高二数学上学期期末试卷(理科)

合集下载

高二数学(理)上学期期末试卷及答案

高二数学(理)上学期期末试卷及答案

上学期期末考试高二数学(理科)试卷考试时间:120分钟试题分数:150分卷I一、选择题:本大题共12小题,每题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.对于常数〃?、〃,是“方程如=]的曲线是双曲线,,的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件2.命题“所有能被2整除的数都是偶数”的否定是♦♦A.所有不能被2整除的数都是偶数B.所有能被2整除的数都不是偶数C.存在一个不能被2整除的数是偶数D.存在一个能被2整除的数不是偶数x2 y23.已知椭圆一+ —— = 1上的一点P到椭圆一个焦点的距离为7,则P到另一焦点距离为25 16A. 2B. 3C. 5D. 74.在一次跳伞训练中,甲、乙两位学员各跳一次,设命题〃是“甲降落在指定范围”,g是“乙降落在指定范围”,则命题“至少有一位学员没有降,落在指定范围”可表示为A. (-1/7)v(-ity)B. /?v(-ity)C.(^/?)A(—D. pvq2 25.若双曲线:-二=1的离心率为J5,则其渐近线的斜率为crA. ±2B. ±-C. ±5/2D. ± —2 26 ,曲线),=———一!在点M(三,0)处的切线的斜率为sinx + cosx 2 4A,在 B. 一昱 C. 1 D. -12 2 2 27.已知椭圆£ +奈的焦点与双曲线今旬的焦点恰好是一个正方形的四个顶点,则抛物线少=打2的焦点坐标为A.(4-,0)B. (^- ,0)C. (0,^-)D. (0,^—)8. 一间民房的屋顶有如图三种不同的盖法:①单向倾斜;②双向倾斜:③四向倾斜.记三种盖法屋顶而积分别为4鸟,A,① ② ③若屋顶斜而与水平而所成的角都是。

,则A. 4=E = AB. 4=4<鸟C.D.9.马云常说“便宜没好货”,他这句话•的意思是:“不便宜”是“好货”的A.充分条件B.必要条件C.充分必要条件D.既不充分也不必要条件10.设。

高二上理科数学期末试卷及答案

高二上理科数学期末试卷及答案

第一学期期末考试试题 高二(理科)数学(必修5;选修2-1)(满分150分;时间120分钟)第I 卷(选择题 共50分)一、选择题(本大题共10个小题;每小题只有一个正确选项。

每小题5分;共50分)1.{}为则,中,已知等差数列n a a a a a n n ,33,431521==+=( ) A.48 B.492. {}==⋅=+q a a a a a n 则公比中,在正项等比数列,16,105362( ) A.2 B.22C. 222或3.的值为则中,在A aS b A ABC ABC Osin ,3,1,60===∆∆( ) A.3392 B.8138 C.3326 D. 724.在下列函数中;最小值为2的是( ) A.xx y 1+=B.xx y -+=33C.()101lg 1lg <<+=x xx y D.⎪⎭⎫⎝⎛<<+=20sin 1sin πx x x y5. 若椭圆221x my +=的离心率为2;则它的长半轴长为( ) A .1 B .2 C .1或2 D .与m 有关6.()线准线方程为的右焦点重合,则抛物的焦点与椭圆若12602222=+>=y x p px y ( ) A.1-=xB. 2-=xC. 21-=x D. 4-=x7. 有下述说法:①0a b >>是22a b >的充要条件. ②0a b >>是ba 11<的充要条件.③0a b >>是33a b >的充要条件.则其中正确的说法有( ) A .0个B .1个C .2个D .3个8. 以椭圆1162522=+y x 的焦点为顶点;离心率为2的双曲线方程( ) A .1481622=-y x B .127922=-y x C .1481622=-y x 或127922=-y x D .以上都不对 9. 下列各组向量中不平行的是( )A .)4,4,2(),2,2,1(--=-=b aB .)0,0,3(),0,0,1(-==d cC .)0,0,0(),0,3,2(==f eD .)40,24,16(),5,3,2(=-=h g10.是的距离最小的点的坐标上到直线抛物线42212=-=y x x y ( ) A.(1;1) B.(1;2) C.(2;2) D.(2;4)第II 卷(非选择题 共100分)二、填空题(本大题共5个小题;每小题5分;共25分)11. 等差数列9}{,27,39,}{963741前则数列中n n a a a a a a a a =++=++项的和9S 等于 . 12.()的最大值为则若a a a 21,210-<< . 13. 的最大值为,则足若满y x z x y x y x y x -=⎪⎩⎪⎨⎧≥+≤-≤+302142, .14. 双曲线的渐近线方程为20x y ±=;焦距为10;这双曲线的方程为 . 15. 若19(0,2,)8A ;5(1,1,)8B -;5(2,1,)8C -是平面α内的三点;设平面α的法向量),,(z y x a =;则=z y x :: .三、解答题(本大题6个小题;共75分.解答应写出说明文字;证明过程或演算步骤) 16. (本小题共12分) 如图;△ACD 是等边三角形;△ABC 是等腰直角三角形;∠ACB=90°;BD 交AC 于E ;AB=2. (1)求cos ∠CBE 的值;(2)求AE 。

高二上学期期末考试数学(理)试卷及参考答案(共3套)

高二上学期期末考试数学(理)试卷及参考答案(共3套)

第一学期期末考试高二年级(理科数学)试题卷 本试卷共22小题,满分150分.考试用时120分钟.一、选择题:本大题共12小题,每小题5分,满分60分. 1.下列说法正确的是(A) 命题“若21x =,则1x =”的否命题为:“若21x =,则1x ≠”(B) 若命题2:,210p x x x ∃∈-->R ,则命题2:,210p x x x ⌝∀∈--<R (C) 命题“若x y =,则sin sin x y =”的逆否命题为真命题 (D) “1x =-”是“2560x x --=”的必要不充分条件2.已知向量(1,1,0)=a ,(1,0,2)=-b ,且(R)k k +∈a b 与2-a b 互相垂直,则k 等于(A) 1 (B)15 (C) 3 (D)753.设ABC ∆的内角A ,B ,C 所对边分别为3a =,b =π3A =,则B =(A)π6 (B) 5π6 (C) (D)2π34.若公差为2的等差数列{}n a 的前9项和为81,则9a =(A) 1(B) 9(C) 17(D)195.设椭圆的两个焦点分别为1F 、2F ,过2F 作椭圆长轴的垂线交椭圆于点P ,若12F PF ∆为等腰直角三角形,则椭圆的离心率是(A)2(B) (C) 2 16.已知等比数列{n a }的前n 项和12-=n n S ,则++2221a a (2)n a +等于(A) 2)12(-n(B))12(31-n (C) 14-n (D))14(31-n 7.不等式220ax bx ++>的解集是11(,)23-,则a b -等于(A) 10- (B) 10 (C) 14- (D)148.已知0,0>>b a ,且132=+b a ,则23a b+的最小值为(A) 24(B) 25 (C) 26(D)279.若中心在原点,焦点在y(A) y x =± (B) y x = (C) y = (D)12y x =± 10.方程22123x y m m +=-+表示双曲线的一个充分不必要条件是 (A) 30m -<< (B) 32m -<< (C) 34m -<< (D)13m -<<11.已知正四棱锥S ABCD -的侧棱长与底面边长都相等,E 是SB 的中点,则AE SD ,所成的角的余弦值为(A)13(B)3(C)(D)2312.已知点P 是抛物线22y x =上的动点,点P 在y 轴上的射影是M ,点A 的坐标是⎪⎭⎫ ⎝⎛4,27A ,则|||PA PM +的最小值是(A)211 (B) 4 (D)5二、填空题:本大题共4小题,每小题5分,满分20分.13.已知向量1(8,,),(,1,2)2a x xb x ==,其中0x >,若b a //,则x 的值为__________. 14.过抛物线214y x =的焦点F 作一条倾斜角为30︒的直线交抛物线于A 、B 两点,则AB =__________. 15.已知21F F 、为椭圆192522=+y x 的两个焦点,过1F 的直线交椭圆于A 、B 两点若1222=+B F A F ,则AB =__________.16.某企业生产甲、乙两种产品,已知生产每吨甲产品要用A 原料3吨、B 原料2吨;生产每吨乙产品要用A 原料1吨、B 原料3吨。

高二数学(理)上学期期末考试试题(带答案)

高二数学(理)上学期期末考试试题(带答案)

高二数学(理)上学期期末考试试题(带答案)一、选择题(每小题4分,共40分,每小题只有一个正确答案,请你把正确的选择涂在答题卡中相应位置) 1、下列函数求导运算正确的个数为( )①()e x x3log 33=';②()2ln 1log 2x x ='③()x x e e =';④x x ='⎪⎭⎫ ⎝⎛ln 1;⑤1)(+='⋅xx e e xA .1B .2C .3D .42、已知A 、B 、C 三点不共线,对平面ABC 外的任一点O ,下列条件中能确定点M 与点A 、B 、C 一定共面的是A .OM OA OB OC =++ B . 2OM OA OB OC =-- C .111333OM OA OB OC =++ D .1123OM OA OB OC =++ 3、○1命题“若x 2-3x +2=0,则x =1”的逆否命题为:“若x ≠1,则x 2-3x +2≠0”. ○2“1=x ”是“2430x x -+=”的充要条件;○3若p q ∧为假命题,则p 、q 均为假命题.○4对于命题p :0x R ∃∈,200220x x ++≤, 则⌝p :x R ∀∈, 2220x x ++>. 上面四个命题中正确是 A .○1○2 B . ○2○3 C .○1○4 D .○3○44、若双曲线12222=-by a x 的焦点到其渐近线的距离等于实轴长,则该双曲线离心率为A. 5 B .5 C. 2 D .25、抛物线2y nx =(n <0)与双曲线2218x y m-=有一个相同的焦点,则动点(,m n )的轨迹是 A .椭圆的一部分 B .双曲线的一部分 C .抛物线的一部分 D .直线的一部分6、在正三棱柱ABC-A 1B 1C 1中,已知AB=2,CC 1=2,则异面直线AB 1 和BC 1所成角的余弦值为 A.0 B.742C.23D. 217、已知方程0,,0(022>≠≠=++=+c b a ab c by ax ab by ax 其中和),它们所表示的曲线可能是A B C D 8、过点(2,0)与抛物线y x 82=只有一个公共点的直线有A. 1条B. 2条C. 3条D. 无数条9、如图,已知平行六面体ABCD —A 1B 1C 1D 1中,AB=4,AD=3,AA 1=5,∠BAD=∠BAA 1=∠DAA 1=60°,则||1AC 的长为A.10、椭圆2212516x y +=的左右焦点分别为12,F F ,弦AB 过1F ,若2ABF ∆的内切圆周长为π,,A B 两点的坐标分别为1122(,),(,)x y x y ,则12y y -值为A .35 B .310 C .320D .35二、填空题(每小题4分,共16分)11、已知向量)1,10,()1,5,4()1,12,(k OC OB k OA -===,且A 、B 、C 三点共线,则=k ________.12、椭圆1422=+y x 中,以点M (1,21)为中点的弦所在直线方程是__ . 13、已知抛物线x y 42=上的任意一点P ,记点P 到y 轴的距离为d ,对于给定点)5,4(A ,则d PA +||的最小值为 .14、设点M (x ,y ),其轨迹为曲线C ,若(2,),(2,),||||||2,a x y b x y a b =-=+-=则曲线C 的离心率等于 . 三、解答题(共44分)15、(10分)已知m R ∈,设命题p :方程22151x y m m +=--表示焦点在y 轴上的的椭圆;命题q :函数f(x )=3x 2+2mx +m +43有零点.(1)若p ⌝为真命题,求m 的取值范围; (2)若“p∨q”为真,求m 的取值范围.16、(10分)在边长为1的正方体ABCD -A 1B 1C 1D 1中,E 是BC 的中点,F 是DD 1的中点. (1)求证:CF∥平面A 1DE ;(2)求直线AA 1与平面A 1DE 所成角的余弦值.17、(12分)在四棱锥P-ABCD 中,底面ABCD 是边长为1的正方形,且PA ⊥面ABCD. (1)求证:PC⊥BD; (2)过直线BD 且垂直于直线PC 的平面交PC 于点E ,的体积取到最大值,①求此时PA 的长度;A 1D②求此时二面角A-DE-B 的余弦值的大小.18、(12分)在直角坐标系xOy 中,椭圆22122:1(0)x y C a b a b+=>>的左、右焦点分别为12,F F ,2F 也是抛物线22:4C y x =的焦点,点M 为12,C C 在第一象限的交点,且25||3MF =.(1)求1C 的方程;(2)平面上的点N 满足12MN MF MF =+,直线//l MN ,且与1C 交于A,B 两点,若0OA OB ∙=,求直线l 的方程.二、填空题:11、32-12、022=-+y x 13、134- 14、2 15、(10分)解:(1)p :,53,051<<∴>->-m m m 。

