郑州市九年级第二次质量预测数学试卷及答案.doc
河南省郑州市中考数学二模试卷及答案(word解析版)

河南省郑州市中考数学二模试卷参考答案与试题解析一、填空题:(本大题共10小题,每小题2分,计20分)1.(2分)(•常德)3的倒数是.考点:倒数.分析:根据倒数的定义可知.解答:解:3的倒数是.点评:主要考查倒数的定义,要求熟练掌握.需要注意的是:倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.(2分)﹣y的系数是﹣,次数是3.考点:单项式.分析:根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.解答:解:根据单项式系数、次数的定义,数字因式﹣为单项式的系数,字母指数和为2+1=3,故系数是3.点评:单项式中的数字因数叫做这个单项式的系数.单项式中,所有字母的指数和叫做这个单项式的次数.3.(2分)(•盐城)因式分解:x2﹣4y2=(x+2y)(x﹣2y).考点:因式分解-运用公式法.分析:直接运用平方差公式进行因式分解.解答:解:x2﹣4y2=(x+2y)(x﹣2y).点评:本题考查了平方差公式分解因式,熟记公式结构是解题的关键.平方差公式:a2﹣b2=(a+b)(a ﹣b).4.(2分)(•邵阳)函数y=中,自变量x的取值范围是x≥1.考点:函数自变量的取值范围;二次根式有意义的条件.专题:计算题.分析:根据二次根式的意义,有x﹣1≥0,解不等式即可.解答:解:根据二次根式的意义,有x﹣1≥0,解可x≥1,故自变量x的取值范围是x≥1.点评:本题考查了二次根式的意义,只需保证被开方数大于等于0即可.5.(2分)(•盐城)已知△ABC∽△A′B′C′,它们的相似比为2:3,那么它们的周长比是2:3.考点:相似三角形的性质.分析:根据相似三角形性质,相似三角形周长的比等于相似比可求.解答:解:∵△ABC∽△A′B′C′,它们的相似比为2:3,∴它们的周长比是2:3.点评:本题考查对相似三角形性质的理解.(1)相似三角形周长的比等于相似比;(2)相似三角形面积的比等于相似比的平方;(3)相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比.6.(2分)(•盐城)在正比例函数y=3x中,y随x的增大而增大(填“增大”或“减小”).考点:正比例函数的性质.分析:根据正比例函数的性质可知.解答:解:因为正比例函数y=3x中,k=3>0,故此函数为增函数,即y随x的增大而增大.故填:增大.点评:本题考查的是正比例函数的性质,解答此题的关键是要熟知以下知识:正比例函数y=kx中:当k>0时,图象位于一、三象限,y随x的增大而增大;当k<0时,图象位于二、四象限,y随x的增大而减小.7.(2分)(•盐城)若直角三角形斜边长为6,则这个直角三角形斜边上的中线长为3.考点:直角三角形斜边上的中线.分析:此题考查了直角三角形的性质,根据直角三角形的性质直接求解.解答:解:∵直角三角形斜边长为6,∴这个直角三角形斜边上的中线长为3.点评:解决此题的关键是熟记直角三角形斜边上的中线等于斜边的一半.8.(2分)(•盐城)请写出你熟悉的两个无理数或.考点:无理数.专题:开放型.分析:由于开方开不尽的数或无限不循环小数是无理数,根据此定义即可解答.解答:解:例如,.(答案不唯一).点评:此题主要考查了无理数的定义,解答此题的关键是熟知无理数的定义:无理数为无限不循环小数.9.(2分)(•郴州)已知⊙O的半径是3,圆心O到直线l的距离是3,则直线l与⊙O的位置关系是相切.考点:直线与圆的位置关系.专题:应用题;压轴题.分析:圆心到直线的距离大于圆心距,直线与圆相离;小于圆心距,直线与圆相交;等于圆心距,直线与圆相切.解答:解:∵圆心到直线的距离=圆的半径,∴直线与圆的位置关系为相切.点评:此题考查的是圆与直线的位置关系.10.(2分)(•盐城)如图,在⊙O的内接四边形ABCD中,∠BOD=90°,则∠BCD=135度.考点:圆周角定理;圆内接四边形的性质.专题:压轴题.分析:根据圆周角定理可求出∠A的度数,由于圆内接四边形的对角互补,可求出∠BCD的度数.解答:解:根据圆周角定理,得:∠A=∠BOD=45°,∵四边形ABCD是⊙O的内接四边形,∴∠A+∠BCD=180°,∴∠BCD=180°﹣45°=135°.点评:本题综合考查了圆内接四边形的性质和圆周角定理的应用.二.选择题(本大题共8小题,每小题3分,计24分)下列各题给出的四个选项中只有一个是正确的,请将正确答案的字母代号填写在下面的表格内.11.(3分)(•盐城)下列各式正确的是()A.a5+3a5=4a5B.(﹣ab)2=﹣a2b2C.D.m4•m2=m8考点:二次根式的性质与化简;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.分析:根据合并同类项、同底数幂的乘法、幂的乘方与积的乘方、二次根式的化简的法则进行判断.解答:解:A、合并同类项,正确;B、(﹣ab)2=a2b2,错误;C、=2,错误;D、m4•m2=m6,错误.故选A.点评:(1)本题综合考查了整式运算的多个考点,包括合并同类项、同底数幂的乘法、幂的乘方与积的乘方、二次根式的化简,需熟练掌握且区分清楚,才不容易出错;(2)同类项的概念是所含字母相同,相同字母的指数也相同的项是同类项,不是同类项的一定不能合并.12.(3分)(•盐城)已知a:b=2:3,那么(a+b):b等于()A.2:5 B.5:2 C.5:3 D.3:5考点:分式的基本性质.专题:计算题.分析:分式的基本性质是分式的分子、分母同时乘以或除以同一个非0的数或式子,分式的值不变.根据此性质作答.解答:解:由a:b=2:3,可得出3a=2b,让等式两边都加上3b,得:3(a+b)=5b,因此,(a+b):b=5:3.故选C.点评:在分式中,无论进行何种运算,如果要不改变分式的值,则所做变化必须遵循分式基本性质的要求.13.(3分)(•盐城)解分式方程时,可设=y,则原方程可化为整式方程是()A.y2+2y+1=0 B.y2+2y﹣1=0 C.y2﹣2y+1=0 D.y2﹣2y﹣1=0考点:换元法解分式方程.专题:换元法.分析:观察方程的两个分式具备的关系,设=y ,则原方程另一个分式为.可用换元法转化为关于y的方程.去分母即可.解答:解:把=y代入原方程得:y+=2,方程两边同乘以y整理得:y2﹣2y+1=0.故选C.点评:换元法解分式方程时常用方法之一,它能够把一些分式方程化繁为简,化难为易,对此应注意总结能用换元法解的分式方程的特点,寻找解题技巧.14.(3分)(•盐城)下列命题中假命题是()A.平行四边形的对角线互相平分B.矩形的对角线相等C.等腰梯形的对角线相等D.菱形的对角线相等且互相平分考点:命题与定理.分析:平行四边形的对角线互相平分;矩形的对角线相等;等腰梯形的对角线相等;菱形的对角线垂直且互相平分.解答:解:根据特殊四边形的性质,知:A、B、C正确;D、菱形的对角线不相等,故错误.故选D.点评:本题考查命题的真假性,是易错题.注意平行四边形和特殊平行四边形对角线特性的掌握.15.(3分)(•盐城)某正方形园地是由边长为1的四个小正方形组成的,现在园地上建一个花园(即每个图中的阴影部分),使花坛面积是园地面积的一半,以下图中的设计不合要求的是()A.B.C.D.考点:正方形的性质.专题:压轴题.分析:根据正方形的对称性,逐个进行判断,可知A、C、D中的花坛面积均是园地面积的一半,而D则不是.解答:解:根据正方形的对称性可知:A、C、D 中的花坛面积都是,而B中的面积是1﹣﹣=.故选B.点评:主要考查了正方形的对称性和基本性质.正方形性质:边:两组对边分别平行,四条边都相等,相邻边互相垂直内角:四个角都是90°,对角线:对角线互相垂直,对角线相等且互相平分,每条对角线平分一组对角.16.(3分)(•盐城)若直线y=3x+m经过第一,三,四象限,则抛物线y=(x﹣m)2+1的顶点必在()A.第一象限B.第二象限C.第三象限D.第四象限考点:二次函数的性质;一次函数的性质.分析:由直线y=3x+m经过第一,三,四象限可判断m的符号,再由抛物线y=(x﹣m)2+1求顶点坐标,判断象限.解答:解:∵直线y=3x+m经过第一,三,四象限,∴m<0,∴抛物线y=(x﹣m)2+1的顶点(m,1)必在第二象限.故选B.点评:要求掌握直线性质和抛物线顶点式的运用.17.(3分)(•盐城)一台机床在十天内生产的产品中,每天出现的次品个数依次为(单位:个)0,2,0,2,3,0,2,3,1,2.那么,这十天中次品个数的()A.平均数是2 B.众数是3 C.中位数是1.5 D.方差是1.25考点:方差;算术平均数;中位数;众数.专题:应用题;压轴题.分析:根据平均数、众数、中位数、方差的概念计算后,再判断各选项的正误.解答:解:由题意可知:这十天次品的平均数为=1.5,故A错误;出现次数最多的数就叫这组数据的众数,则这组数据的众数是2,故B错误;总数个数是偶数的,按从小到大的顺序,取中间的那两个数的平均数便为中位数,则中位数为,故C错误;一组数据中各数据与这组数据的平均数的差的平方的平均数叫做这组数据的方差,则方差=1.25,故D正确.故选D.点评:正确理解中位数、众数及方差的概念,是解决本题的关键.18.(3分)(•盐城)如图是一个圆柱形木块,四边形ABB1A1是经边它的轴的剖面,设四边形ABB1A1的面积为S,圆柱的侧面积为S侧,则S与S侧的关系是()A.S=S侧B.S=C.D.不能确定考点:圆柱的计算.专题:压轴题.分析:侧面积=底面周长×高,四边形的面积=底面直径×高,算出后比较即可.解答:解:设底面直径为d,高为h,则四边形ABB1A1的面积为S=dh.圆柱的侧面积为S侧=πdh,所以.故选C.点评:本题的关键是设未知数,但又要把未知数当已知数来求.三.解答题(本大题共4小题,计29分)19.(6分)(•盐城)计算:(﹣(2﹣π)0+|﹣|﹣.考点:实数的运算.分析:本题涉及零指数幂、负整数指数幂、绝对值、二次根式化简四个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:原式=2﹣1+﹣1=0.点评:本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.20.(7分)(•盐城)如图,甲、乙两楼相距36m,甲楼高度为30m,自甲楼楼顶看乙楼楼顶的仰角为30°,问乙楼有多高(结果保留根式).考点:解直角三角形的应用-仰角俯角问题.专题:应用题.分析:分析题意可得:过点A作AE⊥CD,交CD于点E;可构造Rt△ACE,利用已知条件解可得:CE=12;而乙楼高CD=AB+CE;代入可得答案.解答:解:过点A作AE⊥CD,交CD于点E;在Rt△ACE中,AE=36,∠CAE=30°,故CE=36×tan30°=12,CD=AB+CE=30+12答:乙楼高为(30+12)m.点评:本题考查俯角、仰角的定义,要求学生能借助俯角、仰角构造直角三角形并结合图形利用三角函数解直角三角形.21.(8分)(•盐城)分别解不等式5x﹣2<3(x+1)和,再根据它们的解集写出x与y的大小关系.考点:解一元一次不等式.专题:计算题.分析:解不等式5x﹣2<3(x+1),去括号移项得2x<5,得x<.解不等式去括号,移项得2y>8,解得:y>4,然后比较x与y的大小.解答:解:不等式5x﹣2<3(x+1)的解集为,不等式的解集为y>4,∴y>x.点评:先利用不等式的性质,分别求出两个不等式的解集,然后比较大小.22.(8分)(•盐城)如图,直角梯形ABCD中,AB∥CD,AB⊥BC,对角线AC⊥BD,垂足为E,AD=BD,过点E作EF∥AB交AD于F,求证:(1)AF=BE;(2)AF2=AE•EC.考点:相似三角形的判定与性质;平行线的性质;直角梯形.专题:证明题.分析:(1)根据平行构造相似三角形,利用相似三角形的性质解答;(2)因为AB⊥BC,所以△ABC为直角三角形,又因为AC⊥BD,所以可知△BCE∽△ABE,利用相似三角形的性质即可解答.解答:证明:(1)∵EF∥AB,∴△DFE∽△DAB.∴=.又∵DA=DB,∴DF=DE.∴DA﹣DF=DB﹣DE,即AF=BE.(2)∵AB⊥BC,∴△ABC为直角三角形.又∵AC⊥BD,∴△BCE∽△ABE.∴=,即EB2=AE•EC.又∵AF=EB,∴AF2=AE•EC.点评:解答此题的关键是根据平行和直角三角形的性质找出图中的相似三角形,利用相似三角形的性质解答此题.要知道,EB2=AE•EC属于射影定理.四.解答题(本大题共8小题,计77分)23.(9分)(•盐城)已知关于x的一元次方程x2﹣(m+2)x+m2﹣2=0(1)当m为何值时,这个方程有两个相等的实数根;(2)如果这个方程的两个实数根x1,x2满足x12+x22=18,求m的值.考点:根与系数的关系;解一元二次方程-因式分解法;根的判别式.分析:(1)由于△=0时,一元二次方程有2个相等的实数根,故建立关于m的方程,求得m的值;(2)把等号左边进行整理,根据x12+x22=(x1+x2)2﹣2x1x2即可得到关于m的方程,从而求解.解答:解:(1)根据题意得:△=[﹣(m+2)]2﹣4×(m2﹣2)=0解得:m=﹣3;(2)∵x12+x22=18∴(x1+x2)2﹣2x1x2=18即(m+2)2﹣2×(m2﹣2)=18解得m=2或m=﹣10根据题意可得m≥﹣3才有实数根∴m=2.点评:解决本题的关键是把所求的代数式整理成与根与系数有关的形式.注意所求值的取舍.24.(9分)(•盐城)某气球内充满了一定质量的气球,当温度不变时,气球内气球的气压p(千帕)是气球的体积V(米2)的反比例函数,其图象如图所示.(千帕是一种压强单位)(1)写出这个函数的解析式;(2)当气球的体积为0.8立方米时,气球内的气压是多少千帕?(3)当气球内的气压大于144千帕时,气球将爆炸,为了安全起见,气球的体积应不小于多少立方米?考点:反比例函数的应用.专题:应用题.分析:(1)设p与V的函数的解析式为,利用待定系数法求函数解析式即可;(2)把v=0.8代入可得p=120;(3)由p=144时,v=,所以可知当气球内的气压>144千帕时,气球将爆炸,为了安全起见,气球的体积应不小于立方米.解答:解:(1)设p与V的函数的解析式为,把点A(1.5,64)代入,解得k=96.∴这个函数的解析式为;(2)把v=0.8代入,p=120,当气球的体积为0.8立方米时,气球内的气压是120千帕;(3)由p=144时,v=,∴p≤144时,v≥,当气球内的气压大于144千帕时,气球将爆炸,为了安全起见,气球的体积应不小于立方米.点评:主要考查了反比例函数的应用.解题的关键是根据实际意义列出函数关系式,从实际意义中找到对应的变量的值,利用待定系数法求出函数解析式.会用不等式解决实际问题.25.(8分)(•盐城)如图,AB是⊙O的直径,DF切⊙O于点D,BF⊥DF于F,过点A作AC∥BF交BD的延长线于点C.(1)求证:∠ABC=∠C;(2)设CA的延长线交⊙O于E,BF交⊙O于G,若的度数等于60°,试简要说明点D和点E关于直线AB对称的理由.考点:切线的性质.专题:证明题.分析:(1)作辅助线,连接OD,由DF为⊙O的切线,可得OD⊥DF,又BF⊥DF,AC∥BF,所以OD∥AC,∠ODB=∠C,由OB=OD得∠ABD=∠ODB,从而可证∠ABC=∠C;(2)连接OG,OD,AD,由BF∥OD,=60°,可求证===60°由平行线的性质及三角形的内角和定理可求出∠OHD=90°,由垂径定理便可得出结论.解答:证明:(1)连接OD,∵DF为⊙O的切线,∴OD⊥DF.∵BF⊥DF,AC∥BF,∴OD∥AC∥BF.∴∠ODB=∠C.∵OB=OD,∴∠ABD=∠ODB.∴∠ABC=∠C.(2)连接OG,OD,AD,∵BF∥OD,∴∠OBG=∠AOD,=.∵=60°,∴===60°.∴OD∥BF∥AC.∴∠ABC=∠C=∠E=30°,∠ODE=∠E=30°.在△ODH中,∠ODE=30°,∠AOD=60°,∴∠OHD=90°,∴AB⊥DE.∴点D和点E关于直线AB对称.点评:本题考查的是切线的性质及圆周角定理,比较复杂,解答此题的关键是作出辅助线,利用数形结合解答.26.(9分)(•盐城)如图,给出了我国从1998年~年每年教育经费投入的情况.(1)由图可见,1998年~年这五年内,我国教育经费投入呈现出逐年增长趋势;(2)根据图中所给数据,求我国1998年~年教育经费的年平均数;(3)如果我国的教育经费从年的5480亿元增加到年的7891亿元,那么这两年的教育经费平均增长率为多少?(结果精确到0.01)考点:算术平均数;一元二次方程的应用.分析:(1)从图中可以我国从1998年~年每年教育经费投入一年比一年高,所以呈现逐年增长的趋势;(2)我国从1998年~年每年教育经费投入分别是2949亿元,3349亿元,3849亿元,4638亿元,5480亿元,所以教育经费的年平均数为(2949+3349+3849+4638+5480)÷5=4053亿元;(3)第三问考查数量平均变化率问题,解题的关键是正确列出一元二次方程.原来的数量为a,平均每次增长或降低的百分率为x的话,经过第一次调整,就调整到a×(1±x),再经过第二次调整就是a×(1±x)(1±x)=a(1±x)2.增长用“+”,下降用“﹣”.解答:解:(1)根据图表可知我国教育经费投入呈现出趋势逐年增长趋势;(2)根据图表我国教育经费平均数=(2949+3349+3849+4638+5480)÷5=4053亿元;(3)设这两年的教育经费的平均增长率为x,则5480(1+x)2=7891解得x1≈0.20 x2≈﹣2.2(舍去)(结果精确到0.01)∴x=0.20=20%.故答案为(1)逐年增长;(2)我国1998年~年教育经费的年平均数为4053亿元;(3)教育经费平均增长率为20%.