5210 258x yx y+⎨⎩+⎧==.故答案为:5210 258x yx y+⎨⎩+⎧==.【点评】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.12.【思路分析】设一牛值金x两,一羊值金y两,根据“牛五羊二值金八两;牛二羊五值金六两”,即可得出关于x、y的二元一次方程组,两方程相加除以7,即可求出一牛一羊的价值.【解答】解:设一牛值金x两,一羊值金y两,根据题意得:528256x yx y+⎩+⎧⎨=①=②,(①+②)÷7,得:x+y=2.故答案为:二.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.13.【思路分析】设103路公交车行驶速度为x米/分钟,爸爸行走速度为y米/分钟,两辆103路公交车间的间距为s米,根据“每隔7分钟从背后驶过一辆103路公交车,每隔5分钟从迎面驶来一辆103路公交车”,即可得出关于x、y的二元一次方程组,消去s即可得出x=6y,此题得解.【解答】解:设103路公交车行驶速度为x米/分钟,爸爸行走速度为y米/分钟,两辆103路公交车间的间距为s米,根据题意得:7755x y sx y s⎩-+⎧⎨==,解得:x=6y.故答案为:6.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.14.【思路分析】先求出1千克B粗粮成本价+1千克C粗粮成本价=58.5÷(1+30%)-6×3=27元,得出乙种粗粮每袋售价为(6+2×27)×(1+20%)=72元.再设该电商销售甲种袋装粗粮x袋,乙种袋装粗粮y袋,根据甲种粗粮每袋售价为58.5元,利润率为30%,乙种粗粮的利润率为20%.这两种袋装粗粮的销售利润率达到24%,列出方程45×30%x+60×20%y=24%(45x+60y),求出89xy=.【解答】解:∵甲种粗粮每袋装有3千克A粗粮,1千克B粗粮,1千克C粗粮,而A粗粮每千克成本价为6元,甲种粗粮每袋售价为58.5元,∴1千克B粗粮成本价+1千克C粗粮成本价=58.5÷(1+30%)-6×3=27(元),∵乙种粗粮每袋装有1千克A粗粮,2千克B粗粮,2千克C粗粮,∴乙种粗粮每袋售价为(6+2×27)×(1+20%)=72(元).甲种粗粮每袋成本价为58.5÷(1+30%)=45,乙种粗粮每袋成本价为6+2×27=60.设该电商销售甲种袋装粗粮x袋,乙种袋装粗粮y袋,由题意,得45×30%x+60×20%y=24%(45x+60y),45×0.06x=60×0.04y,89xy=.故答案为:89.【点评】本题考查了二元一次方程的应用,利润、成本价与利润率之间的关系的应用,理解题意得出等量关系是解题的关键.15.【思路分析】观察二人的策略可知:每6局一循环,每个循环中第一局小光拿3分,第三局小光拿-1分,第五局小光拿0分,进而可得出五十局中可预知的小光胜9局、平8局、负8局,设其它二十五局中,小光胜了x局,负了y局,则平了(25-x-y)局,根据50局比赛后小光总得分为-6分,即可得出关于x、y 的二元一次方程,由x、y、(25-x-y)均非负,可得出x=0、y=25,再由胜一局得3分、负一局得-1分、平不得分,可求出小王的总得分.【解答】解:由二人的策略可知:每6局一循环,每个循环中第一局小光拿3分,第三局小光拿-1分,第五局小光拿0分.∵50÷6=8(组)……2(局),∴(3-1+0)×8+3=19(分).设其它二十五局中,小光胜了x局,负了y局,则平了(25-x-y)局,根据题意得:19+3x-y=-6,∴y=3x+25.∵x、y、(25-x-y)均非负,∴x=0,y=25,∴小王的总得分=(-1+3+0)×8-1+25×3=90(分).故答案为:90.【点评】本题考查了二元一次方程的应用以及规律型中数字的变化类,找准等量关系,正确列出二元一次方程是解题的关键.三、解答题16.【思路分析】直接利用加减消元法解方程得出答案.【解答】解:20346x yx y++⎧⎨⎩=①=②,①×2-②得:-x=-6,解得:x=6,故6+2y=0,解得:y=-3,故方程组的解为:63xy-⎧⎨⎩==.【点评】此题主要考查了解二元一次方程组,正确掌握解方程组的方法是解题关键.17.【思路分析】(1)依据关于“⊗”的一种运算:a⊗b=2a+b,即可得到2⊗(-5)的值;(2)依据x⊗(-y)=2,且2y⊗x=-1,可得方程组2241x yy x-+⎩-⎧⎨==,即可得到x+y的值.