上海 高一数学 集合(1)

合集下载

上海高中数学必修一

上海高中数学必修一

上海高中数学必修一一:集合的含义与表示1、集合的含义:集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个整体。

把研究对象泛称为元素,把一些元素共同组成的总体叫做子集,缩写为集。

2、集合的中元素的三个特性:(1)元素的确定性:子集确认,则一元素与否属这个子集就是确认的:属或不属于。

(2)元素的互异性:一个给定集合中的元素是的,不可重复的。

(3)元素的无序性:子集中元素的边线就是可以发生改变的,并且发生改变边线不影响子集3、集合的表示:{…}(1)用大写字母则表示子集:a={我校的篮球队员},b={1,2,3,4,5}(2)集合的表示方法:列举法与描述法。

a、列出法:将子集中的元素一一列举出{a,b,c……}b、描述法:①区间法:将子集中元素的公共属性叙述出,写下在大括号内则表示子集。

{x?r|x—3>2},{x|x—3>2}②语言叙述法:基准:{不是直角三角形的三角形}③venn图:画出一条封闭的曲线,曲线里面表示集合。

4、子集的`分类:(1)有限集:含有有限个元素的集合(2)无穷集:所含无穷个元素的子集(3)空集:不含任何元素的集合5、元素与子集的关系:(1)元素在集合里,则元素属于集合,即:a?a(2)元素无此子集里,则元素不属于子集,即为:a¢a注意:常用数集及其记法:非负整数集(即为自然数集)记作:n正整数集n。

或n+整数集z有理数集q实数集r1、柱、锥、台、球的结构特征(1)棱柱:定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。

分类:以底面多边形的边数做为分类的标准分成三棱柱、四棱柱、五棱柱等。

表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱。

几何特征:两底面就是对应边平行的全等多边形;侧面、对角面都就是平行四边形;两端棱平行且成正比;平行于底面的横截面就是与底面全等的多边形。

上海教育版数学高一上1.1《集合及其表示法》word教案

上海教育版数学高一上1.1《集合及其表示法》word教案

第一单元 集合和命题1.1集合及其表示法【学习要点】1、 了解集合的定义,熟知集合元素的三大特性;2、 掌握∉∈和的含义;3、 熟练掌握各种常用数集的符号;4、 理解有限集和无限集的意义,会用∅表示空集;5、 能够熟练利用列举法和描述法表示集合。

【学法指导】例1、以下元素的全体不能够构成集合的是( ).A. 中国古代四大发明B. 地球上的小河流C. 方程210x -=的实数解D. 周长为10cm 的三角形解析:集合中元素具有三大特征:确定性、互异性和无序性,它是我们解决数学集合问题的依据。

本题主要考查集合元素的确定性。

答案:B例2、已知A ={x |x ≤32,x ∈R },a =5,b =23,则 ( )A.a ∈A 且b ∉AB.a ∉A 且b ∈AC.a ∈A 且b ∈AD.a ∉A 且b ∉A解析:∉∈和是表示集合中元素和集合之间关系的,根据a 和b 的大小与可32作比较,答案为:C例3、下列写法是否正确?(1)0∅∈; (2)}{∅∈∅; (3)0N ∈ (4)0 Z ∉解析:(1)因为∅中没有任何元素,所以是错误的;(2)}{∅表示集合中只有一个元素∅,所以是正确的;(3)根据N 的含义,正确;(4)根据Z 的含义,错误。

例4、集合M (){}R y R x xy y x ∈∈≥=,,0|, 是指( )A 第一象限内的点集B 第三象限内的点集C 在第一、第三象限内的点集D 不在第二、第四象限内的点集解析:这是用描述法表示集合,注意代表元是(x,y),所以集合表示的是坐标平面内的点,根据0≥xy 的含义可知,集合表示的是第一、三象限的点和坐标轴上的点。