点评:本题主要考查的知识点:(1)平均数的求法;(2)涉及一元二次方程的平均变化率的求解.27.(10分)(•盐城)已知y=ax2+bx+c经过点(2,1)、(﹣1,﹣8)、(0,﹣3).(1)求这个抛物线的解析式;(2)画出该抛物线的草图、并标出图象与x轴交点的横坐标;(3)观察你所画的抛物线的草图,写出x在什么范围内取值时,函数值y<0?考点:待定系数法求二次函数解析式;二次函数的图象.分析:(1)直接利用图中的三个点的坐标代入解析式用待定系数法求解析式;(2)令y=0,解关于x的一元二次方程﹣x2+4x﹣3=0,其解即为图象与x轴交点的横坐标;(3)依据图象可知,当图象在x轴上方时,y>0,在x轴下方时,y<0,在x轴上时,y=0.解答:解:(1)把点(2,1),(﹣1,﹣8),(0,﹣3)代入可得解得a=﹣1,b=4,c=﹣3故y=﹣x2+4x﹣3;(2)当y=0时,﹣x2+4x﹣3=0解得x=1或x=3故图象与x轴交点的横坐标是1和3;(3)当x<1或x>3时,函数值y<0.点评:主要考查了用待定系数法求二次函数的解析式和二次函数及其图象的性质.28.(11分)(•盐城)银河电器销售公司通过对某品牌空调市场销售情况的调查研究,预测从年1月份开始的6个月内,其前n个月的销售总量y(单位:百台)与销售时间n(单位:月)近似满足函数关系式y=(n2+3n)(1≤n≤6,n是整数).(1)根据题中信息填写下表:(百台)第一个月的销售量前两个月的销售量(百台)第二个月的销售量(百台)前三个月的销售量(百台)第三个月的销售量(百台)(2)试求该公司第n个月的空调销售台数W(单位:百台)关于月份的函数关系式.考点:二次函数的应用.专题:应用题.分析:(1)先将月份1代入函数式中,求出1月份的销售量,然后将月份2代入函数式中求出1、2月份的销售量的和,然后减去1月份的销售量,就求出了2月份的销售量,然后按照此办法依次求出前3个月的销售总量和第3个月的销售量;(2)根据(1)得出的1、2、3月份的单月销售量,观察它们大致符合什么函数,然后设出函数通式,用待定系数法求出函数的解析式即可.解答:解:(1)第一个月的销售量 1(百台)前两个月的销售量2.5(百台)第二个月的销售量1.5 (百台)前三个月的销售量4.5 (百台)第三个月的销售量2(百台)(2)可设:W=kn+b,根据(1)中的填表信息可得:,解得:即该函数关系式为:W=(1≤n≤6,n是整数).点评:本题主要考查了二次函数的应用以及用待定系数法求一次函数解析式.根据二次函数准确填表是解题的关键,要注意给出的二次函数中y代表的是前n个月的销售总量,而不是第n个月的销售量.29.(10分)(•盐城)如图1,E为线段AB上一点,AB=4BE,以AE,BE为直径在AB的同侧作半圆,圆心分别为O1,O2,AC、BD分别是两半圆的切线,C、D为切点.(1)求证:AC=BD;(2)现将半圆O2沿着线段BA向点A平移,如图2,此时半圆O2的直径E′B′在线段AB上,AC′是半圆O2的切线,C′是切点,当为何值时,以A、C′、O2为顶点的三角形与△BDO1相似?考点:切线的性质;勾股定理;相似三角形的判定.专题:综合题;压轴题;分类讨论.分析:(1)如果设⊙O1的半径为R,⊙O2的半径为r,那么根据AB=4BE,可知R=3r.连接O1D,O2C,那么O1B=5r,AO2=7r,可在直角△BO1D中求出BD的长,同理求出AC的长,即可得出AC,BD的比例关系;(2)本题要分两种情况进行讨论:①当∠CAO2=∠B时,O2C,O1D和AO2,BO1分别对应成比例.设AE′=kAB,那么可用k,r表示出AE′的长,然后代入比例关系式中即可求出k的值.②当∠CAO2=∠DO1B时,AO2,BO1和O2C,BD对应成比例,然后按①的方法即可求出此时k的值.解答:(1)证明:连接O1D,O2C,设⊙O1的半径为R,⊙O2的半径为r,则R=3r在直角三角形BO1D中∵BO1=5r,O1D=3r∴BD=4r,同理可求得AC=4r∴AC=BD;(2)解:设AE′=kAB,因此AE′=8kr①当∠C′AO2=∠B时,,即∴k=,②当∠C′AO2=∠BO1D时,,即∴k=,或时,以A、C′、O2为顶点的三角形与△BDO1相似.点评:本题主要考查了勾股定理,相似三角形的判定和性质等知识点,要注意(2)中要按不同的相似三角形对应的成比例线段是不同的,因此要分类讨论.不要漏解.30.(11分)(•大庆)如图①,四边形AEFG和ABCD都是正方形,它们的边长分别为a,b(b≥2a),且点F在AD上(以下问题的结果均可用a,b的代数式表示).(1)求S△DBF;(2)把正方形AEFG绕点A按逆时针方向旋转45°得图②,求图②中的S△DBF;(3)把正方形AEFG绕点A旋转一周,在旋转的过程中,S△DBF是否存在最大值、最小值?如果存在,直接写出最大值、最小值;如果不存在,请说明理由.考点:旋转的性质;正方形的性质.专题:压轴题.分析:(1)根据图形的关系,可得AF的长,根据三角形面积公式,可得△DBF的面积;(2)连接AF,由题意易知AF∥BD;△DBF与△ABD同底等高,故面积相等;(3)分析可得:当F点到BD的距离取得最大、最小值时,S△BFD取得最大、最小值;分两种情况讨论可得其最大最小值.解答:解:(1)∵点F在AD上,∴AF2=a2+a2,即AF=a,∴DF=b﹣a,∴S△DBF=DF×AB=×(b﹣a)×b=b2﹣ab;(2)连接DF,AF,由题意易知AF∥BD,∴四边形AFDB是梯形,∴△DBF与△ABD等高同底,即BD为两三角形的底,由AF∥BD,得到平行线间的距离相等,即高相等,∴S△DBF=S△ABD=b2;(3)正方形AEFG在绕A点旋转的过程中,F点的轨迹是以点A为圆心,AF为半径的圆,第一种情况:当b>2a时,存在最大值及最小值,因为△BFD的边BD=b,故当F点到BD的距离取得最大、最小值时,S△BFD取得最大、最小值.如图②所示DF⊥BD时,S△BFD的最大值=S△BFD=b•(+a)=,S△BFD的最小值=S△BFD=b•(﹣a)=,第二种情况:当b=2a时,存在最大值,不存在最小值.∴S△BFD的最大值=.(如果答案为4a2或b2也可).点评:解答本题要充分利用正方形的特殊性质,注意在正方形中的特殊三角形的应用,搞清楚矩形、菱形、正方形中的三角形的三边关系,可有助于提高解题速度和准确率.。
河南省郑州市2022年九年级中考二模模拟数学试题卷(含答案与解析)

【答案】D
【解析】
【分析】根据相反数的定义即可求得.
【详解】解:- 的相反数是
故选:D.
【点睛】本题考查了求一个数的相反数,熟练掌握和运用求一个数的相反数的方法是解决本题的关键.
2.据河南省统计局发布的信息,2021年我省对外贸易取得新突破,全年全省进出口总值 亿元,创河南省进出口规模历史新高,数据“ 亿”用科学记数法表示为()
15.如图,在平行四边形ABCD中,对角线AC,BD相交于点O, , ,E为AD上一动点,连接BE,将 沿BE折叠得到 ,当点F落在平行四边形的对角线上时,OF的长为______.
三、解答题(共8个小题,共75分)
16.如果 ,那么代数式 的值.
17.为了解某市八年级数学期末考试情况,进行了抽样调查,过程如下,请将有关问题补充完整.
证明:如图①,延长AD与BT交于点H,连接OD,OT.
∵DT,BT与⊙O相切
∴… …,①
∴BT=DT
∵AB是半⊙O的直径,∠ADB=90°,②
在△BDH中,BT=DT,得到∠TDB=∠TBD,
可得∠H=∠TDH,
∴BT=DT=HT.
又∵DE∥BH,∴ = , =
∴ =
又∵BT=HT,∴DF=EF.
任务:
(1)求点B距水平地面AE 高度;
(2)求广告牌CD的高度.(结果精确到0.1米)
22.阅读下面材料,并按要求完成相应的任务:
阿基米德是古希腊的数学家、物理学家.在《阿基米德全集》里,他关于圆的引理的论证如下:
命题:设AB是一个半圆的直径,并且过点B的切线与过该半圆上的任意一点D的切线交于点T,如果作DE垂直AB于点E,且与AT交于点F,则DF=EF.
13.如图,在△ABC中,O为BC边上的一点,以O为圆心的半圆分别与AB,AC相切于点M,N.已知∠BAC=120°, , 的长为π,则图中阴影部分的面积为_____.
郑州市中考第二次模拟考试数学试卷含答案(1)

中学数学二模模拟试卷一、选择题(每小题3分,计30分)1.若a是绝对值最小的有理数,b是最大的负整数,c是倒数等于它本身的自然数,则代数式a﹣b+c的值为()A.0 B.1 C.2 D.32.如图是一个全封闭的物体,则它的俯视图是()A.B.C.D.3.若点A(1,a)和点B(4,b)在直线y=﹣x+m上,则a与b的大小关系是()A.a>b B.a<bC.a=b D.与m的值有关4.一副三角板如图摆放,边DE∥AB,则∠1=()A.135°B.120°C.115°D.105°5.不等式9﹣3x<x﹣3的解集在数轴上表示正确的是()A.B.C.D.等于()6.如图,在△ABC中,BC=4,BC边上的中线AD=2,AB+AC=3+,则S△ABCA.B.C.D.7.一次函数图象经过A(1,1),B(﹣1,m)两点,且与直线y=2x﹣3无交点,则下列与点B(﹣1,m)关于y轴对称的点是()A.(﹣1,3)B.(﹣1,﹣3)C.(1,3)D.(1,﹣3)8.如图所示,在矩形ABCD中,AB=6,BC=8,对角线AC、BD相交于点O,过点O作OE垂直AC交AD于点E,则DE的长是()A.5 B.C.D.9.已知:⊙O为△ABC的外接圆,AB=AC,E是AB的中点,连OE,OE=,BC=8,则⊙O 的半径为()A.3 B.C.D.510.二次函数y=ax2﹣4ax+2(a≠0)的图象与y轴交于点A,且过点B(3,6)若点B关于二次函数对称轴的对称点为点C,那么tan∠CBA的值是()A.B.C.2 D.二、填空题(每小题3分,计12分)11.因式分解:x2﹣y2﹣2x+2y=.12.如图,△ABC中,AB=BD,点D,E分别是AC,BD上的点,且∠ABD=∠DCE,若∠BEC=105°,则∠A的度数是.13.如图,点B是双曲线y=(k≠0)上的一点,点A在x轴上,且AB=2,OB⊥AB,若∠BAO=60°,则k=.14.如图,在四边形ABCD中,∠ABC+∠ADC=180°,AB=AD,AE⊥BC于点E,若AE=17,BC=8,CD=6,则四边形ABCD的面积为.三、解答题15.(5分)计算;﹣tan30°+(π﹣1)0+16.(5分)解方程: +﹣=1.17.(5分)如图,在四边形ABCD中,AB=AD.在BC上求作一点P使△ABP≌△ADP.(要求:用尺规作图,不写作法,保留作图痕迹)18.(5分)如图,点P是正方形ABCD的对角线AC上的一点,PM⊥AB,PN⊥BC,垂足分别为点M,N,求证:DP=MN.19.(7分)为了解某中学去年中招体育考试中女生“一分钟跳绳”项目的成绩情况,从中抽取部分女生的成绩,绘制出如图所示的频数分布直方图(从左到右依次为第一到第六小组,每小组含最小值,不含最大值)和扇形统计图,请根据下列统计图中提供的信息解决下列问题:(1)本次抽取的女生总人数为,第六小组人数占总人数的百分比为,请补全频数分布直方图;(2)题中样本数据的中位数落在第组内;(3)若“一分钟跳绳”不低于130次的成绩为优秀,这个学校九年级共有女生560人,请估计该校九年级女生“一分钟跳绳”成绩的优秀人数.20.(7分)如图,河对岸有一路灯杆AB,在灯光下,小亮在点D处测得自己的影长DF=3m,沿BD方向从D后退4米到G处,测得自己的影长GH=5,如果小亮的身高为1.7m,求路灯杆AB的高度.21.(7分)一辆慢车从甲地匀速行驶至乙地,一辆快车同时从乙地出发匀速行驶至甲地,两车之间的距离y(千米)与行驶时间x(小时)的对应关系如图所示:(1)甲乙两地的距离是千米;(2)两车行驶多长时间相距300千米?(3)求出两车相遇后y与x之间的函数关系式.22.(7分)有2部不同的电影A、B,甲、乙、丙3人分别从中任意选择1部观看.(1)求甲选择A部电影的概率;(2)求甲、乙、丙3人选择同1部电影的概率(请用画树状图的方法给出分析过程,并求出结果).23.(8分)如图,已知⊙O是以AB为直径的△ABC的外接圆,过点A作⊙O的切线交OC的延长线于点D,交BC的延长线于点E.(1)求证:∠DAC=∠DCE;(2)若AB=2,sin∠D=,求AE的长.24.(10分)如图,抛物线y=x2+bx+c与x轴交于点A(﹣1,0)、B两点,与y轴交于点C(0,﹣3).(1)求抛物线的函数解析式;(2)已知点P(m,n)在抛物线上,当﹣2≤m<3时,直接写n的取值范围;(3)抛物线的对称轴与x轴交于点M,点D与点C关于点M对称,试问在该抛物线上是否存在点P,使△ABP与△ABD全等?若存在,请求出所有满足条件的P点的坐标;若不存在,请说明理由.25.(12分)问题提出;(1)如图1,矩形ABCD,AB=4,BC=8,点E为CD的中点,点P为BC上的动点,CP=时,△APE的周长最小.(2)如图2,矩形ABCD,AB=4,BC=8,点E为CD的中点,点P、点Q为BC上的动点,且PQ=2,当四边形APQE的周长最小时,请确定点P的位置(即BP的长)问题解决;(3)如图3,某公园计划在一片足够大的等边三角形水域内部(不包括边界)点P处修一个凉亭,设计要求PA长为100米,同时点M,N分别是水域AB,AC边上的动点,连接P、M、N的水上浮桥周长最小时,四边形AMPN的面积最大,请你帮忙算算此时四边形AMPN面积的最大值是多少?参考答案一、选择题1.解:根据题意得:a=0,b=﹣1,c=1,则a﹣b+c=0﹣(﹣1)+1=2,故选:C.2.解:从上面观察可得到:.故选:D.3.解:因为k=﹣1<0,所以在函数y=﹣x+m中,y随x的增大而减小.∵1<4,∴a>b.故选:A.4.解:∵DE∥AB,∴∠D+∠DAB=180°,又∵∠D=45°,∠BAC=30°,∴∠1=180°﹣∠D﹣∠BAC=105°,故选:D.5.解:移项,得:﹣3x﹣x<﹣3﹣9,合并同类项,得:﹣4x<﹣12,系数化为1,得:x>3,将不等式的解集表示如下:故选:B.6.解:∵BC=4,AD=2,∴BD=CD=2,∴AD=BD,AD=CD,∴∠B=∠BAD,∠C=∠CAD,∴∠BAD+∠CAD=180°÷2=90°,即△ABC是直角三角形,设AB=x,则AC=3+﹣x,根据勾股定理得x2+(3+﹣x)2=42,解得x=3或,∴AB=3或,AC=或3,=×3×=.∴S△ABC故选:D.7.解:∵一次函数图象与直线y=2x﹣3无交点,∴设一次函数的解析式为y=2x+b,把A(1,1)代入得1=2+b,∴b=﹣1,∴一次函数的解析式为y=2x﹣1,把B(﹣1,m)代入得m=﹣3,∴B(﹣1,﹣3),∴点B(﹣1,m)关于y轴对称的点是(1,﹣3),故选:D.8.解:∵AB=6,BC=8,∴AC=10(勾股定理);∴AO=AC=5,∵EO⊥AC,∴∠AOE=∠ADC=90°,又∵∠EAO=∠CAD,∴△AEO∽△ACD,∴,即,解得,AE=;∴DE=8﹣,故选:C.9.解:如图,作直径AD,连接BD;∵AB=AC,∴=,∴AD⊥BC,BE=CE=4;∵OE⊥AB,∴AE=BE,而OA=OB,∴OE为△ABD的中位线,∴BD=2OE=5;由勾股定理得:DF2=BD2﹣BF2=52﹣42,∴DF=3;∵AD为⊙O的直径,∴∠ABD=90°,由射影定理得:BD2=DF•AD,而BD=5,DE=3,∴AD=,⊙O半径=.故选:C.10.解:∵y=ax2﹣4ax+2,∴对称轴为直线x=﹣=2,A(0,2),∵点B(3,6)关于二次函数对称轴的对称点为点C,∴C(1,6),∴BC∥x轴,∴∠ADB=90°,∴tan∠CBA===,故选:B.二、填空题11.解:x2﹣y2﹣2x+2y=(x2﹣y2)﹣(2x﹣2y)=(x+y)(x﹣y)﹣2(x﹣y)=(x﹣y)(x+y﹣2).故答案为:(x﹣y)(x+y﹣2).12.解:∵BA=BD,∴∠A=∠BDA,设∠A=∠BDA=x,∠ABD=∠ECD=y,则有,解得x=85°,故答案为85°.13.解:∵AB=2,0A⊥OB,∠ABO=60°,∴OA=AB÷cos60°=4,作AD⊥OB于点D,∴AD=AB×sin60°=,BD=AB×cos60°=1,∴OD=OA﹣BD=3,∴点B的坐标为(3,),∵B 是双曲线y =上一点,∴k =xy =3. 故答案为:3.14.解:如图,过点A 作AF ⊥CD 交CD 的延长线于F ,连接AC ,则∠ADF +∠ADC =180°,∵∠ABC +∠ADC =180°,∴∠ABC =∠ADF ,∵在△ABE 和△ADF 中,∴△ABE ≌△ADF (AAS ),∴AF =AE =17,∴S 四边形ABCD =S △ABC +S △ACD =×8×17+×6×17=119故答案为:119三、解答题15.解:原式=﹣+1+﹣1=. 16.解:方程两边同乘(x +2)(x ﹣2)得 x ﹣2+4x ﹣2(x +2)=x 2﹣4,整理,得x 2﹣3x +2=0,解这个方程得x 1=1,x 2=2,经检验,x 2=2是增根,舍去,所以,原方程的根是x =1.17.解:如图所示,点P 即为所求.18.证明:如图,连结PB.∵四边形ABCD是正方形,∴BC=DC,∠BCP=∠DCP=45°.∵在△CBP和△CDP中,,∴△CBP≌△CDP(SAS).∴DP=BP.∵PM⊥AB,PN⊥BC,∠MBN=90°∴四边形BNPM是矩形.∴BP=MN.∴DP=MN.19.解:(1)本次抽取的女生总人数是:10÷20%=50(人),第四小组的人数为:50﹣4﹣10﹣16﹣6﹣4=10(人),第六小组人数占总人数的百分比是:×100%=8%.补全图形如下:故答案是:50人、8%;(2)因为总人数为50,所以中位数是第25、26个数据的平均数,而第25、26个数据都落在第三组,所以中位数落在第三组,故答案为:三;(3)随机抽取的样本中,不低于130次的有20人,则总体560人中优秀的有560×=224(人),答:估计该校九年级女生“一分钟跳绳”成绩的优秀人数为224人.20.