初二代数(因式分解)综合测试
(完整word版)初二数学因式分解精选100题
提高讲堂托辅中心初二数学因式分解优选100 题2013年 1月 25日一、选择题1.以下各式中从左到右的变形,是因式分解的是()A ( a+3)( a- 3)=a2- 9B x2+x- 5=( x- 2)(x+3)+1C a2b+ab2=ab(a+b)1 (D) x2+1= x(x+)x2.以下各式的因式分解中正确的选项是()A - a2+ab- ac= - a(a+b- c)B 9 xyz- 6x2y2=3xyz(3- 2xy)C 3a2x- 6bx+3x=3 x(a2- 2b) D1xy2+1x2y=1xy(x+y)2223.把多项式 m2(a- 2)+m(2- a)分解因式等于()(A)( a- 2)(m2+m)(B)( a- 2)(m2- m)(C) m(a- 2)(m- 1)(D) m(a- 2)(m+1)4.以下多项式能分解因式的是()(A) x2- y(B)x2+1(C) x2+y+y2(D) x2 - 4x+45.以下多项式中,不可以用完整平方公式分解因式的是()(A) m1m 2(B)x 22xy y 2(C) a214ab49b 2(D)n22n 14936.多项式4x2+1 加上一个单项式后,使它能成为一个整式的完整平方,则加上的单项式不可以够是()(A)4 x(B) - 4x(C)4x4(D) - 4x47.以下分解因式错误的选项是()(A)15 a2+5a=5a(3a+1) (B) - x2- y2= - (x2- y2)= - (x+y)(x- y)(C) k(x+y)+x+y=( k+1)( x+y )(D) a3- 2a2+a=a(a- 1)28.以下多项式中不可以用平方差公式分解的是()(A) - a2+b2(B) - x2- y2(C)49 x2y2- z2(D)16 m4 - 25n2p29.以下多项式:①16x5- x;② (x- 1)2- 4(x- 1)+4 ;③ (x+1)4- 4x(x+1)+4 x2;④ - 4x2- 1+4x,分解因式后,结果含有同样因式的是() (A) ①②(B) ②④(C) ③④(D)②③10.两个连续的奇数的平方差总能够被k 整除,则 k 等于()(A)4(B)8(C)4 或- 4(D)8 的倍数11 以下各式中从左到右的变形属于分解因式的是()A a(a+b- 1)=a2+ ab- aB a2–a- 2=a(a- 1) -2C-4 a2+ 9b2=(- 2a+ 3b)(2a+ 3b) D .2x+ 1=x(2 + 1/x)12 以下各式分解因是正确的选项是()A .x2y+ 7xy+ y=y(x 2+ 7x)B . 3 a2b+ 3ab+ 6b=3b(a2+a+ 2)C. 6xyz -8xy 2=2xyz(3 - 4y) D .- 4x+ 2y- 6z=2(2x +y- 3z)13 以下多项式中,能用提公因式法分解因式的是()A . x2- yB . x2+ 2x C. x2+ y2D. x2- xy + y214 2(a- b)3- (b- a)2分解因式的正确结果是()A . (a- b)2(2a- 2b+ 1)B. 2(a- b)(a- b-1)C. (b- a)2(2a- 2b- 1)D. (a- b)2(2a- b- 1)15 以下多项式分解因式正确的选项是()A . 1+ 4a-4a2=(1 - 2a)2B.4- 4a+ a2=(a- 2)2C. 1+ 4x2=(1+ 2x)2D. x2+ xy+ y2=(x + y)216 运用公式法计算 992,应当是()1A.①和②B.③和④ C.①和④D.②和③18 不论 x 、 y 取何值, x 2+y 2- 2x + 12y + 40 的值都是( )A.正数 B.负数 C.零D.非负数19 以下正确的选项是()A. x 2+ y 2=(x +y)(x - y)B. x 2- y 2 =(x + y)(x - y)C.- x 2+ y 2=( - x + y)( - x - y)D.- x 2 -y 2=- (x +y)(x - y)二、填空题20. 分解因式: m 3- 4m=.21. 已知 x+y=6, xy=4,则 x 2y+xy 2的值为.22. 将 x n - y n 分解因式的结果为 (x 2+y 2)(x+y)(x- y),则 n 的值为.23. 若 ax 2+24x+b=(mx- 3) 2,则 a= , b= , m= .24. 依据图形面积关系,不连其余线,便能够获得一个分解因式的公式是.25 多项式- 9x 2 y +36xy 2- 3xy 提公因式后的另一个因式是___________;26 把多项式- x 4+16 分解因式的结果是 _____________;27 已知 xy=5,a -b=3,a +b=4, 则 xya 2- yxb 2 的值为 _______________ ;28 若 x 2+ 2mx + 16是完整平方式,则 m=______;(第24题图)292+4x - 4=;分解因式:- x30+ 3mn + 9n 2=(+3n)2;31 若 x + y=1 则 1/2x 2+ xy + 1/2y 2=;三、因式分解32.-24x 3- 12x 2+ 28x33.6(m - n)3- 12(n - m)234.3(a - b)2+ 6(b - a)35. 18(a + b)3- 12b(b - a)236. (2a + b)(2a - 3b)- 3a(2a +b)37.(x 2+ 6x)2- (2x - 4)238. 9(m + n)2- (m - n)239. (2x + 3y)2- 140. 9(a - b)2- 16(a +b) 241. (x + y)2-16(x - y)242.-16x 4+ 81y 4 43. 3ax 2- 3ay 244.2x 3- 8x45. 7x 2- 6346. (a 2+b 2)2- 4a 2b 247.(m+ n)2- 6(m+ n)+ 9 50.- x2- 4y2+ 4xy53. (a2+ 4)2- 16a257.56x3yz+14x 2y2z- 21xy 2z2 60.4xy– ( x2- 4y2)63.5( x y)310( y x) 248. (3)(a- b)2- 2(a- b)+ 1;49. 4xy 2- 4x2y- y351.(x y) 210( x y) 25 ;52.16a 472 a2 b281b4;54. - 4x3+16x2 - 26x56.1a2(x- 2a)2-1a(2a- x)32458. mn(m - n)- m(n- m)1159. -(2a- b)2+4( a - b)24261. - 3ma3+6ma2- 12ma62.a2(x- y)+ b2(y- x)64.18b(a b) 212(a b)365.–2x2n-4x n66. 2a( x a) 4b(a x) 6c( x a) 67.m 416n 468.9(m n) 216(m n) 2;169.ax2y2+2axy+2a70.(x2- 6x)2+18(x2 - 6x)+8171. ( x1)( x 2)( x 3)( x 4) 24272.9x 2 -y 2-4y - 473.x 24xy 1 4 y 2 74.x 4 18x 2 8175. ax 2 bx 2 bx ax b a 76. x 5 x 3 x 2 177.(m n) 3 (m n)2 (n m)78. (a 2 2a)22(a 2 2a) 3 79.(c 2 a 2 b 2 )2 4a 2b 2四.特别的因式分解 80. 1a3m n1a m nb 2n ( m n,且均为自然数 )27 381. x 3n 1 y n 1 2x 2 n 1 y 2n 1 x n 1 y 3n 1五 .用简易方法计算:82. 57.6× 1.6+28.8× 36.8- 14.4× 8083. 13.71719.8 172.5173131 3184. 39× 37- 13× 3485 (112 )(113 )(112 )(112 )2 39 10六 .解答题86 若x m n22)( x24),求,的值y= (x y)( x y y m n87 已知1x x2x2004x 20050, 求 x2006的值88 若x y 4, x2y 2 6 求xy的值89 已知2 x y 1, xy 2 ,求 2 x4 y3x3 y 4的值。
(专题精选)初中数学因式分解经典测试题附答案解析
(专题精选)初中数学因式分解经典测试题附答案解析一、选择题1.下列各式从左到右的变形中,属于因式分解的是( )A .m (a +b )=ma +mbB .a 2+4a ﹣21=a (a +4)﹣21C .x 2﹣1=(x +1)(x ﹣1)D .x 2+16﹣y 2=(x +y )(x ﹣y )+16【答案】C【解析】【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】A 、是整式的乘法,故A 不符合题意;B 、没把一个多项式转化成几个整式积的形式,故B 不符合题意;C 、把一个多项式转化成几个整式积的形式,故C 符合题意;D 、没把一个多项式转化成几个整式积的形式,故D 不符合题意;故选C .【点睛】本题考查了因式分解的意义,判断因式分解的标准是把一个多项式转化成几个整式积的形式.2.下列分解因式正确的是( )A .x 3﹣x=x (x 2﹣1)B .x 2﹣1=(x+1)(x ﹣1)C .x 2﹣x+2=x (x ﹣1)+2D .x 2+2x ﹣1=(x ﹣1)2【答案】B【解析】试题分析:根据提公因式法分解因式,公式法分解因式对各选项分析判断利用排除法求解.解:A 、x 3﹣x=x (x 2﹣1)=x (x+1)(x ﹣1),故本选项错误;B 、x 2﹣1=(x+1)(x ﹣1),故本选项正确;C 、x 2﹣x+2=x (x ﹣1)+2右边不是整式积的形式,故本选项错误;D 、应为x 2﹣2x+1=(x ﹣1)2,故本选项错误.故选B .考点:提公因式法与公式法的综合运用.3.把代数式322363x x y xy -+分解因式,结果正确的是( )A .(3)(3)x x y x y +-B .223(2)x x xy y -+C .2(3)x x y -D .23()x x y -【答案】D【解析】 此多项式有公因式,应先提取公因式,再对余下的多项式进行观察,有3项,可采用完全平方公式继续分解.解答:解:322363x x y xy -+,=3x (x 2-2xy+y 2),=3x (x-y )2.故选D .4.下列等式从左到右的变形是因式分解的是( )A .2x (x +3)=2x 2+6xB .24xy 2=3x •8y 2C .x 2+2xy +y 2+1=(x +y )2+1D .x 2﹣y 2=(x +y )(x ﹣y )【答案】D【解析】【分析】根据因式分解的定义逐个判断即可.【详解】A 、不是因式分解,故本选项不符合题意;B 、不是因式分解,故本选项不符合题意;C 、不是因式分解,故本选项不符合题意;D 、是因式分解,故本选项符合题意;故选D .【点睛】本题考查了因式分解的定义,能熟记因式分解的定义的内容是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.5.下列分解因式正确的是( )A .x 2-x+2=x (x-1)+2B .x 2-x=x (x-1)C .x-1=x (1-1x )D .(x-1)2=x 2-2x+1 【答案】B【解析】【分析】根据因式分解的定义对各选项分析判断后利用排除法求解.【详解】A 、x 2-x+2=x (x-1)+2,不是分解因式,故选项错误;B 、x 2-x=x (x-1),故选项正确;C 、x-1=x (1-1x),不是分解因式,故选项错误;D 、(x-1)2=x 2-2x+1,不是分解因式,故选项错误.故选:B .【点睛】本题考查了因式分解,把一个多项式写成几个整式的积的形式叫做因式分解,也叫做分解因式.掌握提公因式法和公式法是解题的关键.6.若三角形的三边长分别为a 、b 、c ,满足22230a b a c b c b -+-=,则这个三角形是( )A .直角三角形B .等边三角形C .锐角三角形D .等腰三角形 【答案】D【解析】【分析】首先将原式变形为()()()0b c a b a b --+=,可以得到0b c -=或0a b -=或0a b +=,进而得到b c =或a b =.从而得出△ABC 的形状.【详解】∵22230a b a c b c b -+-=,∴()()220a b c b c b -+-=,∴()()220b c a b --=,即()()()0b c a b a b --+=,∴0b c -=或0a b -=或0a b +=(舍去),∴b c =或a b =,∴△ABC 是等腰三角形.故选:D .【点睛】本题考查了因式分解-提公因式法、平方差公式法在实际问题中的运用,注意掌握因式分解的步骤,分解要彻底.7.多项式x 2y (a -b )-xy (b -a )+y (a -b )提公因式后,另一个因式为( ) A .21x x -+B .21x x ++C .21x x --D .21x x +-【答案】B【解析】解:x 2y (a -b )-xy (b -a )+y (a -b )= y (a -b )(x 2+x +1).故选B .8.已知a ﹣b =2,则a 2﹣b 2﹣4b 的值为( )A .2B .4C .6D .8【答案】B【解析】【分析】原式变形后,把已知等式代入计算即可求出值.【详解】∵a ﹣b =2,∴原式=(a +b )(a ﹣b )﹣4b =2(a +b )﹣4b =2a +2b ﹣4b =2(a ﹣b )=4.故选:B .【点睛】此题考查因式分解-运用公式法,熟练掌握完全平方公式是解题的关键.9.已知x ﹣y =﹣2,xy =3,则x 2y ﹣xy 2的值为( )A .2B .﹣6C .5D .﹣3 【答案】B【解析】【分析】先题提公因式xy ,再用公式法因式分解,最后代入计算即可.【详解】解:x 2y ﹣xy 2=xy (x ﹣y )=3×(﹣2)=﹣6,故答案为B .【点睛】本题考查了因式分解,掌握先提取公因式、再运用公式法的解答思路是解答本题的关键.10.下列分解因式正确的是( )A .24(4)x x x x -+=-+B .2()x xy x x x y ++=+C .2()()()x x y y y x x y -+-=-D .244(2)(2)x x x x -+=+-【答案】C【解析】【分析】根据因式分解的步骤:先提公因式,再用公式法分解即可求得答案.注意分解要彻底.【详解】A. ()244x x x x -+=-- ,故A 选项错误; B. ()21x xy x x x y ++=++,故B 选项错误; C. ()()()2x x y y y x x y -+-=- ,故C 选项正确;D. 244x x -+=(x-2)2,故D 选项错误,故选C.【点睛】本题考查了提公因式法,公式法分解因式.注意因式分解的步骤:先提公因式,再用公式法分解.注意分解要彻底.11.将多项式x 2+2xy+y 2﹣2x ﹣2y+1分解因式,正确的是( )A .(x+y )2B .(x+y ﹣1)2C .(x+y+1)2D .(x ﹣y ﹣1)2【答案】B【解析】【分析】此式是6项式,所以采用分组分解法.【详解】 解:x 2+2xy+y 2﹣2x ﹣2y+1=(x 2+2xy+y 2)﹣(2x+2y )+1=(x+y )2﹣2(x+y )+1=(x+y ﹣1)2.故选:B12.已知a ,b ,c 满足3a b c ++=,2224a b c ++=,则222222222a b b c c a c a b+++++=---( ). A .0B .3C .6D .9【答案】D【解析】【分析】将等式变形可得2224+=-a b c ,2224+=-b c a ,2224+=-a c b ,然后代入分式中,利用平方差公式和整体代入法求值即可.【详解】解:∵2224a b c ++=∴2224+=-a b c ,2224+=-b c a ,2224+=-a c b∵3a b c ++= ∴222222222+++++---a b b c c a c a b=222444222---++---c a b c a b=()()()()()()222222222-+-+-+++---c c a a b b c ab=222+++++c a b=()6+++c a b=6+3=9故选D .【点睛】 此题考查的是分式的化简求值题和平方差公式,掌握分式的基本性质和平方差公式是解决此题的关键.13.下列从左边到右边的变形,属于因式分解的是( )A .2(1)(1)1x x x +-=-B .221(2)1x x x x -+=-+C .224(4)(4)x y x y x y -=+-D .26(2)(3)x x x x --=+-【答案】D【解析】A. 和因式分解正好相反,故不是分解因式;B. 结果中含有和的形式,故不是分解因式;C. 22x 4y -=(x+2y)(x−2y),解答错误;D. 是分解因式。
第四章《因式分解》测试题(含答案)
