新课标人教A版高中数学(选修1-1)单元测试-第二章1
人教A版高中数学选修1第二章直线和圆的方程2
![人教A版高中数学选修1第二章直线和圆的方程2](https://img.taocdn.com/s3/m/7fa32433eef9aef8941ea76e58fafab069dc4498.png)
第二章 2.5 2.5.1A 级——基础过关练1.直线x -y +1=0与圆(x +1)2+y 2=1的位置关系是( ) A .相切B .直线过圆心C .直线不过圆心但与圆相交D .相离【答案】B【解析】圆(x +1)2+y 2=1的圆心为(-1,0),点(-1,0)在直线x -y +1=0上. 2.已知点M (a ,b )在圆O :x 2+y 2=1外,则直线ax +by =1与圆O 的位置关系是( ) A .相离 B .相交C .相切D .以上答案都不正确【答案】B【解析】因为点M 在圆外,得a 2+b 2>1,所以O 到直线ax +by =1的距离d =1a 2+b 2<1=r ,故直线与圆O 相交.3.若直线3x +4y +k =0与圆x 2+y 2-6x +5=0相切,则k 的值等于( ) A .1或-19 B .10或-1 C .-1或-19 D .-1或19【答案】A【解析】x 2+y 2-6x +5=0的圆心为(3,0),半径r =2,由题意得圆心到直线的距离d =|3×3+0+k |32+42=2,解得k =-19或1. 4.M (x 0,y 0)是圆x 2+y 2=a 2(a >0)内不为圆心的一点,则直线x 0x +y 0y =a 2与该圆的位置关系是( )A .相切B .相交C .相离D .相切或相交【答案】C【解析】点M 在圆内,且不为圆心,则0<x 20+y 20<a 2,故圆心到直线x 0x +y 0y =a 2的距离为d =a 2x 20+y 20>a 2a2=a ,所以相离.5.平行于直线2x +y +1=0且与圆x 2+y 2=5相切的直线的方程是( ) A .2x -y +5=0或2x -y -5=0 B .2x +y +5=0或2x +y -5=0C .2x -y +5=0或2x -y -5=0D .2x +y +5=0或2x +y -5=0 【答案】D【解析】设所求切线方程为2x +y +c =0,依题有|0+0+c |22+12=5,解得c =±5.所以所求的直线方程为2x +y +5=0或2x +y -5=0.6.过点G (0,1)的直线与圆x 2+y 2=4相交于A ,B 两点,则|AB |的最小值为( ) A . 3 B .2 3 C .3 3 D .4 3【答案】B【解析】当圆心到直线距离最大时,弦长最短,易知当圆心与定点G (0,1)的连线与直线AB 垂直时,圆心到直线AB 的距离取得最大值,即d =|OG |=1,此时弦长最短,即|AB |2≥R 2-d 2=4-1,即|AB |≥23.故|AB |的最小值为23.7.(多选)直线y =kx -1与圆C :(x +3)2+(y -3)2=36相交于A ,B 两点,则AB 长度可能为( )A .6B .8C .12D .16【答案】BC【解析】因为直线y =kx -1过定点(0,-1),故圆C 的圆心(-3,3)到直线y =kx -1的距离的最大值为3-02+[31]2=5.又因为圆C 的半径为6,故弦长AB的最小值为262-52=211.又因为当直线y =kx -1过圆心时弦长AB 取最大值为直径12,故AB ∈[211,12].故选BC .8.已知直线5x +12y +m =0与圆x 2-2x +y 2=0相切,则m =________. 【答案】8或-18【解析】由题意,得圆心C (1,0),半径r =1,则|5+m |52+122=1,解得m =8或-18.9.由直线y =x +1上的点向圆C :x 2+y 2-6x +8=0引切线,则切线长的最小值为________.【答案】7【解析】直线y =x +1上点P (x 0,y 0)到圆心C 的距离|PC |与切线长d 满足d =|PC |2-1=x 0-32+y 20-1=2x 20-4x 0+9=2x 0-12+7≥7.10.已知圆C :x 2+y 2-8y +12=0,直线l :ax +y +2a =0. (1)当a 为何值时,直线l 与圆C 相切;(2)当直线l 与圆C 相交于A ,B 两点,且AB =22时,求直线l 的方程. 解:x 2+y 2-8y +12=0可化为x 2+(y -4)2=4, 则圆心为(0,4),半径为2.(1)若直线l 与圆C 相切,则有|4+2a |a 2+1=2,解得a =-34.(2)过圆心C 作CD ⊥AB ,则⎩⎪⎨⎪⎧|CD |=|4+2a |a 2+1,|CD |2+|DA |2=|AC |2=22,|DA |=12|AB |=2,解得a =-7或a =-1.故所求直线l 的方程为7x -y +14=0或x -y +2=0.B 级——能力提升练11.一条光线从点(-2,-3)射出,经y 轴反射后与圆(x +3)2+(y -2)2=1相切,则反射光线所在直线的斜率为( )A .-53或-35B .-32或-23C .-54或-45D .-43或-34【答案】D【解析】反射光线过点(2,-3),设反射光线所在直线方程为y +3=k (x -2),即kx -y -2k -3=0.反射光线与圆相切,圆心(-3,2)到直线的距离等于半径1,即|-3k -2-2k -3|1+k2=1,解得k =-43或k =-34. 12.(多选)(2022年莆田质检)已知直线l :ax +by +1=0(a >0,b >0)与圆C :x 2+y 2=1相切,则下列说法正确的是( )A .ab ≥12B .1a 2+1b2≥4C .⎝⎛⎭⎪⎫a +b 22≤12D .1a +1b≤2 2【答案】BC【解析】∵直线ax +by +1=0与圆x 2+y 2=1相切,∴圆心O (0,0)到直线ax +by +1=0的距离d =|1|a 2+b 2=1,即a 2+b 2=1.∴1≥2ab ,∴ab ≤12,故A 错误;1a 2+1b 2=a 2+b2a 2b 2=1ab 2≥4,故B 正确;⎝ ⎛⎭⎪⎫a +b 22=a 2+2ab +b 24=14+12ab ≤14+14=12,故C 正确;1a +1b ≥21a ×1b≥22,故D 错误.故选BC .13.设点M (x 0,1),若在圆O :x 2+y 2=1上存在点N ,使得∠OMN =45°,则x 0的取值范围是________.【答案】[-1,1]【解析】由题意画出图形如图,点M (x 0,1),要使圆O :x 2+y 2=1上存在点N ,使得∠OMN =45°,则∠OMN 的最大值大于或等于45°时一定存在点N ,使得∠OMN =45°.而当MN 与圆相切时∠OMN 取得最大值,此时MN ≤1,图中只有点M ′到M ″之间的区域满足MN ≤1,所以x 0的取值范围是[-1,1].14.已知直线l 1:2x -y +4=0,则过点(1,1)且与l 1平行的直线l 2的方程为________,若l 2与圆x 2+y 2-8y +6=0相交于A ,B 两点,则|AB |=________.【答案】2x -y -1=0 2 5【解析】由题意,设l 2方程为2x -y +m =0,因为直线l 2过点(1,1),所以2-1+m =0,m =-1,所以直线l 2方程为2x -y -1=0.已知圆标准方程为x 2+(y -4)2=10,圆心为C (0,4),半径为r =10,圆心C 到直线l 2的距离为d =|0-4-1|2212=5,所以|AB |=2r 2-d 2=210-5=25.15.设圆上的点A (2,3)关于直线x +2y =0的对称点仍在圆上,且圆与直线x -y +1=0相交的弦长为22,求圆的方程.解:设圆的方程为(x -a )2+(y -b )2=r 2.由已知可知,直线x +2y =0过圆心,则a +2b =0.① 又因为点A 在圆上,则(2-a )2+(3-b )2=r 2.② 因为直线x -y +1=0与圆相交的弦长为22, 所以(2)2+⎣⎢⎡⎦⎥⎤a -b +112122=r 2.③由①②③,解得⎩⎨⎧a =6,b =-3,r 2=52或⎩⎪⎨⎪⎧a =14,b =-7,r 2=244.故所求方程为(x -6)2+(y +3)2=52或(x -14)2+(y +7)2=244.。
高中数学人教A版选修1-1同步单元双基双测“AB”卷:测试卷02(A卷)(含答案解析)
![高中数学人教A版选修1-1同步单元双基双测“AB”卷:测试卷02(A卷)(含答案解析)](https://img.taocdn.com/s3/m/1ad46189dd88d0d233d46a59.png)
班级 姓名 学号 分数《选修1-1》测试卷(A 卷) (测试时间:90分钟 满分:150分)一、选择题本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 【2015-2016学年宁夏育才中学高二上期中考试】lg ,lg ,lg x y z 成等差数列是2y xz =成立的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件 【答案】B 【解析】试题分析: lg ,lg ,lg x y z 成等差数列,则y z x lg lg lg 2=+,所以xz y =2,而当x,z 为负数时,由xz y =2不能推出lg ,lg ,lg x y z 成等差数列,所以lg ,lg ,lg x y z 成等差数列是2y xz =成立的充分不必要条件.选B .考点:充分性、必要性判断.2. 【2013-2014陕西南郑中学期末】条件:12p x +>,条件:2q x ≥,则p ⌝是q ⌝的( ) A .充分非必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要的条件 【答案】A考点:充分,必要及充要的判断.3. 【2015四川绵阳高三测试】命题“)0(∞+∈∀,x ,12>x ”的否定是( ) (A ))0(0∞+∉∃,x ,02x ≤1 (B ))0(0∞+∈∃,x ,02x ≤1(C ))0(∞+∉∀,x , 2x ≤1 (D ))0(∞+∈∀,x ,2x < 1 【答案】B 【解析】试题分析:全称命题的否定为特称命题,“任意的x ”否定为“存在x 0”,同时注意否定要彻底,“2x >1”的否定为“2x ≤1”,由此可知选B 考点:全称命题与特称命题,命题的否定4.【2015山西太原五中月考】设命题:p 函数xy 1=在定义域上为减函数;命题),0(,:+∞∈∃b a q ,当1=+b a 时,311=+ba ,以下说法正确的是( ) A .p ∨q 为真 B .p ∧q 为真 C .p 真q 假D .p ,q 均假【答案】D . 【解析】试题分析:根据函数单调性的定义,可知命题p 错误,又∵ba ab b a b a b a ++=++=+2))(11(1124≥+=,当且仅当2==b a 时,等号成立,即b a 11+的最小值为4,∴命题q 也错误,故选D .考点:1.函数的单调性;2.基本不等式.5.【改编题】若曲线21:C y ax =(0)a >与曲线2:x C y e =存在公共切线,则a 的取值范围为( )A .2,8e ⎡⎫+∞⎪⎢⎣⎭B .20,8e ⎛⎤ ⎥⎝⎦C .2,4e ⎡⎫+∞⎪⎢⎣⎭D .20,4e ⎛⎤⎥⎝⎦【答案】C考点:导数在研究函数性质的应用及函数方程的思想6.【原创题】设函数2()()f x g x x =+,曲线()y g x =在点(1,(1))g 处的切线方程为21y x =+,则曲线()y f x =在点(1,(1))f 处切线的斜率为( )A .2B .4C .14-D .12- 【答案】B 【解析】试题分析:因为曲线()y g x =在点(1,(1))g 处的切线方程为21y x =+,由导数的几何意义知:()12g '=,又因为2()()f x g x x =+,所以()()2(1)(1)24f x g x x f g ''''=+⇒=+=, 所以()y f x =在点(1,(1))f 处切线的斜率为4,故选B. 考点:求导法则及导数的几何意义.7.【2015山西太原五中月考】设()f x 是定义在R 上的奇函数,且(2)0f =,当0x >时,有2'()()0xf x f x x-<恒成立,则不等式2()0x f x >的解集为 ( ) A .(2,0)(2,)-+∞ B .(2,0)(0,2)-C .(,2)(2,)-∞-+∞D .(,2)(0,2)-∞-【答案】D .考点:1.奇函数的性质;2.利用导数判断函数的单调性.8.【2016届辽宁省抚顺市一中高三10月月考】已知直线)0)(2(>+=k x k y 与抛物线x y C 8:2=相交于A,B 两点,F 为C 的焦点,若2FA FB =,则实数k 的值为 ( )A .31 B .32 C .32 D .322【答案】D 【解析】试题分析:设抛物线x y C 8:2=的准线为2l x =-:,直线)0)(2(>+=k x k y 恒过定点()20P -,如图过A B 、分别作A M l ⊥于M BN l ⊥,于N ,由2F A F B =,则2A M B N=,点B 为AP 的中点、连接OB ,则12OB AF = ,∴OB BF =,点B的横坐标为1,故点B 的坐标为(1∴k =D . 考点:直线与抛物线的位置关系.9.【2015浙江新高考调研】抛物线x y =2的焦点为F ,点)(y x P ,为该抛物线上的动点,又点)041(,-A ,则||||PA PF 的最小值是 ( ) A .332 B .23 C .22D .21【答案】C.考点:抛物线.10.【2015云南玉溪一中月考】的右顶点A 作斜率为1-的直线,该直线与双曲线的两条渐近线的交点分别为,B C .若1AB BC =,则双曲线的离心率是( )ABCD【答案】C 【解析】试题分析:又曲线22221(0,0)x y a b a b-=>>的渐近线方程为:by x a =±,右顶点坐标为(),0a ,直线AB 的方程为:0x y a +-=,设()()1122,,,B x y C x y ,解方程组0b y xax y a ⎧=⎪⎨⎪+-=⎩得:1ab y a b =+,解方程组0b y x a x y a ⎧=-⎪⎨⎪+-=⎩得:1ab y b a =-,又因为12AB BC =,所以213y y =,所以,3ab ab b a a b =-+,所以,222225b a c a b a =⇒=+=,所以,c e a==. 考点:1、双曲线的标准方程;2、双曲线的简单几何性质.11.【2014-2015河北邢台二中月考】已知双曲线方程为1422=-y x ,过10P (,)的直线l 与双曲线只有一个公共点,则l 的条数共有( )A .4条B .3条C .2条D .1条 【答案】B 【解析】试题分析:因为()1,0P 为双曲线的右顶点,当l 斜率不存在时,与双曲线相切只有一个公共点,当l 斜率存在时,l 平行于渐近线时与双曲线相交只有一个公共点,所以一共有3条. 考点:1.双曲线的性质;2.直线与双曲线的位置关系.12.【2016届黑龙江省大庆铁人中学高三第一阶段考试】设函数()(sin cos )x f x e x x =-(02015)x π≤≤,则函数()f x 的各极大值之和为( )A .220152(1)1e e e πππ--B .22015(1)1e e e πππ--C .2015211e e ππ-- D .20162(1)1e e e πππ--【答案】D考点:利用导数研究函数的单调性、函数的极值、等比数列的前n 项和公式.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.【改编】函数f (x )=x 3+4x +5的图象在x =1处的切线在x 轴上的截距为______ 【答案】37- 【解析】试题分析:因为2()34f x x '=+,所以(1)7k f '==,切线方程为:(1)7(1)107(1)y f x y x -=-⇒-=-,令0y =得37x =-.考点:导数几何意义14. 【2015江苏通州中学月考】函数21()ln 2f x x x =-的单调递减区间为 . 【答案】(0,1) 【解析】试题分析:因为'10,()001x f x x x x>=-<⇒<<,所以单调递减区间为(0,1) 考点:利用导数求单调区间15. 【2014-2015江苏盐城中学月考】设椭圆:C 22221x y a b+=(0)a b >>的左、右焦点分别为12,F F ,P 是C 上的点,212PF F F ⊥,01230PF F ∠=,则椭圆C 的离心率为_____________.【答案】.考点:由椭圆的标准方程求几何性质.16. 【2014-2015江苏教育学院附属高中期中】给出以下四个命题:①已知命题:,tan 2p x R x ∃∈=;命题2:,10q x R x x ∀∈-+≥.则命题p 和q 都是真命题; ②过点(1,2)-且在x 轴和y 轴上的截距相等的直线方程是10x y +-=; ③函数()ln 21f x x x =+-在定义域内有且只有一个零点; ④先将函数sin(2)3y x π=-的图像向右平移6π个单位,再将新函数的周期扩大为原来的两倍,则所得图像的函数解析式为sin y x =.其中正确命题的序号为 .(把你认为正确的命题序号都填上) 【答案】①③考点:三角函数性质,函数零点三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.【2015-2016学年黑龙江省牡丹江市一中高一上学期9月月考】已知命题1)2(:++=x a y p 是增函数,命题:q 关于x 的不等式02>--a ax x 恒成立;若q p ∨为真,q p ∧为假,求a 的取值范围. 【答案】}024|{≥-≤<-a a a 或考点:1.函数单调性;2.不等式解法;3.复合命题18. 【2015江苏盐城时杨中学月考】已知函数3()3f x ax ax =-,2()ln g x bx c x =+,且()g x 在点(1,(1))g 处的切线方程为210y -=.(1)求()g x 的解析式;(2)求函数()()()F x f x g x =+的单调递增区间.【答案】(1)21()ln 2g x x x =-; (2)①若0a ≥,则1x >,即()F x 的单调递增区间为()1,+∞,②若0a <,当13a =-,()F x 无单调增区间,当13a <-,()F x 的单调递增区间为1,13a ⎛⎫- ⎪⎝⎭,当103a -<<,()F x 的单调递增区间为11,3a ⎛⎫- ⎪⎝⎭.考点:1.导数的运用;2.分类讨论的数学思想.19. 【2014-2015重庆重庆一中期中】已知双曲线2222:1(0,0)x y C a b a b-=>>实轴长为2。
高中数学(人教A版)选修1-1全册综合测试题(含详解)
![高中数学(人教A版)选修1-1全册综合测试题(含详解)](https://img.taocdn.com/s3/m/337c764f69dc5022abea0080.png)