【解答】解:(1)∵a⊗b=2a+b,∴2⊗(-5)=2×2+(-5)=4-5=-1;(2)∵x⊗(-y)=2,且2y⊗x=-1,∴2241x yy x-+⎩-⎧⎨==,解得7949xy⎧⎪⎪⎨⎪-⎪⎩==,∴741993x y+=-=.【点评】本题主要考查解二元一次方程组以及有理数的混合运算的运用,根据题意列出方程组是解题的关键.18.【思路分析】订购了A型粽子x千克,B型粽子y千克.根据B型粽子的数量比A型粽子的2倍少20千克,购进两种粽子共用了2560元列出方程组,求解即可.【思路解答】解:设订购了A型粽子x千克,B型粽子y千克,根据题意,得220 28242560y xx y-⎩+⎧⎨==,解得4060xy⎧⎨⎩==.答:订购了A型粽子40千克,B型粽子60千克.【点评】本题考查了二元一次方程组的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组再求解.19.【思路分析】设合伙买鸡者有x人,鸡的价格为y文钱,根据“如果每人出9文钱,就会多11文钱;如果每人出6文钱,又会缺16文钱”,即可得出关于x、y的二元一次方程组,解之即可得出结论.【解答】解:设合伙买鸡者有x人,鸡的价格为y文钱,根据题意得:911616y xy x-+⎧⎨⎩==,解得:970xy⎧⎨⎩==.答:合伙买鸡者有9人,鸡的价格为70文钱.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.20.【思路分析】设小明班上参观禁毒教育基地的男生人数为x人,女生人数为y 人,根据“男生人数+女生人数=55、男生人数=1.5×女生人数+5”列出方程组并解答.【解答】解:设小明班上参观禁毒教育基地的男生人数为x人,女生人数为y 人,依题意得:551.55x yx y⎨++⎧⎩==,解得3520xy⎧⎨⎩==,答:小明班上参观禁毒教育基地的男生人数为35人,女生人数为20人.【点评】考查了二元一次方程组的应用.分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.21.【思路分析】(1)设出老师有x名,学生有y名,得出二元一次方程组,解出即可;(2)根据汽车总数不能小于30050427=(取整为8)辆,即可求出;(3)设租用x辆乙种客车,则甲种客车数为:(8-x)辆,由题意得出400x+300(8-x)≤3100,得出x取值范围,分析得出即可.【解答】解:(1)设老师有x名,学生有y名.依题意,列方程组为1712 184x yx y⎩-+⎧⎨==,。
中考数学专题练习二元一次方程的定义(含解析)
2019中考数学专题练习-二元一次方程的定义(含解析)一、单选题1.下列各式中是二元一次方程的是()A. 2x+3yB. xy-y=1C. x-3y=5D.2.下列方程中,属于二元一次方程的是()A. 4x+2(8﹣5x)=3B. x ﹣3y=6C. x2+4y=9D. xy+2x=53.如果2x3﹣m=y是二元一次方程,则m是()A. 2B. 3C. 4D. 14.下列方程中2x﹣3y=1,x+y2=5,﹣=2,x﹣y=z,不是二元一次方程的有()个.A. 1B. 2C. 3D. 45.是方程ax﹣y=3的解,则a的取值是()A. 5B. -5D. 16.下列方程中,是二元一次方程的是()A. -y=6 B. +=1 C. 3x-y2=0 D. 4 xy=37.如果方程2xm﹣1﹣3y2m+n=1是关于x、y的二元一次方程,那么m、n的值分别为()A. 1,B. 2,﹣3C. 1,﹣3D. 1,18.如果是关于x、y的二元一次方程,那么a的值应满足()A. a是有理数B. a≠0C. a=1D. a是正有理数9.下列各式,属于二元一次方程的个数有()① ;② ;③ ;④;⑤⑥ ⑦ ⑧yA. 1B. 2D. 410.一元二次方程2x2-3x=4的二次项系数是()A. 2B. -3C. 4D. -411.若方程(a2-1)x2+(a-1)x+(2a+1)y=0是二元一次方程,则a的值为()A. 1B. -1C. ±1D. 一切实数12.下列方程是二元一次方程的是()A. x+=1B. 2x+3y=6C. x2﹣y=3 D. 3x﹣5(x+2)=2 13.已知甲、乙两数的和是6,甲数是乙数的3倍,设甲数为x,乙数为y,根据题意,列方程组正确的是()A.B.C.D.14.下列方程是二元一次方程的是()A. y=x+8B. +y=5C.D. 2x+3y=z15.方程x﹣2y=3,﹣6xy﹣5=0,x﹣=4,3x﹣5z=4y,x2+y=1中是二元一次方程的有()A. 1个B. 2个C. 3个D. 4个二、填空题16.