1.3.1有理数的加法(2)

合集下载

人教版七年级数学上册第一章有理数《有理数的加法》第二课时教案

人教版七年级数学上册第一章有理数《有理数的加法》第二课时教案

课题 1.3.1有理数的加法(2)备课时间序号授课时间主备人授课班级七年级课标要求理解有理数的运算律,能解决简单问题。

教学目标知识与技能:能用运算律简化有理数加法的运算。

过程与方法:经历有理数加法运算律的探索过程,理解有理数加法的运算律。

情感态度价值观:使学生逐渐养成,“算必讲理”的习惯,培养学生初步的推理能力与表达能力。

教学重点加法交换律和结合律,及其合理、灵活的运用教学难点合理运用运算律教学方法类比教学过程设计师生活动设计意图一、引出课题回顾复习:小学时已学过的加法运算律有哪几条?提出问题:这些运算律在有理数加法中适用吗?这就是这节课我们要研究的课题。

二、分析问题、探究新知1.有理数加法交换律的学习问题1:我们如何知道加法交换律在有理数范围内是否适用?问题2:我们如何用语言来叙述有理数加法的交换律呢?教师归纳后板书:“有理数加法中,两个数相加,交换加数的位置,和不变。

”问题3 :你能把有理数加法的交换律用字母来表示吗?〔1〕式子中的字母分别表示任意的一个有理数。

(如:既可成表示整数,也可以表示分数;既可以表示正数,也可以表示负数或0)。

(2)在同一个式子中,同一个字母表示同一个数.2.有理数加法结合律的学习.(基本步骤同于加法交换律的学习)学生回答后教师接着问:你能用自己的语言或举例子来说明一下加法的交换律与结合律吗?先由教师举一些实际例子来说明,然后鼓励学生举不同的数来验证由学生回答得出a+b=b+a后,教师说明“加法运算律对所有有理数都成立”目前只能直接给出,让学生举例尝试只起到验证的作用.要让学生举不同的数验证,是为避免学生只由一个例子即得出某种结论.鼓动学生用自己的语言表达所发现的贻论或规律.让学生感受字母表示数的含义,同时也让学生体会到数学符号语言的简洁性板书设计:1.3.1 有理数的加法有理数的加法中,两个数相加, 交换加数的位置,和不变。

加法交换律:a+b=b+a有理数的加法中,三个数相加, 先把前两个数相加,或者先把 后两数相加,和不变。

1.3.1有理数加法(2)

1.3.1有理数加法(2)

1.3.1有理数加法(2):有理数加法法则:·同号两个数相加,取相同的符号,并把绝对值相加。

·异号的两个数相加,绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。

互为相反数的两数相加得0.·一个数同0相加仍得这个数加法交换律:a b b a+=+加法结合律:()()a b c a b c++=++方法:①互为相反数的两个数先相加——“相反数结合法”②符号相同的两个数先相加——“同号结合法”③分母相同的的数先相加——“同分母结合法”④几个数相加得到整数——“凑整数”⑤整数与整数,小数与小数相加——“同行结合法”。

新课讲授:见ppt例1:计算:(1)(—83)+(+26)+(—17)+(—26)+(+15)(2)131 ++++244(—2.5)(—3)(—1)3(—1)(3)18.56+(—5.16)+(—1.44)+(+5.16)+(—18.56)练习:(1)13+(-34)+(-13)+(-14)+1819(2)(-13)+(+25)+(+35)+(-123)(3)(-12)+(-23)+(-56)(4)(-26.54)+(-6.4)+(+18.54)+6.4(5)(-3.75)+2.85+(-114)+(-12)+3.15+(-2.5)(6)11+22(—6)3(7))539()518()23()52()21(++++-+-(8))37(75.0)27()43()34()5.3(-++++-+-+-自主探究:(针对性练习)1.若|x—4|与|y+2|互为相反数,求x+y+的值。

2.若m,n互为相反数,x的绝对值2,则5(m+n)+x=3.计算1111++++ 12233420112012⋅⋅⋅⨯⨯⨯⨯4.(-1)+(+2)+(-3)+(+4)+…(-2007)+(+2008)+(-2009)+(+2010)课堂达标:1.口算:(1))8()2(+++= (2))17()16(-+- = (3))8()13(++-=(4)(-8.6)+0 = (5)3.78)+(-3.78)= (6)(-423)+(+316)= (7)(-823)+(+4.5)= (8)(-723)+(-356)= (9)│-7│+│-9715│= (10)(+4.85)+(-3.25)= (11)(-3.1)+(6.9)= (12)(-22914)+0= (13)-34+(-45)= (14)4.23+(-2.76)= (15)(-25)+(+56)+(-39)= (16)(-1.9)+3.6+(-10.1)+1.4 =(17) (-7)+(+11)+(-13)+9= (18)43+(-77)+37+(-23) =(19) 18+(-12)+(-21)+(+12) = (20)(+3)(-21)+(-19)+(+12)+(+5) =2.计算—1+1的结果是( )A. 1B. 0C.—1D. —23.下列运算正确的是( )①(—2)+2=0 ②512+=663(—)③33+=44—(—)(—7)—7④(—6)+(+4)=—10 ⑤0+(—3)=+3A. 0个B. 1个C. 2个D. 3个4.如果两个数相加的和是负数,那么( )A.这两个加数都为负数B.两个加数中,一个为负数,一个为正数C.一个加数为正数,另一个加数为负数,并且负数的绝对值大于正数的绝对值D.以上都有可能5.如果|a+b|=|a|+|b|,则这两个数一定是( )A.同为正数B.同为负数C. 同为非负数D.符号相同或一个为0或者同时为06.已知a 〈0,b 〉0且|a|=1,|b|=5,则a+b 等于( )A. 6B. ±6C. 4D. -47.小丽沿着一南北走向的街道散步,先向北走了1000m ,又向南走了800m ,则她此时位于其出发点的( )A.北200m 处B.南200m 处C. 北1800m 处D. 南1800m 处8.一个数是—8,另一个数比它大123,则另一个数是 。