综合测试(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列说法正确的是( )A .命题“直角相等”的条件和结论分别是“直角”和“相等”B .语句“当a >1时,方程x 2-4x +a =0有实根”不是命题C .命题“矩形的对角线互相垂直且平分”是真命题D .命题“当a >4时,方程x 2-4x +a =0有实根”是假命题 答案 D2.如果命题“綈p 且綈q ”是真命题,那么下列结论中正确的是( ) A .“p 或q ”是真命题 B .“p 且q ”是真命题 C .“綈p ”为真命题 D .以上都有可能解析 若“綈p 且綈q ”是真命题,则綈p ,綈q 均为真命题,即命题p 、命题q 都是假命题,故选C.答案 C3.若椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为32,则双曲线x 2a 2-y 2b 2=1的渐近线方程为( )A .y =±12xB .y =±2xC .y =±4xD .y =±14x解析 由椭圆的离心率e =c a =32,可知c 2a 2=a 2-b 2a 2=34,∴b a =12,故双曲线的渐近线方程为y =±12x ,选A.答案 A4.若θ是任意实数,则方程x 2+y 2sin θ=4表示的曲线不可能是( ) A .椭圆 B .双曲线 C .抛物线D .圆解析 当sin θ=1时,曲线表示圆. 当sin θ<0时,曲线表示的双曲线. 当sin θ>0时,曲线表示椭圆. 答案 C5.曲线y =x 3+1在点(-1,0)处的切线方程为( ) A .3x +y +3=0 B .3x -y +3=0 C .3x -y =0D .3x -y -3=0解析 y ′=3x 2,∴y ′| x =-1=3,故切线方程为y =3(x +1),即3x -y +3=0. 答案 B6.下列命题中,正确的是( )A .θ=π4是f (x )=sin(x -2θ)的图像关于y 轴对称的充分不必要条件 B .|a |-|b |=|a -b |的充要条件是a 与b 的方向相同 C .b =ac 是a ,b ,c 三数成等比数列的充分不必要条件D .m =3是直线(m +3)x +my -2=0与mx -6y +5=0互相垂直的充要条件答案 A7.函数f (x )=x 2+a ln x 在x =1处取得极值,则a 等于( ) A .2 B .-2 C .4D .-4解析 f (x )的定义域为(0,+∞), 又f ′(x )=2x +a x ,∴由题可知,f ′(1)=2+a =0,∴a =-2. 当a =-2时,f ′(x )=2x -2x =2(x -1)(x +1)x , 当0<x <1时,f ′(x )<0. 当x >1时,f ′(x )>0, ∴f (x )在x =1处取得极值. 故选B. 答案 B8.设P 是椭圆x 29+y 24=1上一点,F 1,F 2是椭圆的两个焦点,则cos ∠F 1PF 2的最小值是( )A .-19B .-1 C.19D.12解析 由椭圆方程a =3,b =2,c =5,∴cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 1|22|PF 1|·|PF 2|=(|PF 1|+|PF 2|)2-|F 1F 2|2-2|PF 1||PF 2|2|PF 1|·|PF 2|=(2a )2-(2c )2-2|PF 1||PF 2|2|PF 1|·|PF 2|=162|PF 1|·|PF 2|-1.∵|PF 1|·|PF 2|≤(|PF 1|+|PF 2|2)2=9, ∴cos ∠F 1PF 2≥162×9-1=-19,故选A.答案 A9.给出下列三个命题: ①若a ≥b >-1,则a 1+a ≥b1+b;②若正整数m 和n 满足m ≤n ,则m (n -m )≤n2;③设P (x 1,y 1)为圆O 1:x 2+y 2=9上任一点,圆O 2以Q (a ,b )为圆心且半径为1.当(a -x 1)2+(b -y 1)2=2时,圆O 1与圆O 2相切.其中假命题的个数为( ) A .0个 B .1个 C .2个D .3个解析 考查不等式的性质及其证明,两圆的位置关系.显然命题①正确,命题②用“分析法”便可证明其正确性.命题③:若两圆相切,则两圆心间的距离等于4或2,二者均不符合,故为假命题.故选B.答案 B10.如图所示是y =f (x )的导数图像,则正确的判断是( ) ①f (x )在(-3,1)上是增函数; ②x =-1是f (x )的极小值点;③f (x )在(2,4)上是减函数,在(-1,2)上是增函数; ④x =2是f (x )的极小值点. A .①②③ B .②③ C .③④D .①③④解析 从图像可知,当x ∈(-3,-1),(2,4)时,f (x )为减函数,当x ∈(-1,2),(4,+∞)时,f (x )为增函数,∴x =-1是f (x )的极小值点, x =2是f (x )的极大值点,故选B. 答案 B11.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,P 是直线l :x =a 2c (c 2=a 2+b 2)上一点,且PF 1⊥PF 2,|PF 1|·|PF 2|=4ab ,则双曲线的离心率是( )A. 2B. 3C. 2D. 3解析 设直线l 与x 轴交于点A ,在Rt △PF 1F 2中,有|PF 1|·|PF 2|=|F 1F 2|·|P A |,则|P A |=2ab c ,又|P A |2=|F 1A |·|F 2A |,则4a 2b 2c 2=(c -a 2c )·(c +a 2c )=c 4-a 4c 2,即4a 2b 2=b 2(c 2+a 2),即3a 2=c 2,从而e =ca = 3.选B.答案 B12.设p :f (x )=x 3+2x 2+mx +1在(-∞,+∞)内单调递增,q :m ≥8x x 2+4对任意x >0恒成立,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析 f (x )在(-∞,+∞)内单调递增,则f ′(x )≥0在(-∞,+∞)上恒成立,即3x 2+4x +m ≥0对任意x ∈R 恒成立,故Δ≤0,即m ≥43;m ≥8xx 2+4对任意x >0恒成立,即m ≥(8x x 2+4)max ,因为8x x 2+4=8x +4x ≤2,当且仅当x =2时,“=”成立,故m ≥2.易知p 是q 的必要不充分条件.答案 B二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.以x 24-y 212=-1的焦点为顶点,顶点为焦点的椭圆方程为________.解析 ∵双曲线y 212-x 24=1的焦点坐标为(0,±4),顶点坐标为(0,±23), ∴椭圆的顶点坐标为(0,±4),焦点坐标为(0,±23),在椭圆中a =4,c =23,b 2=4.∴椭圆的方程为x 24+y 216=1. 答案 x 24+y 216=114.给出下列三个命题:①函数y =tan x 在第一象限是增函数;②奇函数的图像一定过原点;③函数y =sin2x +cos2x 的最小正周期为π,其中假.命题的序号是________.解析 ①不正确,如x =π4时tan x =1,当x =9π4时tan x =1,而9π4>π4,所以tan x 不是增函数;②不正确,如函数y =1x 是奇函数,但图像不过原点;③正确.答案 ①②15.若要做一个容积为324的方底(底为正方形)无盖的水箱,则它的高为________时,材料最省.解析 把材料最省问题转化为水箱各面的面积之和最小问题,然后列出所用材料和面积关于边长a 的函数关系式.设水箱的高度为h ,底面边长为a ,那么V =a 2h =324,则h =324a 2,水箱所用材料的面积是S =a 2+4ah =a 2+1296a ,令S ′=2a -1296a 2=0,得a 3=648,a =633, ∴h =324a 2=324(633)2=333,经检验当水箱的高为333时,材料最省. 答案 33316.设m ∈R ,若函数y =e x +2mx (x ∈R)有大于零的极值点,则m 的取值范围是________.解析 因为函数y =e x +2mx (x ∈R)有大于零的极值点,所以y ′=e x +2m =0有大于0的实根.令y 1=e x ,y 2=-2m ,则两曲线的交点必在第一象限.由图像可得-2m >1,即m <-12.答案 m <-12三、解答题(本大题共6个小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤)17.(10分)已知抛物线y =ax 2+bx +c 过点(1,1),且在点(2,-1)处与直线y =x -3相切,求a ,b ,c 的值.解 本题涉及了3个未知量,由题意可列出三个方程即可求解. ∵y =ax 2+bx +c 过点(1,1), ∴a +b +c =1.①又∵在点(2,-1)处与直线y =x -3相切, ∴4a +2b +c =-1.②∴y ′=2ax +b ,且k =1. ∴k =y ′| x =2=4a +b =1, ③联立方程①②③得⎩⎪⎨⎪⎧a =3,b =-11,c =9.18.(12分)已知椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)的离心率为63,直线l :y =-x +22与以原点为圆心、以椭圆C 1的短半轴长为半径的圆相切.求椭圆C 1的方程.解 ∵e =63,∴e 2=c2a 2=a 2-b 2a 2=23,∴a 2=3b 2.∵直线l :y =-x +22与圆x 2+y 2=b 2相切, ∴222=b ,∴b =2.∴b 2=4,a 2=12.∴椭圆C 1的方程是x 212+y 24=1.19.(12分)已知函数f (x )=ln x ,g (x )=ax (a >0),设F (x )=f (x )+g (x ). (1)求函数F (x )的单调区间;(2)若以函数y =F (x )(x ∈(0,3])图像上任意一点P (x 0,y 0)为切点的切线的斜率k ≤12恒成立,求实数a 的最小值.解 (1)F (x )=f (x )+g (x )=ln x +a x (x >0),则F ′(x )=1x -a x 2=x -ax 2(x >0), ∵a >0,由F ′(x )>0,得x ∈(a ,+∞),∴F (x )在(a ,+∞)上单调递增; 由F ′(x )<0,得x ∈(0,a ), ∴F (x )在(0,a )上单调递减.∴F (x )的单调递减区间为(0,a ),单调递增区间为(a ,+∞).(2)由(1)知F ′(x )=x -a x 2(0<x ≤3),则k =F ′(x 0)=x 0-a x 20≤12(0<x 0≤3)恒成立,即a ≥(-12x 20+x 0)max ,当x 0=1时,-12x 20+x 0取得最大值12, ∴a ≥12,∴a min =12.20.(12分)已知定点F (0,1)和直线l 1:y =-1,过定点F 与直线l 1相切的动圆圆心为点C .(1)求动点C 的轨迹方程;(2)过点F 的直线l 2交轨迹于两点P ,Q ,交直线l 1于点R ,求RP →·RQ →的最小值.解 (1)由题设知点C 到点F 的距离等于它到l 1的距离, ∴点C 的轨迹是以F 为焦点,l 1为准线的抛物线. ∴所求轨迹的方程为x 2=4y .(2)由题意知,直线l 2的方程可设为y =kx +1(k ≠0),与抛物线方程联立消去y 得x 2-4kx -4=0.设P (x 1,y 1),Q (x 2,y 2),则x 1+x 2=4k ,x 1x 2=-4.又易得点R 的坐标为(-2k ,-1).∴RP →·RQ →=(x 1+2k ,y 1+1)·(x 2+2k ,y 2+1)=(x 1+2k )(x 2+2k )+(kx 1+2)(kx 2+2)=(1+k 2)x 1x 2+(2k +2k )(x 1+x 2)+4k 2+4 =-4(1+k 2)+4k (2k +2k )+4k 2+4 =4(k 2+1k 2)+8. ∵k 2+1k 2≥2,当且仅当k 2=1时取等号,∴RP →·RQ →≥4×2+8=16,即RP →·RQ →的最小值为16.21.(12分)已知函数f (x )=x 2-8ln x ,g (x )=-x 2+14x .(1)求函数f (x )在点(1,f (1))处的切线方程;(2)若函数f (x )与g (x )在区间(a ,a +1)上均为增函数,求a 的取值范围;(3)若方程f (x )=g (x )+m 有唯一解,试求实数m 的值.解 (1)因为f ′(x )=2x -8x ,所以切线的斜率k =f ′(1)=-6,又f (1)=1,故所求的切线方程为y -1=-6(x -1),即y =-6x +7.(2)因为f ′(x )=2(x +2)(x -2)x, 又x >0,所以当x >2时,f ′(x )>0;当0<x <2时,f ′(x )<0.即f (x )在(2,+∞)上单调递增,在(0,2)上单调递减.又g (x )=-(x -7)2+49,所以g (x )在(-∞,7)上单调递增,在(7,+∞)上单调递减,欲使函数f (x )与g (x )在区间(a ,a +1)上均为增函数,则⎩⎨⎧ a ≥2,a +1≤7,解得2≤a ≤6.故a 的取值范围是[2,6](3)原方程等价于2x 2-8ln x -14x =m ,令h (x )=2x 2-8ln x -14x ,则原方程即为h (x )=m .因为当x >0时原方程有唯一解,所以函数y =h (x )与y =m 的图像在y 轴右侧有唯一的交点.又h ′(x )=4x -8x -14=2(x -4)(2x +1)x,且x >0, 所以当x >4时,h ′(x )>0;当0<x <4时,h ′(x )<0.即h (x )在(4,+∞)上单调递增,在(0,4)上单调递减,故h (x )在x =4处取得最小值,从而当x >0时原方程有唯一解的充要条件是m =h (4)=-16ln2-24.22.(12分)已知椭圆的中心在原点,焦点在x 轴上,离心率为32,且经过点M (4,1),直线l :y =x +m 交椭圆于A ,B 两点.(1)求椭圆的方程;(2)若直线l 不过点M ,试问直线MA ,MB 与x 轴能否围成等腰三角形?解 (1)根据题意,设椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0),因为e =32,a 2-b 2=c 2,所以a 2=4b 2.又椭圆过点M (4,1),所以16a 2+1b 2=1,则可得b 2=5,a 2=20,故椭圆的方程为x 220+y 25=1.(2)将y =x +m 代入x 220+y 25=1并整理得5x 2+8mx +4m 2-20=0,Δ=(8m )2-20(4m 2-20)>0,得-5<m <5. 设直线MA ,MB 的斜率分别为k 1和k 2, A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-8m 5,x 1x 2=4m 2-205. k 1+k 2=y 1-1x 1-4+y 2-1x 2-4=(y 1-1)(x 2-4)+(y 2-1)(x 1-4)(x 1-4)(x 2-4). 上式分子=(x 1+m -1)(x 2-4)+(x 2+m -1)·(x 1-4) =2x 1x 2+(m -5)(x 1+x 2)-8(m -1)=2(4m 2-20)5-8m (m -5)5-8(m -1)=0, 即k 1+k 2=0.所以直线MA,MB与x轴能围成等腰三角形.。
人教A版高中数学选修1第二章直线和圆的方程2
![人教A版高中数学选修1第二章直线和圆的方程2](https://img.taocdn.com/s3/m/f5adda93f424ccbff121dd36a32d7375a417c6ba.png)
第二章 2.2 2.2.3A级——基础过关练1.(2020年大连月考)倾斜角为60°,在y轴上的截距为-1的直线方程是( ) A.3x-y-1=0 B.3x-y+1=0C.3x-3y-1=0 D.3x+3y-1=0【答案】A【解析】由于直线的倾斜角为60°,故斜率为tan60°=3,由斜截式求得直线l的方程为y=3x-1,即3x-y-1=0.2.若直线mx+3y-5=0经过连接点A(-1,-2),B(3,4)的线段的中点,则m=( ) A.1 B.3C.4 D.2【答案】D【解析】线段AB的中点为(1,1),则m+3-5=0,即m=2,故选D.3.若直线2x-y-4=0在x轴和y轴上的截距分别为a和b,则a-b的值为( ) A.6 B.2C.-2 D.-6【答案】A【解析】令y=0,得x=2;令x=0,得y=-4.所以a=2,b=-4,所以a-b=6.4.直线l过点(-1,2),且与直线2x-3y+4=0垂直,则l的方程是( )A.3x+2y-1=0 B.3x+2y+7=0C.2x-3y+5=0 D.2x-3y+8=0【答案】A【解析】设所求直线方程为3x+2y+m=0,代入点(-1,2)得3×(-1)+2×2+m=0,所以m=-1.故直线l的方程是3x+2y-1=0.5.直线l1:ax-y+b=0,l2:bx-y+a=0(a≠0,b≠0,a≠b)在同一坐标系中的图象大致是( )【答案】C【解析】将l1与l2的方程化为斜截式得y=ax+b,y=bx+a,根据斜率和截距的符号可得C .6.已知Rt △ABC 的顶点C (0,-1),斜边AB 所在直线的方程为3x -2y +1=0,则AB 边上的高所在直线的方程为( )A .2x -3y +3=0B .2x +3y +3=0C .3x +2y +3=0D .3x -2y +3=0【答案】B【解析】由题意可得直线AB 的斜率k =32,则所求直线方程的斜率k ′=-23,直线的点斜式方程为y +1=-23x ,即2x +3y +3=0.7.(多选)下列说法正确的是( ) A .直线y =ax -3a +2(a ∈R )必过定点(3,2) B .直线y =3x -2在y 轴上的截距为-2 C .直线3x +y +1=0的倾斜角为60°D .过点(-1,2)且垂直于直线x -2y +3=0的直线方程为2x +y =0 【答案】ABD【解析】y =ax -3a +2(a ∈R )可化为y -2=a (x -3),则直线y =ax -3a +2(a ∈R )必过定点(3,2),故A 正确;令x =0,则y =-2,即直线y =3x -2在y 轴上的截距为-2,故B 正确;3x +y +1=0可化为y =-3x -1,则该直线的斜率为-3,即倾斜角为120°,故C 错误;设过点(-1,2)且垂直于直线x -2y +3=0的直线的斜率为k ,因为直线x -2y +3=0的斜率为12,所以k ·12=-1,解得k =-2,则过点(-1,2)且垂直于直线x -2y +3=0的直线的方程为y -2=-2(x +1),即2x +y =0,故D 正确.故选ABD .8.在平面直角坐标系Oxy 中,若直线l 1:x -2y -1=0和直线l 2:2x -ay -a =0平行,则常数a 的值为________.【答案】4【解析】当a =0时,l 2:x =0,显然与l 1不平行;当a ≠0时,由⎩⎪⎨⎪⎧1a22=0,2a 1a 0,解得a =4.9.已知点P (-1,1)与点Q (3,5)关于直线l 对称,则直线l 的方程为____________. 【答案】x +y -4=0【解析】线段PQ 的中点坐标为(1,3),直线PQ 的斜率k PQ =1,所以直线l 的斜率k l =-1.所以直线l 的方程为x +y -4=0.10.求m ,n 的值,使直线l 1:y =(m -1)x -n +7满足: (1)平行于x 轴;(2)平行于直线l 2:7x -y +15=0; (3)垂直于直线l 2:7x -y +15=0. 解:(1)当m =1且n ≠7时,l 1平行于x 轴. (2)7x -y +15=0化为斜截式y =7x +15. 当l 1∥l 2时,m -1=7且-n +7≠15, 所以m =8,n ≠-8.(3)当7(m -1)=-1,即m =67,n ∈R 时,l 1⊥l 2.B 级——能力提升练11.已知直线Ax +By +C =0的斜率为5,且A -2B +3C =0,则该直线方程为( ) A .15x -3y -7=0 B .15x +3y -7=0 C .3x -15y -7=0 D .3x +15y -7=0【答案】A【解析】由题意得⎩⎪⎨⎪⎧-A B=5,A -2B +3C =0,所以⎩⎪⎨⎪⎧A =-5B ,C =73B .所以直线方程为-5x +y +73=0,即15x -3y -7=0.12.(多选)(2021年襄阳联考)已知直线l 1:x +ay -a =0和直线l 2:ax -(2a -3)y +a -2=0,则( )A .l 2始终过定点⎝ ⎛⎭⎪⎫13,23 B .若l 2在x 轴和y 轴上的截距相等,则a =1 C .若l 1⊥l 2,则a =0或a =2 D .若l 1∥l 2,则a =1或a =-3 【答案】AC【解析】l 2:ax -(2a -3)y +a -2=0化为a (x -2y +1)+3y -2=0,由x -2y +1=0且3y -2=0,解得x =13,y =23,即直线l 2恒过定点⎝ ⎛⎭⎪⎫13,23,故A 正确;若l 2在x 轴和y 轴上截距相等,则l 2过原点或其斜率为-1,则a =2或-a2a -3=-1⇒a =1,故B 错误;若l 1⊥l 2,则1×a +a ×(3-2a )=0,解得a =0或2,故C 正确;若l 1∥l 2,则先由1×(3-2a )=a ×a ,解得a =1或-3,再检验当a =1时,l 1,l 2重合,故D 错误.故选AC .13.已知直线l 1:(k -3)x +(4-k )y +1=0与l 2:2(k -3)x -2y +3=0平行,则k 的值是________.【答案】3或5【解析】由两直线平行得,当k -3=0时,两直线的方程分别为y =-1与y =32,显然两直线平行,当k -3≠0时,由k -32k -3=4-k-2,得k =5.综上所述,k 的值是3或5. 14.设直线l 的方程为(a +1)x +y +2-a =0,则直线l 经过定点________;若直线l 在两坐标轴上的截距相等,则直线l 的方程为______________.【答案】(1,-3) 3x +y =0或x +y +2=0 【解析】直线l的方程可写为a (x -1)+x +y +2=0,解方程组⎩⎪⎨⎪⎧x -1=0,x +y +2=0,得⎩⎪⎨⎪⎧x =1,y =-3,∴直线l 经过定点(1,-3).当截距为0时,a =2,直线l 过原点,直线l 的方程为3x +y =0.当截距不为0时,a +1≠0,且a ≠2.∵直线l 在两坐标轴上的截距相等,∴a -2a +1=a -2,∴a +1=1,∴a =0.∴直线l 的方程为x +y +2=0.综上,直线l 的方程为3x +y =0或x +y +2=0.15.已知直线l :5ax -5y -a +3=0.(1)求证:不论a 为何值,直线l 总经过第一象限; (2)为使直线不经过第二象限,求a 的取值范围. (1)证明:将直线l 的方程整理为y -35=a ⎝ ⎛⎭⎪⎫x -15,∴l 的斜率为a ,且过定点A ⎝ ⎛⎭⎪⎫15,35. 而点A ⎝ ⎛⎭⎪⎫15,35在第一象限,故l 过第一象限. ∴不论a 为何值,直线l 总经过第一象限. (2)解:如图,直线OA 的斜率为k =35-015-0=3.∵l 不经过第二象限,∴a ≥3.。
高中数学(人教版A版选修1-1)配套单元检测:3.2.1-3.2.2(含答案)