方程4xm﹣n﹣5ym+n=6是二元一次方程,则=________.17.若是二元一次方程,则m= ________,n= ________ .18.若x3m﹣2﹣2yn﹣1=3是二元一次方程,则m=________ , n=________19.若是二元一次方程,则m=________,n=________.20.4xa+2b﹣5﹣2y3a﹣b﹣3=8是二元一次方程,那么a﹣b=________.21.已知(a﹣2)x|a|﹣1+3y=1是关于x、y的二元一次方程,则a=________.22.已知关于x,y的方程是二元一次方程,则m=________,n= ________23.方程+ =5是二元一次方程,则m=________, n=________.三、解答题24.若方程2x2a﹣1+yb﹣2=1是二元一次方程,求a+b的值.25.若3x2a+b+1+ya﹣2b﹣1=0是关于x,y的二元一次方程,求b﹣a的值.四、综合题26.已知x,y满足方程组(1)甲看了看说:这是二元一次方程组;乙想了想说:这不是二元一次方程组,甲、乙两人的说法正确的是________.(2)求x2+4y2的值;(3)若已知:和(2y+x)2=x2+4y2+4xy;则=________(直接求出答案,不用写过程)答案解析部分一、单选题1.下列各式中是二元一次方程的是()A. 2x+3yB. xy-y=1C. x-3y=5D.【答案】C【考点】二元一次方程的定义【解析】【解答】A. 是代数式,不符合题意;B. 是二元二次方程,不符合题意和;C. 是一元一次方程,符合题意;D. 是分式方程,不符合题意;故答案为:C.【分析】根据二元一次方程的定义,对各个选项分别进行排除、判断即可求解.2.下列方程中,属于二元一次方程的是()A. 4x+2(8﹣5x)=3B. x ﹣3y=6C. x2+4y=9D. xy+2x=5【答案】B【考点】二元一次方程的定义【解析】【解答】解:A、是一元一次方程,故此选项错误; B、是二元一次方程,故此选项正确;C、是二元二次方程,故此选项错误;D、是二元二次方程,故此选项错误;故选:B.【分析】根据二元一次方程的定义:含有两个未知数,并且含有未知数的项的次数都是1,像这样的方程叫做二元一次方程可得答案.3.如果2x3﹣m=y是二元一次方程,则m是()A. 2B. 3C. 4D. 1【答案】A【考点】二元一次方程的定义【解析】【解答】由2x3﹣m=y是二元一次方程,得:3﹣m=1.解得:m=2,故选:A.【分析】二元一次方程满足的条件是:含有2个未知数,未知数的最高次项的次数是1的整式方程.4.下列方程中2x﹣3y=1,x+y2=5,﹣=2,x﹣y=z,不是二元一次方程的有()个.A. 1B. 2C. 3D. 4【答案】C【考点】二元一次方程的定义【解析】【解答】解:2x﹣3y=1是二元一次方程,x+y2=5是二元二次方程,﹣=2是分式方程,x﹣y=z是三元一次方程,故选:C.【分析】根据二元一次方程必须符合以下三个条件:方程中只含有2个未知数;含未知数项的最高次数为一次;方程是整式方程,可得答案.5.是方程ax﹣y=3的解,则a的取值是()A. 5B. -5C. 2D. 1【答案】A【考点】二元一次方程的定义【解析】【解答】∵是方程ax﹣y=3的解,∴a﹣2=3,解得:a=5.故选A.【分析】由是方程ax﹣y=3的解,即可把x=1,y=2代入ax﹣y=3,得到方程a﹣2=3,解此方程即可求得a的值.6.下列方程中,是二元一次方程的是()A. -y=6 B. +=1 C. 3x-y2=0 D. 4 xy=3【答案】A【考点】二元一次方程的定义【解析】【分析】二元一次方程的概念:含有两种未知数,并且未知数的最高次数是1的整式方程。
2023年中考数学第一复习试卷:二元一次方程组-试卷(含解析)
2023年中考数学第一复习试卷:二元一次方程组一、选择题1. (2020•天津)方程组的解是( ) A.B.C.D.2. (2021·无锡)方程组⎩⎪⎨⎪⎧x +y =5,x -y =3的解是( )A.⎩⎪⎨⎪⎧x =2,y =3 B.⎩⎪⎨⎪⎧x =3,y =2 C.⎩⎪⎨⎪⎧x =4,y =1 D.⎩⎪⎨⎪⎧x =1,y =4 3. (2022·海曙)若y-2x =0,则x:y 等于( )A.1:2B.1:4C.2:1D.4:1 4. (2021·益阳)解方程组⎩⎨⎧=-=+②①4y 3x 23y x 2时,若将①-②可得( )A.-2y =-1B.