2016学年第一学期七年级数学教学质量评估(一)

合集下载

一学期期中考试初一数学试题(上海部分)甄选.

一学期期中考试初一数学试题(上海部分)甄选.

一学期期中考试初一数学试题(上海部分)#2016学年第一学期期中考试初一数学试题考试时间90分钟,满分100分一、计算填空题(每空1分,满分100分)1、(1)2a -3a= ; (2)23)(x - ; (3)3a -(2a -3) ; (4)3)21(xy -; (5)2)2(b a +- ; (6))32)(32(y x y x --+- ; (7))25(·5263b a b a - ; (8))1231(322-+--x x x ; (9)(2x+y )(x -2y ) ; (10)2333)(a a a ++ ; 二、填空题(每题2分,共20分)2、一个两位数,个位数数字是m ,十位数字是n ,这个两位数可表示为: ;3、把多项式按字母x 的升幂排列是4、若与是同类项,则m= ;n= ;5、将正方形的边长由a cm 增加6cm ,则正方形面积增加 2cm 6、因式分解:=---232828xy x y x ; 7、计算:20162015)45()54(⨯-= ; 8、已知812++ax x 是一个完全平方式,则a= ; 9、已知5,2==nny x ,则ny x )(23= ; 10、已知:a+b=8,ab=2,那么()=-2b a ;11、如图,长方形的长为a ,宽为b ,横向阴影部分为长方形,另一阴影部分为平行四边形,它们的宽都为c ,则空白部分的面积是 ;三、单项选择题(本大题共4题,每题2分,共8分) 12、在23232,23,2,2,1,,0y x b a n m y x x a ---+-+这些代数式中,整式的个数为( ) A 、5个 B 、4个 C 、3个 D 、2个13、下列说法中错误的是················( )A 、0是单项式B 、32y 是三次单项式C 、2xy 的系数是2 D 、222224ab b a b a -+-是四次三项式 14、下列各式从左到右的变形中,是正确的因式分解是( ) A 、224)2)(2(b a b a b a -=-+ B 、32)1(12+=+-x x x C 、)381)(381(96412-+=-aa a D 、)1(3332-=-x xy xy y x 15、如图,甲乙丙丁四位同学给出了四种表示该长方形面积的多项式: ①(2a+b )(m+n ); ①2a (m+n )+b (m+n ); ①m (2a+b )+n (2a+b ); ①2am+2an+bm+bn ,你认为其中正确的有( ) A 、①① B 、①① C 、①①① D 、①①①①四、计算简答(16、17题5分,其余每题6分,共34分) 16、先化简,再求值:)5()32(3222x x x x x +---+,其中x=417、计算:()()()()()y x y x x y y x y x 2232322+-+--+-18、计算:()()1313-+++-y x y x19、因式分解:()()8272222-+-+x x x x20、因式分解:()222224b a b a -+21、因式分解:x y xy y x +--+222五、解答题(22、23、24每题6分,25题10分,共28分)22、若关于x 的代数式()()n x x mx x +--+3822的乘积不含2x 和3x 的项,求m+n 的值23、有一根弹簧原长10厘米,挂重物后它的长度会改变,请根据下面表格中的一些数据回答下列1、当所挂重物为x 克时,用代数式表示此时弹簧的总长度y 厘米;2、当x=30克,求此时弹簧的总长度。

河北省保定2024-2025学年上学期期中教学质量检测七年级数学试题(含答案)

河北省保定2024-2025学年上学期期中教学质量检测七年级数学试题(含答案)

2024-2025学年度第一学期期中教学质量监测七年级数学注意事项:1.全卷满分120分,答题时间为120分钟。

2.请将各题答案填写在答题卡上。

3.本次考试设卷面分,答题时要书写认真、工整、规范、美观一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列图形中,形状为圆锥的是( )A .B .C .D .2.1不是的( )A .绝对值B .相反数C .倒数D .到原点的距离3.下列现象属于面动成体的是( )A .雨滴滴下来形成雨丝B .旋转门的旋转C .汽车雨刷的转动D .流星划过夜空4.在代数式,,,,,中,多项式的个数是( )A .6B .5C .4D .35.绿色建筑是实现“双碳”目标的重要发力点之一,作为“中国低碳城市发展项目”首批试点城市,保定牢固树立和践行绿水青山就是金山银山的发展理念,全市绿色建筑累计面积已达4994万平方米,绿色建筑占新建建筑面积的比例达到100%.数据“4994”万用科学记数法表示为( )A .B .C .D .6.下列整式变形正确的是( )A .B .C .D .7.如图,这是一种转盘型密码锁,每次开锁时需要先把表示“0”的刻度线与固定盘上的标记线对齐,再按顺时针或逆时针方向旋转带有刻度的转盘三次.例如,按逆时针方向旋转5个小格记为“”,此时标记线对准的数是5,再顺时针旋转2个小格记为“”,再逆时针旋转3个小格记为“”,锁可以打开,那么开锁密码就可以记为“,,”.如果一组开锁密码为“,,”,那么打开锁时标记线对准的刻度线表示的数是( )1-a a b +2ab 22a b -312abc 5a +74.99410⨯64.99410⨯80.499410⨯649.9410⨯()22a b c a b c-+=-+()222a b c a b c +-=++()2222a b c a b c --=-+()44a b c a b c--=-+5+2-3+5+2-3+10-5+7-A .B .C .D .128.成安草莓果实呈心形,色泽鲜红,香味浓郁,口感细软,酸甜可口,产量高,品质优,嘉嘉和琪琪周末相约去采摘草莓,已知嘉嘉每小时采摘草莓口个,琪琪每小时比嘉嘉多采摘草莓5个,则嘉嘉和琪琪2小时共摘草莓的个数为( )A .B .C .D .9.当时,的值为4,则时,的值为( )A .4B .5C .6D .710.如图,点和点表示的数分别为和,下列式子中错误的是( )A .B .C .D .11.如图,小明在写作业不小心打翻了墨水,导致一部分内容看不清楚,则被墨水遮住的多项式为( )A .B .C .D .12.若,,且为负有理数,则( )A .B .3C .或3D .或3二、填空题(本大题共4个小题,每小题3分,共12分)13.若单项式与是同类项,则____________.14.计算的结果为____________.15.如图,这是由若干个小立方体搭起来的几何体的正面、侧面所看到的图,那么这个几何体至少应该由____________个小立方体组成.10-12-15-a 25a +210a +410a +45a +1x =31mx nx -+1x =-37mx nx -+A B ab 21a <0a b +<1b -<-20ab <2625x x +-2525x x +-263x x +262x +12x -=15y +=y x x y +=3-3-136m x y -466x y m =20242025122⎛⎫-⨯ ⎪⎝⎭16.如图,用一个表格中的表示的次数,表示的次数,例如,表格中的;.若都是系数为1的关于,的单项式,由规律可知,的次数为___________,若多项式★为,其中,,为3个不同的正整数,且多项式的值为75,则的最大值为____________.三、解答题(本大题有8个小题,共72分.解答应写出文字说明、证明过程或演算步骤)17.(8分)计算:.18.(8分)计算:.19.(8分)如图,这是一个正方体展开后的平面示意图,相对的面上的数相等.已知,求的值.20.(8分)周末,明明的父母带明明去革命圣地西柏坡参观。

2018-2019学年山西省七年级阶段一教学质量评估(数学试卷)

2018-2019学年山西省七年级阶段一教学质量评估(数学试卷)

! " (4)0.25-
1 8
-
-
7 8
+
3 4
.
17.( % 本题 8 分)
把下列各数表示在数轴上,并用“<”把它们连接起来.
2, -(-4),
1 2
, 0, -3.5.%
18.(本题 9 分) 下面是小强与妈妈的对话,根据对话,解答下列问题:
上星期我给你 30 元零用钱,你 是怎么花的?
我买了一本笔记本,花 了 1.2 元;还买了两支圆 珠笔,花了 7.5 元;乘公 共汽车一共花了 4.5 元.
例如:3306 用算筹表示就是
,则用算筹
所表示的数为
.
三、解答题(本大题共 8 小题,共 75 分,解答应写出文字说明、证明过程或演算步骤)
16.%计算:(本题共 4 小题,每小题 4 分,共 16 分)
(1)(-3)+ -5 ;
(2)-4+17+(-26);
(3)3+(-4)-(-9)-(+2);
+0.2
+0.3

县(市、区)

哈尔滨-20℃
北京-10℃
武汉 5℃
上海 0℃
A. 哈尔滨
B. 北京
C. 武汉
D. 上海
3. 如图所示的平面图形,经过折叠可以围成一个棱柱的是
A. 7.7 千克
B. 7.9 千克
C. 8.1 千克
D. 8.3 千克
10. 巴黎与北京的时差为-7 时(正数表示同一时刻巴黎比北京时间早).王老师在北京时
+82,-25,+90.
(1)此时他们登上顶峰了吗? 如果没有,那么他们离顶峰还差多少米?

七年级数学试卷质量分析

七年级数学试卷质量分析

七年级数学试卷质量分析试卷分析在七年级数学教学反馈环节的作用至关重要,小编整理了关于七年级数学试卷质量分析,希望对大家有帮助!七年级数学试卷质量分析范文一基本概况这次数学期中考试,七一班参考64人,均分64.44,及格率65.63,优秀率21.88,七二班参考61人,均分70.16,优秀率32.79,及格率68.85,最高分99分,最低分12分一、试题分析这次期中考试全面提高数学教育质量,有利于初中数学课程改革和教学改革,培养学生的创新精神和实践能力;有利于减轻学生过重的负担,促进学生主动、活泼、生动地学习.这次考试主要考察了初一数学1至3.3章的内容。

主要内容有,有理数、数轴、相反数、绝对值、有理数的混合运算;整式,同类项,科学记数法等。

试卷的总体难度适宜,能坚持“以纲为纲,以本为本的原则”,在加强基础知识的考查的同时,还加强了对学生的能力的考查的比例设置考题,命题能向课程改革靠拢.注重基础,加大知识点的覆盖面,控制题目的烦琐程度,题目力求简洁明快,不在运算的复杂上做文章;整体布局力求合理有序,提高应用题的考查力度,适当设置创新考题,注重知识的拓展与应用,适应课程改革的形势.二.试卷分析得分率较高的题目有:一、1—7,10—12,15;二、1,3;三、1,2,5这些题目都是基本知识的应用,说明多数学生对基础知识掌握较好。

得分率较低的题目有:一、8,9,13,14;二、2,4,5;三、3,4,6。

下面就得分率较低的题目简单分析如下:一、8、此题主要考察对有理数的理解,绝对值和倒数的内容,部分同学把绝对值最小的数给理解成1了,还有部分同学把倒数等于本身的数只想到了1,把-1给忘了,说明部分同学对这些知识理解的不太透,建议结合数轴理解最大的负整数、最小的正整数、绝对值最小的数;三.存在问题1、两极分化严重2、基础知识较差。

我们在阅卷中发现,部分学生基础知识之差让人不可思议.3、概念理解没有到位4、缺乏应变能力5、审题能力不强,错误理解题意四、改进措施1、强化纲本意识,注重“三基”教学我们提出要加强基础知识教学要加强对学生“三基”的教学和训练,使学生掌握必要的基础知识、基本技能和基本方法.在概念、基本定理、基本法则、性质等教学过程中,要加强知识发生过程的教学,使学生加深对基础知识的理解;要加强对学生数学语言的训练,使学生的数学语言表达规范、准确、到位;要加强运算能力的教学,使学生明白算理,并选择简捷、合理的算法,提高运算的速度和准确率;要依纲据本进行教学,踏踏实实地教好第一遍,切不可不切实际地脱离课本,搞难题训练,更不能随意补充纲本外的知识.教学中要立足于把已学的知识弄懂弄通,真正让学生形成良好的认知结构和知识网络,打好初中数学基础,全面提高学生的数学素质.2、强化全面意识,加强补差工这次考试数学的统计数据进一步说明,在数学学习上的困难生还比较多,怎样使这些学生尽快“脱贫”、摆脱中考成绩个位数的困境,以适应在高一级学校的继续学习和当今的信息时代,这是我们每一个初中数学教育工作者的一个重要研究课题.重视培优,更应关注补差.课堂教学中,要根据本班的学情,选择好教学内容,合理地确定教学的起点和进程.课外要多给学习有困难的学生开“小灶”,满腔热情地关心每一位后进生,让他们尽快地跟上其他同学,促进全体学生的进步和发展.3、强化过程意识,暴露思维过程数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上.数学教学中,应当有意识地精选一些典型例题和习题进行思维训练.激发学生的学习积极性,向学生提供充分从事数学活动的机会.暴露学生把抽象的数学问题具体化和形象化的过程;要让学生多说解题思路和解决问题的策略,暴露学生解决数学问题的思维过程;经常性地进行数学语言的训练,暴露学生对复杂的数学语言进行分解与简化的过程;要通过一题多解和一题多变的训练,暴露学生对数学问题多种解法的比较与反思过程.让学生在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验.4、教学中要重在凸现学生的学习过程,培养学生的分析能力。

2014——2015学年第一学期期末质量监测抽调评卷教师名额分配表及名单介绍

2014——2015学年第一学期期末质量监测抽调评卷教师名额分配表及名单介绍

3
1
陈琳玲
1
陈晓霞
1
丽 芳
1
张惠钗
1
1
廖钗燕
1
袁建荣
1
吴国华
1
4
邱丹仪 张蔚贞 章梅建 刘 欢
2
李凌红 谢悄悄
1
林淑美
1
高 洁
2
张跃群 林东宝
3
2
黄红梅 林素贤
2
林露萍 陈 芳
1
邓泉武
1
陈丹玲
2
廖小红 吴连珍
2
5
陈晓枫 罗晓丽 郭立云 许 英 张 飚
1
郭慧华
2
王虹娟 张笑燕
1
廖晓静
3
黄秀霞 李 鲤 李佳复
7
张晓云 詹如鸿 张锦娟 罗丽丽 郭 立 谢丽雪 郭春燕 陈际辉 谢 莉 吴丽玲 马颖华 胡秀金 王秋萍 詹竞竞 饶 瑛 何芳英 陈卿婷 郑文珍 廖玉珍 郑雪丽 付丽娟 陈莉平 魏若芬 游 丹 陈颖娜 陈春晖
6
林 慧 陈 盛 卢珍娘 罗梅琼 吕 健 林婷英
4
黄晓勇 陈慧芳 唐清霞 许 凡
莲东中学
5
陈文蔚 魏汝岩 林丽春 邓绍初 林金昌 陈清芳 杨 萍 李小华 许春燕 朱冰妍 李玉梅
李伟林 简彩娣 江小花
1
苏烈岗
1


1
陈婉玲
1
苏勇健
林笑华 郑 闽
1 1
刘金彪 邓惠钦
1 1
俞建荣 胡 勇
1 1
连志勇 邱国芳
0 1 翁永彬
曹红彬
0
陈蓝蓉
2
陈文深 谢茂芬
1
罗清华
1
陈忠卫
1

2016——2017 学年第一学期教学质量检测七年级数学试题及答案

2016——2017 学年第一学期教学质量检测七年级数学试题及答案

2016——2017学年第一学期教学质量检测七年级数学试卷说明:本试卷考试时间90分钟,满分100分,答题必须在答题卷上作答,在试题卷上作答无效。

第一部分选择题一、选择题:(本题共12小题,每小题3分,共36分,每小题给出4个选项,其中只有一个是正确的)1.2-的相反数是()A .2B .12-C .2-D .122.2015年10月29日,中共十八届五中全会公报决定,实施普遍二孩政策,中国从1980年开始,推行了35年的城镇人口独生子女政策真正宣告终结。