![高中数学(人教版A版选修1-1)配套单元检测:3.2.1-3.2.2(含答案)](https://img.taocdn.com/s3/m/5c5b3d10ba1aa8114431d9af.png)
§3.2导数的计算3.2.1 几个常用函数的导数3.2.2 基本初等函数的导数公式及导数的运算法则(一) 课时目标 1.能根据定义求函数y =c ,y =x ,y =x 2,y =1x的导数.2.能利用给出的基本初等函数的导数公式求简单函数的导数.1.函数y =f (x )=c 的导数为____________,它表示函数y =c 图象上每一点处,切线的斜率为0.若y =c 表示路程关于时间的函数,则y ′=0可以解释为某物体的____________始终为0,即一直处于________状态.函数y =f (x )=x 的导数为__________,它表示函数y =x 图象上每一点处切线的斜率为1.若y =x 表示路程关于时间的函数,则y ′=1可以解释为某物体做____________为1的______________运动.2.常见基本初等函数的导数公式:(1)若f (x )=c (c 为常数),则f ′(x )=______;(2)若f (x )=x α (α∈Q *),则f ′(x )=________;(3)若f (x )=sin x ,则f ′(x )=________;(4)若f (x )=cos x ,则f ′(x )=________;(5)若f (x )=a x ,则f ′(x )=________ (a >0);(6)若f (x )=e x ,则f ′(x )=________;(7)若f (x )=log a x ,则f ′(x )=________ (a >0,且a ≠1);(8)若f (x )=ln x ,则f ′(x )=________.一、选择题1.下列结论不正确的是( )A .若y =3,则y ′=0B .若y =1x,则y ′=-12x C .若y =-x ,则y ′=-12xD .若y =3x ,则y ′=32.下列结论:①(cos x )′=sin x ;②⎝⎛⎭⎫sin π3′=cos π3;③若y =1x 2,则y ′|x =3=-227.其中正确的有( )A .0个B .1个C .2个D .3个3.已知直线y =kx 是曲线y =e x 的切线,则实数k 的值为( )A.1e B .-1eC .-eD .e 4.正弦曲线y =sin x 上一点P ,以点P 为切点的切线为直线l ,则直线l 的倾斜角的范围是( )A .⎣⎡⎦⎤0,π4∪⎣⎡⎭⎫3π4,π B .[0,π) C .⎣⎡⎦⎤π4,3π4 D .⎣⎡⎦⎤0,π4∪⎣⎡⎦⎤π2,3π4 5.已知曲线y =x 3在点P 处的切线斜率为k ,则当k =3时的P 点坐标为( )A .(-2,-8)B .(-1,-1)或(1,1)C .(2,8)D .⎝⎛⎭⎫-12,-18 6.质点沿直线运动的路程s 与时间t 的关系是s =5t ,则质点在t =4时的速度为( )A .12523B .110523C .25523D .110523 题 号1 2 3 4 5 6 答 案二、填空题7.曲线y =cos x 在点A ⎝⎛⎭⎫π6,32处的切线方程为__________________________. 8.已知f (x )=x a ,a ∈Q ,若f ′(-1)=-4,则a =________________________________________________________________________.9.若函数y =f (x )满足f (x -1)=1-2x +x 2,则y ′=f ′(x )=________. 三、解答题10.求下列函数的导数:(1)y =x 12;(2)y =1x4;(3)y =5x 3;(4)y =10x .11.求过点(2,0)且与曲线y =x 3相切的直线方程.能力提升12.设曲线y =x n +1(n ∈N *)在点(1,1)处的切线与x 轴的交点的横坐标为x n ,令a n =lg x n ,则a 1+a 2+…+a 99的值为________.13.求过曲线y =e x 上点P (1,e)且与曲线在该点处的切线垂直的直线方程.1.准确记忆八个公式是求函数导数的前提.2.求函数的导数,要恰当选择公式,保证求导过程中变形的等价性.3.对于一些应用问题如切线、速度等,可以结合导数的几何意义,利用公式进行计算.§3.2 导数的计算3.2.1 几个常用函数的导数3.2.2 基本初等函数的导数公式及导数的运算法则(一)知识梳理1.y ′=0 瞬时速度 静止 y ′=1 瞬时速度 匀速直线2.(1)0 (2)αx α-1 (3)cos x (4)-sin x(5)a x ln a (6)e x (7)1x ln a (8)1x作业设计1.B [y ′=⎝⎛⎭⎫1x ′=(x -12)′=-12x -32=-12x x.] 2.B [直接利用导数公式.因为(cos x )′=-sin x ,所以①错误;sin π3=32,而⎝⎛⎭⎫32′=0,所以②错误; ⎝⎛⎭⎫1x 2′=(x -2)′=-2x -3,则y ′|x =3=-227, 所以③正确.]3.D [设切点为(x 0,y 0).由y ′=e x ,得y ′|x =x 0=e x 0,∴过切点的切线为y -e x 0=e x 0(x -x 0),即y =e x 0x +(1-x 0)e x 0,又y =kx 是切线,∴⎩⎪⎨⎪⎧ k =e x 0,(1-x 0)e x 0=0, ∴⎩⎪⎨⎪⎧x 0=1,k =e.] 4.A [∵y ′=cos x ,而cos x ∈[-1,1].∴直线l 的斜率的范围是[-1,1],∴直线l 倾斜角的范围是⎣⎡⎦⎤0,π4∪⎣⎡⎭⎫34π,π.] 5.B [y ′=3x 2,∵k =3,∴3x 2=3,∴x =±1,则P 点坐标为(-1,-1)或(1,1).]6.B [s ′=15t -45. 当t =4时,s ′=15·1544=110523.] 7.x +2y -3-π6=0 解析 ∵y ′=(cos x )′=-sin x , ∴y ′|x =π6=-sin π6=-12, ∴在点A 处的切线方程为y -32=-12⎝⎛⎭⎫x -π6, 即x +2y -3-π6=0. 8.4解析 ∵f ′(x )=ax a -1,∴f ′(-1)=a (-1)a -1=-4,∴a =4.9.2x解析 ∵f (x -1)=1-2x +x 2=(x -1)2,∴f (x )=x 2,f ′(x )=2x .10.解 (1)y ′=(x 12)′=12x 11.(2)y ′=⎝⎛⎭⎫1x 4′=(x -4)′=-4x -5=-4x 5. (3)y ′=(5x 3)′=(x 35)′=35x -25=355x 2. (4)y ′=(10x )′=10x ln 10.11.解 点(2,0)不在曲线y =x 3上,可令切点坐标为(x 0,x 30).由题意,所求直线方程的斜率k =x 30-0x 0-2=y ′|x =x 0=3x 20,即x 30x 0-2=3x 20,解得x 0=0或x 0=3. 当x 0=0时,得切点坐标是(0,0),斜率k =0,则所求直线方程是y =0;当x 0=3时,得切点坐标是(3,27),斜率k =27,则所求直线方程是y -27=27(x -3), 即27x -y -54=0.综上,所求的直线方程为y =0或27x -y -54=0.12.-2解析 y ′=(n +1)x n ,曲线在点(1,1)处的切线方程为y -1=(n +1)(x -1),令y =0,得x =n n +1. a n =lg x n =lg n n +1=lg n -lg(n +1), 则a 1+a 2+…+a 99=lg 1-lg 2+lg 2-lg 3+…+lg 99-lg 100=-lg 100=-2.13.解 ∵y ′=e x ,∴曲线在点P (1,e)处的切线斜率是y ′|x =1=e ,∴过点P 且与切线垂直的直线的斜率k =-1e, ∴所求直线方程为y -e =-1e(x -1), 即x +e y -e 2-1=0.。
人教新课标版(A)高二选修1-1 第二章圆锥曲线与方程单元测试
![人教新课标版(A)高二选修1-1 第二章圆锥曲线与方程单元测试](https://img.taocdn.com/s3/m/79bf3edf80eb6294dd886cbc.png)
人教新课标版(A )高二选修1-1 第二章 圆锥曲线与方程单元测试(时间:120分钟 分值:150分)一、选择题(每小题5分,共60分)1. 以112y 4x 22-=-的焦点为顶点,顶点为焦点的椭圆方程是A. 14y 16x 22=+B. 116y 4x 22=+C. 112y 16x 22=+D. 116y 12x 22=+2. 动圆的圆心在抛物线x 8y 2=上,且动圆恒与直线02x =+相切,则动圆必过点A. (4,0)B. (2,0)C. (0,2)D. (0,-2)3. AB 是抛物线x 18y 2=的一条过焦点的弦,20|AB |=,AD 、BC 垂直于y 轴,D 、C 分别为垂足,则梯形ABCD 的中位线长为A. 5B.211 C.29 D. 104. 方程2sin y 3sin 2x 22-θ++θ=1所表示的曲线是 A. 焦点在x 轴上的椭圆B. 焦点在y 轴上的椭圆C. 焦点在x 轴上的双曲线D. 焦点在y 轴上的双曲线5. 设P 为椭圆1by a x 2222=+上一点,1F 、2F 为焦点,如果∠75F PF 21=°,∠=12F PF 15°,则椭圆的离心率为A. 22B. 23C. 32D. 36 6. 以椭圆1144y 169x 22=+的右焦点为圆心,且与双曲线116y 9x 22=-的渐近线相切的圆的方程为A. 09x 10y x 22=+-+B. 09x 10y x 22=--+C. 09x 10y x 22=-++D. 09x 10y x 22=+++7. 椭圆11a 4y a 5x 222=++的焦点在x 轴上,而它的离心率的取值范围是A. ⎪⎭⎫ ⎝⎛51,0B. ⎪⎭⎫⎢⎣⎡1,51C. ⎥⎥⎦⎤ ⎝⎛55,0D. ⎪⎪⎭⎫⎢⎢⎣⎡1,55 8. 设双曲线1b y a x 2222=-与1by a x 2222=+-(0a >,0b >)的离心率分别为1e 、2e ,当a 、b 变化时,21e e +的最小值是A. 4B. 24C.2 D. 229. 设椭圆12y 6x 22=+和双曲线1y 3x 22=-的公共焦点分别为1F 、2F ,P 是两曲线的一个交点,则cos ∠21PF F 的值为A.41 B.31 C.32 D. 31-10. 过抛物线x 4y 2=的顶点O 作互相垂直的两弦OM 、ON ,则M 的横坐标1x 与N 的横坐标2x 之积为A. 64B. 32C. 16D. 411. 抛物线x y 2=和圆()1y 3x 22=+-上最近的两点之间的距离是A. 1B. 2C.1210- D.1211- 12. 已知圆的方程为4y x 22=+,若抛物线过点A (-1,0)、B (1,0),且以圆的切线为准线,则抛物线的焦点F 的轨迹方程是A. 14y 3x 22=+(0y ≠) B. 13y 4x 22=+(0y ≠) C. 14y 3x 22=+(0x ≠) D.13y 4x 22=+(0x ≠)二、填空题(每小题4分,共16分)13. (2004·湖南)1F 、2F 是椭圆C :14y 8x 22=+的焦点,在C 上满足1PF ⊥2PF 的点P的个数为__________。
新人教版高中数学选修一第二单元《直线和圆的方程》测试卷(有答案解析)(1)
![新人教版高中数学选修一第二单元《直线和圆的方程》测试卷(有答案解析)(1)](https://img.taocdn.com/s3/m/35a38cffdd36a32d737581fe.png)
一、选择题1.下列命题中,正确的是( )A .若直线的倾斜角越大,则直线的斜率就越大B .若直线的倾斜角为α,则直线的斜率为tan αC .若直线倾斜角2,43ππα⎡⎤∈⎢⎥⎣⎦,则斜率k 的取值范围是(,3][1,)-∞-⋃+∞ D .当直线的倾斜角2,43ππα⎡⎤∈⎢⎥⎣⎦时,直线的斜率在这个区间上单调递增. 2.直线()()()230x m x y m -+-+=∈R 过下面哪个定点( ) A .()4,0B .()0,4C .()2,5D .()3,23.如图一所示,在平面内,点P 为圆O 的直径AB 的延长线上一点,2AB BP ==,过动点Q 作圆的切线QR ,满足2PQ QR =,则QAP 的面积的最大值为( )A .83B 83C .163D 1634.若过直线3420x y +-=上一点M 向圆C :()()22234x y +++=作一条切线切于点T ,则MT 的最小值为( )A 10B .4C .22D .235.已知圆22:(1)1C x y +-=,点(3,0)A 在直线l 上,过直线l 上的任一点P 引圆C 的两条切线,若切线长的最小值为2,则直线l 的斜率k =( ) A .2B .12C .2-或12D .2或12-6.已知圆1C :224470x y x y ++-+=与圆2C :()()222516x y -+-=的位置关系是( ) A .外离B .外切C .相交D .内切7.过点()3,1作圆()2211x y -+=的两条切线,切点分别为A ,B ,则直线AB 的方程为( )A .230x y +-=B .230x y --=C .430x y --=D .430x y +-=8.直线l :230kx y --=与圆C :()()22124x y -++=交于A 、B 两点,若ABC的周长为4+k 的值为( ) A .32B .32-C .32±D .12±9.已知圆C :224x y +=上恰有两个点到直线l :0x y m -+=的距离都等于1,则实数m 的取值范围是( )A .(2,32⎡-⎣ B .(2,32⎡-⎣C .2,32⎡⎡-⎣⎣D .((2,32-10.点(2,3)P 到直线:(1)30ax a y +-+=的距离d 最大时,d 与a 的值依次为( )A .3,-3B .5,2C .5,1D .7,111.唐代诗人李颀的诗《古从军行》开头两句说:“白日登山望烽火,黄昏饮马傍交河.”诗中隐含着一个有趣的数学问题——“将军饮马”问题,即将军在观望烽火之后从山脚下某处出发,先到河边饮马后再回军营,怎样走才能使总路程最短?在平面直角坐标系中,设军营所在区域为221x y +≤,若将军从点(4,3)A -处出发,河岸线所在直线方程为4x y +=,并假定将军只要到达军营所在区域即回到军营,则“将军饮马”的最短总路程为( ) A .8B .7C .6D .512.圆心为1,32C ⎛⎫-⎪⎝⎭的圆与直线:230l x y +-=交于P 、Q 两点,O 为坐标原点,且满足0OP OQ ⋅=,则圆C 的方程为( ) A .2215()(3)22x y -+-= B .2215()(3)22x y -++= C .22125()(3)24x y ++-=D .22125()(3)24x y +++=二、填空题13.已知三条直线的方程分别为0y =0y -+=0y +-,那么到三条直线的距离相等的点的坐标为___________.14.已知点(),P x y 是直线240x y -+=上一动点,直线PA ,PB 是圆22:20C x y y ++=的两条切线,A ,B 为切点,C 为圆心,则四边形PACB 面积的最小值是______.15.经过点(2,1)M ,并且与圆2268240x y x y +--+=相切的直线方程是________. 16.已知圆C 的方程为2240x x y -+=,直线l :330kx y k -+-=与圆C 交于A ,B 两点,则当ABC 面积最大时,直线l 的斜率k =______.17.过点(5,2),且在x 轴上的截距是在y 轴上的截距的2倍的直线一般式方程是___________18.已知直线y x b =+与曲线x =恰有两个交点,则实数b 的取值范围为______. 19.过点(3,5)A 作圆2248800x y x y +---=的最短弦,则这条弦所在直线的方程是__. 20.以圆C 1:x 2+y 2-12x -2y -13=0和圆C 2:x 2+y 2+12x +16y -25=0公共弦为直径的圆的方程为________.三、解答题21.圆224x y +=,点P 为直线:80l x y +-=上一动点,过点P 引圆O 的两条切线,切点分别为A ,B .(1)若点P 的坐标为()2,6,求直线PA 、PB 的方程; (2)求证:直线AB 恒过定点Q ,并求出该定点Q 的坐标. 22.已知直线2:(24)30l a a x ay -+--=.(1)若直线l 过点(1,0)A ,试写出直线l 的一个方向向量; (2)若实数0a ≠,求直线的倾斜角α的取值范围.23.已知圆C 与x 轴相切于点()1,0,且圆心C 在直线3y x =上, (1)求圆C 的方程;(2)若圆C 与直线y x m =+交于不同两点A ,B ,若直角坐标系的原点O ,在以线段AB 为直径的圆上,求实数m 的值.24.在平面直角坐标系xOy 中,已知圆M 过点A (1,2),B (7,-6),且圆心在直线x +y -2=0上.(1)求圆M 的标准方程;(2)设平行于OA 的直线l 与圆M 相交于C ,D 两点,且CD =2OA ,求直线l 的方程. 25.已知动点P 到两个定点(0,0),(3,0)O A 的距离之比为12. (1)求动点P 的轨迹C 的方程;(2)若过点()1,3B 的直线l 与曲线相切,求直线l 的方程;(3)已知圆Q 的圆心为(,)(0)Q t t t >,且圆Q 与x 轴相切,若圆Q 与曲线C 有公共点,求实数t 的取值范围.26.已知圆C :x 2+y 2+Dx +Ey -12=0过点(P -,圆心C 在直线l :x -2y -2=0上. (1)求圆C 的一般方程.(2)若不过原点O 的直线l 与圆C 交于A ,B 两点,且12OA OB ⋅=-,试问直线l 是否过定点?若过定点,求出定点坐标;若不过定点,说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据直线斜率与倾斜角存在的关系tan k α=对每个选项逐一分析,需要注意直线有倾斜角但不一定有斜率. 【详解】 倾斜角的范围为0,2π⎛⎫⎪⎝⎭时,直线斜率0k >,倾斜角的范围为,2ππ⎛⎫⎪⎝⎭时,直线斜率0k <,故A 错误;直线的倾斜角=2πα时,直线斜率不存在,故B 错误;直线倾斜角2,43ππα⎡⎤∈⎢⎥⎣⎦,则斜率tan k α=的范围为(,[1,)-∞⋃+∞,故C 正确;斜率tan k α=在,42ππ⎡⎫⎪⎢⎣⎭和2,23ππ⎡⎫⎪⎢⎣⎭上单调递增,故D 错误. 故选:C. 【点睛】关于直线的倾斜角与直线斜率之间的关系需要注意: (1)当直线倾斜角为=2πα时,直线的斜率不存在;(2)倾斜角的范围为0,2π⎛⎫⎪⎝⎭时,直线斜率0k >,直线斜率随着倾斜角增大而增大;倾斜角的范围为,2ππ⎛⎫⎪⎝⎭时,直线斜率0k <,直线斜率随着倾斜角增大而增大; (3)利用倾斜角的范围研究斜率的范围,或者利用斜率的范围研究倾斜角的范围,需要利用函数tan k α=分析定义域与值域的关系.2.C解析:C 【分析】由恒等式的思想得出2030x x y -=⎧⎨-+=⎩,解之可得选项.【详解】由2030x x y -=⎧⎨-+=⎩,解得:25x y =⎧⎨=⎩,故直线过恒过点()2,5,故选:C. 【点睛】方法点睛:求直线恒过点的方法:方法一(换元法):根据直线方程的点斜式直线的方程变成()y k x a b =-+,将x a =带入原方程之后,所以直线过定点()a b ,;方法二(特殊引路法):因为直线的中的m 是取不同值变化而变化,但是一定是围绕一个点进行旋转,需要将两条直线相交就能得到一个定点.取两个m 的值带入原方程得到两个方程,对两个方程求解可得定点.3.B解析:B 【分析】以AB 所在的直线为x 轴,以AB 的垂直平分线为y 轴建立直角坐标系,利用两点间距离公式推导出点Q 的轨迹方程,可得点Q 到AP 距离的最大值,由此能求出QAP 的面积的最大值. 【详解】以AB 所在的直线为x 轴,以AB 的垂直平分线为y 轴建立直角坐标系, 因为2AB BP ==,所以()3,0P,设(),Q x y因为过动点Q 作圆的切线QR ,满足2PQ QR =,()2224PQ QO OR =-所以()()2222341x y x y -+=+-,整理得:()221613x y ++=, 所以点Q 的轨迹是以()1,0-3所以当点Q 在直线1x =-上时,3y =此时点Q 到AP 距离最大,QAP 的面积的最大,所QAP 的面积最大为11834223333QAPS AP =⨯=⨯==, 故选:B 【点睛】关键点点睛:本题的关键点是建立直角坐标系,设(),Q x y ,利用()222244PQ QR OQ OR ==-,即可求出点Q 的轨迹方程,可得点Q 到AP 距离的最大值,即为三角形高最大,从而QAP 的面积最大.4.D解析:D 【分析】根据题意,求出圆的圆心与半径,由切线长公式可得||MT =||MC 取得最小值时,||MT 的值最小,由点到直线的距离分析||MC 的最小值,进而计算可得答案. 【详解】根据题意,圆22:(2)(3)4C x y +++=,其圆心为(2,3)--,半径2r m =,过点M 向圆C 作一条切线切于点T ,则||MT == 当||MC 取得最小值时,||MT 的值最小,而||MC 的最小值为点C 到直线3420x y +-=的距离,则||4min MC ==,则||MT = 故选:D 【点睛】方法点睛:解析几何中的最值问题,常用的方法有:(1)函数单调性法;(2)导数法;(3)数形结合法;(4)基本不等式法.