-2y =1C.4y =1D.4y =-15. (2020春•莘县期末)如果3x 3m-2n -4y n-m+12=0是关于x 、y 的二元一次方程,那么m 、n 的值分别为( ) A.m =2,n =3 B.m =2,n =1 C.m =-1,n =2 D.m =3,n =46. (2021·凉州模拟)临近春节,商场开展打折促销活动,某商品如果按原售价的八折出售,将盈利20元,而按原售价的六折出售,将亏损60元,则该商品的原售价为( ) A.300元 B.320元 C.350元 D.400元7. (2021·台湾)小文原本计划使用甲、乙两台影印机于10:00开始一起印制文件并持续到下午,但10:00时有人正在使用乙,于是他先使用甲印制,于10:05才开始使用乙一起印制,且到10:15时乙印制的总张数与甲相同,到10:45时甲、乙印制的总张数合计为2100张.若甲、乙的印制张数与印制时间皆成正比,则依照小文原本的计划,甲、乙印制的总张数会在哪个时间达到2100张( ) A.10:40 B.10:41 C.10:42 D.10:438. (2020•绍兴)同型号的甲、乙两辆车加满气体燃料后均可行驶210km,它们各自单独行驶并返回的最远距离是105km.现在它们都从A 地出发,行驶途中停下来从甲车的气体燃料桶抽一些气体燃料注入乙车的气体燃料桶,然后甲车再行驶返回A 地,而乙车继续行驶,到B 地后再行驶返回A 地.则B 地最远可距离A 地( ) A.120km B.140km C.160km D.180km 9. (2020•宁波)我国古代数学名著《孙子算经》中记载:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”意思是:用一根绳子去量一根木条,绳子还剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?如果设木条长x 尺,绳子长y 尺,那么可列方程组为( ) A.B.C.D.10. (2021·龙东中考)为迎接2022年北京冬奥会,某校开展了以迎冬奥为主题的演讲活动,计划拿出180元钱全部用于购买甲、乙两种奖品(两种奖品都购买),奖励表现突出的学生,已知甲种奖品每件15元,乙种奖品每件10元,则购买方案有( ) A.5种 B.6种 C.7种 D.8种二、填空题11. (2022·湖北随州·统考中考真题)已知二元一次方程组⎩⎨⎧=+=+5y 2x 4y 2x ,则x-y 的值为______.12. (2020•南京)已知x 、y 满足方程组,则x+y 的值为______.13. (2020•绍兴)若关于x,y 的二元一次方程组的解为则多项式A 可以是 (写出一个即可).14. (2020•常德)今年新冠病毒疫情初期,口罩供应短缺,某地规定:每人每次限购5只.李红出门买口罩时,无论是否买到,都会消耗家里库存的口罩一只,如果有口罩买,他将买回5只.已知李红家原有库存15只,出门10次购买后,家里现有口罩35只.请问李红出门没有买到口罩的次数是 次. 15. (2022北京昌平)《张丘建算经》是一部数学问题集,其内容、范围与《九章算术》相仿.其中提出并解决了一个在数学史上非常著名的不定方程问题,通常称为“百鸡问题”:“今有鸡翁一值钱五,鸡母一值钱三,鸡雏三值钱一,凡百钱买鸡百只,问鸡翁、母、雏各几何.”(译文:公鸡每只值五文钱,母鸡每只值三文钱,小鸡每三只值一文钱,现在用一百文钱买一百只鸡,问这一百只鸡中,公鸡、母鸡、小鸡各有多少只?)若买得公鸡和母鸡之和不超过20只,且买得公鸡数不低于母鸡数,则此时买得小鸡_____只. 16. (2021·重庆A)某销售商五月份销售A,B,C 三种饮料的数量之比为3:2:4,A,B,C 三种饮料的单价之比为1:2:1.六月份该销售商加大了宣传力度,并根据季节对三种饮料的价格作了适当的调整,预计六月份三种饮料的销售总额将比五月份有所增加,A 饮料增加的销售额占六月份销售总额的115,B,C 饮料增加的销售额之比为2:1.六月份A 饮料单价上调20%且A饮料的销售额与B 饮料的销售额之比为2:3,则A 饮料五月份的销售数量与六月份预计的销售数量之比为 . 三、解答题17. (2020春•定州市校级期末)已知方程组与有相同的解,求m 和n 值.18. (2020•江西)放学后,小贤和小艺来到学校附近的地摊上购买一种特殊型号的笔芯和卡通笔记本,这种笔芯每盒10支,如果整盒买比单支买每支可优惠0.5元.小贤要买3支笔芯,2本笔记本需花费19元;小艺要买7支笔芯,1本笔记本需花费26元. (1)求笔记本的单价和单独购买一支笔芯的价格;(2)小贤和小艺都还想再买一件单价为3元的小工艺品,但如果他们各自为要买的文具付款后,只有小贤还剩2元钱.