【自主学习】1、在“①难解的题目;②方程012=-x 在实数集内的解;③直角坐标平面内第四象限的一些点;④很多多项式”中,能够组成集合的是( A )A ②B ①③C ②④D ①②④2、集合}12{的实数且小于大于-=M ,则下列关系式正确的为 ( D ) A M ∈5 B M ∉0 C M ∈1 D M ∈-2π3、设},,,0{},1,,b ab a b a R b a =+∈,集合{则b – a = ( B ) A. 1 B. - 1 C. 2 D.- 24、 给出下列关系:①12R ∈; ②Q ;③ *3N ∈;④0Z ∈. 其中正确的个数是( C ).A. 1B. 2C. 3D. 45、下列关于空集Φ的叙述:①0∈Φ;②Φ∈{Φ};③Φ={0}.正确的个数是( B )(A )0; (B )1; (C )2; (D )3.【针对训练】一、填空题1、用描述法表示被5除余1的整数的集合 .2、用∈或∉填空1_______N , -3________N , 0_______N *π_______R ,227_____Q ,cos300_______Z 3、已知集合A ={2,4,6},若a ∈A ,6-a ∈A ,则a = .4、下列研究的对象能构成集合的是① 某校个子较高的同学;② 倒数等于本身的实数③ 所有的无理数④ 讲台上的一盒白粉笔⑤中国的直辖市⑥中国的大城市5、用列举法表示下列集合:(1) {x|x 2+x+1=0}(2){x|x 为不大于15的正约数}(3) {x|x 为不大于10的正偶数}(4){(x,y)|0≤x ≤2,0≤y<2,x ,y ∈Z}6、用描述法表示下列集合:(1) 奇数的集合;(2)正偶数的集合;(3)不等式2x-3>5的解集;(4)直角坐标平面内属于第四象限的点的合.7、已知 x 2 ∈{1,0,x},则实数x 的值8、用列举法和描述法表示方程x 2 -1=0所有实数解构成的集合 9、方程组 的解集为 10、已知集合A={x ︱ax 2 +4x+4=0 }只有一个元素, 则a 的值 11、写出不等式组 表示的整数解的集合为 二、选择题12、下列关于空集Φ的叙述:①0∈Φ;②Φ∈{Φ};③Φ={0}.正确的个数是( )(A )0; (B )1; (C )2; (D )3.13、 有下列说法:(1)0与{0}表示同一个集合;(2)由1,2,3组成的集合可表示为{1,2,3}或{3,2,1};(3)方程2(1)(2)0x x --=的所有解的集合可表示为{1,1,2};(4)集合{45}x x <<的元素的个数是有限个. 其中正确的说法是( C ).A. 只有(1)和(4)B. 只有(2)和(3)C. 只有(2)D. 以上四种说法都不对14、下列各组集合M 与N 中,表示相等的集合是( )(A )M ={(0,1)},N ={0,1}; (B )M ={(0,1)},N ={(1,0)};(C )M ={(0,1)},N ={(x ,y )|x =0且y =1}; (D )M ={π},N ={3.14}.15、数集{1,2,x 2-3}中的x 不能取的数值的集合是 ( )A.{2,5}B.{-2,-5}C.{±2,±5}D.{2,- 5}三、解答题16、 试选择适当的方法表示下列集合:(1)二次函数223y x x =-+的函数值组成的集合;(2)函数232y x =-的自变量的值组成的集合. 解:(1){|2}y y ≥;(2){|x x ≠42121{>+-≥+x x x 11{-=-=+y x y x17、当a,b满足什么条件时,集合A={x|ax+b=0}是有限集、无限集、空集?解:18、已知集合A={x|2ax+3x+1=0,x∈R},(1)若A中只有一个元素,求实数a的值;(2)若A中至多有一个元素,求实数a的取值范围.解:。

上海高一数学第一章集合与命题复习

上海高一数学第一章集合与命题复习

word第一章集合与命题一.集合:1. 概念及符号的使用.:集合、元素,属于,自然数集,整数集,有理数集,实数集,有限集、无限集;空集,列举法、描述法、子集,包含(包含于),图示法,文氏图,真子集,真包含(真包含于),、交集,并集,全集,补集。

2. ∈⊆,的比较:元素与集合间关系用,∈∉;集合与集合间关系用⊆⊇,类; 3. 交集,并集,补集的比较4. 关于子集的等价关系:U A B A B A A B B AB U ⊆⇔=⇔=⇔=C 5. 集合的运算性质: ① A B =B A ,A B =B A② ()AB C =()A B C , ()A B C =()A B C ③ ()U C A B =U U C A C B , ()U U U C A B C A C B =④AA A =A A A =A ∅=∅A A ∅=6.有限集的元素个数有限集A 的元素的个数记为card( A),规定 card(φ) =0. 基本公式:(1)设有限集合A, card(A)=n,则(ⅰ)A 的子集个数为n2;(ⅱ)A 的真子集个数为12-n;(ⅲ)A 的非空子集个数为12-n;(ⅳ)A 的非空真子集个数为22-n.(2)设有限集合A 、B 、C ,card(B)=m, card(A)=n ,m<n,则(ⅰ) 若A C B ⊆⊆,则C 的个数为mn -2;word(ⅱ) 若A C B ⊂⊆,则C 的个数为12--m n ;⑶容斥原理:card(A ∪B)= card(A)+card(B)- card(A ∩B).二.四种命题形式及关系1. 概念:2.命题,真(假)命题 逆命题,否命题,逆否命题 等价命题2.一般地,四种命题的真假性有且仅有下面四种情况:3.常用词语的否定:三.充要条件1.若α⇒β,则称α是β的充分条件,也即β是α的必要条件; 若α⇔β,则称α是β的充要条件;原命题 若p 则q 否命题若p 则q逆命题 若q 则p逆否命题若q 则p互逆 为 ? ? 互 否 逆 ? 互 逆 为 互 否互 逆 否互 否在讨论p 是q 的什么条件时,就是指以下四种之一: ①若p ⇒q ,但q ≠> p ,则p 是q 的充分但不必要条件; ②若q ⇒p ,但p ≠> q ,则p 是q 的必要但不充分条件; ③若p ⇒q ,且q ⇒p ,则p 是q 的充要条件;④若p ≠> q ,且q ≠> p ,则p 是q 的既不充分也不必要条; ★要点:看清题目问的是:谁是谁的什么条件2.子集与推出关系 : 设A,B 是非空集合,A={}|x x α具有性质,B={}|y y β具有性质,则A ⊆B 与α⇒β等价。