要结合已知条件灵活选择合适的方法求解.本题利用的是数形结合的方法求最值的.5.C解析:C 【分析】根据勾股定理由切线长最小值求出||PC C 到直线l 的距离为l 的方程,根据点到直线的距离列式可解得结果.【详解】圆22:(1)1C x y +-=的圆心为(0,1)C ,半径为1,因为切线长的最小值为2,所以min ||PC ==所以圆心C 到直线l ,所以直线必有斜率,设:(3)l y k x =-,即30kx y k --=,所以圆心(0,1)C 到直线30kx y k --===22320k k +-=,解得12k =或2k =-.故选:C 【点睛】关键点点睛:根据勾股定理由切线长的最小值求出||PC 的最小值,也就是圆心C 到直线l的距离是解题关键.6.B解析:B 【分析】分别求得两圆的圆心坐标和半径,结合圆与圆的位置关系的判定方法,即可求解. 【详解】由题意,圆1C :224470x y x y ++-+=,可得圆心坐标为1(2,2)C -,半径为11r =,圆2C :()()222516x y -+-=,可得圆心坐标为1(2,5)C ,半径为14r =,又由125C C ==,且12145r r =+=+,即1212C C r r =+,所以圆12,C C 相外切. 故选:B. 【点睛】圆与圆的位置关系问题的解题策略:判断两圆的位置关系时常采用几何法,即利用两圆的圆心之间的距离与两圆的半径间的关系进行判断,一般不采用代数法;若两圆相交,则两圆的公共弦所在直线的方程可由两圆的方程作差消去22,x y 项得到.7.A解析:A 【分析】求出以(3,1)、(1,0)C 为直径的圆的方程,将两圆的方程相减可得公共弦AB 的方程. 【详解】圆22(1)1x y -+=的圆心为(1,0)C ,半径为1,以(3,1)、(1,0)C 为直径的圆的方程为2215(2)()24x y -+-=,因为过点()3,1圆()2211x y -+=的两条切线切点分别为A ,B ,所以,AB 是两圆的公共弦,将两圆的方程相减可得公共弦AB 的方程230x y +-=, 故选:A . 【点睛】本题考查直线和圆的位置关系以及圆和圆的位置关系、圆的切线性质,体现了数形结合的数学思想,属于基础题.8.A解析:A 【分析】先根据半径和周长计算弦长AB =即可.【详解】圆C :()()22124x y -++=中,圆心是()1,2C -,半径是2r,故ABC的周长为4+24r AB +=+AB =又直线与圆相交后的弦心距d ==,故由2222AB r d ⎛⎫=+ ⎪⎝⎭得()221434k k +=++,解得32k . 故选:A. 【点睛】本题考查了直线与圆的综合应用,考查了点到直线的距离公式,属于中档题.9.D解析:D 【分析】先判断圆心到直线的距离()1,3d ∈,再利用距离公式列不等式即解得参数的取值范围. 【详解】圆C :224x y +=的圆心是()0,0C ,半径2r,而圆C :224x y +=上恰有两个点到直线l :0x y m -+=的距离都等于1,所以圆心()0,0C 到直线l :0x y m -+=的距离()1,3d ∈,即()1,3d ==,解得m -<<m <<.故选:D. 【点睛】本题考查了圆上的点到直线的距离问题和点到直线的距离公式,属于中档题.10.C解析:C 【分析】将直线方程整理为()()30a x y y ++-=,可得直线()130ax a y +-+=经过定点()3,3Q -,由此可得当直线()130ax a y +-+=与PQ 垂直时PQ 的长,并且此时点P 到直线的距离达到最大值,从而可得结果. 【详解】直线()130ax a y +-+=, 即()()30a x y y ++-=,∴直线()130ax a y +-+=是过直线0x y +=和30y -=交点的直线系方程,由030x y y +=⎧⎨-=⎩,得33x y =-⎧⎨=⎩,可得直线()130ax a y +-+=经过定点()3,3Q -,∴当直线()130ax a y +-+=与PQ 垂直时,点()2,3P 到直线()130ax a y +-+=的距离最大,d ∴的最大值为5PQ ==,此时//PQ x 轴,可得直线()130ax a y +-+=斜率不存在,即1a =. 故选:C. 【点睛】本题主要考查直线的方程与应用,以及直线过定点问题,属于中档题. 探索曲线过定点的常见方法有两种:① 可设出曲线方程 ,然后利用条件建立等量关系进行消元(往往可以化为()(),,0tf x y g x y +=的形式,根据()(),0,0f x y g x y ⎧=⎪⎨=⎪⎩求解),借助于曲线系的思想找出定点(直线过定点,也可以根据直线的各种形式的标准方程找出定点). ,从特殊情况入手,先探求定点,再证明与变量无关.11.C解析:C 【分析】求出A 关于y 4x +=的对称点A ',根据题意,1A C '-为最短距离,求出即可. 【详解】设点A 关于4x y +=的对称点(,)A a b ',设军营所在区域为的圆心为C ,根据题意,1A C '-为最短距离,∴AA '的中点为43,22a b +-⎛⎫⎪⎝⎭,,直线'AA 的斜率为1, ∴434,22,31,4a b b a +-⎧+=⎪⎪⎨+⎪=⎪-⎩解得:7,0a b ==,∴1716A C '-=-=,故选: C. 【点睛】本题考查点关于直线对称,点与圆心的距离,考查运算求解能力,求解时注意对称性的应用.12.C解析:C 【分析】根据题中所给的圆心坐标,设出圆的标准方程,根据题中所给的条件,求得2r 的值,得出结果. 【详解】 因为圆心为1,32C ⎛⎫-⎪⎝⎭, 所以设圆的方程为:2221()(3)2x y r ++-=, 将直线方程代入圆的方程,得到228552004y y r -+-=, 设1122(,),(,)P x y Q x y ,则有21212174,45r y y y y +=⋅=-,因为0OP OQ ⋅=,所以12120x x y y +=, 所以1212(32)(32)0y y y y -⋅-+=,整理得121296()50y y y y -++=,即2179645()045r -⨯+⨯-=,求得2254r =, 所以圆C 的方程为:22125()(3)24x y ++-=, 故选:C. 【点睛】该题考查的是有关圆的方程的求解,涉及到的知识点有圆的标准方程,关于垂直条件的转化,属于简单题目.二、填空题13.【分析】先画出图形求出再分四种情况讨论得解【详解】如图所示由题得的平分线:和的平分线:的交点到三条直线的距离相等联立两直线的方程解方程组得交点为;的外角平分线:和的外角平分线:的交点到三条直线的距离解析:(0,30,(-【分析】先画出图形,求出(1,0),(1,0)A B C -,再分四种情况讨论得解. 【详解】 如图所示,由题得(1,0),(1,0)A B C -,CAB ∠的平分线AO :0x =和ACB ∠的平分线CD :3(1)3y x =+的交点到三条直线的距离相等,联立两直线的方程解方程组03(1)3xy x =⎧⎪⎨=+⎪⎩得交点为3(0,); ACB ∠的外角平分线CE :3(1)y x =-+和ABC ∠的外角平分线BF :3(1)y x =-的交点到三条直线的距离相等,联立两直线的方程解方程组3(1)3(1)y x y x ⎧=-+⎪⎨=-⎪⎩得交点为(0,3)-;ACB ∠的外角平分线CG :3(1)y x =-+和CAB ∠的外角平分线AG :3y =的交点到三条直线的距离相等,联立两直线的方程解方程组3(1)3y x y ⎧=-+⎪⎨=⎪⎩得交点为(2,3)-;ABC ∠的外角平分线BH :3(1)y x =-和CAB ∠的外角平分线AG :3y =的交点到三条直线的距离相等,联立两直线的方程解方程组3(1)3y x y ⎧=-⎪⎨=⎪⎩得交点为(2,3).故答案为:(0,3)-、30,3、(2,3)、(2,3)-【点睛】关键点睛:解答本题的关键是利用平面几何的知识分析找到四个点,再利用直线的知识解答即可.14.2【分析】根据切线的性质可将面积转化为求出的最小值即到直线的距离【详解】圆化为可得圆心为半径为1如图可得则当取得最小值时最小点是直线上一动点到直线的距离即为的最小值故答案为:2【点睛】关键点睛:本题解析:2【分析】根据切线的性质可将面积转化为21PACB S PC =-,求出PC 的最小值即()0,1C -到直线240x y -+=的距离. 【详解】圆22:20C x y y ++=化为()2211x y ++=,可得圆心为()0,1-,半径为1,如图,可得22221PA PC AC PC =-=-,212212PACB PACS SPA AC PA PC ==⨯⨯⨯==-则当PC 取得最小值时,PACB S 最小, 点(),P x y 是直线240x y -+=上一动点,()0,1C ∴-到直线240x y -+=的距离即为PC 的最小值,()min 222014521PC ⨯++∴==+-()min 512PACB S ∴=-=.故答案为:2. 【点睛】关键点睛:本题考查直线与圆相切问题,解题的关键是利用切线性质将面积转化为21PACB S PC =-PC 的最小值即可.15.或【分析】求出圆心和半径判断斜率不存在的直线是否是切线斜率存在时设出直线方程由圆心到切线距离等于半径求得参数值得切线方程【详解】圆标准方程是圆心为半径为1易知直线与圆相切设斜率存在的切线方程为即由解解析:2x =或4350x y --= 【分析】求出圆心和半径,判断斜率不存在的直线是否是切线,斜率存在时设出直线方程,由圆心到切线距离等于半径求得参数值得切线方程. 【详解】圆标准方程是22(3)(4)1x y -+-=,圆心为(3,4),半径为1. 易知直线2x =与圆相切,设斜率存在的切线方程为1(2)y k x -=-,即210kx y k --+=,1=,解得43k =,切线方程为481033x y --+=,即4350x y --=.故答案为:2x =或4350x y --=. 【点睛】本题考查求圆的切线方程,解题方法是由圆心到切线的距离等于半径求解.但解题时要注意过定点斜率不存在的直线是否是切线,否则由方程求不出此直线方程.如果所过的点在圆上,由可由过切点的半径与切线垂直得出切线斜率后得直线方程.16.1或【分析】由三角形面积公式求得面积最大时这样可求得圆心到直线的距离再由点到直线距离公式求得斜率【详解】圆的标准方程为直线可变形为则圆心为半径为2直线过定点由面积公式可得所以当即圆心到直线的距离为时解析:1或7- 【分析】由三角形面积公式求得ABC 面积最大时,2ACB π∠=,这样可求得圆心C 到直线BC的距离,再由点到直线距离公式求得斜率k . 【详解】圆C 的标准方程为()2224x y -+=,直线l 可变形为()33y k x =-+,则圆心C 为()2,0,半径为2,直线l 过定点()3,3, 由面积公式可得21sin 2sin 22ABCS r ACB ACB =∠=∠≤, 所以当2ACB π∠=,即圆心C 到直线l的距离为d =ABC 的面积取得最大值,所以d ==,解得1k =或7-.故答案为:1或7-. 【点睛】易错点睛:直线与圆相交于,A B ,圆心为C ,ABC 面积为21sin 2S r ACB =∠,当ACB ∠的最大值θ不小于2π时,2ABC π∠=时,S 取得最大值212r ,当ACB ∠的最大值2πθ<时,S 取得最大值21sin 2r θ.不是任何时候最大值都是212r . 17.或【分析】当纵截距为时设直线方程为代入点求得的值得解当纵截距不为时设直线的截距式方程代入点求得直线的方程【详解】当轴上的截距时设直线方程为点代入方程得即当时设直线的方程为点代入方程解得即直线方程为即解析:290x y +-=或250x y -= 【分析】当纵截距为0时,设直线方程为y kx =,代入点()5,2求得k 的值得解,.当纵截距不为0时,设直线的截距式方程,代入点()5,2求得直线l 的方程. 【详解】当y 轴上的截距0b =时,设直线方程为y kx =,点()5,2代入方程,得25y x =,即250x y -=.当0b ≠时,设直线的方程为12x y b b +=,点()5,2代入方程,解得92b =,即直线方程为1992x y+=,即290x y +-=.故答案为:250x y -=或290x y +-=【点睛】讨论截距为0或截距不为0是解题关键,否则会漏解,属于基础题.18.【分析】由曲线方程可知其曲线为半圆进而画出曲线来要使直线与曲线恰有两个交点可以通过数形结合分析得解【详解】曲线有即表示一个半圆(单位圆左半部分)如图当直线经过点点时求得;当直线和半圆相切时由圆心到直解析:⎡⎣【分析】由曲线方程可知其曲线为半圆,进而画出曲线来,要使直线与曲线恰有两个交点,可以通过数形结合分析得解. 【详解】曲线x =有即221x y +=(0)x ,表示一个半圆(单位圆左半部分).如图,(0,1)A 、(1,0)B -、(0,1)C -,当直线y x b =+经过点B 、点A 时,01b =-+,求得1b =; 当直线y x b =+和半圆相切时,由圆心到直线的距离等于半径,可得1=b =b =(舍去),故要求的实数b 的范围为12b <,故答案为:)1,2⎡⎣【点睛】易错点睛:本题在把方程2x 1y =--化简找其对应的曲线时,容易漏掉0x ≤,从而把曲线的范围扩大为整个单位圆,导致结果出错.在把方程转化时,一定要注意变量范围的等价性.19.【分析】利用配方法将圆化成标准方程得其圆心为当垂直这条弦时所得到的弦长最短求出直线的斜率后再根据两条直线垂直的条件和点斜式即可得解【详解】解:将圆化成标准形式为圆心为则点A 在圆内当垂直这条弦时所得到 解析:80x y +-=【分析】利用配方法将圆化成标准方程,得其圆心为M ,当AM 垂直这条弦时,所得到的弦长最短,求出直线AM 的斜率AM k 后,再根据两条直线垂直的条件和点斜式即可得解. 【详解】解:将圆2248800x y x y +---=化成标准形式为22(2)(4)100x y -+-=,圆心为(2,4)M ,则点A 在圆内,当AM 垂直这条弦时,所得到的弦长最短,54132AM k -==-, ∴这条弦所在直线的斜率为1-,其方程为5(3)y x -=--,即80x y +-=.故答案为:80x y +-=. 【点睛】本题考查直线截圆的弦长问题,熟练掌握圆的一般方程与标准方程互化、两条直线垂直的条件等基础知识点是解题的关键,考查学生的数形结合思想、逻辑推理能力和运算能力,属于中档题.20.x2+y2-4x +4y -17=0【解析】试题分析:解法一:先两圆方程相减得到公共弦方程再联立直线和圆的方程求出公共点坐标进而求出圆的半径和圆心写出圆的方程即可;解法二:先两圆方程相减得到公共弦方程再解析:x 2+y 2-4x +4y -17=0【解析】试题分析:解法一:先两圆方程相减,得到公共弦方程,再联立直线和圆的方程求出公共点坐标,进而求出圆的半径和圆心,写出圆的方程即可;解法二:先两圆方程相减,得到公共弦方程,再利用圆系方程进行求解. 试题解法一:联立两圆方程22221221301216250x y x y x y x y ⎧+---=⎨+++-=⎩, 相减得公共弦所在直线方程为4x +3y -2=0. 再由221221304320x y x y x y ⎧+---=⎨+-=⎩,联立得两圆交点坐标(-1,2)、(5,-6). ∵所求圆以公共弦为直径,∴圆心C 是公共弦的中点(2,-2)5=, ∴圆C 的方程为(x -2)2+(y +2)2=25.解法二:由解法一可知公共弦所在直线方程为4x +3y -2=0.设所求圆的方程为x 2+y 2-12x -2y -13+λ(x 2+y 2+12x +16y -25)=0(λ为参数). 可求得圆心1212162(,)2(1)2(1)C λλλλ----++.∵圆心C 在公共弦所在直线上, ∴121216243202(1)2(1)λλλλ---⨯+⨯-=++,解得λ=12. ∴圆C 的方程为x 2+y 2-4x +4y -17=0.三、解答题21.(1)43100x y -+=或2x =;(2)证明见解析;11,22Q ⎛⎫ ⎪⎝⎭. 【分析】(1)考虑斜率不存在的直线是切线,然后当切线的斜率存在时设切线方程为()62y k x -=-,由圆心到切线的距离等于半径求出k 即得;(2)设P 点坐标,求出以PO 为直径的圆的方程,与已知圆方程相减可得直线AB 方程,整理成关于参数的恒等式,可得定点坐标. 【详解】解:(1)由题意,当切线的斜率存在时设切线方程为()62y k x -=-,即260kx y k --+=2=,解得43k =,即43100x y -+=. 当切线的斜率不存在时,方程为2x =满足题意. 综上所述,所求的切线的方程为43100x y -+=或2x =. (2)证明:根据题意,点P 为直线80x y +-=上一动点,设()8,P m m -,∵PA ,PB 是圆O 的切线,∴OA PA ⊥,OB PB ⊥. ∴AB 是圆O 与以PO 为直径的两圆的公共弦.由于以PO 为直径的圆的方程为2222442222m m m m x y ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫--+-=-+ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦,即()2280x m x y my --+-=,①又圆O 的方程为224x y +=②.①—②,得()840m x my -+-=,即()840m y x x -+-=, 则该直线必过点11,22Q ⎛⎫ ⎪⎝⎭. 【点睛】结论点睛:本题考查圆的切线方程,相交弦所在直线方程.对切线,一般由圆心到切线的距离等于半径去判断求解,而相交两圆方程相减后可得相交弦所在直线方程,如果外切,则得这一条公切线方程.22.(1)直线l 的一个方向向量为(1,3);(2)arctan 2,,arctan 622ππαπ⎡⎫⎛⎤∈-⎪ ⎢⎥⎣⎭⎝⎦. 【分析】(1)将A 代入直线l 方程求a ,写出直线方程即可得l 的方向向量; (2)由直线方程得斜率42k a a=+-,讨论a 并利用基本不等式求k 的范围,进而可得倾斜角的范围. 【详解】(1)把(1,0)A 代入直线l 的方程,得2210a a -+=,解得1a =,此时直线l 的方程为330x y --=,故直线l 的一个方向向量为(1,3);(2)因为0a ≠,所以直线l 的斜率22442a a a a k a-+=+-=,∴当0a >时,4222k a a +-≥==当且仅当2a =时等号成立;当0a <时,4)()]22[(6a ak +--≤---=-=当且仅当2a =-时等号成立;综上有(,6][2,)k ∈-∞-+∞,可得倾斜角arctan 2,,arctan 622ππαπ⎡⎫⎛⎤∈-⎪ ⎢⎥⎣⎭⎝⎦. 【点睛】 结论点睛: 直线0ax by c的方向量为(,)b a -或(,)b a -.倾斜角α与斜率k 的关系:tan k α=或arctan k α=. 23.(1)()()22139x y -+-=;(2)1m =. 【分析】(1)求出圆心坐标和半径可得圆方程;(2)设()11,A x y ,()22,B x y ,直线方程代入圆方程一应用韦达定理得1212,x x x x +,已知条件得OA OB ⊥,即12120x x y y +=,由此可求得m 值. 【详解】解:(1)由题意可得:圆心C 的横坐标为1,且圆心直线3y x =上,可得圆心C 坐标为()1,3,半径3r =, 则圆C 的方程为:()()22139x y -+-=.(2)由()()22139y x m x y =+⎧⎪⎨-+-=⎪⎩可得:()22228610x m x m m +-+-+= 设()11,A x y ,()22,B x y 则:122124612x x mm m x x +=-⎧⎪⎨-+⋅=⎪⎩,且241656m m ∆=-++,由题意可得:OA OB ⊥,0OA OB ⋅=,即12120x x y y +=,且11y x m =+,22y x m =+,代入化简可得:2210m m -+=求得:1m =,此时满足:2416560m m ∆=-++> 综上可知:1m =. 【点睛】关键点点睛:本题考查求圆的方程,考查直线与圆相交问题,直线与圆相交问题的解法是设而不求思想方法:即设交点为1122(,),(,)A x y B x y ,直线方程代入圆方程,消元整理后应用韦达定理得1212,x x x x +,代入题中其他条件OA OB ⊥,即12120x x y y +=可解得m 值.24.(1)()()224225x y -++=;(2)2200x y --=. 【分析】(1)联立线段AB 的垂直平分线所在的方程与圆心所在直线方程,可得圆心坐标,进而求出圆的半径以及圆M 的标准方程;(2)设出直线l 的方程,由CD =2OA 可得弦长,利用点到直线的距离公式结合勾股定理列出方程,可得直线l 的方程.【详解】(1)由题意可解得线段AB 的垂直平分线所在的方程为:y +2=34(x -4),即354y x =-,因为圆心在直线x +y -2=0上,且圆M 过点A (1,2),B (7,-6),则圆心为直线354y x =-与直线x +y -2=0的交点,联立20354x y y x +-=⎧⎪⎨=-⎪⎩,解得42x y =⎧⎨=-⎩,即圆心M 为(4,-2),半径为MA5=,所以圆M 的标准方程为()()224225x y -++=.