“未来中国人口会不会突破15亿?”是政策调整决策中的重要考量,“经过高、中、低方案反复测算,未来中国人口不会突破。

”15亿用科学计数法表示为()A .81510⨯B .8510⨯C .91.510⨯D .91.53.下列调查方式合适的是()A .为了了解冰箱的使用寿命,采用普查的方式B .为了了解全国中学生的视力状况,采用普查的方式C .为了了解人们保护水资源的意识,采用抽样调查的方式D .对“神舟十一号载人飞船”零部件的检查,采用抽样调查的方式4.下列各组代数式中,不是同类项的是()A .22x y 和2yx -B .33-和3C .2ax 和2a xD .3xy 和2xy -5.若从n 边形的一个顶点出发,最多可以引()条对角线A .n B .1n -C .2n -D .3n -6.有理数a 、b 在数轴上的位置如图,则下列各式不成立的是()A .0a b +>B .0a b ->C .b a>D .0ab <7.下面说法,错误的是()A .一个平面截一个球,得到的截面一定是圆B .一个平面截一个正方体,得到的截面可以是五边形C .棱柱的截面不可能是圆D .下边甲、乙两图中,只有乙才能折成正方体8.某件产品的标价为120元,若以九折降价出售,相对于进货价仍获利20%,该件产品的进货价为()A .80元B .85元C .90元D .95元9.方程()1230a a x --+=是关于x 的一元一次方程,则a =()A .2B .2-C .1±D .2±10.下列说法正确的是()A .长方形的长是a 米,宽比长短25米,则它的周长可表示为()225a -米B .6h 表示底为6,高为h 的三角形面积C .10a b +表示一个两位数,它的个位数字是a ,十位数字是bD .甲、乙两人分别从相距40千米的两地同时相向出发,其行走的速度分别为3千米/小时和5千米/小时,经过x 小时相遇,则可列方程式为3540x x +=11.关于x 、y 的代数式()()33981kxy y xy x -++-+中不含有二次项,则k =()A .3B .13C .4D .1412.已知3a =,216b =;且a b a b +≠+,则代数式a b -的值为()A .1或7B .1或7-C .1-或7-D .±1或±7第二部分非选择题二、填空题:(本题共4小题,每小题3分,共12分)13.比较大小:8-________9-(填“<”、“=”、“>”).14.若1a b -=,则代数式()2a b --的值是________.15.在时钟的钟面上,九点半的时针与分针的夹角是________.16.a 是不为1的有理数,我们把11a-称为a 的差倒数,如:2的差倒数是1112--=,1-的差倒数是()11112--=,已知113a =,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,……,以此类推,则2015a =________.三、解答题:(本题共7小题,其中第17题11分,第18题8分,第19题6分,第20题6分,第21题6分,第22题7分,第23题8分,共52分)17.计算:(1)(本题3分)()137********⎛⎫--+⨯- ⎪⎝⎭(2)(本题3分)()()()324224⎡⎤-⨯-÷---⎣⎦(3)(本题5分)先化简,再求值:22221223333x x xy y x ⎛⎫--+-- ⎪⎝⎭,其中2x =,1y -=.18.(每小题4分,共8分)解方程:(1)()52323x x ---=(2)34153x x ---=19.(本题6分)校学生会体育部为更好的的开展同学们课外体育活动,现对学生最喜欢的一项球类运动进行了随机抽样调查,根据调查的结果绘制成如图2-①和图2-②所示的两幅不完整统计图,其中A .喜欢篮球B .喜欢足球C .喜欢乒乓球D .喜欢排球。

七年级数学上学期第一次月考试卷(含解析) 新人教版五四制

七年级数学上学期第一次月考试卷(含解析) 新人教版五四制

2016-2017学年黑龙江省大庆市杜蒙县七年级(上)第一次月考数学试卷一.选择题(本题共10个小题,每小题3分,共30分)1.代数式﹣x3+2x+24是()A.多项式B.三次多项式C.三次三项式D.四次三项式2.下列计算结果正确的是()A.﹣2x2y3•2xy=﹣2x3y4B.3x2y﹣5xy2=﹣2x2yC.28x4y2÷7x3y=4xy D.(﹣3a﹣2)(3a﹣2)=9a2﹣43.下列算式能用平方差公式计算的是()A.(2a+b)(2b﹣a)B.C.(3x﹣y)(﹣3x+y) D.(﹣a﹣b)(﹣a+b)4.(p﹣q)4÷(q﹣p)3=()A.p﹣q B.﹣p﹣q C.q﹣p D.p+q5.如果一个角的两边分别平行于另一个角的两边,那么这两个角()A.相等B.互补C.相等或互补D.以上结论都不对6.如图,如果∠AFE+∠FED=180°,那么()A.AC∥DE B.AB∥FE C.ED⊥AB D.EF⊥AC7.下列说法:①两条直线平行,同旁内角互补;②同位角相等,两直线平行;③内错角相等,两直线平行;④垂直于同一直线的两直线平行,其中是平行线的性质的是()A.①B.②和③C.④D.①和④8.已知3a=5,9b=10,则3a+2b=()A.﹣50 B.50 C.500 D.以上都不对9.如果(x﹣2)(x+3)=x2+mx+n,那么m,n的值分别是()A.5,6 B.1,﹣6 C.﹣1,6 D.5,﹣610.一个正方形的边长增加3cm,它的面积就增加了39cm2,这个正方形的边长为()A.5cm B.6cm C.8cm D.10cm二.填空题(本题共10个小题,每小题3分,共30分)11.单项式的系数是,次数是.12.计算(2+x)(2﹣x)=,(﹣a﹣b)2=.13.5k﹣3=1,则k﹣2=.14.如果a2﹣ma+36是一个完全平方式,那么m的值.15.用科学记数法表示:0.0000025=,﹣1490000000=.16.如图,若l1∥l2,∠1=45°,则∠2=度.17.如果x+y=6,xy=7,那么x2+y2=.18.如图,DAE是一条直线,DE∥BC,则∠BAC=度.19.如图,已知l1∥l2,∠1=40°,∠2=55°,则∠3=度,∠4=度.20.一个角的余角和这个角的补角也互为补角,那么这个角的度数等于.三、解答题:(本大题共9小题,共60分)21.(1)a2bc3•(﹣2a2b2c)2(2)(x+1)2﹣(3+x)(x﹣3)(3)(54x2y﹣108xy2﹣36xy)÷(18xy)(4)a2•a3﹣2a7÷a2(5)(x﹣y)(x+y)(x2﹣y2)(6)(a﹣2b+3c)2﹣(a+2b﹣3c)2.22.化简并求值(2a+3b)(2a﹣3b)+(a﹣3b)2,其中a=﹣5,b=.23.已知m﹣=2,求m2+的值.24.推理填空:已知:如图AB⊥BC于B,CD⊥BC于C,∠1=∠2,求证:BE∥CF.证明:∵AB⊥BC于B,CO⊥BC于C (已知)∴∠1+∠3=90°,∠2+∠4=90°∴∠1与∠3互余,∠2与∠4互余又∵∠1=∠2 (),∴=()∴BE∥CF ().25.已知x2+2x+y2﹣4y+5=0,求代数式y x的值.26.如图,已知AF平分∠BAC,DE平分∠BDF,且∠1=∠2,能判定DF∥AC吗?请说明理由?27.如图,∠CAB=100°,∠ABF=130°,AC∥MD,BF∥ME,求∠DME的度数.28.如图,∠ABD和∠BDC的平分线交于E,BE交CD于点F,∠1+∠2=90°.求证:(1)AB∥CD;(2)∠2+∠3=90°.29.如图1所示,边长为a的大正方形中有一个边长为b的小正方形,如图2是由图1中阴影部分拼成的一个长方形.(1)请你分别表示出这两个图形中阴影部分的面积:,;(2)请问以上结果可以验证哪个乘法公式?;(3)试利用这个公式计算:①(2m+n﹣p)(2m﹣n+p)②③(2+1)(22+1)(24+1)(28+1)+1.2016-2017学年黑龙江省大庆市杜蒙县七年级(上)第一次月考数学试卷(五四学制)参考答案与试题解析一.选择题(本题共10个小题,每小题3分,共30分)1.代数式﹣x3+2x+24是()A.多项式B.三次多项式C.三次三项式D.四次三项式【考点】多项式.【分析】多项式中的每个单项式叫做多项式的项,有几个单项式即是几项式,由此判定﹣x3+2x+24有三项,是三项式;一个多项式里次数最高项的次数,叫做这个多项式的次数,由于﹣x3是最高次项,由此得出﹣x3+2x+24的次数是3.【解答】解:代数式﹣x3+2x+24是﹣x3、2x、24这三项的和,其中﹣x3是最高次项,∴﹣x3+2x+24是三次三项式.故选C.2.下列计算结果正确的是()A.﹣2x2y3•2xy=﹣2x3y4B.3x2y﹣5xy2=﹣2x2yC.28x4y2÷7x3y=4xy D.(﹣3a﹣2)(3a﹣2)=9a2﹣4【考点】整式的混合运算.【分析】利用整式的乘法公式以及同底数幂的乘方法则分别计算即可判断.【解答】解:A、﹣2x2y3•2xy=﹣4x3y4,所以A选项错误;B、两个整式不是同类项,不能合并,所以B选项错误;C、28x4y2÷7x3y=4xy,所以C选项正确;D、(﹣3a﹣2)(3a﹣2)=﹣(3a+2)(3a﹣2)=﹣9a2+4,所以,D选项错误;故选C.3.下列算式能用平方差公式计算的是()A.(2a+b)(2b﹣a)B.C.(3x﹣y)(﹣3x+y) D.(﹣a﹣b)(﹣a+b)【考点】平方差公式.【分析】利用平方差公式的结果特征判断即可得到结果.【解答】解:(﹣a﹣b)(﹣a+b)=(﹣a)2﹣b2=a2﹣b2.故选D.4.(p﹣q)4÷(q﹣p)3=()A.p﹣q B.﹣p﹣q C.q﹣p D.p+q【考点】同底数幂的除法.【分析】先把原式化为同底数幂的除法,然后根据同底数幂的除法,底数不变指数相减来计算.【解答】解:原式=(﹣q+p)4÷(q﹣p)3,=(﹣1)4(q﹣p)4÷(q﹣p)3,=q﹣p.故选C.5.如果一个角的两边分别平行于另一个角的两边,那么这两个角()A.相等B.互补C.相等或互补D.以上结论都不对【考点】平行线的性质.【分析】此题要正确画出图形,根据平行线的性质,以及邻补角的定义进行分析.【解答】解:如图所示,∠1和∠2,∠1和∠3两对角符合条件.根据平行线的性质,得到∠1=∠2.结合邻补角的定义,得∠1+∠3=∠2+∠3=180°.故选C.6.如图,如果∠AFE+∠FED=180°,那么()A.AC∥DE B.AB∥FE C.ED⊥AB D.EF⊥AC【考点】平行线的判定.【分析】∠AFE与∠FED是直线AC、直线DE被直线EF所截形成的同旁内角,又∠AFE+∠FED=180°,从而得到AC∥DE.【解答】解:∵∠AFE+∠FED=180°,∴AC∥DE(同旁内角互补,两直线平行),故选A.7.下列说法:①两条直线平行,同旁内角互补;②同位角相等,两直线平行;③内错角相等,两直线平行;④垂直于同一直线的两直线平行,其中是平行线的性质的是()A.①B.②和③C.④D.①和④【考点】平行线的判定与性质.【分析】先分清平行线的性质和判定,再进行判断:结论是平行,为判定;条件是平行,为性质.【解答】解:①两条直线平行,同旁内角互补,条件是平行,为性质.②同位角相等,两直线平行,结论是平行,为判定.③内错角相等,两直线平行,结论是平行,为判定.④垂直于同一直线的两直线平行,结论是平行,为判定.故选A.8.已知3a=5,9b=10,则3a+2b=()A.﹣50 B.50 C.500 D.以上都不对【考点】幂的乘方与积的乘方;同底数幂的乘法.【分析】根据同底数幂的乘法的性质的逆用,先整理成已知条件的形式,然后代入数据计算即可.【解答】解:∵9b=32b,∴3a+2b,=3a•32b,=5×10,=50.故选B9.如果(x﹣2)(x+3)=x2+mx+n,那么m,n的值分别是()A.5,6 B.1,﹣6 C.﹣1,6 D.5,﹣6【考点】多项式乘多项式.【分析】已知等式左边利用多项式乘以多项式法则计算,再根据多项式相等的条件即可求出m与n的值.【解答】解:∵(x﹣2)(x+3)=x2+x﹣6=x2+mx+n,∴m=1,n=﹣6.故选B10.一个正方形的边长增加3cm,它的面积就增加了39cm2,这个正方形的边长为()A.5cm B.6cm C.8cm D.10cm【考点】一元二次方程的应用.【分析】设这个正方形原来的边长为x,则新的正方形的边长是x+3cm,面积是(x+3)2cm2.根据面积之间的相等关系可列方程,解方程即可求解.【解答】解:设这个正方形原来的边长为x,则x2+39=(x+3)2解得x=5,故选A.二.填空题(本题共10个小题,每小题3分,共30分)11.单项式的系数是﹣,次数是9.【考点】单项式.【分析】对单项式进行化简后即可求出系数和次数.【解答】解:原式=﹣x6y3,系数为:﹣;次数为:9.故答案为:﹣、912.计算(2+x)(2﹣x)=4﹣x2,(﹣a﹣b)2=a2+2ab+b2.【考点】平方差公式;完全平方公式.【分析】原式利用平方差公式,完全平方公式化简即可得到结果.【解答】解:原式=4﹣x2;原式=a2+2ab+b2,故答案为:4﹣x2;a2+2ab+b213.5k﹣3=1,则k﹣2=.【考点】零指数幂;负整数指数幂.【分析】由题意知k﹣3=0,通过解方程求得k的值.【解答】解:根据题意知,k﹣3=0,解得,k=3,则k﹣2=3﹣2=.故答案是:.14.如果a2﹣ma+36是一个完全平方式,那么m的值±12.【考点】完全平方式.【分析】利用完全平方公式的结构特征判断即可确定出m的值.【解答】解:∵a2﹣ma+36是一个完全平方式,∴m=±12,故答案为:±1215.用科学记数法表示:0.0000025= 2.5×10﹣6,﹣1490000000=﹣1.49×109.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0000025=2.5×10﹣6,﹣1490000000=﹣1.49×109.故答案为:2.5×10﹣6,﹣1.49×109.16.如图,若l1∥l2,∠1=45°,则∠2=135度.【考点】平行线的性质;对顶角、邻补角.【分析】根据平行线的性质,得∠1的同位角是45°,再根据邻补角的定义,得:∠2=180°﹣45°=135°.【解答】解:∵l1∥l2,∠1=45°,∴∠1的同位角是45°,∴∠2=180°﹣45°=135°.17.如果x+y=6,xy=7,那么x2+y2=22.【考点】完全平方公式.【分析】将x+y=6两边平方,利用完全平方公式展开,把xy=7代入即可求出所求式子的值.【解答】解:将x+y=6两边平方得:(x+y)2=x2+y2+2xy=36,把xy=7代入得:x2+y2+14=36,则x2+y2=22.故答案为:2218.如图,DAE是一条直线,DE∥BC,则∠BAC=46度.【考点】平行线的性质.【分析】本题主要利用“两直线平行,内错角相等”以及角的和差进行计算.【解答】解:∵DE∥BC,∴∠DAC=124°,∴∠BAC=∠DAC﹣∠DAB=124°﹣78°=46°.19.如图,已知l1∥l2,∠1=40°,∠2=55°,则∠3=95度,∠4=85度.【考点】三角形的外角性质;平行线的性质.【分析】根据对顶角相等、三角形内角和为180度可求出∠3的邻补角∠5度数,又∠5和∠4为同位角,且两直线平行,即可求解.【解答】解:∠1=∠6=40°,∠2=∠7=55°,∴∠5=180°﹣∠6﹣∠7=85°,∴∠3=180°﹣∠5=95°,又∵l1∥l2,∴∠5=∠4=85°.20.一个角的余角和这个角的补角也互为补角,那么这个角的度数等于45°.【考点】余角和补角.【分析】首先根据余角与补角的定义,设这个角为x°,则它的余角为(90°﹣x),补角为,再根据题中给出的等量关系列方程即可求解.【解答】解:设这个角的度数为x,则它的余角为(90°﹣x),补角为,依题意,得(90°﹣x)+=180°解得x=45°.故答案为45°.三、解答题:(本大题共9小题,共60分)21.(1)a2bc3•(﹣2a2b2c)2(2)(x+1)2﹣(3+x)(x﹣3)(3)(54x2y﹣108xy2﹣36xy)÷(18xy)(4)a2•a3﹣2a7÷a2(5)(x﹣y)(x+y)(x2﹣y2)(6)(a﹣2b+3c)2﹣(a+2b﹣3c)2.【考点】整式的混合运算.【分析】(1)先计算乘方,再计算单项式相乘;(2)先计算完全平方和平方差,再去括号合并即可;(3)根据多项式除以单项式法则即可得;(4)先计算单项式的乘法和除法,再合并可得;(5)先计算平方差,再计算完全平方式;(6)根据平方差公式因式分解,再利用乘法分配律展开即可得.【解答】解:(1)原式=a2bc3•4a4b4c2=2a6b5c5;(2)原式=x2+2x+1﹣(x2﹣9)=x2+2x+1﹣x2+9=2x+10;(3)原式=3x﹣6y﹣2;(4)原式=a5﹣2a5=﹣a5;(5)原式=(x2﹣y2)2=x4﹣2x2y2+y4;(6)原式=(a﹣2b+3c+a+2b﹣3c)(a﹣2b+3c﹣a﹣2b+3c)=2a(﹣4b+6c)=﹣8ab+12ac.22.化简并求值(2a+3b)(2a﹣3b)+(a﹣3b)2,其中a=﹣5,b=.【考点】整式的混合运算—化简求值;平方差公式.【分析】按平方差公式、完全平方公式把式子化简,再代入计算.【解答】解:原式=4a2﹣9b2+a2﹣6ab+9b2=5a2﹣6ab,当时,原式=5×(﹣5)2﹣6×(﹣5)×=125+10=135.23.已知m﹣=2,求m2+的值.【考点】分式的混合运算;完全平方公式.【分析】把已知等式两边平方,利用完全平方公式化简,整理即可求出所求式子的值.【解答】解:把m﹣=2,两边平方得:(m﹣)2=m2+﹣2=4,则m2+=6.24.推理填空:已知:如图AB⊥BC于B,CD⊥BC于C,∠1=∠2,求证:BE∥CF.证明:∵AB⊥BC于B,CO⊥BC于C (已知)∴∠1+∠3=90°,∠2+∠4=90°∴∠1与∠3互余,∠2与∠4互余又∵∠1=∠2 (已知),∴∠3=∠4(等角的余角相等)∴BE∥CF (内错角相等,两直线平行).【考点】平行线的判定;余角和补角.【分析】先根据垂直的定义得出∠1+∠3=90°,∠2+∠4=90°,再由∠1=∠2可得出∠3=∠4,由此可得出结论.【解答】证明:∵AB⊥BC于B,CO⊥BC于C (已知)∴∠1与∠3互余,∠2与∠4互余又∵∠1=∠2 (已知),∴∠3=∠4(等角的余角相等),∴BE∥CF (内错角相等,两直线平行).故答案为:已知;∠3=∠4,等角的余角相等;内错角相等,两直线平行.25.已知x2+2x+y2﹣4y+5=0,求代数式y x的值.【考点】配方法的应用;非负数的性质:偶次方.【分析】根据题目中的式子可以求得x、y的值,从而可以解答本题.【解答】解:∵x2+2x+y2﹣4y+5=0,∴(x+1)2+(y﹣2)2=0,∴x+1=0,y﹣2=0,解得,x=﹣1,y=2,∴.26.如图,已知AF平分∠BAC,DE平分∠BDF,且∠1=∠2,能判定DF∥AC吗?请说明理由?【考点】平行线的判定.【分析】利用角平分线的性质、已知条件“∠1=∠2”、等量代换推知同位角∠BDF=∠BAC.【解答】解:DF∥AC.理由:∵DE平分∠BDF,AF平分∠BAC,又∵∠1=∠2,∴∠BDF=∠BAC,∴DF∥AC.27.如图,∠CAB=100°,∠ABF=130°,AC∥MD,BF∥ME,求∠DME的度数.【考点】平行线的性质.【分析】根据平行线的性质求出∠BMD和∠BME,即可求出答案.【解答】解:∵∠CAB=100°,AC∥MD,∴∠BMD=∠CAB=100°,∵BF∥ME,∠ABF=130°,∴∠BME=180°﹣∠ABF=50°,∴∠DME=∠BMD﹣∠BME=100°﹣50°=50°.28.如图,∠ABD和∠BDC的平分线交于E,BE交CD于点F,∠1+∠2=90°.求证:(1)AB∥CD;(2)∠2+∠3=90°.【考点】平行线的判定与性质.【分析】(1)首先根据角平分线的定义可得∠ABD=2∠1,∠BDC=2∠2,根据等量代换可得∠ABD+∠BDC=2∠1+2∠2=2(∠1+∠2),进而得到∠ABD+∠BDC=180°,然后根据同旁内角互补两直线平行可得答案;(2)先根据三角形内角和定理得出∠BED=90°,再根据三角形外角的性质得出∠EDF+∠3=90°,由角平分线的定义可知∠2=∠EDF,代入得到∠2+∠3=90°.【解答】证明:(1)∵DE平分∠BDC(已知),∴∠ABD=2∠1(角平分线的性质).∵BE平分∠ABD(已知),∴∠BDC=2∠2(角的平分线的定义).∴∠ABD+∠BDC=2∠1+2∠2=2(∠1+∠2)(等量代换).∵∠1+∠2=90°(已知),∴∠ABD+∠BDC=180°(等式的性质).∴AB∥CD(同旁内角互补两直线平行).(2)∵∠1+∠2=90°,∴∠BED=180°﹣(∠1+∠2)=90°,∴∠BED=∠EDF+∠3=90°,∵∠2=∠EDF,∴∠2+∠3=90°.29.如图1所示,边长为a的大正方形中有一个边长为b的小正方形,如图2是由图1中阴影部分拼成的一个长方形.(1)请你分别表示出这两个图形中阴影部分的面积:a2﹣b2,(a+b)(a﹣b);(2)请问以上结果可以验证哪个乘法公式?a2﹣b2=(a+b)(a﹣b);(3)试利用这个公式计算:①(2m+n﹣p)(2m﹣n+p)②③(2+1)(22+1)(24+1)(28+1)+1.【考点】平方差公式的几何背景.【分析】(1)分别根据面积公式进行计算;(2)根据图1的面积=图2的面积列式;(3)①把后两项看成一个整体,利用平方差公式进行计算;②把分母利用平方差公式分解因式,再计算并约分得5;③添一项2﹣1后,与第一个括号里的数组成平方差公式,依次这样计算可得结果.【解答】解:(1)原阴影面积=a2﹣b2,拼剪后的阴影面积=(a+b)(a﹣b),故答案为:a2﹣b2,(a+b)(a﹣b);(2)验证的公式为:a2﹣b2=(a+b)(a﹣b);故答案为:a2﹣b2=(a+b)(a﹣b);(3)①(2m+n﹣p)(2m﹣n+p),=[2m+(n﹣p)][2m﹣(n﹣p)],=(2m)2﹣(n﹣p)2,=4m2﹣n2+2np﹣p2;②====5;③(2+1)(22+1)(24+1)(28+1)+1,=(2﹣1)(2+1)(22+1)(24+1)(28+1)+1,=(22﹣1)(22+1)(24+1)(28+1)+1,=(24﹣1)(24+1)(28+1)+1,=(28﹣1)(28+1)+1,=+1,=+1,=264﹣1+1,=264.文本仅供参考,感谢下载!。