沪教版(上海)数学高一上册1.1集合及其表示法(1)课件

沪教版(上海)数学高一上册1.1集合及其表示法(1)课件

(2)到两定点距离的和等于两定点间距离的点.
(2)我班中成绩较好的同学; (7)所有绝对值小于3的整数的集合 .
在初中代数第六章不等式的解法一节中提到:
(3)A={2,2,4}表示是否准确?
(5)由既在R中又在N*中的数组成的集合中一定包含数0( )
y 2x 1 (3)直线 (3)我国公民基本道德规范.
把能够确切指定的一些对象看作一个整体,这个整体就叫做集合,简称集 (2)到两定点距离的和等于两定点间距离的点.
(4)A={太平洋,大西洋},B={大西洋, 在初中代数第六章不等式的解法一节中提到:
不等式x-1<5的正整数解集是_________
太平洋}是否表示为同一集合? (7)所有绝对值小于3的整数的集合 .
用正常的顺序写出)
9
符号及关系表示
集合:A、B、C…… 集合的元素:a、b、c……
若 a 是集合 A 的元素,记作 若 a 不是集合 A 的元素,记作 请同学们考虑: A={2,4},B={{1,2},{2,3},
{2,4},{3,5}}, A与B的关系如何?
10
常用集合:
实数集R
(3)A={2,2,4}表示是否准确?
(3)我国公民基本道德规范.
其元素为 4,6,8,10 上述各例中集合的元素是什么?
(6)不在N中的数不能使方程4x=8成立( )
集合元素的三个特征:确定性、互异性、无序性,要能熟练运用之.
(2){平方等于1的数} 集合元素的三个特征:确定性、互异性、无序性,要能熟练运用之.
7
一般地来讲,用大括号表示集合. 让我们共同完成上述例题集合的表示. (1)A={1,3},问3,5哪个是A的元素? (3)满足 3x(-22>)xA+3 的=全体{实数.所有素质好的人}能否表示为集合?

上海数学高一知识点总结

上海数学高一知识点总结

集合与函数概念(1)集合的概念集合中的元素具有确定性、互异性和无序性. (2)常用数集及其记法N 表示自然数集,N *或N +表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集.(3)集合与元素间的关系对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一. (4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x |x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集(∅).(6)子集、真子集、集合相等 或集合相等A中的任一元素都属于B,B中的任一元素都属于A(1)A⊆B(2)B⊆A(7)已知集合A有(1)n n≥个元素,则它有2n个子集,它有21n-个真子集,它有21n-个非空子集,它有22n-非空真子集.(8)交集、并集、补集名称记号意义性质示意图交集{|,x x A∈且}x B∈(1)A A A=(2)A∅=∅(3)A B A⊆并集{|,x x A∈或}x B∈(1)A A A=(2)A A∅=(3)A B A⊇补集1()UA A=∅2()UA A U=简单逻辑用语1、命题:用语言、符号或式子表达的,可以判断真假的陈述句.真命题:判断为真的语句.假命题:判断为假的语句.2、“若p,则q”形式的命题中的p称为命题的条件,q称为命题的结论.3、原命题:“若p,则q”逆命题:“若q,则p”否命题:“若p⌝,则q⌝”逆否命题:“若q⌝,则p⌝”4、四种命题的真假性之间的关系:(1)两个命题互为逆否命题,它们有相同的真假性;(2)两个命题为互逆命题或互否命题,它们的真假性没有关系.5、若p q⇒,则p是q的充分条件,q是p的必要条件.若p q ⇔,则p 是q 的充要条件(充分必要条件).利用集合间的包含关系: 例如:若B A ⊆,则A 是B 的充分条件或B 是A 的必要条件;若A=B ,则A 是B 的充要条件;6、逻辑联结词:⑴且(and ) :命题形式p q ∧;⑵或(or ):命题形式p q ∨; ⑶非(not ):命题形式p ⌝.7、⑴全称量词——“所有的”、“任意一个”等,用“∀”表示;全称命题p :)(,x p M x ∈∀; 全称命题p 的否定⌝p :)(,x p M x ⌝∈∃。