(2)由直线l 平行于OA ,可设直线l 的方程为:20y x m m =+≠,,则圆心M到直线l的距离为d ==CD =2OA =2525d +=,所以d ==,则解得m =-20或m =0(舍去),则直线l 的方程为2200x y --=. 【点睛】关键点点睛:本题考查圆的标准方程,考查圆的性质,解决本题的关键点是由已知求出弦长CD ,利用圆的弦长的一半,圆心到直线的距离和圆的半径构造直角三角形,结合勾股定理计算出参数的值,进而可得直线的方程,考查了学生计算能力,属于中档题. 25.(1)22(1)4x y ++=;(2)1x =或12530x y-+=;(3)[3-+. 【分析】(1)设(,)P x y ,由||2||AP PO =结合两点间距离公式可求;(2)可得斜率不存在时满足,当斜率存在时,设出直线方程,利用圆心到直线的距离等于半径求出斜率即可;(3)设出圆Q 方程,利用|2|||2t CQ t -+可求出.【详解】解:(1)由题意知:设(,)P x y , 由||2||AP PO =,得22||4||AP PO =, ∴()2222(3)4x y x y-+=+,整理得22(1)4x y ++=.故动点P 的轨迹C 的方程为22(1)4x y ++=;(2)由(1)知道,曲线C 为以(1,0)-为圆心,2为半径的圆, ①若直线l 斜率不存在,则直线l 为 1x =;②若直线l 斜率存在,设为k ,则直线l 方程为3(1)y k x -=-,即3y kx k =-+,此时圆心C 到直线l 的距离2d ==,化简得:125k =.综上,直线l 方程为1x =或12530x y -+=.(3)∵点Q 的坐标为(,)(0)t t t >,且圆Q 与x 轴相切, ∴圆Q 的半径为t ,∴圆Q 的方程为222()()x t y t t -+-=,∴圆Q 与圆C 的两圆心距离为||CQ == ∵圆Q 与圆C 有公共点,∴|2|||2t CQ t -+,即222(2)221(2)t t t t -+++,解得:33t -+,实数t 的取值范围是[3-+. 【点睛】本题考查圆的切线方程的求解,注意需要讨论斜率不存在的情况,考查圆与圆的位置关系,解题的关键是根据圆心距和半径之间的关系判断. 26.(1)x 2+y 2-4x -12=0;(2)直线l 过定点(2,0). 【分析】(1)根据题意,联立方程求解即可(2)当直线l 的斜率存在时,设直线l 的方程为y =kx +m (m ≠0),联立方程,利用韦达定理得到222(2)212121km km m k ---=-+,进而化简求证;而当直线l 的斜率不存在时,直接求解即可证明题中条件成立 【详解】解:(1)由题意可得圆心C 的坐标为(,)22D E --,则2()2022D E--⨯--=,①因为圆C经过点(P -,所以17120D +--=,②联立①②,解得D =-4,E =0.故圆C 的一般方程是x 2+y 2-4x -12=0.(2)当直线l 的斜率存在时,设直线l 的方程为y =kx +m (m ≠0),11(,)A x y ,22(,)B x y .联立224120,,x y x y kx m ⎧+--=⎨=+⎩整理得(k 2+1)x 2+2(km-2)x +m 2-12=0,则1222(2)1km x x k -+=-+,2122121m x x k -=+.因为12OA OB ⋅=-,所以121212x x y y +=-,由1212()()y y kx m kx m =++得,222(2)212121km km m k ---=-+,整理得m (m +2k )=0.因为m ≠0,所以m =-2k ,所以直线l 的方程为y =kx -2k =k (x -2).故直线l 过定点(2,0). 当直线l 的斜率不存在时,设直线l 的方程为x =m ,则A (m ,y ),B (m ,-y ),从而2241212OA OB m m ⋅=--=-,解得m =2,m =0(舍去).故直线l 过点(2,0).综上,直线l 过定点(2,0). 【点睛】关键点睛:解题关键是分类讨论直线l 的情况,并联立方程,利用韦达定理化简,根据直线l 的情况,得到12OA OB ⋅=-121212x x y y =+=-和2241212OA OB m m ⋅=--=-,进而求证,难度属于中档题。
人教版A版高中数学选修1-1第二章 圆锥曲线与方程2.1 椭圆 信息技术应用《几何画板》探究点的轨迹---椭圆教
![人教版A版高中数学选修1-1第二章 圆锥曲线与方程2.1 椭圆 信息技术应用《几何画板》探究点的轨迹---椭圆教](https://img.taocdn.com/s3/m/6dbe9e645a8102d277a22f2a.png)
x2 a2
+
y2 b2
=1
(a>b>0)
y2 a2
+
x2 b2
=1(a>b>0)
3.椭圆的几何性质:
e c (0 e 1) a
课件名
用《几何画板》探究点的轨迹:椭圆
概念重温
1.如图所示,一圆形纸片的圆心为O,F是圆内 一定点,M是圆周上一动点,把纸片折叠使M 与F重合,然后抹平纸片,折痕为CD,设CD与 OM交于点P,则点P的轨迹是
课课件件名 名
用《几何画板》探用究《几点何画的板》轨探迹究点:的轨椭迹:圆椭圆
焦半径公式:
焦点在x轴:|MF1| = a + ex , 左加右减
|MF2| = a - ex
焦点在y轴:|MF1| = a + ey , 下加上减
|MF2| = a - ey
课课件件名 名
用《几何画板》探用究《几点何画的板》轨探迹究点:的轨椭迹:圆椭圆
椭圆的第二定义
1、定义:平面内到一个定点F和一条定直线 l
(F不在 l上) 的距离的比为常数e(0<e<1)的点
M的轨迹,叫椭圆。定点F叫焦点,定直线 l 叫准 线。
2、定义式:
_|_M___F__1_|_ d1
=e
_|_M___F__2_|_ d2
=e
左对左,右对右
课件名
用《几何画板》探究点的轨迹:椭圆
椭圆的方程与准线方程
x2 a2
+
y2 b2
=1
左对左,右对右
右准线 方程:
x=
a2 c
左准线 方程:
x=-ac2
左准线 左准线 右准线
新课标人教版高中A版数学目录(超详细完美版)
![新课标人教版高中A版数学目录(超详细完美版)](https://img.taocdn.com/s3/m/78b598b5c77da26925c5b078.png)
人教版高中数学A版目录新课标A版必修1•第一章集合与函数概念•第二章基本初等函数(Ⅰ)•第三章函数的应用•单元测试•综合专栏第一章集合与函数概念• 1.1集合• 1.2函数及其表示• 1.3函数的基本性质•实习作业•同步练习•单元测试•本章综合1.1集合• 1.1.1集合的含义与表示• 1.1.2集合间的基本关系• 1.1.3集合的基本运算•本节综合1.2函数及其表示• 1.2.1函数的概念• 1.2.2函数的表示法•本节综合1.3函数的基本性质• 1.3.1单调性与最大(小)值• 1.3.2奇偶性•本节综合实习作业同步练习单元测试本章综合第二章基本初等函数(Ⅰ)• 2.1指数函数• 2.2对数函数• 2.3幂函数•同步练习•单元测试•本章综合2.1指数函数• 2.1.1指数与指数幂的运算• 2.1.2指数函数及其性质•本节综合2.2对数函数• 2.2.1对数与对数运算• 2.2.2对数函数及其性质•本节综合2.3幂函数同步练习单元测试本章综合第三章函数的应用• 3.1函数与方程• 3.2函数模型及其应用•实习作业•同步练习•单元测试•本章综合3.1函数与方程• 3.1.1方程的根与函数的零点• 3.1.2用二分法求方程的近似解•本节综合3.2函数模型及其应用• 3.2.1几类不同增长的函数模型• 3.2.2函数模型的应用实例•本节综合实习作业同步练习单元测试本章综合单元测试综合专栏新课标A版必修2•第一章空间几何体•第二章点、直线、平面之间的位置关系•第三章直线与方程•第四章圆与方程•单元测试综合专栏第一章空间几何体• 1.1空间几何体的结构• 1.2空间几何体的三视图和直观图• 1.3空间几何体的表面积与体积•复习参考题•实习作业•同步练习•单元测试•本章综合•第二章点、直线、平面之间的位置关系• 2.1空间点、直线、平面之间的位置关系• 2.2直线、平面平行的判定及其性质• 2.3直线、平面垂直的判定及其性质•同步练习•单元测试•本章综合第三章直线与方程• 3.1直线的倾斜角与斜率• 3.2直线的方程• 3.3直线的交点坐标与距离公式•同步练习•单元测试•本章综合第四章圆与方程• 4.1圆的方程• 4.2直线、圆的位置关系• 4.3空间直角坐标系•同步练习•单元测试•本章综合单元测试综合专栏新课标A版必修3•第一章算法初步•第二章统计•第三章概率•单元测试•综合专栏第一章算法初步• 1.1算法与程序框图• 1.2基本算法语句• 1.3算法与案例•同步练习•单元测试•本章综合1.1算法与程序框图• 1.1.1算法的概念• 1.1.2程序框图和算法的逻辑结构•本节综合1.2基本算法语句• 1.2.1输入、输出、赋值语句• 1.2.2条件语句• 1.2.3循环语句•本节综合1.3算法与案例同步练习单元测试本章综合第二章统计• 2.1随机抽样• 2.2用样本估计总体• 2.3变量间的相关关系•实习作业•同步练习•单元测试•本章综合2.1随机抽样• 2.1.1简单随机抽样• 2.1.2系统抽样• 2.1.3分层抽样•本节综合2.2用样本估计总体• 2.2.1用样本的频率分布估计总体• 2.2.2用样本的数字特征估计总体•本节综合2.3变量间的相关关系• 2.3.1变量之间的相关关系• 2.3.2两个变量的线性相关•本节综合实习作业同步练习单元测试本章综合第三章概率• 3.1随机事件的概率• 3.2古典概型• 3.3几何概型•同步练习•单元测试•本章综合3.1随机事件的概率• 3.1.1随机事件的概率• 3.1.2概率的意义• 3.1.3概率的基本性质•本节综合3.2古典概型• 3.2.1古典概型• 3.2.2随机数的产生•本节综合3.3几何概型• 3.3.1几何概型• 3.3.2均匀随机数的产生•本节综合同步练习单元测试本章综合单元测试综合专栏新课标A版必修4•第一章三角函数•第二章平面向量•第三章三角恒等变换•单元测试•综合专栏第一章三角函数• 1.1任意角和弧度制• 1.2任意的三角函数• 1.3三角函数的诱导公式• 1.4三角函数的图象与性质• 1.5函数y=Asin(ωx+ψ)• 1.6三角函数模型的简单应用•同步练习•单元测试•本章综合第二章平面向量• 2.1平面向量的实际背景及基本概念• 2.2平面向量的线性运算• 2.3平面向量的基本定理及坐标表示• 2.4平面向量的数量积• 2.5平面向量应用举例•同步练习•单元测试•本章综合第三章三角恒等变换• 3.1两角和与差的正弦、余弦和正切公式• 3.2简单的三角恒等变换•同步练习•单元测试•本章综合单元测试综合专栏新课标A版必修5•第一章解三角形•第二章数列•第三章不等式•单元测试•综合专栏第一章解三角形• 1.1正弦定理和余弦定理• 1.2应用举例• 1.3实习作业•探究与发现解三角形的进一步讨论•同步练习•单元测试•本章综合第二章数列• 2.1数列的概念与简单表示法• 2.1等差数列• 2.3等差数列的前n项和• 2.4等比数列• 2.5等比数列的前n项和•同步练习•单元测试•本章综合第三章不等式• 3.1不等关系与不等式• 3.2一元二次不等式及其解法• 3.3二元一次不等式(组)与简单的线性• 3.4基本不等式:•同步练习•单元测试•本章综合单元测试综合专栏新课标A版选修一•新课标A版选修1-1•新课标A版选修1-2新课标A版选修1-1•第一章常用逻辑用语•第二章圆锥曲线与方程•第三章导数及其应用•月考专栏•期中专栏•期末专栏•单元测试•综合专栏第一章常用逻辑用语• 1.1命题及其关系• 1.2充分条件与必要条件• 1.3简单的逻辑联结词• 1.4全称量词与存在量词•同步练习•单元测试•本章综合第二章圆锥曲线与方程• 2.1椭圆• 2.2双曲线• 2.3抛物线•同步练习•单元测试•本章综合第三章导数及其应用• 3.1变化率与导数• 3.2导数的计算• 3.3导数在研究函数中的应用• 3.4生活中的优化问题举例•同步练习•单元测试•本章综合月考专栏期中专栏期末专栏单元测试新课标A版选修1-2•第一章统计案例•第二章推理与证明•第三章数系的扩充与复数的引入•第四章框图•月考专栏•期中专栏•期末专栏•单元测试•本章综合点击这里展开-- 查看子节点索引目录,更精确地筛选资料!第一章统计案例• 1.1回归分析的基本思想及其初步应用• 1.2独立性检验的基本思想及其初步应用•实习作业•同步练习•综合第二章推理与证明• 2.1合情推理与演绎推理• 2.2直接证明与间接证明•同步练习•综合第三章数系的扩充与复数的引入• 3.1数系的扩充和复数的概念• 3.2复数代数形式的四则运算•同步练习•综合第四章框图• 4.1流程图• 4.2结构图•同步练习•综合月考专栏期中专栏期末专栏单元测试本章综合新课标A版选修二•新课标人教A版选修2-1•新课标人教A版选修2-2•新课标人教A版选修2-3新课标人教A版选修2-1•第一章常用逻辑用语•第二章圆锥曲线与方程•第三章空间向量与立体几何•单元测试•本册综合第一章常用逻辑用语• 1.1命题及其关系• 1.2充分条件与必要条件• 1.3简单的逻辑联结词• 1.4全称量词与存在量词•同步练习•本章综合第二章圆锥曲线与方程• 2.1曲线与方程• 2.2椭圆• 2.3双曲线• 2.4抛物线•同步练习•本章综合第三章空间向量与立体几何• 3.1空间向量及其运算• 3.2立体几何中的向量方法•同步练习•本章综合单元测试本册综合新课标人教A版选修2-2•第一章导数及其应用•第二章推理与证明•第三章数系的扩充与复数的引入•单元测试•本册综合第一章导数及其应用• 1.1变化率与导数• 1.2导数的计算• 1.3导数在研究函数中的应用• 1.4生活中的优化问题举例• 1.5定积分的概念• 1.6微积分基本定理• 1.7定积分的简单应用•同步练习•本章综合第二章推理与证明• 2.1合情推理与演绎推理• 2.2直接证明与间接证明• 2.3数学归纳法•同步练习•本章综合第三章数系的扩充与复数的引入• 3.1数系的扩充和复数的概念• 3.2复数代数形式的四则运算•同步练习•本章综合单元测试本册综合新课标人教A版选修2-3•第一章计数原理•第二章随机变量及其分布•第三章统计案例•单元测试•本册综合第一章计数原理• 1.1分类加法计数原理与分步乘法计.• 1.2排列与组合• 1.3二项式定理•同步练习•本章综合第二章随机变量及其分布• 2.1离散型随机变量及其分布列• 2.2二项分布及其应用• 2.3离散型随机变量的均值与方差• 2.4正态分布•同步练习•本章综合第三章统计案例• 3.1回归分析的基本思想及其初步应用• 3.2独立性检验的基本思想及其初步•本章综合•同步练习单元测试本册综合新课标A版选修三•新课标A版选修3-1•新课标A版选修3-3•新课标A版选修3-4新课标A版选修3-1•第一讲早期的算术与几何•第二讲古希腊数学•第三讲中国古代数学瑰宝•第四讲平面解析几何的产生•第五讲微积分的诞生•第六讲近代数学两巨星•第七讲千古谜题•第八讲对无穷的深入思考•第九讲中国现代数学的开拓与发展•单元测试•本册综合第一讲早期的算术与几何•一古埃及的数学•二两河流域的数学•三丰富多彩的记数制度•同步练习•本章综合第二讲古希腊数学•一希腊数学的先行者•二毕达哥拉斯学派•三欧几里得与《原本》•四数学之神──阿基米德•同步练习•本章综合第三讲中国古代数学瑰宝•一《周髀算经》与赵爽弦图•二《九章算术》•三大衍求一术•四中国古代数学家•同步练习•本章综合第四讲平面解析几何的产生•一坐标思想的早期萌芽•二笛卡儿坐标系•三费马的解析几何思想•四解析几何的进一步发展•同步练习•本章综合第五讲微积分的诞生•一微积分产生的历史背景•二科学巨人牛顿的工作•三莱布尼茨的“微积分”•同步练习•本章综合第六讲近代数学两巨星•一分析的化身──欧拉•二数学王子──高斯•同步练习•本章综合第七讲千古谜题•一三次、四次方程求根公式的发现•二高次方程可解性问题的解决•三伽罗瓦与群论•四古希腊三大几何问题的解决•同步练习•本章综合第八讲对无穷的深入思考•一古代的无穷观念•二无穷集合论的创立•三集合论的进一步发展与完善•同步练习•本章综合第九讲中国现代数学的开拓与发展•一中国现代数学发展概观•二人民的数学家──华罗庚•三当代几何大师──陈省身•同步练习•本章综合单元测试本册综合新课标A版选修3-3•第一讲从欧氏几何看球面•第二讲球面上的距离和角•第三讲球面上的基本图形•第四讲球面三角形•第五讲球面三角形的全等•第六讲球面多边形与欧拉公式•第七讲球面三角形的边角关系•第八讲欧氏几何与非欧几何•单元测试•本册综合第一讲从欧氏几何看球面•一平面与球面的位置关系•二直线与球面的位置关系和球幂定理•三球面的对称性•同步练习•本章综合第二讲球面上的距离和角•一球面上的距离•二球面上的角•同步练习•本章综合第三讲球面上的基本图形•一极与赤道•二球面二角形•三球面三角形•同步练习•本章综合第四讲球面三角形•一球面三角形三边之间的关系•二、球面“等腰”三角形•三球面三角形的周长•四球面三角形的内角和•同步练习•本章综合第五讲球面三角形的全等•1.“边边边”(s.s.s)判定定理•2.“边角边”(s.a.s.)判定定理•3.“角边角”(a.s.a.)判定定理•4.“角角角”(a.a.a.)判定定理•同步练习•本章综合第六讲球面多边形与欧拉公式•一球面多边形及其内角和公式•二简单多面体的欧拉公式•三用球面多边形的内角和公式证明欧拉公式•同步练习•本章综合第七讲球面三角形的边角关系•一球面上的正弦定理和余弦定理•二用向量方法证明球面上的余弦定理•三从球面上的正弦定理看球面与平面•四球面上余弦定理的应用──求地球上两城市间的距离•同步练习•本章综合第八讲欧氏几何与非欧几何•一平面几何与球面几何的比较•二欧氏平行公理与非欧几何模型──庞加莱模型•三欧氏几何与非欧几何的意义•同步练习•本章综合单元测试本册综合新课标A版选修3-4•第一讲平面图形的对称群•第二讲代数学中的对称与抽象群的概念•第三讲对称与群的故事•综合专栏•单元测试第一讲平面图形的对称群•平面刚体运动•对称变换•平面图形的对称群•同步练习•本章综合第二讲代数学中的对称与抽象群的概念•n元对称群S•多项式的对称变换•抽象群的概念•同步练习•本章综合第三讲对称与群的故事•带饰和面饰•化学分子的对称群•晶体的分类•伽罗瓦理论•同步练习•本章综合综合专栏单元测试新课标A版选修四•新课标人教A版选修4-1•选修4-2•新课标A版选修4-4•新课标A版选修4-5新课标人教A版选修4-1•第一讲相似三角形的判定及有关性质•第二讲直线与圆的位置关系•第三讲圆锥曲线性质的探讨•单元测试•本册综合第一讲相似三角形的判定及有关性质•一平行线等分线段定理•二平行线分线段成比例定理•三相似三角形的判定及性质•四直角三角形的射影定理•同步练习•本章综合第二讲直线与圆的位置关系•一圆周角定理•二圆内接四边形的性质与判定定理•三圆的切线的性质及判定定理•四弦切角的性质•五与圆有关的比例线段•同步练习•本章综合第三讲圆锥曲线性质的探讨•一平行射影•二平面与圆柱面的截线•三平面与圆锥面的截线•同步练习•本章综合单元测试本册综合选修4-2•第一讲线性变换与二阶矩阵•第二讲变换的复合与二阶矩阵的乘法•第三讲逆变换与逆矩阵•第四讲变换的不变量与矩阵的特征向量•单元测试•本册综合第一讲线性变换与二阶矩阵•一线性变换与二阶矩阵•二二阶矩阵与平面向量的乘法•三线性变换的基本性质•同步练习•本章综合第二讲变换的复合与二阶矩阵的乘法•一复合变换与二阶短阵的乘法•二矩阵乘法的性质•同步练习•本章综合第三讲逆变换与逆矩阵•一逆变换与逆矩阵•二二阶行列式与逆矩阵•三逆矩阵与二元一次方程组•同步练习•本章综合第四讲变换的不变量与矩阵的特征向量•一变换的不变量---矩阵的特征向量•二特征向量的应用•同步练习•本章综合单元测试本册综合新课标A版选修4-4•第一章坐标系•第二章参数方程•单元测试•本册综合第一章坐标系• 1.1直角坐标系、平面上的伸缩变换• 1.2极坐标系• 1.3曲线的极坐标方程• 1.4圆的极坐标方程• 1.5柱坐标系与球坐标系•同步练习•本章综合第二章参数方程• 2.1曲线的参数方程• 2.2直线和圆的参数方程• 2.3圆锥曲线的参数方程• 2.4一些常见曲线的参数方程•同步练习•本章综合单元测试本册综合新课标A版选修4-5•第一讲不等式和绝对值不等式•第二讲讲明不等式的基本方法•第三讲柯西不等式与排序不等式•第四讲数学归纳法证明不等式•单元测试•本册综合第一讲不等式和绝对值不等式•一不等式•二绝对值不等式•单元测试•本章综合第二讲讲明不等式的基本方法•一比较法•二综合法与分析法•三反证法与放缩法•单元测试•本章综合第三讲柯西不等式与排序不等式•一二维形式的柯西不等式•二一般形式的柯西不等式•三排序不等式•单元测试•本章综合第四讲数学归纳法证明不等式•一数学归纳法•二用数学归纳法证明不等式•单元测试•本章综合单元测试本册综合。
2013-2014学年 高中数学 人教A版选修1-1 第二章 2.1.1(一)椭圆及其标准方程(一)
![2013-2014学年 高中数学 人教A版选修1-1 第二章 2.1.1(一)椭圆及其标准方程(一)](https://img.taocdn.com/s3/m/1644bf39f111f18582d05a0e.png)
即|PF2|2=|PF1|2+4.