(完整版)高二数学第一学期期末考试试卷理科

(完整版)高二数学第一学期期末考试试卷理科

高二数学试题一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.抛物线22y x =的准线方程为( )A .12y =-B .18y =-C .12x =-D .18x =- 2.给出四个条件:①22ac bc >;②a b c c>;③22a b >;>其中能分别成为a >b 的充分条件的个数为 ( )A .0B .1C .2D .33.圆222410x y x y ++-+=关于直线220ax by -+=对称,则ab 的最大值为 ( )A .1B .12C .14D .不存在 4.如图,已知点M(m,n )在直线l :A x +B y +C=0(AB ≠0)的右下方,则A m +B n +C 的值 ( ) A .与A 同号,与B 同号 B .与A 同号,与B 异号C .与A 异号,与B 异号D .与A 异号,与B 同号5.如图,在△ABC 中,∠CAB=∠CBA=30°,AC 、BC 边上的高分别为BD 、AE ,则以A 、B 为焦点,且过D 、E 的椭圆与双曲线的离心率的倒数和为 ( )A.1C..3 6.直线x -y -1=0与实轴在y 轴上的双曲线22(0)x y m m -=≠的交点在以原点为中心,边长为2且各边分别平行于坐标轴的正方形内部,则m 的取值范围为 ( )A .0<m <1B .m <0C .-1<m <0D .m <-17.直线cos 20x α-=的倾斜角的范围是 ( )A .[,]66ππ-B .[0,]6πC .5[0,][,)66πππUD .5[,]66ππ8.已知点A(1,2),过点(5,-2)且斜率为k 的直线与抛物线y 2=4x 交于B 、C 两点,那么△ABC( ) A .是锐角三角形 B .是钝角三角形 C .是直角三角形 D .的形状与k 值有关9.设 12F F 、是双曲线22214x y b-=的两个焦点,点P 在双曲线上,且1290F PF ∠=o ,△12F PF 的面积为1,则正数b 的值为 ( )AB .2 C.1 10.若不等式2222x x a y y ++≥--对一切实数x y ,恒成立,则实数a 的取值范围是 ( )A .a ≥1B .a ≤1C .a ≥2D .a ≤211.已知A 、B 分别为椭圆2212y x +=的左、右顶点,P 是椭圆上第一象限的任一点,若∠PAB=α,∠PBA=β,则必有 ( )A .2tan α+cot β=0B .2tan α-cot β=0C .tan α+2cot β=0D .tan α-2cot β=0BAEDC12.已知平面上点P ∈22{(,)|(2cos )(2sin )16,}x y x y R ααα-+-=∈,则满足条件的点P 在平面上所形成图形的面积是 ( ) A .36π B .32π C .16π D .4π 二、填空题:本大题共4小题,每小题4分,共16分.将答案填在题中的横线上. 13.不等式2212x x --<的解集是 .14.圆22420x y x y c +--+=与y 轴交于A 、B 两点,圆心为P ,若90APB ∠=o,则c 的值为 .15.设2z x y =+,式中,x y 满足约束条件220,1.x y x y +≥⎧⎨+≤⎩ 则z 的最小值是 ,最大值是 .16.已知F 1、F 2分别是双曲线22221x y a b-=的左、右焦点,P 是双曲线上任意一点,若221||||PF PF 的最小值为8a ,则此双曲线的离心率e 的取值范围是 .三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知正数a,b 满足a +b =1,且n ∈N*,求证:112n n n n a b a b++++≥.18. (本小题满分12分)已知P (2,0),Q (8,0),点M 到点P 的距离是它到点Q 的距离的21,求点M 的轨迹方程,并求轨迹上的点到直线l :2x -y -55=0的最小距离.19.(本小题满分12分)已知过点(1,6)--的直线l 与抛物线24y x =交于A 、B 两点,若以9(,0)2P 为圆心的圆恰好过A 、B 点,求直线l 的方程.20.(本小题满分12分)设双曲线C :2221(0)x y a a-=>与直线l :1x y +=相交于两个不同的点A 、B.(I)求双曲线C 的离心率e 的取值范围;(II)设直线l 与y 轴的交点为P,且512PA PB =u u u r u u u r,求a的值.21.(本小题满分12分)某电器商场拟举办家电促销活动,活动前准备从厂家分批购入每台价格为2000元的某品牌空调共3600台,每批都购入x 台,且每批均付运费400元.整个活动期间所付储存该空调的全部保管费是购买一批空调所付货款的120.现商场有专项资金22000元准备用于支付该空调的全部运费及活动期间的全部保管费.问这笔专项资金是否够用?如果不够用,至少还需要多少资金?22..(本小题满分14分)有对称中心的曲线叫做有心曲线,显然圆、椭圆、双曲线都是有心曲线. 过有心曲线的中心的弦叫有心曲线的直径,(为研究方便,不妨设直径所在直线的斜率存在).定理:过圆)0(,222>=+r r y x 上异于直径两端点的任意一点与一条直径的两个端点连线,则两条连线的斜率之积为定值-1.(Ⅰ)写出该定理在椭圆)0(12222>>=+b a by a x 中的推广,并加以证明;(Ⅱ)写出该定理在双曲线中)0,0(12222>>=-b a by a x 的推广;你能从上述结论得到有心圆锥曲线(包括椭圆、双曲线、圆)的一般性结论吗?请写出你的结论.参考答案一、选择题1.B .抛物线标准方程为212x y =,准线方程为18y =-. 2.C .①④能分别成为a >b 的充分条件.3.C .由圆的对称性知圆心(-1,2)在直线上,∴-2a -2b +2=0,即a +b =1,故21()24a b ab +≤=. 4.B .结合图形信息知,0,0,ABC A⎧->⎪⎪⎨⎪->⎪⎩,又原点O 与点M 在直线L 的异侧,∴()0C Am Bn C ++<,故A m+B n +C 与B 、C 异号,与A 同号.5.A .设AB=2c ,则AE=BD=c ,AD=BE=3c ,椭圆离心率为=,双曲线离=故离心率的倒数和为3.6.C .由2210,x y x y m --=⎧⎨-=⎩得交点坐标为(m +12,m -12),解不等式组111,2111,2m m +⎧-≤≤⎪⎪⎨-⎪-≤≤⎪⎩,得-1<m <1.又双曲线焦点在y 轴上,知m <0,故-1<m <0. 7.C .设倾斜角为θ,则tan [θ=,故50,或66ππθθπ≤≤≤<. 8.C .由24,(5)2,y x y k x ⎧=⎨=--⎩得242080ky y k ---=,设B(x 1,y 1),C(x 2,y 2),则12124208,k y y y y k k++==-,记121222,11BA CA y y k k x x --==--,则1212121222221212121212216162()42()41()21616()11164BA CA y y y y y y y y k k k y y y y y y k k x x x x k ---++-++⋅====-+-+-++-+.故BA ⊥CA . 9.D .设PF 1=m ,PF 2=n ,则由题设知2224,4(4),2,m n m n b mn -=⎧⎪+=+⎨⎪=⎩解得b=1.10.C .由22(1)(1)2x y a +++≥-恒成立知,20a -≤,即a ≥2. 11.D .考虑极端位置,当P 点落在上顶点时,有tan αβ==,显然有tan α-2cot β=0成立.12.B .P 点是以(2cos α,2sin α)为圆心,4为半径的圆周上的点,而当α在R 上变化时,点(2cos α,2sin α)又是以(0,0)为圆心,2为半径的圆周上的点,故当圆心在半径为2的圆周上变化时,P 点的轨迹形成一个内圆半径为2,外圆半径为6的圆环.故面积为36π-4π=32π. 二、填空题13.{x |―1<x <3,且x ≠1}.14.-3.圆的标准方程为22(2)(1)5x y c -+-=-,在等腰直角三角形PAB 中,由P 到y 轴的距离为2,知半径r =22,解5-c =8,得c =-3.15.2-如图,作出约束条件确定的可行域,在A 点处有最小值,在B 点处有最大值.16.(1,3].222211111||(2||)4||48||||||PF a PF a PF a a PF PF PF +==++≥,当|PF 1|=2a 时取等号.因此应有c -a ≤2a ,即e =ca ≤3,又e >1,故1<e ≤3.三、解答题17.证明:∵a 、b 为正数且a +b =1,∴原不等式等价于)(112))((+++≤++n n n n b a b a b a . ))(()(2))((1111n n n n n n n n n n a b b a b a ab b a b a b a b a --=--+=+-++++++当a ≥b 时,a -b ≥0,a n ≥b n ,即b n -a n ≤0,∴(a -b )( b n -a n )≤0, 当a <b 时,a -b <0,a n <b n ,即b n -a n >0,∴(a -b )( b n -a n )<0,因此)(-112))((+++++n n n n b a b a b a ≤0即)(112))((+++≤++n n n n b a b a b a∴原不等式成立.18. 解:设),(y x M ,则依条件得21)0()8()0()2(2222=-+--+-y x y x 两边平方,整理得2216x y +=,这就是所求的轨迹方程.设圆:2216x y +=的圆心O 到直线l :2x -y -55=0的距离为d ,则5d ==故圆上的点到直线l :2x -y -55=0的最小距离为d -4=1.19. 解:由题设,直线l 的斜率必存在且不为0,设斜率为k ,则l 的方程为:(1)6y k x =+-由2(1)64y k x y x =+-⎧⎨=⎩消去y 得222[2(6)4](6)0k x k k x k +--+-= △222[2(6)4]4(6)0k k k k =---->解得33k <<+且0k ≠.设1122(,),(,)A x y B x y ,则2211224,4y x y x ==,12242(6)k k x x k--+=, 由题意知AP BP =,得2222112299()()22x y x y -+=-+,∴22121299()()44022x x x x ---+-=,即1212()(5)0x x x x -+-=,Θ12x x ≠,∴125x x +=,∴242(6)5k k k --=,解得2k =或27k =-2(3舍去)7-<,∴所求的直线方程为24y x =-.(注:另可利用AB 的中点,及垂径分弦定理求解)20. 解:(I )由C 与l 相交于两个不同的点,故知方程组2221,1.x y ax y ⎧-=⎪⎨⎪+=⎩有两个不同的实数解.消去y 并整理得2222(1)220a x a x a -+-= ①24221048(1)0a a a a ⎧-≠⎪∴⎨+->⎪⎩解得01a a <<≠.双曲线的离心率e ==0a <<Q a ≠1 e e ∴>≠即离心率e的取值范围是)+∞U . (II )设1122(,),(,),(0,1)A x y B x y P ,5,12PA PB =u u u r u u u r Q 11225(,1)(,1).12x y x y ∴-=-由此得12512x x =.由于12,x x 都是方程①的根,且210a -≠,∴212221222121a x x a a x x a ⎧+=-⎪⎪-⎨⎪⋅=-⎪-⎩⇒222222217212152121a x a ax a ⎧=-⎪⎪-⎨⎪=-⎪-⎩ ∴2221751212x x =, ∴20x =(舍)或2175x =,∴222289160a a -=- 由0a >,所以1713a =. 21. 解:设该空调的全部运费及活动期间的全部保管费共y 元,则由题意,得36001400(2000)20y x x =⨯+⨯3600400100x x ⨯=+36004100()100x x⨯=+≥⋅=24000.当且仅当36004x x⨯=,即x =120时取等号. ∴当x =120时,y 最小,且min 24000y =.24000-22000=2000(元) ,答:这笔专项资金不够用,至少还需要2000元资金.22. 解:(Ⅰ)设直径的两个端点分别为A 、B ,由椭圆的对称性可得,A 、B 关于中心O (0,0)对称,所以A 、B 点的坐标分别为A (),11y x ,B (),11y x --.P (),y x 上椭圆12222=+by a x 上任意一点,显然||||||||11y y x x ≠≠,因为A 、B 、P 三点都在椭圆上,所以有222122122212211b a y a x b b y a x =+=+, ① 22222222221b a y a x b b y a x =+=+, ②. 而2122121111x x y y k k x x y y k x x y y k PB PA PBPA --=⋅++=--=, 由①-②得:22222211()()0,b x x a y y -+-=22212221y y b x x a-∴=--. 所以该定理在椭圆中的推广为:过椭圆)0(12222>>=+b a by a x 上异于直径两端点的任意一点与一条直径的两个端点连线,则两条连线的斜率之积为定值22ab -.(Ⅱ)该定理在双曲线中的推广为:过双曲线)0,0(12222>>=-b a by a x 上异于直径两端点的任意一点与一条直径的两个端点连线,则两条连线的斜率之积为定值.22a b该定理在有心圆锥曲线中的推广应为:过有心圆锥曲线)0(122≠=+AB By Ax 上异于直径两端点的任意一点与一条直径的两个端点连线,则两条连线的斜率之积为定值-.BA。