他们要怎样做才能既买到各自的文具,又都买到小工艺品,请通过运算说明. 19. (2020•西乡塘区校级一模)南岸区正全力争创全国卫生城区和全国文明城区(简称“两城同创” ).某街道积极响应“两城同创”活动,投入一定资金绿化一块闲置空地,购买了甲、乙两种树木共72棵,甲种树木单价是乙种树木单价的98,且乙种树木每棵80元,共用去资金6160元.(1)求甲、乙两种树木各购买了多少棵?(2)经过一段时间后,种植的这批树木成活率高,绿化效果好.该街道决定再购买一批这两种树木绿化另一块闲置空地,两种树木的购买数量均与第一批相同,购买时发现甲种树木单价上涨了a%,乙种树木单价下降了2%5a ,且总费用为6804元,求a 的值.20. (2020•重庆)“中国人的饭碗必须牢牢掌握在咱们自己手中”.为优选品种,提高产量,某农业科技小组对A,B 两个小麦品种进行种植对比实验研究.去年A,B 两个品种各种植了10亩.收获后A,B 两个品种的售价均为2.4元/kg,且B 的平均亩产量比A 的平均亩产量高100kg,A,B 两个品种全部售出后总收入为21600元. (1)请求出A,B 两个品种去年平均亩产量分别是多少?(2)今年,科技小组加大了小麦种植的科研力度,在A,B 种植亩数不变的情况下,预计A,B 两个品种平均亩产量将在去年的基础上分别增加a%和2a%.由于B 品种深受市场的欢迎,预计每千克价格将在去年的基础上上涨a%,而A 品种的售价不变.A,B 两个品种全部售出后总收入将在去年的基础上增加a%.求a 的值.21. (2020·扬州中考)阅读感悟:有些关于方程组的问题,欲求的结果不是每一个未知数的值,而是关于未知数的代数式的值,如以下问题:已知实数x,y 满足3x -y =5①,2x +3y =7②,求x -4y 和7x +5y 的值.本题常规思路是将①②两式联立组成方程组,解得x,y 的值再代入欲求值的代数式得到答案,常规思路运算量比较大.其实,仔细观察两个方程未知数的系数之间的关系,本题还可以通过适当变形整体求得代数式的值,如由①-②可得x -4y =-2,由①+②×2可得7x +5y =19.这样的解题思想就是通常所说的“整体思想”. 解决问题:(1)已知二元一次方程组⎩⎪⎨⎪⎧2x +y =7,x +2y =8, 则x -y =________,x +y =________.(2)某班级组织活动购买小奖品,买20支铅笔、3块橡皮、2本日记本共需32元,买39支铅笔、5块橡皮、3本日记本共需58元,则购买5支铅笔、5块橡皮、5本日记本共需多少元? (3)对于实数x,y,定义新运算:x*y =ax +by +c,其中a,b,c 是常数,等式右边是通常的加法和乘法运算.已知3*5=15,4*7=28,那么1*1=________.答案一、选择题1. 【答案】A【解析】①+②得:3x=3,解得:x=1,把x=1代入①得:y=2,则方程组的解为.2. 【答案】C3. 【答案】A4. 【答案】D5. 【答案】解:∵3x3m-2n-4y n-m+12=0是关于x、y的二元一次方程,∴,解得:,故选:D.6. 【答案】D7. 【答案】C8. 【答案】B【解析】设甲行驶到C地时返回,到达A地燃料用完,乙行驶到B地再返回A地时燃料用完,如图:设AB=xkm,AC=ykm,根据题意得:解得:.∴乙在C地时加注行驶70km的燃料,则AB的最大长度是140km.9. 【答案】A【解析】设木条长x尺,绳子长y尺,那么可列方程组为:.10. 【答案】A二、填空题11. 【答案】112. 【答案】1【解析】,①×2-②得:5y=-5,解得:y=-1,①-②×3得:-5x=-10,解得:x=2,则x+y=2-1=1,故答案为1.13. 【答案】答案不唯一,如x﹣y.【解析】∵关于x,y的二元一次方程组的解为而1﹣1=0,∴多项式A可以是答案不唯一,如x﹣y.故答案为:答案不唯一,如x﹣y.14. 【答案】4【解析】设李红出门没有买到口罩的次数是x,买到口罩的次数是y,由题意得:整理得:解得:.15. 【答案】84.16. 【答案】9:10三、解答题17. 【答案】解:由已知可得,解得, 把代入剩下的两个方程组成的方程组,得,解得m =﹣1,n =﹣4.18. 【答案】见解析。
中考数学专题练习二元一次方程组的解(含解析)