又由椭圆定义知|PF1|+|PF2|=2×2=4,
所以|PF2|=4-|PF1|.
研一研·问题探究、课堂更高效
2.1.1(一)
本 讲 栏 目 开 关
3 从而有(4-|PF1|) =|PF1| +4.解得|PF1|= . 2
标准方程 焦点 a、b、c 的关 系
y2 x2 + =1 (a>b>0) a2 b2
(0,-c)(0,c)
(-c,0)(c,0) c2=a2-b2
c2=a2-b2
研一研·问题探究、课堂更高效
2.1.1(一)
引言
本 讲 栏 目 开 关
在生活中, 我们对椭圆并不陌生.油罐汽车的贮油罐横
截面的外轮廓线、天体中一些行星和卫星运行的轨道都是 椭圆;灯光斜照在圆形桌面上,地面上形成的影子也是椭 圆形的.在学习中,椭圆其实比圆更加让我们熟知,无论是 数学中的 0,还是字母中的 O,我们都能看到椭圆的踪影. 那么椭圆是怎样定义的呢?
k-4>0, 点在 x 轴上的椭圆,则10-k>0, k-4>10-k,
小结
(1)利用椭圆方程解题时,一般首先要化成标准形式.
研一研·问题探究、课堂更高效
2.1.1(一)
m>0, x y (2) + =1 表示椭圆的条件是n>0, m n m≠n;
2 2
表示焦点在 x 轴
本 讲 栏 目 开 关
m>0, 上的椭圆的条件是n>0, m>n; m>0, 件是n>0, n>m .
表示焦点在 y 轴上的椭圆的条
人教A版高中数学选修1—1第二章3.1.2导数的几何意义达标过关训练
![人教A版高中数学选修1—1第二章3.1.2导数的几何意义达标过关训练](https://img.taocdn.com/s3/m/0b52fcf8bceb19e8b9f6ba06.png)
3.1.2 导数的几何意义一、选择题1.设曲线y =f (x ),若f ′(3)=0,则曲线在(3,f (3))处的切线( ) A.与x 轴平行 B.与x 轴垂直 C.与x 轴斜交D.与x 轴平行或重合解析:由导数的几何意义知,曲线y =f (x )在点(3,f (3))处的切线斜率为0,所以切线与x 轴平行或重合.答案:D2.(2019·辽宁实验中学月考)设函数f (x )=x (x -6),则f (x )在x =0处的切线斜率为( )A.0B.-1C.-6D.3解析:f (x )=x (x -6)=x 2-6x , ∴f ′(0)=lim Δx →0Δx 2-6Δx -0Δx =-6.∴f (x )在x =0处的切线斜率为-6,故选C. 答案:C3.如图,函数y =f (x )在A ,B 两点间的平均变化率是( )A.1B.-1C.2D.-2 解析:由题图知A (1,3),B (3,1),则k AB =1-33-1=-1.由导数的定义及几何意义知,函数y =f (x )在A 、B 两点间的平均变化率是-1.答案:B4.(2019·山东泰安期末)设函数f (x )=x 3+(a -1)x 2+ax ,若f (x )为奇函数,则曲线y =f (x )在点(0,0)处的切线方程为( )A.y =-2xB.y =-xC.y =2xD.y =x解析:∵f (x )为奇函数,∴a -1=0,∴a =1. ∴f (x )=x 3+x ,f ′(0)=lim Δx →0Δx 3+Δx -0Δx =lim Δx →0(Δx 2+1)=1.∴y =f (x )在点(0,0)处的切线方程为y =x ,故选D. 答案:D5.已知f ′(x )=2x -1,则曲线y =f (x )在点(1,f (1))处的切线的倾斜角为( ) A.30° B.45° C.60°D.120°解析:∵f ′(x )=2x -1,∴f ′(1)=2×1-1=1,由导数的几何意义知tan α=1,又α∈[0°,180°),∴α=45°.答案:B 二、填空题6.已知曲线y =2x 2上一点A (2,8),则在点A 处的切线方程为 . 解析:∵y =2x 2,∴Δy =2(x +Δx )2-2x 2=4x Δx +2(Δx )2, ∴y ′=lim Δx →0ΔyΔx =lim Δx →0(4x +2Δx )=4x .∴k=y′|x=2=4×2=8.又过点A(2,8).∴切线方程为y-8=8(x-2),即8x-y-8=0.答案:8x-y-8=07.(2019·山东东营期中)已知函数y=f(x)的图象在点A(0,f(0))处的切线方程是y=2x+1,则f(0)+f′(0)=.解析:由题可知f(0)=1,f′(0)=2,∴f(0)+f′(0)=3.答案:38.如图是函数f(x)及f(x)在点P处切线的图象,则f(2)+f′(2)=.解析:由题意可得切线的方程为x4+y4.5=1,其斜率为k=-4.54=-98.又点(2,f(2))为切点,∴f′(2)=-98.又2 4+f(2)4.5=1,∴f(2)=94.∴f(2)+f′(2)=94-98=98.答案:9 8三、解答题9.(2019·山西大学附中月考)已知f (x )=13x 3+43,若直线l 过点(2,4)且与f (x )图象相切,求直线l 的方程.解:设切点P (x 0,y 0),f ′(x 0)=lim Δx →013(x 0+Δx )3+43-13x 30-43Δx =x 20,y 0=f (x 0)=13x 30+43,∴切线方程为y -⎝ ⎛⎭⎪⎫13x 30+43=x 20(x -x 0), 将点(2,4)代入切线方程, 4-13x 30-43=x 20(2-x 0),即x 30-3x 20+4=0,即(x 0+1)(x 0-2)2=0, ∴x 0=-1或x 0=2.∴切线方程为4x -y -4=0或x -y +2=0. 10.曲线y =x 2上哪一点处的切线: (1)平行于直线y =4x -5; (2)垂直于直线2x -6y +5=0; (3)与x 轴成135°的倾斜角. 解:f ′(x )=limΔx →0f (x +Δx )-f (x )Δx =lim Δx →0(x +Δx )2-x 2Δx =lim Δx →02x Δx +(Δx )2Δx =2x ,设P (x 0,y 0)是满足条件的点. (1)∵切线与直线y =4x -5平行, ∴2x 0=4,x 0=2,y 0=4.∴P (2,4). (2)∵切线与直线2x -6y +5=0垂直,∴2x 0×13=-1,得x 0=-32,y 0=94,∴P ⎝ ⎛⎭⎪⎫-32,94.(3)∵切线与x 轴成135°的倾斜角,∴斜率k =-1.即2x 0=-1,x 0=-12,y 0=14, ∴P ⎝ ⎛⎭⎪⎫-12,14.。
数学:第二章《圆锥曲线与方程》测试(2)(新人教A版选修1-1)
![数学:第二章《圆锥曲线与方程》测试(2)(新人教A版选修1-1)](https://img.taocdn.com/s3/m/37a189295acfa1c7ab00cc43.png)
圆锥曲线与方程 单元测试时间:90分钟 分数:120分一、选择题(每小题5分,共60分)1.椭圆122=+my x 的焦点在y 轴上,长轴长是短轴长的两倍,则m 的值为( ) A .41 B .21C .2D .4 2.过抛物线x y 42=的焦点作直线l 交抛物线于A 、B 两点,若线段AB 中点的横坐标为3,则||AB 等于( )A .10B .8C .6D .43.若直线y =kx +2与双曲线622=-y x 的右支交于不同的两点,则k 的取值范围是( )A .315(-,)315 B .0(,)315 C .315(-,)0 D .315(-,)1-4.(理)已知抛物线x y 42=上两个动点B 、C 和点A (1,2)且∠BAC =90°,则动直线BC 必过定点( )A .(2,5)B .(-2,5)C .(5,-2)D .(5,2)(文)过抛物线)0(22>=p px y 的焦点作直线交抛物线于1(x P ,)1y 、2(x Q ,)2y 两点,若p x x 321=+,则||PQ 等于( )A .4pB .5pC .6pD .8p5.已知两点)45,4(),45,1(--N M ,给出下列曲线方程:①0124=-+y x ;②322=+y x ;③1222=+y x ;④1222=-y x .在曲线上存在点P 满足|MP|=|NP|的所有曲线方程是( ) (A )①③ (B )②④ (C )①②③ (D )②③④6.已知双曲线12222=-by a x (a >0,b >0)的两个焦点为1F 、2F ,点A 在双曲线第一象限的图象上,若△21F AF 的面积为1,且21tan 21=∠F AF ,2tan 12-=∠F AF ,则双曲线方程为( )A .1351222=-y xB .1312522=-y xC .1512322=-y x D .1125322=-y x 7.圆心在抛物线)0(22>=y x y 上,并且与抛物线的准线及x 轴都相切的圆的方程是( )A .041222=---+y x y x B .01222=+-++y x y x C .01222=+--+y x y x D .041222=+--+y x y x8.双曲线的虚轴长为4,离心率26=e ,1F 、2F 分别是它的左、右焦点,若过1F 的直线与双曲线的右支交于A 、B 两点,且||AB 是||2AF 的等差中项,则||AB 等于( ) A .28 B .24 C .22 D .8. 9.(理)已知椭圆22221a y x =+(a >0)与A (2,1),B (4,3)为端点的线段没有公共点,则a 的取值范围是( ) A .2230<<a B .2230<<a 或282>a C .223<a 或 282>a D .282223<<a(文)抛物线)2(2)2(2+-=-m y x 的焦点在x 轴上,则实数m 的值为( ) A .0 B .23C .2D .3 10.已知双曲线中心在原点且一个焦点为)0,7(F ,直线1-=x y 与其相交于N M ,两点,MN 中点横坐标为32-,则此双曲线的方程是( ) (A) 14322=-y x (B) 13422=-y x (C) 12522=-y x (D) 15222=-y x 11.将抛物线342+-=x x y 绕其顶点顺时针旋转090,则抛物线方程为( )(A )x y -=+2)1(2(B )2)1(2-=+x y (C )x y -=-2)1(2(D )2)1(2-=-x y12.若直线4=+ny mx 和⊙O ∶422=+y x 没有交点,则过),(n m 的直线与椭圆14922=+y x 的交点个数( )A .至多一个B .2个C .1个D .0个 二、填空题(每小题4分,共16分)13.椭圆198log 22=+y x a 的离心率为21,则a =________.14.已知直线1+=x y 与椭圆122=+ny mx )0(>>n m 相交于A ,B 两点,若弦AB 的中点的横坐标等于31-,则双曲线12222=-n y m x 的两条渐近线的夹角的正切值等于________.15.长为l (0<l <1)的线段AB 的两个端点在抛物线2x y =上滑动,则线段AB 中点M 到x 轴距离的最小值是________.16.某宇宙飞船的运行轨道是以地球中心F 为焦点的椭圆,测得近地点A 距离地面)km (m ,远地点B 距离地面)km (n ,地球半径为)km (R ,关于这个椭圆有以下四种说法: ①焦距长为m n -;②短轴长为))((R n R m ++;③离心率Rn m mn e 2++-=;④若以AB 方向为x 轴正方向,F 为坐标原点,则与F 对应的准线方程为)())((m n R n R m x -++2-=,其中正确的序号为________. 三、解答题(共44分) 17.(本小题10分)已知椭圆的一个顶点为A (0,-1),焦点在x 轴上.若右焦点到直线022=+-y x 的距离为3.(1)求椭圆的方程;(2)设椭圆与直线)0(≠+=k m kx y 相交于不同的两点M 、N.当AN AM =时,求m 的取值范围.18.(本小题10分)双曲线)0,0(12222>>=-b a by a x 的右支上存在与右焦点和左准线等距离的点,求离心率e 的取值范围.19.(本小题12分)如图,直线l 与抛物线x y =2交于),(,),(2211y x B y x A 两点,与x 轴相交于点M ,且121-=y y . (1)求证:M 点的坐标为)0,1(;(2)求证:OB OA ⊥;(3)求AOB ∆的面积的最小值.20.(本小题12分)已知椭圆方程为1822=+y x ,射线x y 22=(x ≥0)与椭圆的交点为M ,yx过M作倾斜角互补的两条直线,分别与椭圆交于A、B两点(异于M).(1)求证直线AB的斜率为定值;(2)求△AMB面积的最大值.圆锥曲线单元检测答案1. A2.B 3 D 4 理C 文A 5 D 6 A 7 D 8A 9 理B 文B 10 D 11 B 12 B13.24或69 14.3415.42l 16.①③④17.(1)依题意可设椭圆方程为 1222=+y ax ,则右焦点F (0,12-a )由题设322212=+-a 解得32=a 故所求椭圆的方程为1322=+y x . 1322=+y x ………………………………………………4分. (2)设P 为弦MN 的中点,由⎪⎩⎪⎨⎧=++=1322y x mkx y 得 0)1(36)13(222=-+++m mkx x k 由于直线与椭圆有两个交点,,0>∆∴即 1322+<k m ①………………6分13322+-=+=∴k mkx x x N M p 从而132+=+=k m m kx y p p mkk m x y k pp Ap 31312++-=+=∴ 又MN AP AN AM ⊥∴=,,则 kmk k m 13132-=++- 即 1322+=k m ②…………………………8分把②代入①得 22m m > 解得 20<<m 由②得 03122>-=m k 解得21>m .故所求m 的取范围是(2,21)……………………………………10分 18.设M )(0,0y x 是双曲线右支上满足条件的点,且它到右焦点F 2的距离等于它到左准线的距离2MN ,即MN MF =2,由双曲线定义可知e MF MF eMNMF =∴=211……5分由焦点半径公式得000x eaex aex ∴=-+ee e a -+=2)1(…………………………7分 而a ee e a ax ≥-+∴≥20)1( 即 0122≤--e e 解得1221+≤≤-e 但 1211+≤<∴>e e ……………………………………10分19. (1 ) 设M 点的坐标为)0,(0x , 直线l 方程为0x my x +=, 代入x y =2得002=--x my y ① 21,y y 是此方程的两根,∴1210=-=y y x ,即M 点的坐标为(1, 0). (2 ) ∵ 121-=y y∴ 0)1(21212122212121=+=+=+y y y y y y y y y y x x∴ OB OA ⊥.(3)由方程①,m y y =+21, 121-=y y , 且 1||0==x OM ,于是=-=∆||||2121y y OM S AOB 212214)(21y y y y -+=4212+m ≥1, ∴ 当0=m 时,AOB ∆的面积取最小值1.20.解析:(1)∵ 斜率k 存在,不妨设k >0,求出M (22,2).直线MA 方程为)22(2-=-x k y ,直线AB 方程为)22(2--=-x k y . 分别与椭圆方程联立,可解出2284222-+-=k k k x A ,2284222-++=k k k x B . ∴22)(=--=--BA B A B A B A x x x x k x x y y . ∴ 22=AB k (定值). (2)设直线AB 方程为m x y +=22,与1822=+y x 联立,消去y 得mx x 24162+ 0)8(2=-+m .由0>∆得44<<-m ,且0≠m ,点M 到AB 的距离为3||m d =. 设AMB ∆的面积为S .∴ 2)216(321)16(321||41222222=≤-==⋅m m d AB S . 当22±=m 时,得2max =S .圆锥曲线课堂小测时间:45分钟 分数:60分 命题人:郑玉亮一、选择题(每小题4分共24分)1.0≠c 是方程 c y ax =+22表示椭圆或双曲线的 ( )A .充分不必要条件B .必要不充分条件C .充要条件D .不充分不必要条件2.与曲线1492422=+y x 共焦点,而与曲线1643622=-y x 共渐近线的双曲线方程为 ( )A .191622=-x yB .191622=-y xC .116922=-x yD .116922=-y x3.我国发射的“神舟3号”宇宙飞船的运行轨道是以地球的中心2F 为一个焦点的椭圆,近地点A 距地面为m 千米,远地点B 距地面为n 千米,地球半径为R 千米,则飞船运行轨道的短轴长为( )A .))((2R n R m ++B .))((R n R m ++C .mnD .2mn4.若椭圆)1(122>=+m y m x 与双曲线)0(122>=-n y nx 有相同的焦点F 1、F 2,P 是两曲线的一个交点,则21PF F ∆的面积是 ( ) A .4B .2C .1D .215.圆心在抛物线x y 22=上,且与x 轴和该抛物线的准线都相切的一个圆的方程是( ) A .041222=---+y x y x B .01222=+-++y x y xC .01222=+--+y x y xD .041222=+--+y x y x6.已知双曲线12222=-by a x 的离心率2[∈e ,]2.双曲线的两条渐近线构成的角中,以实轴为角平分线的角记为θ,则θ的取值范围是( ). A .6π[,]2π B .3π[,]2π C .2π[,]32π D .32π[,π]二、填空题(每小题4分共16分)7.若圆锥曲线15222=++-k y k x 的焦距与k 无关,则它的焦点坐标是__________. 8.过抛物线x y 42=的焦点作直线与此抛物线交于P ,Q 两点,那么线段PQ 中点的轨迹方 程是 .9.连结双曲线12222=-b y a x 与12222=-ax b y (a >0,b >0)的四个顶点的四边形面积为1S ,连结四个焦点的四边形的面积为2S ,则21S S的最大值是________.10.对于椭圆191622=+y x 和双曲线19722=-y x 有下列命题:①椭圆的焦点恰好是双曲线的顶点; ②双曲线的焦点恰好是椭圆的顶点; ③双曲线与椭圆共焦点;④椭圆与双曲线有两个顶点相同.其中正确命题的序号是 . 三、解答题(20分)11.(本小题满分10分)已知直线l 与圆0222=++x y x 相切于点T ,且与双曲线122=-y x 相交于A 、B 两点.若T 是线段AB 的中点,求直线l 的方程.12.(10分)已知椭圆2222by a x +(a >b >0)的离心率36=e ,过点),0(b A -和)0,(a B 的直线与原点的距离为23. (1)求椭圆的方程.(2)已知定点)0,1(-E ,若直线)0(2≠+=k kx y 与椭圆交于C 、D 两点.问:是否存在k 的值,使以CD 为直径的圆过E 点?请说明理由.参考答案1 B2 A3 A4 C5 D6 C 7.(0,7±)8.222-=x y 9.2110.①② 11.解:直线l 与x 轴不平行,设l 的方程为 a ky x += 代入双曲线方程 整理得012)1(222=-++-a kay y k ……………………3分 而012≠-k ,于是122--=+=k aky y y B A T 从而12--=+=k a a ky x T T 即 )1,1(22k a k ak T --……5分点T 在圆上 012)1()1(22222=-+-+-∴ka k a k ak 即22+=a k ① 由圆心)0,1(-'O .l T O ⊥' 得 1-=⋅'l T O k k 则 0=k 或 122+=a k当0=k 时,由①得 l a ∴-=,2的方程为 2-=x ;当122+=a k 时,由①得 1=a l K ∴±=,3的方程为13+±=y x .故所求直线l 的方程为2-=x 或 13+±=y x …………………………10分 12.解:(1)直线AB 方程为:0=--ab ay bx .依题意⎪⎪⎩⎪⎪⎨⎧=+=233622ba ab ac , 解得 ⎩⎨⎧==13b a ,∴ 椭圆方程为 1322=+y x . (2)假若存在这样的k 值,由⎩⎨⎧=-++=033222y x kx y ,得)31(2k +09122=++kx x . ∴ 0)31(36)12(22>+-=∆k k . ①设1(x C ,)1y 、2(x D ,)2y ,则⎪⎪⎩⎪⎪⎨⎧+=+-=+⋅2212213193112k x x k k x x , ②而4)(2)2)(2(212122121+++=++=⋅x x k x x k kx kx y y .要使以CD 为直径的圆过点E (-1,0),当且仅当C E ⊥DE 时,则1112211-=++⋅x y x y ,即0)1)(1(2121=+++x x y y .∴ 05))(1(2)1(21212=+++++x x k x x k . ③ 将②式代入③整理解得67=k .经验证,67=k ,使①成立. 综上可知,存在67=k ,使得以CD 为直径的圆过点E .。