江苏省徐州市沛县五中七年级数学上学期第一次月考试卷(含解析) 苏科版-苏科版初中七年级全册数学试题

江苏省徐州市沛县五中七年级数学上学期第一次月考试卷(含解析) 苏科版-苏科版初中七年级全册数学试题

2016-2017学年某某省某某市沛县五中七年级(上)第一次月考数学试卷一、选择题:1.下列说法正确的是()A.所有的有理数都能用数轴上的点表示B.有理数分为正数及负数C.0没有相反数D.0的倒数仍为02.如果收入200元记作+200元,那么支出150元记作()A.+150元B.﹣150元C.+50元D.﹣50元3.下列是四个地区某天的温度,其中气温最低的是()A.16℃ B.﹣8℃C.2℃D.﹣9℃4.下列各式正确的是()A.﹣|﹣3|=3 B.+(﹣3)=3 C.﹣(﹣3)=3 D.﹣(﹣3)=﹣35.下列说法不正确的是()A.0既不是正数,也不是负数B.0是绝对值最小的数C.若|a|=|b|,则a与b互为相反数D.0的相反数是06.在日历纵列上圈出了三个数,算出它们的和,其中正确的一个是()A.28 B.34 C.45 D.757.下列各组数中,相等的一组是()A.(﹣3)2与﹣32B.|﹣3|2与﹣32C.(﹣3)3与﹣33D.|﹣3|3与﹣338.如图,数轴上的点A、B分别对应实数a、b,下列结论中正确的是()A.a>b B.|a|>|b| C.﹣a<b D.a+b<0二、填空题9.﹣5的绝对值是,﹣的倒数是,6的相反数是.10.平方得36的数是.11.化简:已知a>3,|a﹣3|=.12.化简:﹣(+)=,﹣(﹣5.6)=,﹣|﹣2|=.13.据测算,我国每年因沙漠造成的直接经济损失超过5 400 000万元,这个数用科学记数法表示为万元.14.代数式﹣的系数是.15.|a﹣11|+(b+12)2=0,则(a+b)2017=.16.去年某品牌的彩电售价是m元,今年该品牌的彩电售价下降了15%,则今年的售价为元.17.如图是一个程序运算,若输入的x为﹣5,则输出y的结果为.18.小惠在纸上画了一条数轴后,折叠纸面,使数轴上表示l的点与表示﹣3的点重合,若数轴上A、B两点之间的距离为8(A在B的左侧),且A、B两点经上述折叠后重合,则A点表示的数为.三、解答题(本大题共有8小题,共86分.请在答题的指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)19.计算.(1)(﹣)+﹣(﹣2)+(﹣)(2)﹣12014﹣×[2×(﹣2)+10](3)(﹣+)×(﹣36)(4)﹣18÷(﹣3)2+5×(﹣)3(5)|﹣2|﹣(﹣)+1﹣|1﹣|(6)﹣24+3×(﹣1)2000﹣(﹣2)2.20.将下列各数填入相应的集合中.﹣7,0,,﹣22,﹣2.55555…,3.01,+9,4.020020002…,+10%,﹣2π.无理数集合:{};负有理数集合:{};正分数集合:{};非负整数集合:{}.21.(8分)在数轴上表示下列各数,并把它们用“<”按照从小到大的顺序排列3,﹣(﹣1),0,﹣|﹣2|,﹣322.若|a+1|+(b﹣2)2=0,试求(a﹣b)×(a+b)与a2﹣b2的值.23.检修组乘汽车,沿公路检修线路,约定向东为正,向西为负,某天自A地出发,到收工时,行走记录为(单位:千米):+8,﹣9,+4,+7,﹣2,﹣10,+18,﹣3,+7,+5.回答下列问题:(1)收工时在A地的哪边距A地多少千米?(2)若每千米耗油,问从A地出发到收工时,共耗油多少升?24.已知|a|=3,|b|=5,且a>b,求a﹣b的值.25.学校图书馆上周借书记录如下(超过50册的部分记为正,少于50册的部分记为负):星期一星期二星期三星期四星期五0 +8 +6 ﹣2 ﹣7(1)上星期五借出图书多少册?(2)上星期二比上星期五多借出图书多少册?(3)上周平均每天借出图书多少册?26.如图,半径为1个单位的圆片上有一点A与数轴上的原点重合,AB是圆片的直径.(结果保留π)(1)把圆片沿数轴向左滚动1周,点A到达数轴上点C的位置,点C表示的数是数(填“无理”或“有理”),这个数是;(2)把圆片沿数轴滚动2周,点A到达数轴上点D的位置,点D表示的数是;(3)圆片在数轴上向右滚动的周数记为正数,圆片在数轴上向左滚动的周数记为负数,依次运动情况记录如下:+2,﹣1,+3,﹣4,﹣3①第几次滚动后,A点距离原点最近?第几次滚动后,A点距离原点最远?②当圆片结束运动时,A点运动的路程共有多少?此时点A所表示的数是多少?2016-2017学年某某省某某市沛县五中七年级(上)第一次月考数学试卷参考答案与试题解析一、选择题:1.下列说法正确的是()A.所有的有理数都能用数轴上的点表示B.有理数分为正数及负数C.0没有相反数D.0的倒数仍为0【考点】倒数;数轴;相反数.【分析】根据数轴是表示数的一条直线,有理数的分类,只有符号不同的两个数互为相反数,乘积为1的两个数互为倒数,可得答案.【解答】解:A、所有的有理数都能用数轴上的点表示,故A正确;B、有理数分为正数、零、负数,故B错误;C、0的相反数是0,故C正确;D、0没有倒数,故D错误;故选:A.【点评】本题考查了倒数,利用数轴、有理数的分类、相反数、倒数是解题关键.2.如果收入200元记作+200元,那么支出150元记作()A.+150元B.﹣150元C.+50元D.﹣50元【考点】正数和负数.【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.“正”和“负”相对,所以,如果收入200元记作+200元,那么支出150元记作﹣150元.【解答】解:因为正”和“负”相对,所以,如果收入200元记作+200元,那么支出150元记作﹣150元.故选B.【点评】解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.3.下列是四个地区某天的温度,其中气温最低的是()A.16℃ B.﹣8℃C.2℃D.﹣9℃【考点】有理数大小比较.【专题】应用题.【分析】将四个选项中的数据逐个进行分析比较.【解答】解:因为﹣9<﹣8<2<16,所以气温最低的是﹣9℃.故选D.【点评】本题考查了有理数的大小比较,其方法如下:(1)负数<0<正数;(2)两个负数,绝对值大的反而小.4.下列各式正确的是()A.﹣|﹣3|=3 B.+(﹣3)=3 C.﹣(﹣3)=3 D.﹣(﹣3)=﹣3【考点】相反数.【分析】根据相反数的定义和绝对值的性质对各选项分析判断后利用排除法求解.【解答】解:A、﹣|﹣3|=﹣3,故本选项错误;B、+(﹣3)=﹣3,故本选项错误;C、﹣(﹣3)=3,故本选项正确;D、﹣(﹣3)=3,故本选项错误.故选C.【点评】本题考查了相反数的定义,绝对值的性质,是基础题,熟记概念是解题的关键.5.下列说法不正确的是()A.0既不是正数,也不是负数B.0是绝对值最小的数C.若|a|=|b|,则a与b互为相反数D.0的相反数是0【考点】绝对值;有理数;相反数.【分析】A、0是非负非正的数;B、0也是绝对值最小的数;C、若|a|=|b|,则a=±b;D、0的相反数是0.【解答】解:A、正确,此选项不符合题意;B、正确,此选项不符合题意;C、错误,a、b还有相等的情况,此选项符合题意;D、正确,此选项不符合题意.故选C.【点评】本题考查了绝对值、有理数、相反数,解题的关键是掌握相关概念,并注意考虑问题要全面.6.在日历纵列上圈出了三个数,算出它们的和,其中正确的一个是()A.28 B.34 C.45 D.75【考点】一元一次方程的应用.【分析】日历纵列上圈出相邻的三个数,下边的数总比上边上的数大7,设中间的数是a,则上边的数是a ﹣7,下边的数是a+7,则三个数的和是3a,因而一定是3的倍数,且3数之和一定大于等于24,一定小于等于72,据此即可判断.【解答】解:日历纵列上圈出相邻的三个数,下边的数总比上边上的数大7,设中间的数是a,则上边的数是a﹣7,下边的数是a+7,则三个数的和是3a,因而一定是3的倍数.当第一个数为1,则另两个数为8,15,则它们的和为24,当第一个数为17,则另两个数为24,31,则它们的和为72,∴符合题意的三数之和一定在24到72之间,∴符合题意的只有45.故选:C.【点评】此题主要考查了一元一次方程的应用和有理数的计算,正确理解图表,得到日历纵列上圈出相邻的三个数的和一定是3的倍数以及它的取值X围是关键.7.下列各组数中,相等的一组是()A.(﹣3)2与﹣32B.|﹣3|2与﹣32C.(﹣3)3与﹣33D.|﹣3|3与﹣33【考点】有理数的乘方.【专题】计算题.【分析】各项中利用乘方的意义计算得到结果,即可做出判断.【解答】解:A、(﹣3)2=9,﹣32=﹣9,不相等;B、|﹣3|2=9,﹣32=﹣9,不相等;C、(﹣3)3=﹣27,﹣33=﹣27,相等;D、|﹣3|3=27,﹣33=﹣27,不相等;故选D【点评】此题考查了有理数的乘方,熟练掌握乘方的意义是解本题的关键.8.如图,数轴上的点A、B分别对应实数a、b,下列结论中正确的是()A.a>b B.|a|>|b| C.﹣a<b D.a+b<0【考点】实数与数轴.【分析】根据数轴确定出a、b的正负情况以及绝对值的大小,然后对各选项分析判断后利用排除法求解.【解答】解:根据数轴,a<0,b>0,且|a|<|b|,A、应为a<b,故本选项错误;B、应为|a|<|b|,故本选项错误;C、∵a<0,b>0,且|a|<|b|,∴a+b>0,∴﹣a<b正确,故本选项正确;D、应该是a+b>0,故本选项错误.故选C.【点评】本题考查了实数与数轴的关系,根据数轴确定出a、b的正负情况以及绝对值的大小是解题的关键.二、填空题9.﹣5的绝对值是 5 ,﹣的倒数是﹣,6的相反数是﹣6 .【考点】倒数;相反数;绝对值.【分析】根据负数的绝对值是它的相反数,乘积为1的两个数互为倒数,只有符号不同的两个数互为相反数,可得答案.【解答】解:﹣5的绝对值是 5,﹣的倒数是﹣,6的相反数是﹣6,故答案为:5,﹣,﹣6.【点评】本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.10.平方得36的数是±6 .【考点】有理数的乘方.【分析】根据乘方运算,可得一个正数的平方根.【解答】解:∵(±6)2=36,∴±=±6,故答案为:±6.【点评】本题考查了有理数的乘方,乘方与开方互为逆运算,熟练掌握乘方的意义是解本题的关键.11.化简:已知a>3,|a﹣3|= a﹣3 .【考点】绝对值.【分析】根据绝对值的定义,可得出答案.【解答】解:∵a>3,∴a﹣3>0,∴|a﹣3|=a﹣3.故答案为a﹣3.【点评】本题主要考查了绝对值的性质,能够根据已知条件正确地判断出a﹣3的符号,是解答此题的关键.12.化简:﹣(+)=,﹣(﹣5.6)= 5.6 ,﹣|﹣2|= ﹣2 .【考点】绝对值;相反数.【分析】利用绝对值的定义和相反数的定义解答即可.【解答】解:﹣(+)=,﹣(﹣5.6)=5.6;,﹣|﹣2|=﹣2,故答案为:;5.6;﹣2.【点评】本题主要考查了绝对值和相反数的定义,理解定义是解答此题的关键.13.据测算,我国每年因沙漠造成的直接经济损失超过5 400 000万元,这个数用科学记数法表示为×106万元.【考点】科学记数法—表示较大的数.【专题】应用题.【分析】在实际生活中,许多比较大的数,我们习惯上都用科学记数法表示,使书写、计算简便.将一个绝对值较大的数写成科学记数法a×10n的形式时,其中1≤|a|<10,n为比整数位数少1的数.×106万元.×106.【点评】用科学记数法表示一个数的方法是(1)确定a:a是只有一位整数的数;(2)确定n:当原数的绝对值≥10时,n为正整数,n等于原数的整数位数减1;当原数的绝对值<1时,n为负整数,n的绝对值等于原数中左起第一个非零数前零的个数(含整数位数上的零).14.代数式﹣的系数是﹣.【考点】单项式.【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【解答】解:﹣的系数是﹣,故答案为:﹣.【点评】本题考查了单项式的次数和系数,确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.15.|a﹣11|+(b+12)2=0,则(a+b)2017= ﹣1 .【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解.【解答】解:由题意得,a﹣11=0,b+12=0,解得a=11,b=﹣12,所以,(a+b)2017=(11﹣12)2017=﹣1.故答案为:﹣1.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.16.去年某品牌的彩电售价是m元,今年该品牌的彩电售价下降了15%,则今年的售价为元.【考点】列代数式.【分析】根据题意,把去年的售价看作单位“1”,今年比去年降低15%,今年的售价是去年的1﹣15%=85%,已知去年某品牌的彩电售价是m元,求今年的售价用乘法解答即可.【解答】解:根据题意得:m(1﹣15%)=(元),答:今年的售价为元;故答案为:.【点评】此题考查了列代数式,关键是读懂题意,找出题目中的数量关系,列出代数式.17.如图是一个程序运算,若输入的x为﹣5,则输出y的结果为﹣10 .【考点】代数式求值.【专题】图表型.【分析】根据图表列出算式,然后把x=﹣5代入算式进行计算即可得解.【解答】解:根据题意可得,y=[x+4﹣(﹣3)]×(﹣5),当x=﹣5时,y=[﹣5+4﹣(﹣3)]×(﹣5)=(﹣5+4+3)×(﹣5)=2×(﹣5)=﹣10.故答案为:﹣10.【点评】本题考查了代数式求值,根据图表正确列出算式是解题的关键.18.小惠在纸上画了一条数轴后,折叠纸面,使数轴上表示l的点与表示﹣3的点重合,若数轴上A、B两点之间的距离为8(A在B的左侧),且A、B两点经上述折叠后重合,则A点表示的数为﹣5 .【考点】数轴.【分析】若1表示的点与﹣3表示的点重合,则折痕经过﹣1;若数轴上A、B两点之间的距离为8,则两个点与﹣1的距离都是4,再根据点A在B的左侧,即可得出答案.【解答】解:画出数轴如下所示:依题意得:两数是关于1和﹣3的中点对称,即关于(1﹣3)÷2=﹣1对称;∵A、B两点之间的距离为8且折叠后重合,则A、B关于﹣1对称,又A在B的左侧,∴A点坐标为:﹣1﹣8÷2=﹣1﹣4=﹣5.故答案为:﹣5.【点评】本题考查了数轴的知识,注意根据轴对称的性质,可以求得使两个点重合的折痕经过的点所表示的数即是两个数的平均数.三、解答题(本大题共有8小题,共86分.请在答题的指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)19.(36分)(2016秋•沛县校级月考)计算.(1)(﹣)+﹣(﹣2)+(﹣)(2)﹣12014﹣×[2×(﹣2)+10](3)(﹣+)×(﹣36)(4)﹣18÷(﹣3)2+5×(﹣)3(5)|﹣2|﹣(﹣)+1﹣|1﹣|(6)﹣24+3×(﹣1)2000﹣(﹣2)2.【考点】有理数的混合运算.【专题】计算题;实数.【分析】(1)原式利用减法法则变形,计算即可得到结果;(2)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果;(3)原式利用乘法分配律计算即可得到结果;(4)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;(5)原式利用绝对值的代数意义化简,计算即可得到结果;(6)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果.【解答】解:(1)原式=﹣+2+﹣=1;(2)原式=﹣1﹣×6=﹣1﹣1=﹣2;(3)原式=﹣18+20﹣21=﹣19;(4)原式=﹣2﹣=﹣2;(5)原式=2++1﹣=3;(6)原式=﹣16+3﹣4=﹣17.