高二上学期期末数学试卷(理科)含答案

高二上学期期末数学试卷(理科)含答案

高二(上)期末测试数学试卷(理科)一、选择题(本大题共12小题,共60.0分)1.函数:的单调递增区间是 f(x)=3+xlnx ()A. B. C. D. (0,1e ).(e,+∞)(1e ,+∞)(1e ,e)【答案】C【解析】解:由函数得:,f(x)=3+xlnx f(x)=lnx +1令即,根据得到此对数函数为增函数,f'(x)=lnx +1>0lnx >‒1=ln 1e e >1所以得到,即为函数的单调递增区间.x >1e 故选:C .求出的导函数,令导函数大于0列出关于x 的不等式,求出不等式的解集即可得到x 的范围即为函数的单f(x)调递增区间.本题主要考查学生会利用导函数的正负得到函数的单调区间,同时考查了导数的计算,是一道基础题.2.函数的图象在点处的切线方程为 f(x)=lnx ‒2x x (1,‒2)()A. B. C. D. 2x ‒y ‒4=02x +y =0x ‒y ‒3=0x +y +1=0【答案】C【解析】解:由函数知,f(x)=lnx ‒2x x f'(x)=1‒lnxx 2把代入得到切线的斜率,x =1k =1则切线方程为:,y +2=x ‒1即.x ‒y ‒3=0故选:C .求出曲线的导函数,把代入即可得到切线的斜率,然后根据和斜率写出切线的方程即可.x =1(1,2)本题考查学生会利用导数求曲线上过某点的切线方程,考查计算能力,注意正确求导.3.已知,,,则向量与的夹角为 A(2,‒5,1)B(2,‒2,4)C(1,‒4,1)⃗AB ⃗AC ()A. B. C. D. 30∘45∘60∘90∘【答案】C 【解析】解:因为,,,A(2,‒5,1)B(2,‒2,4)C(1,‒4,1)所以,⃗AB =(0,3,3),⃗AC = (‒1,1,0)所以,并且,,⃗AB ⋅⃗AC═0×(‒1)+3×1+3×0=3|⃗AB |=32|⃗AC |=2所以,,cos <⃗AB ⃗AC >=⃗AB ⋅⃗AC |⃗AB ||⃗AC |=332×2=12的夹角为∴⃗AB 与⃗AC 60∘故选:C .由题意可得:,进而得到与,,再由,可得答⃗AB=(0,3,3),⃗AC = (‒1,1,0)⃗AB ⋅⃗AC |⃗AB ||⃗AC |cos <⃗AB ⃗AC >=⃗AB ⋅⃗AC |⃗AB ||⃗AC |案.解决此类问题的关键是熟练掌握由空间中点的坐标写出向量的坐标与向量求模,以及由向量的数量积求向量的夹角,属于基础试题4.已知椭圆的左焦点为,则 x 225+y 2m 2=1(m >0)F 1(‒4,0)m =()A. 2B. 3C. 4D. 9【答案】B【解析】解:椭圆的左焦点为,∵x 225+y 2m 2=1(m >0)F 1(‒4,0),∴25‒m 2=16,∵m >0,∴m =3故选:B .利用椭圆的左焦点为,可得,即可求出m .x 225+y 2m 2=1(m >0)F 1(‒4,0)25‒m 2=16本题考查椭圆的性质,考查学生的计算能力,比较基础.5.等于 ∫10(e x +2x)dx ()A. 1B. C. e D. e ‒1e +1【答案】C 【解析】解:,∵(e x +x 2)'=e x +2x ,∴∫10(e x +2x)dx ═(e x +x 2)|10=(e +1)‒(1+0)=e故选:C .由,可得,即可得出.(e x +x 2)'=e x +2x ∫10(e x +2x)dx =(e x +2x)|10本题考查了微积分基本定理,属于基础题.6.若函数在处有极大值,则 f(x)=x(x ‒c )2x =3c =()A. 9B. 3C. 3或9D. 以上都不对【答案】A 【解析】解:函数的导数为f(x)=x(x ‒c )2f'(x)=(x ‒c )2+2x(x ‒c),=(x ‒c)(3x ‒c)由在处有极大值,即有,f(x)x =3f'(3)=0解得或3,c =9若时,,解得或,c =9f'(x)=0x =9x =3由在处导数左正右负,取得极大值,f(x)x =3若,,可得或1c =3f'(x)=0x =3由在处导数左负右正,取得极小值.f(x)x =3综上可得.c =9故选:A .由题意可得,解出c 的值之后必须验证是否符合函数在某一点取得极大值的充分条件.f'(3)=0本题考查导数的运用:求极值,主要考查求极值的方法,注意检验,属于中档题和易错题.7.函数的示意图是 y =e x (2x ‒1)()A. B.C. D.【答案】C【解析】解:由函数,y =e x (2x ‒1)当时,可得,排除A ;D x =0y =‒1当时,可得,时,.x =‒12y =0∴x <12y <0当x 从时,越来越大,递增,可得函数的值变大,排除B ;12→+∞y =e x y =2x ‒1y =e x (2x ‒1)故选:C .带入特殊点即可选出答案本题考查了函数图象变换,是基础题.8.若AB 过椭圆 中心的弦,为椭圆的焦点,则面积的最大值为 x 225+y 216=1F 1△F 1AB ()A. 6B. 12C. 24D. 48【答案】B【解析】解:设A 的坐标则根据对称性得:,(x,y)B(‒x,‒y)则面积.△F 1AB S =12OF ×|2y|=c|y|当最大时,面积最大,∴|y|△F 1AB 由图知,当A 点在椭圆的顶点时,其面积最大,△F 1AB 则面积的最大值为:.△F 1AB cb =25‒16×4=12故选:B .先设A 的坐标则根据对称性得:,再表示出面(x,y)B(‒x,‒y)△F 1AB积,由图知,当A 点在椭圆的顶点时,其面积最大,最后结合椭圆的标准方程即可求出面积△F 1AB △F 1AB 的最大值.本小题主要考查函数椭圆的标准方程、椭圆的简单性质、面积公式等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想属于基础题..9.设函数的极大值为1,则函数的极小值为 f(x)=13x 3‒x +m f(x)()A. B. C. D. 1‒13‒113【答案】A【解析】解:,∵f(x)=13x 3‒x +m ,∴f'(x)=x 2‒1令,解得,f'(x)=x 2‒1=0x =±1当或时,,x >1x <‒1f'(x)>0当时,;‒1<x <1f'(x)<0故在,上是增函数,在上是减函数;f(x)(‒∞,‒1)(1,+∞)(‒1,1)故在处有极大值,解得f(x)x =‒1f(‒1)=‒13+1+m =1m =13在处有极小值,f(x)x =1f(1)=13‒1+13=‒13故选:A .求出函数的导数,解关于导函数的方程,求出函数的单调区间,从而求出函数的极值即可.本题考查函数的极值问题,属基础知识的考查熟练掌握导数法求极值的方法步骤是解答的关键..10.设抛物线的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l 的斜率的取值y 2=4x 范围是 ()A. B. C. D. [‒12,12][‒2,2][‒1,1][‒4,4]【答案】C【解析】解:,∵y 2=4x 为准线与x 轴的交点,设过Q 点的直线l 方程为.∴Q(‒1,0)(Q )y =k(x +1)与抛物线有公共点,∵l 方程组有解,可得有解.∴{y =k(x +1)y 2=4x k 2x 2+(2k 2‒4)x +k 2=0,即.∴△=(2k 2‒4)2‒4k 4≥0k 2≤1,∴‒1≤k ≤1故选:C .根据抛物线方程求得Q 点坐标,设过Q 点的直线l 方程与抛物线方程联立消去y ,根据判别式大于等于0求得k 的范围.本题主要考查了抛物线的应用涉及直线与抛物线的关系,常需要把直线方程与抛物线方程联立,利用韦达定.理或判别式解决问题.11.已知函数 x ,若在区间内恒成立,则实数a 的取值范围是 f(x)=ax ‒ln f(x)>1(1,+∞)()A. B. C. D. (‒∞,1)(‒∞,1](1,+∞)[1,+∞)【答案】D 【解析】解: x ,在内恒成立,∵f(x)=ax ‒ln f(x)>1(1,+∞)在内恒成立.∴a >1+lnx x (1,+∞)设,g(x)=1+lnx x 时,,∴x ∈(1,+∞)g'(x)=‒lnxx 2<0即在上是减少的,,g(x)(1,+∞)∴g(x)<g(1)=1,即a 的取值范围是.∴a ≥1[1,+∞)故选:D .化简不等式,得到在内恒成立设,求出函数的导数,利用函数的单调性化简求a >1+lnx x (1,+∞).g(x)=1+lnx x 解即可.本题考查函数的导数的综合应用,考查转化思想以及计算能力.12.设双曲线的两条渐近线与直线分别交于A ,B 两点,F 为该双曲线的右焦点若x 2a 2‒y 2b 2=1x =a 2c .,则该双曲线的离心率的取值范围是 60∘<∠AFB <90∘()A. B. C. D. (1,2)(2,2)(1,2)(2,+∞)【答案】B【解析】解:双曲线的两条渐近线方程为,时,,x 2a 2‒y 2b 2=1y =±b a x x =a 2c y =±ab c ,,∴A(a 2c ,ab c )B(a 2c ,‒ab c ),∵60∘<∠AFB <90∘,∴33<k FB <1,∴33<ab c c ‒a 2c <1,∴33<a b <1,∴13<a 2c 2‒a 2<1,∴1<e 2‒1<3.∴2<e <2故选:B .确定双曲线的两条渐近线方程,求得A ,B 的坐标,利用,可得,由x 2a 2‒y 2b 2=160∘<∠AFB <90∘33<k FB <1此可求双曲线的离心率的取值范围.本题考查双曲线的几何性质,考查学生的计算能力,正确寻找几何量之间的关系是关键.二、填空题(本大题共4小题,共20.0分)13.双曲线的顶点到其渐近线的距离等于______.x 2‒y 2=1【答案】22【解析】解:双曲线的,x 2‒y 2=1a =b =1可得顶点为,(±1,0)渐近线方程为,y =±x 即有顶点到渐近线的距离为d =11+1=22故答案为:.22求得双曲线的,求得顶点坐标,渐近线方程,运用点到直线的距离公式计算即可得到所求值.a =b =1本题考查双曲线的顶点到渐近线的距离,注意运用点到直线的距离公式,考查运算能力,属于基础题.14.已知函数的导函数为,且满足,则______.f(x)f'(x)f(x)=3x 2+2xf'(2)f'(5)=【答案】6【解析】解:f'(x)=6x +2f'(2)令得x =2f'(2)=‒12∴f'(x)=6x ‒24∴f'(5)=30‒24=6故答案为:6将看出常数利用导数的运算法则求出,令求出代入,令求出.f'(2)f'(x)x =2f'(2)f'(x)x =5f'(5)本题考查导数的运算法则、考查通过赋值求出导函数值.15.已知向量5,,1,,若平面ABC ,则x 的值是______.⃗AB=(1,‒2)⃗BC =(3,2)⃗DE =(x,‒3,6).DE//【答案】‒23【解析】解:平面ABC ,∵DE//存在事实m ,n ,使得,∴⃗DE =m ⃗AB +n ⃗BC ,解得.∴{x =m +3n ‒3=5m +n 6=‒2m +2n x =‒23故答案为:.‒23由平面ABC ,可得存在事实m ,n ,使得,利用平面向量基本定理即可得出.DE//⃗DE =m ⃗AB +n ⃗BC 本题考查了平面向量基本定理、方程的解法,考查了推理能力与计算能力,属于基础题.16.已知抛物线C :的焦点F ,,则曲线C 上的动点P 到点F 与点A 的距离之和的最小值为y 2=‒4x A(‒1,1)______.【答案】2【解析】解:抛物线方程为,∵y 2=‒4x ,可得焦点为,准线为∴2p =4F(‒1,0)x =1设P 在抛物线准线l 上的射影点为Q 点,A(‒1,1)则由抛物线的定义,可知当P 、Q 、A 点三点共线时,点P 到点的距离与P 到该抛物线焦点的距离之和(‒1,1)最小,最小值为.∴1+1=2故答案为:2.根据抛物线方程求出焦点坐标和准线方程,再由抛物线的定义知:当P 、A 和P 在准线上的射影点Q 三点共线时,这个距离之和最小,即可得出结论.本题给出抛物线上的动点,求该点到定点Q 和焦点F 距离之和的最小值,着重考查了抛物线的定义和简单几何性质等知识,属于中档题.三、解答题(本大题共6小题,共70.0分)17.已知函数.f(x)=x 3+x ‒16求曲线在点处的切线的方程;(I)y =f(x)(2,‒6)Ⅱ直线L 为曲线的切线,且经过原点,求直线L 的方程及切点坐标.()y =f(x)【答案】解:函数的导数为,(I)f(x)=x 3+x ‒16f'(x)=3x 2+1可得曲线在点处的切线的斜率为,y =f(x)(2,‒6)3×4+1=13即有曲线在点处的切线的方程为,y =f(x)(2,‒6)y ‒(‒6)=13(x ‒2)即为;13x ‒y ‒32=0Ⅱ的导数为,()f(x)f'(x)=3x 2+1设切点为,可得切线的斜率为,(m,n)3m 2+1即有,3m 2+1=n m =m 3+m ‒16m 即为,2m 3+16=0解得,m =‒2,n =‒8‒2‒16=‒26可得直线L 的方程为及切点坐标为.y =13x (‒2,‒26)【解析】求出的导数,可得切线的斜率,由点斜式方程即可得到所求切线的方程;(I)f(x)Ⅱ的导数为,设切点为,可得切线的斜率,运用两点的斜率公式,可得m 的方程,()f(x)f'(x)=3x 2+1(m,n)解方程可得m 的值,即可得到所求切线的方程和切点坐标.本题考查导数的运用:求切线的方程,考查导数的几何意义,以及运算能力,正确求导和运用直线方程是解题的关键,属于基础题.S‒ABCD SD⊥18.如图,在四棱锥中,底面ABCD,底面ABCD是矩形,且SD=AD=2AB,E是SA的中点.(1)BED⊥求证:平面平面SAB;(2)()求平面BED与平面SBC所成二面角锐角的大小.(1)∵SD⊥SD⊂【答案】证明:底面ABCD,平面SAD,∴SAD⊥ABCD (2)平面平面分∵AB⊥AD SAD∩,平面平面ABCDAD,∴AB⊥平面SAD,DE⊂又平面SAD,∴DE⊥AB (4),分∵SD=AD∴DE⊥SA,E是SA的中点,,∵AB∩SA=A DE⊥AB DE⊥SA,,,∴DE⊥平面SAB,∵DE⊂平面BED,∴BED⊥SAB (6)平面平面分(2)D‒xyz AD=2解:由题意知SD,AD,DC两两垂直,建立如图所示的空间直角坐标系,不妨设.则0,,0,,,,0,,0,,D(0,0)A(2,0)B(2,2,0)C(0,2,0)S(0,2)E(1,1),,,分∴⃗DB=(2,2,0)⃗DE=(1,0,1)⃗CB=(2,0,0)⃗CS=(0,‒2,2)…(8)设是平面BED 的法向量,则,即,⃗m =(x 1,y 1,z 1){⃗m ⋅⃗DB =0⃗m ⋅⃗DE=0{2x 1+2y 1=0x 1+z 1=0令,则,x 1=‒1y 1=2,z 1=1是平面BED 的一个法向量.∴⃗m=(‒1,2,1)设是平面SBC 的法向量,则,即,⃗n=(x 2,y 2,z 2){⃗n ⋅⃗CB =0⃗n ⋅⃗CS=0{2x 2=0‒2y 2+2z 2=0解得,令,则,x 2=0y 2=2z 2=1是平面SBC 的一个法向量分∴⃗n=(0,2,1) (10),∵cos〈⃗m ,⃗n>=⃗m ⋅⃗n|⃗m|⋅|⃗n|=323=32平面BED 与平面SBC所成锐二面角的大小为分∴π6 (12)【解析】证明平面平面SAB ,利用面面垂直的判定定理,证明平面SAB 即可;(1)BED ⊥DE ⊥建立空间直角坐标系,求出平面BED 与平面SBC 的法向量,利用向量的夹角公式,即可求平面BED 与平(2)面SBC 所成二面角锐角的大小.()本题考查面面垂直,考查面面角,解题的关键是掌握面面垂直的判定,正确利用向量法,属于中档题.19.如图所示,斜率为1的直线过抛物线的焦点F ,与抛物线交y 2=2px(p >0)于A ,B 两点且,M 为抛物线弧AB 上的动点.|AB|=8求抛物线的方程;(1)求的最大值.(2)S △ABM 【答案】解 由条件知:,(1)l AB y =x ‒p2与联立,消去y ,得,y 2=2px x 2‒3px +14p 2=0则由抛物线定义得.x 1+x 2=3p.|AB|=x 1+x 2+p =4p 又因为,即,|AB|=8p =2则抛物线的方程为;y 2=4x 由知,且:,(2)(1)|AB|=4p l AB y =x ‒p2设与直线AB 平行且与抛物线相切的直线方程为,y =x +m 代入抛物线方程,得.x 2+2(m ‒p)x +m 2=0由,得.△=4(m ‒p )2‒4m 2=0m =p 2与直线AB 平行且与抛物线相切的直线方程为y =x +p2两直线间的距离为,d =22p故的最大值为.S △ABM 12×4p ×22p =2p 2=42【解析】根据题意,分析易得直线AB 的方程,将其与联立,得,由根与系数的(1)y 2=2px x 2‒3px +14p 2=0关系可得,结合抛物线的定义可得,解可得p 的值,即可得抛物线的x 1+x 2=3p |AB|=x 1+x 2+p =4p =8方程;设与直线AB 平行且与抛物线相切的直线方程为,代入抛物线方程,得,(2)y =x +m x 2+2(m ‒p)x +m 2=0进而可得与直线AB 平行且与抛物线相切的直线方程,计算可得两直线间的距离,由三角形面积公式计算即可得答案.本题考查直线与抛物线的位置关系,注意抛物线的焦点弦的性质,属于中档题20.函数在处取得极值.f(x)=ax +xlnx x =1Ⅰ求的单调区间;()f(x)Ⅱ若在定义域内有两个不同的零点,求实数m 的取值范围.()y =f(x)‒m ‒1【答案】解:Ⅰ,分( (1),解得,当时,,分a =‒1a =‒1f(x)=‒x +xlnx (2)即,令0'/>,解得;分x >1 (3)令,解得;分0<x <1 (4)在处取得极小值,的增区间为,减区间为分∴f(x)x =1f(x)(1,+∞)(0,1)…(6)Ⅱ在内有两个不同的零点,()y =f(x)‒m ‒1(0,+∞)可转化为在内有两个不同的根,f(x)=m +1(0,+∞)也可转化为与图象上有两个不同的交点,分y =f(x)y =m +1...(7)由Ⅰ知,在上单调递减,在上单调递增,()f(x)(0,1)(1,+∞),分f(x )min =f(1)=‒1 (8)由题意得,即分m +1>‒1m >‒2①…(10)当时,;0<x <1f(x)=x(‒1+lnx)<0当且时,;x >0x→0f(x)→0当时,显然或者举例:当,;x→+∞f(x)→+∞(x =e 2f(e 2)=e 2>0)由图象可知,,即分m +1<0m <‒1②...(11)由可得分①②‒2<m <‒1 (12)【解析】Ⅰ求出函数的导数,计算,求出a 的值,从而求出函数的单调区间即可;()f'(1)Ⅱ问题转化为在内有两个不同的根,结合函数的图象求出m 的范围即可.()f(x)=m +1(0,+∞)本题考查了函数的单调性、极值问题,考查导数的应用以及数形结合思想、转化思想,是一道中档题.21.已知椭圆,已知定点,若直线与椭圆交于C 、D 两点问:是否存在x 23+y 2=1E(‒1,0)y =kx +2(k ≠0).k 的值,使以CD 为直径的圆过E 点?请说明理由.【答案】解:假若存在这样的k 值,由得.{y =kx +2x 2+3y 2‒3=0(1+3k 2)x 2+12kx +9=0 ∴△=(12k )2‒36(1+3k 2)>0.①设、,则C(x 1,y 1)D(x 2,y 2){x 1+x 2=‒12k1+3k 2x 1⋅x 2=91+3k 2②而.y 1⋅y 2=(kx 1+2)(kx 2+2)=k 2x 1x 2+2k(x 1+x 2)+4要使以CD 为直径的圆过点,当且仅当时,则,即E(‒1,0)CE ⊥DE y 1x 1+1⋅y 2x2+1=‒1.y 1y 2+(x 1+1)(x 2+1)=0 ∴(k 2+1)x 1x 2+2(k +1)(x 1+x 2)+5=0.③将式代入整理解得经验证,,使成立.②③k =76.k =76①综上可知,存在,使得以CD 为直径的圆过点E .k =76【解析】把直线的方程与椭圆的方程联立,转化为关于x 的一元二次方程,得到根与系数的关系,假设以CD为直径的圆过E 点,则,将它们联立消去,即可得出k 的值.CE ⊥DE x 1x 2本题考查椭圆的标准方程,考查椭圆的性质,考查直线与椭圆的位置关系,考查韦达定理的运用,考查向量知识,解题的关键是联立方程,利用韦达定理求解.22.设函数.f(x)=x ‒ae x ‒1求函数的单调区间;(1)f(x)若对恒成立,求实数a 的取值范围.(2)f(x)≤0x ∈R 【答案】解:(1)f'(x)=1‒ae x ‒1当时,,在R 上是增函数;a ≤0f'(x)>0f(x)当时,令得a >0f'(x)=0x =1‒lna 若,则,从而在区间上是增函数;x <1‒lna f'(x)>0f(x)(‒∞,1‒lna)若,则,从而在区间上是减函数.x >1‒lna f'(x)<0f(x)(1‒lna,+∞由可知:当时,不恒成立,(2)(1)a ≤0f(x)≤0又当时,在点处取最大值,a >0f(x)x =1‒lna 且,f(1‒lna)=1‒lna ‒ae‒lna=‒lna 令得,‒lna <0a ≥1故若对恒成立,则a 的取值范围是.f(x)≤0x ∈R [1,+∞)【解析】对函数求导,使得导函数大于0,求出自变量的取值范围,针对于a 的值小于进行讨论,得到函(1)数的单调区间.这是一个恒成立问题,根据上一问做出的结果,知道当时,不恒成立,又当时,在(2)a ≤0f(x)≤0a >0f(x)点处取最大值,求出a 的范围.x =1‒lna 本题考查求函数的单调区间和解决函数恒成立的问题,解题时注意函数的单调性是解决最值的必经途径,注意数字的运算.。