人教a版高中数学选修11第二章《椭圆及其标准方程》(第一课时)说课稿
![人教a版高中数学选修11第二章《椭圆及其标准方程》(第一课时)说课稿](https://img.taocdn.com/s3/m/adfe253e227916888486d74a.png)
2、标准方程:
3、思想方法:
五、教学评价
纵观整个教学过程,始终坚持我校“培 养自主学习能力,着眼可持续发展”的教学 理念,不断为学生提供主动思考及合作探究 等活动,让学生在整个教学过程中充分发挥 他们的能动作用;同时,我恰当地设置问题, 并巧妙地启发学生参与到问题中进行思考和 探究,让学生在轻松、愉悦的氛围中发现问 题和解决问题,从而培养学生的自主学习和 实践探究能力。
点的距离为( ) A.5 B.6 C.4 D.10
x2 y 2 =1, (3)已知椭圆方程为 + 23 32
则这个椭圆的焦距为( ) A.6 B.3
C. 3 5 D.6 5
《探究案》
(师生互动,合作探究)
三、质疑探究,解疑释惑
提示:能更好 质疑探究一: 在椭圆的方程的推导过 体现图形的对 称性,同时两 程中:(1)为何以经过和的直线为 定点坐标比较 x 轴,线段的垂直平分线为 y 轴建立 简洁,便于推 直角坐标系xOy? 导方程.
2、教学目标
(1)知识目标:
掌握椭圆的定义、标准方程及其推导过程,会 根据条件确定椭圆的标准方程,用待定系数法求 椭圆的标准方程。
(2)能力目标:
通过实践操作、自主学习、合作探究等,提 高学生实际动手、合作探究以及运用知识解决问 题的能力。
(3)情感目标:
在教学中充分揭示“数”与“形”的内在联系, 体会形数美的统一,激发学生学习数学的兴趣, 培养学生积极探索、勇于创新的精神。
围是( ) A.a>3 C.a>3或a<2 B.a<2 D.a>3或6<a<2
教学内容
六、归纳小结,布置作业。
1.归纳小结 (1)两种类型的椭圆方程的比较
人教A版高中数学选修1第二章直线和圆的方程2
![人教A版高中数学选修1第二章直线和圆的方程2](https://img.taocdn.com/s3/m/f19225ccaff8941ea76e58fafab069dc50224798.png)
第二章 2.5 2.5.2A级——基础过关练1.两圆x2+y2-1=0和x2+y2-4x+2y-4=0的位置关系是( )A.内切B.相交C.外切D.外离【答案】B【解析】将两圆化成标准方程分别为x2+y2=1,(x-2)2+(y+1)2=9,可知圆心距d =5.由于2<d<4,所以两圆相交.2.圆C1:x2+y2-4x+2y+1=0与C2:x2+y2+4x-4y-1=0的公切线有( )A.1条B.2条C.3条D.4条【答案】C【解析】r1=2,r2=3,圆心距d=5,由于d=r1+r2,所以两圆外切,故公切线有3条.3.已知圆C1:x2+y2=4与圆C2:x2+y2-2ax+a2-1=0内切,则a等于( )A.1 B.-1C.±2 D.±1【答案】D【解析】圆C2:(x-a)2+y2=1,因为两圆内切,所以|C1C2|=r1-r2=2-1=1,即|a|=1,故a=±1.4.圆C1:x2+y2-2x-6y+1=0与圆C2:x2+y2+4x+2y+1=0的公切线有( ) A.1条B.2条C.3条D.4条【答案】C【解析】圆C1:x2+y2-2x-6y+1=0化为(x-1)2+(y-3)2=9,圆心C1(1,3),半径为r1=3,圆C2:x2+y2+4x+2y+1=0化为(x+2)2+(y+1)2=4,圆心C2(-2,-1),半径r2=2.因为|C1C2|=2-121-32=5=r1+r2,所以两圆外切.作出两圆图象如图,所以圆C1:x2+y2-2x-6y+1=0与圆C2:x2+y2+4x+2y+1=0的公切线有3条.5.(2021年九江模拟)圆x 2+y 2=50与圆x 2+y 2-12x -6y +40=0的公共弦长为( ) A . 5 B . 6 C .2 5 D .2 6【答案】C【解析】x 2+y 2=50与x 2+y 2-12x -6y +40=0作差,得两圆公共弦所在的直线方程为2x +y -15=0.圆x 2+y 2=50的圆心(0,0)到2x +y -15=0的距离d =35,因此公共弦长为2522352=25.6.两圆x 2+y 2+2ax +2ay +2a 2-3=0与x 2+y 2+2bx +2by +2b 2-1=0公共弦长的最大值为( )A .0B .1C .2D .3【答案】C【解析】两圆相交弦所在直线的方程为x +y +a +b -1a -b=0,所以弦长为23-⎝⎛⎭⎪⎪⎫a -b +1a -b 22,所以当|a -b |=1时,弦长最大,最大值为2. 7.(多选)已知圆C 1:x 2+y 2=r 2,圆C 2:(x -a )2+(y -b )2=r 2(r >0)交于不同的A (x 1,y 1),B (x 2,y 2)两点,下列结论正确的有( )A .a (x 1-x 2)+b (y 1-y 2)=0B .2ax 1+2by 1=a 2+b 2C .x 1+x 2=aD .y 1+y 2=2b【答案】ABC【解析】由题意,由圆C 2的方程可化为C 2:x 2+y 2-2ax -2by +a 2+b 2-r 2=0,两圆的方程相减可得直线AB 的方程为2ax +2by -a 2-b 2=0,即2ax +2by =a 2+b 2.分别把A (x 1,y 1),B (x 2,y 2)两点代入,得2ax 1+2by 1=a 2+b 2,2ax 2+2by 2=a 2+b 2.两式相减,得2a (x 1-x 2)+2b (y 1-y 2)=0,即a (x 1-x 2)+b (y 1-y 2)=0,所以A ,B 正确.由圆的性质可得,线段AB 与线段C 1C 2互相平分,所以x 1+x 2=a ,y 1+y 2=b ,所以C 正确,D 不正确.故选ABC .8.若曲线C 1:x 2+y 2=5与曲线C 2:x 2+y 2-2mx +m 2-20=0(m ∈R )相交于A ,B 两点,且两曲线在A 处的切线互相垂直,则m 的值是________.【答案】±5【解析】由已知可得圆C 1的圆心C 1(0,0),半径r 1=5,圆C 2的圆心C 2(m,0),半径r 2=25,|C 1C 2|2=r 21+r 22,即m 2=25,故m =±5.9.已知圆C 1:x 2+y 2-6x -7=0与圆C 2:x 2+y 2-6y -27=0相交于A ,B 两点,则线段AB 的中垂线方程为________.【答案】x +y -3=0【解析】AB 的中垂线即为圆C 1,圆C 2的连心线C 1C 2所在的直线,又因为C 1(3,0),C 2(0,3),C 1C 2的方程为x +y -3=0,即线段AB 的中垂线方程为x +y -3=0.10.(2022年哈尔滨期末)已知圆C :(x -3)2+(y -4)2=36-m ,其中m ∈R . (1)如果圆C 与圆x 2+y 2=1外切,求m 的值;(2)如果直线x +y -3=0与圆C 相交所得的弦长为45,求m 的值. 解:(1)圆C 的圆心为(3,4),半径为36-m ,若圆C 与圆x 2+y 2=1外切,故两圆的圆心距等于两圆半径之和, 故32+42=1+36-m ,解得m =20. (2)圆C 的圆心到直线x +y -3=0的距离为d =||3+4-31+1=22,由垂径定理,得⎝⎛⎭⎪⎫4522=(36-m )2-d 2,解得m =8. B 级——能力提升练11.若圆(x -a )2+(y -a )2=4上总存在两点到原点的距离为1,则实数a 的取值范围是( )A .⎝ ⎛⎭⎪⎫-22,0∪⎝⎛⎭⎪⎫0,22 B .()-22,-2∪()2,22 C .⎝ ⎛⎭⎪⎫-322,-22∪⎝ ⎛⎭⎪⎫22,322D .(-∞,-322∪(2,+∞),【答案】C【解析】根据题意知,圆(x -a )2+(y -a )2=4与圆x 2+y 2=1相交,两圆圆心距为d =a 2+a 2=2|a |,所以2-1<2|a |<2+1,解得22<|a |<322.所以-322<a <-22,22<a <322. 12.(多选)(2022年石家庄模拟)已知圆C 1:(x -1)2+(y -3)2=11与圆C 2:x 2+y 2+2x -2my +m 2-3=0,则下列说法正确的是( )A .若圆C 2与x 轴相切,则m =2B .若m =-3,则圆C 1与圆C 2相离C .若圆C 1与圆C 2有公共弦,则公共弦所在的直线方程为4x +(6-2m )y +m 2+2=0 D .直线kx -y -2k +1=0与圆C 1始终有两个交点, 【答案】BD【解析】因为C 1:(x -1)2+(y -3)2=11,C 2:(x +1)2+(y -m )2=4,所以若圆C 2与x 轴相切,则有|m |=2,故A 错误;当m =-3时,|C 1C 2|=1+123+32=210>2+11,两圆相离,故B 正确;由两圆有公共弦,两圆的方程相减可得公共弦所在直线方程4x +(6-2m )y +m 2-2=0,故C 错误;直线kx -y -2k +1=0过定点(2,1),而(2-1)2+(1-3)2=5<11,故点(2,1)在圆C 1:(x -1)2+(y -3)2=11内部,所以直线kx -y -2k +1=0与圆C 1始终有两个交点,故D 正确.故选BD .13.两圆x 2+y 2=16与(x -4)2+(y +3)2=r 2(r >0)在交点处的切线互相垂直,则r =________.【答案】3【解析】设一个交点为P (x 0,y 0),则x 20+y 20=16,(x 0-4)2+(y 0+3)2=r 2,所以r 2=41-8x 0+6y 0.因为两切线互相垂直,所以y 0x 0·y 0+3x 0-4=-1,所以3y 0-4x 0=-16.所以r 2=41+2(3y 0-4x 0)=9,所以r =3.,14.已知相交两圆C 1:x 2+y 2=4,圆C 2:(x -2)2+y 2=4,公共弦所在直线的方程为__________,公共弦的长度为__________.【答案】x =1 2 3【解析】如图,联立⎩⎪⎨⎪⎧x 2+y 2=4,x -22+y 2=4,两式作差可得公共弦所在直线的方程为x=1.将x =1代入x 2+y 2=4,解得y =±3,l =|y 1-y 2|=2 3.15.求以圆C 1:x 2+y 2-12x -2y -13=0和圆C 2:x 2+y 2+12x +16y -25=0的公共弦为直径的圆C 的方程.解:方法一,由⎩⎪⎨⎪⎧x 2+y 2-12x -2y -13=0,x 2+y 2+12x +16y -25=0,两式相减,得公共弦所在直线方程为4x +3y -2=0.联立⎩⎪⎨⎪⎧4x +3y -2=0,x 2+y 2-12x -2y -13=0,解得两圆交点坐标为(-1,2),(5,-6).因为所求圆以公共弦为直径, 所以圆心C 是公共弦的中点(2,-2), 半径为125+126-22=5.所以圆C 的方程为(x -2)2+(y +2)2=25.方法二,由方法一可知公共弦所在直线方程为4x +3y -2=0.设所求圆的方程为x 2+y 2-12x -2y -13+λ(x 2+y 2+12x +16y -25)=0(λ为参数).可求得圆心C ⎝ ⎛⎭⎪⎫-12λ-1221+λ,-16λ-221+λ.因为圆心C 在公共弦所在直线上, 所以4·12λ-1221+λ+3·16λ-221+λ-2=0,解得λ=12.所以圆C 的方程为x 2+y 2-4x +4y -17=0.。
人教A版高中数学(选修1-1)单元测试-第二章
![人教A版高中数学(选修1-1)单元测试-第二章](https://img.taocdn.com/s3/m/20bae0d8aaea998fcd220e65.png)
2—=1上的一点M 到焦点F 1的距离为2, N 是MF 1的中点,O 为原点,则|0N|等于二•填空题:本大题共 4小题,每小题6分,共24分。
2 26•椭圆5x ky -5的一个焦点是(0,2),那么k 二 7.椭圆的焦点在y 轴上,一个焦点到长轴的两端点的距离之比是 1 : 4,短轴长为8,则椭圆的标准方程是 __________________ .2 2 &已知点(0, 1)在椭圆5 + m = 1内,贝y m 的取值范围是 ______________________________________________ .W I I I2 29 •椭圆 + 2m = 1的准线平行于x 轴,则m 的取值范围是 __________________寸3m + 1 2m第二章圆锥曲线与方程单元测试A 组题(共100分) 一•选择题:本大题共 5题,每小题7分,共35分。
在每小题给出的四个选项中, 项是符合题目要求的。
1已知坐标满足方程 F(x,y)=O 的点都在曲线C 上,那么 (A )(B ) (C ) (D ) 只有曲线C 上的点的坐标都适合方程 凡坐标不适合 F(x,y)=O 的点都不在 在曲线C 上的点的坐标不一定都适合 不在曲线C 上的点的坐标有些适合F(x,y)=0 C 上 F(x,y ) =0 F(x,y ) =0,有些不合适 F(x,y ) =0 2•至俩坐标轴的距离相等的点的轨迹方程是 (A ) x - y= 0 3•已知椭圆方程为 (B) x + y=0 2m ^= 1,焦点在 (C ) |x|=|y| (D) y=|x|x 轴上,则其焦距等于 (A) 2 8- m 2(B) 2 2 2 - | m|(C ) 2 ,m 2- 8( D ) 2 | m| - 2 22x4.已知椭圆 -25(A) 2(B)4(C ) 8(D) 325.已知F 是椭 2x ~2 a= 1(a>b>0)的左焦点,P 是椭圆上的一点,PF 丄x 轴,OP // AB(O 为原点), 则该椭圆的离(A)■- 2 2(B)(C )(D)三•解答题:本大题共3小题,共41分,解答题应写出文字说明、证明过程或演算步骤。
人教A版高中数学选修1第二章直线和圆的方程2
![人教A版高中数学选修1第二章直线和圆的方程2](https://img.taocdn.com/s3/m/200c7932e97101f69e3143323968011ca300f72e.png)