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.20.将下列各数填入相应的集合中.﹣7,0,,﹣22,﹣2.55555…,3.01,+9,4.020020002…,+10%,﹣2π.无理数集合:{};负有理数集合:{};正分数集合:{};非负整数集合:{}.【考点】实数.【分析】根据实数的分类即可求出答案.【解答】解:故答案为:{4.020020002…,﹣2π};{﹣7,﹣22,﹣255555…};{,3.01,+10%};{0,+9}【点评】本题考查实数的分类,属于基础题型.21.在数轴上表示下列各数,并把它们用“<”按照从小到大的顺序排列3,﹣(﹣1),0,﹣|﹣2|,﹣3【考点】有理数大小比较;数轴.【专题】常规题型.【分析】规定了原点、正方向、单位长度的直线叫做数轴.原点向右的方向为正半轴,表示的数为正数,原点向左的方向为负半轴表示的数为负;一般来说,当数轴方向朝右时,右边的数总比左边的数大.【解答】解:将各数表示在数轴上如下图所示:∵数轴上从左向右破裂的数一次增大,∴数轴略.﹣3<﹣|﹣2|<0<﹣(﹣1)<3【点评】本题考查了有理数的大小比较、数轴及其应用,解题的关键是掌握数轴的概念、画法及有理数与数轴上的点对应关系.22.若|a+1|+(b﹣2)2=0,试求(a﹣b)×(a+b)与a2﹣b2的值.【考点】代数式求值;非负数的性质:绝对值;非负数的性质:偶次方.【分析】首先根据非负数的性质求得a、b的数值,进一步代入代数式求得数值即可.【解答】解:∵|a+1|+(b﹣2)2=0,∴a=﹣1,b=2,分别代入得(a﹣b)(a+b)=(﹣1﹣2)(﹣1+2)=﹣3;a2﹣b2=(﹣1)2﹣22=﹣3.【点评】此题考查代数式求值,非负数的性质,利用非负数的性质求得a、b的数值是解决问题的关键.23.检修组乘汽车,沿公路检修线路,约定向东为正,向西为负,某天自A地出发,到收工时,行走记录为(单位:千米):+8,﹣9,+4,+7,﹣2,﹣10,+18,﹣3,+7,+5.回答下列问题:(1)收工时在A地的哪边距A地多少千米?(2)若每千米耗油,问从A地出发到收工时,共耗油多少升?【考点】有理数的加法.【专题】应用题.【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.本题求耗油量时,注意要用汽车实际行驶的路程乘以每千米耗油量.【解答】解:(1)约定向东为正,向西为负,8﹣9+4+7﹣2﹣10+18﹣3+7+5=8+4+7+18+7+5﹣9﹣10﹣2﹣3=25千米,故收工时在A地的东边距A地25千米.(2)油耗=行走的路程×每千米耗油,即|8|+|﹣9|+|4|+|7|+|﹣2|+|﹣10|+|18|+|﹣3|+|7|+|5|=73千米,73×0.3=,故从出发到收工共耗油.【点评】解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.注意耗油量与方向无关,求路程时要把绝对值相加才可以.24.已知|a|=3,|b|=5,且a>b,求a﹣b的值.【考点】有理数的减法;绝对值.【分析】根据绝对值的性质求出a、b的值,再确定出a、b的对应关系,然后根据有理数的减法运算法则进行计算即可得解.【解答】解:∵|a|=3,|b|=5,∴a=±3或b=±5,∵a>b,∴a=3时,b=﹣5,a﹣b=3﹣(﹣5)=3+5=8,a=﹣3时,b=﹣5,a﹣b=﹣3﹣(﹣5)=﹣3+5=2,综上所述,a﹣b的值为8或2.【点评】本题考查了有理数的减法,绝对值的性质,熟记性质与运算法则并确定出a、b的对应关系是解题的关键.25.学校图书馆上周借书记录如下(超过50册的部分记为正,少于50册的部分记为负):星期一星期二星期三星期四星期五0 +8 +6 ﹣2 ﹣7(1)上星期五借出图书多少册?(2)上星期二比上星期五多借出图书多少册?(3)上周平均每天借出图书多少册?【考点】有理数的混合运算;正数和负数.【专题】图表型.【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.(1)标准数50加上表格中上周五的借书记录﹣7;(2)上星期二的借书记录减去上星期五的借书记录;(3)标准数50加上表格中5个数的平均数.【解答】解:根据题意在此题中:超过50册的部分记为正,少于50册的部分记为负,则(1)上星期五借出图书50﹣7=43册;(2)上星期二比上星期五多借出图书8﹣(﹣7)=15册;(3)平均每天借出图书50+=51册.【点评】此题考查正负数及有理数的运算在实际生活中的应用.解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.26.如图,半径为1个单位的圆片上有一点A与数轴上的原点重合,AB是圆片的直径.(结果保留π)(1)把圆片沿数轴向左滚动1周,点A到达数轴上点C的位置,点C表示的数是无理数(填“无理”或“有理”),这个数是2π;(2)把圆片沿数轴滚动2周,点A到达数轴上点D的位置,点D表示的数是4π或﹣4π;(3)圆片在数轴上向右滚动的周数记为正数,圆片在数轴上向左滚动的周数记为负数,依次运动情况记录如下:+2,﹣1,+3,﹣4,﹣3①第几次滚动后,A点距离原点最近?第几次滚动后,A点距离原点最远?②当圆片结束运动时,A点运动的路程共有多少?此时点A所表示的数是多少?【考点】数轴;正数和负数.【分析】(1)利用圆的半径以及滚动周数即可得出滚动距离;(2)利用圆的半径以及滚动周数即可得出滚动距离;(3)①利用滚动的方向以及滚动的周数即可得出A点移动距离变化;②利用绝对值的性质以及有理数的加减运算得出移动距离和A表示的数即可.【解答】解:(1)把圆片沿数轴向右滚动1周,点A到达数轴上点C的位置,点C表示的数是无理数,这个数是2π;故答案为:无理,2π;(2)把圆片沿数轴滚动2周,点A到达数轴上点D的位置,点D表示的数是4π或﹣4π;故答案为:4π或﹣4π;(3)①∵圆片在数轴上向右滚动的周数记为正数,圆片在数轴上向左滚动的周数记为负数,依次运动情况记录如下:+2,﹣1,+3,﹣4,﹣3,∴第4次滚动后,A点距离原点最近;第3次滚动后,A点距离原点最远;②∵|+2|+|﹣1|+|+3|+|﹣4|+|﹣3|=13,∴13×2π×1=26π,∴A点运动的路程共有26π;∵(+2)+(﹣1)+(+3)+(﹣4)+(﹣3)=﹣3,(﹣3)×2π=﹣6π,∴此时点A所表示的数是:﹣6π.【点评】此题主要考查了数轴的应用以及绝对值的性质和圆的周长公式应用,利用数轴得出对应数是解题关键.。

2023—2024学年第一学期七年级教学质量检测(一)评分标准

2023—2024学年第一学期七年级教学质量检测(一)评分标准

2023—2024学年第一学期七年级教学质量检测(一)数学(北师版)评分标准一.选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑) 题号 1 2 3 4 5 6 7 8 9 10 答案BBACCBDDCD二.填空题(本大题共5个小题,每小题3分,共15分)11. 2023± 12. 球体 或 正方体 13. >14. 如图,其余正确情况均可 15. 96π 或 128π三.解答题(本大题共8小题,共75分,解答应写出文字说明,证明过程或演算步骤) 16. (1)12(18)(7)--+-= 12+18-7..........................................................................................................................2分 = 23....................................................................................................................................3分 (2)5263-+- =3265+-.......................................................................................................................1分 =6465+-..........................................................................................................................2分=61-....... .............. ..........................................................................................................3分17. 任务1:加法交换律,加法结合律.....................................................................................2分绝对值较大的数的符号,较大的绝对值减去较小的绝对值...........................4分 任务2: 三. ........................ ........................ ........................ ......................................5分任务3: -7 ....................... ........................ ......................................................................6分18.651322023324045652022+-++-)()( =()()⎥⎦⎤⎢⎣⎡++⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+-+⎥⎦⎤⎢⎣⎡++⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+-651322023324045652022 .....................2分=()()[]⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛-++⎪⎭⎫ ⎝⎛-++-++-653232651202340452022................................4分=1......................................................................................................................................5分19. 5 ................................................................1分 点A BC D E 对应数-24 0-5-4每空1分,...........................................................................................................................共6分 20. (1)....................每图2分,共6分 (2)32 --------------------------------------------------------------------------------------------8分 (3) 6 ----------------------------------------------------------------------------------------------10分 11 -----------------------------------------------------------------------------------------------12分 21. (1)296----------------------------------------------------------------------------------------------2分 (2) 29---------------------------------------------------------------------------------------------4分 (3) 4-3-5+14-8+21-6=17-----------------------------------------------------------------------7分∵17>0--------------------------------------------------------------------------------------------8分 ∴本周的实际销售总量达到了计划数量----------------------------------------------------9分(4)358517710038=+⨯⨯-)()((元)----------------------------------------------12分 答:王老师本周一共收入3585元---------------------------------------------------------13分 22. (1) 4 , 6 , 8, 12 --------------------------------------- 每空2分,共8分(2) V + F - E = 2 --------------------------------------------------------------------------11分 (3) 20 ------------------------------------------------------------------------13分 23. (1) 1 ,--------------------------------------------------------------------------------------------1分 - 4,---------------------------------------------------------------------------------------------2分-5或3 --------------------------------------------------------------------------------------4分 (2)-3到+5的任意一个数均可-----------------------------------------------------------------6分 (3)① 5或-3 ----------------------------------------------------------------------------------- 10分② -7或9 ------------------------------------------------------------------------------- 14分。