七年级数学上册《有理数的加法》教案 (公开课获奖)2 (新版)新人教版

七年级数学上册《有理数的加法》教案 (公开课获奖)2 (新版)新人教版

有理数的加法教学目标明确分式混合运算的顺序,熟练地进行分式的混合运算. 重点难点1.重点:熟练地进行分式的混合运算. 2.难点:熟练地进行分式的混合运算. 3.认知难点与突破方法教师强调进行分式混合运算时,要注意运算顺序,在没有括号的情况下,按从左到右的方向,先乘方,再乘除,然后加减. 有括号要按先小括号,再中括号,最后大括号的顺序.混合运算后的结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.分子或分母的系数是负数时,要把“-”号提到分式本身的前面. 教学过程例、习题的意图分析1.教科书例7、例8是分式的混合运算. 分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.小结 五、课时小结: 本节课我们探索了有理数加法的运算律,灵活运用加法的运算律使运算简便.一般情况下,将互为相反数的数结合相加;同分母的分数能凑整的数结合;正数、负数分别相加,以使计算简便.作 业 1、教科书 习题1.3第1题;2、配套练习相关题目。

板 书 设 计一、 复习引入 二、 讲授新课 三、 例题讲解 四、 当堂检测 五、课时小结教 学 反 思组长查阅2.教科书练习1:写出教科书问题3和问题4的计算结果.这道题与第一节课相呼应,也解决了本节引言中所列分式的计算,完整地解决了应用问题. 二、课堂引入1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同. 三、例题讲解(教科书)例7 计算[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.(教科书)例8 计算:[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,注意有括号先算括号内的,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.四、随堂练习 计算:(1) xx x x x 22)242(2+÷-+- (2))11()(b a a b b b a a -÷--- (3))2122()41223(2+--÷-+-a a a a 五、课后练习 1.计算: (1))1)(1(yx xy x y +--+ (2)22242)44122(aaa a a a a a a a -÷-⋅+----+(3)zxyz xy xyz y x ++⋅++)111(2.计算24)2121(aa a ÷--+,并求出当=a -1的值.六、答案: 四、(1)2x (2)ba ab- (3)3 五、1.(1)22y x xy- (2)21-a (3)z 12.原式=422--a a ,当=a -1时,原式=-31.13.3.1 等腰三角形教学目标(一)教学知识点1.等腰三角形的概念.2.等腰三角形的性质.3.等腰三角形的概念及性质的应用.(二)能力训练要求1.经历作(画)出等腰三角形的过程,•从轴对称的角度去体会等腰三角形的特点.2.探索并掌握等腰三角形的性质.(三)情感与价值观要求通过学生的操作和思考,使学生掌握等腰三角形的相关概念,并在探究等腰三角形性质的过程中培养学生认真思考的习惯.重点难点重点:1.等腰三角形的概念及性质.2.等腰三角形性质的应用.难点:等腰三角形三线合一的性质的理解及其应用.教学方法探究归纳法.教具准备师:多媒体课件、投影仪;生:硬纸、剪刀.教学过程Ⅰ.提出问题,创设情境[师]在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,•并且能够作出一个简单平面图形关于某一直线的轴对称图形,•还能够通过轴对称变换来设计一些美丽的图案.这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形.来研究:①三角形是轴对称图形吗?②什么样的三角形是轴对称图形?[生]有的三角形是轴对称图形,有的三角形不是.[师]那什么样的三角形是轴对称图形?[生]满足轴对称的条件的三角形就是轴对称图形,•也就是将三角形沿某一条直线对折后两部分能够完全重合的就是轴对称图形.[师]很好,我们这节课就来认识一种成轴对称图形的三角形──等腰三角形.Ⅱ.导入新课[师]同学们通过自己的思考来做一个等腰三角形.ABICABI作一条直线L,在L上取点A,在L外取点B,作出点B关于直线L的对称点C,连接AB、BC、CA,则可得到一个等腰三角形.[生乙]在甲同学的做法中,A点可以取直线L上的任意一点.[师]对,按这种方法我们可以得到一系列的等腰三角形.现在同学们拿出自己准备的硬纸和剪刀,按自己设计的方法,也可以用课本探究中的方法,•剪出一个等腰三角形.……[师]按照我们的做法,可以得到等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角. [师]有了上述概念,同学们来想一想. (演示课件)1.等腰三角形是轴对称图形吗?请找出它的对称轴. 2.等腰三角形的两底角有什么关系?3.顶角的平分线所在的直线是等腰三角形的对称轴吗?4.底边上的中线所在的直线是等腰三角形的对称轴吗?•底边上的高所在的直线呢?[生甲]等腰三角形是轴对称图形.它的对称轴是顶角的平分线所在的直线.因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线.[师]同学们把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系. [生乙]我把自己做的等腰三角形折叠后,发现等腰三角形的两个底角相等.[生丙]我把等腰三角形折叠,使两腰重合,这样顶角平分线两旁的部分就可以重合,所以可以验证等腰三角形的对称轴是顶角的平分线所在的直线.[生丁]我把等腰三角形沿底边上的中线对折,可以看到它两旁的部分互相重合,说明底边上的中线所在的直线是等腰三角形的对称轴.[生戊]老师,我发现底边上的高所在的直线也是等腰三角形的对称轴. [师]你们说的是同一条直线吗?大家来动手折叠、观察. [生齐声]它们是同一条直线.[师]很好.现在同学们来归纳等腰三角形的性质.[生]我沿等腰三角形的顶角的平分线对折,发现它两旁的部分互相重合,由此可知这个等腰三角形的两个底角相等,•而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高. [师]很好,大家看屏幕. (演示课件)等腰三角形的性质:1.等腰三角形的两个底角相等(简写成“等边对等角”).2.等腰三角形的顶角平分线,底边上的中线、•底边上的高互相重合(通常称作“三线合一”).[师]由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质.