解:∵CD⊥BF,AB⊥BF,∴CD∥AB,∴△CDF∽△ABF,∴=,同理可得=,∴=,∴=,解得BD=6,∴=,解得AB=5.1.答:路灯杆AB高5.1m.21.解:(1)由图象得:甲乙两地相距600千米;故答案为:600;(2)由题意得:慢车总用时10小时,∴慢车速度为(千米/小时);设快车速度为x千米/小时,由图象得:60×4+4x=600,解得:x=90,∴快车速度为90千米/小时;设出发x小时后,两车相距300千米.①当两车没有相遇时,由题意得:60x+90x=600﹣300,解得:x=2;②当两车相遇后,由题意得:60x+90x=600+300,解得:x=6;即两车2或6小时时,两车相距300千米;(3)由图象得:(小时),60×400(千米),时间为小时时快车已到达甲地,此时慢车走了400千米,∴两车相遇后y与x的函数关系式为y=.22.解:(1)甲选择A部电影的概率=;(2)画树状图为:共有8种等可能的结果数,其中甲、乙、丙3人选择同1部电影的结果数为2,所以甲、乙、丙3人选择同1部电影的概率==.23.解:(1)∵AD是圆O的切线,∴∠DAB=90°.∵AB是圆O的直径,∴∠ACB=90°.∵∠DAC+∠CAB=90°,∠CAB+∠ABC=90°,∴∠DAC=∠B.∵OC=OB,∴∠B=∠OCB.又∵∠DCE=∠OCB.∴∠DAC=∠DCE.(2)∵AB=2,∴AO=1.∵sin∠D=,∴OD=3,DC=2.在Rt△DAO中,由勾股定理得AD==2.∵∠DAC=∠DCE,∠D=∠D,∴△DEC∽△DCA.∴,即.解得:DE=.∴AE=AD﹣DE=.24.解:(1)将点C坐标代入函数表达式得:y=x2+bx﹣3,将点A的坐标代入上式并解得:b=﹣2,故抛物线的表达式为:y=x2﹣2x﹣3;(2)令y=x2﹣2x﹣3=0,则x=3或﹣1,即点B(3,0),函数的对称轴为x=1,m=﹣2时,n=4+4﹣3=5,m<3,函数的最小值为顶点纵坐标的值:﹣4,故﹣4≤n≤5;(3)点D与点C(0,﹣3)关于点M对称,则点D(2,3),在x轴上方的P不存在,点P只可能在x轴的下方,如下图当点P在对称轴右侧时,点P为点D关于x轴的对称点,此时△ABP与△ABD全等,即点P(2,﹣3);同理点C(P′)也满足△ABP′与△ABD全等,即点P′(0,﹣3);故点P的坐标为(0,﹣3)或(2,﹣3).25.解:(1):∵四边形ABCD是矩形,∴∠D=90°=∠ABC,AB=CD=4,BC=AD=8,∵E为CD中点,∴DE=CE=2,在Rt△ADE中,由勾股定理得:AE===2,即△APE的边AE的长一定,要△APE的周长最小,只要AP+PE最小即可,延长AB到M,使BM=AB=4,则A和M关于BC对称,连接EM交BC于P,此时AP+EP的值最小,∵四边形ABCD是矩形,∴AB∥CD,∴△ECP∽△MBP,∴∴∴CP=故答案为:(2)点A向右平移2个单位到M,点E关于BC的对称点F,连接MF,交BC于Q,此时MQ+EQ最小,∵PQ=3,DE=CE=2,AE=2,∴要使四边形APQE的周长最小,只要AP+EQ最小就行,即AP+EQ=MQ+EQ,过M作MN⊥BC于N,∴MN∥CD∴△MNQ∽△FCQ,∴∴∴NQ=4∴BP=BQ﹣PQ=4+2﹣2=4(3)如图,作点P关于AB的对称点G,作点P关于AC的对称点H,连接GH,交AB,AC 于点M,N,此时△PMN的周长最小.∴AP=AG=AH=100米,∠GAM=∠PAM,∠HAN=∠PAN,∵∠PAM+∠PAN=60°,∴∠GAH =120°,且AG =AH ,∴∠AGH =∠AHG =30°,过点A 作AO ⊥GH ,∴AO =50米,HO =GO =50米, ∴GH =100米,∴S △AGH =GH ×AO =2500平方米, ∵S 四边形AMPN =S △AGM +S △ANH =S △AGH ﹣S △AMN ,∴S △AMN 的值最小时,S 四边形AMPN 的值最大,∴MN =GM =NH =时∴S 四边形AMPN =S △AGH ﹣S △AMN =2500﹣=平方米.中学数学二模模拟试卷一、选择题(每小题3分,计30分)1.若a 是绝对值最小的有理数,b 是最大的负整数,c 是倒数等于它本身的自然数,则代数式a ﹣b +c 的值为( )A .0B .1C .2D .32.如图是一个全封闭的物体,则它的俯视图是( )A .B .C .D .3.若点A (1,a )和点B (4,b )在直线y =﹣x +m 上,则a 与b 的大小关系是( )A .a >bB .a <bC .a =bD .与m 的值有关4.一副三角板如图摆放,边DE ∥AB ,则∠1=( )A.135°B.120°C.115°D.105°5.不等式9﹣3x<x﹣3的解集在数轴上表示正确的是()A.B.C.D.等于()6.如图,在△ABC中,BC=4,BC边上的中线AD=2,AB+AC=3+,则S△ABCA.B.C.D.7.一次函数图象经过A(1,1),B(﹣1,m)两点,且与直线y=2x﹣3无交点,则下列与点B(﹣1,m)关于y轴对称的点是()A.(﹣1,3)B.(﹣1,﹣3)C.(1,3)D.(1,﹣3)8.如图所示,在矩形ABCD中,AB=6,BC=8,对角线AC、BD相交于点O,过点O作OE垂直AC交AD于点E,则DE的长是()A.5 B.C.D.9.已知:⊙O为△ABC的外接圆,AB=AC,E是AB的中点,连OE,OE=,BC=8,则⊙O 的半径为()A.3 B.C.D.510.二次函数y=ax2﹣4ax+2(a≠0)的图象与y轴交于点A,且过点B(3,6)若点B关于二次函数对称轴的对称点为点C,那么tan∠CBA的值是()A.B.C.2 D.二、填空题(每小题3分,计12分)11.因式分解:x2﹣y2﹣2x+2y=.12.如图,△ABC中,AB=BD,点D,E分别是AC,BD上的点,且∠ABD=∠DCE,若∠BEC =105°,则∠A的度数是.13.如图,点B是双曲线y=(k≠0)上的一点,点A在x轴上,且AB=2,OB⊥AB,若∠BAO=60°,则k=.14.如图,在四边形ABCD中,∠ABC+∠ADC=180°,AB=AD,AE⊥BC于点E,若AE=17,BC=8,CD=6,则四边形ABCD的面积为.三、解答题15.(5分)计算;﹣tan30°+(π﹣1)0+16.(5分)解方程: +﹣=1.17.(5分)如图,在四边形ABCD中,AB=AD.在BC上求作一点P使△ABP≌△ADP.(要求:用尺规作图,不写作法,保留作图痕迹)18.(5分)如图,点P是正方形ABCD的对角线AC上的一点,PM⊥AB,PN⊥BC,垂足分别为点M,N,求证:DP=MN.19.(7分)为了解某中学去年中招体育考试中女生“一分钟跳绳”项目的成绩情况,从中抽取部分女生的成绩,绘制出如图所示的频数分布直方图(从左到右依次为第一到第六小组,每小组含最小值,不含最大值)和扇形统计图,请根据下列统计图中提供的信息解决下列问题:(1)本次抽取的女生总人数为,第六小组人数占总人数的百分比为,请补全频数分布直方图;(2)题中样本数据的中位数落在第组内;(3)若“一分钟跳绳”不低于130次的成绩为优秀,这个学校九年级共有女生560人,请估计该校九年级女生“一分钟跳绳”成绩的优秀人数.20.(7分)如图,河对岸有一路灯杆AB,在灯光下,小亮在点D处测得自己的影长DF=3m,沿BD方向从D后退4米到G处,测得自己的影长GH=5,如果小亮的身高为1.7m,求路灯杆AB的高度.21.(7分)一辆慢车从甲地匀速行驶至乙地,一辆快车同时从乙地出发匀速行驶至甲地,两车之间的距离y(千米)与行驶时间x(小时)的对应关系如图所示:(1)甲乙两地的距离是千米;(2)两车行驶多长时间相距300千米?(3)求出两车相遇后y与x之间的函数关系式.22.(7分)有2部不同的电影A、B,甲、乙、丙3人分别从中任意选择1部观看.(1)求甲选择A部电影的概率;(2)求甲、乙、丙3人选择同1部电影的概率(请用画树状图的方法给出分析过程,并求出结果).23.(8分)如图,已知⊙O是以AB为直径的△ABC的外接圆,过点A作⊙O的切线交OC的延长线于点D,交BC的延长线于点E.(1)求证:∠DAC=∠DCE;(2)若AB=2,sin∠D=,求AE的长.24.(10分)如图,抛物线y=x2+bx+c与x轴交于点A(﹣1,0)、B两点,与y轴交于点C (0,﹣3).(1)求抛物线的函数解析式;(2)已知点P(m,n)在抛物线上,当﹣2≤m<3时,直接写n的取值范围;(3)抛物线的对称轴与x轴交于点M,点D与点C关于点M对称,试问在该抛物线上是否存在点P,使△ABP与△ABD全等?若存在,请求出所有满足条件的P点的坐标;若不存在,请说明理由.25.(12分)问题提出;(1)如图1,矩形ABCD,AB=4,BC=8,点E为CD的中点,点P为BC上的动点,CP=时,△APE的周长最小.(2)如图2,矩形ABCD,AB=4,BC=8,点E为CD的中点,点P、点Q为BC上的动点,且PQ=2,当四边形APQE的周长最小时,请确定点P的位置(即BP的长)问题解决;(3)如图3,某公园计划在一片足够大的等边三角形水域内部(不包括边界)点P处修一个凉亭,设计要求PA长为100米,同时点M,N分别是水域AB,AC边上的动点,连接P、M、N的水上浮桥周长最小时,四边形AMPN的面积最大,请你帮忙算算此时四边形AMPN面积的最大值是多少?参考答案一、选择题1.解:根据题意得:a=0,b=﹣1,c=1,则a﹣b+c=0﹣(﹣1)+1=2,故选:C.2.解:从上面观察可得到:.故选:D.3.解:因为k=﹣1<0,所以在函数y=﹣x+m中,y随x的增大而减小.∵1<4,∴a>b.故选:A.4.解:∵DE∥AB,∴∠D+∠DAB=180°,又∵∠D=45°,∠BAC=30°,∴∠1=180°﹣∠D﹣∠BAC=105°,故选:D.5.解:移项,得:﹣3x﹣x<﹣3﹣9,合并同类项,得:﹣4x<﹣12,系数化为1,得:x>3,将不等式的解集表示如下:故选:B.6.解:∵BC=4,AD=2,∴BD=CD=2,∴AD=BD,AD=CD,∴∠B=∠BAD,∠C=∠CAD,∴∠BAD+∠CAD=180°÷2=90°,即△ABC是直角三角形,设AB=x,则AC=3+﹣x,根据勾股定理得x2+(3+﹣x)2=42,解得x=3或,∴AB=3或,AC=或3,=×3×=.∴S△ABC故选:D.7.解:∵一次函数图象与直线y=2x﹣3无交点,∴设一次函数的解析式为y=2x+b,把A(1,1)代入得1=2+b,∴b=﹣1,∴一次函数的解析式为y=2x﹣1,把B(﹣1,m)代入得m=﹣3,∴B(﹣1,﹣3),∴点B(﹣1,m)关于y轴对称的点是(1,﹣3),故选:D.8.解:∵AB=6,BC=8,∴AC=10(勾股定理);∴AO=AC=5,∵EO⊥AC,∴∠AOE=∠ADC=90°,又∵∠EAO=∠CAD,∴△AEO∽△ACD,∴,即,解得,AE=;∴DE=8﹣,故选:C.9.解:如图,作直径AD,连接BD;∵AB=AC,∴=,∴AD⊥BC,BE=CE=4;∵OE⊥AB,∴AE=BE,而OA=OB,∴OE为△ABD的中位线,∴BD=2OE=5;由勾股定理得:DF2=BD2﹣BF2=52﹣42,∴DF=3;∵AD为⊙O的直径,∴∠ABD=90°,由射影定理得:BD2=DF•AD,而BD=5,DE=3,∴AD=,⊙O半径=.故选:C.10.解:∵y=ax2﹣4ax+2,∴对称轴为直线x=﹣=2,A(0,2),∵点B(3,6)关于二次函数对称轴的对称点为点C,∴C(1,6),∴BC∥x轴,∴∠ADB=90°,∴tan∠CBA===,故选:B.二、填空题11.解:x2﹣y2﹣2x+2y=(x2﹣y2)﹣(2x﹣2y)=(x+y)(x﹣y)﹣2(x﹣y)=(x﹣y)(x+y﹣2).故答案为:(x﹣y)(x+y﹣2).12.解:∵BA=BD,∴∠A=∠BDA,设∠A=∠BDA=x,∠ABD=∠ECD=y,则有,解得x=85°,故答案为85°.13.解:∵AB=2,0A⊥OB,∠ABO=60°,∴OA=AB÷cos60°=4,作AD⊥OB于点D,∴AD=AB×sin60°=,BD=AB×cos60°=1,∴OD=OA﹣BD=3,∴点B的坐标为(3,),∵B 是双曲线y =上一点,∴k =xy =3. 故答案为:3.14.解:如图,过点A 作AF ⊥CD 交CD 的延长线于F ,连接AC ,则∠ADF +∠ADC =180°,∵∠ABC +∠ADC =180°,∴∠ABC =∠ADF ,∵在△ABE 和△ADF 中,∴△ABE ≌△ADF (AAS ),∴AF =AE =17,∴S 四边形ABCD =S △ABC +S △ACD =×8×17+×6×17=119故答案为:119三、解答题15.解:原式=﹣+1+﹣1=. 16.解:方程两边同乘(x +2)(x ﹣2)得 x ﹣2+4x ﹣2(x +2)=x 2﹣4, 整理,得x 2﹣3x +2=0,解这个方程得x 1=1,x 2=2,经检验,x 2=2是增根,舍去,所以,原方程的根是x =1.17.解:如图所示,点P 即为所求.18.证明:如图,连结PB.∵四边形ABCD是正方形,∴BC=DC,∠BCP=∠DCP=45°.∵在△CBP和△CDP中,,∴△CBP≌△CDP(SAS).∴DP=BP.∵PM⊥AB,PN⊥BC,∠MBN=90°∴四边形BNPM是矩形.∴BP=MN.∴DP=MN.19.解:(1)本次抽取的女生总人数是:10÷20%=50(人),第四小组的人数为:50﹣4﹣10﹣16﹣6﹣4=10(人),第六小组人数占总人数的百分比是:×100%=8%.补全图形如下:故答案是:50人、8%;(2)因为总人数为50,所以中位数是第25、26个数据的平均数,而第25、26个数据都落在第三组,所以中位数落在第三组,故答案为:三;(3)随机抽取的样本中,不低于130次的有20人,则总体560人中优秀的有560×=224(人),答:估计该校九年级女生“一分钟跳绳”成绩的优秀人数为224人.20.解:∵CD⊥BF,AB⊥BF,∴CD∥AB,∴△CDF∽△ABF,∴=,同理可得=,∴=,∴=,解得BD=6,∴=,解得AB=5.1.答:路灯杆AB高5.1m.21.解:(1)由图象得:甲乙两地相距600千米;故答案为:600;(2)由题意得:慢车总用时10小时,∴慢车速度为(千米/小时);设快车速度为x千米/小时,由图象得:60×4+4x=600,解得:x=90,∴快车速度为90千米/小时;设出发x小时后,两车相距300千米.①当两车没有相遇时,由题意得:60x+90x=600﹣300,解得:x=2;②当两车相遇后,由题意得:60x+90x=600+300,解得:x=6;即两车2或6小时时,两车相距300千米;(3)由图象得:(小时),60×400(千米),时间为小时时快车已到达甲地,此时慢车走了400千米,∴两车相遇后y与x的函数关系式为y=.22.解:(1)甲选择A部电影的概率=;(2)画树状图为:共有8种等可能的结果数,其中甲、乙、丙3人选择同1部电影的结果数为2,所以甲、乙、丙3人选择同1部电影的概率==.23.解:(1)∵AD是圆O的切线,∴∠DAB=90°.∵AB是圆O的直径,∴∠ACB=90°.∵∠DAC+∠CAB=90°,∠CAB+∠ABC=90°,∴∠DAC=∠B.∵OC=OB,∴∠B=∠OCB.又∵∠DCE=∠OCB.∴∠DAC=∠DCE.(2)∵AB=2,∴AO=1.∵sin∠D=,∴OD=3,DC=2.在Rt△DAO中,由勾股定理得AD==2.∵∠DAC=∠DCE,∠D=∠D,∴△DEC∽△DCA.∴,即.解得:DE=.∴AE=AD﹣DE=.24.解:(1)将点C坐标代入函数表达式得:y=x2+bx﹣3,将点A的坐标代入上式并解得:b=﹣2,故抛物线的表达式为:y=x2﹣2x﹣3;(2)令y=x2﹣2x﹣3=0,则x=3或﹣1,即点B(3,0),函数的对称轴为x=1,m=﹣2时,n=4+4﹣3=5,m<3,函数的最小值为顶点纵坐标的值:﹣4,故﹣4≤n≤5;(3)点D与点C(0,﹣3)关于点M对称,则点D(2,3),在x轴上方的P不存在,点P只可能在x轴的下方,如下图当点P在对称轴右侧时,点P为点D关于x轴的对称点,此时△ABP与△ABD全等,即点P(2,﹣3);同理点C(P′)也满足△ABP′与△ABD全等,即点P′(0,﹣3);故点P的坐标为(0,﹣3)或(2,﹣3).25.解:(1):∵四边形ABCD是矩形,∴∠D=90°=∠ABC,AB=CD=4,BC=AD=8,∵E为CD中点,∴DE=CE=2,在Rt△ADE中,由勾股定理得:AE===2,即△APE的边AE的长一定,要△APE的周长最小,只要AP+PE最小即可,延长AB到M,使BM=AB=4,则A和M关于BC对称,连接EM交BC于P,此时AP+EP的值最小,∵四边形ABCD是矩形,∴AB∥CD,∴△ECP∽△MBP,∴∴∴CP=故答案为:(2)点A向右平移2个单位到M,点E关于BC的对称点F,连接MF,交BC于Q,此时MQ+EQ最小,∵PQ=3,DE=CE=2,AE=2,∴要使四边形APQE的周长最小,只要AP+EQ最小就行,即AP+EQ=MQ+EQ,过M作MN⊥BC于N,∴MN∥CD∴△MNQ∽△FCQ,∴∴∴NQ=4∴BP=BQ﹣PQ=4+2﹣2=4(3)如图,作点P关于AB的对称点G,作点P关于AC的对称点H,连接GH,交AB,AC 于点M,N,此时△PMN的周长最小.∴AP=AG=AH=100米,∠GAM=∠PAM,∠HAN=∠PAN,∵∠PAM+∠PAN=60°,∴∠GAH =120°,且AG =AH ,∴∠AGH =∠AHG =30°,过点A 作AO ⊥GH ,∴AO =50米,HO =GO =50米, ∴GH =100米,∴S △AGH =GH ×AO =2500平方米, ∵S 四边形AMPN =S △AGM +S △ANH =S △AGH ﹣S △AMN ,∴S △AMN 的值最小时,S 四边形AMPN 的值最大,∴MN =GM =NH =时∴S 四边形AMPN =S △AGH ﹣S △AMN =2500﹣=平方米.