第四章因式分解一、选择题(本大题共8小题,每小题4分,共32分)1.下列从左到右的变形,是因式分解的是()A.(3-x)(3+x)=9-x2B.m3-mn2=m(m+n)(m-n)C.(y+1)(y-3)=-(3-y)(y+1) D.4yz-2y2z+z=2y(2z-yz)+z2.一次课堂练习,小璇同学做了如下4道因式分解题,你认为小璇做得不正确的一题是()A.a3-a=a(a2-1) B.m2-2mn+n2=(m-n)2C.x2y-xy2=xy(x-y) D.x2-y2=(x-y)(x+y)3.如果多项式4a2-(b-c)2=M(2a-b+c),那么M表示的多项式应为()A.2a-b+c B.2a-b-c C.2a+b-c D.2a+b+c4.若a2+8ab+m2是一个完全平方式,则m应是()A.b2B.±2b C.16b2D.±4b5.对于任何整数m,多项式(4m+5)2-9一定能()A.被8整除B.被m整除C.被m-91整除D.被2m-1整除6.若m-n=-1,则(m-n)2-2m+2n的值是()A.3 B.2 C.1 D.-17.因式分解x2+ax+b时,甲看错了a的值,分解的结果是(x+6)(x-1),乙看错了b 的值,分解的结果是(x-2)(x+1),那么x2+ax+b因式分解的正确结果为() A.(x+2)(x-3) B.(x-2)(x+1) C.(x+6)(x-1) D.无法确定8.若a,b,c是三角形三边的长,则代数式(a2-2ab+b2)-c2的值()A.大于零B.小于零C.大于或等于零D.小于或等于零二、填空题(本大题共6小题,每小题4分,共24分)9.因式分解:3a2-3b2=______________.10.计算:201820192-20172=________.11.请在二项式x2-□y2中的“□”里面添加一个整式,使其能因式分解,你在“□”中添加的整式是________(写出一个即可).12.在半径为R的圆形钢板上,裁去半径为r的四个小圆,当R=7.2 cm,r=1.4 cm时,剩余部分的面积是________cm2(π取3.14,结果精确到个位).13.若△ABC的三边长分别是a,b,c,且a+2ab=c+2bc,则△ABC是____________.14.如图4-Z-1,已知边长为a,b的长方形,若它的周长为24,面积为32,则a2b +ab2的值为________.图4-Z-1三、解答题(本大题共5小题,共44分)15.(9分)将下列各式因式分解:(1)2x3y-2xy3;(2)3x3-27x;(3)(a-b)(3a+b)2+(a+3b)2(b-a).16.(7分)给出三个多项式:12x2+2x-1,12x2+4x+1,12x2-2x,请选择你最喜欢的两个多项式进行加法运算,并把结果因式分解.17.(8分)阅读材料:若m2-2mn+2n2-8n+16=0,求m,n的值.解:∵m2-2mn+2n2-8n+16=0,∴(m2-2mn+n2)+(n2-8n+16)=0,∴(m-n)2+(n-4)2=0,∴(m-n)2=0,(n-4)2=0,∴n=4,m=4.根据你的观察,探究下面的问题:(1)若a2+b2-4a+4=0,则a=________,b=________;(2)已知x2+2y2-2xy+6y+9=0,求x y的值;(3)已知△ABC的三边长a,b,c都是正整数,且满足2a2+b2-4a-6b+11=0,求△ABC的周长.18.(10分)如图4-Z-2①所示是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀平均分成四个小长方形,然后按图②的方式拼成一个正方形.图4-Z-2(1)请用两种不同的方法求图②中阴影部分的面积(直接用含m,n的代数式表示).方法一:________________________________________________________________________;方法二:________________________________________________________________________.(2)根据(1)的结论,请你写出代数式(m+n)2,(m-n)2,mn之间的等量关系.(3)根据(2)题中的等量关系,解决如下问题:已知实数a,b满足:a+b=6,ab=5,求a-b的值.19.(10分)阅读材料:对于多项式x2+2ax+a2可以直接用公式法分解为(x+a)2的形式.但对于多项式x2+2ax -3a2就不能直接用公式法了,我们可以根据多项式的特点,在x2+2ax-3a2中先加上一项a2,再减去a2这项,使整个式子的值不变.解题过程如下:x2+2ax-3a2=x2+2ax-3a2+a2-a2(第一步)=x2+2ax+a2-a2-3a2(第二步)=(x+a)2-(2a)2(第三步)=(x+3a)(x-a).(第四步)参照上述材料,回答下列问题:(1)上述因式分解的过程,从第二步到第三步,用到了哪种因式分解的方法()A.提公因式法B.平方差公式法C.完全平方公式法D.没有因式分解(2)从第三步到第四步用到的是哪种因式分解的方法:__________;(3)请你参照上述方法把m2-6mn+8n2因式分解.参考答案1.[答案] B2.[解析] A a 3-a =a (a 2-1)=a (a +1)(a -1).故选A.3.[解析] C 4a 2-(b -c )2=[2a +(b -c )][2a -(b -c )]=(2a +b -c )(2a -b +c ).故选C.4.[答案] D5.[解析] A 因为(4m +5)2-9=(4m +5)2-32=(4m +5+3)(4m +5-3)=(4m +8)(4m +2)=4·(m +2)·2(2m +1)=8(m +2)(2m +1),所以(4m +5)2-9一定能被8整除.6.[解析] A ∵(m -n )2-2m +2n =(m -n )2-2(m -n )=(m -n )(m -n -2),m -n =-1,∴原式=(-1)×(-1-2)=3.故选A.7.[解析] A 因为甲看错了a 的值,分解的结果为(x +6)(x -1),所以b =-6.因为乙看错了b 的值,分解的结果是(x -2)(x +1),所以a =-1.所以x 2+ax +b =x 2-x -6=(x +2)(x -3). 8.[解析] B (a 2-2ab +b 2)-c 2=(a -b )2-c 2=(a -b +c )(a -b -c ).因为a ,b ,c 是三角形三边的长,所以a +c >b ,a <b +c ,即a -b +c >0,a -b -c <0,所以(a -b +c )(a -b -c )<0,即(a 2-2ab +b 2)-c 2<0.故选B.[点评] 本题要充分挖掘题目的隐含条件,即a ,b ,c 是三角形的三边长,则a ,b ,c 应是正数且满足三角形三边的关系.9.[答案] 3(a -b )(a +b )10.[答案] 14[解析] 原式=2018(2019+2017)×(2019-2017)=20184036×2=14. 11.[答案] 答案不唯一,如412.[答案] 138[解析] 剩余部分的面积为πR 2-4πr 2.当R =7.2 cm ,r =1.4 cm 时,πR 2-4πr 2=π(R -2r )(R +2r )=π×(7.2-2.8)×(7.2+2.8)=π×4.4×10≈3.14×44≈138(cm 2).13.[答案] 等腰三角形[解析] ∵a +2ab =c +2bc ,∴a +2ab -c -2bc =0,∴(a -c )+2b (a -c )=0,∴(a -c )(2b +1)=0.∵2b +1≠0,∴a =c.14.[答案] 384[解析] 由题意易得a +b =12,ab =32,∴a 2b +ab 2=ab (a +b )=384.故答案为384.15.[解析] (1)先提取公因式2xy ,再用平方差公式;(2)先提取公因式3x ,再运用平方差公式;(3)先提取公因式(a -b ),再运用平方差公式.无论哪一道题目都需要分解到底.解:(1)2x 3y -2xy 3=2xy (x 2-y 2)=2xy (x +y )(x -y ).(2)3x 3-27x=3x (x 2-9)=3x (x +3)(x -3).(3)(a -b )(3a +b )2+(a +3b )2(b -a )=(a -b )[(3a +b )2-(a +3b )2]=(a -b )(3a +b +a +3b )(3a +b -a -3b )=8(a -b )2(a +b ).16.解:(1)⎝⎛⎭⎫12x 2+2x -1+⎝⎛⎭⎫12x 2+4x +1=x 2+6x=x (x +6).(2)⎝⎛⎭⎫12x 2+2x -1+⎝⎛⎭⎫12x 2-2x=x 2-1=(x +1)(x -1).(3)⎝⎛⎭⎫12x 2+4x +1+⎝⎛⎭⎫12x 2-2x=x 2+2x +1=(x +1)2.(答案不唯一,选择其中一种即可)17.解:(1)2 0(2)∵x 2+2y 2-2xy +6y +9=0,∴x 2+y 2-2xy +y 2+6y +9=0,即(x -y )2+(y +3)2=0,则x-y=0,y+3=0,解得x=y=-3,∴x y=(-3)-3=-127.(3)∵2a2+b2-4a-6b+11=0,∴2a2-4a+2+b2-6b+9=0,∴2(a-1)2+(b-3)2=0,则a-1=0,b-3=0,解得a=1,b=3,∵a,b,c都是正整数,由三角形三边关系可知,三角形的三边长分别为1,3,3,则△ABC的周长为1+3+3=7.18.解:(1)方法一:(m+n)2-4mn;方法二:(m-n)2.(2)(m+n)2-4mn=(m-n)2.(3)由(2)可知(a-b)2=(a+b)2-4ab=62-4×5=16.∴a-b=4或a-b=-4.19.解:(1)C(2)平方差公式法(3)m2-6mn+8n2=m2-6mn+8n2+n2-n2=m2-6mn+9n2-n2=(m-3n)2-n2=(m-2n)(m-4n).。
初二因式分解练习题和答案
初二因式分解练习题和答案一、基础题型1. 将下列多项式进行因式分解:(1) $x^2 + 4x + 4$解析:观察多项式可知,常数项为4,且平方项系数为1,因此可以直接得出该多项式的因式分解形式为$(x+2)(x+2)$或$(x+2)^2$。
(2) $9a^2 - 16$解析:根据平方差公式可知,$9a^2 - 16$可以分解为$(3a+4)(3a-4)$。
2. 分解下列多项式:(1) $3x^2 + 12x + 9$解析:观察多项式可知,常数项为9,且平方项系数为3。
因此,这个多项式可以进行因式分解为$(x+3)(3x+3)$或$(x+3)^2$。
(2) $4x^2 - 5xy + y^2$解析:该多项式是一个二次三项式,根据二次三项式的平方公式,可以得到它的因式分解形式为$(2x-y)^2$。
二、综合题型1. 分解下列多项式:(1) $3x^2 - 8$解析:观察多项式可知,平方项系数为3,常数项为-8。
根据常数项为负数的特点,我们可以尝试将-8分解成两个因数的乘积。
考虑到平方项系数为3,我们可以写成$(3x)^2 - 2^2$。
利用二次差公式,得到$(3x+2)(3x-2)$。
(2) $6x^2 + 17x + 10$解析:我们可以使用因式分解法或求根法进行分解,为了简便起见,我们选择因式分解法。
将多项式划分为三个项,得到$(2x+5)(3x+2)$。
2. 分解下列多项式:(1) $4x^2 - 12xy + 9y^2$解析:观察多项式可知,平方项系数为4,常数项为$9y^2$。
考虑到常数项为平方形式,我们可以尝试进行“凑平方”的操作。
$(2x-3y)^2$即为所求解。
(2) $x^3 - 3x^2 + 2x$解析:观察多项式可知,这是一个三次多项式。
我们可以尝试提取公因式,并进行因式分解。
将每一项提取公因式,得到$x(x^2 - 3x + 2)$。
进一步分解,我们得到$x(x-1)(x-2)$。
八年级下数学《第四章因式分解》单元测试(含答案)
第四章因式分解一、选择题1.下列因式分解结果正确的是()A. x2+3x+2=x(x+3)+2B. 4x2﹣9=(4x+3)(4x﹣3)C. x2﹣5x+6=(x﹣2)(x﹣3)D. a2﹣2a+1=(a+1)22.下列从左到右的变形,是因式分解的是()A. (x+3)(x-2)=x2+x-6B. ax-ay-1=a(x-y)-1C. 8a2b3=2a2•4b3D. x2-4=(x+2)(x-2)3.若△ABC三边分别是a、b、c,且满足(b﹣c)(a2+b2)=bc2﹣c3,则△ABC是()A. 等边三角形B. 等腰三角形C. 直角三角形D. 等腰或直角三角形4.把多项式x2﹣x分解因式,得到的因式是()A. 只有xB. x2和xC. x2和﹣xD. x和x﹣15.计算:22014﹣(﹣2)2015的结果是()A. B. C. ﹣ D. 3×6.下列多项式能因式分解的是()A. B. C. D.7.下列从左边到右边的变形,属于因式分解的是()A. (x+1)(x﹣1)=x2﹣1B. x2﹣2x+1=x(x﹣2)+1C. x2﹣4y2=(x﹣2y)2D. 2x2+4x+2=2(x+1)28.在实数范围内分解因式x5﹣64x正确的是()A. x(x4﹣64)B. x(x2+8)(x2﹣8)C. x(x2+8)(x+2)(x﹣2)D. x(x+2)3(x﹣2)9.分解因式得正确结果为()A. a2b(a2﹣6a+9)B. a2b(a﹣3)(a+3)C. b(a2﹣3)2D. a2b(a﹣3)210.若多项式x4+mx3+nx﹣16含有因式(x﹣2)和(x﹣1),则mn的值是()A. 100B. 0C. -100D. 50二、填空题11.分解因式:a3﹣ab2=________.12.分解因式:m2﹣16=________.13.分解因式x2-8x+16=________14. 分解因式:x2﹣9= ________.15.分解因式:a2﹣16=________.16.已知一个长方形的面积是a2﹣b2(a>b),其中长边为a+b,则短边长是________ .17.分解因式:x2y﹣4xy+4y=________.18. 分解因式:9x3﹣18x2+9x=________19.已知a=2,x+2y=3,则3ax+6ay=________20.分解因式:9a﹣a3=________ .三、解答题21.因式分解:(1)2x(a﹣b)+3y(b﹣a)(2)x(x2﹣xy)﹣(4x2﹣4xy)22.化简求值:当a=2005时,求﹣3a2(a2﹣2a﹣3)+3a(a3﹣2a2﹣3a)+2005的值.23.阅读材料:分解因式:x2+2x﹣3解:原式=x2+2x+1﹣4=(x+1)2﹣4=(x+1+2)(x+1﹣2)=(x+3)(x﹣1)此种方法抓住了二次项和一次项的特点,然后加一项,使这三项成为完全平方式,我们把这种分解因式的方法叫配方法.请仔细体会配方法的特点,然后尝试用配方法解决下列问题:(1)分解因式x2﹣2x﹣3=________;a2﹣4ab﹣5b2=________;(2)无论m取何值,代数式m2+6m+13总有一个最小值,请你尝试用配方法求出它的最小值;(3)观察下面这个形式优美的等式:a2+b2+c2﹣ab﹣bc﹣ca= [(a﹣b)2+(b﹣c)2+(c﹣a)2] 该等式从左到右的变形,不仅保持了结构的对称性,还体现了数学的和谐、简洁美.请你说明这个等式的正确性.参考答案一、选择题C D D D D C D C D C二、填空题11.a(a+b)(a﹣b)12.(m+4)(m-4)13.(x-4)214.(x+3)(x﹣3)15.(a+4)(a﹣4)16.解:(a2﹣b2)÷(a+b)=(a+b)(a﹣b)÷(a+b)=a﹣b.故答案为a﹣b.17.y(x﹣2)218.9x(x﹣1)219.1820.a(3+a)(3﹣a)三、解答题21.解:(1)原式=2x(a﹣b)﹣3y(a﹣b)=(a﹣b)(2x﹣3y);(2)原式=x2(x﹣y)﹣4x(x﹣y)=x(x﹣y)(x﹣4).22.解:﹣3a2(a2﹣2a﹣3)+3a(a3﹣2a2﹣3a)+2005=﹣3a2(a2﹣2a﹣3)+3a2(a2﹣2a﹣3)+2005=2005.23.(1)(x﹣3)(x+1);(a+b)(a﹣5b)(2)解:m2+6m+13=m2+6m+9+4=(m+3)2+4,因为(m+3)2≥0,所以代数式m2+6m+13的最小值是4(3)解:a2+b2+c2﹣ab﹣bc﹣ca,= (2a2+2b2+2c2﹣2ab﹣2bc﹣2ca),= (a2﹣2b+b2+b2﹣2bc+c2+c2﹣2ca+a2),= [(a﹣b)2+(b﹣c)2+(c﹣a)2]。
因式分解经典测试题及答案
因式分解经典测试题及答案一、选择题1.将川口-6⑼加2*分解因式,下面是四位同学分解的结果:2K(xa-3ab},2阳(*-3b+l),〃(*白-3。
匕+1),2*t-xa+3ab-l).其中,正确的是()A. B. C. D.【答案】C【解析】【分析】直接找出公因式进而提取得出答案.【详解】2x2a-6xab+2x=2x(xa-3ab+l).故选:C.【点睛】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.2.下列各式从左到右的变形中,是因式分解的为().A.,x(£Z-Z?)=ax—bxB.x2-14-y2=(a-1)(jc+1)4-j2C.x1—1=(%+1)(^-1)D.ax+bx-\-c=x{a+b^c【答案】C【解析】【分析】根据因式分解的定义作答.把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式.【详解】解:A、是整式的乘法运算,故选项错误;叭右边不是积的形式,故选项错误;C、k2-1=(x+l)(x-l)7正确;D、等式不成立,故选项错误.故选:C.【点睛】熟练地掌握因式分解的定义,明确因式分解的结果应是整式的积的形式.3.相多项式4xql再加上一项,使它能分解因式成(a+b)之的形式,以下是四位学生所加的项,其中错误的是()A.2xB.-4nC.4X4D.4x【答案】A【解析】【分析】分别将四个选项中的式子与多项式4M+1结舍,然后判断是否为完全平方式即可得答案.【详解】A 、4炉+1+本,不是完全平方式,不能利用完全平方公式进行因式分解,故符合题意;B 、4M,1-取=僮肥1产,能利用完全平方公式进行因式分解,故不符合题意;C 、4e+lMd=(2x41)、能利用完全平方公式进行因式分解,故不符合题意:D.4x2+l+4x=(2x+l)21能利用完全平方公式进行因式分解,故不符合题意,故选A.【点睛】本题考杳了完全平方式.熟记完全平方式的结构特征是解题的关键.4.下列等式从左到右的变形是因式分解的是()A.2x (x+3)=及+6*B.24xy=我 8产L 1+2册/+1=(x+y)2+1D.x2-y=(x+y)Cx -y)【答案】D【解析】【分析】根据因式分解的定义逐个判断即可.【详解】A 、不是因式分解,故本选项不符合题意;B 、不是因式分解,故本选项不符舍题意:C 、不是因式分解,故本选项不符合题意;D 、是因式分解,故本选项符合题意:故选D.【点睛】本题考查了因式分解的定义,能熟记因式分解的定义的内容是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.卜列各式中,由等式的左边到右边的变形是因式分解的是(5.[x+3){x—3)=x2—9A.azb+ab2=ab(a +b}U 【答案】C【解折】【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】A 、是整式的乘法,故A 错误:B 、没有把一个多项式转化成几个整式积的形式,故B 错误,B.x2+x-5=(x-2)(x+3)+l D.x2+l=x(x+—)工C.把一个多项式转化成了几个整式积的形式,故C正确:D、没有把一个多项式转化成凡个整式积的形式,故D错误;故选:Q【点睛】本题考查了因式分解,因式分解是把一个多项式转化成几个整式积的形式. 6.己知2"一y=;,呼=2,则2i4ys一炉了4的值为(}【答案】C【解析】【分析】利用因式分解以及积的乘方的逆用将变形为的产僮可),然后代入相关数值进行计算即可.【详解】丫2x—y=—yxy—2,3J2力-=x3y3(^x V)=(xy)3(2x-y)=2*」38=一,3故选C.【点睛】本题考查了因式分解的应用,代数式求值,涉及了提公因式法,积的乘方的逆用,熟练掌握和灵活运用相关知次是解题的关键.7.若端形的三边长分别为『、8、C,满足标b—瓜%+,r—"=0,则这个三角形是()A.直角•:角形B.等边:角形C.锐角三角形D.等腰三角形【答案】D【解析】【分析】首先将原式变形为(》一e)(1一b)S+b)=O,可以得到8—0=0或o—b=0或4+b二0,进而得到6=c或以二b.从而得出aAB匚的形状.【详解】Y a^-^c+^c-b5=0*a2(b-c^b2(c—b^=O,.,.(6-t:m苏-⑹=0,即(%一力(.一6)(q+6)=0,;*b—c=0或q—b=0或以十6=0(舍去),*\b=c^a=b,...△ABC是等腰三角形.故选: D.【点睛】本题考查了因式分解一提公因式法、平方差公式法在实际问题中的运用,注意掌握因式分解的步骤,分解要彻底.8.下列等式从左边到右边的变形,属于因式分解的是(}A.2ab(a-b)=2a%-2ab*B.x2+l=x{x+—)XC.x2-4x+3={x-2)2-lD.a2-b2={a+b)(a-b)【答案】D【解析】【分析】把一个多项式化为几个最简整式的乘积的形式,这种变形叫做把这个多项式因式分解{也叫作分解因式).分解因式与整式乘法为相反变形.【详解】解:A.不是因式分解,而是整式的运算B,不是因式分解,等式左边的k是取任意实数,而等式右边的心0二不是因式分解,原式={,—3)(x—1)D.是因式分解.故选D.故答案为:D.【点睛】因式分解没有普遍适用的法则,初中数学教材中主要介绍了提公因式法、公式法,分组分解法、十字相乘法、配方法、待定系数法、拆项法等方法..9.已知实数/b满足等式k=/+u+20,y=a(1b—u),则x、v的大小关系是()A.,工yB.x>yC.x<yD.x>y【答案】D【解析】【分析】判断x、y的大小关系,把N一,进行整理,判断结果的符号可得小v的大小关系.【详解】解:x-y=a~+b2+20-2ab+a~=(扭一6『+/+20,—b尸标≥0,20>0,二x-y>0,二元ay,故选:Q【点睛】本题考查了作差法比较大小、配方法的应用;进行计算比较式子的大小;通常是让两个式子相减,若为正数,则被减数大:反之减数大.10,若实数a、b满足日+b=5『a2b+ab2=-10,则ab的值是()A.-2B.2C.-50D.5。