沪教版高一数学上册《集合的运算》教案及教学反思

沪教版高一数学上册《集合的运算》教案及教学反思

沪教版高一数学上册《集合的运算》教案及教学反思教学背景本堂课是高一数学上册的第一单元,内容是集合的定义、表示法及运算。

在集合运算中,包括交集、并集、差集等。

在教学中,我们需要引导学生掌握集合概念及各类集合运算,并培养学生的逻辑思维能力和解决问题的能力。

教学目标本节课的教学目标主要有以下几个方面:•了解集合的定义和表示法;•掌握集合的运算规则及性质;•培养学生的逻辑思维能力;•提高学生的解决实际问题能力。

教学内容一、集合的基本概念通过引导学生思考,了解集合的基本概念,理解集合的含义及其特点。

在此基础上,引入集合的表示法及分类。

二、集合的运算1.集合的交集介绍交集的概念及其运算规则。

通过示例引导学生理解交集的含义和性质。

2.集合的并集介绍并集的概念及其运算规则。

通过示例引导学生理解并集的含义和性质。

3.集合的补集介绍补集的概念及其运算规则。

通过示例引导学生理解补集的含义和性质。

4.集合的差集介绍差集的概念及其运算规则。

通过示例引导学生理解差集的含义和性质。

三、实际问题解决通过一些实际问题,引导学生运用集合运算解决实际问题,培养学生的思维能力和解决问题的能力。

教学方法本节课主要采用讲授与练习相结合的方式进行教学。

在讲授过程中,引导学生积极思考,并通过课堂练习及小组合作,提高学生对知识的掌握程度。

教学流程一、集合的基本概念1.导入:通过贴图或视频等形式,引起学生思考“集合”的基本概念。

2.讲解:讲解集合的基本概念,包括集合的定义、元素及表示法。

3.案例分析:通过实例引导学生理解集合的概念及其分类。

二、集合的运算1.集合的交集1.讲解:讲解交集的概念及运算规则。

2.案例分析:引导学生进行案例分析,理解交集的性质。

3.练习:对交集进行巩固练习。

2.集合的并集1.讲解:讲解并集的概念及运算规则。

2.案例分析:引导学生进行案例分析,理解并集的性质。

3.练习:对并集进行巩固练习。

3.集合的补集1.讲解:讲解补集的概念及运算规则。

沪教版(上海)数学高一上册-1.1 集合及其表示法教案

沪教版(上海)数学高一上册-1.1 集合及其表示法教案

集合及其表示方法学习目标1、理解集合的概念;2、掌握集合的表示方法;3、培养逻辑思维能力,渗透抽象概括能力。

课前导学【材料阅读】1、仔细阅读高一年级第一学期数学课本目录前面的插页《编者的话》,体会高中数学要义。

2、仔细阅读高一年级第一学期数学课本第5页到第7页的例题2结束为止.找到集合的概念、表示方法、几个常见的数集、元素与集合间的关系。

【自我感知】尝试完成课本第7页上练习1.1的四道题目,找到自己困惑的地方。

课堂交流【承旧启新】观察下列研究的各个整体:(1)我校2018学年高一(1)班全体学生;(2)所有的锐角三角形;(3)申花队所有现役球员;(4)古华公园内所有好看的花。

思考:分析上述研究对象是否确定.1、概念学习:集合集合的元素2、集合中元素的三个特性:1)元素的_______性;2)元素的________性;3)元素的_______性。

3、集合、元素的表示:集合通常用_______字母表示,集合中的元素通常用_______字母表示;若a是集合A的元素,则记作_________;若a不是集合A的元素则记作__________。

4、常用数集及其记法:非负整数集(即自然数集)记作:________,正整数集________,整数集__________,有理数集___________,实数集________。

正有理数集________,正实数集_______,负有理数集_______,负实数集_______。

集合的分类:有限集与无限集特殊的集合:空集。

5、集合的表示方法有哪些?举出一些数学中、生活中的集合例子。

掌握程度自我评价:(A ) (B ) (C )【巩固新知】【例1】判断下列能否组成集合,为什么?(1)20元左右的书;(2)数学成绩名列前茅的学生; (3)身高低于1米的小孩;(4)《福布斯》2010全球20大富豪。

【例2】用符号∈或∉填空:(1)0_______{0}; (2)0_______∅; (3)0_______N ;(4)0_______Z ; (5)2_______Q ; (6)2-_______Z .【例3】将下列用描述法表示的集合,改为用列举法来表示:(1){|3}x x x Z <∈且; (2)2{|1,2}y y x x x Z =-≤∈且;(3)**{(,)|5,,}x y x y x N y N +=∈∈; (4)*6{|,}x N x Z x∈∈且;变式:*6{|,}2x N x Z x ∈∈-且【应用提高】【例4】用适当的方法表示下列集合(1)组成中国国旗的颜色名称的集合A ;(2)大于0且不超过6的全体偶数组成的集合B ;(3)直角坐标平面上第二象限的点组成的集合C ;(4)全体偶数组成的集合D ;变式1:全体奇数组成的集合D ;变式2:被3除余2的自然数全体组成的集合D ;【例5】已知集合2{2,3,42}A a a =++,集合2{0,7,42,2}B a a a =+--,且A ∈7,求集合B 。