中学数学二模模拟试卷一、选择题(每小题3分,计30分)1.若a 是绝对值最小的有理数,b 是最大的负整数,c 是倒数等于它本身的自然数,则代数式a ﹣b +c 的值为( )A .0B .1C .2D .32.如图是一个全封闭的物体,则它的俯视图是( )A .B .C .D .3.若点A (1,a )和点B (4,b )在直线y =﹣x +m 上,则a 与b 的大小关系是( )A .a >bB .a <bC .a =bD .与m 的值有关4.一副三角板如图摆放,边DE ∥AB ,则∠1=( )A.135°B.120°C.115°D.105°5.不等式9﹣3x<x﹣3的解集在数轴上表示正确的是()A.B.C.D.等于()6.如图,在△ABC中,BC=4,BC边上的中线AD=2,AB+AC=3+,则S△ABCA.B.C.D.7.一次函数图象经过A(1,1),B(﹣1,m)两点,且与直线y=2x﹣3无交点,则下列与点B(﹣1,m)关于y轴对称的点是()A.(﹣1,3)B.(﹣1,﹣3)C.(1,3)D.(1,﹣3)8.如图所示,在矩形ABCD中,AB=6,BC=8,对角线AC、BD相交于点O,过点O作OE垂直AC交AD于点E,则DE的长是()A.5 B.C.D.9.已知:⊙O为△ABC的外接圆,AB=AC,E是AB的中点,连OE,OE=,BC=8,则⊙O 的半径为()A.3 B.C.D.510.二次函数y=ax2﹣4ax+2(a≠0)的图象与y轴交于点A,且过点B(3,6)若点B关于二次函数对称轴的对称点为点C,那么tan∠CBA的值是()A.B.C.2 D.二、填空题(每小题3分,计12分)11.因式分解:x2﹣y2﹣2x+2y=.12.如图,△ABC中,AB=BD,点D,E分别是AC,BD上的点,且∠ABD=∠DCE,若∠BEC =105°,则∠A的度数是.13.如图,点B是双曲线y=(k≠0)上的一点,点A在x轴上,且AB=2,OB⊥AB,若∠BAO=60°,则k=.14.如图,在四边形ABCD中,∠ABC+∠ADC=180°,AB=AD,AE⊥BC于点E,若AE=17,BC=8,CD=6,则四边形ABCD的面积为.三、解答题15.(5分)计算;﹣tan30°+(π﹣1)0+16.(5分)解方程: +﹣=1.17.(5分)如图,在四边形ABCD中,AB=AD.在BC上求作一点P使△ABP≌△ADP.(要求:用尺规作图,不写作法,保留作图痕迹)18.(5分)如图,点P是正方形ABCD的对角线AC上的一点,PM⊥AB,PN⊥BC,垂足分别为点M,N,求证:DP=MN.19.(7分)为了解某中学去年中招体育考试中女生“一分钟跳绳”项目的成绩情况,从中抽取部分女生的成绩,绘制出如图所示的频数分布直方图(从左到右依次为第一到第六小组,每小组含最小值,不含最大值)和扇形统计图,请根据下列统计图中提供的信息解决下列问题:(1)本次抽取的女生总人数为,第六小组人数占总人数的百分比为,请补全频数分布直方图;(2)题中样本数据的中位数落在第组内;(3)若“一分钟跳绳”不低于130次的成绩为优秀,这个学校九年级共有女生560人,请估计该校九年级女生“一分钟跳绳”成绩的优秀人数.20.(7分)如图,河对岸有一路灯杆AB,在灯光下,小亮在点D处测得自己的影长DF=3m,沿BD方向从D后退4米到G处,测得自己的影长GH=5,如果小亮的身高为1.7m,求路灯杆AB的高度.21.(7分)一辆慢车从甲地匀速行驶至乙地,一辆快车同时从乙地出发匀速行驶至甲地,两车之间的距离y(千米)与行驶时间x(小时)的对应关系如图所示:(1)甲乙两地的距离是千米;(2)两车行驶多长时间相距300千米?(3)求出两车相遇后y与x之间的函数关系式.22.(7分)有2部不同的电影A、B,甲、乙、丙3人分别从中任意选择1部观看.(1)求甲选择A部电影的概率;(2)求甲、乙、丙3人选择同1部电影的概率(请用画树状图的方法给出分析过程,并求出结果).23.(8分)如图,已知⊙O是以AB为直径的△ABC的外接圆,过点A作⊙O的切线交OC的延长线于点D,交BC的延长线于点E.(1)求证:∠DAC=∠DCE;(2)若AB=2,sin∠D=,求AE的长.24.(10分)如图,抛物线y=x2+bx+c与x轴交于点A(﹣1,0)、B两点,与y轴交于点C (0,﹣3).(1)求抛物线的函数解析式;(2)已知点P(m,n)在抛物线上,当﹣2≤m<3时,直接写n的取值范围;(3)抛物线的对称轴与x轴交于点M,点D与点C关于点M对称,试问在该抛物线上是否存在点P,使△ABP与△ABD全等?若存在,请求出所有满足条件的P点的坐标;若不存在,请说明理由.25.(12分)问题提出;(1)如图1,矩形ABCD,AB=4,BC=8,点E为CD的中点,点P为BC上的动点,CP=时,△APE的周长最小.(2)如图2,矩形ABCD,AB=4,BC=8,点E为CD的中点,点P、点Q为BC上的动点,且PQ=2,当四边形APQE的周长最小时,请确定点P的位置(即BP的长)问题解决;(3)如图3,某公园计划在一片足够大的等边三角形水域内部(不包括边界)点P处修一个凉亭,设计要求PA长为100米,同时点M,N分别是水域AB,AC边上的动点,连接P、M、N的水上浮桥周长最小时,四边形AMPN的面积最大,请你帮忙算算此时四边形AMPN面积的最大值是多少?参考答案一、选择题1.解:根据题意得:a=0,b=﹣1,c=1,则a﹣b+c=0﹣(﹣1)+1=2,故选:C.2.解:从上面观察可得到:.故选:D.3.解:因为k=﹣1<0,所以在函数y=﹣x+m中,y随x的增大而减小.∵1<4,∴a>b.故选:A.4.解:∵DE∥AB,∴∠D+∠DAB=180°,又∵∠D=45°,∠BAC=30°,∴∠1=180°﹣∠D﹣∠BAC=105°,故选:D.5.解:移项,得:﹣3x﹣x<﹣3﹣9,合并同类项,得:﹣4x<﹣12,系数化为1,得:x>3,将不等式的解集表示如下:故选:B.6.解:∵BC=4,AD=2,∴BD=CD=2,∴AD=BD,AD=CD,∴∠B=∠BAD,∠C=∠CAD,∴∠BAD+∠CAD=180°÷2=90°,即△ABC是直角三角形,设AB=x,则AC=3+﹣x,根据勾股定理得x2+(3+﹣x)2=42,解得x=3或,∴AB=3或,AC=或3,=×3×=.∴S△ABC故选:D.7.解:∵一次函数图象与直线y=2x﹣3无交点,∴设一次函数的解析式为y=2x+b,把A(1,1)代入得1=2+b,∴b=﹣1,∴一次函数的解析式为y=2x﹣1,把B(﹣1,m)代入得m=﹣3,∴B(﹣1,﹣3),∴点B(﹣1,m)关于y轴对称的点是(1,﹣3),故选:D.8.解:∵AB=6,BC=8,∴AC=10(勾股定理);∴AO=AC=5,∵EO⊥AC,∴∠AOE=∠ADC=90°,又∵∠EAO=∠CAD,∴△AEO∽△ACD,∴,即,解得,AE=;∴DE=8﹣,故选:C.9.解:如图,作直径AD,连接BD;∵AB=AC,∴=,∴AD⊥BC,BE=CE=4;∵OE⊥AB,∴AE=BE,而OA=OB,∴OE为△ABD的中位线,∴BD=2OE=5;由勾股定理得:DF2=BD2﹣BF2=52﹣42,∴DF=3;∵AD为⊙O的直径,∴∠ABD=90°,由射影定理得:BD2=DF•AD,而BD=5,DE=3,∴AD=,⊙O半径=.故选:C.10.解:∵y=ax2﹣4ax+2,∴对称轴为直线x=﹣=2,A(0,2),∵点B(3,6)关于二次函数对称轴的对称点为点C,∴C(1,6),∴BC∥x轴,∴∠ADB=90°,∴tan∠CBA===,故选:B.二、填空题11.解:x2﹣y2﹣2x+2y=(x2﹣y2)﹣(2x﹣2y)=(x+y)(x﹣y)﹣2(x﹣y)=(x﹣y)(x+y﹣2).故答案为:(x﹣y)(x+y﹣2).12.解:∵BA=BD,∴∠A=∠BDA,设∠A=∠BDA=x,∠ABD=∠ECD=y,则有,解得x=85°,故答案为85°.13.解:∵AB=2,0A⊥OB,∠ABO=60°,∴OA=AB÷cos60°=4,作AD⊥OB于点D,∴AD=AB×sin60°=,BD=AB×cos60°=1,∴OD=OA﹣BD=3,∴点B的坐标为(3,),∵B 是双曲线y =上一点,∴k =xy =3. 故答案为:3.14.解:如图,过点A 作AF ⊥CD 交CD 的延长线于F ,连接AC ,则∠ADF +∠ADC =180°,∵∠ABC +∠ADC =180°,∴∠ABC =∠ADF ,∵在△ABE 和△ADF 中,∴△ABE ≌△ADF (AAS ),∴AF =AE =17,∴S 四边形ABCD =S △ABC +S △ACD =×8×17+×6×17=119故答案为:119三、解答题15.解:原式=﹣+1+﹣1=. 16.解:方程两边同乘(x +2)(x ﹣2)得 x ﹣2+4x ﹣2(x +2)=x 2﹣4, 整理,得x 2﹣3x +2=0,解这个方程得x 1=1,x 2=2,经检验,x 2=2是增根,舍去,所以,原方程的根是x =1.17.解:如图所示,点P 即为所求.18.证明:如图,连结PB.∵四边形ABCD是正方形,∴BC=DC,∠BCP=∠DCP=45°.∵在△CBP和△CDP中,,∴△CBP≌△CDP(SAS).∴DP=BP.∵PM⊥AB,PN⊥BC,∠MBN=90°∴四边形BNPM是矩形.∴BP=MN.∴DP=MN.19.解:(1)本次抽取的女生总人数是:10÷20%=50(人),第四小组的人数为:50﹣4﹣10﹣16﹣6﹣4=10(人),第六小组人数占总人数的百分比是:×100%=8%.补全图形如下:故答案是:50人、8%;(2)因为总人数为50,所以中位数是第25、26个数据的平均数,而第25、26个数据都落在第三组,所以中位数落在第三组,故答案为:三;(3)随机抽取的样本中,不低于130次的有20人,则总体560人中优秀的有560×=224(人),答:估计该校九年级女生“一分钟跳绳”成绩的优秀人数为224人.20.解:∵CD⊥BF,AB⊥BF,∴CD∥AB,∴△CDF∽△ABF,∴=,同理可得=,∴=,∴=,解得BD=6,∴=,解得AB=5.1.答:路灯杆AB高5.1m.21.解:(1)由图象得:甲乙两地相距600千米;故答案为:600;(2)由题意得:慢车总用时10小时,∴慢车速度为(千米/小时);设快车速度为x千米/小时,由图象得:60×4+4x=600,解得:x=90,∴快车速度为90千米/小时;设出发x小时后,两车相距300千米.①当两车没有相遇时,由题意得:60x+90x=600﹣300,解得:x=2;②当两车相遇后,由题意得:60x+90x=600+300,解得:x=6;即两车2或6小时时,两车相距300千米;(3)由图象得:(小时),60×400(千米),时间为小时时快车已到达甲地,此时慢车走了400千米,∴两车相遇后y与x的函数关系式为y=.22.解:(1)甲选择A部电影的概率=;(2)画树状图为:共有8种等可能的结果数,其中甲、乙、丙3人选择同1部电影的结果数为2,。
2024年河南省郑州市九年级中考第二次模拟考试数学试题

2024年河南省郑州市九年级中考第二次模拟考试数学试题一、单选题1.2的绝对值是( )A .﹣2B .12 C .2 D .±22.近十年来,我国扎实开展国土绿化行动,持续推进科学绿化,累计完成国土绿化面积16.8亿亩,其中16.8亿用科学记数法表示为( )A .81.6810⨯B .91.6810⨯C .816.810⨯D .100.16810⨯ 3.要说明命题“两个数相加,和一定大于其中一个加数”是假命题,能够作为反例的是( ) A .134+= B .132-+= C .033+= D .()134-+-=- 4.如果一个四边形绕对角线的交点旋转90°,所得四边形与原四边形重合,那么这个四边形一定是( )A .平行四边形B .矩形C .菱形D .正方形 5.a ,b ,c 是三个连续的正偶数,以b 为边长的正方形面积的为1S ,分别以a ,c 为长和宽的长方形的面积为2S ,则1S 与2S 的数量关系是( )A .12S S =B .122S S -=C .214S S -=D .124S S -= 6.在平面直角坐标系中,某个图形上各点的纵坐标保持不变,而横坐标变为原来的相反数,此时图形却未发生任何改变.下列说法正确的是( )A .该图形是轴对称图形且关于y 轴对称B .该图形是轴对称图形且关于x 轴对称C .该图形是中心对称图形且关于原点中心对称D .该图形是任意图形均可7.中国古代“四大发明”有造纸术、指南针、火药和活字印刷术.小明购买了以“四大发明”为主题的四张纪念卡片,他将卡片背面朝上放在桌面上(纪念卡片背面完全相同),小亮从中随机抽取两张,则他抽到的两张纪念卡片恰好是“造纸术”和“指南针”的概率是( )A .23 B .12 C .16 D .188.下面的三个问题中都有两个变量:①某水池有水315m ,现打开进水管进水,进水速度为35m /h ,x 小时后,这个水池有水3m y ; ②某电信公司手机的A 类收费标准为:每部手机每月必须缴月租费12元,另外,通话费按0.2元/min 计.若一个月的通话时间为min x ,应缴费用为y 元;③用长度为1的铁丝围成一个矩形,设矩形的面积为y ,其中一边长x .其中,变量y 与变量x 之间的函数关系可以用如图所示的图象表示的是( )A .①②B .②③C .①③D .①②③9.已知数轴上点A ,B ,C ,D 对应的数字分别为1-,1,x ,7,点C 在线段BD 上且不与端点重合,若线段AB BC CD ,,能围成三角形,则x 的取值范围是( )A .17x <<B .26x <<C .35x <<D .34x <<10.如图1,在ABC V 中,动点P 从点A 出发沿折线AB BC CA →→匀速运动至点A 后停止,设点P 的运动路程为x ,线段AP 的长度为y ,ABC V 的高CG =,图2是y 与x 的函数关系的大致图象,其中点F 为曲线DE 的最低点,则点F 的坐标为( )A .(12B .(4C .(13D .(12二、填空题11.平面上两条直线的位置关系是或.12.某校为了解九年级1000名学生一分钟跳绳的情况,随机抽取50名学生进行一分钟跳绳测试,获得了他们跳绳的数据(单位:个),数据整理如下:根据以上数据,估计九年级1000名学生中跳绳的个数不低于175个的人数为 人. 13.如图,一座金字塔被发现时,顶部已经损坏,但底部未曾受损.已知该金字塔的底面是一个边长为130m 的正方形,且每个侧面与底面所夹的角都为()090αα︒<<︒,则这座金字塔原来的高为 m (用含α的式子表示).14.如图,在Rt ABC △中,90C ∠=︒,AC BC =,点O 在边AB 上,2OA =,以O 为圆心,OA 长为半径作半圆,恰好与BC 相切于点D ,交AB 于点E ,则阴影部分的面积为 .15.如图,在菱形ABCD 中,=60B ∠︒,将边AB 绕点A 顺时针旋转()0360αα︒<<︒得到AE ,连接EC ,ED ,当ECD V 为直角三角形时,α的度数为 .三、解答题16.(1131---;(2)化简:2221442x x x x x -⎛⎫÷+ ⎪-+-⎝⎭. 17.某校所在城市中学段跳远成绩达到596cm 就很可能夺冠,该市跳远记录为609cm .该校要从甲、乙两名运动员中挑出一人参加全市中学生跳远比赛.李老师记录了二人在最近的10次选拔赛中的成绩(单位:cm ),并进行整理、描述和分析.a .甲、乙二人最近10次选拔赛成绩:甲:585,596,610,598,612,597,604,600,613,601;乙:613,618,580,574,618,593,585,590,598,624.b .甲、乙两人最近10次选拔赛成绩的统计表:根据以上信息,回答下列问题:(1)分析这两名运动员的成绩各有什么特点?(2)你认为李老师会让谁去参加比赛?请说明理由.18.如图,点A ,B 为O e 上的两点,连接AO ,BO ,(90)AB AOB ∠<︒.(1)请用无刻度的直尺和圆规,过点B 作OA 的平行线(保留作图痕迹,不写作法).(2)若(1)中所作的平行线与O e 交于点C ,连接AC ,则C A O ∠与O ∠有怎样的数量关系,请说明理由.19.如图,在平面直角坐标系xOy 中,函数()0ky x x=>的图象与直线1y x =+交于点()1,A m .(1)求k ,m 的值;(2)已知点P 为直线1y x =+在第一象限上的一个动点,且点P 的横坐标为a ,过点P 作x 轴的垂线,交函数()0k y x x=>的图象于点Q ,当2PQ =时,求a 的值;(3)观察图象,直接写出当2PQ >时,a 的取值范围.20.阅读材料:小学阶段我们学习过被3整除的数的规律,初中阶段可以论证结论的正确性.以三位数为例,设abc 是一个三位数,若a b c ++可以被3整除,则这个数可以被3整除.论证过程如下:()()10010999abc a b c a b a b c =++=++++,显然99a +9b 能被3整除,因此,如果a b c ++可以被3整除,那么abc 就能被3整除.应用材料解答下列问题:(1)设abc 是一个三位数,直接写出abc 满足什么条件时,它可以被5整除;(2)设abcd 是一个四位数,猜想abcd 满足什么条件时,它可以被4整除,并说明理由. 21.生物学家认为,睡眠中的恒温动物依然会消耗体内能量,主要是为了保持体温.脉搏率f 是单位时间心跳的次数,医学研究发现,动物的体重W (单位:g )与脉搏率f 存在着一定的关系.如表给出一些动物体重与脉搏率对应的数据,图1画出了体重W 与脉搏率f 的散点图,图2画出了lgf 与lgW 的散点图(lgX 是一种运算,如1100220.330.5g lg lg =≈≈,,).为了较好地描述体重W 和脉搏率f 的关系,现有以下两种模型供选择:①f kW b =+;②lgf klgW b =+.(1)选出你认为最符合实际的函数模型,并说明理由;(2)不妨取表1中豚鼠和兔的体重、脉搏率数据代入所选函数模型,求出lgf 关于lgW 的函数表达式.(参考数据:1200 2.32000 3.3300 2.5g lg lg ≈≈≈,,.)22.在平面直角坐标系中,设二次函数2(y x bx c b =-++,c 为常数).. (1)写出一组b ,c 的值,使抛物线2y x bx c =-++与x 轴有两个不同的交点,并说明理由.(2)若抛物线2y x bx c =-++经过(1,0)-,(2,3).①求抛物线的表达式,并写出顶点坐标;②设抛物线与y 轴交于点A ,点B 为抛物线上的一点,且到y 轴的距离为2个单位长度,点(,)P m n 为抛物线上点A ,B 之间(不含点A ,)B 的一个动点,求点P 的纵坐标n 的取值范围.23.如图,ABC V 的三边长分别为a ,b ,()c a b c >>,111A B C △的三边长分别为1a ,1b ,1c ,111ABC A B C ∽△△,相似比为(k k 为常数且0k >,1)k ≠..(1)若1c a =,用k 表示a 和c 的数量关系;(2)在(1)的条件下,请写出符合条件的一对ABC V 和111A B C △,使得a ,b ,c 和1a ,1b ,1c 都是正整数;(3)若1b a =,1c b =,是否存在ABC V 和111A B C △相似使得k 是正整数?请说明理由.。