八年级上册数学第十四章 14.3因式分解 测试卷(含答案)
八年级上册数学第十四章 14.3因式分解 测试卷知识要点一:提公因式法1.下列变形是因式分解的是( ) A .a ²-b ²-1=(a+b)(a-b)-1 B .ax ²+x+b ²=x(ax+1)+b ² C .(a+2)(a-2)=a ²-4 D .4x ²-9=(2x+3)(2x-3)2.分解因式6xyz - 4x ²y ²z ²+ 2xz ²时,应提取的公因式是( ) A .xyz B .2x C .2z D .2xz 3.将21a ²b-ab ²提公因式后,另一个因式是( )A. a+2bB.-a+2bC.-a-b D .a- 2b4.下列因式分解中,是利用提公因式法分解的是( ) A. a ²-b ²= (a+b) (a-b) B.a ²-2ab+b ²= (a-b)² C.ab+ac=a (b+c) D.a ²+2ab+b ²= (a+b)²5.若a+b=4,ab=2,则3a ²b+3ab ²的值是( ) A .24 B .18 C .12 D .86.多项式x ²+x ⁶提取公因式x ²后的另一个因式是( ) A .x ⁴ B .x³ C .x ⁴+1 D .x³+17.若△ABC 的三边a ,b ,c 满足a ²+ b ²+ c ²=ac+ bc+ab ,则△ABC 是( )A .锐角三角形B .等腰三角形C .等边三角形D .直角三角形 8.分解因式:3x ²y-6xy +x=_____;3x³-6x ²+ 12x=_____.9.请写出含有公因式3m ²n ,且次数为5的两个多项式,分别为_____、_____. 10.若多项式ax+B 运用提公因式法分解因式的结果为a(x -y),则B 等于_____. 11.计算:5×3⁴+9×3⁴-12×3⁴=_____.12.已知a=49,6=109,则ab - 9a 的值为_____. 13.将下列式子因式分解:(1) (x+2y)² - 2xy -x ²; (2) 3xy ²+21x ²y-39xy.14.化简3a ²b (2ab³-a ²b³-1)+2(ab)⁴+a .3ab ,并求出当a= -1,b=2时原式的值.15.已知x ²+4x-1=0,求2x ⁴+ 8x³-4x ²-8x+1的值.16.已知关于x 的二次三项式2x ²+mx+n 因式分解的结果为(2x -3)(x+21),求m ,n 的值.知识要点二:公式法17.在下列各式中,不能用平方差公式分解因式的是()A. -x²+y²B.-1-m²C.a²-9b² D.4m²-118.下列各式中不是完全平方式的是()A.x²-10x+25 B.a²+a+41C.4n²+n+4 D.9m²+6m+119.下列四个多项式,能因式分解的是()A.a²+b²B.a²-a+2C.a²+3bD.(x+y)²-420.若x为任意有理数,则多项式-41x²+x-1的值()A.一定为负数B.一定为正数C.不可能为正数D.不可能为负数21.若n为任意整数,则(n+7)²-n²一定能被______整除()A.7 B.14 C.7或14 D.7的倍数22.下列因式分解不正确的是()A.2x³-2x= 2x (x²-1) B.mx²-6mx+ 9m= m(x -3)²C.3x²-3y²=3 (x+y)(x-y) D.x²-2xy+y²= (x-y)²23.若9x²-kx+4是一个完全平方式,则k=_____.24.已知x²+6xy+9y²+∣y-1∣=0,则x+y=_____.25.若x²+x+m=(x- n)²,则m=_____,n=_____.26.如果x+y=-3,x-y=6,则代数式2x²-2y²的值为_____.27.若9x²-M= (3x+y-1)(3x-y+1),则M=_____.28.分解因式:4+12 (a-b)+9(a-b)²=_____.29.因式分解:(1) 8a³ - 2a(a+1)²; (2) m²-4n²+4n -1.30.已知x-y=1,xy=2,求x³y-2x²y²+ xy³的值.31.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”,如:4= 2²- 0²,12 = 4²- 2²,20=6²- 4²,因此4,12,20都是这种“神秘数”.(1) 28和2016这两个数是“神秘数”吗?试说明理由.(2)试说明神秘数能被4整除.(3)两个连续奇数的平方差是神秘数吗?试说明理由.32.当a,b为何值时,多项式a²+b²- 4a+6b+18有最小值?并求出这个最小值.33.已知x-1=5,求代数式(x+1)²-4(x+1)+4的值.参考答案1.D2.D3.A4.C5.A6.C7.C8.x(3xy-6y+1) 3x(x²-2x+4)9. 3m⁴n+3m²n 6m²n³-3m²n(答案不唯一)10. -ay 11. 162 12. 490013.(1)原式=(x+2y)²-x(x+2y)=(x+2y)(x+2y-x)=2y(x+ 2y);(2)原式=3xy(y+7x - 13).14.原式= 6a³b⁴-3a⁴b⁴ - 3a²b+2a⁴b⁴+ 3a²b=a³b⁴(6 -a).当a= -1, b-2时,原式=(-1)³×2⁴×【6 -(-1)】- 16×7=-112.15.∵x²+4x-1=0,∴x²+4x=1.∴2x⁴+ 8x³- 4x²-8x+1=2x²(x²+4x) -4(x²+4x) +8x+1=2x²·1 -4×1+8x+1= 2x²+8x -3 =2(x²+4x)-3=2×1-3=-1.16.因为2x²+mx+n=(2x-3)(x+ 21) =2x²-2x-23,所以m= -2, n= 23-.17.B 18.C 19.D 20.C 21.A 22.A23.±12 24.-2 25.4121-26.-3627.(y-1)²28.(2+3a - 3b)²29.(1)原式=2a[4a²- (a+1)²]=2a(3a+1)(a-1);(2)原式=m²- (4n²-4n+1)=m²-(2n -1)²= (m - 2n +1) (m+2n -1).30.x³y-2x ²y ²+ xy³= xy(x ² - 2xy+ y ²)= xy(x-y)²=2×1²=2. 31.(1)是.理由如下: ∵28=8²- 6², 2016= 505² - 503² ∴28是“神秘数”;2016是“神秘数”. (2)“神秘数”是4的倍数.理由如下:(2k+2)² - (2k)²= (2k+2 - 2k) (2k+2+2k)= 2(4k+2)=4(2k+1), ∴“神秘数”是4的倍数.(3)设两个连续的奇数为2k+1,2k -1,则(2k+1)²-(2k-1)²=8k ,而由(2)知“神秘数”是4的倍数,但不是8的倍数,所以两个连续的奇数的平方差不是“神秘数”. 32.a ²+b ²-4a+6b+18=(a ²- 4a+4)+(b ²+6b+9) +5=(a-2)²+(b+3)²+5,∴当a=2,b= -3时,a ²+b ²-4a+6b+18有最小值5.33.原式=[(x+1)-2]²-(x-1)²,当x-1=5时,原式=52)5( .。
【八年级上册】因式分解专项训练(30道)(含答案)
因式分解专项训练(30道)1.(拱墅区校级期中)因式分解(1)﹣a2+1;(2)2x3y+4x2y2+2xy3;(3)4(x+2y)2﹣25(x﹣y)2;(4)(a2+a)2﹣8(a2+a)+12.2.(拜泉县期中)因式分解(1)6x2﹣3x;(2)16m3﹣mn2;(3)25m2﹣10mn+n2;(4)9a2(x﹣y)+4b2(y﹣x).3.(浠水县月考)分解因式:(1)3pq3+15p3q;(2)ab2﹣a;(3)4xy2﹣4x2y﹣y3;(4)(a2+1)2﹣4a2.4.(绿园区校级月考)把下列多项式分解因式.(1)3x2﹣3y2.(2)a2b+2ab2+b3.(3)(m﹣1)(m﹣3)+1.(4)2a2+4ab+2b2.5.(2021春•东昌府区期末)把下列各式进行因式分解:(1)2(x﹣y)﹣(x﹣y)2;(2)﹣x2+8x﹣15;(3)8m3n+40m2n2+50mn3;(4)a4﹣b4.6.(2021春•南山区校级期中)分解因式:(1)12ab2﹣6ab;(2)a2﹣6ab+9b2;(3)x4﹣1;(4)n2(m﹣2)+(2﹣m).7.(2021春•邗江区期中)分解因式:(1)2x2﹣12x+18;(2)a3﹣a;(3)4ab2﹣4a2b﹣b3;(4)m3(a﹣2)+m(2﹣a).8.(2020秋•丛台区期末)因式分解(1)(a﹣b)2+4ab;(2)x2﹣2x﹣8;(3)x4﹣6x3+9x2﹣16;(4)(x2+3x+5)(x2+3x+1)+3.9.(2021春•江北区校级期中)因式分解:(1)﹣8ab2+6a2b﹣2ab;(2)4a2﹣(a2+1)2;(3)x4﹣8x2﹣9;(4)(2﹣x2)2+2x(x2﹣2)+x2.10.(2021春•福田区校级期中)因式分解:(1)ab2﹣a;(2)2xy2﹣12x2y+18x3;(3)a4﹣8a2+16;(4)(x﹣4)(x+1)+3x.11.(2021秋•姜堰区月考)因式分解:(1)a4﹣1;(2)x3﹣2x2y+xy2.12.(2021春•平山区校级期中)分解因式:(1)x2(m﹣n)+y2(n﹣m);(2)3x2﹣18xy+27y2.13.(2021春•鄄城县期末)因式分解:(1)(a﹣b)(x﹣y)﹣(b﹣a)(x+y);(2)(x2+1)2﹣4x2.14.(2021春•福田区校级期中)分解因式:(1)4x2﹣(x2+1)2;(2)3(x﹣1)2﹣18(x﹣1)+27.15.(2021春•凤翔县期末)分解因式:(1)9a2(x﹣y)+y﹣x;(2)(x2﹣2xy+y2)+(﹣2x+2y)+1.16.(2021春•沈北新区期末)因式分解:(1)﹣10a2bc+15bc2﹣20ab2c;(2)(x2+1)2﹣4x2.17.(2021春•平顶山期末)把下列各式因式分解:(1)x2+2xy+y2﹣c2;(2)b2(a﹣2)+b(2﹣a).18.(2021春•覃塘区期末)因式分解:(1)3x3﹣12x;(2)1﹣2x+2y+(x﹣y)2.19.(2021春•江宁区月考)分解因式:(1)4x2(x﹣y)+(y﹣x);(2)(x2﹣5)2+8(x2﹣5)+16.20.(2021春•汉寿县期中)分解因式:3x2﹣xy﹣2y2﹣x+y.21.(2020秋•浦东新区期末)因式分解(1)5x2+6y﹣15x﹣2xy;(2)(1+ab)2﹣(a+b)2.22.(2020春•市南区校级期中)因式分解:4(x+y)2﹣16(x﹣y)2.23.(2020秋•宝山区期末)分解因式:2x3﹣2x2y+8y﹣8x.24.(2020秋•上海期末)分解因式:a4+4b2c2﹣a2b2﹣4a2c2.25.(2020秋•松江区期末)因式分解:x3+3x2y﹣4x﹣12y.26.(2020秋•浦东新区期末)分解因式:a4+4b2c2﹣a2b2﹣4a2c2.27.(2020秋•浦东新区期末)因式分解:(x2+2x)2﹣7(x2+2x)﹣8.28.(2021秋•浦东新区校级期中)分解因式:(x2+x+1)(x2+x+2)﹣12.29.(2020秋•海淀区校级期中)因式分解:64a6﹣48a4b2+12a2b4﹣b6.30.(2020秋•海淀区校级期中)请用两种方法对多项式x3﹣4x2+6x﹣4进行因式分解.(拆添项算一种方法)因式分解专项训练(30道)【答案版】1.(2021春•拱墅区校级期中)因式分解(1)﹣a2+1;(2)2x3y+4x2y2+2xy3;(3)4(x+2y)2﹣25(x﹣y)2;(4)(a2+a)2﹣8(a2+a)+12.【解题思路】(1)逆用平方差公式进行因式分解.(2)先逆用平方差公式,再提公因式.(3)先逆用平方差公式,再提公因式.(4)运用十字相乘法进行因式分解,注意分解彻底.【解答过程】解:(1)﹣a2+1=(1+a)(1﹣a).(2)2x3y+4x2y2+2xy3=2xy(x2+2xy+y2)=2xy(x+y)2.(3)4(x+2y)2﹣25(x﹣y)2=[2(x+2y)+5(x﹣y)][2(x+2y)﹣5(x﹣y)]=(2x+4y+5x﹣5y)(2x+4y﹣5x+5y)=(7x﹣y)(﹣3x+9y)=﹣3(7x﹣y)(x﹣3y).(4)(a2+a)2﹣8(a2+a)+12=(a2+a﹣2)(a2+a﹣6)=(a+2)(a﹣1)(a+3)(a﹣2).2.(2021秋•拜泉县期中)因式分解(1)6x2﹣3x;(2)16m3﹣mn2;(3)25m2﹣10mn+n2;(4)9a2(x﹣y)+4b2(y﹣x).【解题思路】(1)原式提取公因式3x,分解即可;(2)原式提取公因式m,再利用平方差公式分解即可;(3)原式利用完全平方公式分解即可;(4)原式变形后,提取公因式(x﹣y),再利用平方差公式分解即可.【解答过程】解:(1)6x2﹣3x=3x(2x﹣1);(2)16m3﹣mn2=m(16m2﹣n2)=m(4m+n)(4m﹣n);(3)25m2﹣10mn+n2=(5m﹣n)2;(4)9a2(x﹣y)+4b2(y﹣x)=9a2(x﹣y)﹣4b2(x﹣y)=(x﹣y)(9a2﹣4b2)=(x﹣y)(3a+2b)(3a﹣2b).3.(2021秋•浠水县月考)分解因式:(1)3pq3+15p3q;(2)ab2﹣a;(3)4xy2﹣4x2y﹣y3;(4)(a2+1)2﹣4a2.【解题思路】(1)原式提取公因式3pq即可;(2)原式提取公因式a,再利用平方差公式分解即可;(3)原式提取公因式﹣y,再利用完全平方公式分解即可;(4)原式利用平方差公式,以及完全平方公式分解即可.【解答过程】解:(1)3pq3+15p3q=3pq(q2+5p2);(2)ab2﹣a=a(b2﹣1)=a(b+1)(b﹣1);(3)4xy2﹣4x2y﹣y3=﹣y(y2+4x2﹣4xy)=﹣y(2x﹣y)2;(4)(a2+1)2﹣4a2=(a2+1+2a)(a2+1﹣2a)=(a+1)2(a﹣1)2.4.(2021秋•绿园区校级月考)把下列多项式分解因式.(1)3x2﹣3y2.(2)a2b+2ab2+b3.(3)(m﹣1)(m﹣3)+1.(4)2a2+4ab+2b2.【解题思路】(1)先提公因式,再利用平方差公式即可;(2)先提公因式,再利用完全平方公式即可;(3)先计算多项式乘多项式,整理后,再利用完全平方公式即可;(4)先提公因式,再利用完全平方公式即可;【解答过程】解:(1)原式=3(x2﹣y2)=3(x+y)(x﹣y);(2)原式=b(a2+2ab+b2)=b(a+b)2;(3)原式=m2﹣4m+4=(m﹣2)2;(4)原式=2(a2+2ab+b2)=2(a+b)2.5.(2021春•东昌府区期末)把下列各式进行因式分解:(1)2(x﹣y)﹣(x﹣y)2;(2)﹣x2+8x﹣15;(3)8m3n+40m2n2+50mn3;(4)a4﹣b4.【解题思路】(1)直接提取公因式;(2)先加上负括号,再利用十字相乘法;(3)先提取公因式2mn,再利用完全平方公式;(4)利用平方差公式因式分解.【解答过程】解:(1)2(x﹣y)﹣(x﹣y)2=(x﹣y)[2﹣(x﹣y)]=(x﹣y)(2﹣x+y);(2)﹣x2+8x﹣15=﹣(x2﹣8x+15)=﹣(x﹣5)(x﹣3);(3)8m3n+40m2n2+50mn3=2mn(4m2+20mn+25n2)=2mn(2m+5n)2;(4)a4﹣b4=(a2+b2)(a2﹣b2)=(a2+b2)(a+b)(a﹣b).6.(2021春•南山区校级期中)分解因式:(1)12ab2﹣6ab;(2)a2﹣6ab+9b2;(3)x4﹣1;(4)n2(m﹣2)+(2﹣m).【解题思路】(1)直接提取公因式6ab,进而分解因式即可;(2)直接利用完全平方公式分解因式得出答案;(3)直接利用平方差公式分解因式得出答案;(4)直接提取公因式(m﹣2),再利用平方差公式分解因式即可.【解答过程】解:(1)12ab2﹣6ab=6ab(2b﹣1);(2)a2﹣6ab+9b2=(a﹣3b)2;(3)x4﹣1=(x2+1)(x2﹣1)=(x2+1)(x﹣1)(x+1);(4)n2(m﹣2)+(2﹣m)=n2(m﹣2)﹣(m﹣2)=(m﹣2)(n2﹣1)=(m﹣2)(n+1)(n﹣1).7.(2021春•邗江区期中)分解因式:(1)2x2﹣12x+18;(2)a3﹣a;(3)4ab2﹣4a2b﹣b3;(4)m3(a﹣2)+m(2﹣a).【解题思路】(1)首先提公因式2,再利用完全平方公式进行分解即可;(2)首先提公因式a,再利用平方差公式进行分解即可;(3)首先提公因式﹣b,再利用完全平方公式进行分解即可;(4)首先提公因式m(a﹣2),再利用平方差公式进行分解即可.【解答过程】解:(1)原式=2(x2﹣6x+9)=2(x﹣3)2;(2)原式=a(a2﹣1)=a(a+1)(a﹣1);(3)原式=﹣b(b2﹣4ab+4a2)=﹣b(b﹣2a)2;(4)原式=m(a﹣2)(m2﹣1)=m(a﹣2)(m﹣1)(m+1).8.(2020秋•丛台区期末)因式分解(1)(a﹣b)2+4ab;(2)x2﹣2x﹣8;(3)x4﹣6x3+9x2﹣16;(4)(x2+3x+5)(x2+3x+1)+3.【解题思路】(1)先根据完全平方公式展开,再根据完全平方公式分解因式即可;(2)根据十字相乘法分解因式即可;(3)先分组,根据完全平方公式进行计算,再根据平方差公式分解因式,最后根据“十字相乘法”分解因式即可;(4)把x2+3x当作一个整体展开,再根据“十字相乘法”分解因式即可.【解答过程】解:(1)(a﹣b)2+4ab=a2﹣2ab+b2+4ab=a2+2ab+b2=(a+b)2;(2)x2﹣2x﹣8=(x﹣4)(x+2);(3)x4﹣6x3+9x2﹣16=(x4﹣6x3+9x2)﹣16=x2(x﹣3)2﹣42=[x(x﹣3)+4][x(x﹣3)﹣4]=(x2﹣3x+4)(x2﹣3x﹣4)=(x2﹣3x+4)(x﹣4)(x+1);(4)(x2+3x+5)(x2+3x+1)+3=(x2+3x)2+6(x2+3x)+5+3=(x2+3x)2+6(x2+3x)+8=(x2+3x+2)(x2+3x+4)=(x+1)(x+2)(x2+3x+4).9.(2021春•江北区校级期中)因式分解:(1)﹣8ab2+6a2b﹣2ab;(2)4a2﹣(a2+1)2;(3)x4﹣8x2﹣9;(4)(2﹣x2)2+2x(x2﹣2)+x2.