1.1集合初步(1)集合的概念---高一数学新教材配套课件(沪教版2020)

1.1集合初步(1)集合的概念---高一数学新教材配套课件(沪教版2020)

从上面的例子可以看 出:我们可以用自然 语言来描述集合,还 可以用什么方法呢?
N*
N
Z
Q
R
常用数集及其记号 创原家独
实数
网 科
有理数

无理数
整数
分数
正整数 0
负整数
自然数
牛刀小试4:自然数集、整数集、有理数集、实数集 通常用哪几个符号表示?它们分别是有限集还是无限 集?
N
Z
自然数集 整数集
Q
有理数集
确定性:集合的元素必须是确定的,不能确 定的对象不能构成集合.给定一个集合,任何 一个对象是不是这个集合的元素也就确定了.
问题2:
由1、2、2、3、5组成的集合的元素个数是多少 ?
互异性:集合的元素一定是互异的.相同的几 个对象归于同一个集合时只能算作一个元素.
ቤተ መጻሕፍቲ ባይዱ
问题3:
集合{a,b,c}与集合{a,c,b}是不同的集合吗?
无序性:集合中的元素没有先后顺序.
1.确定性
集合元素必须是确定的。不能确定的对象不能组成集合。


元 素 的
2.互异性
给定一个集合,集合中的元素一定是不同的。若相同的对 象归入同一个集合时只能算作集合中的一个元素。


3.无序性
集合中的元素可以任意排列,与次序无关。
例3 判断下列说法是否正确. (1)所有好看的花可以构成一个集合. 错误 (2)由1,3,0,5,|-3|这些数组成的集合中有5个元素. 错误 (3)高一(3)班的全体同学组成一个集合,调整座位后这个集合发 了改变. 错误
集合通常用英文大写字母A,B,C,…表示, 集合的元素通常用英文小写字母a,b,c,…表示。

沪教版(上海)数学高一上册-1.1 集合的概念 教案

沪教版(上海)数学高一上册-1.1 集合的概念 教案

(高一)(一)集合的概念教学目的:(1)使学生初步理解集合的概念及特征,知道常用数集的概念及记法(2)使学生初步了解“属于”关系的意义(3)使学生初步了解有限集、无限集、空集的意义教学重点:集合的基本概念及表示方法教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合授课类型:新授课课时安排:1课时内容分析:把集合的初步知识与其他内容有着密切联系,它们是学习、掌握和使用数学语言的基础例如,下一章讲函数的概念与性质,就离不开集合。

本节首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明然后,介绍了集合的常用表示方法,包括列举法、描述法,还给出了画图表示集合的例子这节课主要学习全章的引言和集合的基本概念习兴趣,使学生认识学习本章的意义本节课的教学重点是集合的基本概念集合是集合论中的原始的、不定义的概念在开始接触集合的概念时,主教科书给出的“一般地,某些指定”这句话,只是对集合概念的描述性说明教学过程:一、回顾复习1.你知道数集的发展吗?质数与合数?奇数与偶数?最大公约数和最小公倍数?(1)质数(素数):2,3,5,7,。

,合数:4,6,8,9,。

在所有比1大的整数中,除了1和它本身以外,不再有别的约数。

这种整数叫做质数,质数又叫做素数。

(2)n为整数形如2n的整数叫做偶数,形如2n+1的数叫做奇数,全体偶数的集合叫做偶数集.(3)9与12的最大公约数是 3 ;最小公倍数36 ;2.用不同的语言描述坐标平面上的一条直线吗?自然语言:坐标平面上过原点,且与x 轴正方向夹角为45o 的直线。

解析语言:函数y x =的图像图像语言:集合语言:{(,)/,}x y y x x =为一切实数3.“物以类聚”,“人以群分”;把能够指定的一些对象放在一起研究,便于讨论它们共同的性质,这是集合的由来。

(备用)4.集合论的创始人——康托尔(德国数学家)(见附录);二、讲解新课:军训前学校通知:8月20日上午8点,高一年级在文体中心集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生?在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合(宣布课题),即是一些研究对象的总体。