2019中考数学专题练习-二元一次方程组的解(含解析)一、单选题1.已知是关于x,y的方程组的解,则a+b的值为()A. 14B. 12C. ﹣12D. 22.已知方程组的解为,则2a﹣3b的值为()A. 4B. 6C. ﹣6D. ﹣43.下列各组数是二元一次方程组的解的是()A. B. C.D.4.已知是二元一次方程组的解,则m+3n的算术平方根为()A. ±3B. 3C.D. ±25.解为的方程组是()A. B. C.D.6.已知是二元一次方程组的解,则的值是()A. 1B. 2C. 3D. 47.方程组的解与与的值相等,则等于()D. 48.若是方程组的解,则a、b值为()A. B. C.D.9.小亮解方程组的解为,由于不小心滴上了两滴墨水,刚好遮住了两个数●和★,则两个数●与★的值为()A. B. C.D.10.已知方程组的解中x与y之和为1,则k的值是()A. ﹣1B. 2C. ﹣2D. 111.方程组的解是()A. B. C. D.12.已知方程组的解为,则a+b的值为()A. 1B. 2C. 3D. 413.已知是方程的一个解,那么的值是()A. 1B. 3C. -3D. -114.已知方程组的解满足x+y=2,则k的算术平方根为()D. 2二、填空题15.若一个二元一次方程组的解为则这个方程组可以是________.16.写出一个解为的二元一次方程组________.17.方程组的解是________.18.已知关于x,y的方程组的解适合x+y=2,则m的值为________.19.如果方程组解中的x与y的互为相反数,那么a的值是________.20.若方程组与方程组的解相同,则m+n的值为________.21.已知方程组,当m________时,x+y>0.22.二元一次方程组的解x,y的值相等,则k=________.三、计算题23.已知二元一次方程组的解,也是二元一次方程6x+y=8的解,求a的值.24.已知二元一次方程组的解为,求a与b的值.25.已知二元一次方程组的解为,求a与b的值.26.m为正整数,已知二元一次方程组有整数解,求m的值.27.方程组的解x、y满足x是y的2倍,求a的值.28.已知关于x,y的二元一次方程组的解是,求(a+b)2019的值.四、解答题29.已知关于x、y的二元一次方程组的解都大于1,试求m的取值范围.30.已知关于x,y的方程组与有相同的解,求a,b的值.五、综合题31.(1)阅读下列材料并填空:对于二元一次方程组我们可以将x,y的系数和相应的常数项排成一个数表,求得的一次方程组的解用数表可表示为.用数表可以简化表达解一次方程组的过程如下,请补全其中的空白:从而得到该方程组的解为(2)仿照(1)中数表的书写格式写出解方程组的过程.答案解析部分一、单选题1.已知是关于x,y的方程组的解,则a+b的值为()A. 14B. 12C. ﹣12D. 2【答案】A【考点】二元一次方程组的解【解析】【解答】解:把代入方程组得:,解得:a=1,b=13,则a+b=14,故选A.【分析】将x与y的值代入方程组求出a与b的值,即可确定出a+b的值.2.已知方程组的解为,则2a﹣3b的值为()A. 4B. 6C. ﹣6D. ﹣4【答案】B【考点】二元一次方程组的解【解析】【解答】解:把代入原方程组,得,解得.2a﹣3b=2×﹣3×(﹣1)=6.故答案为:B.【分析】把x=2,y=1代入原方程组,得到2 a − b = 4,2 a + b = 2,得到a=,b = − 1,得到2a﹣3b=2× 3 2 ﹣3×(﹣1)=6.3.下列各组数是二元一次方程组的解的是()A. B. C.D.【答案】A【考点】二元一次方程组的解【解析】【解答】解:∵y﹣x=1,∴y=1+x.代入方程x+3y=7,得x+3(1+x)=7,即4x=4,∴x=1.∴y=1+x=1+1=2.解为x=1,y=2.故选A.【分析】所谓“方程组”的解,指的是该数值满足方程组中的每一方程.此题直接解方程组或运用代入排除法作出选择.4.已知是二元一次方程组的解,则m+3n的算术平方根为()A. ±3B. 3C.D. ±2【答案】B【考点】二元一次方程组的解【解析】【解答】解:把代入方程组得,解得:,则m+3n=3+6=9.则m+3n的算术平方根为3.故选B.【分析】由于已知二元一次方程的解,可将其代入方程组中,即可求出m、n的值,进而利用算术平方根定义可求出m+3n的算术平方根.5.解为的方程组是()A. B. C.D.【答案】D【考点】二元一次方程组的解【解析】【解答】解:将分别代入A、B、C、D四个选项进行检验,能使每个方程的左右两边相等的x、y的值即是方程的解.A、B、C均不符合,只有D满足.故选:D.【分析】所谓方程组的解,指的是该数值满足方程组中的每一方程.将分别代入A、B、C、D四个选项进行检验,或直接解方程组.6.已知是二元一次方程组的解,则的值是()A. 1B. 2C. 3D. 4【答案】D【考点】二元一次方程组的解【解析】【解答】解:把x=1,y=2分别代入方程组的两个方程可得m=7,n=3,所以m-n=7-3=4,故选D.7.