【解题思路】(1)原式提取﹣2ab,利用提公因式法因式分解即可;(2)原式利用平方差公式化简,再利用完全平方公式分解即可;(3)原式利用十字相乘法分解,再利用平方差公式分解即可;(4)利用完全平方公式变形,再利用提公因式分解即可.【解答过程】解:(1)原式=﹣2ab(4b﹣3a+1);(2)原式(2a)2﹣(a2+1)2=(2a+a2+1)(2a﹣a2﹣1)=﹣(a+1)2(a﹣1)2;(3)原式=(x2+1)(x2﹣9)=(x2+1)(x+3)(x﹣3);(4)原式=(x2﹣2)2+2x(x2﹣2)+x2=(x2+x﹣2)2=(x+2)2(x﹣1)2.10.(2021春•福田区校级期中)因式分解:(1)ab2﹣a;(2)2xy2﹣12x2y+18x3;(3)a4﹣8a2+16;(4)(x﹣4)(x+1)+3x.【解题思路】(1)提公因式后再利用平方差公式即可;(2)提公因式后再利用完全平方公式即可;(3)利用完全平方公式后再利用平方差公式;(4)根据多项式乘法计算,再利用平方差公式.【解答过程】解:(1)ab2﹣a=a(b2﹣1)=a(b+1)(b﹣1);(2)原式=2x(y2﹣6xy+9x2)=2x(y﹣3x)2;(3)原式=(a2﹣4)2=(a﹣2)2(a+2)2;(4)原式=x2﹣3x﹣4+3x=x2﹣4=(x+2)(x﹣2).11.(2021秋•姜堰区月考)因式分解:(1)a4﹣1;(2)x3﹣2x2y+xy2.【解题思路】(1)原式利用平方差公式分解即可;(2)原式提取公因式x,再利用完全平方公式分解即可.【解答过程】解:(1)原式=(a2+1)(a2﹣1)=(a2+1)(a+1)(a﹣1);(2)原式=x(x2﹣2xy+y2)=x(x﹣y)2.12.(2021春•平山区校级期中)分解因式:(1)x2(m﹣n)+y2(n﹣m);(2)3x2﹣18xy+27y2.【解题思路】(1)首先提取公因式(m﹣n),然后利用平方差公式继续进行因式分解;(2)先提取公因式,再利用完全平方公式把原式进行因式分解即可.【解答过程】解:(1)x2(m﹣n)+y2(n﹣m)=(m﹣n)(x2﹣y2)=(m﹣n)(x+y)(x﹣y);(2)3x2﹣18xy+27y2=3(x2﹣6xy+9y2)=3(x﹣3y)2.13.(2021春•鄄城县期末)因式分解:(1)(a﹣b)(x﹣y)﹣(b﹣a)(x+y);(2)(x2+1)2﹣4x2.【解题思路】(1)用提取公因式法分解因式;(2)用平方差公式、完全平方公式分解因式.【解答过程】解:(1)原式=(a﹣b)(x﹣y)+(a﹣b)(x+y)=(a﹣b)[(x﹣y)+(x+y)]=2x(a﹣b),(2)原式=(x2+1)2﹣(2x)2=(x2+1+2x)(x2+1﹣2x)=(x+1)2(x﹣1)2.14.(2021春•福田区校级期中)分解因式:(1)4x2﹣(x2+1)2;(2)3(x﹣1)2﹣18(x﹣1)+27.【解题思路】(1)先选择平方差公式分解因式,再运用完全平方公式进行因式分解;(2)先运用提取公因式法分解因式,再运用完全平方公式分解因式.【解答过程】解:(1)原式=(2x)2﹣(x2+1)2=(2x+x2+1)(2x﹣x2﹣1)=﹣(x+1)2(x﹣1)2;(2)原式=3[(x﹣1)2﹣6(x﹣1)+9]=3[(x﹣1)﹣3]2=3(x﹣4)2.15.(2021春•凤翔县期末)分解因式:(1)9a2(x﹣y)+y﹣x;(2)(x2﹣2xy+y2)+(﹣2x+2y)+1.【解题思路】(1)原式变形后,提取公因式,再利用平方差公式分解即可;(2)原式整理后,利用完全平方公式分解即可.【解答过程】解:(1)原式=9a2(x﹣y)﹣(x﹣y)=(x﹣y)(9a2﹣1)=(x﹣y)(3a+1)(3a﹣1);(2)原式=(x﹣y)2﹣2(x﹣y)+1=(x﹣y﹣1)2.16.(2021春•沈北新区期末)因式分解:(1)﹣10a2bc+15bc2﹣20ab2c;(2)(x2+1)2﹣4x2.【解题思路】(1)直接提公因式﹣5bc即可;(2)先利用平方差公式,将原式化为(x2+1+2x)(x2+1﹣2x),再利用完全平方公式得出答案.【解答过程】解:(1)原式=﹣5bc(2a2﹣3c+4ab);(2)原式=(x2+1+2x)(x2+1﹣2x)=(x+1)2(x﹣1)2.17.(2021春•平顶山期末)把下列各式因式分解:(1)x2+2xy+y2﹣c2;(2)b2(a﹣2)+b(2﹣a).【解题思路】(1)先分组,再分解.(2)先将b2(a﹣2)+b(2﹣a)变形为b2(a﹣2)﹣b(a﹣2),再运用提公因式法.【解答过程】解:(1)x2+2xy+y2﹣c2=(x+y)2﹣c2=(x+y+c)(x+y﹣c).(2)b2(a﹣2)+b(2﹣a)=b2(a﹣2)﹣b(a﹣2)=b(a﹣2)(b﹣1).18.(2021春•覃塘区期末)因式分解:(1)3x3﹣12x;(2)1﹣2x+2y+(x﹣y)2.【解题思路】(1)先提公因式,再用公式法进行因式分解.(2)先将1﹣2x+2y+(x﹣y)2变形为=1﹣(2x﹣2y)+(x﹣y)2,再用公式法进行因式分解.【解答过程】解:(1)3x3﹣12x=3x(x2﹣4)=3x(x+2)(x﹣2).(2)1﹣2x+2y+(x﹣y)2=1﹣(2x﹣2y)+(x﹣y)2=1﹣2(x﹣y)+(x﹣y)2=[1﹣(x﹣y)]2=(1﹣x+y)2.19.(2021春•江宁区月考)分解因式:(1)4x2(x﹣y)+(y﹣x);(2)(x2﹣5)2+8(x2﹣5)+16.【解题思路】(1)可先将(y﹣x)变形为﹣(x﹣y),再根据因式分解的步骤进行分解即可;(2)将(x2﹣5)看作一个整体,利用完全平方公式进行因式分解,最后再利用平方差公式因式分解即可.【解答过程】解:(1)4x2(x﹣y)+(y﹣x)=4x2(x﹣y)﹣(x﹣y)=(x﹣y)(4x2﹣1)=(x﹣y)(2x+1)(2x﹣1);(2)(x2﹣5)2+8(x2﹣5)+16=(x2﹣5+4)2=(x2﹣1)2=(x+1)2(x﹣1)2.20.(2021春•汉寿县期中)分解因式:3x2﹣xy﹣2y2﹣x+y.【解题思路】先将3x2﹣xy﹣2y2﹣x+y分组整理,然后利用公式即可解答.【解答过程】解:原式=(3x2﹣xy﹣2y2)﹣(x﹣y)=(3x+2y)(x﹣y)﹣(x﹣y)=(x﹣y)(3x+2y﹣1).21.(2020秋•浦东新区期末)因式分解(1)5x2+6y﹣15x﹣2xy;(2)(1+ab)2﹣(a+b)2.【解题思路】(1)将原式分为两组:(5x2﹣15x)、﹣(2xy﹣6y),然后利用提取公因式法进行因式分解;(2)利用平方差公式进行因式分解.【解答过程】解:(1)原式=(5x2﹣15x)﹣(2xy﹣6y)=5x(x﹣3)﹣2y(x﹣3)=(x﹣3)(5x﹣2y);(2)原式=(1+ab﹣a﹣b)(1+ab+a+b)=[(1﹣a)﹣b(1﹣a)][(1+a)+b(1+a)]=(1﹣a)(1﹣b)(1+a)(1+b).22.(2020春•市南区校级期中)因式分解:4(x+y)2﹣16(x﹣y)2.【解题思路】首先提公因式4,再利用平方差公式进行分解即可.【解答过程】解:4(x+y)2﹣16(x﹣y)2=4[(x+y)2﹣4(x﹣y)2]=4(x+y+2x﹣2y)(x+y﹣2x+2y)=4(3x﹣y)(3y﹣x).23.(2020秋•宝山区期末)分解因式:2x3﹣2x2y+8y﹣8x.【解题思路】两两分组:先分别提取公因式2x2,8;再提取公因式2(y﹣x)进行二次分解;最后利用平方差公式再次进行因式分解即可求得答案.【解答过程】解:原式=2x2(x﹣y)﹣8(x﹣y)=2(x﹣y)(x2﹣4)=2(x﹣y)(x+2)(x﹣2).24.(2020秋•上海期末)分解因式:a4+4b2c2﹣a2b2﹣4a2c2.【解题思路】先利用分组分解法进行恰当的分组,再利用提公因式法和公式法进行因式分解即可.【解答过程】解:原式=(a4﹣a2b2)﹣(4a2c2﹣4b2c2)=a2(a2﹣b2)﹣4c2(a2﹣b2)=(a2﹣b2)(a2﹣4c2)=(a+b)(a﹣b)(a+2c)(a﹣2c).25.(2020秋•松江区期末)因式分解:x3+3x2y﹣4x﹣12y.【解题思路】分为两组:(x3+3x2y)和(﹣4x﹣12y),然后运用完全平方公式和平方差公式进行因式分解.【解答过程】解:x3+3x2y﹣4x﹣12y=(x3+3x2y)﹣(4x+12y)=x2(x+3y)﹣4(x+3y)=(x+3y)(x2﹣4)=(x+3y)(x+2)(x﹣2).26.(2020秋•浦东新区期末)分解因式:a4+4b2c2﹣a2b2﹣4a2c2.【解题思路】利用加法的结合律和交换律,把整式的第一项和第三项,第四项和第二项分组,提取公因式后再利用公式.【解答过程】解:原式=(a4﹣a2b2)﹣(4a2c2﹣4b2c2)=a2(a2﹣b2)+4c2(a2﹣b2)=(a2﹣b2)(a2﹣4c2)=(a+b)(a﹣b)(a+2c)(a﹣2c).27.(2020秋•浦东新区期末)因式分解:(x2+2x)2﹣7(x2+2x)﹣8.【解题思路】原式利用十字相乘法分解后,再利用完全平方公式分解即可.【解答过程】解:原式=(x2+2x﹣8)(x2+2x+1)=(x﹣2)(x+4)(x+1)2.28.(2021秋•浦东新区校级期中)分解因式:(x2+x+1)(x2+x+2)﹣12.【解题思路】将原式展开,是关于x的四次多项式,分解因式较困难.我们不妨将x2+x看作一个整体,并用字母y来替代,于是原题转化为关于y的二次三项式的因式分解问题了.【解答过程】解:设x2+x=y,则原式=(y+1)(y+2)﹣12=y2+3y﹣10=(y﹣2)(y+5)=(x2+x﹣2)(x2+x+5)=(x﹣1)(x+2)(x2+x+5).说明本题也可将x2+x+1看作一个整体,比如令x2+x+1=u,一样可以得到同样的结果,有兴趣的同学不妨试一试.故答案为(x﹣1)(x+2)(x2+x+5)29.(2020秋•海淀区校级期中)因式分解:64a6﹣48a4b2+12a2b4﹣b6.【解题思路】先利用分组分解法分解,再分别利用公式法和提取公因式法分解即可得出答案.【解答过程】解:64a6﹣48a4b2+12a2b4﹣b6=(64a6﹣b6)﹣(48a4b2﹣12a2b4)=(8a3+b3)(8a3﹣b3)﹣12a2b2(4a2﹣b2)=(2a+b)(4a2﹣2ab+b2)(2a﹣b)(4a2+2ab+b2)﹣12a2b2(2a+b)(2a﹣b)=(2a+b)(2a﹣b)[(4a2﹣2ab+b2)(4a2+2ab+b2)﹣12a2b2]=(2a+b)(2a﹣b)[(4a2+b2)2﹣4a2b2﹣12a2b2]=(2a+b)(2a﹣b)[(4a2+b2)2﹣16a2b2]=(2a+b)(2a﹣b)(4a2﹣b2)2=(2a+b)3(2a﹣b)3.30.(2020秋•海淀区校级期中)请用两种方法对多项式x3﹣4x2+6x﹣4进行因式分解.(拆添项算一种方法)【解题思路】分别利用拆添项及配方法和提取公因式法进行分解即可.【解答过程】解:方法一:x3﹣4x2+6x﹣4=(x3﹣2x2)﹣(2x2﹣4x)+(2x﹣4)=x2(x﹣2)﹣2x(x﹣2)+2(x﹣2)=(x﹣2)(x2﹣2x+2);方法二:x3﹣4x2+6x﹣4=x(x2﹣4x2+4+2)﹣4=x(x﹣2)2+2x﹣4=(x﹣2)(x2﹣2x+2).。
初二因式分解经典题35题
初二因式分解经典题35题一、提取公因式法相关(10题)1. 分解因式:6ab + 3ac- 你看这里面每一项都有个3a呢。
就像大家都有个共同的小秘密一样。
那我们就把3a提出来呀,提出来之后就变成3a(2b + c)啦。
2. 分解因式:15x^2y−5xy^2- 哟,这里面5xy是公共的部分哦。
把5xy提出来,就剩下5xy(3x - y)啦,是不是很简单呢?3. 分解因式:4m^3n - 16m^2n^2+8mn^3- 仔细瞧瞧,8mn是都能提出来的。
提出来后就变成8mn(m^2 - 2mn + n^2)啦。
4. 分解因式:−3x^2y+6xy^2−9xy- 这里面−3xy是公因式哦。
把它提出来,就得到−3xy(x - 2y+3)啦。
5. 分解因式:2a(x - y)-3b(x - y)- 看呀,(x - y)是公共的部分呢。
提出来就变成(x - y)(2a - 3b)啦。
6. 分解因式:a(x - y)^2 - b(y - x)^2- 注意哦,(y - x)^2=(x - y)^2。
那这里面(x - y)^2是公因式,提出来就得到(x - y)^2(a - b)啦。
7. 分解因式:x(x - y)+y(y - x)- 先把y(y - x)变成-y(x - y),这样公因式就是(x - y)啦,提出来就是(x - y)(x - y)=(x - y)^2。
8. 分解因式:3a(a - b)+b(b - a)- 把b(b - a)变成-b(a - b),公因式(a - b)提出来,就得到(a - b)(3a - b)啦。
9. 分解因式:2x(x + y)-3(x + y)^2- 公因式是(x + y),提出来就变成(x + y)[2x-3(x + y)]=(x + y)(2x - 3x - 3y)=(x + y)(-x - 3y)=-(x + y)(x + 3y)。
10. 分解因式:5(x - y)^3+10(y - x)^2- 把(y - x)^2变成(x - y)^2,公因式5(x - y)^2提出来,得到5(x - y)^2[(x -y)+2]=5(x - y)^2(x - y + 2)。
部编数学八年级上册专题03运算方法之因式分解综合压轴题专练(解析版)(人教版)含答案
专题03运算方法之因式分解综合压轴题专练(解析版)学校:___________姓名:___________班级:___________考号:___________一、填空题1.△ABC的三边a,b,c为互不相同的整数,且abc+ab+ac+bc+a+b+c=119,则△ABC 的周长为__.【答案】12【分析】将原式变形后进行因式分解可得到(a+1)(b+1)(c+1)=120,再利用三角形的三边关系以及三边都是互不相同的整数这两个条件加以分析即可得出答案.【详解】解:∵abc+ab+ac+bc+a+b+c=119∴ab(c+1)+a(c+1)+b(c+1)+(c+1)=120(a+1)(b+1)(c+1)=120∵a,b,c为互不相同的整数,且是△ABC的三边∴a+1,b+1,c+1也是互不相同的正整数,且都大于1.故可分为以下6种情况:(1)120=3×4×10,即△ABC的三边长分别为2,3,9;由三角形的三边关系可知不合题意,舍去.(2)120=3×2×20,即△ABC的三边长分别为2,1,19;由三角形的三边关系可知不合题意,舍去.(3)120=3×8×5,即△ABC的三边长分别为2,7,4;由三角形的三边关系可知不合题意,舍去.(4)120=6×4×5,即△ABC的三边长分别为5,3,4;即a+1+b+1+c+1=6+4+5,a+b+c =12.(5)120=6×2×10,即△ABC的三边长分别为5,1,9;由三角形的三边关系可知不合题意,舍去.(6)120=12×2×5,即△ABC的三边长分别为11,1,4;由三角形的三边关系可知不合题意,舍去.(7)120=2×4×15,即△ABC的三边长分别为2,4,15;由三角形的三边关系可知不合题意,舍去.综上可知,△ABC 的周长为12.故答案为12.【点睛】本题主要考查因式分解的应用及三角形三边关系,掌握三角形三边关系并分情况讨论是解题的关键.2.多项式2222627a ab b b -+-+的最小值为________.【答案】18.【分析】利用公式法进行因式分解,根据非负性确定最小值.【详解】解:2222627a ab b b -+-+,=222)((269)18a ab b b b -+-+++,=22()(3)18a b b -+-+,∵22()(3)00a b b --³³,,∴22()(3)18a b b -+-+的最小值为18;故答案为:18.【点睛】本题考查了因式分解和非负数的性质,解题关键是熟练运用乘法公式进行因式分解,根据非负数的性质确定最值.3.若实数a ,b 满足1a b -=,则代数式2225a b b --+的值为_______________.【答案】6.【分析】将所求代数式中的22a b -因式分解,再把1a b -=代入,化简即可.【详解】解:2225()()25a b b a b a b b --+=+--+,把1a b -=代入得()25255a b b a b b a b +-+=+-+=-+,再把1a b -=代入得5156a b -+=+=;故答案为:6.【点睛】本题考查了求代数式的值和因式分解以及整式计算,解题关键是熟练利用因式分解把所求代数式变形,然后整体代入求值.4.如果一个两位数a 的个位数字与十位数字都不是零,且互不相同,我们称这个两位数为“跟斗数”,定义新运算:将一个“跟斗数”的个位数字与十位数字对调,把这个新两位数与原两位数的和与11的商记()a ω,例如:a =13,对调个位数字与十位数字得到新两位数31,新两位数与原两位数的和,31+13=44,和与11的商44÷11=4,所以()134ω=.根据以上定义,回答下列问题:(1)计算:()23ω=____________.(2)若一个“跟斗数”b 的十位数字是k ,个位数字是2(k +1),且()8b ω=,则“跟斗数”b =____________.(3)若m ,n 都是“跟斗数”,且m +n =100,则()()m n ωω+=____________.【答案】526 19 【分析】(1)根据题意直接将数值代入即可.(2)根据题意写出“跟斗数”是含有k 的式子,再利用()8b ω=,列方程求解即可.(3)根据m +n =100,解设未知数用还有x ,y 的式子表示m 、n 为m =10x +y , n =10(9-x )+(10-y ),根据题意列式子化简即可.【详解】解:(1)()233223511ω+==(2)∵一个“跟斗数”b 的十位数字是k ,个位数字是2(k +1),且()8b ω=,∴[][]102(1)102(1)811k k k k +++⨯++=解得k =2,∴2(k +1)=6,∴b =26.(3)∵m ,n 都是“跟斗数”,且m +n =100,设m =10x +y ,则n =10(9-x )+(10-y ),∴[][]10(9)(10)+10(10)(9)(10)(10)()()1111x y y x x y y x m n ωω-+--+-++++=+10109010101001091111x y y x x y y x +++-+-+-+-=+111120*********x y x y +--=+1919x y x y =++--=【点睛】本题考查新定义的数,按照题意正确代入是关键,本题是中考的常见题型5.如图是 A 型卡片(边长a 的正方形)、B 型卡片(长为 a 、宽为 b 的长方形)、C 型卡片(边长为 b 的正方形).现有 4张 A 卡片,11张 B 卡片,7张 C 卡片,选用它们无缝隙、无重叠地拼正方形或长方形,下列说法正确的是__________.(只填序号)①可拼成边长为2+a b 的正方形;②可拼成边长为23a b +的正方形;③可拼成长、宽分别为24a b +、2a b +的长方形;④用所有卡片可拼成一个大长方形.【答案】①③④【分析】①②③利用完全平方公式和多项式乘多项式法则求出要拼成的图形的面积,各项系数即为各型号卡片的个数.