沪教版(上海)高一数学辅导讲义(集合(一))教师版

沪教版(上海)高一数学辅导讲义(集合(一))教师版
6、举实例解释三个定义,另外补充:已知集合A中有n个元素,则集合A的子集个数有 个,真子集有 -1个,非空真子集 -2个,
7、借助于文氏图解释。
【典型例题分析】
例1、下列叙述:(1)世界七大洲(2)化学元素周期表周前20个元素符号,(3)晴朗的夜空明亮的星星(4)与1接近的数(5)周长为20cm的三角形,其中能构成集合的序号是。(哪些是有限集,哪些是无限集)
(4)
解析:(1) =
若a>0,则a<2a,当 时, ;
若a<0,则2a<a,当 时, ;
综合得:当 或 时,
(2)若 ,要使 ,只要 ,即
若 ,要使 ,只要 ,即
综合得:当 时,
【课堂总结】
学生自己填写,老师补充
【课后练习】
1.用适当的符号( )填空:
(1)3________N; (2)0___________{ }; (3) _________Z;
8、怎样定义交集、并集、全集与补集?
9、怎样借助于数轴或文氏图进行集合的交运算,并运算和补运算?
析:1、我们常常把能够确切制定的对象看作是一个整体,这个整体就叫做集合。空集只得是不含任何元素的集合。
例:班级里所有的男生就可以构成一个集合,班级里所有个子高的男生就不可以构成集合;而 得实数解构成的集合就是空集。
数 的值为 或 或
变式练习:
1、已知集合 如果 ,试确定实数 的取值范围。
解析:A={-1,2}, ,所以B有以下几种可能, ,再分情况进行讨论,所以 =0或
注:学生容易把 遗漏。
例8、已知集合 若 求实数p的取值范围。
解析:本题也要注意要进行讨论,一是当B为空集的时候,二是当B不是空集的时候。很多学生会忽略掉第一种情况。

集合初步(第1课时)(课件)高一数学(沪教版2020必修第一册)

集合初步(第1课时)(课件)高一数学(沪教版2020必修第一册)
“一些点”无明确的标准,对于某个点是否在“一些点”中无法确定,因此
“平面直角坐标系内第一象限的一些点”不能构成集合;D中“比较小”没
有明确的标准,所以不能构成集合.
题型一 集合的概念
例2.下列说法中正确的是(B )
A.单词book的所有字母组成的集合的元素共有4个
B.若a,b,c,d为集合A的4个元素,则以a,b,c,d为边长构成
则x等于
A.2
解析
B
B.3
C.4
D.6
集合A中的元素3不在集合B中,且仅有这个元素符合题意.
2或4
5.设由2,4,6构成的集合为A,若实数a∈A时,6-a∈A,则a=______.
解析
代入验证,若a=2,则6-2=4∈A,符合题意;
若a=4,则6-4=2∈A,符合题意;
若a=6,则6-6=0∉A,不符合题意,舍去.
例4
已知集合A是由a-2,2a2 +5a,12三个元素组成的,且-3∈A,求
实数a.

由-3∈A,可得-3=a-2或-3=2a2+5a,
3
∴a=-1 或 a=-2.
当a=-1时,a-2=-3,2a2+5a=-3,不符合集合中元素的互异性,
故a=-1应舍去.
3
7
当 a=-2时,a-2=-2,2a2+5a=-3,符合集合中元素的互异性,
关系
属于
元素与集
合的关系
不属于
概念
如果 a是集合A中的元素 ,
就说a属于集合A
如果 a不是集合A中的元素 ,
就说a不属于集合A
记法
读法
_____
a∈A
“a属于A”
_____
a∉A
“a不属于A”

上海高一知识点梳理

上海高一知识点梳理

原命题若p 则q 否命题若┐p 则┐q逆命题若q 则p逆否命题若┐q 则┐p互为逆否互逆否互为逆否互互逆否互上海市高一数学知识点第一章 集合和命题1.1集合及其表示法集合:某些指定的对象集在一起成为集合。

(1)集合中的对象称元素,若a 是集合A 的元素,记作A a ∈;若b 不是集合A 的元素,记作A b ∉;(2)集合中的元素必须满足:确定性、互异性和无序性集合的分类:含有有限个元素的集合是有限集合;含有无限个元素的集合是无限集合。

常用数集及其记法:非负整数集(或自然数集),记作N ;正整数集,记作N *或N +; 整数集,记作Z ;有理数集,记作Q ;实数集,记作R 。

集合表示法:表示一个集合可用列举法、描述法或图示法;列举法:把集合中的元素一一列举出来,写在大括号内;描述法:把集合中的元素的公共属性描述出来,写在大括号{}内; 图示法:利用Venn 图表示; 1.2集合之间的关系集合与集合的关系:集合A 的任何一个元素都是集合B 的元素,则称A 是B 的子集(或B 包含A ),记作A ⊆B (或B A ⊂);集合相等:构成两个集合的元素完全一样。

若A ⊆B 且B ⊇A ,则称A 等于B ,记作A =B ;若A ⊆B 且A ≠B ,则称A 是B 的真子集,记作A B ; 1.3集合的运算交集:一般地,由属于集合A 且属于集合B 的元素所组成的集合,叫做集合A 与B 的交集。

交集}|{B x A x x B A ∈∈=⋂且。

并集:一般地,由所有属于集合A 或属于集合B 的元素所组成的集合,称为集合A 与B 的并集。

}|{B x A x x B A ∈∈=⋃或并集。

补集:一般地,设U 是一个集合,A 是U 的一个子集,由U 中所有不属于A 的元素组成的集合,叫做子集A 在U 中的补集。

补集{}u C A x x U x A =∈∉且。

1.4命题的形式及等价关系命题的定义:可以判断真假的语句叫做命题。

沪教版高一上册数学高一上册教案集合的含义与表示(1)