高二上学期理科数学期末试题(含答案)

高二上学期理科数学期末试题(含答案)

高二上学期理科数学期末试题(含答案)1.抛物线22y x =的准线方程为( )A .12y =-B .18y =-C .12x =-D .18x =- 2.“0x >”是0>”成立的 ( )A .充分非必要条件B .必要非充分条件C .非充分非必要条件D .充要条件3.如果0a b <<;那么下列不等式成立的是( )A .11a b <B .2ab b <C .2ab a -<- D .11a b -<-4.已知变量x 、y 满足约束条件1110x y x y x +≤⎧⎪-≤⎨⎪+≥⎩;则2z x y =+的最小值为( )A .3B .1C .5-D .6-5.在ABC ∆中;若C B A 222sin sin sin <+;则ABC ∆的形状是( )A .钝角三角形.B .直角三角形.C .锐角三角形.D .不能确定.6.若双曲线22221x y a b-=)A .y =±2xB .y= C .12y x=±D.2y x =± 7.下面是关于公差0d >的等差数列()n a 的四个命题:{}1:n p a 数列是递增数列; {}2:n p na 数列是递增数列;3:n a p n ⎧⎫⎨⎬⎩⎭数列是递增数列;{}4:3n p a nd +数列是递增数列; 其中真命题为( )A.12,p pB.34,p pC.23,p pD.14,p p 8.已知{}n a 为等比数列.下面结论中正确的是( )A .1322a a a +≥B .2221322a a a +≥C .若13a a =;则12a a =D .若31a a >;则42a a > 9.如图;G 是ABC ∆的重心;,,OA a OB b OC c ===u u u r r u u u r r u u u r r;则OG =u u u r( )A .122333a b c ++r r rB .221333a b c ++r r rC .222333a b c ++r r rD .111333a b c ++r r r10.设12F F 是椭圆2222:1(0)x y E a b a b +=>>的左、右焦点;P 为直线32ax =上一点;∆21F PF 是底角为30o 的等腰三角形;则E 的离心率为( )A.12 B. 23 C. 34 D. 4511.等轴双曲线C 的中心在原点;焦点在x 轴上;C 与抛物线x y 162=的准线交于,A B两点;AB =C 的实轴长为( )()A ()B()C 4 ()D 812.已知椭圆2222:1(0)x y E a b a b+=>>的右焦点为(3,0)F ;过点F 的直线交椭圆于,A B 两点.若AB 的中点坐标为(1,1)-;则E 的方程为( )A .2214536x y +=B .2213627x y +=C .2212718x y +=D .221189x y += 二.填空题:( 本大题共4小题;每小题5分;共20分) 13.不等式220x x +-<的解集为___________.9题图B14.已知△ABC 的顶点B 、C 在椭圆2213x y +=上;顶点A 是椭圆的一个焦点;且椭圆的另外一个焦点在BC 边上;则△ABC 的周长是____________. 15.在等差数列{}n a 中;已知3810a a +=;则573a a +=_____.16.若不等式210x kx k -+->对(1,2)x ∈恒成立;则实数k 的取值范围是______. 三、解答题(本大题共6小题;共70分)解答应写出文字说明;证明过程或演算步骤。

(完整)高二上学期期末理科数学试题及答案,推荐文档

(完整)高二上学期期末理科数学试题及答案,推荐文档

高二年级理科数学卷20161225一、选择题.(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、若命题p :0x ∃>,2320x x -+>,则命题p ⌝为A. 0x ∃>,2320x x -+≤B. 0x ∃≤,2320x x -+≤ C. 0x ∀>,2320x x -+≤D. 0x ∀≤,2320x x -+≤2、公比为2的等比数列{n a } 的各项都是正数,且 41016a a =,则6a =A .1B .2C .4D .8 3、在ABC ∆中,如果bc a c b c b a 3))((=-+++,那么角A 等于 A .ο30 B .ο60 C .ο120 D .ο1504、已知变量,x y 满足约束条件1101x y x x y +≤⎧⎪+≥⎨⎪-≤⎩,则23z x y =+的取值范围是A. [8,4]-B. [8,2]-C. [4,2]-D. ]4,8[--5、已知双曲线221916x y -=上一点M 到A (5,0)的距离为3,则M 到左焦点的距离等于 A .6 B .7 C .8 D .9 6、已知{}n a 为等差数列,其前n 项和为n S ,若36a =,312S =,则=+++821111S S S Λ A. 87B. 98C. 89D. 9107、设平面α内两个向量的坐标分别为(1,2,1)、(-1,1,2),则下列向量中是平面α的法向量的是A.(-1,-2,5)B.(-1,1,-1)C.(1, 1,1)D.(1,-1,-1)8、空间四点A,B,C,M 互不重合且无三点共线,O 为空间任意一点,则使向量MA u u u r 、MB u u u r 、MC u u uu r 可能成为空间一组基底的关系是A .111333OM OA OB OC =++u u u u r u u u r u u u r u u u rB .MA MB MC =+u u u r u u u r u u u u rC .OM OA OB OC =++u u u u r u u u r u u u r u u u rD .32MA MB MC =-u u u r u u u r u u u u r9、已知直线m 、n 和平面α,则n m //的一个必要不充分条件是A .αα////n m 且B .α//m 且n α⊥C .m 、n 与α成等角D .m α⊥且n α⊥10、如果满足∠ABC=060,AC=12,BC=k 三角形恰有一个,那么k 的取值范围是A .38=kB .120≤<kC .12≥kD .120≤<k 或38=k11、已知双曲线的顶点与焦点分别是椭圆的22221y x a b+=(0a b >>)焦点与顶点,若双曲线的两条渐近线与椭圆的交点构成的四边形恰为正方形,则椭圆的离心率为A .13 B .12C .3D .2212.如果满足方程y tx t y x 322222+=+++的实数对),(y x 一定满足不等式||x y ≥,则常数t 的取值范围是A .]223,223[--- B .]223,223[++- C .]223,223[-+- D .]223,223[+--二、填空题.(本大题共 4小题,每小题 5分,共 20 分 )13、已知向量(5,3,1)a =r ,2(2,,)5b t =--r ,若向量a r 与b r 的夹角为锐角,则t 的取值范围是14、等差数列{}n a 前9项的和等于前4项的和.若141,0k a a a =+=,则k = .15、抛物线22(0)x py p =>的焦点为F,其准线与双曲线22133x y -=相交于,A B 两点,若ABF ∆为等边三角形,则p 的值为_____________16、已知命题p :ABC ∆中, B A >是B A sin sin >的充要条件;命题q : 0>>b a 是ab ba >+2的充分不必要条件。

高二上期期末数学试卷理科

高二上期期末数学试卷理科

一、选择题(本大题共10小题,每小题5分,共50分)1. 下列各数中,无理数是()A. √4B. √9C. √16D. √252. 已知函数f(x) = 2x - 3,则f(-1)的值为()A. -5B. -2C. 0D. 33. 在△ABC中,∠A=60°,∠B=45°,则∠C的度数为()A. 45°B. 60°C. 75°D. 90°4. 已知等差数列{an}的前n项和为Sn,若a1=3,d=2,则S10的值为()A. 55B. 60C. 65D. 705. 若复数z满足|z-2i|=3,则复数z在复平面上的对应点位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限6. 下列函数中,单调递增的函数是()A. y = -x^2B. y = 2x + 1C. y = x^3D. y = √x7. 若向量a=(2, 3),向量b=(4, 6),则向量a与向量b的夹角θ的余弦值为()A. 1/2B. 1/3C. 2/3D. 3/48. 已知等比数列{an}的公比为q,若a1=2,a4=32,则q的值为()A. 2B. 4C. 8D. 169. 下列各方程中,无解的是()A. x + 2 = 0B. x^2 - 4 = 0C. x^2 + 1 = 0D. x^2 - 2x + 1 = 010. 若函数y = kx + b(k≠0)为一次函数,且过点(2,3),则k+b的值为()A. 5B. 6C. 7D. 8二、填空题(本大题共10小题,每小题5分,共50分)11. 函数y = -3x + 5的图像是一条斜率为______的直线。

12. 已知等差数列{an}中,a1=1,d=2,则第10项an的值为______。

13. 在△ABC中,若∠A=90°,∠B=30°,则AB:BC:AC的比值为______。

14. 复数z=3+4i的模长为______。

高二年级理科数学上学期期末考试试卷

高二年级理科数学上学期期末考试试卷

高二年级数学上学期期末考试试卷(理科)一、选择题:本大题共12小题 :每小题5分 :共60分.在每小题给出的四个选项中 :只有一个选项是符合题目要求的. 1. 向量(1,2,2),(2,4,4)a b =-=-- :则a 与b ( )2. 在ABC ∆中 : 30,45, 2.A B BC ∠=︒∠=︒=则AC 边长为 ( )B.C.D. 3. 过抛物线y=x 2上的点M (21 : 41)的切线的倾斜角是 ( ) A ︒30 B ︒45 C ︒60 D ︒90()f x 在[],a b 上的图象是一条连续不间断的曲线 :且在(),a b 内可导 :则下列结论中正确的是( )A. ()f x 在[],a b 上的极值点一定是最值点B. ()f x 在[],a b 上的最值点一定是极值点C. ()f x 在[],a b 上可能没有极值点D. ()f x 在[],a b 上可能没有最值点{}2|230A x x x =--< :{}2|B x x p =< :若A B ⊆则实数P 的取值范围是( )A. 13p p ≤-≥或B. 3p ≥C. 9p ≥D. 9p > {}n a :如果121321,,,,,n n a a a a a a a ----(2n ≥)是首项为1公比为13的等比数列 :那么n a 等于( )A.31(1)23n - B. 131(1)23n -- C. 21(1)33n - D. 121(1)33n -- 2222135x y m n +=和双曲线2222123x y m n-=有公共的焦点 :那么双曲线的渐近线方程为( )A. x y =B. y x =C. x y =D. y x =8. 如图所示长方体ABCD —1111A B C D 中 :12AA AB == :AD=1点E 、F 、G 分别是11DD AB CC 、、的中点 :G1则异面直线1A E 和GF 所成的角为 ( )A. arccos5 B. 4πC. arccos 5D. 2π()()32,,0f x ax bx x a b R ab =++∈≠的图象如图所示(12,x x 为两个极值点) :且12x x >则有( )A. 0,0a b >>B. 0,0a b <<C. 0,0a b <>D. 0,0a b ><10.已知直线y=kx-k 及抛物线()220y px p => :则 ( )A.直线与抛物线有且只有一个公共点C.直线与抛物线有一个或两个公共点11已知梯形的两底的长度分别为(),a b a b <。

高二数学上学期(理科)期末试卷

高二数学上学期(理科)期末试卷

高二数学上学期(理科)期末试卷测试范围:必修3、选修2-1第1、2章及选修2-2第1章本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

满分200分。

考试时间150分钟。

参考公式:三角函数的和差化积公式sin sin 2sincossin sin 2cossin2222cos cos 2cos coscos cos 2sinsin2222αβαβαβαβαβαβαβαβαβαβαβαβ+-+-+=-=+-+-+=-=-一组数据12,,,n x x x 的方差221()nii x x S n=-=∑;其中1nii xx n==∑为这组数据的平均数值。