④所有卡片面积和为4a 2+11ab +7b 2,将此多项式因式分解即可.【详解】①(a +2b )2=a 2+4ab +4b 2,要用A 型卡片1张,B 型卡片4张,C 型卡片4张,所以可拼成边长为a +2b 的正方形.②(2a +3b )2=224129a ab b ++,要用A 型卡片4张,B 型卡片12张,C 型卡片9张,因为B 型卡片只有11张,C 型卡片只有7张,所以不能拼成边长为2a +3b 的正方形.③(2a +4b )(2a +b )=222242844104a ab ab b a ab b +++=++,可得A 型卡片4张,B 型卡片10张,C 型卡片4张,所以可拼成长、宽分别为242a b a b ++、的长方形.④所有卡片面积和为4a 2+11ab +7b 2=(4a +7b )(a +b ).所以所有卡片可拼长长为(4a +7b ),宽为(a +b )的长方形.故答案为:①③④.【点睛】本题主要考查了整式乘法、分解因式与几何图形之间的联系,解题时注意利用数形结合和熟记公式是解题的关键.二、解答题6.代数中的很多等式可以用几何图形直观表示,这种思想叫“数形结合”思想.如:现有正方形卡片A 类、B 类和长方形C 类卡片若干张,如果要拼成一个长为2()a b +,宽为(2)a b +的大长方形,可以先计算22(2)(2)522a b a b a ab b ++=++,所以需要A 、B 、C 类卡片2张、2张、5张,如图2所示(1)如果要拼成一个长为(3)a b +,宽为()a b +的大长方形,那么需要A 、B 、C 类卡片各多少张?并画出示意图.(2)由图3可得等式:____________;(3)利用(2)中所得结论,解决下面问题,已知11a b c ++=,38ab bc ac ++=,222a b c ++的值;(4)小明利用2张A 类卡片、3张B 类卡片和5张长方形C 类卡片去拼成一个更大的长方形,那么该长方形的较长的一边长为________(用含a 、b 的代数式表示)【答案】(1)A 、B 、C 三类卡片各需要1张、3张、4张,图见解析;(2)2222()222a b c a b c ab ac bc ++=+++++;(3)45;(4)23a b+【分析】(1)首先计算出22(3)()43a b a b a ab b ++=++,再根据计算结果对应的卡片类型得出结论;(2)根据图形面积的就算方式2222()222a b c a b c ab ac bc ++=+++++即可得出结论;(3)根据题意找到2222()2()a b c a b c ab ac bc ++=++-++,再通过带值即可求出;(4)利用因式分解的计算过程可得,22235(23)()a b ab a b a b ++=++,即可得出结论.【详解】解:(1)如下图:A 、B 、C 三类卡片各需要1张、3张、4张;(2)2222()222a b c a b c ab ac bc++=+++++(3)2222()2()12123845a b c a b c ab ac bc ++=++-++=-⨯=Q (4)22235(23)()a b ab a b a b ++=++Q ,\较长的边为:23a b +.【点睛】本题考查了代数中的等式问题,解题的关键是掌握因式分解、具备数形结合的思想.7.若将自然数中能被3整除的数,在数轴上的对应点称为“3倍点”,取任意的一个“3倍点”P ,到点P 距离为1的点所对应的数分别记为a ,b .定义:若数K =a 2+b 2-ab ,则称数K 为“尼尔数”.例如:若P 所表示的数为3,则a =2,b =4,那么K =22+42-2×4=12;若P 所表示的数为12,则a =11,b =13,那么K =132+112-13×11=147,所以12,147是“尼尔数”.(1)请直接判断6和39是不是“尼尔数”,并且证明所有“尼尔数”一定被9除余3;(2)已知两个“尼尔数”的差是189,求这两个“尼尔数”.【答案】(1)6不是尼尔数,39是尼尔数,证明见解析;(2)这两个尼尔数分别是228,39或1092,309.【分析】(1)根据“尼尔数”的定义,设P 表示的数为x (x 是能被3整除的自然数),则23K x =+,分别令236x +=,2339x +=,解方程,判断x 的解是不是能被3整除的自然数即可;证明所有“尼尔数”一定被9除余3时,可设P 表示的数为3m ,则K 可化为9m 2+3,由m 为整数得9m 2+3被9除余3;(2)设这两个尼尔数分别是K 1,K 2,将两个“尼尔数”所对应的“3倍点数”P 1,P 2分别记为3m 1,3m 2,则K 1-K 2=9m 12-9m 22=189,m 12-m 22=21,再根据m 1,m 2都是整数,可解出m 1,m 2,从而得到K 1,K 2.【详解】(1)设P 表示的数为x (x 是能被3整除的自然数),则1a x =-,1b x =+,()()()()22211113K x x x x x =-++--+=+,令236x +=,得x =2339x +=,得6x =,∴6不是尼尔数,39是尼尔数.证明:设P 表示的数为3m ,则a =(3m -1),b =(3m +1),K =(3m -1)2+(3m +1)2-(3m -1)(3m +1)=9m 2+3,∵m 为整数,∴m 2为整数,∴9m 2+3被9除余3;(2)设这两个尼尔数分别是K 1,K 2,将两个“尼尔数”所对应的“3倍点数”P 1,P 2分别记为3m 1,3m 2.∴K 1-K 2=9m 12-9m 22=189,∴m 12-m 22=21,∵m 1,m 2都是整数,∴1212121272131m m m m m m m m +=+=ììíí-=-=îî或,∴1122m 5m 11m 2m 10==ììíí==îî或,∴1122k 228k 1092k 39k 309==ììíí==îî或. ∴这两个尼尔数分别是228,39或1092,309.【点睛】本题考查了因式分解的应用、方程的整数解问题、学生的阅读理解能力以及知识的迁移能力,理解“尼尔数”的定义是解题的关键.8.若一个四位自然数满足个位数字与百位数字相同,十位数字与千位数字相同,我们称这个四位自然数为“双子数”.将“双子数”m 的百位、千位上的数字交换位置,个位、十位上的数字也交换位置,得到一个新的双子数'm ,记()221111m m F m ¢+=为“双子数”m 的“双11数”.例,2424m =,'4242m =,则()22424242422424121111F ⨯+⨯==(1)计算3636的“双11数”()3636F =__________.(2)已知两个“双子数”p 、q ,其中p abab =,q cdcd =(其中19a b £<£,19c ££,19d ££,c d ¹且a 、b 、c 、d 都为整数),若p 的“双11数”()F p 能被17整除,且p 、q 的“双11数”满足()()()24320F p F q a b d c +-+++=,令(),101p q G p q -=,求(),G p q 的值.【答案】(1)18;(2)G (p ,q )的值为51或17.【分析】(1)直接根据“双子数”m 的“双11数”的计算方法即可得出结论;(2)先根据“双11数”F (p )能被17整除,进而判断出p 为8989,求出F (q )=2(c +d ),再根据F (p )+2F (q )-(4a +3b +2d +c )=0,得出d =2532c -,进而求出c ,d ,即可得出结论.【详解】解:(1)由题意知,3636的“双11数”()()236366363236362636336361811111111F +⨯+⨯===,故答案为:18;(2)∵“双子数”p ,p abab =,∴F (p )=2(a +b ),∵“双11数”F (p )能被17整除,∴a +b 是17的倍数,∵1≤a <b ≤9,∴3≤a +b <18,∴a +b =17,∴a =8,b =9,∴“双子数”p 为8989,F (p )=34,∵“双子数”q ,q cdcd =,∴F (q )=2(c +d ),∵F (p )+2F (q )-(4a +3b +2d +c )=0,∴34+2×2(c +d )-(4×8+3×9+2d +c )=0,∴3c +2d =25,∴2532c d -=,∵1≤c ≤9,1≤d ≤9,c ≠d ,c 、d 都为整数,∴c 为奇数,1≤c <9,当c =1时,d =11,不符合题意,舍去,当c =3时,d =8,∴“双子数”q 为3838,∴898938385151(,)51101101101p q G p q --====,当c =5时,d =5,不符合题意,舍去,当c =7时,d =2,∴“双子数”q 为7272,∴898972721717(,)17101101101p q G p q --====,∴G (p ,q )的值为51或17.【点睛】本题是新定义题目,主要考查了完全平方数,整除问题,理解和运用新定义是解本题的关键.9.对于一个四位数n ,将这个四位数n 千位上的数字与十位上的数字对调,百位上的数字与个位上的数字对调后可以得到一个新的四位数n ¢,将交换后的数与原数求和后再除以101,所得的商称为原数的“一心一意数”,记作F (n )=101n n ¢+,如n =5678,对调数字后得n ¢=7856,所以F (n )=56787856101+=134.(1)直接写出F (2021)= ;(2)求证:对于任意一个四位数n ,F (n )均为整数;(3)若s =3800+10a +b ,t =1000b +100a +13(1≤a ≤5,5≤b ≤9,a 、b 均为整数),当3F (t )-F (s )的值能被8整除时,求满足条件的s 的所有值.【答案】(1)41;(2)见解析;(3)3816或3847或3829【分析】(1)根据题意列式计算即可;(2)设n =1000a +100b +10c +d ,则n ¢=1000c +100d +10a +b ,(a 、b 、c 、d 为整数且a ≠0),然后根据题意列式计算即可证明;(3)先求得F (s )=10a +b +38,F (t )=10b +a +13,进而可求得3F (t )-F (s )=29b -7a +1,再根据3F (t )-F (s )的值能被8整除,可得5b +a +1的值能被8整除,再根据1≤a ≤5,5≤b ≤9可得27≤5b +a +1≤51,进而可得5b +a +1=32,40,48,由此可求得16a b =ìí=î或47a b =ìí=î或29a b =ìí=î,最终即可求得满足条件的s 的所有值.【详解】解:(1)F (2021)=20212120101+=41,故答案为:41;(2)设n=1000a+100b+10c+d,则n¢=1000c+100d+10a+b,(a、b、c、d为整数且a≠0)所以F(n)=(100010010)(100010010)101a b c d c d a b+++++++=10101011010101101a b c d+++=10a+b+10c+d,∵a、b、c、d为整数且a≠0,∴10a+b+10c+d为整数,∴对于任意一个四位数n,F(n)均为整数;(3)∵s=3800+10a+b,t=1000b+100a+13(1≤a≤5,5≤b≤9,a、b均为整数),∴F(s)=(380010)(100010038)101a b a b+++++=10101013838101a b++=10a+b+38,F(t)=(100010013)(130010)101b a b a+++++=10101011313101b a++=10b+a+13,∴3F(t)-F(s)=3(10b+a+13)-(10a+b+38)=29b-7a+1,∵3F(t)-F(s)的值能被8整除,∴29b-7a+1的值能被8整除,∴24b-8a+5b+a+1的值能被8整除,∴5b+a+1的值能被8整除,∵1≤a≤5,5≤b≤9,∴27≤5b+a+1≤51,∵5b+a+1的值能被8整除,∴5b+a+1=32,40,48,∴16ab=ìí=î或47ab=ìí=î或29ab=ìí=î,∴s=3816或3847或3829.【点睛】本题考查了因式分解的应用以及有理数的整除,利用代数式的值进行相关分类讨论,得出结果是解决本题的关键.10.已知若干张正方形和长方形硬纸片如图1所示.(1)若用1张边长为a 的正方形,2张边长为b 的正方形,3张边长分别为a 和b 的长方形拼成一个新的长方形(如图2).请用两种不同的方法计算图2长方形的面积并根据你的计算结果可以得到怎样的等式;(2)请通过拼图的方式画出一个面积为22252a ab b ++的长方形示意图,并写出其因式分解的结果;(3)在(2)的条件下,若拼成的长方形周长为66,图1中小长方形的面积为24,则拼成的长方形面积是多少?【答案】(1)22()(2)23a b a b a b ab ++=++;(2)画图见解析,(2)(2)a b a b ++;(3)266.【分析】(1)用面积和差和长方形面积公式分别计算即可;(2)根据算式可知用2张边长为a 的正方形,2张边长为b 的正方形,5张边长分别为a 和b 的长方形拼成一个新的长方形即可,根据面积的不同求法可写成因式分解结果;(3)根据题意列出方程,求出22a b +即可.【详解】解:(1)用面积和差计算得:2223a b ab ++;用长方形面积公式计算得:()(2)a b a b ++;可得等式为:22()(2)23a b a b a b ab ++=++;(2) 根据算式可知用2张边长为a 的正方形,2张边长为b 的正方形,5张边长分别为a 和b 的长方形拼成一个新的长方形,如图所示:根据面积公式可得,22252(2)(2)a ab b a b a b ++=++;(3) (2)中拼成的长方形周长为66,则2(22)66a b a b +++=,解得,11a b +=,∴22()11a b +=,即222121a b ab ++=,图1中小长方形的面积为24,则24ab =,则2273a b +=,22252273524266a ab b ++=⨯+⨯=;拼成的长方形面积是266.【点睛】本题考查的是多项式乘多项式、因式分解的应用,树立数形结合思想,利用面积法列出等式是解题的关键.11.材料一:一个整数的各个数位上的数字之和能被9整除,则这个整数能被9整除;材料二:已知一个各位数字都不为零的四位数100010010m abcd a b c d ==+++,百位和十位上的数字之和是千位和个位上的数字之和的两倍,则称这个四位数为“双倍数”.将这个“双倍数”m 的各位数字颠倒过来就变成新的“双倍数”m dcba ¢=,记()111m m F m ¢+=.例如2461m =,()46212+¹⨯+,所以2461不是“双倍数”:2685m =,()68225+=⨯+,所以2685是“双倍数”, 5862m ¢=,()26855862268577111F +==(1)判断2997,6483是否为“双倍数”,并说明理由;(2)若s ,t 均为“双倍数”,s 的千位数字是5,个位数字大于2,t 的百位数字是7,且s 能被9整除,()()4F s F t +是完全平方数,求t 的最大值.【答案】(1)2997是“双倍数”,6483不是“双倍数”;理由见解析;(2)t 的最大值7791.【分析】(1)利用题干中“双倍数”定义计算即可求解;(2)设s 的个位数字是d ,十位数字是c ,则百位数字是10+2d -c (d >2),可得s =5000+100(10+2d -c )+10c +d 且5+10+2d -c +d +c =15+3d 能被9整除,依此可得d =4或d =7,利用“双倍数”的定义和F (m )的公式,分类讨论计算出F (s )和F (t ),依据已知和数位上数字的特征计算后,比较大小,取最大值即可.【详解】解:(1)∵()99227+=⨯+,∴2997是“双倍数”,∵()48236+¹⨯+,∴6483不是“双倍数”;(2)设s 的个位数字是d ,十位数字是c ,则百位数字是10+2d -c (d >2),∴s =5000+100(10+2d -c )+10c +d 且5+10+2d -c +d +c =15+3d 能被9整除,∵d >2,∴d =4或d =7,①d =4时,有10+2d =2×(5+4)=18,∴此时十位数,百位数均为9,∴s =5994,s ′=4995,F (s )=(s +s ′)÷111=99,设t =1000a +700+10b +72b +-a ,则t ′=1000(72+2b -a )+100b +70+a ,∴F (t )=(t +t ′)÷111=112b +772,则4F (s )+F (t )=4×99+112b +772=112b +8692,∵112b +8692,是完全平方数,且b 是整数,∴b =9,∴t 的十位数字是9,则7+9=16,∴千位和个位上的数字之和是8,∴t 的最大值是7791;②d =7时,有10+2d =2×(5+7)=24,∵百位和十位上的数字之和最大为18,∴不符合题意.综上所述,t 的最大值是7791.【点睛】本题主要考查了完全平方数,因式分解的应用,本题是阅读型题目,准确理解题意并能熟练应用题干中的定义和公式是解题的关键.12.对于一个三位正整数(各位数字均不为0),若满足十位数字是个位数字与百位数字之和,则称该三位正整数为“夹心数”.将“夹心数”m 的百位、个位数字交换位置,得到另一个“夹心数”m ¢,记()99m m F m ¢-=,()121m m T m ¢+=.例如:792m =,297m ¢=.792297()599F m -==,792297()9121T m +==.(1)计算()693F =__________;()561T =__________.(2)对“夹心数”m ,令()()2294s T m F m =-,当36s =时,求m 的值.(3)若“夹心数”m 满足()2F m 与()2T m 均为完全平方数,求m 的值.【答案】(1)3,6;(2)m =121;(3)m =121,583,484.【分析】(1)根据题中的定义和例题提供的算法,即可算出结果;(2)设()1001011011m a a b b a b =+++=+,代入 ()()2294s T m F m =-,并进行化简后,根据 s =36的已知条件,求出a 、b 的值,即可求出m 的值;(3)结合(2)的相关结论,求出a 、b 的值,即可求出符合条件的m 的值.【详解】解:(1)()()6933965611656933561699121F T -+====,.故答案为:3;6.(2)设()1001011011m a a b b a b =+++=+,则()1001011110m b a b a a b =+++=+¢.∴()()()11011111109999999999a b a b m m a b F m a b +-+--====-¢,()()()1101111110121121121121a b a b a b T m a b ++++===+.()()()()()()()()()()22229494323255s T m F m a b a b a b a b a b a b a b a b éùéù\=-=+--=+--++-=++ëûëû.∵s =36,∴()()5536a b a b ++=.∵19,19,29,a b a b £££££+£且 a 、 b 、a +b 都是正整数,∴5656a b a b +³+³,.