郑州市 中考数学二模试卷及答案(word解析版)

河南省郑州市中考数学二模试卷参考答案与试题解析一、填空题:(本大题共10小题,每小题2分,计20分)1.(2分)(2009•常德)3的倒数是.的倒数是2.(2分)﹣y的系数是﹣,次数是3.解:根据单项式系数、次数的定义,数字因式﹣为单项式的系数,字母指数和为3.(2分)(2004•盐城)因式分解:x2﹣4y2=(x+2y)(x﹣2y).4.(2分)(2011•邵阳)函数y=中,自变量x的取值范围是x≥1.5.(2分)(2004•盐城)已知△ABC∽△A′B′C′,它们的相似比为2:3,那么它们的周长比是2:3.6.(2分)(2004•盐城)在正比例函数y=3x中,y随x的增大而增大(填“增大”或“减小”).7.(2分)(2004•盐城)若直角三角形斜边长为6,则这个直角三角形斜边上的中线长为3.8.(2分)(2004•盐城)请写出你熟悉的两个无理数或.解:例如,9.(2分)(2008•郴州)已知⊙O的半径是3,圆心O到直线l的距离是3,则直线l与⊙O的位置关系是相切.10.(2分)(2004•盐城)如图,在⊙O的内接四边形ABCD中,∠BOD=90°,则∠BCD=135度.A=∠二.选择题(本大题共8小题,每小题3分,计24分)下列各题给出的四个选项中只有一个是正确的,请将正确答案的字母代号填写在下面的表格内.13.(3分)(2004•盐城)解分式方程时,可设=y,则原方程可化为整式方程是观察方程的两个分式具备的关系,设,则原方程另一个分式为解:把y+15.(3分)(2004•盐城)某正方形园地是由边长为1的四个小正方形组成的,现在园地上建一个花园(即每个图中的阴影部分),使花坛面积是园地面积的一半,以下图中的设计不合要求的是()B.中的花坛面积都是,而﹣=.217.(3分)(2004•盐城)一台机床在十天内生产的产品中,每天出现的次品个数依次为(单位:个)0,2,解:由题意可知:这十天次品的平均数为则中位数为18.(3分)(2004•盐城)如图是一个圆柱形木块,四边形ABB1A1是经边它的轴的剖面,设四边形ABB1A1的面积为S,圆柱的侧面积为S侧,则S与S侧的关系是()S=S=.三.解答题(本大题共4小题,计29分)19.(6分)(2004•盐城)计算:(﹣(2﹣π)0+|﹣|﹣.﹣20.(7分)(2004•盐城)如图,甲、乙两楼相距36m,甲楼高度为30m,自甲楼楼顶看乙楼楼顶的仰角为30°,问乙楼有多高(结果保留根式).;30+1221.(8分)(2004•盐城)分别解不等式5x﹣2<3(x+1)和,再根据它们的解集写出x 与y的大小关系..解不等式,不等式22.(8分)(2004•盐城)如图,直角梯形ABCD中,AB∥CD,AB⊥BC,对角线AC⊥BD,垂足为E,AD=BD,过点E作EF∥AB交AD于F,求证:(1)AF=BE;(2)AF2=AE•EC.=.=,即四.解答题(本大题共8小题,计77分)23.(9分)(2004•盐城)已知关于x的一元次方程x2﹣(m+2)x+m2﹣2=0(1)当m为何值时,这个方程有两个相等的实数根;(2)如果这个方程的两个实数根x1,x2满足x12+x22=18,求m的值.((24.(9分)(2004•盐城)某气球内充满了一定质量的气球,当温度不变时,气球内气球的气压p(千帕)是气球的体积V(米2)的反比例函数,其图象如图所示.(千帕是一种压强单位)(1)写出这个函数的解析式;(2)当气球的体积为0.8立方米时,气球内的气压是多少千帕?(3)当气球内的气压大于144千帕时,气球将爆炸,为了安全起见,气球的体积应不小于多少立方米?的函数的解析式为,利用待定系数法求函数解析式即可;可得v=球的体积应不小于立方米.的函数的解析式为∴这个函数的解析式为,v=,立方米.25.(8分)(2004•盐城)如图,AB是⊙O的直径,DF切⊙O于点D,BF⊥DF于F,过点A作AC∥BF 交BD的延长线于点C.(1)求证:∠ABC=∠C;(2)设CA的延长线交⊙O于E,BF交⊙O于G,若的度数等于60°,试简要说明点D和点E关于直线AB对称的理由.,,可求证====60===6026.(9分)(2004•盐城)如图,给出了我国从1998年~2002年每年教育经费投入的情况.(1)由图可见,1998年~2002年这五年内,我国教育经费投入呈现出逐年增长趋势;(2)根据图中所给数据,求我国1998年~2002年教育经费的年平均数;(3)如果我国的教育经费从2002年的5480亿元增加到2004年的7891亿元,那么这两年的教育经费平均增长率为多少?(结果精确到0.01)27.(10分)(2004•盐城)已知y=ax2+bx+c经过点(2,1)、(﹣1,﹣8)、(0,﹣3).(1)求这个抛物线的解析式;(2)画出该抛物线的草图、并标出图象与x轴交点的横坐标;(3)观察你所画的抛物线的草图,写出x在什么范围内取值时,函数值y<0?可得28.(11分)(2004•盐城)银河电器销售公司通过对某品牌空调市场销售情况的调查研究,预测从2004年1月份开始的6个月内,其前n个月的销售总量y(单位:百台)与销售时间n(单位:月)近似满足函数关系式y=(n2+3n)(1≤n≤6,n是整数).(2)试求该公司第n个月的空调销售台数W(单位:百台)关于月份的函数关系式.,解得:W=29.(10分)(2004•盐城)如图1,E为线段AB上一点,AB=4BE,以AE,BE为直径在AB的同侧作半圆,圆心分别为O1,O2,AC、BD分别是两半圆的切线,C、D为切点.(1)求证:AC=BD;(2)现将半圆O2沿着线段BA向点A平移,如图2,此时半圆O2的直径E′B′在线段AB上,AC′是半圆O2的切线,C′是切点,当为何值时,以A、C′、O2为顶点的三角形与△BDO1相似?AC=4AC=,即k=时,,即k=或30.(11分)(2008•大庆)如图①,四边形AEFG和ABCD都是正方形,它们的边长分别为a,b(b≥2a),且点F在AD上(以下问题的结果均可用a,b的代数式表示).(1)求S△DBF;(2)把正方形AEFG绕点A按逆时针方向旋转45°得图②,求图②中的S△DBF;(3)把正方形AEFG绕点A旋转一周,在旋转的过程中,S△DBF是否存在最大值、最小值?如果存在,直接写出最大值、最小值;如果不存在,请说明理由.a﹣DF×﹣b ab=b(aa,.。
河南省郑州市二七区第八十二中学2023-2024学年九年级上学期第二次月考数学试题(含解析)

2023-2024学年上学期第二次学科问卷试题九年级数学试卷(考试时间:100分钟;满分:120分))一、选择题(共10小题,满分30分,每小题3分)1.(3分)如图所示几何体的左视图是( )A .B .C .D .2.(3分)cos60°的值等于()ABC . D3.(3分)下列平行四边形中,根据图中所标出的数据,不一定是菱形的是()A . B .C .D .4.(3分)如图所示,把两张矩形纸条交叉叠放在一起,重合部分构成一个四边形ABCD .固定一张纸条,另一张纸条在转动过程中,下列结论一定成立的是( )A .四边形ABCD 的周长不变B .四边形ABCD 的面积不变C .AD =AB D .AB =CD5.(3分)大约在两千四五百年前,如图1墨子和他的学生做了世界上第1个小孔成倒像的实验.并在《墨经》中有这样的精彩记录:“景到,在午有端,与景长,说在端”.如图2所示的小孔成像实验中,若物距为10cm ,像距为15cm ,蜡烛火焰倒立的像的高度是9cm ,则蜡烛火焰的高度是()12A .6cmB .8cmC .10cmD .12cm6.(3分)一次函数y =﹣ax +a 与反比例函数在同一平面直角坐标系中的图象可能是( )A . B . C . D .b7.(3分)“儿童放学归来早,忙趁东风放纸鸢”,小明周末在龙潭公园草坪上放风筝,已知风筝拉线长100米且拉线与地面夹角为65°(如图所示,假设拉线是直的,小明身高忽略不计),则风筝离地面的高度可以表示为( )A .100sin65°B .100cos65°C .100tan65° D.8.(3分)如图,是圆桌正上方的灯泡O 发出的光线照射桌面后,在地面上形成阴影(圆形)的示意图.已知桌面的直径为1.6m ,桌面距离地面1m ,若灯泡O 距离地面3m ,则地面上阴影部分的面积为( )a y x=100sin 65︒A .9.64πm 2B .2.56πm 2C .1.44πm 2D .5.76πm 29.(3分)2023年9月23日至10月8日,第19届亚洲运动会在杭州举行,本届亚运会的吉祥物是一组名为“江南忆”的机器人,分别取名“琮琮”“宸宸”和“莲莲”,某商户7月份销售吉祥物周边产品10万个,9月份销售11.5万个.设该商户吉祥物周边产品销售量的月平均增长率为x ,则可列方程为( )A .10(1+x )2=11.5B .10(1+2x )=11.5C .10x 2=11.5D .11.5(1﹣x )2=1010.(3分)如图,在△ABC 中,AC =6,BC =8,AB =10.分别以AB 、AC 、BC 为边在AB 的同侧作正方形ABEF 、ACPQ 、BCMN ,四块阴影部分的面积分别为S 1、S 2、S 3、S 4.则S 1﹣2S 2﹣3S 3+4S 4等于( )A .66B .56C .24D .12二、填空题(共5小题,满分15分,每小题3分)11.(3分)五线谱是一种记谱法,通过在五根等距离的平行横线上标以不同时值的音符及其他记号来记载音乐.如图,A ,B ,C 为直线l 与五线谱的横线相交的三个点,则的值是_______.12.(3分)近几年,二维码逐渐进入了人们的生活,成为广大民众生活中不可或缺的一部分.小刚将二维码打印在面积为16的正方形纸片上,如图,为了估计黑色阴影部分的面积,他在纸内随机掷点,经过大量实验,发现点落在黑色阴影的频率稳定在0.6左右,则据此估计此三维码中黑色阴影的面积为________.AB BC13.(3分)把一块含60°角的三角板ABC 按图方式摆放在平面直角坐标系中,其中60°角的顶点B 在x 轴上,斜边AB 与x 轴的夹角∠ABO =60°,若BC =2,当点A ,C 同时落在一个反比例函数图象上时,B 点的坐标为__________.14.(3分)构建几何图形解决代数问题是“数形结合”思想的重要方法,在计算tan45°时,如图,在Rt △ABC 中,∠C =90°,∠ABC =30°,延长CB ,使BD =AB ,连接AD ,使得∠D =15°,所以,类比这种方法,计算tan22.5°=__________.15.(3分)如图,边长为1的正方形ABCD 中,点E 为AD 边上动点(不与A 、D 重合),连接BE ,将△ABE 沿BE 折叠得到△EBH ,延长EH 交CD 于点F ,连接BF ,交AC 于点N ,连接CH .则下列结论:①∠EBF =45°;②△DEF 的周长是定值2;③当点E 是AD 中点时,D 到EF 距离的最大值为.其中正确的结论有__________(填写所有正确结论的序号).三.解答题(共8小题,满分75分)16.(8分)下面是杨老师讲解一元二次方程的解法时在黑板上的板书过程,请认真阅读并完成任务.2x 2﹣3x ﹣5=0解:第一步第二步tan152AC CD ︒====-CN =1-23522x x -=22233532424x x ⎛⎫⎛⎫-+=+ ⎪ ⎪⎝⎭⎝⎭第三步第四步第五步(1)任务一:①小颖解方程的方法是_________. 1分A .直接开平方法;B .配方法;C .公式法;D .因式分解法.②第二步变形的依据是 _________. .2分(2)任务二:请你按要求解下列方程:①x 2+2x ﹣3=0;(公式法) 5分②3(x ﹣2)2=x 2﹣4.(因式分解法)8分17.(9分)为了了解全校1500名学生对学校设置的篮球、羽毛球、乒乓球、踢毽子、跳绳共5项体育活动的喜爱情况,在全校范围内随机抽查部分学生,对他们喜爱的体育项目(每人只选一项)进行了问卷调查,将统计数据绘制成如图两幅不完整统计图,请根据图中提供的信息解答下列各题.(1)m =______%;并补全条形图; 1+1分(2)请你估计该校约有______名学生喜爱打篮球;4分(3)现学校准备从喜欢跳绳活动的4人(三男一女)中随机选取2人进行体能测试,请利用列表或画树状图的方法,求抽到一男一女学生的概率是多少? 9分18.(10分)如图,在菱形ABCD 中,AB =2,∠DAB =60°,点E 是AD 边的中点.点M 是AB 边上一动点(不与点A 重合),延长AE 交时线CD 于点N ,连接MD 、AN .(1)求证:四边形AMDN 是平行四边形; .6分2349416x ⎛⎫-= ⎪⎝⎭3744x -=±125,12x x ==-(2)填空:①当AM 的值为__________时,四边形AMDN 是矩形;8分②当AM 的值为__________时,四边形AMDN 是菱形. 10分19.(9分)如图①、图②、图③,在4×4的正方形网格中,每个小正方形的边长为1,每个小正方形的顶点叫做格点,线段AB 的端点都在格点上.在图①、图②、图③中,只用无刻度的直尺,在给定的网格中,按下列要求画图,只保留作图痕迹,不要求写出画法.(1)在图①中画出线段AB 的中点O .3分(2)在图②中的线段AB 上找到点C,使得. 6分(3)在图③中的线段AB 上找到点D ,使得. 9分20.(8分)如图,已知在△ABC 中,AD 是BC 上的高,且BC =6,AD =4,矩形EFGH 的顶点F 、G 在边BC 上,顶点E 、H 分别在边AB 、AC 上.(1)设EF =x (0<x <4),矩形EFGH 的周长为y ,求y 关于x 的函数解析式;.4分(2)当EFGH 为正方形时,求EF 的长度. 8分21.(9分)某综合实践研究小组为了测量观察目标时的仰角和俯角,利用量角器和铅锤自制了一个简易测角仪,如图1所示.(1)如图2,在P 点观察所测物体最高点C ,当量角器零刻度线上A ,B 两点均在视线PC 上时,测得视线与铅垂线所夹的锐角为α,设仰角为β,请直接用含α的代数式表示β. .3分(2)如图3,为了测量广场上空气球A 离地面的高度,该小组利用自制简易测角仪在点B ,C 分别测得气球A 的仰角∠ABD 为37°,∠ACD 为45°,地面上点B ,C ,D 在同一水平直线上,BC =20m ,求气球A 离地面的高度AD .(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75) .9分12AC BC =13BD AD =22.(10分)实验数据显示,一般成人喝50毫升某品牌白酒后,血液中酒精含量y(毫克/百毫升)与时间x (时)变化的图象如图(图象由线段OA与部分双曲线AB组成)所示.国家规定,车辆驾驶人员血液中的酒精含量大于或等于20(毫克/百毫升)时属于“酒后驾驶”,不能驾车上路.(1)求部分双曲线AB的函数表达式;.5分(2)参照上述数学模型,假设某驾驶员晚上22:00在家喝完50毫升该品牌白酒,第二天早上6:30能否驾车去上班?请说明理由..............5分23.(12分)综合与实践数学活动课上,李老师给出了一个问题:如图1,在△ABC中,点E,D分别在边AB,AC上,连接DE,∠ADE=∠ABC.【独立思考】(1)如图1,∠AED和∠C的数量关系是∠AED=∠C;.........2分【实践探究】(2)在原有问题条件不变的情况下,李老师增加下面的条件,并提出新问题.如图2,延长CA至点F,使DF=BE,连接BF,延长DE交BF于点H,若∠BHE=∠FAB.在图中找出与DH 相等的线段,并证明.数学活动小组的同学观察图2发现线段BH与线段DH相等,证明过程如下:如图3,在EH上截取EG=FH,连接BG.,∠BHE=∠F+∠FDH,∠FAB=∠AED+∠ADE,∠BHE=∠FAB,∠F=∠AED,……图3请将证明过程补充完整. ....8分【问题解决】(3)数学活动小组的同学对上述问题进行特殊化研究之后发现,当∠BAC =90°时,若给出△ABC 中任意两边长,则图4中所有已经用字母标记的线段长均可求出.该小组提出下面的问题,请你解答.如图4,在(2)的条件下,若∠BAC =90°,AB =3,AC =2,请直接写出BF 和EH 的长. .........12分参考答案1.【分析】根据从左面看得到的图形是左视图,可得答案.