设线性回归方程为y bx a =+;则系数a ;b 满足1112211()()()n n ni i i i i i i n ni i i i n x y x y b n x x a y bx=====⎧-⎪⎪=⎪⎨-⎪⎪=-⎪⎩∑∑∑∑∑一、选择题:本大题共12小题;每小题5分;共60分.在每小题给出的四个选项中;只有一项是符合题目要求的.1.一个容量为32的样本;已知某组样本的频率为0.125;则该组样本的频数为 A.2B.4C.6D.8 ( ) 2.下列几个图形在流程图中分别代表什么框? ①;②;③;④分别代表A. 处理框;起止框;输入、输出框;判断框B. 起止框;输入、输出框; 处理框;判断框①② ④C. 起止框; 处理框;输入、输出框;判断框D. 输入、输出框; 处理框;起止框;判断框3.从甲、乙、丙三人中任选两名代表;甲被选中的概率是 ( ) A.12 B. 13 C. 234.顶点在原点;焦点是(0;-2)的抛物线方程是 ( ) A. 28y x = B. 28y x =- C.28x y = D. 28x y =-()(2),(2)f x x x f '=+-=则A.0B.-2 C6.下列命题中正确的是 ( )①“若x 2+y 2≠0;则x ;y 不全为零”的否命题 ②“正多边形都相似”的逆命题③“若m>0;则x 2+x -m=0有实根”的逆否命题 ④“若x=123;则x 是无理数”的逆否命题A 、①②③④B 、①③④C 、②③④D 、①④ 7.平面内有定点A 、B 及动点P ;设命题甲是“|PA|+|PB|是定值”;命题乙是“点P 的轨迹是以A 、B 为焦点的椭圆”;那么甲是乙的 ( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件8.P 是长轴在x 轴上的椭圆22221(0)x y a b a b+=>>上的点;12,F F 分别为椭圆的两个焦点;椭圆的半焦距为c ;则12PF PF 的最大值与最小值之差一定是 ( )A .1B .2a C .2b D .2c9.双曲线221x y -=支右上一点P (a ;b )到直线y=x则a+b 的值 ( ) A .12-B .12C .1122-或 D.122或 122=+ny m x 和n ny mx =+(n m ,是不为零的实数)所表示的曲线草图只可能( )11、已知函数1sin 2cos(),22y x x π'=+-则y (导函数)的取值范围是( ) A .9,28⎡⎤-⎢⎥⎣⎦ B .[]0,2 C .9,8⎡⎫-+∞⎪⎢⎣⎭D .以上都不对12.曲线y x x x x =---()()()1250…在原点处的切线方程为 ( ) A.y = 1275x B ; y = 502x C ;y = 100x D. y = 50!x二.填空题:本大题共有6小题;每小题5分;共30分.把答案填在题中横线上. 13.八个数据1;2;4;5;7;8;10;11的平均数是 ▲ 14.命题 “2,240x R x x ∃∈-+>”的否定是 ▲15.动点P(x ;y)到直线x=5的距离与它到点F(1;0)的距离之比为3; 则动点P 的轨迹为 ▲16.过原点作曲线x e y =的切线;则切点的坐标为 ▲17. 已知双曲线12222=-b y a x (a>0;b>0)的离心率e=215+(“优美双曲线”);A 、F分别是它的左顶点和右焦点;设点B 的坐标为(0;b);则∠ABF 等于 ▲18、对正整数n ;设曲线)1(x x y n -=在x =2处的切线与y 轴交点的纵坐标为n a ;则数列1n a n ⎧⎫⎨⎬+⎩⎭的前n 项和的公式是 ▲三.解答题:本大题共6小题;共70分.解答应写出文字说明、证明过程或演算步骤.A .B .C .D .19.(本题满分12分;每问4分)将一颗骰子先后抛掷2次;观察向上的点数;问:(1)两数之和为6的概率;(2)两数之和是3的倍数的概率; (3)两数之积是6的倍数的概率。

高二数学(理)上学期期末试卷及答案

高二数学(理)上学期期末试卷及答案

上学期期末考试 高二数学(理科)试卷考试时间:120分钟 试题分数:150分卷Ⅰ一、选择题:本大题共12小题,每题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 对于常数m 、n ,“0mn <”是“方程221mx ny +=的曲线是双曲线”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 2. 命题“所有能被2整除的数都是偶数”的否定..是 A .所有不能被2整除的数都是偶数 B .所有能被2整除的数都不是偶数 C .存在一个不能被2整除的数是偶数 D .存在一个能被2整除的数不是偶数3. 已知椭圆1162522=+y x 上的一点P 到椭圆一个焦点的距离为7,则P 到另一焦点距离为 A .2 B .3 C .5 D .74 . 在一次跳伞训练中,甲、乙两位学员各跳一次,设命题p 是“甲降落在指定范围”,q 是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为 A .()()p q ⌝∨⌝ B .()p q ∨⌝ C .()()p q ⌝∧⌝ D .p q ∨5. 若双曲线22221x y a b-=3A .2± B. 12± C. 2 D.22±6. 曲线sin 1sin cos 2x y x x =-+在点(,0)4M π处的切线的斜率为2212 D. 12-7. 已知椭圆)0(1222222>>=+b a b y a x 的焦点与双曲线12222=-bx a y 的焦点恰好是一个正方形的四个顶点,则抛物线2bx ay =的焦点坐标为 A. )0,43(B. )0,123(C. )123,0( D.)43,0( 8.一间民房的屋顶有如图三种不同的盖法:①单向倾斜;②双向倾斜;③四向倾斜.记三种盖法屋顶面积分别为123,,P P P ,① ② ③若屋顶斜面与水平面所成的角都是α,则A. 123P P P ==B. 123P P P =<C. 123P P P <=D. 123P P P <<9. 马云常说“便宜没好货”,他这句话的意思是:“不便宜”是“好货”的A .充分条件B .必要条件C .充分必要条件D .既不充分也不必要条件10. 设0>a ,c bx ax x f ++=2)(,曲线)(x f y =在点P ()(,00x f x )处切线的倾斜角的取值范围是]4,0[π,则P 到曲线)(x f y =对称轴距离的取值范围为A. ]1,0[aB. ]21,0[aC. ]2,0[a bD. ]21,0[a b - 11. 已知点O 在二面角AB αβ--的棱上,点P 在α内,且60POB ∠=︒.若对于β内异于O 的任意一点Q ,都有60POQ ∠≥︒,则二面角AB αβ--的大小是A. 30︒B.45︒C. 60︒D.90︒12. 已知双曲线22221(0,0)x y a b a b-=>>的两个焦点为1F 、2F ,点A 在双曲线第一象限的图象上,若△21F AF 的面积为1,且21tan 21=∠F AF ,2tan 12-=∠F AF ,则双曲线方程为 A . 1312522=-y x B .1351222=-y x C .1512322=-y x D .1125322=-y x 卷Ⅱ二、填空题:本大题共4小题,每小题5分,共20分.13. 正方体1111ABCD A B C D -中,M 是1DD 的中点,O 为底面正方形ABCD 的中心,P 为棱11A B 上任意一点,则直线OP 与直线AM 所成的角为 . 14. 函数2()ln '(1)54f x x f x x =-+-,则(1)f =________.15.已知b a,是夹角为60的两单位向量,向量b c a c⊥⊥,,且||1c =,c b a y c b a x -+-=+-=3,2,则><y x,cos = .16. 过抛物线22(0)x py p =>的焦点F 作倾斜角为45的直线,与抛物线分别交于A 、B 两点(A 在y 轴左侧),则AFFB= . 三、解答题:本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分10分)过点(1,1)-作函数3()f x x x =-的切线,求切线方程.18.(本小题满分12分)已知集合{}|(1)(2)0A x ax ax =-+≤,集合{}|24.B x x =-≤≤ 若x B ∈是x A ∈的充分不必要条件,求实数a 的取值范围.19.(本小题满分12分) 如图,在四棱锥P ABCD -中,底面为直角梯形,//AD BC ,90BAD ∠=,PA ⊥底面ABCD ,且2PA AD AB BC ===,,M N 分别为,PC PB 的中点.(Ⅰ)求证:PB DM ⊥;(Ⅱ)求CD 与平面ADMN 所成的角的正弦值.20. (本小题满分12分)已知三棱柱'''C B A ABC -如图所示,四边形''B BCC 为菱形,o BCC 60'=∠,ABC ∆为等边FE C 'B'AA'CB三角形,面⊥ABC 面''B BCC ,F E 、分别为棱'CC AB 、的中点. (Ⅰ)求证://EF 面''BC A ;(Ⅱ)求二面角B AA C --'的大小.21. (本小题满分12分)已知椭圆22122:1(0)x y C a b a b +=>>的离心率为2,且椭圆上点到左焦点距离的最小值为1.(Ⅰ)求1C 的方程;(Ⅱ)设直线l 同时与椭圆1C 和抛物线22:4C y x =相切,求直线l 的方程.22. (本小题满分12分)已知椭圆C :22221(0)x y a b a b+=>>过点,直线(1y k x =-)(0)k ≠与椭圆C 交于不同的两点M N 、,MN 中点为P ,O 为坐标原点,直线OP 斜率为12k-. (Ⅰ)求椭圆C 的方程;(Ⅱ)椭圆C 的右顶点为A ,当AMN ∆k 的值.xyz参考答案一.选择题CDBAC CDABB DB 二.填空题2π1- 5216- 322-三.解答题17.解:设切点为3(,)m m m -,则切线方程为32(31)()y m m m x m -+=--,┅┅┅┅┅┅2分将点(1,1)-带入,解得0m =或32, ┅┅┅┅┅┅┅ 8分 所以切线方程为y x =-或234270x y --= ┅┅┅┅┅┅┅10分 18.解:(1)0a >时,21[,]A a a =-,若x B ∈是x A ∈的充分不必要条件,所以212,4a a-≥-≤, 104a <≤,检验14a =符合题意;┅┅┅┅┅┅┅4分(2)0a =时,A R =,符合题意;┅┅┅┅┅┅┅8分(3)0a <时,12[,]A a a =-,若x B ∈是x A ∈的充分不必要条件,所以122,4a a-≥≤-,102a -≤<,检验12a =-不符合题意.综上11(,]24a ∈-.┅┅┅┅┅┅┅12分19. 解如图,以A 为坐标原点建立空间直角坐标系A xyz -,设1BC =,则 1(0,0,0),(0,0,2),(2,0,0),(2,1,0),(1,,1),(0,2,0)2A P B C M D .(I ) 因为3(2,0,2)(1,,1)2PB DM ⋅=-⋅-0=,所以.PB DM ⊥(II ) 因为(2,0,2)(0,2,0)PB AD ⋅=-⋅0=,所以PB AD ⊥, 又因为PB DM ⊥,所以PB ⊥平面.ADMN因此,PB DC <>的余角即是CD 与平面ADMN 所成的角. 因为cos ,||||PB DC PB DC PB DC ⋅<>=⋅105=,所以CD 与平面ADMN 所成的角的正弦为510 20. (Ⅰ)证明(方法一)取B A '中点D ,连接DC ED ,,因为D E ,分别为B A AB ',中点,所以'//,'21AA ED AA ED =,┅┅┅┅┅┅┅3分 所以CF ED CF ED //,=,所以四边形EFCD 为平行四边形,所以CD EF //,又因为BC A CD BC A EF ''面,面⊂⊄,所以//EF 面BC A ';┅┅┅┅┅┅┅6分(方法二)取'AA 中点G ,连接FG EG ,, 因为G E ,分别为',AA AB 中点,所以B A EG '//又因为G F ,分别为','AA CC 中点,所以''//C A FG ┅┅┅┅┅┅┅3分且G GF EG EFG GF EFG EG =⊂⊂ ,,面面,'''',''',''''A B A C A BC A B A BC A C A =⊂⊂ 面面所以面//EFG 面''BC A ,又⊂EF 面EFG ,所以//EF 面BC A '┅┅┅┅┅┅6分 (方法三)取BC 中点O ,连接',OC AO ,由题可得BC AO ⊥,又因为面⊥ABC 面''B BCC ,所以⊥AO 面''B BCC ,又因为菱形''B BCC 中oBCC 60'=∠,所以BC O C ⊥'. 可以建立如图所示的空间直角坐标系 ┅┅┅┅┅┅┅7分 不妨设2=BC ,可得)0,0,1(C ,)0,3,0('C)3,0,0(A ,)0,0,1(-B ,)3,3,1('-A ,)0,3,2('-B ,所以)0,23,21(),23,0,21(F E -所以)3,3,0('),0,3,1('),23,23,1(==-=BA BC EF ,┅┅┅┅┅┅┅9分 设面BC A '的一个法向量为),,(c b a n =,则⎩⎨⎧=+=+03303c b b a ,不妨取3=a ,则)1,1,3(),,(-=c b a ,所以0=⋅n,又因为⊄EF 面BC A ',所以//EF 面BC A '.┅┅┅┅┅┅┅12分 (Ⅱ)(方法一)过F 点作'AA 的垂线FM 交'AA 于M ,连接BF BM ,.因为'//','AA CC CC BF ⊥,所以'AA BF ⊥,所以⊥'AA 面MBF , 所以BMF ∠为二面角B AA C --'的平面角. ┅┅┅┅┅┅┅8分因为面⊥ABC 面''B BCC ,所以A 点在面''B BCC 上的射影落在BC 上,所以41cos 'cos 'cos =∠∠=∠ACB BCC ACC , 所以AC MF ACC ==∠415'sin ,不妨设2=BC ,所以215=MF ,同理可得215=BM .┅┅┅┅┅┅┅10分 所以532153415415cos =-+=∠BMF ,所以二面角B AA C --'的大小为53arccos ┅┅┅┅┅┅┅12分(方法二)接(Ⅰ)方法三可得)0,3,1('),3,0,1(-=--=AA AB ,设面B AA '的一个法向量为),,(1111z y x n =,则⎩⎨⎧=+-=--03031111y x z x ,不妨取31=x ,则)1,1,3(),,(111-=z y x .┅┅┅┅┅┅┅8分又)0,3,1('),3,0,1(-=-=AA AC ,设面C AA '的一个法向量为),,(2222z y x n =,则⎩⎨⎧=+-=-03032222y x z x ,不妨取32=x ,则)1,1,3(),,(222=z y x .┅┅┅┅┅┅┅10分 所以53||||,cos 212121=⋅⋅>=<n n n n n n ,因为二面角B AA C --'为锐角,所以二面角B AA C --'的大小为53arccos ┅┅┅┅┅┅┅12分21.解:(Ⅰ)设左右焦点分别为)0,(),0,(21c F c F -,椭圆上点P 满足,2||||2,2||||2121c PF PF c a PF PF ≤-≤-=+所以,||1c a PF c a +≤≤-P 在左顶点时||1PF 取到最小值12-=-c a ,又21=a c ,解得1,1,2===b c a ,所以1C 的方程为 1222=+y x .(或者利用设),(y x P 解出x aca PF +=||1得出||1PF 取到最小值12-=-c a ,对于直接说明P 在左顶点时||1PF 取到最小值的,酌情扣分);┅┅┅┅┅┅┅4分(Ⅱ)由题显然直线l 存在斜率,所以设其方程为m kx y +=,┅┅┅┅┅┅┅5分联立其与1222=+y x ,得到 0224)21(222=-+++m kmx x k ,0=∆,化简得01222=--k m ┅┅┅┅┅┅┅8分联立其与22:4C y x =,得到042=+-m y y k ,0=∆,化简得01=-km ,┅┅┅┅┅┅┅10分 解得2,22==m k 或2,22-=-=m k所以直线l 的方程为222+=x y 或222--=x y ┅┅┅┅┅┅┅12分 22. 解:(Ⅰ)由题可得直线过点(1,0),在椭圆内,所以与椭圆一定相交,交点设为),(),,(2211y x N y x M ,则2121x x y y k --=,OP 斜率为2121x x y y ++,所以2122212221-=--x x y y ,┅┅┅┅┅┅┅3分又1221221=+b y a x ,1222222=+b y a x ,所以02222122221=-+-by y a x x ,所以222b a =,又 11222=+ba ,解得2,422==b a ,所以椭圆C 的方程为12422=+y x ;┅┅┅┅┅┅┅6分 (Ⅱ)(1y k x =-)与椭圆C 联立得:0424)21(2222=-+-+k x k x k ,┅┅┅┅┅┅┅8分AMN ∆面积为31021)32(82||||2||||21222121=++=-=-kk k x x k y y , 解得1±=k .┅┅┅┅┅┅┅12分。