∴5656a b a b +=ìí+=î,解得, 11a b =ìí=î.∴1101111011121m a b =+=+=.(3)由(2)得,()()()()2222F m a b T m a b =-=+,,∵a 、b 、a +b 都是1到9的正整数,∴()()204218a b a b -³£+£,.∵()2a b +是完全平方数,∴()24916a b +=,,.又∵()2a b +是偶数,∴()29a b +=不合题意,舍去.∴28a b +=,.当a +b =2时,a =b =1,此时,()20a b -=,符合题意;当a +b =8时,若a =7,b =1,此时,()212a b -=,不合题意,舍去;若a =6,b =2,此时,()28a b -=,不合题意,舍去;若a =5,b =3,此时,()24a b -=,符合题意;若a =4,b =4,此时,()20a b -=,符合题意.∵11011m a b =+,∴符合条件的121583484m =,,.【点睛】本题考查了新定义运算、因式分解、方程组、不等式等知识点和分类讨论的数学思想,围绕新定义的运算法则进行计算是解题的基础,分类讨论时做到不重复不遗漏是关键.13.对任意一个三位数m ,如果m 满足各个数位上的数字互不相同,且都不为零,则称这个数为“特异数”,将m 的百位数字调到个位可以得到一个新的三位数,不断重复此操作共可得到两个不同的新三位数,把这两个新数与原数m 的和与111的商记为()F m .例如,123是“特异数”,不断将123的百位数字调到个位可得231,312,()1232313126661236111111F ++===.(1)求()456F ,()321F ;(2)已知10032s x =+,256t y =+(19x y £££,x ,y 为整数),若s 、t 均为“特异数”,且()()F s F t +可被6整除,求()()s F F t ×的最大值.【答案】(1)F (456)=15,F (321)=6;(2)F (s )•F (t )的最大值为384.【分析】(1)根据F (m )的定义式,分别将m =456和m =321代入F (n )中,即可求出结论.(2)由s =100x +32,t =256+y 结合F (s )+F (t )可被6整除,即可得出关于x ,y 的二元一次方程,解出x ,y 的值,再根据“特异数”的定义结合F (m )的定义式,即可求出F (s ),F (t )的值,求出最大值即可.【详解】解:(1)F (456)=(456+564+645)÷111=15,F (321)=(321+213+132)÷111=6;(2)∵s 、t 均为“特异数”, 10032s x =+,256t y =+,∴F (s )=(100x +32+320+x +203+x ) ÷111=5+x (19x ££),∵256t y =+,∴4y ¹,当13y ££时,F (t )=()()256502106100625y y y éù+++++++ëû÷111=13+y ,当59y ££时,F (t )=()()25660210610100610265y y y éù++++-++-+=ëû÷111=4+y (6y ¹),∴F (s )+ F (t )=()()181913919596x y x y x y x y y ì++££££ïí++££££¹ïî,,,,由于()()F s F t +可被6整除,y x ³,①当1913x y ££££,时,6x y +=或12x y +=,∴当且当3x y ==时成立,则F (s )•F (t )=(5+x )• (13+y )=816128⨯=;②当195x y ££=,、7、8、9时,3x y +=或9或15,∴当9x y +=时,4x =,5y =或2x =,5y =或1x =,8y =,此时F (s )•F (t )=81或77或72;当15x y +=时,7x =,8y =或6x =,9y =,此时F (s )•F (t )=384或143;综上,F (s )•F (t )的最大值为384,此时7x =,8y =.【点睛】本题考查了因式分解的应用以及二元一次方程的应用,解题的关键是:(1)根据F (m )的定义式,求出F (456),F (321)的值,(2)根据s =100x +32,t =256+y 结合F (s )+F (t )可被6整除,得出x ,y 的二元一次方程组.14.阅读理解:在教材中,我们有学习到2222()a ab b a b -+=-,又因为任何实数的平方都是非负数,所以2()0a b -³,即222a b ab +³.例如,比较整式24x +和4x 的大小关系,因为2244(2)0x x x +-=-³,所以244x x +³请类比以上的解题过程,解决下列问题:(初步尝试)比较大小:21x +______2x ;9-_____26x x-(知识应用)比较整式225210x xy y ++和2(2)x y -的大小关系,并请说明理由.(拓展提升)比较整式2222a ab b -+和12a -的大小关系,并请说明理由.【答案】[初步尝试]≥,≤;[知识应用]225210x xy y ++≥2(2)x y -;[拓展提升]221222a ab b a ³-+-【分析】[初步尝试]两式相减,仿照题干中的方法比较即可;[知识应用]两式相减,将结果因式分解,再比较即可;[拓展提升]两式相减,利用完全平方公式变形,再比较即可.【详解】解:[初步尝试]()221210x x x +-=-³,∴21x +≥2x ;()()222696930x x x x x ---=-+=-³,∴9-≤26x x -;[知识应用]2225(20)12x xy y x y +-+-=2222542104x y xyx xy y -+++-=2269xyx y ++=()23x y +≥0∴225210x xy y ++≥2(2)x y -;[拓展提升]221222a ab b a æö-+-çè-÷ø=221222a ab b a --++=22211122222a a a ab b +-+-+=()()22211144222a a a ab b -+-++=()()22111222a a b +--当a =1,b =12时,原式=0,∴()()22111222a a b +--≥0,∴221222a ab b a ³-+-.【点睛】此题考查了因式分解的应用,非负数的性质,以及整式的混合运算,熟练掌握公式和运算法则是解本题的关键.15.教科书中这样写道:“我们把多项式222a ab b ++及222a ab b -+叫做完全平方式”,如果一个多项式不是完全平方式,我们常做如下变形:先添加一个适当的项,使式子中出现完全平方式,再减去这个项,使整个式子的值不变,这种方法叫做配方法,配方法是一种重要的解决问题的数学方法,不仅可以将一个看似不能分解的多项式分解因式,还能解决一些与非负数有关的问题或求代数式最大值,最小值等问题.例如:分解因式()22223214(1)(3)(-1)4(12)(12)x x x x x x x x x +-=++-=+-==++++-求代数式2246x x +-的最小值,()2222462232(1)8x x x x x +-=+-=+-.当1x =-时,22467x x +-有最小值,最小值是8-,根据阅读材料用配方法解决下列问题:(1)分解因式:245x x --=__________.(2)当x 为何值时,多项式2243x x --+有最大值?并求出这个最大值.(3)若221721202333a ab b b -+-+=,求出a ,b 的值.【答案】(1)(x +1)(x -5);(2)x =-1,最大值为5;(3)a =2,b =1【分析】(1)根据题目中的例子,可以将题目中的式子因式分解;(2)根据题目中的例子,先将所求式子变形,然后即可得到当x 为何值时,所求式子取得最大值,并求出这个最大值;(3)将题目中的式子化为完全平方式的形式,然后根据非负数的性质,即可得到a 、b 的值.【详解】解:(1)x 2-4x -5=(x -2)2-9=(x -2+3)(x -2-3)=(x +1)(x -5),故答案为:(x +1)(x -5);(2)∵-2x 2-4x +3=-2(x +1)2+5,∴当x =-1时,多项式-2x -4x +3有最大值,这个最大值是5;(3)∵221721202333a ab b b -+-+=,∴2222172122202333a ab b b b b -+-+-+=,∴()()222114421023a ab b b b -++-+=,∴()()221121023a b b -+-=,∴a -2b =0,b -1=0,∴a =2,b =1.【点睛】本题考查非负数的性质、因式分解的应用,解答本题的关键是明确题意,利用因式分解的方法和非负数的性质解答.16.下面是某同学对多项式()()2242464x x x x -+-++因式分解的过程.解:设24x x y -=,则原式()()264y y =+++(第一步)2816y y =++(第二步)()24y =+(第三步)()2244x x =-+(第四步)解答下列问题:(1)该同学第二步到第三步运用了因式分解的方法是()A .提取公因式B .平方差公式C .两数和的完全平方公式D .两数差的完全平方公式(2)该同学因式分解的结果是否彻底?(填“彻底”或“不彻底”).若不彻底,请直接写出因式分解的最后结果.(3)请你模仿以上方法尝试对多项式()()222221x x x x --++进行因式分解.【答案】(1)C ;(2)因式分解不彻底,()42x -;(3)()41x -【分析】(1)先根据多项式乘以多项式计算,再用完全平方公式因式分解计算即可(2)利用完全平方公式因式分解即可(3)模仿给出的步骤,进行因式分解即可【详解】(1)∵()228164y y y ++=+,∴运用了两数和的完全平方公式.故选C .(2)∵()()()222424422x x x x éù-+=-=-ëû,∴因式分解不彻底.(3)设22x x y -=,则原式()()()()22222221211211y y y y y x x x éù=++=++=+=-+=-ëû()41x =-.【点睛】本题考查因式分解、完全平方公式、多项式乘以多项式、换元法是解题的关键17.定义:若一个整数能表示成a 2+b 2(a ,b 是正整数)的形式,则称这个数为“完美数”.例如:因为13=32+22,所以13是“完美数”;再如:因为a 2+2ab +2b 2=(a +b )2+b 2,所以a 2+2ab +2b 2也是“完美数”.(1)请直接写出一个小于10的“完美数”,这个“完美数”是 ;(2)判断53 (请填写“是”或“否”)为“完美数”;(3)已知M =x 2+4x +k (x 是整数,k 是常数),要使M 为“完美数”,试求出符合条件的一个k 值,并说明理由;(4)如果数m ,n 都是“完美数”,试说明mn 也是“完美数”.【答案】(1)2或5或8;(2)是;(3)k =5,理由见解答过程;(4)见解析【分析】(1)2=12+12,5=22+12,8=22+22,这些数都是小于10的“完美数”;(2)利用53=22+72即可判断;(3)由M=x2+4x+k得M=(x+2)2+k-4,则使k-4为一个完全平方数即可;(4)设m=a2+b2,n=c2+d2,则mn=(a2+b2)(c2+d2),进行整理可得:mn=(ac+bd)2+(ad-bc)2,从而可判断.【详解】解:(1)根据题意可得:2=12+12,5=22+12,8=22+22,故2,5,8都是“完美数”,且都小于10,故答案为:2或5或8(写一个即可);(2)53=22+72,故53是“完美数”,故答案为:是;(3)k=5(答案不唯一),理由:∵M=x2+4x+k∴M=x2+4x+4+k-4M=(x+2)2+k-4则当k-4为完全平方数时,M为“完美数”,如当k-4=1时,解得:k=5.(4)设m=a2+b2,n=c2+d2,则有mn=(a2+b2)(c2+d2)=a2c2+a2d2+b2c2+b2d2=a2c2+b2d2+a2d2+b2c2+2abcd-2abcd=(ac+bd)2+(ad-bc)2故mn是一个“完美数”.【点睛】本题考查了因式分解的应用,完全平方公式的运用,阅读理解题目表述的意思是本题的关键.18.一个三位或者三位以上的整数,从左到右依次分割成三个数,记最左边的数为a,最右边的数为b,中间的数记为m,若满足m=a2+b2,我们就称该整数为“空谷”数.例如:对于整数282.∵22+22=8,∴282是一个“空谷”数,又例如:对于整数121451,∵122+12=145∴121451也是一个“空谷”数.满足m=2ab,我们就称该整数为“幽兰”数;例如:对于整数481,∵2×4×1=8,∴481是一个“幽兰”数,又例如:对于整数13417,∵2×1×17=34,∴13417是一个“幽兰”数.(1)若一个三位整数十位数字为9,且为“空谷”数,则该三位数为 ;若一个四位整数为“幽兰”数,且中间的数为40,则该四位数为 ;(2)若586a b是一个“空谷”数,570a b是一个“幽兰”数,求a2﹣b2的值.(3)若一个整数既是“空谷”数,又是“幽兰”数,我们就称该整数为“空谷幽兰”数.请写出所有的四位“空谷幽兰”数.【答案】(1)390;4405或5404;(2)136或-136;(3)1021或2082或3183或4324或5505或6726或7987.【分析】(1)根据“空谷”数,“幽兰”数的特点进行分析并解答即可;(2)据题意可得:a2+b2=586,2ab=570,从而可求得a+b与a-b的值,进而可求a2-b2的值;(3)由题意可得:a2+b2=2ab,整理可得a=b,再由这个数是四位数,分析可得出结果.【详解】解:(1)∵这个三位数是“空谷”数,且十位数字为9,∴a2+b2=9,∴有3ab=ìí=î,3ab=ìí=î(不符合题意),∴这个三位数是390;∵这个四位数是“幽兰”数,且中间数为40,∴2ab=40,则ab=20,∴有45ab=ìí=î,54ab=ìí=î,210ab=ìí=î(不符合题意),102ab=ìí=î(不符合题意),∴这个四位数是:4405或5404;故答案为:390;4405或5404;(2)∵586a b是一个“空谷”数,570a b是一个“幽兰”数,∴a2+b2=586,2ab=570,∴(a+b)2=a2+b2+2ab=586+570=1156,则a+b=34,(a-b)2=a2+b2-2ab=586-570=16,则a-b=±4,∴a2-b2=(a+b)(a-b)=34×4=136或a2-b2=(a+b)(a-b)=34×(-4)=-136;(3)由题意得:222m a b m abì=+í=î,则有a 2+b 2=2ab ,整理得:(a -b )2=0,则有a =b ;∵这个整数是一个四位数,∴1≤a ≤9,1≤b ≤9,中间数是两位数,则有:a =b =1时,这个四位数是1021;a =b =2时,这个四位数是2082;a =b =3时,这个四位数是3183;a =b =4时,这个四位数是4324;a =b =5时,这个四位数是5505;a =b =6时,这个四位数是6726;a =b =7时,这个四位数是7987.综上,这个四位数是1021或2082或3183或4324或5505或6726或7987.【点睛】本题主要考查了因式分解的应用,解答的关键是理解清楚题意,灵活运用因式分解进行解答.19.材料一:一个正整数x 能写成22x a b =-(a ,b 均为正整数,且a b ¹),则称x 为“雪松数”,a ,b 为x 的一个平方差分解,在x 的所有平方差分解中,若22a b +最大,则称a ,b 为x 的最佳平方差分解,此时()22F x a b =+.例如:222475=-,24为雪松数,7和5为24的一个平方差分解,22223297,3262=-=-,因为22229762+>+,所以9和7为32的最佳平方差分解,()223297F =+.材料二:若一个四位正整数,它的千位数字与个位数字相同,百位数字与十位数字相同,但四个数字不全相同,则称这个四位数为“南麓数”,例如4334,5665均为“南麓数”.根据材料回答:(1)请直接写出两个雪松数,并分别写出它们的一对平方差分解;(2)试说明10不是雪松数;(3)若一个数t 既是“雪松数”又是“南麓数”,并且另一个“南麓数”的前两位数字组成的两位数与后两位数字组成的两位数恰好是t 的一个平方差分解,请求出所有满足条件的数t .【答案】(1)22112113=-,224073=-;(2)见解析;(3)2772,5445【分析】(1)根据雪松数的特征即可得到结论;(2)根据题意即可得到结论;(3)设(t abba a =,b 均为正整数,且09)a b <¹…,另一个“南麓数”为(t mnnm m ¢=,n 均为正整数,且09)n m <<…,根据“南麓数”的特征即可得到结论.【详解】解:(1)由题意可得:22112113=-,224073=-;(2)若10是“雪松数”,则可设2210(a b a -=,b 均为正整数,且)a b ¹,则()()10a b a b +-=,又1025101=⨯=⨯Q ,a Q ,b 均为正整数,a b a b \+>-,\52a b a b +=ìí-=î,或101a b a b +=ìí-=î,解得:7232a b ì=ïïíï=ïî或11292a b ì=ïïíï=ïî,与a ,b 均为正整数矛盾,故10不是雪松数;(3)设(t abba a =,b 均为正整数,且09)a b <¹…,另一个“南麓数”为(t mnnm m ¢=,n 均为正整数,且09)n m <<…,则2222(10)(10)99()99()()t m n n m m n m n m n =+-+=-=+-,99()()1000100101001110m n m n a b b a a b \+-=+++=+,整理得()()109a b m n m n a b ++-=++,a Q ,b ,m ,n 均为正整数,9a b \+=,经探究2786a b m n =ìï=ïí=ïï=î,5483a b m n =ìï=ïí=ïï=î,符合题意,t \的值分别为:2772,5445.【点睛】本题主要考查分解因式的应用,实数的运算,理解新定义,并将其转化为实数的运算是解题的关键.20.若一个四位正整数abcd 满足:a c b d +=+,我们就称该数是“交替数”,如对于四位数3674,∵3764+=+,∴3674是“交替数”,对于四位数2353,2533+¹+Q ,∴2353不是“交替数”.(1)最小的“交替数”是________,最大的“交替数”是__________.(2)判断2376是否是“交替数”,并说明理由;(3)若一个“交替数”满足千位数字与百位数字的平方差是12,且十位数字与个位数的和能被6整除.请求出所有满足条件的“交替数”.【答案】(1)1001,9999;(2)是,理由见解析;(3)满足条件的“交替数”是4224或4257.【分析】(1)根据新定义,即可得出结论;(2)根据新定义,即可得出结论;(3)根据题意知()()1216243a b a b +-=⨯=⨯=⨯,求得a 和b 的值,再根据题意c d +是6的倍数,结合a c b d +=+,取舍即可求得所有满足条件的“交替数”.【详解】(1)根据题意:一个四位正整数abcd 满足:a c b d +=+,我们就称该数是“交替数”,最小的正整数是1,最大的正整数是9,∵1001+=+,9999+=+,∴最小的“交替数”是1001,最大的“交替数”是9999,故答案为:1111,9999;(2)是,理由如下:∵2736+=+,∴2376是“交替数”;(3)设这个“交替数”为abcd ,k 为正整数,依题意得:2212a b -=,6c d k +=,且a c b d +=+,由2212a b -=,知()()1216243a b a b +-=⨯=⨯=⨯,且19a ££,19b ££,即121a b a b +=ìí-=î或62a b a b +=ìí-=î或43a b a b +=ìí-=î,解得:132112a b ì=ïïíï=ïî(舍去),或42a b =ìí=î或7212a b ì=ïïíï=ïî(舍去),∵19c ££,19d ££,2618c d k £+=£,∴k 取1或2或3,当k 取1时,即6c d +=,4a =,2b =,∵a c b d +=+,即42c d +=+,即2c d -=-,∴62c d c d +=ìí-=-î,解得:24c d =ìí=î,∴“交替数”是4224;当k 取2时,即12c d +=,4a =,2b =,∵a c b d +=+,即42c d +=+,即2c d -=-,∴122c d c d +=ìí-=-î,解得:57c d =ìí=î,∴“交替数”是4257;当k 取3时,即18c d +=,4a =,2b =,∵a c b d +=+,即42c d +=+,即2c d -=-,∴182c d c d +=ìí-=-î,解得:810c d =ìí=î(不合题意,舍去);综上,满足条件的“交替数”是4224或4257.【点睛】本题主要考查了新定义,倍数问题,二元一次方程的整数解的求解,平方差公式的应用,理解新定义是解本题的关键.21.很久以前,有一位老人临终前,准备将自己所养的7头牛全部分给两个儿子饲养,大儿先得一半,小儿再得剩余的四分之三,两儿正踌躇不决时,热心的邻居从自家牵了一头牛参与分配,给大儿分了四头牛,小儿分了三头牛,余下的一头牛邻居又牵回家了,皆大欢喜,聪明的邻居合理地解决了这个问题.初中数学里也有这种“转化”的思考方法.例如:先阅读下列多项式的因式分解:()()()()()2244222224444222222x x x x x x x x x x +=++-+-+=-++=按照这种方法分别把多项式分解因式:(1)464x +;。