【解答】解:该几何体的左视图如图所示:.故选:A .【点评】本题考查了简单组合体的三视图,掌握从左面看得到的图形是左视图是解题关键.2.【分析】根据60°的余弦值是解答即可.【解答】解:,121cos602=︒故选:C .【点评】本题考查的是特殊角的三角函数值,熟记特殊角的三角函数值是解题的关键.3.【分析】根据平行四边形的性质及菱形的判定定理求解即可.【解答】解:根据等腰三角形的判定定理可得,平行四边形的一组邻边相等,即可判定该平行四边形是菱形,故A 不符合题意;根据三角形内角和定理可得,平行四边形的对角线互相垂直,即可判定该平行四边形是菱形,故B 不符合题意;一组邻角互补,不能判定该平行四边形是菱形,故C 符合题意;根据平行四边形的邻角互补,对角线平分一个120°的角,可得平行四边形的一组邻边相等,即可判定该平行四边形是菱形,故D 不符合题意;故选:C .【点评】此题考查了菱形的判定及平行四边形的性质,熟记菱形的判定定理及平行四边形的性质定理是解题的关键.4.【分析】设两张等宽的纸条的宽为h ,由条件可知AB ∥CD ,AD ∥BC ,可证明四边形ABCD 为平行四边形,根据平行四边形的面积公式得到BC =CD ,根据菱形的判定和性质定理即可得到结论.【解答】解:设两张等宽的纸条的宽为h ,∵纸条的对边平行,∴AD ∥BC ,AB ∥DC ,∴四边形ABCD 是平行四边形.又∵S ▱ABCD =BC •h =CD •h ,∴BC =CD ,∴四边形ABCD 是菱形,∴AD =AB .故选:C .【点评】本题考查了菱形的判定和性质,面积法等知识,掌握矩形的性质是解题的关键.5.【分析】直接利用相似三角形的对应边成比例解答.【解答】解:设蜡烛火焰的高度是x cm ,由相似三角形对应高的比等于相似比得到:.解得x =6.即蜡烛火焰的高度是6cm .故选:A .【点评】本题考查相似三角形的判定和性质,解题的关键是灵活运用所学知识解决问题,记住相似三角形对应高的比等于相似比.6.【分析】根据反比例函数图象所在的象限可以判定a 的符号,根据a 的符号来确定直线所经过的象限.10159x【解答】解:A 、双曲线经过第一、三象限,则a >0.则直线应该经过第一、二、四象限,故本选项不符合题意;B 、双曲线经过第一、三象限,则a >0.所以直线应该经过第一、二、四象限,故本选项不符合题意;C 、双曲线经过第二、四象限,则a <0.所以直线应该经过第一、三、四象限,故本选项不符合题意;D 、双曲线经过第二、四象限,则a <0.所以直线应该经过第一、三、四象限,故本选项符合题意.故选:D .【点评】本题主要考查了反比例函数的图象性质和一次函数的图象性质,要掌握它们的性质才能灵活解题.7.【分析】过点A 作AC ⊥BC 于C ,根据正弦的定义解答即可.【解答】解:如图,过点A 作AC ⊥BC 于C ,在Rt △ABC 中,,则AC =AB •sin B =100sin65°(米),故选:A .【点评】本题考查的是解直角三角形的应用—坡度坡角问题,掌握锐角三角函数的定义是解题的关键.8.【分析】设C ,D 分别是桌面和其地面影子的圆心,依题意可以得到△OBC ∽△OAD ,然后由它们的对应边成比例可以求出地面影子的半径,这样可以求出阴影部分的面积.【解答】解:如图设C ,D 分别是桌面和其地面影子的圆心,CB ∥AD ,∴△OBC ∽△OAD∴,∵OD =3,CD =1,∴OC =OD ﹣CD =3﹣1=2,,∴,∴AD =1.2,∴S ⊙D =1.22•π=1.44π(m 2),即地面上阴影部分的面积为1.44πm 2.sin AC B AB=BC OC AD OD=1 1.60.82BC =⨯=0.823AD =故选:C .【点评】题主要考查了相似三角形的应用,只要是把实际问题抽象到相似三角形中,利用相似三角形的对应边成比例求出地面影子的半径,就可以求出阴影部分的面积.9.【分析】根据“某商户7月份销售吉祥物周边产品10万个,9月份销售11.5万个”即可得到一元二次方程.【解答】解:设该商户吉祥物周边产品销售量的月平均增长率为x ,由题意可得,10(1+x )2=11.5.故选:A .【点评】此题考查了从实际问题抽象出一元二次方程,读懂题意,找出等量关系是解题的关键.10.【分析】AF 交BP 于点I ,EF 交CM 于点D ,作DG ⊥AI 于点G ,CH ⊥AB 于点H ,求出,再根据勾股定理求得,由求得,再根据勾股定理列方程求得,即可求得,则,再证明△FAD ≌△ABI ,则,然后证明△E ′BN ≌△ABC ,则S 4=S △ABC =24,,所以,最后求得S 1﹣2S 2﹣3S 3+4S 4=66.【解答】解:如图,AF 交BP 于点I ,EF 交CM 于点D ,作DG ⊥AI 于点G ,CH ⊥AB 于点H ,∵AC =6,BC =8,AB =10,∴AC 2+BC 2=AB 2=100,∴△ABC 是直角三角形,且∠ACB =90°,∴,∴,245CH =185CG AH ==11816252ACI AI CI S ⨯=⨯=△53AI CI =92CI =272ACI S =△1452ACI ACPQ S S S =-=△正方形2168242FAD ACI ABI ACI S S S S S =-=-=⨯⨯=△△△△2772ACI ABC ABEF BCDE S S S S S =---=△△正方形四边形3432BCMN BCDE S S S S =--=正方形四边形11106822ABC CH S ⨯=⨯⨯=△24=5CH∵四边形ABEF 、四边形ACPQ 、四边形BCMN 都是正方形,∴∠CHA =∠HAG =∠AGC =∠ACP =∠BCM =90°,∴四边形AHCG 是矩形,∴,∵,∴,∴,∴,∴,∴,∵∠ACB +∠ACP =180°,∠ACB +∠BCM =180°,∴B 、C 、P 三点在同一条直线上,A 、C 、M 三点在同一条直线上,∵FA =AB ,∠F =∠BAI =90°,∴∠FAD ﹣∠ABI =90°﹣∠BAI ,∴△FAD ≌△ABI (ASA ),∴S △FAD =S △ABI ,∴,设射线BE 交MN 于点E ′,∵∠N =∠ACB =∠ABE =∠CBN =90°,BN =BC ,∴∠E ′BN =∠ABC =90°﹣∠CBE ,∴△E ′BN ≌△ABC (ASA ),∴E ′B =AB =EB ,∴点E 在MN 上,∴S 4=S △ABC =24,185CG AH ====11816252ACI AI CI S ⨯=⨯=△53AI CI =222563CI CI ⎛⎫=+ ⎪⎝⎭92CI =19276222ACI S =⨯⨯=△127456622ACI ACPQ S S S =-=⨯-=△正方形2168242FAD ACI ABI ACI ABC S S S S S S =-=-==⨯⨯=△△△△△∵,∴,∴,故选:A .【点评】此题重点考查正方形的性质、同角的余角相等、勾股定理、根据面积等式列方程求线段的长度、运用转化思想求图形面积等知识与方法,正确地作出所所需要的辅助线是解题的关键.11.2【分析】过点A 作AD ⊥a 于D ,交b 于E ,根据平行线分线段成比例定理列出比例式,计算即可.【解答】解:过点A 作AD ⊥a 于D ,交b 于E ,∵a ∥b ,∴,故答案为:2.【点评】本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.12.9.6【分析】用总面积乘以落入黑色部分的频率稳定值即可.【解答】解:经过大量重复试验,发现点落入黑色部分的频率稳定在0.6左右,据此可以估计黑色部分的面积为16×0.6=9.6.故答案为:9.6.22277710242422ACI ABC ABEF BCDE S S S S S =---=---=△△正方形四边形23477382422BCMN BCDE S S S S =--=--=正方形四边形123445323422434246622S S S S --+=-⨯-⨯+⨯=2AB AE BC ED ==2AB AE BC ED==【点评】本题主要考查利用频率估计概率,大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.13.(5,0)【分析】根据题意作出辅助线,然后得出这三个直角三角形都是含有30°的特殊直角三角形,然后利用其性质可求出AE 、BE 、BF 、CF 的长,设OE 的长为m ,则可用含有m 的式子表示出点A 、点C 的坐标,再根据点A ,C 同时落在一个反比例函数图象上,即可求出m 的值,即可求出OB 的长.【解答】解:如图所示:过点A 作AE ⊥x 轴于点E ,过点C 作CF ⊥x 轴于点F ,在Rt △ACB 中,∠ABC =60°,∴∠BAC =90°﹣60°=30°,∴AB =2BC =4,∵AE ⊥x 轴,∴∠AEB =90°,即∠EAB +∠ABO =90°,∴∠EAB =90°﹣60°=30°,∴,设OE =m ,则点A 的坐标为,∵∠ABO =∠ABC =60°,∴∠CBF =180°﹣∠ABO ﹣∠ABC =60°,∵CF ⊥x 轴,∴∠CFB =90°,即∠CBF +∠BCF =90°,∴∠CBF =30°,∴,∴OF =OE +BE +BF =m +3,∴点C 坐标为,∵点A ,C 同时落在一个反比例函数图象上,∴,解得:m =3,∴OB =OE +EB =3+2=5,∴B 点的坐标为:(5,0).故答案为:(5,0).12,2EB AB AE ====(m 11,2BF BC CF ====(m+3)m =+【点评】本题主要考查了反比例函数的性质以及含有30°角的直角三角形的性质:解题关键:用含有m 的式子表示出点A 和点C 的坐标.14【分析】仿照题例构造含22.5°的直角三角形,利用直角三角形的边角关系得结论.【解答】解:在Rt △ABC中,∠C =90°,AC =BC ,延长CB 到D ,使BD =AB ,连接AD .在Rt △ABC 中,∵AC =BC ,∴∠ABC =45°,.∵BD =AB ,∴∠D =∠BAD .∵∠ABC =∠D +∠BAD =45°,∴∠D =22.5°.在Rt △ACD 中,..【点评】本题考查了解直角三角形,看懂题例,学会构造含22.5°角的直角三角形是解决本题的关键.15.①②④【分析】①证明Rt △BHF ≌Rt △BCF 得∠HBF =∠CBF ,HF =CF ,进而得,便可判断①的正误;②由HF =CF 、HE =AE .可得△DEF 的周长是=DE +DE +EF =AD +DC .便可判断②的正误;③设FC =HF =x ,在Rt △DEF 中,利用勾股定理EF 2=ED 2+DF 2,求出FC ,再由相似三角形得出1-AB =tan tan 22.5AC D CD =︒===1=-1-12EBF ABC ∠=∠,即可求出;便可判断③的正误;④连接BD 、过D 作DG ⊥EF ,易得DG ≤DK ,BH ≤BK ,由DG +BH ≤DK +BK =BD .故DG ≤BD ﹣BH ,由此即可得出结论.便可判断④的正误.【解答】解:∵四边形ABCD 是正方形,∴BC =AB =CD =AD =1,∠DAB =∠ABC =∠BCD =∠ADC =90°由折叠性质可知:∠EHB =∠EAB =90°,BH =AB ,AE =EH ,∠EBA =∠EBH ,∴BH =BC ,∠FHB =90°=∠BCF ,又∵BF =BF ,∴Rt △BHF ≌Rt △BCF (HL ),∴∠HBF =∠CBF ,HF =CF ,∴∠ABC =∠CBF +∠FBH +∠HBE +∠EBA =2(∠FBH +∠HBE ),∵∠EBF =∠FBH +∠HBE ,∴∠ABC =2∠EBF ,∴,故①正确;∵AE =EH ,CF =HF ,∴EF =EH +HF =AE +CF ,∴△DEF 的周长=DE +DF +EF =DE +DF +AE +CF =AD +CD .∴△DEF 的周长=2AD =2,故②正确;如图:连接DB 交EF 于K ,过D 作DG ⊥EF ,∴DG ≤DK ,BH ≤BK ,∴DG +BH ≤DK +BK =BD ,∵,BH =AB =1,∴∴,故当K 、G 、H 三点重合,即B 、D 、H 在同一直线上时,点D 到EF 距离DG ,故④CF CN AB AN =CN =1452EBF ABC ∠=∠=︒BD ===1DG +≤1DG ≤-1-正确;设CF =HF =x ,则DF =1﹣x ,∵当点E 是AD 中点时,∴,∴,在Rt △DEF 中,EF 2=DF 2+DE 2,∴,∴,即,在正方形ABCD 中,AB ∥CD ,∴△FCN ∽△BAN ,∴,∵∴解得:故答案为:①②④.【点评】本题考查翻折变换,正方形的性质,全等三角形的判定和性质,勾股定理等知识,解题时常常设要求的线段长为x ,然后根据折叠和轴对称的性质用含x 的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.16.【分析】(1)①根据配方法解一元二次方程的一般步骤解答;②根据等式的基本性质解答;(2)①利用公式法解出方程;②利用因式分解法解出方程.【解答】解:(1)①小颖解方程的方法是配方法,故选:B ;②第二步变形的依据是等式的基本性质,故答案为:等式的基本性质;1122AE DE AD ===12EF x =+22211(1)22x x ⎛⎫⎛⎫+=+- ⎪ ⎪⎝⎭⎝⎭13x =13FC =CF CN AB AN=AC ==11=CN =(2)①x 2+2x ﹣3=0,a =1,b =2,c =﹣3,Δ=22﹣4×1×(﹣3)=16>0,则,所以x 1=1,x 2=﹣3;②3(x ﹣2)2=x 2﹣4,则3(x ﹣2)2﹣(x +2)(x ﹣2)=0,∴(x ﹣2)(3x ﹣6﹣x ﹣2)=0,∴x ﹣2=0或3x ﹣6﹣x ﹣2=0,∴x 1=2,x 2=4.【点评】本题考查的是一元二次方程的解法,掌握配方法、公式法、因式分解法解一元二次方程的一般步骤是解题的关键.17.【分析】(1)首先由条形图与扇形图可求得m =100%﹣14%﹣8%﹣24%﹣34%=20%;由跳绳的人数有4人,占的百分比为8%,可得总人数4÷8%=50,进而得出打乒乓球的人数;(2)由1500×24%=360,即可求得该校约有360名学生喜爱打篮球;(3)首先根据题意画出表格,然后由表格即可求得所有等可能的结果与抽到一男一女学生的情况,再利用概率公式即可求得答案.【解答】解:(1)m =100%﹣14%﹣8%﹣24%﹣34%=20%;∵跳绳的人数有4人,占的百分比为8%,∴4÷8%=50;∴50×20%=10(人).补全条形图如下:故答案为:20;(2)1500×24%=360;故答案为:360;(3)列表如下:﹣男1男2男3女24122x -±==-±男1﹣男2,男1男3,男1女,男1男2男1,男2﹣男3,男2女,男2男3男1,男3男2,男3﹣女,男3女男1,女男2,女男3,女﹣∵所有可能出现的结果共12种情况,并且每种情况出现的可能性相等.其中一男一女的情况有6种.∴抽到一男一女的概率.答:抽到一男一女学生的概率是.【点评】本题考查的是用列表法或画树状图法求概率以及扇形统计图、条形统计图的知识.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.18.【分析】(1)证△NDE ≌△MAE (AAS ),得NE =ME ,再由平行四边形的判定即可得出结论;(2)①证△AEM 是等边三角形,得ME =AE ,则MN =AD ,再由矩形的判定即可得出结论;②△AMD 是等边三角形,得AM =DM ,再由菱形的判定即可得出结论.【解答】(1)证明:∵四边形ABCD 是菱形,∴CD ∥AB ,∴∠NDE =∠MAE ,∠DNE =∠AME ,∵点E 是AD 边的中点,∴DE =AE ,在△NDE 与△MAE 中,,∴△NDE ≌△MAE (AAS ),∴NE =ME ,又∵DE =AE ,∴四边形AMDN 是平行四边形;(2)解:①当AM 的值为1时,四边形AMDN 是矩形.理由如下:∵四边形ABCD 是菱形,∴AB =AD =2.∵,∴AM =AE ,∵∠DAM =60°,61122P ==12DNE AME NDE MAE DE AE ∠=∠⎧⎪∠=∠⎨⎪=⎩111,122AM AD AE AD ====∴△AEM 是等边三角形,∴ME =AE ,∴MN =AD ,∴平行四边形AMDN 是矩形;故答案为:1;②当AM 的值为2时,四边形AMDN 是菱形.理由如下:∵AM =2,∴AM =AD =2,∴△AMD 是等边三角形,∴AM =DM ,∴平行四边形AMDN 是菱形,故答案为:2.【点评】本题考查了菱形的性质、平行四边形的判定和性质、矩形的判定以及等边三角形的判定和性质等知识,熟练掌握矩形的判定和菱形的判定与性质是解题的关键.19.【分析】(1)根据网格即可在图①中画出线段AB 的中点O ;(2)根据网格,利用相似三角形的性质即可在图②中的线段AB 上找到点C,使得.(3)根据网格,利用相似三角形的性质即在图③中的线段AB 上找到点D ,使得.【解答】解:(1)如图①线段AB 的中点O 即为所求;(2)如图②线段AB 上点C 即为所求;(3)如图③线段AB 上点D 即为所求.【点评】本题考查了作图﹣运用与设计作图、相似三角形的判定与性质,解决本题的关键是掌握以上知识.20.【分析】(1)根据矩形性质得:EH ∥BC ,从而得△AEH ∽△ABC ,利用相似三角形对应边的比和对应高的比相等表示EH 的长,利用矩形面积公式得y 与x 的函数解析式;(2)令EF =EH ,求得x 进而得到EF 的长度.【解答】解:∵四边形EFGH 是矩形,∴EH ∥BC ,∴△AEH ∽△ABC ,12AC BC =13BD AD =∴,∵EF =DM =x ,AD =4,∴AM =4﹣x ,∴,∴,∴;(2)当EFGH 为正方形时,EF =EH ,由(1)得:,解得:,∴当EFGH 为正方形时,EF 的长度为.