高二上学期期末考试(理科)数学试卷-附带答案

高二上学期期末考试(理科)数学试卷-附带答案

高二上学期期末考试(理科)数学试卷-附带答案一.选择题(共12小题,满分60分,每小题5分) 1.(5分)不等式2x−1x+2≥3的解集为( ) A .{x |﹣2<x ≤12}B .{x |x >﹣2}C .{x |﹣7≤x <﹣2}D .{x |﹣7≤x ≤﹣2}2.(5分)已知p :∀x ∈R ,(x +1)2<(x +2)2;q :∃x ∈R ,x =1﹣x 2,则( ) A .p 假q 假B .p 假q 真C .p 真q 真D .p 真q 假3.(5分)若实数a ,b 满足ab =1(a ,b >0),则a +2b 的最小值为( ) A .4B .3C .2√2D .24.(5分)已知向量a →=(m +1,2),b →=(1,m),若a →与b →垂直,则实数m 的值为( ) A .﹣3B .−13C .13D .15.(5分)已知F 1,F 2是椭圆C :x 24+y 23=1的左、右焦点,点P 在椭圆C 上.当∠F 1PF 2最大时,求S △PF 1F 2=( ) A .12B .√33C .√3D .2√336.(5分)已知△ABC 的三个内角A ,B ,C 的对边分别为a ,b ,c 且B =2A ,则c b−a的取值范围是( )A .(0,3)B .(1,2)C .(2,3)D .(1,3)7.(5分)过抛物线y 2=4x 的焦点F 的直线l 与抛物线交于A ,B 两点,若|AF |=2|BF |,则|AB |等于( ) A .4B .92C .5D .68.(5分)已知直线l :y =kx +m (m <0)过双曲线C :x 2a 2−y 22=1的左焦点F 1(﹣2,0),且与C 的渐近线平行,则l 的倾斜角为( ) A .π4B .π3C .2π3D .3π49.(5分)“a +1>b ﹣2”是a >b ”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件10.(5分)已知函数f (x )=ax 2﹣3ax +a 2﹣3(a <0),且不等式f (x )<4对任意x ∈[﹣3,3]恒成立,则实数a 的取值范围为( ) A .(−√7,√7)B .(﹣4,0)C .(−√7,0)D .(−74,0)11.(5分)古代城池中的“瓮城”,又叫“曲池”,是加装在城门前面或里面的又一层门,若敌人攻入瓮城中,可形成“瓮中捉鳖”之势.如下图的“曲池”是上、下底面均为半圆形的柱体.若AA 1⊥面ABCD ,AA 1=3,AB =4,CD =2,E 为弧A 1B 1的中点,则直线CE 与平面DEB 1所成角的正弦值为( )A .√39921B .√27321C .2√4221D .√422112.(5分)关于x 的方程2|x +a |=e x 有三个不同的实数解,则实数a 的取值范围是( ) A .(﹣∞,1] B .[1,+∞) C .(﹣∞,l ﹣ln 2]D .(1﹣ln 2,+∞)二.填空题(共4小题,满分20分,每小题5分)13.(5分)若不等式ax 2+bx ﹣2>0的解集为(﹣4,1),则a +b 等于 .14.(5分)如图所示,点A ,B ,C 是圆O 上的三点,线段OC 与线段AB 交于圆内一点P ,若OC →=m OA →+2mOB →,AP →=λAB →则λ= .15.(5分)公差不为0的等差数列{a n }的前n 项和为S n ,若a 2,a 5,a 14成等比数列S 5=a 32,则a 10= .16.(5分)在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)与不过坐标原点O 的直线l :y =kx +m 相交于A 、B 两点,线段AB 的中点为M ,若AB 、OM 的斜率之积为−34,则椭圆C 的离心率为 . 三.解答题(共6小题,满分70分)17.(10分)已知x ,y 满足的约束条件{5x +2y −18≤02x −y ≥0x +y −3≥0(1)求z 1=9x ﹣4y 的最大值与最小值; (2)求z 2=x+2y+4x+2的取值范围. 18.(12分)已知函数f(x)=sin(π4+x)sin(π4−x)+√3sinxcosx . (1)求f(π6)的值;(2)在锐角△ABC 中,角A ,B ,C 所对边的长分别为a ,b ,c .若f(A2)=1,a =2,求b +c 的取值范围.19.(12分)已知双曲线的顶点在x 轴上,两顶点间的距离是2,离心率e =2. (Ⅰ)求双曲线的标准方程;(Ⅱ)若抛物线y 2=2px (p >0)的焦点F 与该双曲线的一个焦点相同,点M 为抛物线上一点,且|MF |=3,求点M 的坐标.20.(12分)如图,在四棱锥P ﹣ABCD 中,P A ⊥底面ABCD ,底面ABCD 为正方形,P A =AB ,E ,F ,M 分别是PB ,CD ,PD 的中点. (1)证明:EF ∥平面P AD ;(2)求平面AMF 与平面EMF 的夹角的余弦值.21.(12分)已知A 、B 是椭圆x 24+y 2=1上两点,且OA →⋅OB →=0.(O 为坐标原点)(1)求证:1|OA|2+1|OB|2为定值,并求△AOB 面积的最大值与最小值;(2)过O 作OH ⊥AB 于H ,求点H 的轨迹方程.22.(12分)已知数列{a n }的通项为a n ,前n 项和为s n ,且a n 是S n 与2的等差中项,数列{b n }中,b 1=1,点P (b n ,b n +1)在直线x ﹣y +2=0上.求数列{a n }、{b n }的通项公式.参考答案与试题解析一.选择题(共12小题,满分60分,每小题5分) 1.【解答】解:由2x−1x+2≥3得,2x−1x+2−3≥0即x+7x+2≤0解得,﹣7≤x <﹣2. 故选:C .2.【解答】解:对于命题p :∀x ∈R ,(x +1)2<(x +2)2,当x =﹣2时,不等式(x +1)2<(x +2)2不成立所以命题p 为假命题对于命题q :∃x ∈R ,x =1﹣x 2,方程x 2+x ﹣1=0的判别式Δ=1+4=5>0,故方程有解,即∃x ∈R ,x =1﹣x 2,故命题q 为真命题. 所以p 假q 真. 故选:B .3.【解答】解:因为ab =1(a ,b >0),所以a +2b ≥2√2ab =2√2 当且仅当a =2b 且ab =1即b =√22,a =√2时取等号 所以a +2b 的最小值为2√2. 故选:C .4.【解答】解:已知向量a →=(m +1,2),b →=(1,m),若a →与b →垂直 故a →⋅b →=m +1+2m =0,故m =−13. 故选:B .5.【解答】解:由椭圆的性质可知当点P 位于椭圆的上下顶点时,∠F 1PF 2最大由椭圆C :x 24+y 23=1,可得|OP |=√3,|F 1F 2|=2c =2√4−3=2所以S △PF 1F 2=12|OP |•|F 1F 2|=12×√3×2=√3. 故选:C .6.【解答】解:由正弦定理可知c b−a=sinC sinB−sinA=sin(B+A)sinB−sinA=sin3A sin2A−sinA=2sin3A 2cos 3A 22cos 3A 2sinA 2=sin3A2sinA 2=sin A 2cosA+2cos 2A 2sinA 2sinA2=2cos A +1∵A +B +C =180°,B =2A∴3A +C =180°,A =60°−C 3<60° ∴0<A <60° ∴12<cos A <1则2<2cos A +1<3. 故c b−a的取值范围是:(2,3).故选:C .7.【解答】解:∵F (1,0),根据题意设y =k (x ﹣1),A (x 1,y 1),B (x 2,y 2) 联立{y =k(x −1)y 2=4x ,可得k 2x 2﹣(2k +4)x +k 2=0∴{x 1+x 2=2k+4k2x 1x 2=1,又|AF |=2|BF |∴1+x 1=2(1+x 2) ∴x 1=1+2x 2,又x 1x 2=1 ∴x 2=12,x 1=2∴|AB |=p +x 1+x 2=2+2+12=92故选:B .8.【解答】解:设l 的倾斜角为α,α∈[0,π). 由题意可得k =−ba ,(﹣2)2=a 2+2,b 2=2,a ,b >0 解得a =√2=b∴k =tan α=﹣1,α∈[0,π). ∴α=3π4 故选:D .9.【解答】解:由a +1>b ﹣2,可得a >b ﹣3由a >b ﹣3不能够推出a >b ,故“a +1>b ﹣2”是“a >b ”的不充分条件 由a >b ,可推出a >b ﹣3成立,故“a +1”>b ﹣2”是a >b ”的必要条件 综上“a +1>b ﹣2”是“a >b ”的必要不充分条件 故选:B .10.【解答】解:由不等式f (x )<4对任意x ∈[﹣3,3]恒成立 即ax 2﹣3ax +a 2﹣7<0对任意x ∈[﹣3,3]恒成立 ∵a <0,对称轴x =32∈[﹣3,3] ∴只需x =32<0即可可得a ×94−32×3a +a 2−7<0. 即(4a +7)(a ﹣4)<0 解得−74<a <4 ∴−74<a <0. 故选:D .11.【解答】解:因为AA 1⊥平面ABCD ,AB ⊂平面ABCD ,则AA 1⊥AB由题意可以点A 为原点,AB 所在直线为y 轴,AA 1所在直线为z 轴,平面ABCD 内垂直于AB 的直线为x 轴建立空间直角坐标系,如图所示则A (0,0,0),B (0,4,0),C (0,3,0),D (0,1,0),A 1(0,0,3) B 1(0,4,3),C 1(0,3,3),D 1(0,1,3) 又因为E 为A 1B 1的中点,则E (2,2,3)则B 1E →=(2,−2,0),B 1D →=(0,﹣3,﹣3),CE →=(2,−1,3) 设平面DEB 1的法向量n →=(x ,y ,z ),则{B 1E →⋅n →=2x −2y =0B 1D →⋅n →=−3y −3z =0令x =1,则y =1,z =﹣1,则n →=(1,1,−1) 设直线CE 与平面DE B 1所成角为θ 则sinθ=|cos <CE →,n →>|=|CE →⋅n →||CE →||n →|=2√14×√3=√4221. 故选:D .12.【解答】解:由已知有方程2|x+a|=e x有三个不同的实数解可转化为y=|x+a|的图象与y=12ex的图象有三个交点设直线y=x+a的图象与y=12e x相切于点(x0,y0)因为y′=12e x所以{ y 0=x 0+a y 0=12e x 012e x=1解得:{x 0=ln2y 0=1a =1−ln2 要使y =|x +a |的图象与y =12e x 的图象有三个交点 则需a >1﹣ln 2即实数a 的取值范围是(1﹣ln 2,+∞) 故选:D .二.填空题(共4小题,满分20分,每小题5分)13.【解答】解:∵不等式ax 2+bx ﹣2>0的解集为(﹣4,1) ∴﹣4和1是ax 2+bx ﹣2=0的两个根 即{−4+1=−ba −4×1=−2a解得{a =12b =32; ∴a +b =12+32=2. 故答案为:2.14.【解答】解:根据条件知,OP →与OC →共线; ∵AP →=λAB →;∴OP →−OA →=λ(OB →−OA →); ∴OP →=(1−λ)OA →+λOB →; 又OC →=m OA →+2mOB →; ∴λ=2(1﹣λ); ∴λ=23. 故答案为:23.15.【解答】解:设数列的公差为d ,(d ≠0) ∵S 5=a 32,得:5a 3=a 32 ∴a 3=0或a 3=5;∵a 2,a 5,a 14成等比数列 ∴a 52=a 2•a 14∴(a 3+2d )2=(a 3﹣d )(a 3+11d )若a 3=0,则可得4d 2=﹣11d 2即d =0不符合题意 若a 3=5,则可得(5+2d )2=(5﹣d )(5+11d ) 解可得d =0(舍)或d =2 ∴a 10=a 3+7d =5+7×2=19 故答案为:19.16.【解答】解:设A (x 1,y 1),B (x 2,y 2).线段AB 的中点M (x 0,y 0). ∵x 12a 2+y 12b 2=1,x 22a 2+y 22b 2=1 相减可得:(x 1+x 2)(x 1−x 2)a 2+(y 1+y 2)(y 1−y 2)b 2=0把x 1+x 2=2x 0,y 1+y 2=2y 0,y 1−y 2x 1−x 2=k 代入可得:2x 0a 2+2y 0k b 2=0又y 0x 0•k =−34,∴1a 2−34b 2=0,解得b 2a 2=34. ∴e =√1−b 2a2=12.故答案为:12.三.解答题(共6小题,满分70分)17.【解答】解:(1)由z 1=9x ﹣4y ,得y =94x −14z 1 作出约束条件{5x +2y −18≤02x −y ≥0x +y −3≥0对应的可行域(阴影部分)平移直线y =94x −14z 1,由平移可知当直线y =94x −14z 1经过点C 时,直线y =94x −14z 1的截距最小,此时z 取得最大值 由{x +y −3=05x +2y −18=0,解得C (4,﹣1). 将C (4,﹣1)的坐标代入z 1=9x ﹣4y ,得z =40 z 1=9x ﹣4y 的最大值为:40. 由{x +y −3=02x −y =0解得B (1,2)将B (1,2)的坐标代入z 1=9x ﹣4y ,得z =1 即目标函数z =9x ﹣4y 的最小值为1. (2)z 2=x+2y+4x+2=1+2•y+1x+2,所求z 2的取值范围. 就是P (﹣2,﹣1)与可行域内的点连线的斜率的2倍加1的范围 K PC =0.由{5x +2y −18=02x −y =0解得A (2,4),K P A =4+12+2=54 ∴z 2的范围是:[1,72].18.【解答】解:(1)f(x)=sin(π4+x)sin(π4−x)+√3sinxcosx =sin(π4+x)cos(π4+x)+√3sinxcosx =12sin(π2+2x)+√32sin2x=12cos2x +√32sin2x=sin(2x +π6) 所以f(π6)=sin(2×π6+π6) =sin π2 =1;(2)f(A2)=sin(A +π6)=1 在锐角三角形中0<A <π2所以π6<A +π6<2π3故A +π6=π2,可得A =π3 因为a =2,由正弦定理bsinB=c sinC=a sinA=√32=4√33所以b +c =4√33(sinB +sinC) =4√33[sinB +sin(2π3−B)] =4√33(sinB +√32cosB +12sinB) =4√33(32sinB +√32cosB) =4sin(B +π6) 又B +C =2π3,及B ,C ∈(0,π2) 所以B ∈(π6,π2) 所以B +π6∈(π3,2π3) 则b +c =4sin(B +π6)∈(2√3,4].19.【解答】解:(Ⅰ)由题意设所求双曲线方程为x 2a 2−y 2b 2=1又双曲线的顶点在x 轴上,两顶点间的距离是2,离心率e =2 则a =1,c =2 即b 2=c 2﹣a 2=3即双曲线方程为x 2−y 23=1;(Ⅱ)由(Ⅰ)可知F (2,0) 则p =4即抛物线的方程为y 2=8x 设点M 的坐标为(x 0,y 0) 又|MF |=3 则x 0+2=3则x 0=1,y 0=±2√2即点M 的坐标为(1,2√2)或(1,﹣2√2).20.【解答】(1)证明:取P A 的中点N ,连接EN ,DN ,如图所示: 因为E 是PB 的中点,所以EN ∥AB ,且EN =12AB又因为四边形ABCD 为正方形,F 是CD 的中点,所以EN ∥DF ,且EN =DF 所以四边形ENDF 为平行四边形,所以EF ∥DN因为EF ⊄平面P AD ,DN ⊂平面P AD ,所以EF ∥平面P AD ;(2)解:以A 为坐标原点,AB ,AD ,AP 所在直线分别为x 、y 、z 轴 建立空间直角坐标系,如图所示:设AB =2,则E (1,0,1),F (1,2,0),P (0,0,2),D (0,2,0),M (0,1,1); 所以EM →=(−1,1,0) MF →=(1,1,−1),AF →=(1,2,0) 设平面AMF 的法向量为m →=(x ,y ,z ),则由m →⊥AF →,m →⊥MF →可得{x +2y =0x +y −z =0,令y =1,得m →=(−2,1,−1)设平面EMF 的法向量为n →=(a ,b ,c ),则由n →⊥MF →,n →⊥EM →可得{a +b −c =0−a +b =0,令b =1,得n →=(1,1,2)则cos <m →,n →>=m →⋅n →|m →||n →|=√4+1+1×√1+1+4=−12因为两平面的夹角范围是[0,π2]所以平面AMF 与平面EMF 夹角的余弦值为12.21.【解答】证明:(1)设A (r 1cos θ,r 1sin θ),B (r 2cos (90°+θ),r 2sin (90°+θ)),即B (﹣r 2sin θ,r 2cos θ) 则r 12cos 2θ4+r 12sin 2θ=1,r 22sin 2θ4+r 22cos 2θ=1,即1r 12=cos 2θ4+sin 2θ,1r 22=sin 2θ4+cos 2θ故1|OA|2+1|OB|2=1r 12+1r 22=54△AOB 面积为S =12r 1r 2=2√4sin θ+17sin θcos θ+4cos θ∵4sin 4θ+17sin 2θcos 2θ+4cos 2θ=(2sin 2θ+2cos 2θ)+9sin 2θcos 2θ=4+94sin 22θ ∴当sin2θ=0时,S 取得最大值1,当sin2θ=±1时,S 取值最小值45故△AOB 面积的最大值为1,最小值为45;(2)解:∵|OH ||AB |=|OA ||OB | ∴1|OH|2=|AB|2|OA|2|OB|2=r 12+r 22r 12+r 22=1r 12+1r 22=54∴|OH|2=45故点H 的轨迹方程为x 2+y 2=45.22.【解答】解:∵a n 是s n 与2的等差中项,∴2a n =S n +2,即S n =2a n ﹣2. ∴当n =1时,a 1=2a 1﹣2,解得a 1=2.当n ≥2时,a n =S n ﹣S n ﹣1=(2a n ﹣2)﹣(2a n ﹣1﹣2) 化为a n =2a n ﹣1∴数列{a n }是等比数列,首项为2,公比为2,a n =2n . ∵点P (b n ,b n +1)在直线x ﹣y +2=0上. ∴b n ﹣b n +1+2=0,即b n +1﹣b n =2∴数列{b n }是等差数列,首项为1,公差为2.∴b n=1+2(n﹣1)=2n﹣1.。