湖南省长沙市麓山国际实验学校2016_2017学年七年级数学上学期第一次月考试卷(含解析)湘教版

湖南省长沙市麓山国际实验学校2016_2017学年七年级数学上学期第一次月考试卷(含解析)湘教版

2016-2017学年湖南省长沙市麓山国际实验学校七年级(上)第一次月考数学试卷一、填空题(共12小题,每小题3分,满分36分)1.如果某同学的量化分奖2分记+2分,则该同学扣1分应记做分.2.﹣4的相反数是,倒数是,绝对值是.3.A、B、C三地的海拔高度分别是﹣102米、﹣80米、﹣25米,则最高点比最低点高米.4.比较大小:.5.化简:﹣[﹣(﹣5)]= .6.(﹣3)2中的底数是,指数是,结果是.7.一个点沿着数轴的正方向从原点移动2个单位后,又向相反的方向移动5个单位长度,此时这个点表示的数是.8.计算:﹣1﹣2= .9.最大的负整数是,最小的正整数是,绝对值最小的数是.10.|﹣7|= .11.太阳直径为1390000km,用科学记数法表示为m.12.找规律填空:﹣1,3,﹣5,7,﹣9,11,,15.二、选择题(共8小题,每小题3分,满分24分)13.在数轴上,原点左边的点表示的数是()A.正数 B.负数 C.非正数D.非负数14.下列各对数中互为相反数的是()A.32与﹣23B.﹣23与(﹣2)3C.﹣32与(﹣3)2D.﹣3×2与3215.以下是关于﹣1.5这个数在数轴上的位置的描述,其中正确的是()A.在+0.1的右边B.在﹣2的左边C.在原点与﹣之间 D.在﹣的左边16.|﹣3|+|+3|+|﹣4|的值是()A.10 B.2 C.4 D.﹣417.|﹣3|的相反数是()A.﹣3 B.﹣ C.3 D.3或﹣318.2006年9月在长沙市举行的“中国中部投资贸易博览会”中,永州市的外贸成交额接近31300万元人民币,用科学记数法表示这个数据(单位:万元),正确的是()A.3.13×104B.3.13×103C.31.3×103D.31.3×10419.下列四个式子错误的是()A.﹣3.14>﹣π B.3.5>﹣4 C.﹣5<﹣5D.﹣0.21>﹣0.21120.如果|a|=a,那么实数a应是()A.正数 B.负数 C.非正数D.非负数三、细心算一算。

七年级数学期末教学质量分析报告

七年级数学期末教学质量分析报告

七年级数学期末教学质量分析报告七年级数学期末教学质量分析报告「篇一」一、指导思想为深入贯彻教育局质量建设会议精神,大力提升我校教育教学质量,强化教师的质量意识、竞争意识、团结协作意识,形成聚精会神抓质量、全心全意搞工作的教学氛围,坚决完成20xx年中考质量目标,经学校行政会经研究决定,学校教代会讨论通过,特制定20xx年中考九年级教育教学质量奖惩方案。

二、质量目标1、总体目标摘取20xx年中考总分状元桂冠,包揽全县前20名,前100名中占68人,前200名中占100人,中考总分25分及以上或正取县一高145人,县一高、职教中心入学149人。

2、班级目标特优班:901班55人,合格率100%,合格55人;优秀率100%,优秀55人;特优率60%,特优33人。

中考25分及以上55人。

县一高入学50人。

902班56人,合格率100%,合格56人;优秀率100%,优秀56人;特优率59%,特优33人。

中考25分及以上56人。

县一高入学51人。

优秀班:903班53人,合格率85%,合格45人;优秀率39%,优秀21人。

中考25分及以上34人。

县一高、职教中心入学48人。

三、奖惩细则(任课教师指参与中考计分的语、数、英、理、化、体学科教师)1、整体奖:①摘取20xx年中考总分状元,奖任科教师人均100元。

②中考包揽全县前十名,奖任科教师人均100元。

③中考68人进入全县前100名,奖任科教师人均100元。

④中考100人进入全县前200名,奖任科教师人均100元。

⑤正取一高人数达到145人,奖任科教师人均100元。

⑥中考总体量化分第一名,奖任课教师人均200元。

中考总体量化分第三名及以下全体取消整体奖。

2、班级奖:①全县中考总分状元所在的班级,科任教师奖励50元,班主任奖励100元;②全县前十名学生所在的班级,特优班达到5人,班主任奖励200元,任科教师人均奖励100元,每增加1人,所在班级班主任和任课教师人均增加奖励50元。

2023-2024学年度第一学期七年级数学(冀教版)期中试卷附详细答案

2023-2024学年度第一学期七年级数学(冀教版)期中试卷附详细答案

2023-2024学年度第一学期期中质量检测七年级数学试卷(冀教版)温馨提示:1.本试题满分120分.考试时间90分钟.2.答卷前务必将自己的姓名、考号、考试科目涂写在答题卡上.3.选择题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,答在试卷上无效.一、细心选一选(在每题所给出的四个选项中,只有一项是符合题意的.每小题3分,共48分)1.( )的相反数是−5A.−5B.5C.15 D.−152.一种食品包装袋上标着:净含量200g(±3g),表示这种食品的标准质量是200g,这种食品净含量最少( )g为合格A.200B.198C.197D.1963.下列各数中,绝对值最小的是( )A.−2B.3C.0D.−34.如图,数轴上的两个点分别表示数a和−2,则a可以是( )A.−3B.−1C.1D.25.计算−3−1的结果是( )A.−4B.−2C.4D.26.若∠α与∠β互余,∠α=72°30´,则∠β的大小是( )A.17°30´B.18°30´C.107°30´D.108°30´7.如图,AB=CD,那么AC与BD的大小关系是( )A.AC=BDB.AC <BDC.AC >BDD.不能确定8.如图,下列几何语句不正确的是( )A.直线AB 与直线BA 是同一条直线B.射线OA 与射线OB 是同一条射线C.射线OA 与射线AB 是同一条射线D.线段AB 与线段BA 是同一条线段9.若∠1与∠2互补,∠2与∠3互补,则∠1与∠3的关系满足( )A.∠1−∠3=90°B.∠1+∠3=90°C.∠1+∠3=180°D.∠1=∠310.如图,将△AOB 绕着点O 顺时针旋转,得到△COD,若∠AOB=40°,∠BOC=15°,则旋转角度是( )A.15°B.25°C.40°D.55°11.下列各对数中,互为相反数的是( )A.−(−2)和2B.+(−3)和−(+3)C.12和−2D.−(−5)和−|+5| 12.如图,OC 是∠AOB 的平分线,OD 是∠AOC 的平分线,且∠COD=25°,则∠AOB 等于( )A.50°B.75°C.100°D.120°A B CD O AD C OBA B O A C B D13.若1÷2×(−6)□9=6,请推算□内的符号应是( )A.+B.−C.×D.÷14.已知a ,b 都是实数,若(a+2)2+|b −1|=0,则(a+b)2023的值是( )A.−2023B.−1C.1D.202315.已知本学期某学校下午上课的时间为14时20分,则此时刻钟表上的时针与分针的夹角为( )度.A.40°B.50°C.60°D.70°16.如图,将长方形纸片ABCD 的角C 沿着GF 折叠(点F 在BC 上,不与B ,C 重合),使点C 落在长方形内部点E 处,若FH 平分∠BFE,则∠GFH 的度数α是( )A.90°<α<180°B.0°<α<90°C.α=90°D.α随折痕GF 位置的变化而变化二、细心填一填(请把结果直接填在题中的横线上,相信自己一定会填对的!共12分)17. −5的倒数是__________.18.比较大小:−35_______−34(填“<”或“>”). 19.对于有理数a 、b ,定义一种新运算,规定a ☆b=a 2−|b|,则3☆(−2)=________.20.如图,已知∠COD=∠AOB=75°,当∠COD 绕着点O 旋转且OC 在∠AOB 内部时,∠AOD+∠BOC=_________. A B DC F H EG三、耐心解一解21.试试你的基本功(每题7分,共14分)(1)(−16+712−38)×24; (2) −22−[(−3)×(−43) −(−2)3] 四、用心答一答(只要你认真探索,善于思考,一定会获得成功!本题共46分)22.(本题共8分)如图,点B 是线段AC 上一点,且AB=20,BC=8.(1)图中共有_____条线段.(2)试求出线段AC 的长.(3)如果点O 是线段AC 的中点.请求线段OB 的长.23.(本题共8分)质量检测部门从某洗衣粉厂9月份生产的洗衣粉中抽出了8袋进行检测,每袋洗衣粉的标准重量是450克,超过标准重量的部分用“+”记录,不足标准重量的部分用“−”记录,记录如下:−6,−3,−2,0,+1,+4,+5,−1.(1)通过计算,求出8袋洗衣粉总计超过或不足多少克?这8袋洗衣粉的总重量是多少克?(2)厂家规定超过或不足的部分大于4克时,不能出厂销售,若每袋洗衣粉的定价为3元,请计算这8袋洗衣粉中合格品的销售总金额为多少元?24.(本题共8分)C B AO A CBO D如图,已知∠AOB=120°,OC 是∠AOB 内的一条射线,且∠AOC︰∠BOC=1︰2.(1)求∠AOC 的度数.(2)过点0作射线OD ,若∠AOD=12∠A0B ,求∠COD 的度数.(画出草图即可)25.(本题10分)【问题情境】利用旋转开展数学活动,探究体会角在旋转过程中的变化.【操作发现】如图①,∠AOB=∠COD=90°且两个角重合.(1)将∠COD 绕着顶点O 顺时针旋转45°如图②,此时OB 平分∠____;∠BOC 的余角有________个(本身除外),分别是________________.【实践探究】(2)将∠COD 绕着顶点O 顺时针继续旋转如图③位置,若∠BOC=45°,射线OE 在∠BOC 内部,且∠BOC=3∠BOE,请探究.①求∠DOE 的度数.②∠BOC 的补角分别是:____________________.26.(本题共12分)如图,在一条直线上,从左到右依次有点A 、B 、C ,其中AB=4cm ,BC=2cm.以这条直A B (D )O 图① (C ) 图② AC B DO AC BD OE 图③ A CO B线为基础建立数轴,设点A、B、C所表示数的和是p.(1)如果规定向右为正方向,以1cm为单位长度建立数轴.①若以B为原点O,则点C表示的数是_______,点A表示的数为_______;此时p=_______;若以C为原点O,则点B表示的数是_______,点A表示的数为_______;此时p=_______.②若改变原点O的位置,使原点O在点C的右边,且CO=30cm,求p的值.发现观察p值的变化规律发现原点每向右移动1cm,p值______(增大或减小)______cm.(2)若点A表示的数是−1,则点C表示的数是________,若折叠数轴,使点A与点C 重合,则折点表示的数是________.2023-2024学年度第一学期期中质量检测参考答案七年级数学试卷(冀教版)温馨提示:1.本试题满分120分.考试时间90分钟.2.答卷前务必将自己的姓名、考号、考试科目涂写在答题卡上.3.选择题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,答在试卷上无效.一、细心选一选(在每题所给出的四个选项中,只有一项是符合题意的.每小题3分,共48分)1.( )的相反数是−5A.−5B.5C.15 D.−151.解:正数的相反数是负数,绝对值相等,两者之和为0,故选B。

七年级数学期末教学质量分析报告(通用7篇)

七年级数学期末教学质量分析报告(通用7篇)

七年级数学期末教学质量分析报告(通用7篇)七年级数学期末教学质量分析报告篇1为了总结经验,吸取教训,取长补短,改进教学,提升质量,提高成绩,在全面评估201x—201x学年度第一学期期末质量检测七年级数学试卷、学生答题情况以及检测成绩后,做出如下总结剖析。

一、试题分析。

20xx—20xx学年度第一学期期末质量检测七年级数学试卷全卷分值100分,考试时间90分钟。

全卷共三道大题22道小题,包括10道单项选择题,6道填空题,6道解答题。

全卷试题题量适宜,难度中等偏高,全面涉及到本学期教学的全部内容,重点考察有理数、相反数、整式、一元一次方程、三视图、方位角、角的计算、找规律、有理数四则混合运算、合并同类项等。

试卷内容比较灵活多样,对基础知识、生活实践、看图做题等都有考察,尤其是把课本知识融入生活实践中的这类题型,最能体现素质教育,同时也强调了数学教学与现实生活的紧密联系。

试卷最后一道题(第22题)涉及到有关函数的知识,虽然也可以用一元一次方程的知识解答,但明显超出学生已有的知识水平,所以基本无人能够得到满分,这是本次测试的一大失误。

另外,第21题答案出现失误而没有纠错,所以很多学生正确的答案被误判为错误,导致大量学生失分。

二、考情分析。

本人任教七年级二班数学教学,七二班平均成绩48.25分,高出其他班级平均成绩10余分,基本实现学期初预定目标,也基本达到历年本校数学平均教学水平。

最高87份,最低7分,高低分之间相差近80分,相差悬殊,由此可知本班学生数学两极分化十分严重。

从学生答卷情况来看,大部分在平时能够重视数学课程,能够花功夫按时完成数学科目各项作业,课堂参与度高,对数学课程有兴趣,能够花时间预习复习数学课程的学生都取得了比较理想的成绩。

但总体而言,学生数学成绩和个人以往数学基础和智力存在较高相关,同时,数学成绩较好也可以预测其他科目成绩。

另外设计操作方面的题型也答题较差,这和学生空间思维不够发达有较大的关联性。

常州市第二十四中学教育集团初一上学期期中试卷

常州市第二十四中学教育集团初一上学期期中试卷

常州市第二十四中学教育集团2016-2017学年第一学期七年级期中课堂教学质量调研数学试卷 2016.11 1、选择题(每题2分,共14分)1. 如图,检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数。

从轻重的角度看,最接近标准的是()A. −3.5B. +2.5C. −0.6D. +0.72. 在国家体育场的“鸟巢”钢结构工程施工建设中,首次使用了我国科研人员自主研制的强度为460000000帕的钢材,将460000000用科学计数法表示为()A.4.6×108B.4.6×109C.0.46×109D.46×1073. 下列式子:中,整式的个数是()A. 6B. 5C. 4D. 34. 若,则的值是()A. 0B. 1C. -1D. 20145. a,b在数轴上的位置如图,化简=()A. 2b-aB. -aC. -2b-2aD. -2a6. 如图所示,按下列方法将数轴的正半轴绕在一个圆上(该圆周长为3个单位长,且在圆周的三等分点处分别标上了数字0,1,2)上:先让原点与圆周上0所对应的点重合,再将正半轴按顺时针方向绕在该圆周上,使数轴上1,2,3,4,…所对应的点分别与圆周上1,2,0,1,…所对应的点重合,这样,正半轴上的整数就与圆周上的数字建立了一种对应关系。

数轴上的一个整数点刚刚绕过圆周99圈后,并落在圆周上数字1所对应的位置,这个整数是()A. 297B. 298C. 299D. 3007. 定义一种运算:+1−5([]−[]),其中k是正整数,且k⩾2,[x]表示非负实数x的整数部分,例如[2.6]=2,[0.8]=0.若=1,则的值为( )A. 2017B. 1C. 2016D. 22、填空题(每题2分,共20分)8.9.10.11.12.13.14. 若方程是一个一元一次方程,则15.。