方程组的解与与的值相等,则等于()A. 2B. 1C. 6D. 4【答案】B【考点】二元一次方程组的解【解析】【解答】因为x与y的值相等,所以我们可以将方程组中的所有y都换成x即,那么,所以k=1,故答案为:B.【分析】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.8.若是方程组的解,则a、b值为()A. B. C.D.【答案】A【考点】二元一次方程组的解【解析】【解答】解:把代入方程组得:,解得:,故选A【分析】把x与y的值代入方程组求出a与b的值即可.9.小亮解方程组的解为,由于不小心滴上了两滴墨水,刚好遮住了两个数●和★,则两个数●与★的值为()A. B. C.D.【答案】D【考点】二元一次方程组的解【解析】【解答】解:∵方程组的解为,∴将x=5代入2x﹣y=12,得y=﹣2,将x=5,y=﹣2代入2x+y得,2x+y=2×5+(﹣2)=8,∴●=8,★=﹣2,故选D.【分析】根据题意可以分别求出●与★的值,本题得以解决.10.已知方程组的解中x与y之和为1,则k的值是()A. ﹣1B. 2C. ﹣2D. 1【答案】B【考点】二元一次方程组的解【解析】【解答】解:根据题意联立得:,解得:,把代入得:4﹣k=2k﹣2,解得:k=2,故选B【分析】方程组中第一个方程与x+y=1联立求出x与y的值,代入第二个方程计算即可求出k的值.11.方程组的解是()A. B. C. D.【答案】D【考点】二元一次方程组的解【解析】【解答】解:,①+②得:2x=4,即x=2,把x=2代入①得:y=1,则方程组的解为,故选D【分析】利用加减消元法求出方程组的解,即可作出判断.12.已知方程组的解为,则a+b的值为()A. 1B. 2C. 3D. 4【答案】B【考点】二元一次方程组的解【解析】【解答】解:将代入方程组,得:,①+②,得:3a+3b=6,即a+b=2,故选:B.【分析】根据方程组的解的概念,将x、y的值代入原方程组从而得到关于a、b的二元一次方程组,观察到a、b系数特点,将两方程相加后除以3即可得答案.13.已知是方程的一个解,那么的值是()A. 1B. 3C. -3D. -1【答案】A【考点】二元一次方程组的解【解析】【解答】将代入方程得,解得.故答案为:1.【分析】本题考查二元一次方程解的逆向应用,已知方程的解求解原方程的未知数,将解带入即可.14.已知方程组的解满足x+y=2,则k的算术平方根为()A. 4B. ﹣2C. ﹣4D. 2【答案】D【考点】二元一次方程组的解【解析】【解答】,解方程组得x+y=,代入x+y=2中得:k+2=6,解得:k=4,则4的算术平方根为2,故答案为:D.【分析】方程组中两方程相加表示出x+y,代入x+y=2中计算即可得出k的值.二、填空题15.若一个二元一次方程组的解为则这个方程组可以是________.【答案】【考点】二元一次方程组的解【解析】【解答】解:根据题意得:,故答案为:【分析】以18和﹣10列出两个算式,即可确定出所求方程组.16.写出一个解为的二元一次方程组________.【答案】(答案不唯一)【考点】二元一次方程组的解【解析】【解答】先围绕为列一组算式如1+2=3,1-2=-1 然后用x,y代换得等.【分析】根据列出一组算式,然后用x、y代换即可列出方程组,或列出含x、y的代数式,将代入求值即可得出方程组。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题
1.根据等式的性质,下列变形正确的是
A. 若,则
B. 若,则
C. 若,则
D. 若,则
2.如果关于x,y的二元一次方程组的解x,y满足,那么k
的值是
A. B. 8 C. D.
3.将变形,用含x的代数式表示y,正确的是
A. B. C. D.
4.由方程组可得出x与y的关系式是
A. B. C. D.
5.某班去看演出,甲种票每张24元,乙种票每张18元,如果35名学生购票恰好用
去750元,甲、乙两种票各买了多少张?设买了x张甲种票,y张乙种票,则所列方程组正确的是
A. B.
C. D.
6.方程是关于x、y的二元一次方程,则
A. ;
B. ,
C. ,
D. ,
7.已知是方程组的解,则的值是
A. 3
B. 2
C. 1
D. 无法确定
8.若购买甲商品3件,乙商品2件,丙商品1件,共需140元;购买甲商品1件,乙
商品2件,丙商品3件,共需100元;那么购买甲商品1件,乙商品1件,丙商品1件,共需元.