高二上学期期末数学试卷(理科)

高二上学期期末数学试卷(理科)

高二(上)期末测试数学试卷(理科)一、选择题(本大题共12小题,共60.0分)1. 函数:的单调递增区间是A. B. C. D.【答案】C【解析】解:由函数得:,令即,根据得到此对数函数为增函数,所以得到,即为函数的单调递增区间.故选:C.求出的导函数,令导函数大于0列出关于x的不等式,求出不等式的解集即可得到x的范围即为函数的单调递增区间.本题主要考查学生会利用导函数的正负得到函数的单调区间,同时考查了导数的计算,是一道基础题.2. 函数的图象在点处的切线方程为A. B. C. D.【答案】C【解析】解:由函数知,把代入得到切线的斜率,则切线方程为:,即.故选:C.求出曲线的导函数,把代入即可得到切线的斜率,然后根据和斜率写出切线的方程即可.本题考查学生会利用导数求曲线上过某点的切线方程,考查计算能力,注意正确求导.3. 已知,,,则向量与的夹角为A. B. C. D.【答案】C【解析】解:因为,,,所以,所以,并且,,所以,,与的夹角为故选:C.由题意可得:,进而得到与,,再由,可得答案.解决此类问题的关键是熟练掌握由空间中点的坐标写出向量的坐标与向量求模,以及由向量的数量积求向量的夹角,属于基础试题4. 已知椭圆的左焦点为,则A. 2B. 3C. 4D. 9【答案】B【解析】解:椭圆的左焦点为,,,,故选:B.利用椭圆的左焦点为,可得,即可求出m.本题考查椭圆的性质,考查学生的计算能力,比较基础.5. 等于A. 1B.C. eD.【答案】C【解析】解:,,故选:C.由,可得,即可得出.本题考查了微积分基本定理,属于基础题.6. 若函数在处有极大值,则A. 9B. 3C. 3或9D. 以上都不对【答案】A【解析】解:函数的导数为,由在处有极大值,即有,解得或3,若时,,解得或,由在处导数左正右负,取得极大值,若,,可得或1由在处导数左负右正,取得极小值.综上可得.故选:A.由题意可得,解出c的值之后必须验证是否符合函数在某一点取得极大值的充分条件.本题考查导数的运用:求极值,主要考查求极值的方法,注意检验,属于中档题和易错题.7. 函数的示意图是A. B.C. D.【答案】C【解析】解:由函数,当时,可得,排除A;D当时,可得,时,.当x从时,越来越大,递增,可得函数的值变大,排除B;故选:C.带入特殊点即可选出答案本题考查了函数图象变换,是基础题.8. 若AB过椭圆中心的弦,为椭圆的焦点,则面积的最大值为A. 6B. 12C. 24D. 48【答案】B【解析】解:设A的坐标则根据对称性得:,则面积.当最大时,面积最大,由图知,当A点在椭圆的顶点时,其面积最大,则面积的最大值为:.故选:B.先设A的坐标则根据对称性得:,再表示出面积,由图知,当A点在椭圆的顶点时,其面积最大,最后结合椭圆的标准方程即可求出面积的最大值.本小题主要考查函数椭圆的标准方程、椭圆的简单性质、面积公式等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想属于基础题.9. 设函数的极大值为1,则函数的极小值为A. B. C. D. 1【答案】A【解析】解:,,令,解得,当或时,,当时,;故在,上是增函数,在上是减函数;故在处有极大值,解得在处有极小值,故选:A.求出函数的导数,解关于导函数的方程,求出函数的单调区间,从而求出函数的极值即可.本题考查函数的极值问题,属基础知识的考查熟练掌握导数法求极值的方法步骤是解答的关键.10. 设抛物线的准线与x轴交于点Q,若过点Q的直线l与抛物线有公共点,则直线l的斜率的取值范围是A. B. C. D.【答案】C【解析】解:,为准线与x轴的交点,设过Q点的直线l方程为.与抛物线有公共点,方程组有解,可得有解.,即.,故选:C.根据抛物线方程求得Q点坐标,设过Q点的直线l方程与抛物线方程联立消去y,根据判别式大于等于0求得k的范围.本题主要考查了抛物线的应用涉及直线与抛物线的关系,常需要把直线方程与抛物线方程联立,利用韦达定理或判别式解决问题.11. 已知函数x,若在区间内恒成立,则实数a的取值范围是A. B. C. D.【答案】D【解析】解:x,在内恒成立,在内恒成立.设,时,,即在上是减少的,,,即a的取值范围是.故选:D.化简不等式,得到在内恒成立设,求出函数的导数,利用函数的单调性化简求解即可.本题考查函数的导数的综合应用,考查转化思想以及计算能力.12. 设双曲线的两条渐近线与直线分别交于A,B两点,F为该双曲线的右焦点若,则该双曲线的离心率的取值范围是A. B. C. D.【答案】B【解析】解:双曲线的两条渐近线方程为,时,,,,,,,,,,.故选:B.确定双曲线的两条渐近线方程,求得A,B的坐标,利用,可得,由此可求双曲线的离心率的取值范围.本题考查双曲线的几何性质,考查学生的计算能力,正确寻找几何量之间的关系是关键.二、填空题(本大题共4小题,共20.0分)13. 双曲线的顶点到其渐近线的距离等于______.【答案】【解析】解:双曲线的,可得顶点为,渐近线方程为,即有顶点到渐近线的距离为.故答案为:.求得双曲线的,求得顶点坐标,渐近线方程,运用点到直线的距离公式计算即可得到所求值.本题考查双曲线的顶点到渐近线的距离,注意运用点到直线的距离公式,考查运算能力,属于基础题.14. 已知函数的导函数为,且满足,则______.【答案】6【解析】解:令得故答案为:6将看出常数利用导数的运算法则求出,令求出代入,令求出.本题考查导数的运算法则、考查通过赋值求出导函数值.15. 已知向量5,,1,,若平面ABC,则x的值是______.【答案】【解析】解:平面ABC,存在事实m,n,使得,,解得.故答案为:.由平面ABC,可得存在事实m,n,使得,利用平面向量基本定理即可得出.本题考查了平面向量基本定理、方程的解法,考查了推理能力与计算能力,属于基础题.16. 已知抛物线C:的焦点F,,则曲线C上的动点P到点F与点A的距离之和的最小值为______.【答案】2【解析】解:抛物线方程为,,可得焦点为,准线为设P在抛物线准线l上的射影点为Q点,则由抛物线的定义,可知当P、Q、A点三点共线时,点P到点的距离与P到该抛物线焦点的距离之和最小,最小值为.故答案为:2.根据抛物线方程求出焦点坐标和准线方程,再由抛物线的定义知:当P、A和P在准线上的射影点Q三点共线时,这个距离之和最小,即可得出结论.本题给出抛物线上的动点,求该点到定点Q和焦点F距离之和的最小值,着重考查了抛物线的定义和简单几何性质等知识,属于中档题.三、解答题(本大题共6小题,共70.0分)17. 已知函数.求曲线在点处的切线的方程;Ⅱ直线L为曲线的切线,且经过原点,求直线L的方程及切点坐标.【答案】解:函数的导数为,可得曲线在点处的切线的斜率为,即有曲线在点处的切线的方程为,即为;Ⅱ的导数为,设切点为,可得切线的斜率为,即有,即为,解得,,可得直线L的方程为及切点坐标为.【解析】求出的导数,可得切线的斜率,由点斜式方程即可得到所求切线的方程;Ⅱ的导数为,设切点为,可得切线的斜率,运用两点的斜率公式,可得m的方程,解方程可得m的值,即可得到所求切线的方程和切点坐标.本题考查导数的运用:求切线的方程,考查导数的几何意义,以及运算能力,正确求导和运用直线方程是解题的关键,属于基础题.18. 如图,在四棱锥中,底面ABCD,底面ABCD是矩形,且,E是SA的中点.求证:平面平面SAB;求平面BED与平面SBC所成二面角锐角的大小.【答案】证明:底面ABCD,平面SAD,平面平面分,平面平面ABCDAD,平面SAD,又平面SAD,,分,E是SA的中点,,,,,平面SAB,平面BED,平面平面分解:由题意知SD,AD,DC两两垂直,建立如图所示的空间直角坐标系,不妨设.则0,,0,,,,0,,0,,,,,分设是平面BED的法向量,则,即,令,则,是平面BED的一个法向量.设是平面SBC的法向量,则,即,解得,令,则,是平面SBC的一个法向量分,平面BED与平面SBC所成锐二面角的大小为分【解析】证明平面平面SAB,利用面面垂直的判定定理,证明平面SAB即可;建立空间直角坐标系,求出平面BED与平面SBC的法向量,利用向量的夹角公式,即可求平面BED与平面SBC所成二面角锐角的大小.本题考查面面垂直,考查面面角,解题的关键是掌握面面垂直的判定,正确利用向量法,属于中档题.19. 如图所示,斜率为1的直线过抛物线的焦点F,与抛物线交于A,B两点且,M为抛物线弧AB上的动点.求抛物线的方程;求的最大值.【答案】解由条件知:,与联立,消去y,得,则由抛物线定义得.又因为,即,则抛物线的方程为;由知,且:,设与直线AB平行且与抛物线相切的直线方程为,代入抛物线方程,得.由,得.与直线AB平行且与抛物线相切的直线方程为两直线间的距离为,故的最大值为.【解析】根据题意,分析易得直线AB的方程,将其与联立,得,由根与系数的关系可得,结合抛物线的定义可得,解可得p的值,即可得抛物线的方程;设与直线AB平行且与抛物线相切的直线方程为,代入抛物线方程,得,进而可得与直线AB平行且与抛物线相切的直线方程,计算可得两直线间的距离,由三角形面积公式计算即可得答案.本题考查直线与抛物线的位置关系,注意抛物线的焦点弦的性质,属于中档题20. 函数在处取得极值.Ⅰ求的单调区间;Ⅱ若在定义域内有两个不同的零点,求实数m的取值范围.【答案】解:Ⅰ,分,解得,当时,,分即,令0'/>,解得;分令,解得;分在处取得极小值,的增区间为,减区间为分Ⅱ在内有两个不同的零点,可转化为在内有两个不同的根,也可转化为与图象上有两个不同的交点,分由Ⅰ知,在上单调递减,在上单调递增,,分由题意得,即分当时,;当且时,;当时,显然或者举例:当,;由图象可知,,即分由可得分【解析】Ⅰ求出函数的导数,计算,求出a的值,从而求出函数的单调区间即可;Ⅱ问题转化为在内有两个不同的根,结合函数的图象求出m的范围即可.本题考查了函数的单调性、极值问题,考查导数的应用以及数形结合思想、转化思想,是一道中档题.21. 已知椭圆,已知定点,若直线与椭圆交于C、D两点问:是否存在k的值,使以CD为直径的圆过E点?请说明理由.【答案】解:假若存在这样的k值,由得.设、,则而.要使以CD为直径的圆过点,当且仅当时,则,即.将式代入整理解得经验证,,使成立.综上可知,存在,使得以CD为直径的圆过点E.【解析】把直线的方程与椭圆的方程联立,转化为关于x的一元二次方程,得到根与系数的关系,假设以CD 为直径的圆过E点,则,将它们联立消去,即可得出k的值.本题考查椭圆的标准方程,考查椭圆的性质,考查直线与椭圆的位置关系,考查韦达定理的运用,考查向量知识,解题的关键是联立方程,利用韦达定理求解.22. 设函数.求函数的单调区间;若对恒成立,求实数a的取值范围.【答案】解:当时,,在R上是增函数;当时,令得若,则,从而在区间上是增函数;若,则,从而在区间上是减函数.由可知:当时,不恒成立,又当时,在点处取最大值,且,令得,故若对恒成立,则a的取值范围是.【解析】对函数求导,使得导函数大于0,求出自变量的取值范围,针对于a的值小于进行讨论,得到函数的单调区间.这是一个恒成立问题,根据上一问做出的结果,知道当时,不恒成立,又当时,在点处取最大值,求出a的范围.本题考查求函数的单调区间和解决函数恒成立的问题,解题时注意函数的单调性是解决最值的必经途径,注意数字的运算.。