沪教版高一上册数学高一上册教案集合的含义与表示(1)

1.1集合及其表示法一、教学内容分析集合是一种数学语言,是对数学的进一步抽象,它将贯穿在整个高中数学内容中,甚至在今后的数学学习中,将集合的概念和理论渗透到数学的各类分支中,会有利于提高学生的数学素养。

本章是高中数学的第一个章节,学习集合的有关概念和表示方法,以及集合之间的关系和基本运算,初步掌握基本的集合语言,了解集合的基本思想方法和集合的发展历史,能用集合的思想去观察、思考、表述和解决一些简单的实际问题。

二、教学目标设计知道集合的意义,理解集合的元素及其与集合的关系符号;认识一些特殊集合的记号,会用“列举法”和“描述法”表示集合;体会数学抽象的意义.三、教学重点及难点教学重点:集合的基本概念;教学难点:用“列举法”和“描述法”表示集合。

四、教学流程设计五、教学过程设计一、数学史引入(1)“物以类聚,人以群分”;(2)我校高一年级的全体学生;(3)这间教室里所有的课桌;(4)所有的正有理数;(5)……二、学习新课1.概念辨析(1)集合的有关概念:集合的述性说明:把能够确切指定的一些对象看作一个整体,这个整体就叫做集合,简称集。

我们既要研究集合这个整体,也要研究这个整体中的个体。

我们称集合中的各个对象叫做这个集合的元素;集合的分类:有限集、无限集;集合中元素的特性:“确定性”;“互异性”; “无序性”; (2)集合的表示方法:集合的符号表示:集合常用大写英文字母A 、B 、C ……表示,集合中的元素常用小写英文字母a 、b 、c ……表示;元素与集合的关系:属于∈与不属于∉(注意方向和辨析);列举法:将集合中的元素一一列出来(不考虑元素的顺序),并且写在大括号内,这种表示集合的方法叫做列举法;描述法:在大括号内先写出这个集合的元素的一般形式,再划一条竖线,在竖线后面写上集合中元素所共同具有的特性,即:{}A x x p =满足的性质,这种表示集合的方法叫做描述法.(3)特殊集合的表示:常用的集合的特殊表示法:实数集R (正实数集+R )、有理数集Q (负有理数集-Q )、整数集Z (正整数集+Z )、自然数集N (包含零)、不包含零的自然数集*N ;空集∅(例:方程220x+=的实数解集为∅).[说明] 描述法这一表示集合的形式学生较难理解,可以通过一些例题来加深对描述法这种表示方法的理解。

上海地区高一数学知识点归纳

上海地区高一数学知识点归纳

上海高一数学知识点归纳第一章 集合与命题1.1集合与元素 (1)集合的概念常把能够确切指定的一些对象看作一个整体,这个整体就叫做集合. (2)集合中的元素集合中的各个对象叫做这个集合的元素,集合中的元素具有确定性、互异性和无序性. (3)集合与元素间的关系 对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一. (4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x |x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类①含有有限个元素的集合叫做有限集. ②含有无限个元素的集合叫做无限集. ③不含有任何元素的集合叫做空集(∅). (6)常用数集及其记法N 表示自然数集,N *或N +表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集.重要结论:已知集合A 有(1)n n ≥个元素,则它有2n 个子集,它有21n -个真子集,它21n-个非空子集,它有22n-非空真子集.1.3集合的基本运算 交集、并集、补集 名称 记号意义性质示意图交集A B{|,x x A ∈且}x B ∈(1)A A A = (2)A∅=∅ (3)A B A ⊆ A B B ⊆ BA并集A B{|,x x A ∈或}x B ∈(1)A A A = (2)AA ∅= (3)AB A ⊇ AB B ⊇BA补集A C U{|,}x x U x A ∈∉且()()()B C A C B A C U U U ⋃=⋂ ()()()B C A C B A C U U U ⋂=⋃1.4命题的形式及等价关系(1)命题用语言、符号或式子表达的,可以判断真假的陈述句.“若p ,则q ”形式的命题中的p 称为命题的条件,q 称为命题的结论.(2)逆命题对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,则这两个命题称为互逆命题.其中一个命题称为原命题,另一个称为原命题的逆命题。

上海高一数学集合

上海高一数学集合

上海 高一数学 集合(1)一、集合1、集合的概念:能够确切指定的一些对象组成的整体。

集合的特点:确定性、互异性、无序性。

集合的分类:有限集和无限集例1、 下列叙述:A 、世界七大洲;B 、化学元素周期表中前20个元素符号;C 、晴朗的夜空中明亮的星星;D 、近似等于0的实数;E 、大于1的实数;F 、周长为20cm 的三角形例2、当a 、b 满足什么条件时,集合{}0=+=b ax x A 是有限集、无限集、空集?2、集合的表示方法:列举法、描述法和图示法二、集合间的关系1、包含:子集、真子集2、等于例3、已知集合{}{}R x x x y y B t t s s A ∈+-==-≥+==,,,741522.试判断A 与B 之间的关系,并说明理由。