16. 大于1的正整数的三次方都可以分解为若干个连续奇数的和.如23=3+5,33=7+9+11,43=13+15+17+19.按此规律,若m3分解后,17. 如下图所示,在3000个“〇”中依次填入一列数字,使得其中任意四个相邻“〇”中所填数字之和都等于-10,已知,可得3、化简与计算(共18分)18.(每小题3分,共12分)(1)(2)(3)(4)19. (本题6分)先化简,再求值:,其中x=-2,y=4、解方程(每题4分,共8分)20. (1)(2)五、解答题(共40分)21.(本题6分)已知:A=ax2+x﹣1,B=3x2﹣2x+1(a为常数)②在①的基础上化简:B﹣2A.22.世界杯比赛中,根据场上攻守形势,守门员会在门前来回跑动,如果以球门线为基准,向前跑记作正数,返回则记作负数,一段时间内,某守门员的跑动情况记录如下(单位:m):+10,﹣2,+5,﹣6,+12,﹣9,+4,﹣14.(假定开始计时时,守门员正好在球门线上)(1)守门员最后是否回到球门线上?(2)守门员离开球门线的最远距离达多少米?(3)如果守门员离开球门线的距离超过10米(不包括10米),则对方球员挑射极可能造成破门.请问在这一时间段内,对方球员有几次挑射破门的机会?23.如图,甲、乙两张纸片分别是半径为r的圆挖去一个长方形.(1)求甲、乙两张纸片的面积;(保留π)(2)甲、乙两张纸片的面积哪一个比较大?为什么?24.某服装厂生产一种西装和领带,西装每套定价200元,领带每条定价40元。

吉林省长春市(市命题)七年级数学上学期第一次月考试卷(含解析)新人教版

吉林省长春市(市命题)七年级数学上学期第一次月考试卷(含解析)新人教版

2016-2017学年吉林省长春市名校调研七年级(上)第一次月考数学试卷(市命题)一、选择题(共8小题,每小题3分,满分24分)1.如果向右走5步记为+5,那么向左走3步记为()A.+3 B.﹣3 C.+ D.﹣2.四个数﹣3,0,1,2,其中负数是()A.﹣3 B.0 C.1 D.23.下列各对数互为相反数的是()A.4和﹣(﹣4)B.﹣3和C.﹣2和﹣D.0和04.下列算式正确的是()A.(﹣14)﹣5=﹣9 B.0﹣(﹣3)=3 C.(﹣3)﹣(﹣3)=﹣6 D.|5﹣3|=﹣(5﹣3)5.如图,数轴上点M所表示的数可能是()A.1.5 B.﹣1.6 C.﹣2.6 D.﹣3.46.一个数的绝对值是3,则这个数可以是()A.3 B.﹣3 C.3或﹣3 D.7.点A,B在数轴上的位置如图所示,其对应的数分别是a和b,对于以下结论:甲:b﹣a<0;乙:a+b>0;丙:|a|<|b|;丁:ab>0,其中正确的是()A.甲、乙B.丙、丁C.甲、丙D.乙、丁8.如图,用黑白两种颜色的菱形纸片,按黑色纸片数逐渐增加1的规律拼成如图图案,则第8个图案中有n个白色纸片,则n的值为()A.23 B.24 C.25 D.26二、填空题(共6小题,每小题3分,满分18分)9.比较大小(用“>,<,=”表示):﹣|﹣2| ﹣(﹣2).10.的相反数是,倒数是.11.计算(﹣2)×3×(﹣1)的结果是.12.绝对值小于2的整数是.13.比﹣3大5的数是.14.如图是一个数值转换机,若输入的x为﹣5,则输出的结果是.三、解答题(共10小题,满分78分)15.计算:(﹣12)+(+3).16.计算:10+5×(﹣3).17.+(﹣14)+(﹣16)+(+8).18.计算:(﹣18)×(﹣+).19.将下列各数在数轴上表示,再用“<”把各数连接起来:﹣3,﹣|﹣|,﹣(﹣2),﹣1<<<.20.把下列各数填入表示一些数集合的相应的大括号里:﹣0.1,,325,0,0.6,﹣20,10.1,﹣5%整数集:{ …};分数集:{ …};有理数集:{ …}.21.已知a,b互为相反数,x的绝对值为1,求2016(a+b)+2017﹣x的值.22.如表是一种股票星期一至星期五收盘价的变化情况,星期一前一个交易日的收盘价为8.8(单位:元).星期一二三四五收盘价变化(与前一个交易日比较)+0.3 ﹣0.5 ﹣0.7 +1.4 +0.4(1)请计算这五日的收盘价;(2)这五日内哪一天的收盘价最高?是多少?23.某公路检修组乘汽车沿公路检修,约定前进为正,后退为负,某天自A地出发到收工时所走的路程(单位:千米)为+10,﹣3,+4,﹣2,﹣8,+13,﹣2,﹣11,+7,+5.(1)问收工时相对A地是前进了还是后退了?距A地多远?(2)若检修组最后回到了A地且每千米耗油0.2升,问共耗油多少升?24.如图,已知数轴上的点A表示的数为6,点B表示的数为﹣4,点C到点A、点B的距离相等,动点P从点B出发,以每秒2个单位长度的速度沿数轴向右匀速运动,设运动时间为t(t大于0)秒.(1)点C表示的数是.(2)求当t等于多少秒时,点P到达点A处?(3)点P表示的数是(用含字母t的式子表示)(4)求当t等于多少秒时,P、C之间的距离为2个单位长度.2016-2017学年吉林省长春市名校调研七年级(上)第一次月考数学试卷(市命题)参考答案与试题解析一、选择题(共8小题,每小题3分,满分24分)1.如果向右走5步记为+5,那么向左走3步记为()A.+3 B.﹣3 C.+ D.﹣【考点】正数和负数.【分析】此题主要用正负数来表示具有意义相反的两种量:向右记为正,则向左就记为负,据此解答即可.【解答】解:如果向右走5步记为+5,那么向左走3步记为﹣3;故选:B.【点评】此题主要考查正负数的意义,正数与负数表示意义相反的两种量,看清规定哪一个为正,则和它意义相反的就为负.2.四个数﹣3,0,1,2,其中负数是()A.﹣3 B.0 C.1 D.2【考点】正数和负数.【专题】计算题.【分析】﹣3小于零,是负数,0既不是正数也不是负数,1和2是正数.【解答】解:∵﹣3<0,且小于零的数为负数,∴﹣3为负数.故选:A.【点评】题目考查了正负数的定义,解决此类问题关键是熟记正负数的定义,需要注意的是,0既不是正数也不是负数.3.下列各对数互为相反数的是()A.4和﹣(﹣4)B.﹣3和C.﹣2和﹣D.0和0【考点】相反数.【分析】根据只有符号不同的两个数叫做相反数对各选项分析判断即可得解.【解答】解:A、4和﹣(﹣4)=4,是相同的两个数,不是互为相反数,故本选项错误;B、﹣3和,不是互为相反数,故本选项错误;C、﹣2和﹣,不是互为相反数,故本选项错误;D、0和0是互为相反数,故本选项正确.故选D.【点评】本题考查了相反数的定义,是基础题,熟记概念是解题的关键.4.下列算式正确的是()A.(﹣14)﹣5=﹣9 B.0﹣(﹣3)=3 C.(﹣3)﹣(﹣3)=﹣6 D.|5﹣3|=﹣(5﹣3)【考点】有理数的减法;绝对值.【分析】根据有理数的减法运算法则和绝对值的性质对各选项分析判断利用排除法求解.【解答】解:A、(﹣14)﹣5=﹣19,故本选项错误;B、0﹣(﹣3)=0+3=3,故本选项正确;C、(﹣3)﹣(﹣3)=﹣3+3=0,故本选项错误;D、|5﹣3|=2,﹣(5﹣3)=﹣2,故本选项错误.故选B.【点评】本题考查了有理数的减法,绝对值的性质,熟记运算法则和性质并准确计算是解题的关键.5.如图,数轴上点M所表示的数可能是()A.1.5 B.﹣1.6 C.﹣2.6 D.﹣3.4【考点】数轴.【分析】由数轴可知:M所表示的数在﹣3与﹣2之间.【解答】解:设M表示的数为x,由数轴可知:﹣3<x<﹣2,M可能是﹣2.6,故选(C)【点评】本题考查利用数轴表示数的大小,属于基础题型.6.一个数的绝对值是3,则这个数可以是()A.3 B.﹣3 C.3或﹣3 D.【考点】绝对值.【专题】计算题.【分析】此题根据绝对值的性质进行求解即可.【解答】解:∵一个数的绝对值是3,可设这个数位a,∴|a|=3,∴a=±3故选C.【点评】此题主要考查绝对值的性质,比较简单.7.点A,B在数轴上的位置如图所示,其对应的数分别是a和b,对于以下结论:甲:b﹣a<0;乙:a+b>0;丙:|a|<|b|;丁:ab>0,其中正确的是()A.甲、乙B.丙、丁C.甲、丙D.乙、丁【考点】绝对值;数轴.【专题】推理填空题.【分析】根据图示,可得b<﹣3,0<a<3,据此逐项判断即可.【解答】解:∵b<a,∴b﹣a<0;∵b<﹣3,0<a<3,∴a+b<0;∵b<﹣3,0<a<3,∴|b|>3,|a|<3,∴|a|<|b|;∵b<0,a>0,∴ab<0,∴正确的是:甲、丙.故选:C.【点评】此题主要考查了绝对值的含义和求法,以及数轴的特征和应用,要熟练掌握,解答此题的关键是判断出a、b的取值范围.8.如图,用黑白两种颜色的菱形纸片,按黑色纸片数逐渐增加1的规律拼成如图图案,则第8个图案中有n个白色纸片,则n的值为()A.23 B.24 C.25 D.26【考点】规律型:图形的变化类.【分析】观察图形,发现:白色纸片在4的基础上,依次多3个;根据其中的规律得出第n个图案中有白色纸片,求出n=8的值即可.【解答】解:∵第1个图案中有白色纸片3×1+1=4张第2个图案中有白色纸片3×2+1=7张,第3图案中有白色纸片3×3+1=10张,∴第n个图案中有白色纸片3n+1张,当n=8时,3n+1=25,故选:C.【点评】此题主要考查图形的变化规律,此题的关键是注意发现前后图形中的数量之间的关系.二、填空题(共6小题,每小题3分,满分18分)9.比较大小(用“>,<,=”表示):﹣|﹣2| <﹣(﹣2).【考点】有理数大小比较.【分析】先求出各数的值,再根据负数小于一切正数即可得出结论.【解答】解:∵﹣|﹣2|=﹣2<0,﹣(﹣2)=2>0,∴﹣|﹣2|<﹣(﹣2).故答案为:<.【点评】本题考查的是有理数的大小比较,熟知负数小于一切正数是解答此题的关键.10.的相反数是,倒数是.【考点】倒数;相反数.【分析】两数互为相反数,和为0;两数互为倒数,积为1.【解答】解:设的相反数为x,倒数为y.依题意得: +x=0, y=1,所以x=,y=.则的相反数是,倒数是﹣.【点评】本题考查的是相反数和倒数的概念.两数互为相反数,和为0;两数互为倒数,积为1.11.计算(﹣2)×3×(﹣1)的结果是 6 .【考点】有理数的乘法.【专题】计算题;实数.【分析】原式利用乘法法则计算即可得到结果.【解答】解:原式=6,故答案为:6【点评】此题考查了有理数的乘法,熟练掌握乘法法则是解本题的关键.12.绝对值小于2的整数是﹣1,0,1 .【考点】绝对值.【分析】可以根据数轴得到答案,到原点距离小于2的整数只有三个:﹣1,1,0.【解答】解:绝对值小于2的整数是:﹣1,0,1.【点评】本题考查了绝对值的概念.13.比﹣3大5的数是 2 .【考点】有理数的加法.【分析】比﹣3大5的数是﹣3+5,根据有理数的加法法则即可求解.【解答】解:﹣3+5=2.故答案是:2.【点评】本题考查了有理数加法运算,首先判断两个加数的符号:是同号还是异号,是否有0,从而确定用哪一条法则.在应用过程中,要牢记“先符号,后绝对值”.14.如图是一个数值转换机,若输入的x为﹣5,则输出的结果是21 .【考点】有理数的乘法.【专题】图表型.【分析】根据转换机的设置,结合有理数的混合运算法则求出即可.【解答】解:如图所示:若输入的x为﹣5,则输出的结果是:(﹣5﹣2)×(﹣3)=﹣7×(﹣3)=21.故答案为:21.【点评】此题主要考查了有理数的混合运算,熟练掌握运算法则是解题关键.三、解答题(共10小题,满分78分)15.计算:(﹣12)+(+3).【考点】有理数的加法.【专题】计算题;实数.【分析】原式利用异号两数相加的法则计算即可得到结果.【解答】解:原式=﹣12+3=﹣9.【点评】此题考查了有理数的加法,熟练掌握运算法则是解本题的关键.16.计算:10+5×(﹣3).【考点】有理数的混合运算.【专题】计算题;实数.【分析】原式先计算乘法运算,再计算加减运算即可得到结果.【解答】解:原式=10﹣15=﹣5.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.17.(+26)+(﹣14)+(﹣16)+(+8).【考点】有理数的加法;正数和负数.【专题】计算题.【分析】根据有理数的加法法则对式子进行计算.把同号的先相加,得出的结果再相加,得出最后结果.【解答】解:原式=(+26)+(+8)+(﹣14)+(﹣16)=34+(﹣30)=4.【点评】本题主要考查了有理数加法法则:(1)同号相加,取相同符号,并把绝对值相加.(2)绝对值不相等的异号两数加减,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0.(3)一个数同0相加,仍得这个数.18.计算:(﹣18)×(﹣+).【考点】有理数的混合运算.【专题】计算题;实数.【分析】原式利用乘法分配律计算即可得到结果.【解答】解:原式=﹣9+10﹣15=﹣14.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.19.将下列各数在数轴上表示,再用“<”把各数连接起来:﹣3,﹣|﹣|,﹣(﹣2),﹣1﹣3 <﹣1 <﹣|﹣| <﹣(﹣2).【考点】有理数大小比较;数轴;绝对值.【分析】结合有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.进行求解即可.【解答】解:数轴如图所示:∴﹣3<﹣1<﹣|﹣|<﹣(﹣2).故答案为:﹣3,﹣1,﹣|﹣|,﹣(﹣2).【点评】本题考查了有理数大小的比较,解答本题的关键在于熟练掌握有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.20.把下列各数填入表示一些数集合的相应的大括号里:﹣0.1,,325,0,0.6,﹣20,10.1,﹣5%整数集:{ 325,﹣20,0 …};分数集:{ ﹣0.1,,0.6,10.1,﹣5% …};有理数集:{ ﹣0.1,,325,0,0.6,﹣20,10.1,﹣5% …}.【考点】有理数.【分析】根据有理数的分类,可得答案.【解答】解:整数集:{ 325,﹣20,0…};分数集:{﹣0.1,,0.6,10.1,﹣5%…};有理数集:{﹣0.1,,325,0,0.6,﹣20,10.1,﹣5%…},故答案为:325,﹣20,0;﹣0.1,,0.6,10.1,﹣5%;﹣0.1,,325,0,0.6,﹣20,10.1,﹣5%.【点评】本题考查了有理数,熟记有理数的分类是解题关键.21.已知a,b互为相反数,x的绝对值为1,求2016(a+b)+2017﹣x的值.【考点】代数式求值.【专题】计算题;实数.【分析】利用相反数,绝对值的代数意义求出各自的值,代入原式计算即可得到结果.【解答】解:由题意得:a+b=0,|x|=1,则原式=2017﹣x=2017±1=2016或2018【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.22.如表是一种股票星期一至星期五收盘价的变化情况,星期一前一个交易日的收盘价为8.8(单位:元).星期一二三四五收盘价变化(与前一个交易日比较)+0.3 ﹣0.5 ﹣0.7 +1.4 +0.4(1)请计算这五日的收盘价;(2)这五日内哪一天的收盘价最高?是多少?【考点】正数和负数.【分析】(1)根据有理数的加法,可得每天股票的价格;(2)比较(1)中计算结果即可求解.【解答】解:(1)这五日的收盘价分别是:周一8.8+0.3=9.1(元),周二9.1﹣0.5=8.6(元),周三8.6﹣0.7=7.9(元),周四7.9+1.4=9.3(元),周五9.3+0.4=9.7(元);(2)∵9.7>9.3>9.1>8.6>7.9,∴这五日内星期五的收盘价最高,是9.7元.【点评】本题考查了正数和负数,利用了有理数的加法运算,有理数的大小比较进行解题,此题难度不大.23.某公路检修组乘汽车沿公路检修,约定前进为正,后退为负,某天自A地出发到收工时所走的路程(单位:千米)为+10,﹣3,+4,﹣2,﹣8,+13,﹣2,﹣11,+7,+5.(1)问收工时相对A地是前进了还是后退了?距A地多远?(2)若检修组最后回到了A地且每千米耗油0.2升,问共耗油多少升?【考点】正数和负数.【分析】(1)约定前进为正,后退为负,依题意列式求出和即可;(2)要求耗油量,需求他共走了多少路程,这与方向无关.【解答】解:(1)10﹣3+4﹣2﹣8+13﹣2﹣11+7+5=13(千米).故收工时相对A地是前进了,距A地13千米;(2)自A地出发到收工时所走的路程:|+10|+|﹣3|+|+4|+|﹣2|+|﹣8|+|+13|+|﹣2|+|﹣11|+|+7|+|+5|=65(千米),自A地出发到回到A地时所走的路程:65+13=78(千米),78×0.2=15.6(升).答:若检修组最后回到了A地且每千米耗油0.2升,共耗油15.6升.【点评】此题考查了有理数的加减混合运算,以及正数与负数,弄清题意是解本题的关键.正负数是表示相反意义的量,如果规定一个量为正,则与它相反的量一定为负.24.如图,已知数轴上的点A表示的数为6,点B表示的数为﹣4,点C到点A、点B的距离相等,动点P从点B出发,以每秒2个单位长度的速度沿数轴向右匀速运动,设运动时间为t(t大于0)秒.(1)点C表示的数是 1 .(2)求当t等于多少秒时,点P到达点A处?(3)点P表示的数是2t﹣4 (用含字母t的式子表示)(4)求当t等于多少秒时,P、C之间的距离为2个单位长度.【考点】一元一次方程的应用;数轴;列代数式.【分析】(1)根据题意得到点C是AB的中点;(2)、(3)根据点P的运动路程和运动速度列出方程;(4)分两种情况:点P在点C的左边有右边.【解答】解:(1)依题意得,点C是AB的中点,故点C表示的数是: =1.故答案是:1;(2)[6﹣(﹣4)]÷2=10÷2=5(秒)答:当t=5秒时,点P到达点A处.(3)点P表示的数是2t﹣4.故答案是:2t﹣4;(4)当点P在点C的左边时,2t=3,则t=1.5;当点P在点C的右边时,2t=7,则t=3.5.综上所述,当t等于1.5或3.5秒时,P、C之间的距离为2个单位长度.【点评】本题考查了一元一次方程的应用,列代数式和数轴.解题时,利用了数形结合的数学思想.。