第二章 2.2 2.2.1A 级——基础过关练1.(2021年天津月考)直线x =3y -1的斜率为( ) A .33 B . 3C .-33D .- 3【答案】A【解析】将x =3y -1化为斜截式y =33x +33,即该直线的斜率为33. 2.(2020年济南检测)在平面直角坐标系中,下列四个结论: ①每一条直线都有点斜式和斜截式方程; ②倾斜角是钝角的直线,斜率为负数; ③方程k =y +1x -2与方程y +1=k (x -2)可表示同一条直线; ④直线过点P (x 0,y 0),倾斜角为90°,则其方程为x =x 0. 其中正确的个数为( ) A .1 B .2 C .3 D .4【答案】B【解析】对于①,斜率不存在的直线无点斜式和斜截式方程,故①错误;对于②,倾斜角是钝角的直线,其倾斜角的正切值为负数,直线斜率为负数,故②正确;对于③,方程k =y +1x -2表示直线y +1=k (x -2)去掉点(2,-1),与方程y +1=k (x -2)不表示同一直线,故③错误;对于④,直线过点P (x 0,y 0),倾斜角为90°,则其方程为x =x 0,故④正确.所以正确的个数为2.3.已知直线l 的方程为y -m =(m -1)(x +1),若l 在y 轴上的截距为7,则m =( ) A .4 B .3 C .1 D .5【答案】A【解析】直线l 的方程可化为y =(m -1)x +2m -1,所以2m -1=7,得m =4. 4.已知直线l 1:y =2x +3a ,l 2:y =(a 2+1)x +3,若l 1∥l 2,则a =( ) A .0B .-1C .1D .±1【答案】B【解析】因为l 1∥l 2,所以a 2+1=2,a 2=1,所以a =±1.又由于l 1∥l 2,两直线l 1与l 2不能重合,则3a ≠3,即a ≠1,故a =-1.5.已知直线l 的方程为y +1=2⎝ ⎛⎭⎪⎫x +52,若设l 的斜率为a ,在y 轴上的截距为b ,则log a b 的值为( )A .12B .2C .log 26D .0【答案】B【解析】直线l 的方程为y =2x +4,故a =2,b =4,所以log a b =log 24=2. 6.直线y =x +1绕其与y 轴交点旋转90°的直线方程是( ) A .y =x +1 B .y =-x +1 C .y =2x +1 D .y =-2x +1 【答案】B【解析】当x =0时,y =1,旋转后斜率k =-1,所以直线方程为y =-x +1. 7.(多选)(2021年广州月考)给出下列四个结论,正确的是( )A .平面直角坐标系中,过点P (2,-1)的所有直线可以用方程y +1=k (x -2)表示B .直线Ax +By +C =0(B ≠0)的斜率为-A BC .直线3x +3y -1=0的倾斜角为5π6D .直线y =2x -1在x 轴上的截距为12,在y 轴上的截距为1【答案】BC【解析】对于A ,直线x =2过点P (2,-1),但不能用方程y +1=k (x -2)表示,故A 错误;对于B ,直线Ax +By +C =0(B ≠0)可化为y =-A B x -C B ,则其斜率为-A B,故B 正确;对于C ,直线3x +3y -1=0可化为y =-33x +13,其斜率为-33,则倾斜角为5π6,故C 正确;对于D ,令y =0,得出x =12,令x =0,得出y =-1,则直线y =2x -1在x 轴上的截距为12,在y 轴上的截距为-1,故D 错误.故选BC .8.直线y =2x -4绕着它与x 轴的交点逆时针旋转90°后,所得的直线方程为____________.【答案】y =-12(x -2)【解析】y =2x -4与x 轴的交点为(2,0),所得的直线l 2与直线l 1:y =2x -4垂直,所以k 2²k 1=-1,即k 2²2=-1,故k 2=-12.所以l 2的方程为y -0=-12(x -2),即y =-12(x -2). 9.直线l 经过点A (-2,2)且与直线y =x +6在y 轴上有相同的截距,则直线l 的斜截式方程为____________.【答案】y =2x +6【解析】直线y =x +6在y 轴上的截距为6,即所求直线过点(0,6),直线l 又经过点A (-2,2),所以直线l 的斜率为2,所以直线l 的方程为y =2x +6.10.求下列直线的斜截式方程: (1)斜率为-4,在y 轴上的截距为7; (2)在y 轴上的截距为2,且与x 轴平行;(3)求倾斜角为150°,与y 轴的交点到原点的距离为3的直线方程. 解:(1)直线的斜率为k =-4, 在y 轴上的截距b =7, 所求直线方程为y =-4x +7. (2)直线的斜率为k =0, 在y 轴上的截距为b =2, 所求直线方程为y =2.(3)直线的倾斜角为150°,所以斜率为-33. 因为直线与y 轴的交点到原点的距离为3, 所以在y 轴上的截距b =3或b =-3. 故所求的直线方程为y =-33x +3或y =-33x -3. B 级——能力提升练11.已知直线kx -y +1-3k =0,当k 变化时,所有的直线恒过定点( ) A .(1,3) B .(-1,-3) C .(3,1) D .(-3,-1)【答案】C【解析】直线kx -y +1-3k =0变形为y -1=k (x -3),由直线的点斜式可得直线恒过定点(3,1).12.(多选)(2021年黑龙江月考)下列说法正确的有( ) A .若直线y =kx +b 经过第一、二、四象限,则(k ,b )在第二象限 B .直线y =ax -3a +2过定点(3,2)C .过点(2,-1)斜率为-3的点斜式方程为y +1=-3(x -2)D .斜率为-2,在y 轴截距为3的直线方程为y =-2x ±3 【答案】ABC【解析】对于A ,由直线y =kx +b 过一、二、四象限,可知直线的斜率k <0,截距b >0,故点(k ,b )在第二象限,所以A 正确;对于B ,由直线方程y =ax -3a +2,整理得a (x -3)+(-y +2)=0,所以无论a 取何值,点(3,2)都满足方程,所以B 正确;对于C ,由点斜式方程,可知过点(2,-1)斜率为-3的点斜式方程为y +1=-3(x -2),所以C 正确;对于D ,由斜截式直线方程得到斜率为-2,在y 轴上的截距为3的直线方程为y =-2x +3,所以D 错误.故选ABC .13.已知直线l :y =-a b x +2b 与直线l ′:y =23x -43平行,且直线l 与y 轴的交点为(0,1),则a =________,b =________.【答案】-432【解析】由题意可得⎩⎪⎨⎪⎧-a b =23,2b =1,解得⎩⎪⎨⎪⎧a =-43,b =2.14.在y 轴上的截距为-6,且与y 轴相交成30°角的直线方程是__________. 【答案】y =3x -6或y =-3x -6【解析】因为所求直线与y 轴相交成30°角,所以它的倾斜角为60°或120°,斜率为3或-3,其点斜式方程为y =3x -6或y =-3x -6.15.已知直线l :y =kx +2k +1. (1)求证:直线l 恒过一个定点;(2)当-3<x <3时,直线上的点都在x 轴上方,求实数k 的取值范围.(1)证明:由y =kx +2k +1,得y -1=k (x +2).由直线方程的点斜式可知,直线恒过定点(-2,1).(2)解:设函数f (x )=kx +2k +1,显然其图象是一条直线(如图所示),若使-3<x <3时,直线上的点都在x 轴上方, 需满足⎩⎪⎨⎪⎧f 30,f30,即⎩⎪⎨⎪⎧-3k +2k +1≥0,3k +2k +1≥0,解得-15≤k ≤1.所以实数k 的取值范围是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫k ⎪⎪⎪-15≤k ≤1.。
高考调研新课标A数学选修1-1目录
![高考调研新课标A数学选修1-1目录](https://img.taocdn.com/s3/m/41c6a9f384868762cbaed53e.png)
目录
新课标A版·数学·选修1-1
3.3 导数在研究函数中的应用 3.3.1 函数的单调性与导数 课时作业(二十八) (word) 课时作业(二十九) (word) 3.3.2 函数的极值与导数 课时作业(三十) (word) 3.3.3 函数的最大(小) 值与导数 课时作业(三十一) (word)
2.3 抛物线习题课 课时作业(十九) (word) 专题研究一 曲线与方程 课时作业(二十) (word) 专题研究二 最值与范围(重点班选讲) (word) 课时作业(二十一) 数学·选修1-1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章 圆锥曲线与方程(B)(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.中心在原点,焦点在x 轴上,若长轴长为18,且两个焦点恰好将长轴三等分,则此椭圆的方程是( )A.x 281+y 272=1B.x 281+y 29=1C.x 281+y 245=1D.x 281+y 236=1 2.平面内有定点A 、B 及动点P ,设命题甲是“|P A |+|PB |是定值”,命题乙是“点P 的轨迹是以A 、B 为焦点的椭圆”,那么甲是乙的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3.设a ≠0,a ∈R ,则抛物线y =ax 2的焦点坐标为( )A.⎝⎛⎭⎫a 2,0B.⎝⎛⎭⎫0,12a C.⎝⎛⎭⎫a 4,0 D.⎝⎛⎭⎫0,14a 4.已知M (-2,0),N (2,0),则以MN 为斜边的直角三角形的直角顶点P 的轨迹方程是( )A .x 2+y 2=2B .x 2+y 2=4C .x 2+y 2=2(x ≠±2)D .x 2+y 2=4(x ≠±2) 5.已知椭圆x 2a 2+y 2b 2=1 (a >b >0)有两个顶点在直线x +2y =2上,则此椭圆的焦点坐标是( )A .(±3,0)B .(0,±3)C .(±5,0)D .(0,±5)6.设椭圆x 2m 2+y 2m 2-1=1 (m >1)上一点P 到其左焦点的距离为3,到右焦点的距离为1,则椭圆的离心率为( ) A.22 B.12 C.2-12 D.34 7.已知双曲线的方程为x 2a 2-y 2b2=1,点A ,B 在双曲线的右支上,线段AB 经过双曲线的右焦点F 2,|AB |=m ,F 1为另一焦点,则△ABF 1的周长为( )A .2a +2mB .4a +2mC .a +mD .2a +4m 8.已知抛物线y 2=4x 上的点P 到抛物线的准线的距离为d 1,到直线3x -4y +9=0的距离为d 2,则d 1+d 2的最小值是( )A.125B.65 C .2 D.559.设点A 为抛物线y 2=4x 上一点,点B (1,0),且|AB |=1,则A 的横坐标的值为( )A .-2B .0C .-2或0D .-2或210.从抛物线y 2=8x 上一点P 引抛物线准线的垂线,垂足为M ,且|PM |=5,设抛物线的焦点为F ,则△PFM 的面积为( )A .5 6B .6 5C .10 2D .5 211.若直线y =kx -2与抛物线y 2=8x 交于A ,B 两个不同的点,且AB 的中点的横坐标为2,则k 等于( )A .2或-1B .-1C .2D .1±512.设F 1、F 2分别是双曲线x 25-y 24=1的左、右焦点.若点P 在双曲线上,且1PF ·2PF =0,则|1PF +2PF |等于( )二、填空题(本大题共4小题,每小题5分,共20分)13.以等腰直角△ABC 的两个顶点为焦点,并且经过另一顶点的椭圆的离心率为____________.14.已知抛物线C :y 2=2px (p >0),过焦点F 且斜率为k (k >0)的直线与C 相交于A 、B 两点,若AF =3FB ,则k =________.15.已知抛物线y 2=2px (p >0),过点M (p,0)的直线与抛物线交于A 、B 两点,则OA ·OB =________.16.已知过抛物线y 2=4x 的焦点F 的直线交该抛物线于A 、B 两点,|AF |=2,则|BF |=________.三、解答题(本大题共6小题,共70分)17.(10分)求与椭圆x 29+y 24=1有公共焦点,并且离心率为52的双曲线方程.18.(12分)已知斜率为1的直线l 过椭圆x 24+y 2=1的右焦点F 交椭圆于A 、B 两点,求弦AB 的长.19.(12分)已知两个定点A(-1,0)、B(2,0),求使∠MBA=2∠MAB的点M的轨迹方程.20.(12分)已知点A(0,-2),B(0,4),动点P(x,y)满足PA·PB=y2-8.(1)求动点P的轨迹方程;(2)设(1)中所求轨迹与直线y =x +2交于C 、D 两点.求证:OC ⊥OD (O 为原点).21.(12分)已知抛物线C :y 2=2px (p >0)过点A (1,-2).(1)求抛物线C 的方程,并求其准线方程.(2)是否存在平行于OA (O 为坐标原点)的直线l ,使得直线l 与抛物线C 有公共点,且直线OA 与l 的距离等于55?若存在,求出直线l 的方程;若不存在,说明理由.22.(12分)已知椭圆C 的中心在坐标原点,焦点在x 轴上,它的一个顶点恰好是抛物线y =14x 2的焦点,离心率为255. (1)求椭圆C 的标准方程;(2)过椭圆C 的右焦点F 作直线l 交椭圆C 于A ,B 两点,交y 轴于点M ,若MA =m FA ,MB =n FB ,求m +n 的值.第二章 圆锥曲线与方程(B)1.A [2a =18,∵两焦点恰好将长轴三等分,∴2c =13×2a =6,∴a =9,c =3, b 2=a 2-c 2=72,故椭圆的方程为x 281+y 272=1.] 2.B [点P 在线段AB 上时|P A |+|PB |是定值,但点P 轨迹不是椭圆,反之成立,故选B.]3.D4.D [P 在以MN 为直径的圆上.]5.A6.B [2a =3+1=4.∴a =2,又∵c =m 2-(m 2-1)=1,∴离心率e =c a =12.] 7.B [∵A ,B 在双曲线的右支上,∴|BF 1|-|BF 2|=2a ,|AF 1|-|AF 2|=2a ,|BF 1|+|AF 1|-(|BF 2|+|AF 2|)=4a ,|BF 1|+|AF 1|=4a +m ,∴△ABF 1的周长为4a +m +m =4a +2m .]8.A[如图所示过点F 作FM 垂直于直线3x -4y +9=0,当P 点为直线FM 与抛物线的交点时,d 1+d 2最小值为|3+9|5=125.] 9.B [由题意B 为抛物线的焦点.令A 的横坐标为x 0,则|AB |=x 0+1=1,∴x 0=0.]10.A11.C [由⎩⎪⎨⎪⎧y =kx -2y 2=8x 消去y 得, k 2x 2-4(k +2)x +4=0,故Δ=[-4(k +2)]2-4k 2×4=64(1+k )>0,解得k >-1,由x 1+x 2=4(k +2)k 2=4, 解得k =-1或k =2,又k >-1,故k =2.]12.B [因为PF 1→·PF 2→=0,所以PF 1→⊥PF 2→,则|PF 1→|2+|PF 2→|2=|F 1F 2|2=4c 2=36,故|PF 1→+PF 2→|2=|PF 1→|2+2PF 1→·PF 2→+|PF 2→|2=36,所以|PF 1→+PF 2→|=6.故选B.]13.22或2-1解析 设椭圆的长半轴长为a ,短半轴长为b ,半焦距为c ,当以两锐角顶点为焦点时,因为三角形为等腰直角三角形,故有b =c ,此时可求得离心率e =c a =c b 2+c2=c 2c =22;同理,当以一直角顶点和一锐角顶点为焦点时, 设直角边长为m ,故有2c =m,2a =(1+2)m ,所以,离心率e =c a =2c 2a =m (1+2)m=2-1. 14. 3解析 设直线l 为抛物线的准线,过A ,B 分别作AA 1,BB 1垂直于l ,A 1,B 1为垂足,过B 作BE 垂直于AA 1与E ,则|AA 1|=|AF |,|BB 1|=|BF |,由AF →=3FB ,∴cos ∠BAE =|AE ||AB |=12, ∴∠BAE =60°,∴tan ∠BAE = 3.即k = 3.15.-p 216.2解析 设点A ,B 的横坐标分别是x 1,x 2,则依题意有焦点F (1,0),|AF |=x 1+1=2,x 1=1,直线AF 的方程是x =1,故|BF |=|AF |=2.17.解 由椭圆方程为x 29+y 24=1,知长半轴长a 1=3,短半轴长b 1=2,焦距的一半c 1=a 21-b 21=5,∴焦点是F 1(-5,0),F 2(5,0),因此双曲线的焦点也是F 1(-5,0),F 2(5,0),设双曲线方程为x 2a 2-y 2b 2=1 (a >0,b >0),由题设条件及双曲线的性质,得⎩⎪⎨⎪⎧ c =5c 2=a 2+b 2c a =52,解得⎩⎪⎨⎪⎧a =2b =1, 故所求双曲线的方程为x 24-y 2=1. 18.解 设A 、B 的坐标分别为A (x 1,y 1)、B (x 2,y 2).由椭圆的方程知a 2=4,b 2=1,c 2=3,∴F (3,0).直线l 的方程为y =x - 3.①将①代入x 24+y 2=1,化简整理得 5x 2-83x +8=0,∴x 1+x 2=835,x 1x 2=85, ∴|AB |=(x 1-x 2)2+(y 1-y 2)2=1+1⎝⎛⎭⎫8352-4×85=85. 19.解 设动点M 的坐标为(x ,y ).设∠MAB =β,∠MBA =α,即α=2β,∴tan α=tan 2β,则tan α=2tan β1-tan 2β.①(1)如图(1),当点M 在x 轴上方时,tan β=y x +1,tan α=y 2-x, 将其代入①式并整理得3x 2-y 2=3 (x >0,y >0);(2)如图(2),当点M 在x 轴的下方时,tan β=-y x +1,tan α=-y 2-x, 将其代入①式并整理得3x 2-y 2=3 (x >0,y <0);(3)当点M 在x 轴上时,若满足α=2β,M 点只能在线段AB 上运动(端点A 、B 除外),只能有α=β=0.综上所述,可知点M 的轨迹方程为3x 2-y 2=3(右支)或y =0 (-1<x <2).20.(1)解 ∵A (0,-2),B (0,4),∴PA →=(-x ,-2-y ),PB →=(-x,4-y ).则PA →·PB →=(-x ,-2-y )·(-x,4-y )=x 2+y 2-2y -8.∴y 2-8=x 2+y 2-2y -8,∴x 2=2y .(2)证明 将y =x +2代入x 2=2y ,得x 2=2(x +2),即x 2-2x -4=0,且Δ=4+16>0,设C 、D 两点的坐标分别为(x 1,y 1),(x 2,y 2),则有x 1+x 2=2,x 1x 2=-4.而y 1=x 1+2,y 2=x 2+2,∴y 1y 2=(x 1+2)(x 2+2)=x 1x 2+2(x 1+x 2)+4=4,∴k OC ·k OD =y 1x 1·y 2x 2=y 1y 2x 1x 2=-1, ∴OC ⊥OD .21.解 (1)将(1,-2)代入y 2=2px ,得(-2)2=2p ·1,所以p =2.故所求的抛物线C 的方程为y 2=4x ,其准线方程为x =-1.(2)假设存在符合题意的直线l ,其方程为y =-2x +t .由⎩⎪⎨⎪⎧y =-2x +t ,y 2=4x 得y 2+2y -2t =0. 因为直线l 与抛物线C 有公共点,所以Δ=4+8t ≥0,解得t ≥-12. 另一方面,由直线OA 到l 的距离d =55可得|t |5=15,解得t =±1. 因为-1∉[-12,+∞),1∈[-12,+∞), 所以符合题意的直线l 存在,其方程为2x +y -1=0.22.解 (1)设椭圆C 的方程为x 2a 2+y 2b 2=1 (a >b >0). 抛物线方程可化为x 2=4y ,其焦点为(0,1),则椭圆C 的一个顶点为(0,1),即b =1.由e =c a =a 2-b 2a 2=255. 得a 2=5,所以椭圆C 的标准方程为x 25+y 2=1. (2)易求出椭圆C 的右焦点F (2,0), 设A (x 1,y 1),B (x 2,y 2),M (0,y 0),显然直线l 的斜率存在,设直线l 的方程为y =k (x-2),代入方程x 25+y 2=1, 得(1+5k 2)x 2-20k 2x +20k 2-5=0.∴x 1+x 2=20k 21+5k 2,x 1x 2=20k 2-51+5k 2. 又MA →=(x 1,y 1-y 0),MB →=(x 2,y 2-y 0), FA =(x 1-2,y 1),FB =(x 2-2,y 2). ∵MA →=m FA ,MB →=n FB ,∴m =x 1x 1-2,n =x 2x 2-2, ∴m +n =2x 1x 2-2(x 1+x 2)4-2(x 1+x 2)+x 1x 2, 又2x 1x 2-2(x 1+x 2)=40k 2-10-40k 21+5k 2 =-101+5k 2, 4-2(x 1+x 2)+x 1x 2=4-40k 21+5k 2+20k 2-51+5k 2=-11+5k 2, ∴m +n =10.。