A. 50
B. 60
C. 70
D. 80
9.若,,则的值是
A. 0
B. 1
C. 2
D.
10.滴滴快车是一种便捷的出行工具,计价规则如下表:
计费项目里程费时长费远途费
单价元公里元分钟元公里
注:车费由里程费、时长费、远途费三部分构成,其中里程费按行车的实际里程计算;时长费按行车的实际时间计算;远途费的收取方式为:行车里程7公里以内含7公里不收远途费,超过7公里的,超出部分每公里收元.
小王与小张各自乘坐滴滴快车,行车里程分别为6公里与公里如果下车时两人所付车费相同,那么这两辆滴滴快车的行车时间相差
A. 10分钟
B. 13分钟
C. 15分钟
D. 19分钟
二、填空题
11.将方程变形成用y的代数式表示x,则______ .
12.方程的根为______.
13.学完等式的性质以后,老师在黑板上写出了一个方程,小明就在
方程的两边除以后得到了,肯定不对,于是小明认为______.
14.若单项式与是同类项,则的算术平方根是______ .
15.已知,则______ ,______ .
16.已知是一个二元一次方程,则a的值为______ .
17.某铁路桥长1750m,现有一列火车从桥上通过,测得该火车从开始上桥到完全过桥
共用了80s,整列火车完全在桥上的时间共60s;设火车的速度为,火车的长度为ym,根据题意列方程组为______.
18.已知,,,则的值是
______.
19.方程组经“消元”后可得到一个关于x、y的二元一次方程组为______ .
20.有甲、乙、丙三种货物,若购买甲3件、乙7件、丙1件,共420元;若购买甲4
件、乙10件、丙1件,共520元,现在购买甲、乙、丙各1件,共需______ 元
三、计算题
21.阅读下列解题过程,指出它错在了哪一步?为什么?
.
两边同时加上1,得,第一步
两边同时除以,得第二步.
22.有两块试验田,原来可产花生470千克,改用良种后共产花生532千克,已知第一
块田的产量比原来增加,第二块田的产量比原来增加,问这两块试验田改用良种后,各增产花生多少千克?
23.观察下列方程组,解答问题:
;;;
在以上3个方程组的解中,你发现x与y有什么数量关系?不必说理
请你构造第个方程组,使其满足上述方程组的结构特征,并验证中的结论.
24.小明到某服装商场进行社会调查,了解到该商场为了激励营业员的工作积极性,实
行“月总收入基本工资计件奖金”的方法,并获得如下信息:
营业员A:月销售件数200件,月总收入2400元;
营业员B:月销售件数300件,月总收入2700元;
假设营业员的月基本工资为x元,销售每件服装奖励y元.
求x、y的值;
若某营业员的月总收入不低于3100元,那么他当月至少要卖服装多少件?
商场为了多销售服装,对顾客推荐一种购买方式:如果购买甲3件,乙2件,丙1件共需350元;如果购买甲1件,乙2件,丙3件共需370元某顾客想购买甲、乙、丙各一件共需多少元?
【答案】
1. D
2. A
3. B
4. A
5. B
6. D
7. A
8. B9. A10. D
11.
12. 或
13. 0
14. 4
15. 2;1
16.
17.
18. 25
19. .
20. 220
21. 解:解题过程第二步出错,理由为:方程两边不能除以,可能为0.
22. 解:设第一,二块田原产量分别为x千克,y千克.
得,
解得,
所以,.
答:第一块田增产40千克,第二块田增产22千克.
23. 解:在以上3个方程组的解中,发现;
第个方程组为,
得:,即,
把代入得:,
则.
24. 解:由题意,得
,
解得
即x的值为1800,y的值为3;
设某营业员当月卖服装m件,由题意得,
,
解得,,
只能为正整数,
最小为434,
即某营业员当月至少要卖434件;
设一件甲为a元,一件乙为b元,一件丙为c元,则
,
将两等式相加得,,
则,
即购买一件甲、一件乙、一件丙共需180元.
【感谢您的阅览,下载后可自由复制或修改编辑,敬请您的关注】。