【点评】本题考查了相似三角形的性质和判定、二次函数的关系式,熟练掌握相似三角形的性质和判定是本题的关键,注意二次函数自变量的取值.21.【分析】(1)由已知直接可得答案;(2)设AD =x m ,可得CD =AD =x m ,BD =(20+x )m ,而,有,即可解得答案.【解答】解:(1)根据题意得:β=90°﹣α;(2)设AD =x m ,∵∠ACD =45°,∠ADB =90°,∴CD =AD =x m ,∵BC =20m ,∴BD =(20+x )m ,在Rt △ABD 中,,∴,即,EH AM BC AD=464EH x -=3(4)2EH x =-32()2(4)12(04)2y EH EF x x x x ⎡⎤=+=+-=-+<<⎢⎥⎣⎦3(4)2x x =-125x =125tan AD ABD BD ∠=0.7520x x =+tan AD ABD BD∠=tan 3720x x =+︒0.7520x x=+解得:x =60,经检验,x =60是分式方程的解,∴AD =60(m ),答:气球A 离地面的高度AD 是60m .【点评】本题考查解直角三角形﹣仰角俯角问题,解题的关键是掌握锐角三角函数的定义.22.【分析】(1)首先求得线段OA 所在直线的解析式,然后求得点A 的坐标,代入反比例函数的解析式即可求解;(2)把y =20代入反比例函数解析式可求得时间,结合规定可进行判断.【解答】解:(1)依题意,直线OA 过,则直线OA 的解析式为y =80x ,当时,y =120,即,设双曲线的解析式为,将点代入得:k =180,∴;(2)由得当y =20时,x =9,从晚上22:00到第二天早上6:30时间间距为8.5小时,∵8.5<9,∴第二天早上6:30不能驾车去上班.【点评】本题为一次次函数和反比例函数的应用,涉及待定系数法等知识点.掌握自变量、函数值等知识是解题的关键.本题难度不大,较易得分.23.【分析】(1)由三角形内角和定理可得出结论;(2)证明△BGE ≌△DHF (SAS ),由全等三角形的性质得出BG =DH ,∠BGE =∠DHF ,证出∠BHG =∠BGH ,得出BG =BH ,则可得出结论;(3)由勾股定理求出,证出,证明△ADE ∽△ABC ,由相似三角形的性质得出,则,设AE =x ,则,DF =BE =3﹣x .得出方程,解方程可求出BE 的长,证明△BHE ∽△BAF ,由相似三角形的性质得出,即可求出答案.【解答】解:(1)在△ADE 中,∠A +∠ADE +∠AED =180°,在△ABC 中,∠A +∠ABC +∠C =180°,∵∠ADE =∠ABC ,1,204⎛⎫ ⎪⎝⎭32x =3,1202A ⎛⎫ ⎪⎝⎭k y x =3,1202A ⎛⎫ ⎪⎝⎭18032y x x ⎛⎫=≥ ⎪⎝⎭180y x=BC =BC BF ==23AE AC AD AB ==32AD AE =32AD x =3322x x -=+EH BE FA BF=∴∠AED =∠C ;故答案为:∠AED =∠C ;(2)BH =DH .证明:∵∠BEG =∠AED ,∴∠BEG =∠F .在△BGE 和△DHF 中,,∴△BGE ≌△DHF (SAS ).∴BG =DH ,∠BGE =∠DHF ,∵∠BHG +∠DHF =180°,∠BGH +∠BGE =180°,∴∠BHG =∠BGH ,∴BG =BH ,∴BH =DH ;(3)由(2)可知∠BEH =∠F .∴∠BAC =90°,∴,∠FAB =180°﹣∠BAC =90°,∴∠BHE =∠FAB =90°,∵∠HEB =∠AED ,∴∠ABF =∠ADE .∵∠ADE =∠ABC ,∴∠ABF =∠ABC .又∵AB ⊥FC ,∴AF =AC =2,,∵∠DAE =∠BAC ,∠ADE =∠ABC ,∴△ADE ∽△ABC ,∴,∴,设AE =x ,则,DF =BE =3﹣x .BE DF BEG F EG FH =⎧⎪∠=∠⎨⎪=⎩BC ===BF BC ==23AE AC AD AB ==32AD AE =32AD x =∵,∴,解得,∴,∵∠HBE =∠ABF ,∠BHE =∠BAF =90°,∴△BHE ∽△BAF ,∴,即∴.【点评】本题属于三角形综合题,考查了三角形内角和定理,全等三角形的判定和性质,相似三角形的判定与性质,勾股定理等知识,解题的关键是熟练掌握全等三角形的判定与性质及相似三角形的判定与性质.322DFAF AD x =+=+3322x x -=+25x =135BE =EH BE FA BF=2EH =EH =。
郑州市九年级第二次质量预测数学试题及答案(解析版)

河南省郑州市中考第二次质量预测数学试卷一、选择题(每小题3分,共24分)1.(3分)(•遵义)下列各数中,比﹣1小的数是()A.0B.﹣2 C.D.1考点:有理数大小比较.分析:根据有理数大小关系,负数绝对值大的反而小,即可得出比﹣1小的数.解答:解:∵|﹣1|=1,|﹣2|=2,∴2>1,∴﹣2<﹣1.故选B.点评:此题主要考查了有理数的比较大小,根据负数比较大小的性质得出是解决问题的关键.2.(3分)(•烟台)从不同方向看一只茶壶,你认为是俯视效果图的是()A.B.C.D.考点:简单组合体的三视图.专题:图表型.分析:俯视图就是从物体的上面看物体,从而得到的图形;找到从上面看所得到的图形即可.解答:解:选项A的图形是从茶壶上面看得到的图形.故选A.点评:本题考查了三视图的知识,明确一个物体的三视图:俯视图就是从物体的上面看物体,从而得到的图形.3.(3分)(•绍兴)明天数学课要学“勾股定理”.小敏在“百度”搜索引擎中输入“勾股定理”,能搜索到与之相关的结果个数约为12 500 000,这个数用科学记数法表示为()A.1.25×105B.1.25×106C.1.25×107D.1.25×108考点:科学记数法—表示较大的数.专题:存在型.分析:根据用科学记数法表示数的方法进行解答即可.解答:解:∵12 500 000共有8位数,∴n=8﹣1=7,∴12 500 000用科学记数法表示为:1.25×107.故选C.点评:本题考查的是科学记数法的概念,即把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,n是正整数,这种记数法叫做科学记数法.4.(3分)(•庆阳)如图,AB∥CD,EF⊥AB于E,EF交CD于F,已知∠1=60°,则∠2=()A.30°B.20°C.45°D.60°考点:平行线的性质.分析:利用对顶角相等求出∠3,再由∠CFE=90°,可求出∠2.解答:解:∵∠1和∠2是对顶角,∴∠2=∠1=60°,∵EF⊥AB,∴∠CFE=90°,∴∠2=90°﹣60°=30°.故选A.点评:本题考查了对顶角、余角的知识,注意掌握对顶角相等、互余的两角之和为90°.5.(3分)(•孝感)一个十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒.当你抬头看信号灯时,是绿灯的概率是()A.B.C.D.考点:概率公式.专题:应用题.分析:让绿灯亮的时间除以时间总数60即为所求的概率.解答:解:一共是60秒,绿的是25秒,所以绿灯的概率是.故选C.点评:本题考查概率的基本计算,用到的知识点为:概率等于所求情况数与总情况数之比.6.(3分)(•湘潭)如图,在⊙O中,弦AB∥CD,若∠ABC=40°,则∠BOD=()A.20°B.40°C.50°D.80°考点:圆周角定理;平行线的性质.专题:压轴题;探究型.分析:先根据弦AB∥CD得出∠ABC=∠BCD,再根据∠ABC=40°即可得出∠BOD的度数.解答:解:∵弦AB∥CD,∴∠ABC=∠BCD,∴∠BOD=2∠ABC=2×40°=80°.故选D.点评:本题考查的是圆周角定理及平行线的性质,根据题意得到∠ABC=∠BCD,是解答此题的关键.7.(3分)(•郑州模拟)样本方差的计算式S2=[(x1﹣30)2+(x2﹣30)]2+…+(x n﹣30)2]中,数字20和30分别表示样本中的()A.众数、中位数B.方差、标准差C.样本中数据的个数、平均数D.样本中数据的个数、中位数考点:方差.分析:根据方差的计算公式中各数据所表示的意义回答即可.解答:解:由方差的计算公式可知:20表示的是样本数据的数量,而30表示的是样本数据的平均数.故选C.点评:考查了方差,在方差公式:S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2]中,n表示的是样本的数量,表示的是样本的平均数.8.(3分)(•郑州模拟)如图,在△ABC中,AB=3,AC=4,BC=5,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM的最小值为()A.1B.1.2 C.1.3 D.1.5考点:勾股定理;矩形的性质.专题:几何综合题.分析:根据勾股定理的逆定理可以证明∠BAC=90°;根据直角三角形斜边上的中线等于斜边的一半,则AM=EF,要求AM的最小值,即求EF的最小值;根据三个角都是直角的四边形是矩形,得四边形AEPF是矩形,根据矩形的对角线相等,得EF=AP,则EF的最小值即为AP的最小值,根据垂线段最短,知:AP的最小值即等于直角三角形ABC斜边上的高.解答:解:∵在△ABC中,AB=3,AC=4,BC=5,∴AB2+AC2=BC2,即∠BAC=90°.又PE⊥AB于E,PF⊥AC于F,∴四边形AEPF是矩形,∴EF=AP.∵M是EF的中点,∴AM=EF=AP.因为AP的最小值即为直角三角形ABC斜边上的高,即2.4,∴AM的最小值是1.2.故选B.点评:此题综合运用了勾股定理的逆定理、矩形的判定及性质、直角三角形的性质.要能够把要求的线段的最小值转换为便于分析其最小值的线段.二、填空题(每小题3分,共21分)9.(3分)(•黔西南州)﹣2的相反数是2.考点:相反数.分析:根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.解答:解:﹣2的相反数是:﹣(﹣2)=2,故答案为:2.点评:本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.10.(3分)(•郑州模拟)请写出一个运算结果为a6的运算式子:a4•a2=a6(答案不唯一).考点:幂的乘方与积的乘方;同底数幂的乘法.专题:开放型.分析:根据同底数幂相乘,底数不变,指数相加即可求.注意答案不唯一.解答:解:a4•a2=a6.故答案是a4•a2=a6(答案不唯一).点评:本题考查了同底数幂的乘方,解题的关键是注意掌握同底数幂的运算法则.11.(3分)(•中山)方程x2=2x的解是x1=0,x2=2.考点:解一元二次方程-因式分解法.专题:计算题.分析:先移项得到x2﹣2x=0,再把方程左边进行因式分解得到x(x﹣2)=0,方程转化为两个一元一次方程:x=0或x﹣2=0,即可得到原方程的解为x1=0,x2=2.解答:解:∵x2﹣2x=0,∴x(x﹣2)=0,∴x=0或x﹣2=0,∴x1=0,x2=2.故答案为x1=0,x2=2.点评:本题考查了解一元二次方程﹣因式分解法:把一元二次方程变形为一般式,再把方程左边进行因式分解,然后把方程转化为两个一元一次方程,解这两个一元一次方程得到原方程的解.12.(3分)(•郑州模拟)如图,在边长为a的正方形中挖去一个边长为b的小正方形(a>b),再把剩余的部分剪拼成一个矩形,通过计算图形(阴影部分)的面积,验证了一个等式是a2﹣b2=(a+b)(a﹣b).考点:平方差公式的几何背景.专题:常规题型.分析:分别表示出两个图形中的阴影部分的面积,然后根据两个阴影部分的面积相等即可得解.解答:解:左边图形中,阴影部分的面积=a2﹣b2,右边图形中,阴影部分的面积=(a+b)(a﹣b),∵两个图形中的阴影部分的面积相等,∴a2﹣b2=(a+b)(a﹣b).故答案为:a2﹣b2=(a+b)(a﹣b).点评:本题考查了平方差公式的几何解释,根据阴影部分的面积相等列出面积的表达式是解题的关键.13.(3分)(•郑州模拟)如图,直径AB为6的半圆,绕A点逆时针旋转60°,此时点B到了点B',则图中阴影部分的面积是6π.考点:扇形面积的计算;旋转的性质.分析:根据阴影部分的面积=以AB′为直径的半圆的面积+扇形ABB′的面积﹣以AB为直径的半圆的面积,即可求解.解答:解:阴影部分的面积=以AB′为直径的半圆的面积+扇形ABB′的面积﹣以AB为直径的半圆的面积=扇形ABB′的面积,则阴影部分的面积是:=6π,故答案为:6π.点评:本题主要考查了扇形的面积的计算,正确理解阴影部分的面积=以AB′为直径的半圆的面积+扇形ABB′的面积﹣以AB为直径的半圆的面积=扇形ABB′的面积是解题的关键.14.(3分)(•天水)抛物线y=﹣x2+bx+c的部分图象如图所示,若y>0,则x的取值范围是﹣3<x <1.考点:二次函数的图象.专题:压轴题.分析:根据抛物线的对称轴为x=﹣1,一个交点为(1,0),可推出另一交点为(﹣3,0),结合图象求出y>0时,x的范围.解答:解:根据抛物线的图象可知:抛物线的对称轴为x=﹣1,已知一个交点为(1,0),根据对称性,则另一交点为(﹣3,0),所以y>0时,x的取值范围是﹣3<x<1.点评:此题的关键是根据二次函数的对称轴与对称性,找出抛物线y=﹣x2+bx+c的完整图象.15.(3分)(•郑州模拟)如图,在等腰梯形ABCD中,AD∥BC,BC=3AD=3,∠B=45°.直角三角板含45°角的顶点E在边BC上移动,一直角边始终经过点A,斜边与CD所在的直线交于点F.若△ABE为等腰三角形,则CF的长等于3﹣2或2.考点:等腰梯形的性质;勾股定理.分析:过D作DH⊥BC于H,①当AE=BE时,根据等腰梯形的性质求出BE和CH,由勾股定理求出AB,进一步求出CE,根据等腰三角形的判定和三角形的内角和定理求出CF=EF,根据勾股定理求出即可;②当AB=AE时,由勾股定理求出BE,进一步求出CE,根据等腰三角形的判定和三角形的内角和定理求出EF=CE,由勾股定理求出CF即可;根据三角形的内角和定理求出∠AEB、∠FEC,进一步求出∠CFE=∠FEC,求出CF=CE即可.解答:解:,过D作DH⊥BC于H,∵BC=3AD=3,∴AD=,∴AB=2,有三种情况:,如图所示①:①当AE=BE时,∵四边形ABCD是等腰梯形,∴BE=CH=(3﹣)=,由勾股定理得:AB=2,∴CE=BC﹣BE=3﹣=2,∵∠B=∠BAE=45°,∴∠AEB=90°,∴∠FEC=180°﹣90°﹣45°=45°=∠C,∴∠EFC=180°﹣45°﹣45°=90°,∴由勾股定理得:CF=EF=2;②如图②,当AB=AE=2时,由勾股定理求得:BE=2,∴CE=BC﹣BE=3﹣2=,同理可得∠FEC=90°,∠EFC=45°=∠C,由勾股定理得:CF===2;③如图③,如图当AB=BE=2时,∵∠AEB=∠BAE=(180°﹣∠B)=67.5°,∴∠FEC=180°﹣67.5°﹣45°=67.5°,∵∠C=45°,∴∠CFE=180°﹣∠C﹣∠FEC=67.5°=∠FEC,∴CF=CE=BC﹣BE=3﹣2,故答案为:3﹣2或2.点评:本题主要考查对等腰三角形的性质和判定,等腰梯形的性质,勾股定理,三角形的内角和定理,平行四边形的性质和判定等知识点的理解和掌握,能求出CE的长是解此题的关键.三、解答题(本大题8个小题,共75分)16.(8分)(•郑州模拟)我们在数学学习过程中,经常遇到这样的试题:“先化简()÷,然后从不等式组的解集中,选取一个你认为符合题意的x的值代入求值.”(1)请你直接写出平时在解决这道数学题的过程中,需要用到哪些数学知识?(2)请你直接写出在进行运算时容易出错的地方有哪些?(写出三个)考点:分式的化简求值;解一元一次不等式组.专题:计算题.分析:(1)用到的知识有:通分,约分,除法法则等;(2)括号中通分时,应将第二个分母变形找最简公分母;除以一个数等于乘以这个数的倒数将除法运算化为乘法运算;代入x值时,x不能为5,﹣5.解答:解:(1)括号中利用的知识是通分,同分母分式的加法法则;除以一个数等于乘以这个数的倒数将除法运算化为乘法运算;约分;(2)括号中通分时,应将第二个分母变形找最简公分母x﹣5;除以一个数等于乘以这个数的倒数将除法运算化为乘法运算;代入x值时,x不能为5,﹣5.点评:此题考查了分式的化简求值,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式.17.(9分)(•郑州模拟)如图,已知Rt△ABC,AB=AC,∠ABC的平分线BD交AC于点D,BD的垂直平分线分别交AB,BC于点E、F,CD=CG.(1)请以图中的点为顶点(不增加其他的点)分别构造两个菱形和两个等腰梯形.那么,构成菱形的四个顶点是B,E,D,F或E,D,C,G;构成等腰梯形的四个顶点是B,E,D,C或E,D,G,F;(2)请你各选择其中一个图形加以证明.考点:等腰梯形的判定;全等三角形的判定与性质;线段垂直平分线的性质;菱形的判定.分析:(1)首先根据题意画出图形,再根据图形可以看出形似菱形与等腰梯形的图形,再加以证明推理即可.(2)根据线段垂直平分线的性质以及全等三角形的判定方法即可得出BE=DE=BF=DF,四边形EDFB是菱形.解答:解:(1)构成菱形的四个顶点是B、E、D、F或E、D、C、G;(2分)构成等腰梯形的四个顶点是B、E、D、C或E、D、G、F;(2分)(2)证明:∵EF垂直平分BD,∴BE=DE,BF=DF,∠3=∠4=90°又∵∠1=∠2,BT=BT,∴△BET≌△BFT(ASA),∴BE=BF,∴BE=DE=BF=DF,∴四边形EDFB是菱形.点评:此题主要考查了等腰梯形,菱形,线段的垂直平分线等知识点,关键是熟练把握已知条件,进行分析.18.