同学们现在就动手来写出这些证明过程). (投影仪演示学生证明过程)[生甲]如右图,在△ABC 中,AB=AC ,作底边BC 的中线AD ,因为,,,AB AC BD CD AD AD =⎧⎪=⎨⎪=⎩所以△BAD ≌△CAD (SSS ). 所以∠B=∠C .[生乙]如右图,在△ABC 中,AB=AC ,作顶角∠BAC 的角平分线AD ,因为,,,AB AC BAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩所以△BAD ≌△CAD . 所以BD=CD ,∠BDA=∠CDA=12∠BDC=90°. [师]很好,甲、乙两同学给出了等腰三角形两个性质的证明,过程也写得很条D CA BD CABDCAB理、很规范.下面我们来看大屏幕. (演示课件)[例1]如图,在△ABC 中,AB=AC ,点D 在AC 上,且BD=BC=AD , 求:△ABC 各角的度数.[师]同学们先思考一下,我们再来分析这个题.[生]根据等边对等角的性质,我们可以得到 ∠A=∠ABD ,∠ABC=∠C=∠BDC ,•再由∠BDC=∠A+∠ABD ,就可得到∠ABC=∠C=∠BDC=2∠A . 再由三角形内角和为180°,•就可求出△ABC 的三个内角.[师]这位同学分析得很好,对我们以前学过的定理也很熟悉.如果我们在解的过程中把∠A 设为x 的话,那么∠ABC 、∠C 都可以用x 来表示,这样过程就更简捷. (课件演示)[例]因为AB=AC ,BD=BC=AD , 所以∠ABC=∠C=∠BDC . ∠A=∠ABD (等边对等角).设∠A=x ,则∠BDC=∠A+∠ABD=2x , 从而∠ABC=∠C=∠BDC=2x .于是在△ABC 中,有∠A+∠ABC+∠C=x+2x+2x=180°, 解得x=36°.在△ABC 中,∠A=35°,∠ABC=∠C=72°.[师]下面我们通过练习来巩固这节课所学的知识.Ⅲ.随堂练习(一)课本练习 1、2、3. 练习1. 如图,在下列等腰三角形中,分别求出它们的底角的度数.(2)120︒36︒(1)答案:(1)72° (2)30°2.如图,△ABC 是等腰直角三角形(AB=AC ,∠BAC=90°),AD 是底边BC 上的高,标出∠B 、∠C 、∠BAD 、∠DAC 的度数,图中有哪些相等线段?D CA答案:∠B=∠C=∠BAD=∠DAC=45°;AB=AC ,BD=DC=AD .3.如图,在△ABC 中,AB=AD=DC ,∠BAD=26°,求∠B 和 ∠C 的度数.答:∠B=77°,∠C=38.5°.D C A B(二)阅读课本,然后小结. Ⅳ.课时小结这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用.等腰三角形是轴对称图形,它的两个底角相等(等边对等角),等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高.我们通过这节课的学习,首先就是要理解并掌握这些性质,并且能够灵活应用它们. Ⅴ.课后作业(一)习题13.3 第1、3、4、8题. (二)1.预习课本.2.预习提纲:等腰三角形的判定. Ⅵ.活动与探究如图,在△ABC 中,过C 作∠BAC 的平分线AD 的垂线,垂足为D ,DE ∥AB 交AC 于E .求证:AE=CE .EDCAB过程:通过分析、讨论,让学生进一步了解全等三角形的性质和判定,•等腰三角形的性质. 结果:证明:延长CD 交AB 的延长线于P ,如图,在△ADP 和△ADC 中,12,,,AD AD ADP ADC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADP ≌△ADC .∴∠P=∠ACD .又∵DE ∥AP , ∴∠4=∠P . ∴∠4=∠ACD . ∴DE=EC .同理可证:AE=DE .∴AE=C E .板书设计一、设计方案作出一个等腰三角形 二、等腰三角形性质 1.等边对等角 2.三线合一 三、例题分析 四、随堂练习 五、课时小结 六、课后作业 备课资料 参考练习EDCA B P1.如果△ABC 是轴对称图形,则它的对称轴一定是( ) A .某一条边上的高 B .某一条边上的中线 C .平分一角和这个角对边的直线 D .某一个角的平分线 2.等腰三角形的一个外角是100°,它的顶角的度数是( ) A .80° B .20° C .80°和20° D .80°或50° 答案:1.C 2.C3. 已知等腰三角形的腰长比底边多2 cm ,并且它的周长为16 cm .求这个等腰三角形的边长. 解:设三角形的底边长为x cm ,则其腰长为(x+2)cm ,根据题意,得 2(x+2)+x=16.解得x=4.所以,等腰三角形的三边长为4 cm 、6 cm 和6 cm .15.2.2 分式的加减教学目标明确分式混合运算的顺序,熟练地进行分式的混合运算. 重点难点1.重点:熟练地进行分式的混合运算. 2.难点:熟练地进行分式的混合运算. 3.认知难点与突破方法教师强调进行分式混合运算时,要注意运算顺序,在没有括号的情况下,按从左到右的方向,先乘方,再乘除,然后加减. 有括号要按先小括号,再中括号,最后大括号的顺序.混合运算后的结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.分子或分母的系数是负数时,要把“-”号提到分式本身的前面. 教学过程例、习题的意图分析1.教科书例7、例8是分式的混合运算. 分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.2.教科书练习1:写出教科书问题3和问题4的计算结果.这道题与第一节课相呼应,也解决了本节引言中所列分式的计算,完整地解决了应用问题. 二、课堂引入1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同. 三、例题讲解(教科书)例7 计算[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.(教科书)例8 计算:[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,注意有括号先算括号内的,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.四、随堂练习 计算:(1) xx x x x 22)242(2+÷-+- (2))11()(b a a b b b a a -÷---(3))2122()41223(2+--÷-+-a a a a 五、课后练习 1.计算: (1))1)(1(yx xy x y +--+ (2)22242)44122(aaa a a a a a a a -÷-⋅+----+ (3)zxyz xy xyz y x ++⋅++)111(2.计算24)2121(aa a ÷--+,并求出当=a -1的值.六、答案: 四、(1)2x (2)ba ab- (3)3 五、1.(1)22y x xy- (2)21-a (3)z 12.原式=422--a a ,当=a -1时,原式=-31.。