2022-2023学年度第一学期期末七年级教学质量检测数学试卷及参考答案

2022-2023学年度第一学期期末七年级教学质量检测数学试卷及参考答案
2022——2023学年度第一学期期末
七年级教学质量检测数学试卷及参考答案
一、选择题
1.下列四个数中, 倒数是()
A.3B. C. D.
2.2021年4月29日11时23分,空间站天和核心舱发射升空.7月22日上午8时,核心舱组合体轨道近地点高度约为384000米,用科学记数法表示384000应为()
A.若 ,则 B.若 ,则
C.若点A,B,C不在同一条直线上,则
D.若 ,则点M为线段AB的中点
10.如图所示,在长方形ABCD中, , ,且 ,将长方形ABCD绕边AB所在的直线旋转一周形成圆柱甲,再将长方形ABCD绕边BC所在直线旋转一周形成圆柱乙,记两个圆柱的侧面积分別为 、 .下列结论中正确的是()A. B. C. D. 不确定
合并同类项,得 .
系数化为1,得 .
∴方程的解为 .
(2)去分母,得 .
去括号,得 .
移项,得 .
合并同类项,得 .
系数化为1,得 .
所以方程的解为 .
22.(1)解:因 和 互补,
所以 .(补角定义)
因为点O在直线AB上,所以 .
所以 .
所以 .(同角的补角相等).
故答案是:180,补角定义,同角的补角相等;
(2)求 度数.
23.在数学课上,老师展示了下列问题,请同学们分组讨论解决的方法.
中国古代人民很早就在生产生活中发现了许多有趣的数学问题,其中《孙子算经》中有这样一个问题:“今有三人共车,二车空;二人共车,九人步,问人和车各几何?”这个题的意思是:今有若干人乘车.若每3人乘一辆车,则余2辆空车;若每2人乘一辆车.则余9人需步行,问共有多少辆车,多少人?
运输公司
起步价(单位:元)

内蒙古呼伦贝尔市海拉尔七中七年级数学上学期第一次质检试卷(含解析) 新人教版-新人教版初中七年级全册

内蒙古呼伦贝尔市海拉尔七中七年级数学上学期第一次质检试卷(含解析) 新人教版-新人教版初中七年级全册

2016-2017学年某某呼伦贝尔市海拉尔七中七年级(上)第一次质检数学试卷一、选择题(共12小题,每小题3分,满分36分)1.﹣5的相反数是()A.5 B.﹣5 C.D.2.在﹣,﹣|﹣4|,﹣(﹣4),﹣22,(﹣2)2,﹣10%,0中,负数的个数有()A.2个B.3个C.4个D.5个3.下列运算正确的是()A.﹣(﹣1)=﹣1 B.|﹣3|=﹣3 C.﹣22=4 D.(﹣3)÷(﹣)=94.下列说法正确的个数是()①一个有理数不是整数就是分数;②一个有理数不是正有理数就是负有理数;③一个整数不是正的,就是负的;④一个分数不是正的,就是负的.A.1 B.2 C.3 D.45.光年天文学中的距离单位,1光年大约是9500000000000km,用科学记数法表示为()A.950×1010km B.95×1012×1012×1013km6.绝对值大于2且不大于5的整数有()个.A.3 B.4 C.6 D.87.下列式子中,正确的是()A.若|a|=|b|,则a=b B.若a=b,则|a|=|b| C.若a>b,则|a|>|b| D.若|a|>|b|,则a>b8.已知|x|=2,则下列四个式子中一定正确的是()A.x=2 B.x=﹣2 C.x2=4 D.x3=89.若(a﹣2)2+|b+3|=0,则(a+b)2016的值是()A.0 B.1 C.﹣1 D.201410.一根1m长的小棒,第一次截去它的,第二次截去剩下的,如此截下去,第五次后剩下的小棒的长度是()A.()5m B.[1﹣()5]m C.()5m D.[1﹣()5]m11.如果有理数a和它的倒数及相反数比较,其大小关系为﹣a<<a,那么有()A.a<﹣1 B.﹣1<a<0 C.0<a<1 D.a>112.如图,数轴上A、B两点分别对应有理数a、b,则下列结论:①ab>0;②a﹣b>0;③a+b >0;④|a|﹣|b|>0中正确的有()A.1个B.2个C.3个D.4个二、填空题(共10小题,每小题3分,满分30分)13.如果上升3米记作+3米,那么下降2米记作米.14.把下列各数分别填在相应的集合内:﹣11、5%、﹣2.3、、3.1415926、0、﹣、、2014、﹣9分数集:.负数集:.有理数集:..16.一架飞机进行飞行表演,先上升3.2千米,又下降2.4千米,最后又上升1.2千米,此时,飞机比最初点高了千米.17.数轴上到原点的距离为7的点所表示的数是.18.若﹣ab2>0,则a0.19.a,b互为相反数,c,d互为倒数,|m|=4,求2a﹣(cd)2016+2b﹣3m的值是.20.设a是最小的正整数,b是最大的负整数,c是绝对值最小的有理数,那么2a+3b+4c=.21.根据如图所示的程序计算,若输入x的值为1,则输出y的值为.22.观察下面一列数,,﹣,,﹣,…按照这个规律,第十个数应该是.三、解答题(共1小题,满分24分)23.计算题(1)(+26)+(﹣14)+(﹣16)+(+8);(2)(﹣8)×(﹣6)×(﹣1.25)×;(3)(﹣9)×42;(4)30﹣(+﹣)×(﹣36);(5)(﹣1)100﹣(1﹣0.5)÷×[1÷(﹣2)];×(﹣2)3﹣[4÷(﹣)2+1].四、解答题(24题5分,25题6分,26题12分,27题7分共30分)24.若|a|=2,b=3,且ab<0,求a﹣b的值?25.画出数轴,把下列各数:﹣2、、0、在数轴上表示出来,并用“<”号连接.26.一辆货车从超市出发,向东走了1千米,到达小明家,继续向东走了3千米到达小兵家,然后西走了10千米,到达小华家,最后又向东走了6千米结束行程.(1)如果以超市为原点,以向东为正方向,用1个单位长度表示1千米,请你在下面的数轴上表示出小明家、小兵家和小华家的具体位置.(2)请你通过计算说明货车最后回到什么地方?(3)如果货车行驶1千米的用油量为0.25升,请你计算货车从出发到结束行程共耗油多少升?27.某一食品厂从生产的袋装食品中抽出样品20袋,检测每袋的质量是否符合标准,超过或不足的部分分别用正、负数来表示,记录如下表:﹣5 ﹣2 0 1 3 6与标准质量的差值(单位:g)袋数 1 4 3 4 5 3这批样品的平均质量比标准质量多还是少?多或少几克,若标准质量为450克,则抽样检测的总质量是多少?2016-2017学年某某呼伦贝尔市海拉尔七中七年级(上)第一次质检数学试卷参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.﹣5的相反数是()A.5 B.﹣5 C.D.【考点】相反数.【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.【解答】解:﹣5的相反数是5,故选:A.2.在﹣,﹣|﹣4|,﹣(﹣4),﹣22,(﹣2)2,﹣10%,0中,负数的个数有()A.2个B.3个C.4个D.5个【考点】正数和负数.【分析】根据题目中给出的这组数,可以判断哪些数是负数,从而可以解答本题.【解答】解:在﹣,﹣|﹣4|,﹣(﹣4),﹣22,(﹣2)2,﹣10%,0中,是负数的是:﹣,﹣|﹣4|,﹣22,﹣10%.故负数的个数是4个.故选C.3.下列运算正确的是()A.﹣(﹣1)=﹣1 B.|﹣3|=﹣3 C.﹣22=4 D.(﹣3)÷(﹣)=9【考点】有理数的除法;相反数;绝对值;有理数的乘方.【分析】根据相反数的意义判断A;根据绝对值的意义判断B;根据有理数乘方的意义判断C;根据有理数除法法则判断D.【解答】解:A、﹣(﹣1)=1,故本选项错误;B、|﹣3|=3,故本选项错误;C、﹣22=﹣4,故本选项错误;D、(﹣3)÷(﹣)=9,故本选项正确.故选D.4.下列说法正确的个数是()①一个有理数不是整数就是分数;②一个有理数不是正有理数就是负有理数;③一个整数不是正的,就是负的;④一个分数不是正的,就是负的.A.1 B.2 C.3 D.4【考点】有理数.【分析】根据有理数的分类,可得答案.【解答】解析:①整数和分数统称为有理数,所以①正确;②有理数包括正有理数、负有理数和零,所以②不正确;③整数包括正整数、负整数和零,所以③不正确;④分数包括正分数和负分数,所以④正确,故选B.5.光年天文学中的距离单位,1光年大约是9500000000000km,用科学记数法表示为()A.950×1010km B.95×1012×1012×1013km【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】×1012.故选C.6.绝对值大于2且不大于5的整数有()个.A.3 B.4 C.6 D.8【考点】绝对值.【分析】由题意求绝对值大于2且不大于5的整数,设此数为x,则有2<|x|≤5,从而求解.【解答】解:设此数为x,则有2<|x|≤5,∴x=3,4,5,﹣3,﹣4,﹣5,∴绝对值大于2且不大于5的整数有6个.故选C.7.下列式子中,正确的是()A.若|a|=|b|,则a=b B.若a=b,则|a|=|b| C.若a>b,则|a|>|b| D.若|a|>|b|,则a>b【考点】绝对值.【分析】根据绝对值的性质:正数绝对值等于本身,0的绝对值等于0,负数的绝对值等于它的相反数,进行选择即可.【解答】解:A、若|2|=|﹣2|,则2≠﹣2,故本选项错误;B、若a=b,则|a|=|b|,故本选项正确;C、若a=1,b=﹣2,则|a|<|b|,故本选项错误;D、若a=﹣2,b=1,则a<b,故本选项错误.故选B.8.已知|x|=2,则下列四个式子中一定正确的是()A.x=2 B.x=﹣2 C.x2=4 D.x3=8【考点】实数的性质.【分析】因为绝对值等于2的数有两个是±2,所以x2=4,由此即可确定选择项.【解答】解:∵|x|=2,∴x=±2,∴x2=4,x3=±8.故选C.9.若(a﹣2)2+|b+3|=0,则(a+b)2016的值是()A.0 B.1 C.﹣1 D.2014【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】根据非负数的性质进行计算即可.【解答】解:∵(a﹣2)2+|b+3|=0,∴a﹣2=0,b+3=0,∴a=2,b=﹣3,∴(a+b)2016=(﹣3+2)2016=1,故选B.10.一根1m长的小棒,第一次截去它的,第二次截去剩下的,如此截下去,第五次后剩下的小棒的长度是()A.()5m B.[1﹣()5]m C.()5m D.[1﹣()5]m【考点】有理数的乘方.【分析】根据乘方的意义和题意可知:第2次截去后剩下的木棒长()2米,以此类推第n次截去后剩下的木棒长()n米.【解答】解:将n=5代入即可,第5次截去后剩下的木棒长()5米.故选C.11.如果有理数a和它的倒数及相反数比较,其大小关系为﹣a<<a,那么有()A.a<﹣1 B.﹣1<a<0 C.0<a<1 D.a>1【考点】有理数大小比较.【分析】先根据﹣a<a得出a>0,再由<a可得出a2>1,故可得出结论.【解答】解:∵﹣a<a,∴a>0.∵<a,∴a2>1,∴a>1.故选D.12.如图,数轴上A、B两点分别对应有理数a、b,则下列结论:①ab>0;②a﹣b>0;③a+b >0;④|a|﹣|b|>0中正确的有()A.1个B.2个C.3个D.4个【考点】数轴.【分析】根据数轴可知a<﹣1,0<b<1,从而可以判断题目中的结论哪些是正确的,哪些是错误的,从而解答本题.【解答】解:∵由数轴可知,a<﹣1,0<b<1,∴ab<0,a﹣b<0,a+b<0,|a|﹣|b|>0,故①②③错误,④正确.故选A.二、填空题(共10小题,每小题3分,满分30分)13.如果上升3米记作+3米,那么下降2米记作﹣2 米.【考点】正数和负数.【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:“正”和“负”相对,所以,如果上升3米记作+3米,那么下降2米记作﹣2米.故为﹣2米.14.把下列各数分别填在相应的集合内:﹣11、5%、﹣2.3、、3.1415926、0、﹣、、2014、﹣9分数集:5%、﹣2.3、、3.1415926、﹣、.负数集:﹣11、﹣2.3、﹣、﹣9 .有理数集:﹣11、5%、﹣2.3、、3.1415926、0、﹣、、2014、﹣9 .【考点】有理数.【分析】按照有理数的分类填写:有理数.【解答】解:分数集:5%、﹣2.3、、3.1415926、﹣、;负数集:﹣11、﹣2.3、﹣、﹣9;有理数集:﹣11、5%、﹣2.3、、3.1415926、0、﹣、、2014、﹣9;故答案为:5%、﹣2.3、、3.1415926、﹣、;﹣11、﹣2.3、﹣、﹣9;﹣11、5%、﹣2.3、、3.1415926、0、﹣、、2014、﹣9.0.050 .【考点】近似数和有效数字.【分析】把万分位上的数字1进行四舍五入即可.【解答】≈0.050(精确到0.001).故答案为0.050.16.一架飞机进行飞行表演,先上升3.2千米,又下降2.4千米,最后又上升1.2千米,此时,飞机比最初点高了 2 千米.【考点】有理数的加减混合运算.【分析】阅读题意,利用正负数来表示两种相反意义的量,规定飞机上升为正,下降为负,根据题意列出算式,求出即可.【解答】解:规定飞机上升为正,下降为负,根据题意得:(+3.2)+(﹣2.4)+(+1.2)=2千米.故答案为:2.17.数轴上到原点的距离为7的点所表示的数是±7 .【考点】数轴.【分析】此题要全面考虑,原点两侧各有一个点到原点的距离为7,即表示7和﹣7的点.【解答】解:根据题意知:到数轴原点的距离是7的点表示的数,即绝对值是7的数,应是±7.故答案为:±7.18.若﹣ab2>0,则a<0.【考点】有理数的乘法.【分析】根据配方得结果为非负数,以及有理数乘法法则判断即可得到结果.【解答】解:∵﹣ab2>0,b2>0,∴a<0.故答案为:<.19.a,b互为相反数,c,d互为倒数,|m|=4,求2a﹣(cd)2016+2b﹣3m的值是﹣13或11 .【考点】代数式求值.【分析】由题意可知:a+b=0,cd=1,m=±4【解答】解:由题意可知:a+b=0,cd=1,m=±4原式=2(a+b)﹣(cd)2016﹣3m=﹣1﹣3m,当m=4时,∴原式=﹣1﹣12=﹣13,当m=﹣4时,∴原式=﹣1+12=11故答案为:﹣13或11.20.设a是最小的正整数,b是最大的负整数,c是绝对值最小的有理数,那么2a+3b+4c= ﹣1 .【考点】代数式求值;有理数;绝对值.【分析】找出最小的正整数,最大的负整数,绝对值最小的有理数,确定出a,b,c的值,即可确定出原式的值.【解答】解:根据题意得:a=1,b=﹣1,c=0,则原式=2﹣3+0=﹣1.故答案为:﹣1.21.根据如图所示的程序计算,若输入x的值为1,则输出y的值为 4 .【考点】代数式求值.【分析】观察图形我们可以得出x和y的关系式为:y=2x2﹣4,因此将x的值代入就可以计算出y的值.如果计算的结果<0则需要把结果再次代入关系式求值,直到算出的值>0为止,即可得出y的值.【解答】解:依据题中的计算程序列出算式:12×2﹣4.由于12×2﹣4=﹣2,﹣2<0,∴应该按照计算程序继续计算,(﹣2)2×2﹣4=4,∴y=4.故答案为:4.22.观察下面一列数,,﹣,,﹣,…按照这个规律,第十个数应该是﹣.【考点】规律型:数字的变化类.【分析】观察数列,分数的分子是一个以1为首项,2为公差的等差数列,根据数列规律应为2×项数﹣1,分数的分母为两个连续整数的乘积,为项数×(项数+1),在考虑数列的奇数项为正,偶数项为负,即可得出答案.【解答】解:由数列分析如下:=,=,=,=并且数列的奇数项为正,偶数项为负,∴第十个数应该是﹣=﹣.故答案为:﹣.三、解答题(共1小题,满分24分)23.计算题(1)(+26)+(﹣14)+(﹣16)+(+8);(2)(﹣8)×(﹣6)×(﹣1.25)×;(3)(﹣9)×42;(4)30﹣(+﹣)×(﹣36);(5)(﹣1)100﹣(1﹣0.5)÷×[1÷(﹣2)];×(﹣2)3﹣[4÷(﹣)2+1].【考点】有理数的混合运算.【分析】(1)(5)(6)根据有理数的混合运算的运算方法,求出每个算式的值各是多少即可.(2)应用乘法交换律和乘法结合律,求出算式的值是多少即可.(3)(4)应用乘法分配律,求出每个算式的值各是多少即可.【解答】解:(1)(+26)+(﹣14)+(﹣16)+(+8)=12﹣16+8=﹣4+8=4(2)(﹣8)×(﹣6)×(﹣1.25)×=(﹣8)×(﹣1.25)×(﹣6)×=10×(﹣2)=﹣20(3)(﹣9)×42=(﹣10+)×42=(﹣10)×42+×42=﹣420+2=﹣418(4)30﹣(+﹣)×(﹣36)=30﹣×(﹣36)﹣×(﹣36)+×(﹣36)=30+28+20﹣33=45(5)(﹣1)100﹣(1﹣0.5)÷×[1÷(﹣2)]=1﹣×3×[﹣]=1+=1×(﹣2)3﹣[4÷(﹣)2+1]×(﹣8)﹣[4×+1]=﹣2﹣9﹣1=﹣12四、解答题(24题5分,25题6分,26题12分,27题7分共30分)24.若|a|=2,b=3,且ab<0,求a﹣b的值?【考点】有理数的乘法;绝对值;有理数的减法.【分析】根据已知条件和绝对值的性质,得a=±2,b=3,且ab<0,确定a,b的符号,求出a﹣b的值.【解答】解:∵|a|=2,∴a=±2,∵ab<0,∴ab异号.∴a=﹣2,∴a﹣b=﹣2﹣3=﹣5.25.画出数轴,把下列各数:﹣2、、0、在数轴上表示出来,并用“<”号连接.【考点】有理数大小比较;数轴.【分析】首先根据在数轴上表示数的方法,在数轴上表示出所给的各数;然后根据当数轴方向朝右时,右边的数总比左边的数大,把这些数由小到大用“<”号连接起来即可.【解答】解:在数轴上表示如下:用“<”号连接为:﹣<﹣2<0<.26.一辆货车从超市出发,向东走了1千米,到达小明家,继续向东走了3千米到达小兵家,然后西走了10千米,到达小华家,最后又向东走了6千米结束行程.(1)如果以超市为原点,以向东为正方向,用1个单位长度表示1千米,请你在下面的数轴上表示出小明家、小兵家和小华家的具体位置.(2)请你通过计算说明货车最后回到什么地方?(3)如果货车行驶1千米的用油量为0.25升,请你计算货车从出发到结束行程共耗油多少升?【考点】有理数的混合运算;正数和负数;数轴.【分析】(1)根据已知,以超市为原点,以向东为正方向,用1个单位长度表示1千米一辆货车从超市出发,向东走了1千米,到达小明家,继续向东走了3千米到达小兵家,然后西走了10千米,到达小华家,最后又向东走了6千米结束行程,则小明家、小兵家和小华家在数轴上的位置如上所示.(2)这辆巡逻车一共行走的路程,实际上就是1+3+10+6=20(千米),货车从出发到结束行程共耗油量=货车行驶每千米耗油量×货车行驶所走的总路程.【解答】解:(1)(2)由题意得(+1)+(+3)+(﹣10)+(+6)=0,因而回到了超市.(3)由题意得1+3+10+6=20,×20=5.答:(1)参见上图;(2)货车最后回到了超市;(3)货车从出发到结束行程共耗油5升.27.某一食品厂从生产的袋装食品中抽出样品20袋,检测每袋的质量是否符合标准,超过或不足的部分分别用正、负数来表示,记录如下表:﹣5 ﹣2 0 1 3 6与标准质量的差值(单位:g)袋数 1 4 3 4 5 3这批样品的平均质量比标准质量多还是少?多或少几克,若标准质量为450克,则抽样检测的总质量是多少?【考点】加权平均数;用样本估计总体.【分析】根据表格中的数据计算与标准质量的差值的总数,再除以20,如果是正数,即多,如果是负数,即少;根据标准质量结合前边的结论进行计算抽样检测的总质量.【解答】解:与标准质量的差值的和为﹣5×1+(﹣2)×4+0×3+1×4+3×5+6×3=24,其平均数为24÷20=1.2,即这批样品的平均质量比标准质量多,多1.2克.则抽样检测的总质量是×20=9024(克).。