第四章 因式分解 综合素质评价(含答案)北师大版数学八年级下册
第四章因式分解综合素质评价一、选择题(每题3分,共30分)1.下列各式从左到右的变形中,是因式分解的为()A.ab+ac+d=a(b+c)+dB.(x+2)(x-2)=x2-4C.6ab=2a·3bD.x2-8x+16=(x-4)22.课堂上老师在黑板上布置了下框所示的题目,小聪马上发现了其中有一道题目错了,错误的题目是()用平方差公式解下列各式:(1)a2-b2;(2)49x2-y2z2;(3)-x2-y2;(4)16m2n2-25p2.A.(1) B.(2) C.(3) D.(4)3.【2022·金华二模】下列多项式中,在实数范围内不能进行因式分解的是() A.a2-4 B.a2+6a+9 C.a2+16 D.9a2-6a+14.下列各组代数式中,没有公因式的是()A.ax+y和x+yB.2x和4yC.a-b和b-aD.-x2+xy和y-x5.下列因式分解正确的是()A.a(a-b)-b(a-b)=(a-b)(a+b)B.a2-9b2=(a-3b)2C.a2+4ab+4b2=(a+2b)2D.a2-ab+a=a(a-b)6.【教材P105复习题T6变式】已知a+b=2,则a2-b2+4b的值是() A.2 B.3 C.4 D.67.【2022·石家庄二模】计算:1252-50×125+252=()A.100 B.150 C.10 000 D.22 5008.【教材P94习题T4变式】从边长为a的大正方形纸板中挖去一个边长为b的小正方形纸板后,将其裁成四个相同的等腰梯形(如图①),然后拼成一个平行四边形(如图②).那么通过计算两个图形阴影部分的面积,可以验证成立的公式为()A.a2-b2=(a-b)2B.(a+b)2=a2+2ab+b2C.a2-b2=(a+b)(a-b) D.(a-b)2=a2-2ab+b29.不论x,y为什么实数,代数式x2+y2+2x-4y+7的值()A.总不小于2 B.总不小于7 C.可为任何实数D.可能为负数10.已知a=2b-2,则代数式a2-4ab+5b2的最小值为()A.0 B.2 C.4 D.无法确定二、填空题(每题3分,共24分)11.18x3y2与12x6y的公因式为________.12.【2022·长春】分解因式:m2+3m=________.13.若整式x2+ky2(k为不等于零的常数)能在有理数范围内因式分解,则k的值可以是________.(写出一个即可)14.【2022·重庆渝北期末】利用1个a×a的正方形,1个b×b的正方形和2个a×b 的矩形可拼成一个正方形(如图所示),从而可得到因式分解的公式:____________.15.【教材P105复习题T13改编】如果x2+kx+64是一个完全平方式,那么k的值是________.16.关于x的二次三项式2x2+bx+c分解因式后为2(x-3)(x+1),则b=________,c=________.17.已知x ,y 是二元一次方程组⎩⎨⎧x -2y =3,2x +4y =5的解,则代数式x 2-4y 2的值为________.18.一个两邻边长分别为a ,b 的长方形,它的周长为14,面积为10,则a 2b +ab 2的值为________.三、解答题(19题12分,20题6分, 21题8分,其余每题10分,共66分)19.把下列各式因式分解:(1)-5x 2y 2+10xy 3-15x 2y ; (2)2x 2-4x +2;(3)(x 2+1)2-4x 2; (4)a 4-8a 2b 2+16b 4.20.【教材P 97习题T 2(3)变式】已知a +b =72,ab =2,求12a 3b +a 2b 2+12ab 3的值.21.【教材P105复习题T14改编】232-1可以被10和20之间某两个整数整除,求这两个数.22.【教材P105复习题T12改编】已知a,b,c分别是△ABC的三边长.(1)分别将多项式ac-bc,-a2+2ab-b2进行因式分解;(2)若ac-bc=-a2+2ab-b2,试判断△ABC的形状,并说明理由.23.【教材P100随堂练习T3变式】如图,在一个边长为a m的正方形广场的四个角上分别留出一个边长为b m的正方形花坛(a>2b),其余的地方种草坪.(1)求种草坪的面积是多少平方米;(2)当a=84,b=8,且种每平方米草坪的成本为5元时,种这块草坪共需投资多少元?24.【教材P105复习题T10拓展】上数学课时,王老师在讲完乘法公式(a±b)2=a2±2ab +b2的多种运用后,要求同学们运用所学知识解答:求代数式x2+4x+5的最小值.同学们经过交流、讨论,最后总结出如下解答方法:解:x2+4x+5=x2+4x+4+1=(x+2)2+1.∵(x+2)2≥0,∴(x+2)2+1≥1.∴x2+4x+5的最小值是1.请你根据上述方法,解答下列各题:(1)知识再现:当x=________时,代数式x2-6x+12有最小值是________;(2)知识运用:若y=-x2+2x-3,当x=________时,y有最________值(填“大”或“小”),这个值是________.写出求解过程.25.【探究题】在乘法公式的学习中,我们采用了构造几何图形的方法研究问题,通过用不同的方法求同一个平面图形的面积验证了平方差公式和完全平方公式,我们把这种方法称为等面积法.类似地,通过不同的方法求同一个立体图形的体积,我们称为等体积法.根据课堂学习的经验,解决下列问题:在一个棱长为a的正方体中挖出一个棱长为b的正方体(如图①),然后利用切割的方法把剩余的立体图形(如图②)分成三部分(如图③),这三个长方体的体积依次为b2(a-b),ab(a-b),a2(a-b).(1)分解因式:a2(a-b)+ab(a-b)+b2(a-b)=______________.(2)请用两种不同的方法求图①中的立体图形的体积(用含有a,b的代数式表示):①____________;②______________________.思考:类比平方差公式,你能得到的等式为______________________________.(3)应用:利用在(2)中所得到的等式进行因式分解:x3-125=______________.(4)拓展:已知a-2b=6,ab=-2,求代数式a4b-8ab4的值.答案一、1.D 2.C 3.C 4.A 5.C 6.C7.C 8.C 9.A 10.C二、11.6x 3y 12.m (m +3) 13.-1(答案不唯一)14.a 2+2ab +b 2=(a +b )2 15.±1616.-4;-6 17.152 18.70三、19.解:(1)原式=-5xy (xy -2y 2+3x );(2)原式=2(x 2-2x +1)=2(x -1)2;(3)原式=[(x 2+1)+2x ][(x 2+1)-2x ]=(x 2+2x +1)(x 2-2x +1)=(x +1)2(x -1)2;(4)原式=(a 2-4b 2)2=(a -2b )2(a +2b )2.20.解:12a 3b +a 2b 2+12ab 3=12ab (a 2+2ab +b 2)=12ab (a +b )2.∵a +b =72,ab =2,∴原式=12×2×⎝ ⎛⎭⎪⎫722=494. 21.解:232-1=(216)2-1=(216+1)(216-1)=(216+1)(28+1)(28-1)=(216+1)·(28+1)(24+1)(24-1).∵24=16,∴24+1=17,24-1=15.∴232-1能被15和17整除.∴所求的两个数为15和17.22.解:(1)ac -bc =c (a -b );-a 2+2ab -b 2=-(a 2-2ab +b 2)=-(a -b )2.(2)△ABC 是等腰三角形.理由:∵ac -bc =-a 2+2ab -b 2,∴c (a -b )=-(a -b )2,c (a -b )+(a -b )2=0,(a-b)(c+a-b)=0.∵a,b,c分别是△ABC的三边长,∴c+a-b>0.∴a-b=0,即a=b.∴△ABC是等腰三角形.23.解:(1)种草坪的面积是(a2-4b2) m2.(2)当a=84,b=8时,种草坪的面积是a2-4b2=(a+2b)(a-2b)=(84+2×8)×(84-2×8)=100×68=6 800(m2).所以种这块草坪共需投资5×6 800=34 000(元).24.解:(1)3;3(2)1;大;-2y=-x2+2x-3=-(x-1)2-2.∵-(x-1)2≤0,∴-(x-1)2-2≤-2.∴当x=1时,y有最大值,最大值是-2.25.解:(1)(a-b)(a2+ab+b2)(2)①a3-b3②b2(a-b)+ab(a-b)+a2(a-b)思考:a3-b3=(a-b)(a2+ab+b2)(3)(x-5)(x2+5x+25)(4)a4b-8ab4=ab(a3-8b3)=ab(a-2b)(a2+2ab+4b2)=ab(a-2b)[(a-2b)2+6ab].当a-2b=6,ab=-2时,原式=-2×6×(36-12)=-288.。
初二代数(因式分解)综合测试
初二代数(因式分解)综合测试班别________ 姓名 _________ 成绩________一、填空:(每小题4分,共40分)1、 计算9999×9999+9999=_______2、 因式分解22)3()3(x b x a -+-=____________________3、 因式分解24123n m -=_________________4、 因式分解412++a a =__________________ 5、 如果m a a ++42是一个完全平方式,则m=______6、 因式分解:m mn n m 11112--+=___________________7、 因式分解:ab b a 2922---=_____________________8、 因式分解:1242--x x =_________________9、 若ab=24,a+b=14-,则a 和b 的值的符号为__________;10、 因式分解:b a ax bx bx ax -++--22=_________________________二、选择题(每小题4分,共20分)1、下列从左到右的变形,属因式分解的有( )(A )22))((a x a x a x -=-+ (B )3)4(342+-=+-x x x x(C ))8(8223-=-x x x x (D ))1(xy x y x +=+ 2、下列各式中,可分解因式的只有( )(A )22y x + (B )32y x - (C )nb ma + (D )22y x +-3、把23)()(x a a x ---分解因式的结果为( )(A ))1()(2+--a x a x (B ))1()(2---a x a x(C ))()(2a x a x +- (D ))1()(2---a x x a4、2244b a b a +-和的公因式是( )(A )22b a - (B)b a - (C)b a + (D)22b a + 5、把3223y xy y x x --+分解因式,标准答案是( )(A )))((22y x y x -+ (B ))()(22y x y y x x +-+(C )2))((y x y x -+ (D ))()(2y x y x -+三、解答题(每小题10分,共40分)1、 把2216164y x -分解因式;2、 把1)(12)(362+---y x y x 分解因式3、 把xy y x 1294122+--分解因式4、已知8,2-=⋅=+b a b a ,求)()()(22b a b b a ab b a a +++-+的值。
初中数学-《因式分解》测试题(有答案)
初中数学-《因式分解》测试题一、选择题1.下列各式从左到右的变形,正确的是()A.﹣x﹣y=﹣(x﹣y)B.﹣a+b=﹣(a+b)C.(y﹣x)2=(x﹣y)2D.(a﹣b)3=(b﹣a)32.把多项式(m+1)(m﹣1)+(m﹣1)提取公因式(m﹣1)后,余下的部分是()A.m+1 B.2m C.2 D.m+23.把10a2(x+y)2﹣5a(x+y)3因式分解时,应提取的公因式是()A.5a B.(x+y)2C.5(x+y)2D.5a(x+y)24.将多项式a(b﹣2)﹣a2(2﹣b)因式分解的结果是()A.(b﹣2)(a+a2)B.(b﹣2)(a﹣a2)C.a(b﹣2)(a+1)D.a(b﹣2)(a﹣1)5.下列因式分解正确的是()A.mn(m﹣n)﹣m(n﹣m)=﹣m(n﹣m)(n+1)B.6(p+q)2﹣2(p+q)=2(p+q)(3p+q ﹣1)C.3(y﹣x)2+2(x﹣y)=(y﹣x)(3y﹣3x+2)D.3x(x+y)﹣(x+y)2=(x+y)(2x+y)二、填空题6.把多项式(x﹣2)2﹣4x+8因式分解开始出现错误的一步是解:原式=(x﹣2)2﹣(4x﹣8)…A=(x﹣2)2﹣4(x﹣2)…B=(x﹣2)(x﹣2+4)…C=(x﹣2)(x+2)…D.7.﹣xy2(x+y)3+x(x+y)2的公因式是;(2)4x(m﹣n)+8y(n﹣m)2的公因式是.8.分解因式:(x+3)2﹣(x+3)=.9.因式分解:n(m﹣n)(p﹣q)﹣n(n﹣m)(p﹣q)=.10.已知(2x﹣21)(3x﹣7)﹣(3x﹣7)(x﹣13)可分解因式为(3x+a)(x+b),其中a、b均为整数,则a+3b=.三、解答题11.将下列各式因式分解:(1)5a3b(a﹣b)3﹣10a4b3(b﹣a)2;(2)(b﹣a)2+a(a﹣b)+b(b﹣a);(3)(3a﹣4b)(7a﹣8b)+(11a﹣12b)(8b﹣7a);(4)x(b+c﹣d)﹣y(d﹣b﹣c)﹣c﹣b+d.12.若x,y满足,求7y(x﹣3y)2﹣2(3y﹣x)3的值.13.先阅读下面的材料,再因式分解:要把多项式am+an+bm+bn因式分解,可以先把它的前两项分成一组,并提出a;把它的后两项分成一组,并提出b,从而得至a(m+n)+b(m+n).这时,由于a(m+n)+b(m+n),又有因式(m+n),于是可提公因式(m+n),从而得到(m+n)(a+b).因此有am+an+bm+bn=(am+an)+(bm+bn)=a(m+n)+b(m+n)=(m+n)(a+b).这种因式分解的方法叫做分组分解法.如果把一个多项式的项分组并提出公因式后,它们的另一个因式正好相同,那么这个多项式就可以利用分组分解法来因式分解了.请用上面材料中提供的方法因式分解:(1)ab﹣ac+bc﹣b2:(2)m2﹣mn+mx﹣nx;(3)xy2﹣2xy+2y﹣4.14.求使不等式成立的x的取值范围:(x﹣1)3﹣(x﹣1)(x2﹣2x+3)≥0.15.阅读题:因式分解:1+x+x(x+1)+x(x+1)2解:原式=(1+x)+x(x+1)+x(x+1)2=(1+x)[1+x+x(x+1)]=(1+x)[(1+x)+x(1+x)]=(1+x)2(1+x)=(1+x)3.(1)本题提取公因式几次?(2)若将题目改为1+x+x(x+1)+…+x(x+1)n,需提公因式多少次?结果是什么?16.已知x,y都是自然数,且有x(x﹣y)﹣y(y﹣x)=12,求x、y的值.《第4章因式分解》参考答案与试题解析一、选择题1.下列各式从左到右的变形,正确的是()A.﹣x﹣y=﹣(x﹣y)B.﹣a+b=﹣(a+b)C.(y﹣x)2=(x﹣y)2D.(a﹣b)3=(b﹣a)3【考点】完全平方公式;去括号与添括号.【分析】A、B都是利用添括号法则进行变形,C、利用完全平方公式计算即可;D、利用立方差公式计算即可.【解答】解:A、∵﹣x﹣y=﹣(x+y),故此选项错误;B、∵﹣a+b=﹣(a﹣b),故此选项错误;C、∵(y﹣x)2=y2﹣2xy+x2=(x﹣y)2,故此选项正确;D、∵(a﹣b)3=a3﹣3a2b+3ab2﹣b3,(b﹣a)3=b3﹣3ab2+3a2b﹣a3,∴(a﹣b)3≠(b﹣a)3,故此选项错误.故选C.【点评】本题主要考查完全平方公式、添括号法则,熟记公式结构是解题的关键.完全平方公式:(a±b)2=a2±2ab+b2.括号前是“﹣”号,括到括号里各项都变号,括号前是“+”号,括到括号里各项不变号.2.把多项式(m+1)(m﹣1)+(m﹣1)提取公因式(m﹣1)后,余下的部分是()A.m+1 B.2m C.2 D.m+2【考点】因式分解﹣提公因式法.【专题】压轴题.【分析】先提取公因式(m﹣1)后,得出余下的部分.【解答】解:(m+1)(m﹣1)+(m﹣1),=(m﹣1)(m+1+1),=(m﹣1)(m+2).故选D.【点评】先提取公因式,进行因式分解,要注意m﹣1提取公因式后还剩1.3.把10a2(x+y)2﹣5a(x+y)3因式分解时,应提取的公因式是()A.5a B.(x+y)2C.5(x+y)2D.5a(x+y)2【考点】公因式.【分析】找出系数的最大公约数,相同字母的最低指数次幂,即可确定公因式.【解答】解:10a2(x+y)2﹣5a(x+y)3因式分解时,公因式是5a(x+y)2故选D【点评】本题主要考查公因式的确定,熟练掌握公因式的定义及确定方法是解题的关键.4.