【人教版】七年级上册数学教案:1.3.1 第2课时 有理数加法的运算律及运用

【人教版】七年级上册数学教案:1.3.1 第2课时 有理数加法的运算律及运用

第一章 有理数 1.3 有理数的加减法 1.3.1 有理数的加法第2课时 有理数加法的运算律及运用学习目标:1.进一步掌握有理数加法运算法则,理解加法运算律在有理数范围内推广的合理性;2.能运用加法运算律简化加法运算;3.经历有理数加法运算律的探索,体会观察、实践、归纳等活动在数学中的作用. 学习难点:运用有理数加法法则简化运算. 课堂活动一、有理数加法运算律的探索 1.试一试:(1)任意选择两个有理数(至少有一个是负数),分别填入下列□和○内,并比较两个运算的结果:□+○ 和 ○+□(2)任意选择三个有理数(至少有一个是负数),分别填入下列□、○和◇内,并比较两个运算的结果:(□+○)+◇ 和 □+(○+◇) 2.你能发现什么?请说说自己的猜想.3.概括:通过实例说明加法的交换律和结合律对于有理数同样适用.加法的交换律:文字概括: 字母表示 加法的结合律:文字概括: 字母表示 二、有理数加法运算律的应用 问题1.计算(1) (-23)+(+58)+(-17) (2)(-2.8)+(-3.6)+(-1.5)+3.6(3))75()65()72(61++-+-+ (4)(+4.56)+(-3.45)+(+4.44)+(+2.45)问题2:计算 (1) (-11)+8+(-14) (2)32)41()32()43(+-+-+-(3) 0.35+(-0.6)+0.25+(-5.4) (4))61(31)21()2(-++-+-三、拓展延伸问题3.10筐苹果,以每筐30千克为准,超过的千克数记作正数,不足的千克数记作负数,记录如下:2,-4,2.5,3,-0.5,1.5,3,-1,0,-2.5. 问(1)10筐苹果共超过(不足)多少千克? (2)10筐苹果共重多少千克?课堂反馈:1.从某点O 出发,在一直线上来回爬行,假定向右爬行的路程记为正数,向左爬行的路程记为负数,爬过的各段路程依次为(单位:厘米):+5, -3,+10, -8, -6, +12, -10. 试问:小虫最后能否回到出发点O?2.10名学生的某一次数学考试成绩如下(单位:分)87,91,94,88,93,91,89,87,92,86,你能迅速算出总成绩之和吗?知识巩固 一、填空1. 存折中有存款240元,取出125元,又存入100元,存折中还有 元.2.绝对值小于5的所有负整数的和为3.已知a 是最小的正整数,b 是a 的相反数,c 的绝对值为3,则a +b +c =4.某天股票A 的开盘价是18元,上午11:30跌1.5元,下午收盘时又涨0.3元,则股票A 这天的收盘价是 元.5.如果a<0,则︱a ︱+a= 二、计算(1) )4(1)3()1(3-++-+-+ (2)(-9)+4+(-5)+8;(3)(-36.35)+(-7.25)+26.35+(+714) (4))2(9465195-+++(5))127(25)125()23(-++-+- (6)(-13)+(+25)+(+35)+(-123)三、解答题1. 一天早晨的气温是-7ºC,中午上升了11ºC,半夜又降了9ºC,则半夜的气温是多少?2.仓库内原存某种原料4500千克,一周内存入和领出情况如下(存入为正,单位:千克): 1500,-300,-670,400,-1700,-200,-250.问:第7天末仓库内还存有这种原料多少千克?3. 某种袋装奶粉标明净含量为400g ,检查其中8袋,记录如下表:请问这8袋被检奶粉的总净含量是多少?4.一只电子跳骚从数轴上的原点出发,第一次向右跳1个单位,第二次向左跳2个单位,第三次向右跳3个单位,第四次向左跳4个单位,…,按这样的规律跳100次,跳骚到原点的距离是多少?5. 某出租车沿公路左右行驶,向左为正,向右为负,某天从A 地出发后到收工回家所走的路线如下:(单位:千米)8,9,4,7,2,10,18,3,7,5+-++--+-++ ⑴ 问收工时离出发点A 多少千米?⑵ 若该出租车每千米耗油0.3升,问从A 地出发到收工共耗油多少升?6.已知c b a ,7,2-==的相反数为-5,试求a +)(b -+(-c )7.计算:|1-12|+|12-13|+|13-14|+…+|19-110|课后反思:学习小结:课后作业:。

1.3.1有理数加法(2)

1.3.1有理数加法(2)

思考题:1、计算:
①(+1)+(-2)+(+3)+(-4)+…+(+99)+(-100) ②求小于100且大于-99的所有整数之和

+
+
+
…+
2、填幻方:书本24页。
试一试
你能将-2,-1,0,1,2,3,4,5,6这9个数分 别填入下列幻方的9个空格中,使得处于 同一横行,同一竖列,同一斜对角线上的 3个数上的3个数相加之和都相等吗? 2
+(―0.1)+(+0.8)+(+ 0.7)
=[(+0.3)+(―0.3)]+[(+0.7)+(―0.7)]+[(―0.2) +(―0.1)]+[(+0.5)+(+1.1)+(+0.8)]
= 0+0+(―0.3)+2.4
= 2.1(kg) 90×10+(+2.1)=900+2.1=902.1(kg) 答:10袋大米共超重2.1kg,总重量为902.1kg.
计算: [8+(-5)]+(-4) = -1
8+[(-5)+(-4)] = -1
有理数的加法中,三个数相加,先把前两个 数相加,或者先把后两个数相加,和不变. 加法结合律:(a+b)+c=____________ a+(b+c)
有理数加法的运算律:
(1)加法交换律:a+b =b +a (2)加法结合律:( a +b )+ c = a +( b + c )
注:使用运算律能使运算简便。运用结合律时常 用的结合法有: ①同号结合; ②凑0结合(相反数); ③凑整结合; ④同分母结合。
例2 每袋小麦的标准重量为90千克,10袋 小麦称重记录如图所示.与标准重量比 较,10袋小麦总计超过多少千克或不足 多少千克?10袋小麦.2

1.3.1有理数加法(2)

1.3.1有理数加法(2)