七年级第一学期数学教学工作总结(4篇)

七年级第一学期数学教学工作总结(4篇)

七年级第一学期数学教学工作总结眨眼间本学期即将结束,照例这时候又该静下心来把把这学期的工作回顾一行,这样既对这学期的辛劳有个交代,也将为下学期的开始做个准备。

本学期的教学工作,可以说既紧张忙碌而又很充实。

总体看,在学校领导的正确领导下,我能及时把新课程标准的新思想,新理念和数学课堂教学的新思路,新设想结合起来,积极探索,改革教学。

为了激发学生的数学学习兴趣,更好的培养学生良好的学习习惯,针对本班实际情况,对这学期的教学情况具体作如下小结。

一、主要成绩和经验1、我首先用德律己。

自觉遵守教师职业道德,做到干一行,爱一行。

勤奋学习,刻苦钻研教材,精心备课,及时总结得失,更新知识,不断提高教学艺术。

以认真负责的态度上好每堂课,以满腔的爱心关心学生,积极做好学生的思想工作,既教书又育人,对学生一视同仁。

本学期全勤,没因个人私事耽误学生一节课,能主动认真的服从和配合学校各级领导安排的工作,并与本年级组同事们团结协作,相互帮助,圆满完成了教学任务。

2、用心教学。

真对本班学生的差异和年龄特点,因材施教。

教学中重点做到精讲多练,重视运用直观演示、运用学具动手操作,精心设计练习课,讲究练习形式的多样化,提高了练习效率。

从不同角度创设了课堂有效教学情境,整体上使不同学生的知识、技能得到了不同程度的进步和提高。

3、在课堂教学中正确处理了“教”与“学”,“学”与“导”的关系,把教与学的重点放在“学”上,在教法上着眼于“导”,以学生发展为本,激发学生的求知欲,诱导学生主动探索,主动参与认知结构的过程,促使学生乐学、会学、学会。

4、完成了如下知识教学目标:认识并会读、会写更大的数;认识直线、射线、线段、平角、直角、周角;学会两、三位数乘法及其运用;会对图形进行平移和旋转;掌握了除数是两位数的计算方法;懂得了确定位置的方法既可用数对表示,也可根据方向和距离确定;理解了正负数表示的意义;能正确绘制与解读条形统计图与折线统计图。

经历从实际生活中发现问题,提出问题,解决问题的过程,体会数学在日常生活中的作用,初步形成了综合运用数学知识解决问题的能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016学年第一学期七年级数学教学质量评估(一)
一、
选择题(每题3分,共30分) 1.
2016 的相反数是
A .2016
B .-2016
C .
2016
1
D .2016
1-
2.
汽车在一条南北走向的高速公路上行驶,如果向北行驶8千米记作+8千米,那么﹣6千米表示( ) A .向南走-6千米 B .向北走-6千米 C .向南走6千米
D .向北走6千米
3. 台州市面积约为9411平方千米,用科学记数法表示为( )
A.3
10411.9⨯平方千米
B. 4
10411.9⨯平方千米 C.4109411
.0⨯平方千米
D.
2
10
11.94⨯平方千米
4.
下列四个式子中,计算结果最小的是( )
A.46+-
B. )8()5(---
C. )4()3(-⨯-
D.2
3-
5.
对于式子﹣(—3)下列理解:①可表示﹣3的相反数;②可表示)3(1-⨯-;③运算结果等于3;④可表示﹣3的绝对值.其中理解正确的个数是( )
A.1个
B.2个
C.3个
D.4个 6.
下列计算正确的是( )
A.1302342
=÷-
B. 14
868)61
(362)2131()6(32
-=--=--⨯=--⨯-
C.
189)2(332=-=---
D.6
181231
6216)3121(6-=-=÷-÷=-÷
7.
量得小明的身高为1.60米,则小明的实际身高的范围是( )
A. 大于1.50米,小于1.70米
B. 大于1.595米,小于1.604米
C.大于或等于1.595米,小于1.605米
D.大于或等于1.55米,小于1.65米 8.
下面结论正确的有( )
①两个有理数相加,和一定大于每一个加数; ②绝对值等于本身的数是正数;
③一个数减去一个负数后,差一定大于被减数; ④若22
b a
=,则b a =.
A. 1个
B.2个
C.3个
D.4个 9.
将一张厚度为0.1mm 的纸连续对折17次(假设这张纸足够大,始终能对折),则对折后的厚度接近于( )
A.课桌的高度
B.姚明的身高
C.四层楼的高度
D.珠穆朗玛峰的高度 10. 若4)
1(2
=-a ,31=+b ,且b a >,则3a+2b 的值为( )
A. 13
B. 13或1或﹣11
C.13或1
D. 1或﹣11 二、填空题(每题4分,共24分)
要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案. 11. ﹣2的倒数是___________;4
)1(--=______________.
12. 比﹣3小2的数是____________;比﹣3小﹣5的数是____________.
13. 已知a ,b 是互为相反数,则=+-
b b
a
a 323____________. 14. 一个长、宽、高分别为30cm ,20cm ,10cm 的长方体容器中装满了水.小李先将长方体中的水倒满一个底面半径为
3cm ,高为20cm 的圆柱形水杯,再把剩下的水倒入底面半径为10cm ,高为30cm 的圆柱形水壶内.水壶内水的高度大约是___________(π取3).
15. 如图,一跳点P 在原点的左边距原点1个单位的点A 处向原点方向跳动,第1次跳到点A1处(点A1到原点的距
离是点A 到原点的距离的一半,第2次跳到点A2处(点A2到原点的距离是点A1到原点的距离的一半),如此不断跳动下去,……,则第3次跳动后点P 所表示的数是____________;第n 次跳动后点P 所表示的数是___________.
16. 数轴上表示x 的点到原点的距离不大于3,则
33-++x x 的值为____________;若13-++y y =8,则y 的值
为_________.
学校_____________________ 班级_____________________ 考号_____________________ 姓名_____________________
答题须知
1. 本试卷分试题卷和答题卷两部分. 满分120分, 考试时间100分钟.
2. 答题时不能使用计算器.在答题卷指定位置内写明校名, 姓名和班级.
3. 所有答案都做在答题卡标定的位置上, 请务必注意试题序号和答题
序号相对应.
三、 解答题(解答应写出必要的文字说明或推演步骤) 17. (本题8分)
把下列各数的序号填在相应的横线上: ①
25.2- ② 3 ③
4
3
1- ④ 5% ⑤ 0 ⑥ 7- ⑦ ∙
6.0 ⑧ +2016.
(1)整数有:_____________________________________; (2)分数有:_______________________________________; (3)负有理数有:_____________________________________; (4)非负数有:_______________________________________. 18. (本题8分)细心算一算: (1)27-- (2)2)
3(42
⨯--
(3)54
105.210
6.3⨯-⨯(结果用科学记数法表示)
(4)20162
)1()32
(12322
---⨯--÷
-
19. (本题8分)
将下列各数表示在数轴上:311-的倒数,绝对值是3的数,相反数是2
1
1-的数,最大的负整数,绝对值最小的有 理数数;并用“<”连接所有各数.
20. (本题8分) 用简便方法计算下列各题: (1)3015
8
7
⨯- (2))41(74125.0203)81(151-⨯+⨯--⨯-
21. (本题10分)
某水果店老板以65元/箱的价格进了15箱苹果,由于保鲜的原因,在不同时间售价不完全相同.若以80元/箱为基
准,将超出的钱数记为正数,不足的钱数记为负数,则记录的结果如下表所示:
请问该水果店老板售完这15箱苹果共赚了多少钱? 22. (本题12分)
2016年6月7日高考第一天,出租车司机小庄在东西走向的公路上免费接送考生.如果规定向东为正,出租车的行
程如下(单位千米):+5,﹣3,+12,﹣10,﹣13,﹣4,+13,﹣8.
(1)将最后一名考生送到目的地时,小庄在出车地的哪个方向?距出车地多少千米? (2)若出租车耗油量为0.1升/千米,在这个过程中共耗油多少升? (3)第几次离开出车地最远?最远距离是多少?
23. (本题12分)
阅读下面材料并解答问题: 求100432
2222
21++++++ 的值.
解:设100432222221++++++= S
,将等式两边同时乘以2得:
101100543222222222++++++= S
将下式减去上式得122101-=-S S
,即12101-=S .
请仿照上面的方法计算: (1)2016432
2222
21++++++
(2)n 3333
31432
++++++ (其中n 为正整数)
(3)n x x x x x ++++++
4321(其中n 为正整数且1≠x )。

相关文档
最新文档