将多项式a(b﹣2)﹣a2(2﹣b)因式分解的结果是()A.(b﹣2)(a+a2)B.(b﹣2)(a﹣a2)C.a(b﹣2)(a+1)D.a(b﹣2)(a﹣1)【考点】因式分解﹣提公因式法.【分析】找出公因式直接提取a(b﹣2)进而得出即可.【解答】解:a(b﹣2)﹣a2(2﹣b)=a(b﹣2)(1+a).故选:C.【点评】此题主要考查了提取公因式法分解因式,正确得出公因式是解题关键.5.下列因式分解正确的是()A.mn(m﹣n)﹣m(n﹣m)=﹣m(n﹣m)(n+1)B.6(p+q)2﹣2(p+q)=2(p+q)(3p+q ﹣1)C.3(y﹣x)2+2(x﹣y)=(y﹣x)(3y﹣3x+2)D.3x(x+y)﹣(x+y)2=(x+y)(2x+y)【考点】因式分解﹣提公因式法.【分析】把每一个整式都因式分解,比较结果得出答案即可.【解答】解:A、mn(m﹣n)﹣m(n﹣m)=m(m﹣n)(n+1)=﹣m(n﹣m)(n+1),故原选项正确;B、6(p+q)2﹣2(p+q)=2(p+q)(3p+3q﹣1),故原选项错误;C、3(y﹣x)2+2(x﹣y)=(y﹣x)(3y﹣3x﹣2),故原选项错误;D、3x(x+y)﹣(x+y)2=(x+y)(2x﹣y),故原选项错误.故选:A.【点评】此题考查提取公因式法因式分解,注意提取负号时括号内式子的变化.二、填空题6.把多项式(x﹣2)2﹣4x+8因式分解开始出现错误的一步是C解:原式=(x﹣2)2﹣(4x﹣8)…A=(x﹣2)2﹣4(x﹣2)…B=(x﹣2)(x﹣2+4)…C=(x﹣2)(x+2)…D.【考点】因式分解﹣提公因式法.【分析】利用提取公因式法一步步因式分解,逐一对比进行判定,得出答案即可.【解答】解:原式═(x﹣2)2﹣(4x﹣8)…A=(x﹣2)2﹣4(x﹣2)…B=(x﹣2)(x﹣2﹣4)…C=(x﹣2)(x﹣6)…D.通过对比可以发现因式分解开始出现错误的一步是C.故答案为:C.【点评】此题考查提取公因式法因式分解,注意提取负号时括号内式子的变化.7.﹣xy2(x+y)3+x(x+y)2的公因式是x(x+y)2;(2)4x(m﹣n)+8y(n﹣m)2的公因式是4(m﹣n).【考点】公因式.【分析】找出系数的最大公约数,相同字母的最低指数次幂,即可确定公因式.【解答】解:(1)﹣xy2(x+y)3+x(x+y)2的公因式是x(x+y)2;(2)4x(m﹣n)+8y(n﹣m)2的公因式是4(m﹣n).故答案为:4(m﹣n)x(x+y)2.【点评】本题主要考查公因式的确定,熟练掌握公因式的定义及确定方法是解题的关键.8.分解因式:(x+3)2﹣(x+3)=(x+2)(x+3).【考点】因式分解﹣提公因式法.【分析】本题考查提公因式法分解因式.将原式的公因式(x﹣3)提出即可得出答案.【解答】解:(x+3)2﹣(x+3),=(x+3)(x+3﹣1),=(x+2)(x+3).【点评】本题考查因式分解,因式分解的步骤为:一提公因式;二看公式.一般来说,如果可以提取公因式的要先提取公因式.9.因式分解:n(m﹣n)(p﹣q)﹣n(n﹣m)(p﹣q)=2n(m﹣n)(p﹣q).【考点】因式分解﹣提公因式法.【分析】首先得出公因式为n(m﹣n)(p﹣q),进而提取公因式得出即可.【解答】解:n(m﹣n)(p﹣q)﹣n(n﹣m)(p﹣q)=n(m﹣n)(p﹣q)+n(m﹣n)(p﹣q)=2n(m﹣n)(p﹣q).故答案为:2n(m﹣n)(p﹣q).【点评】此题主要考查了提取公因式法分解因式,正确得出公因式是解题关键.10.已知(2x﹣21)(3x﹣7)﹣(3x﹣7)(x﹣13)可分解因式为(3x+a)(x+b),其中a、b均为整数,则a+3b=﹣31.【考点】因式分解﹣提公因式法.【专题】压轴题.【分析】首先提取公因式3x﹣7,再合并同类项即可得到a、b的值,进而可算出a+3b的值.【解答】解:(2x﹣21)(3x﹣7)﹣(3x﹣7)(x﹣13),=(3x﹣7)(2x﹣21﹣x+13),=(3x﹣7)(x﹣8)=(3x+a)(x+b),则a=﹣7,b=﹣8,故a+3b=﹣7﹣24=﹣31,故答案为:﹣31.【点评】此题主要考查了提公因式法分解因式,关键是找准公因式.三、解答题11.将下列各式因式分解:(1)5a3b(a﹣b)3﹣10a4b3(b﹣a)2;(2)(b﹣a)2+a(a﹣b)+b(b﹣a);(3)(3a﹣4b)(7a﹣8b)+(11a﹣12b)(8b﹣7a);(4)x(b+c﹣d)﹣y(d﹣b﹣c)﹣c﹣b+d.【考点】因式分解﹣提公因式法.【分析】均直接提取公因式即可因式分解.【解答】解:(1)5a3b(a﹣b)3﹣10a4b3(b﹣a)2=5a3b(a﹣b)2(a﹣b﹣2ab2)(2)(b﹣a)2+a(a﹣b)+b(b﹣a)=(a﹣b)(a﹣b+a﹣b)=2(a﹣b)2;(3)(3a﹣4b)(7a﹣8b)+(11a﹣12b)(8b﹣7a)=(7a﹣8b)(3a﹣4b﹣11a+12b)=8(7a﹣8b)(b﹣a)(4)x(b+c﹣d)﹣y(d﹣b﹣c)﹣c﹣b+d=(b+c﹣d)(x+y﹣1).【点评】考查了因式分解的知识,解题的关键是仔细观察题目,并确定公因式.12.若x,y满足,求7y(x﹣3y)2﹣2(3y﹣x)3的值.【考点】因式分解的应用;解二元一次方程组.【分析】应把所给式子进行因式分解,整理为与所给等式相关的式子,代入求值即可.【解答】解:7y(x﹣3y)2﹣2(3y﹣x)3,=7y(x﹣3y)2+2(x﹣3y)3,=(x﹣3y)2[7y+2(x﹣3y)],=(x﹣3y)2(2x+y),当时,原式=12×6=6.【点评】本题既考查了对因式分解方法的掌握,又考查了代数式求值的方法,同时还隐含了整体的数学思想和正确运算的能力.13.先阅读下面的材料,再因式分解:要把多项式am+an+bm+bn因式分解,可以先把它的前两项分成一组,并提出a;把它的后两项分成一组,并提出b,从而得至a(m+n)+b(m+n).这时,由于a(m+n)+b(m+n),又有因式(m+n),于是可提公因式(m+n),从而得到(m+n)(a+b).因此有am+an+bm+bn=(am+an)+(bm+bn)=a(m+n)+b(m+n)=(m+n)(a+b).这种因式分解的方法叫做分组分解法.如果把一个多项式的项分组并提出公因式后,它们的另一个因式正好相同,那么这个多项式就可以利用分组分解法来因式分解了.请用上面材料中提供的方法因式分解:(1)ab﹣ac+bc﹣b2:(2)m2﹣mn+mx﹣nx;(3)xy2﹣2xy+2y﹣4.【考点】因式分解﹣分组分解法.【专题】阅读型.【分析】(1)首先将前两项与后两项分组,进而提取公因式,分解因式即可;(2)首先将前两项与后两项分组,进而提取公因式,分解因式即可;(3)首先将前两项与后两项分组,进而提取公因式,分解因式即可.【解答】解:(1)ab﹣ac+bc﹣b2=a(b﹣c)+b(c﹣b)=(a﹣b)(b﹣c);(2)m2﹣mn+mx﹣nx=m(m﹣n)+x(m﹣n)=(m﹣n)(m﹣x);(3)xy2﹣2xy+2y﹣4=xy(y﹣2)+2(y﹣2)=(y﹣2)(xy+2).【点评】此题主要考查了分组分解法分解因式,正确分组进而提取公因式是解题关键.14.求使不等式成立的x的取值范围:(x﹣1)3﹣(x﹣1)(x2﹣2x+3)≥0.【考点】因式分解﹣提公因式法;解一元一次不等式.【分析】首先把x2﹣2x+3因式分解为(x﹣1)(x﹣2),进一步利用提取公因式法以及非负数的性质,探讨得出答案即可.【解答】解:(x﹣1)3﹣(x﹣1)(x2﹣2x+3)=(x﹣1)3﹣(x﹣1)2(x﹣2)=(x﹣1)2(x+1);因(x﹣1)2是非负数,要使(x﹣1)3﹣(x﹣1)(x2﹣2x+3)≥0,只要x+1≥0即可,即x≥﹣1.【点评】此题考查提取公因式法因式分解,结合非负数的性质来探讨不等式的解法.15.阅读题:因式分解:1+x+x(x+1)+x(x+1)2解:原式=(1+x)+x(x+1)+x(x+1)2=(1+x)[1+x+x(x+1)]=(1+x)[(1+x)+x(1+x)]=(1+x)2(1+x)=(1+x)3.(1)本题提取公因式几次?(2)若将题目改为1+x+x(x+1)+…+x(x+1)n,需提公因式多少次?结果是什么?【考点】因式分解﹣提公因式法.【专题】阅读型.【分析】(1)根据题目提供的解答过程,数出提取的公因式的次数即可;(2)根据总结的规律写出来即可.【解答】解:(1)共提取了两次公因式;(2)将题目改为1+x+x(x+1)+…+x(x+1)n,需提公因式n次,结果是(x+1)n+1.【点评】本题考查了因式分解的应用,解题的关键是从题目提供的材料确定提取的公因式的次数.16.已知x,y都是自然数,且有x(x﹣y)﹣y(y﹣x)=12,求x、y的值.【考点】因式分解﹣提公因式法.【分析】首先把等号右边的整式因式分解,得出关于x、y的整式的乘法算式,对应12的分解,得出答案即可.【解答】解:x(x﹣y)﹣y(y﹣x)=(x﹣y)(x+y);因为x,y都是自然数,又12=1×12=2×6=3×4;经验证(4﹣2)×(4+2)=2×6符合条件;所以x=4,y=2.【点评】此题考查提取公因式因式分解,进一步利用题目中的条件限制分析探讨得出答案.。
初二数学因式分解测试卷
一、选择题(每题5分,共25分)1. 下列各式中,完全平方公式不能分解因式的是()A. $x^2 + 4y^2$B. $x^2 - 4y^2$C. $x^2 + 2xy + y^2$D. $x^2 - 2xy + y^2$2. 若$a^2 - b^2 = 25$,则下列等式中正确的是()A. $a = 5$,$b = 5$B. $a = 5$,$b = -5$C. $a = -5$,$b = 5$D. $a = -5$,$b = -5$3. 下列各式中,可以使用平方差公式分解因式的是()A. $x^2 + 4xy + 4y^2$B. $x^2 - 4xy + 4y^2$C. $x^2 - 2xy + 4y^2$D. $x^2 + 2xy - 4y^2$4. 下列各式中,可以分解因式的是()A. $x^2 - 3x - 10$B. $x^2 + 3x - 10$C. $x^2 - 2x - 10$D. $x^2 + 2x - 10$5. 若$a^2 - 4b^2 = 0$,则下列等式中正确的是()A. $a = 2$,$b = 0$C. $a = -2$,$b = 0$D. $a = -2$,$b = -2$二、填空题(每题5分,共25分)6. 将下列各式分解因式:(1)$x^2 - 9y^2$(2)$x^2 + 4xy + 4y^2$(3)$x^2 - 2xy + y^2$(4)$x^2 + 2xy - 3y^2$7. 若$a^2 - b^2 = 36$,则下列各式中正确的是()A. $a = 6$,$b = 6$B. $a = 6$,$b = -6$C. $a = -6$,$b = 6$D. $a = -6$,$b = -6$8. 将下列各式分解因式:(1)$x^2 - 4x - 12$(2)$x^2 + 5x + 6$(3)$x^2 - 3x - 4$(4)$x^2 - 2x - 3$9. 若$a^2 - 4b^2 = 0$,则下列各式中正确的是()A. $a = 2$,$b = 0$B. $a = 2$,$b = -2$C. $a = -2$,$b = 0$三、解答题(每题10分,共30分)10. 将下列各式分解因式:(1)$x^2 - 6x + 9$(2)$x^2 + 6xy + 9y^2$(3)$x^2 - 8xy + 16y^2$11. 若$a^2 - b^2 = 49$,则下列各式中正确的是()A. $a = 7$,$b = 7$B. $a = 7$,$b = -7$C. $a = -7$,$b = 7$D. $a = -7$,$b = -7$12. 将下列各式分解因式:(1)$x^2 - 10x - 24$(2)$x^2 + 9x + 20$(3)$x^2 - 6x - 7$注意:本试卷共12题,满分100分。
因式分解练习题带答案初二
因式分解练习题带答案初二1. 题目:因式分解练习题带答案初二因式分解是初中数学中的重要内容,本文将提供一些初二年级的因式分解练习题,每道题都附带详细答案,帮助学生巩固和提高因式分解的能力。
一、基础练习题1. 将下列代数式进行因式分解:a) 4x^2 - 9y^2b) 2xy + 6x解答:a) 4x^2 - 9y^2 = (2x + 3y)(2x - 3y)b) 2xy + 6x = 2x(y + 3)2. 将下列代数式进行因式分解:a) 2x^3 - 8x^2b) 3x^2 + 12x + 9解答:a) 2x^3 - 8x^2 = 2x^2(x - 4)b) 3x^2 + 12x + 9 = (x + 3)(3x + 3)二、应用练习题1. 将以下代数式进行因式分解,并求解方程:a) x^2 + 6x + 9 = 0b) 2x^2 - 18 = 0解答:a) x^2 + 6x + 9 = (x + 3)(x + 3) = (x + 3)^2解方程:(x + 3)^2 = 0x + 3 = 0x = -3b) 2x^2 - 18 = 2(x^2 - 9) = 2(x + 3)(x - 3)解方程:2(x + 3)(x - 3) = 0x + 3 = 0 或者 x - 3 = 0x = -3 或者 x = 32. 将以下代数式进行因式分解,并求解方程:a) 4x^2 + 12x + 9 = 0b) x^2 + 8x - 20 = 0解答:a) 4x^2 + 12x + 9 = (2x + 3)(2x + 3) = (2x + 3)^2解方程:(2x + 3)^2 = 02x + 3 = 0x = -1.5b) x^2 + 8x - 20 = (x + 10)(x - 2)解方程:(x + 10)(x - 2) = 0x + 10 = 0 或者 x - 2 = 0x = -10 或者 x = 2以上是一些初二年级的因式分解练习题及答案,通过练习这些题目,学生可以更好地理解因式分解的概念和方法,并能够熟练地应用于实际问题的解决中。
初二代数(因式分解)综合测试-2
初二代数(因式分解)综合测试班别________ 姓名 _________ 成绩________一、填空:(每小题4分,共40分)1、 计算9999×9999+9999=_______2、 因式分解22)3()3(x b x a -+-=____________________3、 因式分解24123n m -=_________________4、 因式分解412++a a =__________________ 5、 如果m a a ++42是一个完全平方式,则m=______6、 因式分解:m mn n m 11112--+=___________________7、 因式分解:ab b a 2922---=_____________________8、 因式分解:1242--x x =_________________9、 若ab=24,a+b=14-,则a 和b 的值的符号为__________;10、 因式分解:b a ax bx bx ax -++--22=_________________________二、选择题(每小题4分,共20分)1、下列从左到右的变形,属因式分解的有( )(A )22))((a x a x a x -=-+ (B )3)4(342+-=+-x x x x(C ))8(8223-=-x x x x (D ))1(x y x y x +=+ 2、下列各式中,可分解因式的只有( )(A )22y x + (B )32y x - (C )nb ma + (D )22y x +-3、把23)()(x a a x ---分解因式的结果为( )(A ))1()(2+--a x a x (B ))1()(2---a x a x(C ))()(2a x a x +- (D ))1()(2---a x x a4、2244b a b a +-和的公因式是( )(A )22b a - (B)b a - (C)b a + (D)22b a + 5、把3223y xy y x x --+分解因式,标准答案是( )(A )))((22y x y x -+ (B ))()(22y x y y x x +-+(C )2))((y x y x -+ (D ))()(2y x y x -+三、解答题(每小题10分,共40分)1、 把2216164y x -分解因式;2、 把1)(12)(362+---y x y x 分解因式3、 把xy y x 1294122+--分解因式4、已知8,2-=⋅=+b a b a ,求)()()(22b a b b a ab b a a +++-+的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初二代数(因式分解)综合测试
班别________ 姓名 _________ 成绩________
一、填空:(每小题4分,共40分)
1、 计算9999×9999+9999=_______
2、 因式分解22)3()3(x b x a -+-=____________________
3、 因式分解24123n m -=_________________
4、 因式分解412+
+a a =__________________ 5、 如果m a a ++42是一个完全平方式,则m=______
6、 因式分解:m mn n m 11112--+=___________________
7、 因式分解:ab b a 2922---=_____________________
8、 因式分解:1242--x x =_________________
9、 若ab=24,a+b=14-,则a 和b 的值的符号为__________;
10、 因式分解:b a ax bx bx ax -++--22=_________________________
二、选择题(每小题4分,共20分)
1、下列从左到右的变形,属因式分解的有( )
(A )22))((a x a x a x -=-+ (B )3)4(342+-=+-x x x x
(C ))8(8223-=-x x x x (D ))1(x
y x y x +=+ 2、下列各式中,可分解因式的只有( )
(A )22y x + (B )32y x - (C )nb ma + (D )22y x +-
3、把23)()(x a a x ---分解因式的结果为( )
(A ))1()(2+--a x a x (B ))1()(2
---a x a x
(C ))()(2a x a x +- (D ))1()(2---a x x a
4、2244b a b a +-和的公因式是( )
(A )22b a - (B)b a - (C)b a + (D)22b a +
5、把3223y xy y x x --+分解因式,标准答案是( )
(A )))((22y x y x -+ (B ))()(22y x y y x x +-+
(C )2))((y x y x -+ (D ))()(2y x y x -+
三、解答题(每小题10分,共40分)
1、 把2216
164y x -
分解因式;
2、 把1)(12)(362+---y x y x 分解因式
3、 把xy y x 1294122+--分解因式
4、已知8,2-=⋅=+b a b a ,求)()()(22b a b b a ab b a a +++-+的值。