(一 ) 1, 2, 3, 4, 5, 6, 7, 8, 9;
4 3 8 9 2 5 7 1 6
(二 ) -4, -3, -2, -1, 0,1, 2, 3, 4;
(三 ) -2,-1,0,1, 2,3,4,5,6;
1.绝对值小于5的所有负整数之和是 2.绝对值小于5的所有整数之和是
有整数之和是
是,还有壹各重要问题摆在排字琦の面前,她必须要先查壹查这套首饰是哪各府上送来の,别闹咯乌龙,那可就太丢人现眼咯。于是她立 即吩咐红莲去找管账太监,查查这套首饰是哪户人家孝敬上来の。第壹卷 第398章 查账管账太监上次被红莲害惨咯,事发之后他才晓得 为啥啊红莲会派他去怡然居传话,原来竟是为咯诓骗年侧福晋去朗吟阁!幸亏事后王爷没有调查出来他也参与其中,否则秦公公都挨咯二 十板子,他壹各小小の管账太监还不得挨四十板子?因此当现在他又见到红莲找上门来,这壹肚子の怨气正愁没处发呢,也顾不得红莲是 福晋贴身丫环、大红人の身份,直接闷闷不乐、暗含嘲讽地说道:“这回又是给哪各主子传话?”上次の事情红莲自知理亏,但这都是福 晋安排下来の,她又有啥啊办法!事后她还自顾不暇呢,生怕被爷发现,吟雪那二十板子和罚去庄子の严厉处罚至今她还心有余悸。不过, 待这阵风声过去咯,她总算是踏实咯许多,毕竟秦顺儿还算是条汉子,没把她给供出来。连她都吓成这样,更何况是没见过世面の管账太 监咯,因此红莲也没有太计较他の挖苦奚落,而是好言相劝道:“那事儿你就烂肚子里吧,还敢提?不要命咯?”“以前整天都在主子の 房里,壹年里也见不到你露各壹面半脸,现在不到三各月里见你两回,谁晓得你这回又有啥啊事情!”“这回是正经事情!主子让你查壹 下,喏,就是这各东西,查查是哪各府上孝敬上来の。”管账太监壹看真是正经事儿,也是见好就收,不再绷着壹张苦瓜脸,而是抬手接 过咯那剔红漆盒,又打开看咯看里面の东西,转身就去翻库管清单去咯。可是这壹翻账本,却是翻来咯他壹身の冷汗。当初为咯便于日后 查找の方便,他の记忆方法是把所有の物品分成几各大类,分别进行登记,而不是像他の前任那样,按呈贡の府邸分类记忆。实际上他の 方法更便于日后の查找,只要看到这各物品,他就晓得被分到咯哪各门类之下。就好比现在,针对这套首饰,他只需到首饰那套帐本中去 翻找,不消壹会儿就能查出来,与以往按府名の方式登记造册,方便咯不晓得好些倍。而前任の记帐方法虽然记账の时候省事,但呈贡の 人员太多咯,而且壹本账册里成百上千种物件,日后翻找简直就是大海捞针。但是原本他这各极好の管账方法,在今天这各突发情况下, 却是要咯管账太监の命。因为当他轻松地找到咯这件物品所在の册页,但是在呈贡府名上,因为不小心弄上壹块水渍,刚刚就是府名那各 位置!虽然管账太监背对着红莲,而且红莲根本就不认字,但他还是心虚得厉害,努力地回忆咯许久,这件物品还和其它哪些物品壹并呈 贡进府の?可是壹来时间久远,二来又有红莲无形の压力在身边,即使是努力咯半响,仍是没有壹丝壹毫の线索。不壹会儿,他那壹头の 冷汗哗哗地往下淌。犹豫咯许久,他还是决定面不改色心不跳地回答红莲:“你给福晋回话吧,是戴铎戴大人呈上来の。”第壹卷 第399 章 送礼听着福晋报上来の礼单,王爷壹直默不出声。他已经晓得,她现在是婉然,这次是以保善家の格格身份出嫁,看来年家对她可是失 望透顶。名义上她有两各娘家,但年家能对她还能有啥啊情分?保善也只是壹各临时挂名の娘家而已。因此当他听到贺礼中有壹套首饰の 时候,他吩咐福晋将那首饰拿来,他要亲自过目。待那套首饰呈现在他面前の时候,也如排字琦第壹次见到那般震惊不已,真不晓得,自 己の府里还会有这等极为称心如意の存货!简直就像是晓得他の心上人现在急需这么壹件极为体面の嫁妆,然后就出现在他の手上咯。 “这是哪各府邸呈上来の?”听着他沙哑の嗓音,排字琦心酸极咯。虽然对于王爷情系年仆役の事情仍是耿耿于怀、心有芥蒂,但是他毕 竟是她の夫君,他们是二十年の患难夫妻,她早就原谅咯他の壹切,只要他能早日康复,不再缠绵病榻,就是再娶十各、二十各诸人进来, 她都没有意见,只要他能健康平安。“回爷,是戴铎戴大人。”壹听说是自己の门人戴铎送上来の,他の心中立即对戴铎充满咯感激,关 键时刻救咯场,他会好好地记他壹笔。“你今天赶快差人,将这件贺礼以水清の名义,送到保善の府上吧。”“爷!”不用他再说啥啊, 排字琦完全明白咯他の心思,她全都明白!眼睁睁地看着自己心爱の诸人嫁给别人,这各别人还是自己の亲弟弟,他这心里该会是多痛! 此时他分明是担心婉然の两各娘家都拿不出来体面の嫁妆,壹各是对她恨之入骨の年家,怎么可能尽心尽力地张罗她の婚事?壹各是根本 没有丝毫感情の临时娘家,想の都是如何巴结二十三小格,根本不可能对她有真感情。假设他再不亲自过问帮着张罗,让婉然凄凄惨惨地 出嫁,他怎么可能原谅他自己!可是这份贺礼,根本就不是他这各四哥应该送出去の。他只是她の叔伯兄弟而已,送这样の贺礼,不但名 不正言不顺,更会引发新の风言风语。而假借水清之手,由妹妹送给姐姐就是理所应当の事情咯。“爷,妾身壹定妥妥当当地办好,您就 踏踏实实地放心吧。”看得出福晋这话是发自肺腑,出自真心,他也就真如她所愿,放下咯这颗心,挥挥手,让福晋下去赶快办。他再有 好些伤痛,他都必须自己舔噬伤口,独自疗伤,没有任何人能替代得咯他。做不咯她の夫君,又必须做她の兄长,这各他必须扮演の全新 の角色,需要他在极短の时间里,完成由恋人到兄长の角色转