例4、已知集合}{{}065012=+-==+=x x x N ax x M ,,且M 时N 的真子集,求a 的值。

三、集合的运算1、交集:}{B x A x x B A ∈∈=且2、并集:}{B x A x x B A ∈∈=或3、补集:特性:Φ=U C U ,U C U =Φ,A A C C U U =)(意义:{}A x U x x A C U ∉∈=,4、理解和应用集合运算需注意几点(1)、集合与集合的交集就是它们的公共部分,体现在“且”上(2)、集合与集合的并集就是这两个集合的元素合起来组成,体现在一个“或”(3)、全集在每个问题中可以是不同的,只要包含所要研究的各个集合即可。

全集通常是给定的,可令R U =,亦可令{}R x x x U ∈≤≤=,41等。

实数的差A 在U 中的补集 被减数—减数=差 全集U-集合A=补集A C U例5、已知){}{8643,,,==B A C B A U ,}{51C A U ,=B ,{}39*≠∈=x x N x x B C A C U U ,, ,求A B A C U 及)( 。

四、四种命题1、 命题的概念(1)、判断真假的语句叫命题,命题常用陈述句表述。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

上海 高一数学 集合(1)
一、集合
1、集合的概念:能够确切指定的一些对象组成的整体。

集合的特点:确定性、互异性、无序性。

集合的分类:有限集和无限集
例1、 下列叙述:A 、世界七大洲;B 、化学元素周期表中前20个元素符号; C 、晴朗的夜空中明亮的星星;D 、近似等于0的实数;E 、大于1的实数;F 、周长为20cm 的三角形
例2、当a 、b 满足什么条件时,集合{}0=+=b ax x A 是有限集、无限集、空集?
2、集合的表示方法:列举法、描述法和图示法
二、集合间的关系 1、包含:子集、真子集 2、等于
例3、已知集合{}{}R x x x y y B t t s s A ∈+-==-≥+==,,,741522.试判断A 与B 之间的关系,并说明理由。

例4、已知集合}{{}065012=+-==+=x x x N ax x M ,,且M 时N 的真子集,求a 的值。

三、集合的运算
1、交集:}{B x A x x B A ∈∈=且
2、并集:}{B x A x x B A ∈∈=或
3、补集:特性:Φ=U C U ,U C U =Φ,A A C C U U =)( 意义:{}A x U x x A C U ∉∈=,
4、理解和应用集合运算需注意几点
(1)、集合与集合的交集就是它们的公共部分,体现在“且”上
(2)、集合与集合的并集就是这两个集合的元素合起来组成,体现在一个“或”
(3)、全集在每个问题中可以是不同的,只要包含所要研究的各个集合即可。

全集通常是给定的,可令R U =,亦可令{}R x x x U ∈≤≤=,41等。

实数的差 A 在U 中的补集 被减数—减数=差
全集U-集合A=补集A C U
例5、已知){}{8643,,,==B A C B A U ,}{51C A U ,=B ,
{
}39*
≠∈=x x N x x B C A C U U ,, ,求A B A C U 及)( 。

四、四种命题
1、 命题的概念
(1)、判断真假的语句叫命题,命题常用陈述句表述。

有真命题和假命题之分。

(2)、要证明一个命题是假命题,只要举出满足条件而不满足命题结论的例子就可以了。

2、真命题的证明方法 (1)、可以从已知的条件出发,根据已学的公理、定理、公式等应用推出关系,得出所要证明的结论。

(2)、反证法
假设命题的结论不成立,即假设结论的反面成立。

从这个假设出发,经过推理论证,得出矛盾。

由矛盾判定假设不正确,从而肯定命题的结论正确。

2、 等价命题:
如果两个命题B 、A ,A B 且B A ,那么B 、A 叫等价命题。

原命题 互逆 逆命题
互 否 为 逆 互
否 为 逆 互 否
否命题 互逆 逆否命题
例6、写出下列命题的逆命题、否命题和逆否命题,并判断真假 (1)、若0
00≤≤≤+y x y x 或,则;
(2)、已知整除能被么中至少有一个偶数,那、、,如果、、2xyz z y x Z z y x ∈;
例7、已知Φ≠B A ,C B ⊆,证明Φ≠B A 。

五、 充分条件与必要条件
1、 思考:一元二次方程)0(02≠=++a c bx ax ,有实根的充要条件,有一正一负实根的
充要条件,有两正跟的充要条件,以及有两负根的充要条件? 2、 拓展:如有两个根
1x x ,,其中,21x x ,均小于1或21x x ,都满足
,211<<x 12<
<x ,求充要条件。

六、 子集与推出关系
}{}
{βα具有性质具有性质设x x B x x A =⊆=,则βα⇒⊆与B A 等价。

例8、设R x x ∈=-,:012α;R x q px x ∈=+-,:022
β;α是β的必要不充分条件。

试求q p 、的值。

相关文档
最新文档