高二数学上学期期末考试题理科(原卷版)

高二数学上学期期末考试题理科(原卷版)
(1)求 ;
(2)求证: 平面
19.在△ABC中,a、b、c分别是内角A、B、C的对边,且
(1)求角C的大小;
(2)若 , ,求 的面积.
20.已知F为抛物线 的焦点,点 为抛物线C内一定点,点P为抛物线C上一动点,且 的最小值为8.
(1)求抛物线C的方程;
(2)若直线 与抛物线C交于 、 两点,求BD的长.
咸阳市2019~2020学年度第一学期期末教学质量检测
高二数学(理科)试题
一、选择题
1.一元二次不等式 的解集为()
A. 或 B. 或
C. D.
2.已知等比数列 中, ,公比 ,则 ()
A.1B. C.3D.
3.在 中,角 , , 所对的边分别为 , , ,若 , , ,则 ( )
A. B.2C.3D.
提高做题效果
每一道题都应该有收获
做题是运用所学知识解决问题、提高学习技能的过程。所以,我们做的每道题目都应该是有收获的。如果每次做题都只是为了做题而做题,不问效果那么不但起不到学习的作用,反而会白白浪费很多时间。那么,怎样才能提高做题的效果呢?大家不妨参考一下湖北省优秀教师傅显全老师介绍的好方法:
一:答题步骤要完整规范
A. B.
C. D.
9.数列 满足 ,则 的前10项和为()
A. B. C. D.
10.已知 是等比数列,则“ ”是“ 是递增数列” ()
A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件
11.有下列四个命题:①若 为假命题,则p,q均为假命题;②命题“若 ,则 ”的否命题为“若 ,则 ”;③命题“若 ,则 ”的逆否命题为“若 ,则 ”;④设 ,命题“若 ,则 ”的逆命题是真命题;其中真命题的个数是()

高二数学上学期期末考试题理科(原卷版)

高二数学上学期期末考试题理科(原卷版)
不愧是有多年教育经验的老师,李俊和老师真是一语道破了学习中的关键之处。光解题没方法,做100道都不及别人做1道。
试题训练法
我们需要做哪些题,做多少题。
试题训练法是巩固学习成果的有效方法,是学习中不可忽视的环节。但是盲目地做大量的习题而不去深入思考,不仅浪费时间,而且还可能把自己搞糊涂。那么,哪些习题值得一做呢?
其实,这就是在告诉我平时做作业时应该不粗心、不马虎,要求自己一次就做对。
三、做题做到熟练
现在,为数不少的同学在学习过程中满足于“已经懂了”“这样的题目已经做过了”的心态,而很少去追问自己:理解得深不深?做题的速度够不够快?保证永远不会做错吗?所以说,各位同学还是应该多在解题的熟练程度上下功夫,不要仅仅满足于“会做
高二数学期末试卷(理科)
考生注意:
1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分.考试时间120分钟.
2.请将各题答案填写在答题卡上.
3.本试卷主要考试内容:北师大版选修2-1.
第Ⅰ卷
一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
第三种是关于疑点的练习题。这里的疑点就是自己还没有弄懂的地方。这个环节的问题不解决,很容易造成学习“欠债”的现象。所以,有关这方面的习题训练一定不能放过,应该坚持去做。对于自己一看就会的题目,以后就不要再做了,这说明这个题目的知识点你已经掌握得很熟练了,等到考试前再复习一下就可以了。对于那些不懂或者费了很大劲才做出来的题目,要在题目前面做个记号,把这个题目作为重点进行理解,加深记忆,直到一看见这个题目,就知道解题思路的熟练程度,才说明你彻底把这个知识点掌握了。
第一种是涉及教材知识的重点题。例题是课本中最重要的题,做例题有利于巩固基础知识;其次,与教材中重点有关的练习题也是必须做的,这些涵盖了教材里的主要内容。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高二数学上期末测试卷一、选择题(共12小题,每小题5分,共60分)1. 阅读下边的程序框图,运行相应的程序,则输出s 的值为 A. -1 B. 0 C. 1 D. 32. 甲从一正方形四个顶点中任意选择两个顶点连成直线,乙亦从该正方形四个顶点中任意选择两个顶点连成直线,则所得的两条直线相互垂直的概率是A.318 B. 418 C. 518 D . 6183. 一个单位有职工800人,其中具有高级职称的160人,具有中级职称的320人,具有初级职称的200人,其余人员120人,为了解职工的收入情况,决定采用分层抽样的方法,从中抽取容量为40的样本,则从上述各层中依次抽取的人数分别是A. 12,24,15,9B. 9,12,12,7C. 8,15,12,5D. 8,16,10,6 4. 在△ABC 中,“∠A >30°”是“21sin >A ”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件5. 以椭圆1162522=+y x 的顶点为顶点,离心率为2的双曲线方程为( ) A.1481622=-x y B. 1752522=-y x C.1481622=-x y 或1752522=-y x D. 以上都不对 6. 过双曲线的一个焦点2F 作垂直于实轴的弦PQ ,1F 是另一个焦点,若∠21π=Q PF ,则双曲线的离心率e 等于(A. 12-B. 2C. 12+D. 22+ 7. 若A )1,2,1(-,B )3,2,4(,C )4,1,6(-,则△ABC 的形状是( ) A. 不等边锐角三角形B. 直角三角形C. 钝角三角形D. 等边三角形8. 若点A 的坐标为(3,2),F 是抛物线x y 22=的焦点,点M 在抛物线上移动时,使MA MF +取得最小值的点M 的坐标为( )A. ()0,0B. ⎪⎭⎫⎝⎛1,21 C. ()2,1D. ()2,29. 若直线2+=kx y 与双曲线622=-y x 的右支交于不同的两点,那么k 的取值范围是( )A. (315,315-)B. (315,0) C. (0,315-) D. (1,315--) 10. 抛物线22x y =上两点),(11y x A 、),(22y x B 关于直线m x y +=对称,且2121-=⋅x x ,则m 等于( )A. 23B. 2C. 25 D. 311. 空间四边形OABC 中,OB OC =,3AOB AOC π∠=∠=,则cos <,OA BC >的值是( )A. 21B. 22C. -21D. 012. 如图,正方体1111ABCD A BC D -的棱长为1,线段11B D 上有两个动点E 、F ,且12EF =,则下列结论中错误的是( )A. AC BE ⊥B. //EF ABCD 平面C. 三棱锥A BEF -的体积为定值D. AEF BEF ∆∆的面积与的面积相等二、填空题(共4小题,每小题5分,共20分)13. 在区间[-1,2]上随机取一个数x ,则x ∈[0,1]的概率为 。

14. 从某小学随机抽取100名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如图)。

由图中数据可知a = 。

若要从身高在[ 120 , 130),[130 ,140),[140,150]三组内的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在[140,150]组内的学生中选取的人数应为 人。

15. 椭圆22189x y k +=+的离心率为12,则k 的值为______________。

16. 下列四个命题中①“1k =”是“函数22cos sin y kx kx =-的最小正周期为π”的充要条件;②“3a =”是“直线230ax y a ++=与直线3(1)7x a y a +-=-相互垂直”的充要条件;③函数3422++=x x y 的最小值为2 其中的假命题为 (将你认为是假命题的序号都填上)三、解答题(共6小题,第17题10分,其余各题每小题12分,共70分)其中直径在区间[1.48,1.52]内的零件为一等品。

(1)从上述10个零件中,随机抽取一个,求这个零件为一等品的概率; (2)从一等品零件中,随机抽取2个, ①用零件的编号列出所有可能的抽取结果; ②求这2个零件直径相等的概率。

18. 已知顶点在原点,焦点在x 轴上的抛物线被直线21y x =+截得的弦长为15,求该抛物线的方程。

19. 如图,在长方体1111ABCD A BC D -中,11,2AD AA AB ===,点E 在棱AB 上移动.(1)证明:11D E A D ⊥;(2)当E 为AB 的中点时,求点E 到平面1ACD 的距离; (3)AE 等于何值时,二面角1D EC D --的大小为4π。

20. 设椭圆C :22221(0)x y a b a b+=>>的右焦点为F ,过点F 的直线l 与椭圆C相交于A ,B 两点,直线l 的倾斜角为60°,2AF FB =。

(1)求椭圆C 的离心率; (2)如果|AB|=154,求椭圆C 的方程。

21. 设不等式组⎩⎨⎧ 0≤x ≤60≤y ≤6表示的区域为A ,不等式组⎩⎪⎨⎪⎧0≤x ≤6x -y ≥0表示的区域为B 。

(1)在区域A 中任取一点(x ,y ),求点(x ,y )∈B 的概率;(2)若x ,y 分别表示甲、乙两人各掷一次骰子所得的点数,求点(x ,y )在区域B 中的概率。

22. 在平面直角坐标系xOy 中,点B 与点A (-1,1)关于原点O 对称,P 是动点,且直线AP 与BP 的斜率之积等于13-。

(1)求动点P 的轨迹方程;(2)设直线AP 和BP 分别与直线x =3交于点M ,N ,问:是否存在点P 使得△PAB 与△PMN 的面积相等?若存在,求出点P 的坐标;若不存在,请说明理由。

答 案一、选择题(共12小题,每小题5分,共60分)1. B 【解析】本题主要考查条件语句与循环语句的基本应用,属容易题。

第一次运行程序时,i =1,s =3;第二次运行程序时,i =2,s =4;第三次运行程序时,i =3,s =1;第四次运行程序时,i =4,s =0,此时执行i =i+1后i =5,退出循环输出s =0。

2. C 【解析】正方形的四个顶点可以确定6条直线,甲、乙各自任选一条共有36个基本事件。

两条直线相互垂直的情况有5种(4组邻边和对角线),包括10个基本事件,故所求概率等于1036=518。

3. D 【解析】因为40180020=, 故各层中依次抽取的人数分别是160820=,3201620=,2001020=,120620=。

4. B 【解析】因为当∠A =150°时,1sin 2A =,故条件不能推出结论。

因此“∠A >30°”是“21sin >A ”的不充分条件。

而由21sin >A ,结合三角形内角的范围和三角函数的图象,我们不难得到∠A >30°,故选B 。

5. C 【解析】因为椭圆的顶点有4个,当其顶点为(5,0)±时,5,10,a c b ===2212575x y -=。

当其顶点为(0,4)±时,224,8,11648y x a c b ===-= 6. C 【解析】因为Δ12PF F是等腰直角三角形,21212,PF F F c PF ===,12222,1c PF PF a c a e a -=-=∴===7. A 【解析】(3,4,2),(5,1,3),(2,3,1)AB AC BC ===-,0AB AC ⋅> ,得∠A 为锐角; 0CA CB ⋅> ,得∠C 为锐角;0BA BC ⋅>,得∠B 为锐角;所以△ABC 为不等边锐角三角形。

8. D 【解析】MF 可看作是点M 到准线的距离,当点M 和点A 的纵坐标相同时,MA MF +取得最小值,即2y M =,代入x y 22=得2x M =。

9. D 【解析】2222226(2)6(1)41002x y x kx k x kx y kx ⎧-=⇒-+=⇒---=⎨=+⎩有两个不等的正根,则21221224024040,11001k k x x k x x k ⎧⎪∆=->⎪⎪+=>⎨-⎪-⎪=>⎪-⎩得13k -<<-。

10. A 【解析】由于两点关于直线对称,满足两点:两直线斜率之积为-1(垂直)和两点连线的中点在对称轴上,所以22212121212111,2(),2AB y y k y y x x x x x x -==--=-+=--而得,且212122x x y y ++(,) 在直线y x m =+上,即212121,22y y x x m y y ++=++=21x x + 2m +,222212121212132()2,2[()2]2,23,2x x x x m x x x x x x m m m +=+++-=++==。

11. D 【解析】()cos ,OA BC OA OC OB OA BC OA BC OA BC ⋅⋅-<>== cos cos 330OA OC OA OB OA BCππ-==。

12. D 【解析】可证11;AC D DBB AC BE ⊥⊥平面,从而,故A 正确;由11D B ∥平面ABCD ,可知//EF ABCD 平面,B 也正确;连结BD 交AC 于点O ,则AO 为三棱锥A BEF -的高,4112121=⨯⨯=∆BEF S ,三棱锥A BEF -的体积为242224131=⨯⨯,为定值,故C 正确;D 错误,可令点F 与点1B 重合,这样可算出两三角形的面积不相等,选D 。

二、填空题(共4小题,每小题5分,共20分) 13.13【解析】由于在区间[-1,2]上随机取一个数x 有无数种情况,每一种情况都是等可能的,故符合几何概型的条件。

x ∈[0,1]的区域长度为1,而区间[-1,2]的区域长度为3,结合几何概型的概率计算公式可得。

14. 0.030 3【解析】将各个矩形的面积之和视为1,同时[120,130),[130,140),[140,150]三组的频率比即为面积比,也就是高度比,为3:2:1,按分层抽样原则,将容量乘以16,本题可解。

15. 544-或【解析】 当89k +>时,222891,484c k e k a k +-====+得; 当89k +<时,2229815,944c k e k a --====-得。

相关文档
最新文档