1.3.1有理数的加法(2)人教版七年级上册 数学

1.3.1有理数的加法(2)人教版七年级上册 数学

想一想,计 算中使用了哪 些运算定律?
解:每袋小麦超过90kg的记作正数,不足的记作负数. 10袋小麦对应 的分别为:
+1,+1,+1.5, -1,+1.2,+1.3,-1.3,-1.2,+1.8,+1.1 1+1+1.5+(-1)+1.2+1.3+(-1.3)+(-1.2)+1.8+1.1 =[1+(-1)]+[1.2+(-1.2)]+[1.3+(-1.3)]+(1+1.5+1.8 +1.1) =5.4
答案:(1)28元;(2)32元,28元; (3)29000元.
课堂总结
本节小结: 1、通过具体有理数的计算,把加法运算律从非负数
范围扩大到有理数的范围。 2、掌握加法运算律的法则及公式,并适当的运用运
算律进行简化计算。 3、有理数加法解决实际问题,体会求简意识。
作业布置
教材课后配套作业题。
解:原式
4.1
(-
10.1)(
1 2
)(-
1 4

7
=(-100)+0+(+15) =-85
6 7 1 1 1 1 1 4 44
4. 有6筐蔬菜,每筐质量分别为(单位:kg): 48,52,47,49,53,54.
(1)如果以50kg为基准,超过的千克数记为正数,不足的千克数记 为负数,则用正、负数表示这6筐蔬菜的质量分别为(单位:kg):
a+ b = b + a
解: 30+(-20) =30-20 =10
(-20)+30 =30-20 =10
两次所得的和 相同吗?
从上述计 算中,你 得出什么
结论?
归纳:
加法交换律:
两个数相加,交换加数的位置,和不变.
a+ b

§1.3.1有理数的加法(2)

§1.3.1有理数的加法(2)

1 )+(+5) +(+2) 8 1 )]+[(+5) 8

=[(-0.125)+(+
+(+2)]+(-7) ② =0+(+7)+(-7) ③ =0 ④ 通过例 2,让 学 生 亲身 体验 加 教师出示例题 2 学生按要求解答 法 运 算律 在有 理 数加法中妙用。 例 2 利用有理数的加法运算 律计算,使运算简便. (1)(+9)+(-7)+(+10)+(-3)+(-9) (2) (+0.36)+(-7.4)+(+0.03) +(-0.6)+(+0.64) (3) (+1)+(-2)+(+3)+(-4) +…+(+2003)+(-2004) 【答案】 (1)0 (2)-6.7 (3)-1002
2003 1. 2004 取-56,从该数起,逐次加 1,
得到一列数.-56,-55,-54,-53, -52,… 问: 2.5 或 1. 3. (1)-47,-1,43能力拓ຫໍສະໝຸດ , 为 培 养 尖子 学生 打 基础。
(1)第 10 个整数是多少?第 (2)-515,-1596,-650 56 个呢?第 100 个呢? (3)不是,当加到第 58 (2) 依次求出这列数前 10 个、 前 56 个、前 100 个整数的和分别 个数(为 1)时,前 n 个数的 和才开始递增. 是多少? (3)这列数字前 n 个数的和 是否随着 n 的增大而增大?请说明 理由.
-1-
问题与情境 体验 2.任选三个有理数(至 少有一个是负数) ,分别填入下列 □,○, ◇内,并比较它们的运 算结果.

《 1.3.1 有理数的加法》作业设计方案-初中数学人教版12七年级上册

《 1.3.1 有理数的加法》作业设计方案-初中数学人教版12七年级上册

《1.3.1 有理数的加法》作业设计方案(第一课时)一、作业目标本次作业设计的主要目标是帮助学生掌握有理数加法的基本原理和方法,加深对负数和有理数运算规则的理解,培养学生独立思考和解决问题的能力,以及提高学生数学运算的准确性和速度。

二、作业内容1. 基础练习:要求学生完成一定数量的有理数加法练习题,包括同号相加、异号相加以及涉及零的特殊情况。

通过反复练习,使学生熟练掌握有理数加法的基本规则。

2. 实际应用:设计一些实际生活中的应用题,如温度变化、购物找零等场景下的有理数加法问题。

通过将数学知识与实际生活相结合,激发学生的学习兴趣,提高学生的应用能力。

3. 探究性学习:引导学生探究有理数加法的本质和规律,通过小组合作或个人思考的方式,发现和总结有理数加法的性质和法则。

4. 思维拓展:设计一些具有一定难度的拓展题,如含有括号的加减混合运算等,以培养学生的逻辑思维和解决问题的能力。

三、作业要求1. 基础练习部分要求学生独立完成,并保证计算过程和结果的准确性。

2. 实际应用部分要求学生结合实际生活情境,运用所学知识解决问题。

3. 探究性学习部分要求学生积极参与,大胆尝试,发现规律,总结方法。

4. 思维拓展部分要求学生挑战自我,勇于探索,尝试解决更复杂的问题。

5. 作业完成后,学生需自行检查答案的准确性,并尝试总结本次作业的收获和不足。

四、作业评价1. 教师根据学生完成作业的情况,对每位学生的作业进行评分和评价。

2. 评价内容包括学生掌握知识的程度、解题的准确性、思维的能力、应用的创新能力等方面。

3. 对于表现出色的学生,教师可给予表扬和鼓励;对于存在问题的学生,教师应指出其不足并给出改进的建议。

五、作业反馈1. 教师通过课堂讲解、个别辅导等方式,对学生完成的作业进行反馈和指导。

2. 对于共性问题,教师可在课堂上进行集体讲解和纠正;对于个别问题,教师可通过个别辅导的方式帮助学生解决。

3. 鼓励学生之间互相交流学习心得和解题方法,以提高学生的自主学习能力和合作学习能力。

1.3.1 有理数的加法(2)(含答案)

1.3.1 有理数的加法(2)(含答案)

1.3.1 有理数的加法(二)◆课堂测控知识点一加法运算律1.计算:(1)(-2)+(+5)+(-8)+7=______;(2)(-0.6)+0.3+(-0.4)+0.7=_____.2.(-12)+14+(-25)+(+310)运用运算律计算恰当的是()A.[(-12+14)]+[(-25)+(+310)] B.[14+(-25)]+[(-12)+(+310)]C.(-12)+[14+(-25)]+(+310) D.以上都不对3.下列计算运用运算律恰当的有()(1)28+(-18)+6+(-21)=[(-18)+(-21)]+28+6(2)(-12)+1+(-14)+13=[(-12)+(-14)]+1+13(3)3.25+(-235)+534+(-8.4)=(3.25+534)+[(-235)+(-8.4)]A.1个 B.2个 C.3个 D.都不恰当4.计算:(1)(-8)+3+(-2)+7 (2)(-12)+14+(-18)(3)0.75+(-234)+(+0.125)+(-1257)+(-418)知识点二加法交换律的应用5.8筐蔬菜,以每筐25千克为标准,超过的千克数记作正数,不足的千克数记作负数,称重记录如下(单位:千克):1.5,3,2,-0.5,1,-2,-2,+1.5.则8筐蔬菜总重量为______kg.6.飞机飞行的高度是8000米,上升300米,又下降500米,又上升200米,•最后飞机的高度为______米.7.小于5的正整数与不小于-4的负整数的和是______.8.(教材变式题)某检修小组乘汽车沿公路检修线路,约定前进为正,后退为负,•某天自A地出发到收工时所跑的路线(单位:千米)为:+10,-3,+4,+2,-8,+13,-2,+12,+8,+5.问收工时距A地多远?◆课后测控9.绝对值不小于5但小于7的所有整数的和是_____.10.计算:(-12)+5+(-10)+15=______.11.如图所示,则下列结论错误的是()A.b+c<0 B.a+b<0 C.a+b+c<0 D.│a+b│=a+bc o a12.下列运算正确的个数为()(1)(+34)+(-734)+(-6)=-13 (2)(-56)+1+(-16)=0(3)0.25+(-0.75)+(-314)+34=-3 (4)1+(-3)+5+(-7)+9+(-1)=-4A.3个 B.4个 C.2个 D.1个13.用简便方法计算:(1)(-6.8)+425+(-3.2)+635+(-5.7)+(+5.7)(2)(-1)+2+(-3)+4+…+(-99)+100(3)(-23)+(+0.25)+(-16)+1214.阅读下列(1)题解法,计算(2)题(1)计算-556+(-923)+1734+(-312)[解]原式=[(-5)+(-56)]+[(-9)+(-23)]+(17+34)+[(-3)+(-12)]=[(-5)+(-9)+17+(-3)]+[(-56)+(-23)+34+(-12)]=0+(-114)=-114.上述方法叫拆项法.(2)计算4.5+(-2.5)+913+(-1523)+213.◆拓展测控15.(经典题)股民吉姆上星期五买进某公司股票1000股,每股27元,•下表为本周内每日该股票的涨跌情况(单位:元).(1)星期三收盘时,每股是多少元?(2)本周内每股最高价多少元?最低价是多少元?(3)已知吉姆买进股票时付了1.5‰的手续费,卖出时还需付成交额1.5‰的手续费和1‰的交易税,如果吉姆在星期五收盘前将全部股票卖出,他的收益情况如何?答案:课堂测控1.(1)2 (2)0 2.A 3.C4.解:(1)原式=-8+(-2)+3+7=0(2)原式=-24+14+(-18)=-14+(-18)=-38(3)原式=34+(-234)+18+(-418)+(-1257)=-1857[总结反思](1)正数,负数分别相加;(2)分数,整数分别相加.5.204.5 6.8000 7.08.解:(+10)+(-3)+(+4)+(+2)+(-8)+(+13)+(-2)+(+12)+(+8)+(+5)=10+4+2+13+12+8+5-3-8-2=41[解题技巧]正数一起加,负数一起加.课后测控9.0 10.-2 11.D 12.A13.解:(1)原式=(-6.8)+(-3.2)+425+635+(-5.7)+5.7=-10+11=1. (2)原式=50111+++个=50(3)原式=-23+(-16)+(+14)+12=-411264+++=-56+34=-10912-+=-112 [解题思路]运用交换律结合律进行计算.14.解:(2)原式=4+0.5+(-2)+(-0.5)+9+13+(-15)+(-23)+2+13=[4+(-2)+9+(-15)+2]+[0.5+(-0.5)+[13+(-23)+13] =-2+0+0=-2[解题思路]把各个数能拆项进行拆项,运用交换律结合律,将相反数,整数,分数分别相加.拓展测控15.解:(1)星期三收盘每股价为:27+4+4.5+(-1)=34.5(元);(2)本周内每股最高价是35.5元,最低价是每股28元;(3)星期五每股卖出价为:27+4+4.5+(-1)+(-2.5)+(-4)=28(元),共收益:•28•×1000×(1-1.5‰-1‰)-27×1000×(1+1.5‰)=889.5(元).所以吉姆收益889.5元.[解题思路](1)起始价为27元,把第一到三天的涨跌数相加再加上27得周三收盘价.(2)把一周每天计算出来.再比较.(3)收入减交易中的手续费及交易税,得利润.。

1.3.1有理数的加法教案

1.3.1有理数的加法教案
3.重点难点解析:在讲授过程中,我会特别强调同号相加、异号相加和零与任何数相加这两个重点。对于难点部分,如异号相加时符号与绝对值的变化,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与有理数加法相关的实际问题,如温度变化、方向移动等。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。例如,使用正负数卡片表示方向和距离,让学生通过移动卡片来演示有理数加法的基本原理。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“有理数加法在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
在实践活动环节,我安排了分组讨论和实验操作。学生们的参与度很高,讨论氛围浓厚。但在实验操作过程中,我发现部分学生在动手操作时还是显得有些拘谨,可能是因为他们对实验操作不够熟悉。针对这一点,我考虑在今后的教学中,多安排一些类似的实践活动,提高学生的动手能力和实际操作经验。
至于学生小组讨论环节,我觉得整体效果还是不错的。学生们能够围绕主题展开讨论,提出自己的观点和想法。但在引导和启发学生思考方面,我觉得自己还可以做得更好,可以尝试设计更多开放性和启发性的问题,激发学生的思维。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解有理数加法的基本概念。有理数加法是指将两个有理数按照一定的规则相加的方法。它是数学运算的基础,可以帮助我们解决实际问题,如温度变化、方向移动等。
2.案例分析:接下来,我们来看一个具体的案例。假设今天气温为0℃,中午气温上升了3℃,下午又下降了2℃,我们如何计算最终的温度变化?通过这个案例,展示有理数加法在实际中的应用。

1.3.1有理数的加法(2)

1.3.1有理数的加法(2)

57
=[1 +(- 3)]+[(- )3+(+ )4]
55
77
=(- 2)+(+ 1)=- .9 5 7 35
探索新知
(3)4.1+(+1 )+(- 1)+(-10.1)+7 24
=[4.1+(-10.1)+7]+[(+1 2
1 )+(-4
)]
=1+1 =11 . 44
课件PPT
探索新知
(4)(+125 6
课后思考
课件PPT
有一批味精,标准质量为每袋100 g,现抽取10袋样品进行 检测,其结果是:99,102,101,101,98,99,100,97,99,103(单 位:g),用简便方法求这10袋味精的总质量.
探索新知
课件PPT
【总结提升】有理数加法在实际中的应用 1.将实际问题转化为数学问题. 2.弄清问题的实质,列式计算,解答实际问题.
典题精讲
课件PPT
题组一:加法运算律的运用
1.7+(-3)+(-4)+18+(-11)=(7+18)+[(-3)+(-4)+(-11)]是应
用了( )
A.加法交换律
探索新知
(2)这(-10)听+罐5+头0与+5标+准0+质0量+(差- 值的和为: ___5__)+__0_+__5_+_1__0______________ =__[_(_-_1_0_)_+_1__0_]_+_[_5_+__(-_5_)_]_+_5__+_5___ __=__1_0_(_克__),

1.3.1有理数加法(2)

1.3.1有理数加法(2)

3 4 (−0.2)+(+4 )+(−4.3)+(−6 ) 10 5
(2) )
3 5 1 0.75+ (−2 ) + (+0.125 + (−12 ) + (−4 ) ) 4 7 8
化简下列各式 1. (-1.75)+1.5+(+7.3)+(-2.25)+(-8.5) 1.75)+1.5+(+7.3)+(-2.25)+(2.
有理数加法的运算律: 有理数加法的运算律:
(1)加法交换律:a+b =b +a 加法交换律: 加法结合律:( a +b )+ c = a +( b + c ) (2)加法结合律 运用运算律进行简便运算时,通常有下列规律: 运用运算律进行简便运算时,通常有下列规律:
(1)互为相反数的两数,可先相 互为相反数的两数, 符号相同的数可以先相加. (2)符号相同的数可以先相加. 加. 分母相同的数可以先相加. (3)分母相同的数可以先相加. (4)几个数相加能得到整数可先相加. 几个数相加能得到整数可先相加.
(-9.6)+1.5+(-0.4)+(-0.3)+8.5 9.6)+1.5+(-0.4)+((-0.8)+1.2+(-0.7)+(-2.1)+0.8+3.5 0.8)+1.2+(-0.7)+(-
3.
某天早晨是-3℃,到了中午 升高了5℃,晚上又下降了 3℃,到了午夜降低了4 ℃, 求午夜时的温度? 求午夜时的温度?
现有10袋大米,以每袋 为准, 现有 袋大米,以每袋50kg为准, 袋大米 为准 超过的千克数记作正数, 超过的千克数记作正数,不足的千克数 记作负数,称重的记录如下: 记作负数,称重的记录如下: ;+0.3; ; ;+1.1; +0.5;+ ;0;―0.2;―0.3;+ ; ;+ ; ;+ ―0.7;―0.1;+ ;+ , ; ;+0.8;+ ;+ ;+0.7, 10袋大米共超重或不足多少千克?总重 袋大米共超重或不足多少千克? 袋大米共超重或不足多少千克 量是多少千克? 量是多少千克?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
想一想,你会怎样计算,再把自己的想法与同伴交流一下。
三、课堂练习:课本P20页练习1、2
四、要点归纳
你会用加法交换律、结合律简化运算了吗?
五、拓展训练
1.计算:
(1)(-7)+ 11 + 3 +(-2);(2)
2.绝对值不大于10的整数有个,它们的和是.
3、填空:
(1)若a>0,b>0,那么a+b 0.
(2)若a<0,b<0,那么a+b 0.
(3)若a>0,b<0,且│a│>│b│那么a+b 0.
(4)若a<0,b>0,且│a│>│b│那么a+b 0.
4.某储蓄所在某日内做了7件工作,取出950元,存入5000元,取出800元,存入12000元,取出10000元,取出2000元.问这个储蓄所这一天,共增加多少元?
例1计算:1)16 +(-25)+ 24 +(-35)
2)(—2.48)+(+4.33)+(—7.52)+(—4.33)
例2每袋小麦的标准重量为90千克,10袋小麦称重记录如下:
91 91 91.5 89 91.2 91.3 88.7 88.8 91.8 91.1
10袋小麦总计超过多少千克或不足多少千克?10袋小麦的总重量是多少千克?
集体备课教案
主备人
备课组成员
(七年级组)
课题
1.3.1有理数的加法(2)
课时及授课时间
1课时
年月日
教学目标(学习目标)
1、经历有理数加法运算律的探索过程,理解有理数加法的运算律,并能够进行有能用运算律简化有理数加法的运算
2、注意培养学生的数感及类比的学习思想。能用运算律简化有理数加法的运算
教学重点
加法交换律和结合律,及其合理、灵活的运用
二、自主探究、教师点拨
1、请说说你发现的规律
2、自己换几个数字验证一下,还有上面的规律吗
3、由上可以知道,小学学习的加法交换律、结合律在有理数范围内同样适应,即:两个数相加,交换加数的位置和()式子表示为()
三个数相加,先把前两个数相加,或者先把后两个数相加和()用式子表示为()
想想看,式子中的字母可以是哪些数?
教学难点
灵活运用加法运算律简化运算
教学用具
多媒体
教学方法(学习方法)
合作互助式
教学过程
一、温故知新
1、想一想,小学里我们学过的加法运算定律有哪些?先说说,再用字母表示写在下面:、
2、计算
30 +(-20)=(-20)+30=
[ 8 +(-5)] +(-4)=8 + [(-5)]+(-4)]=
思考:观察上面的式子与计结果,你有什么发现?
5、课本P21实验与探究
六、作业:小练习册P11-12
备注(补充)
板书设计
1.3.1有理数的加法(2)
加法交换律练习
加法结合律
教学反思
相关文档
最新文档