(9分)(•郑州模拟)为了贯彻落实提出的“厉行节约,反对浪费”的精神,我市某校学生自发组织了“保护水源从我做起”的活动,学生们对我国“水资源问题”进行了调查,发现我国水资源越来越匮乏,可是人们的节约意识并不强,据查,仅我市某饮料厂每天从地下抽水达3500立方米左右.同学们又采取问卷调查的方式,随机调查了本校150名同学,家庭人均月用水量和节水措施情况.以下是根据调查结果做出的部分统计图.请根据以上信息解答以下问题:(1)补全图1和图2;(2)如果全校家庭总人数约为3000人,根据这150名同学家庭人均月用水量,估计全校学生家庭每月用水总量;(3)为提高人们的节水意识,请你写出一条与图2中的已明确的节水措施不同的节水措施.考点:条形统计图;用样本估计总体;扇形统计图.分析:(1)根据扇形统计图所给的信息,用整体1减去洗衣用水冲马桶、安装节水设备、其它所占的百分比,即可到帐饿出淘米水浇花所占的百分比;用总调查的学生数减去其它人均月用水量,即可得出人均月用水量为3吨的人数,从而补全统计图;(2)先求出150名同学家庭人均月用水量,再乘以总人数,即可得出全校学生家庭每月用水总量;(3)根据实际生活,可以举洗脸后的水拖地等节约用水的措施.解答:解:(1)根据扇形统计图可得:淘米水浇花所占的百分比是:1﹣11%﹣44%﹣30%=15%,人均月用水量为3吨的人数是:150﹣10﹣42﹣32﹣16=50(人);补图如下:(2)全校学生家庭每月用水总量约为:3000×=9040(吨).答:全校学生家庭每月用水总量约为9040吨.(3)我们要节约用水,如洗脸后的水拖地.点评:此题考查了条形统计图和扇形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.19.(9分)(•扬州)如图,某校一幢教学大楼的顶部竖有一块“传承文明,启智求真”的宣传牌CD、小明在山坡的坡脚A处测得宣传牌底部D的仰角为60°,沿山坡向上走到B处测得宣传牌顶部C的仰角为45°.已知山坡AB的坡度i=1:,AB=10米,AE=15米,求这块宣传牌CD的高度.(测角器的高度忽略不计,结果精确到0.1米.参考数据:≈1.414,≈1.732)考点:解直角三角形的应用-仰角俯角问题.专题:压轴题.分析:过B分别作AE、DE的垂线,设垂足为F、G.分别在Rt△ABF和Rt△ADE中,通过解直角三角形求出BF、AF、DE的长,进而可求出EF即BG的长;在Rt△CBG中,∠CBG=45°,则CG=BG,由此可求出CG的长;根据CD=CG+GE﹣DE即可求出宣传牌的高度.解答:解:过B作BF⊥AE,交EA的延长线于F,作BG⊥DE于G.Rt△ABF中,i=tan∠BAF==,∴∠BAF=30°,∴BF=AB=5,AF=5.∴BG=AF+AE=5+15.Rt△BGC中,∠CBG=45°,∴CG=BG=5+15.Rt△ADE中,∠DAE=60°,AE=15,∴DE=AE=15.∴CD=CG+GE﹣DE=5+15+5﹣15=20﹣10≈2.7m.答:宣传牌CD高约2.7米.点评:此题综合考查了仰角、坡度的定义,能够正确地构建出直角三角形,将实际问题化归为解直角三角形的问题是解答此类题的关键.20.(9分)(•宜宾)如图,一次函数的图象与反比例函数的图象相交于A点,与y轴、x轴分别相交于B、C两点,且C(2,0).当x<﹣1时,一次函数值大于反比例函数值,当x>﹣1时,一次函数值小于反比例函数值.(1)求一次函数的解析式;(2)设函数y2=的图象与的图象关于y轴对称,在y2=的图象上取一点P(P点的横坐标大于2),过P作PQ丄x轴,垂足是Q,若四边形BCQP的面积等于2,求P点的坐标.考点:反比例函数综合题.专题:综合题;压轴题.分析:(1)根据x<﹣1时,一次函数值大于反比例函数值,当x>﹣1时候,一次函数值小于反比例函数值得到点A的坐标,利用待定系数法求函数的解析式即可;(2)求得B点的坐标后设出P点的坐标,利用告诉的四边形的面积得到函数关系式求得点P的坐标即可.解答:解:(1)∵x<﹣1时,一次函数值大于反比例函数值,当x>﹣1时候,一次函数值小于反比例函数值.∴A点的横坐标是﹣1,∴A(﹣1,3),设一次函数的解析式为y=kx+b,因直线过A、C,则,解之得,∴一次函数的解析式为y=﹣x+2;(2)∵y2=的图象与的图象关于y轴对称,∴y2=(x>0),∵B点是直线y=﹣x+2与y轴的交点,∴B(0,2),设p(n,)n>2,S四边形BCQP=S四边形OQPB﹣S△OBC=2,∴(2+)n﹣×2×2=2,n=,∴P(,).点评:此题主要考查反比例函数的性质,注意通过解方程组求出交点坐标.同时要注意运用数形结合的思想.21.(10分)(•郑州模拟)某地一经济适用房楼盘一楼是商铺(暂不出售),二楼至二十三楼均为商品适用房(对外出售).商品房售价方案如下:第八层售价为2000元/m2,从第八层起每上升一层,每平方米的售价增加40元;反之,楼层每下降一层,每平方米的售价减少20元.已知商品房每套面积均为80平方米.开发商为购买者制定了两种购买方案:方案一:购买者先交纳首付金额(商品房总价的30%),再办理分期付款(即贷款).方案二:购买者一次性付清所有房款,则享受8%的优惠,并免收五年物业管理费(已知每月物业管理费为a元)(1)请写出每平方米售价y(元/米2)与楼层x(2≤x≤23,x是正整数)之间的函数关系式;(2)王老师已筹到60000元,若用方案一购房,他可以购买哪些楼层的商品房呢?(3)有人建议王老师使用方案二购买第十六层,但他认为此方案还不如不免收物业管理费而直接享受9%的优惠划算.你认为王老师的说法一定正确吗?请通过运算确定a的范围,阐明你的看法.考点:一次函数的应用.分析:(1)分①当2≤x≤8时,用第八层售价减去楼层差价,②当9≤x≤23时,用第八层售价加上楼层差价,整理即可得解;(2)求出购买第八层楼的首付款为48000元可知2~8层可任选;第9层以上,根据首付款不大于60000元列出不等式其解即可,然后综合两种情况即可确定出王老师可购买楼层的方案;(3)根据购买方案二求出实交房款的关系式和按王老师的想法则要交房款的关系式,然后分情况讨论即可确定出a的取值范围.解答:解:(1)①当2≤x≤8时,每平方米的售价应为:2000﹣(8﹣x)×20=20x+1840(元/平方米).②当9≤x≤23时,每平方米的售价应为:2000+(x﹣8)•40=40x+1680(元/平方米).∴y=;(2)由(1)知:①当2≤x≤8时,王老师首付款为(20x+1840)•80•30%=24(20x+1840),∵24(20•8+1840)=48000元<60000元,∴2~8层可任选;②当9≤x≤23时,王老师首付款为(40x+1680)•80•30%=24(40x+1680)元.24(40x+1680)≤60000,解得:x≤20.5.∵x为正整数,∴9≤x≤20,综上得:王老师用方案一可以购买二至二十层的任何一层;(3)若按方案二购买第十六层,则王老师要实交房款为:y1=(40•16+1680)•80•92%﹣60a(元)若按王老师的想法则要交房款为:y2=(40•16+1680)•80•91%(元).∵y1﹣y2=1856﹣60a,∴当y1>y2,即y1﹣y2>0时,解得0<a<,此时王老师想法正确;当y1≤y2,即y1﹣y2≤0时,解得a≥,此时王老师想法不正确.点评:本题考查的是用一次函数解决实际问题,读懂题目信息,找出数量关系表示出各楼层的单价以及是交房款的关系式是解题的关键.22.(10分)(•舟山)将△ABC绕点A按逆时针方向旋转θ度,并使各边长变为原来的n倍,得△AB′C′,即如图①,我们将这种变换记为[θ,n].(1)如图①,对△ABC作变换[60°,]得△AB′C′,则S△AB′C′:S△ABC=3;直线BC与直线B′C′所夹的锐角为60度;(2)如图②,△ABC中,∠BAC=30°,∠ACB=90°,对△ABC 作变换[θ,n]得△AB′C′,使点B、C、C′在同一直线上,且四边形ABB'C'为矩形,求θ和n的值;(3)如图③,△ABC中,AB=AC,∠BAC=36°,BC=l,对△ABC作变换[θ,n]得△AB′C′,使点B、C、B′在同一直线上,且四边形ABB'C'为平行四边形,求θ和n的值.考点:相似三角形的判定与性质;解一元二次方程-公式法;平行四边形的性质;矩形的性质;旋转的性质.专题:代数几何综合题;压轴题.分析:(1)由旋转与相似的性质,即可得S△AB′C′:S△ABC=3,然后由△ABN与△B′MN中,∠B=∠B′,∠ANB=∠B′NM,可得∠BMB′=∠BAB′,即可求得直线BC与直线B′C′所夹的锐角的度数;(2)由四边形 ABB′C′是矩形,可得∠BAC′=90°,然后由θ=∠CAC′=∠BAC′﹣∠BAC,即可求得θ的度数,又由含30°角的直角三角形的性质,即可求得n的值;(3)由四边形ABB′C′是平行四边形,易求得θ=∠CAC′=∠ACB=72°,又由△ABC∽△B′BA,根据相似三角形的对应边成比例,易得AB2=CB•BB′=CB(BC+CB′),继而求得答案.解答:解:(1)根据题意得:△ABC∽△AB′C′,∴S△AB′C′:S△ABC=()2=()2=3,∠B=∠B′,∵∠ANB=∠B′NM,∴∠BMB′=∠BAB′=60°;故答案为:3,60;(2)∵四边形 ABB′C′是矩形,∴∠BAC′=90°.∴θ=∠CAC′=∠BAC′﹣∠BAC=90°﹣30°=60°.在 Rt△ABB′中,∠ABB'=90°,∠BAB′=60°,∴∠AB′B=30°,∴n==2;(3)∵四边形ABB′C′是平行四边形,∴AC′∥BB′,又∵∠BAC=36°,∴θ=∠CAC′=∠ACB=72°.∴∠BB′A=∠BAC=36°,而∠B=∠B,∴△ABC∽△B′BA,∴AB:BB′=CB:AB,∴AB2=CB•BB′=CB(BC+CB′),而 CB′=AC=AB=B′C′,BC=1,∴AB2=1(1+AB),∴AB=,∵AB>0,∴n==.点评:此题考查了相似三角形的判定与性质、直角三角形的性质、旋转的性质、矩形的性质以及平行四边形的性质.此题综合性较强,难度较大,注意数形结合思想与方程思想的应用,注意辅助线的作法.23.(11分)(•郑州模拟)如图1所示,已知二次函数y=ax2﹣6ax+c与x轴分别交于点A(2,0)、B (4,0),与y轴交于点C(0,﹣8t)(t>0).(1)求a、c的值及抛物线顶点D的坐标(用含t的代数式表示);(2)如图1,连接AC,将△OAC沿直线AC翻折,若点O的对应点O′恰好落在该抛物线的对称轴上,求实数t的值;(3)如图2,在正方形EFGH中,点E、F的坐标分别是(4,﹣4)、(4,﹣3),边HG位于边EF的右侧.若点P是边EF或边FG上的任意一点(不与E、F、G重合),请你说明以PA、PB、PC、PD的长度为边长不能构成平行四边形;(4)将(3)中的正方形EFGH水平移动,若点P是正方形边FG或EH上任意一点,在水平移动过程中,是否存在点P,使以PA、PB、PC、PD的长度为边长构成平行四边形,其中PA、PB为对边.若存在,请直接写出t的值;若不存在,请说明理由.考点:二次函数综合题.专题:综合题;压轴题.分析:(1)将A、B、C三点的坐标代入已知的抛物线的解析式利用待定系数法及其求得a、c的值,配方后即可确定其顶点坐标;(2)设抛物线对称轴与x轴交点为M,则可得到AM=1,然后根据O′A=OA=2得到O′A=2AM,最后在Rt△OAC中,利用OC和OA的关系列出有关t的方程求得t值即可.(3)本题需先分两种情况进行讨论,当P是EF上任意一点时,可得PC>PB,从而得出PB≠PA,PB≠PC,PB≠PD,即可求出线段PA、PB、PC、PD不能构成平行四边形.(4)分假设点P为FG与对称轴交点时,存在一个正数t,使得线段PA、PB、PC、PD能构成一个平行四边形和假设当点P为EH与对称轴交点时,存在一个正数t,使得线段PA、PB、PC、PD能构成一个平行四边形两种情况列出有关的方程求得t值即可.解答:解:(1)把点A、C的坐标(2,0)、(0,﹣8t)代入抛物线y=ax2﹣6ax+c得,,解得,该抛物线为y=﹣tx2+6tx﹣8t=﹣t(x﹣3)2+t.∴顶点D坐标为(3,t)(2)如图1,设抛物线对称轴与x轴交点为M,则AM=1.由题意得:O′A=OA=2.∴O′A=2AM,∴∠O′AM=60°.∴∠O′AC=∠OAC=60°∴在Rt△OAC中:∴OC=,即.∴.(3)①如图2所示,设点P是边EF上的任意一点(不与点E、F重合),连接PM.∵点E(4,﹣4)、F(4,﹣3)与点B(4,0)在一直线上,点C在y轴上,∴PB<4,PC≥4,∴PC>PB.又PD>PM>PB,PA>PM>PB,∴PB≠PA,PB≠PC,PB≠PD.∴此时线段PA、PB、PC、PD不能构成平行四边形.②设P是边FG上的任意一点(不与点F、G重合),∵点F的坐标是(4,﹣3),点G的坐标是(5,﹣3).∴FB=3,,∴3≤PB≤.∵PC>4,∴PC>PB.∴PB≠PA,PB≠PC.∴此时线段PA、PB、PC、PD不能构成平行四边形.(4)t=或或1.∵已知PA、PB为平行四边形对边,∴必有PA=PB.①假设点P为FG与对称轴交点时,存在一个正数t,使得线段PA、PB、PC、PD能构成一个平行四边形.如图3所示,只有当PC=PD时,线段PA、PB、PC、PD能构成一个平行四边形.∵点C的坐标是(0,﹣8t),点D的坐标是(3,t),又点P的坐标是(3,﹣3),∴PC2=32+(﹣3+8t)2,PD2=(3+t)2.当PC=PD时,有PC2=PD2即 32+(﹣3+8t)2=(3+t)2.整理得7t2﹣6t+1=0,∴解方程得t=>0满足题意.②假设当点P为EH与对称轴交点时,存在一个正数t,使得线段PA、PB、PC、PD能构成一个平行四边形.如图4所示,只有当PC=PD时,线段PA、PB、PC、PD能构成一个平行四边形.∵点C的坐标是(0,﹣8t),点D的坐标是(3,t),点P的坐标是(3,﹣4),∴PC2=32+(﹣4+8t)2,PD2=(4+t)2.当PC=PD时,有PC2=PD2即 32+(﹣4+8t)2=(4+t)2整理得7t2﹣8t+1=0,∴解方程得t=或1均大于>0满足题意.综上所述,满足题意的t=或或1.点评:本题主要考查了二次函数的综合问题,在解题时要注意运用数形结合和分类讨论,把二次函数的图象与性质和平行四边形的判定相结合是本题的关键.。
2021年河南省郑州市中牟县九年级下学期第二次质量预测数学试题(含答案解析)

=- (8-x)2+8,
所以,y与x之间的函数关系可以用两段开口向下的二次函数图象表示,纵观各选项,只有B选项图象符合.
故选:B.
【点睛】
本题考查了动点问题的函数图象,根据题意,分别求出两个时间段的函数关系式是解题的关键.
11.2
【分析】
根据算术平方根和零指数幂的运算法则计算即可.
【详解】
解:
=3-1
=2.
故答案为:2.
【点睛】
本题考查了实数的算术平方根,零指数幂,熟记算术平方根和零指数幂的计算方法是解题的关键.
12.
【分析】
首先分别解出两个不等式,再根据大小小大中间找确定不等式组的解集.
【详解】
解: ,
由①得: ,
由②得: ,
不等式组的解集为: ,
故答案为: .
【点睛】
本题主要考查了一元一次不等式组的解法,关键是掌握确定解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.
【详解】
解:从主视图与左视图是长方形,该几何体是柱体,
从俯视图看到的图形是三角形,该几何体是三棱柱,
结合三个视图发现,这个几何体是直三棱柱.
故选:A.
【点睛】
本题考查了由三视图判断几何体的知识,解题的关键是能够正确的确定各个图形的位置,难度不大.
3.D
【分析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是整数负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
【点睛】
本题考查了根的判别式以及一元二次方程的定义,根据二次项系数非零及根的判别式△≥0,找出关于m的一元一次不等式组是解题的关键.
郑州市第二次质量预测数学试题及参考答案word版

郑州市九年级第二次质量预测数学一、选择题(每题3分,共18分)下列各小题均有4个选项,其中只有一个是正确的.1.如果31=x ,那么x 的值是 ( ) A. 31B. 3C.3±D.31±2.如图所示的物体由两个紧靠在一起的圆柱组成,小刚准备画出它的 三视图,他所画的三视图的俯视图应是 ( ) A.两个相交的圆 B. 两个内切的圆C. 两个外切的圆D. 两个外离的圆3.下列事件是必然事件的是 ( ) A.打开电视体育频道,正在播放 NBA 球赛 B.抛一枚硬币,正面朝上C. 3个人分成两组,一定有2人分在一组D. 射击运动员射击一次,命中十环4.小明在文具店买了2支甲品牌水笔和3支乙品牌水笔,共花了13元, 甲品牌水笔比乙品牌水笔单价少一元,若设乙品牌水笔单价为x 元∕支 ,则下面所列方程正确的是 ( ) A.2(x-1)+3x=13 B. 2x+3(x+1)=13 C.2(x+1)+3x=13 D.2x+3(x-1)=135.如图,一个圆锥侧面沿母线AC 展开后正好是一个半圆,该圆锥的高OA 和底面半径OC 的数量关系是 ( ) A.OA=OC B.OA=1.5OC C.OA=2OC D.OC OA 3=6.若点A 是双曲线xky =上一点,AB ⊥x 轴于点B ,点O 为直角坐标的原点,△AOB 的面积为3,则点A 的坐标可能 是下面四个选项的哪一个 ( ) A.(-3,1) B. (2,-3) C. (2,-1) D.(-3,3) 二、填空题(每个题3分,共27分) 7.计算_______13=-.8.如图,AB ∥CD,EF ⊥CD 于点F ,交AB 于点E , 若∠1=25º则∠2=_____________.9.如果1是一元二次方程x ²+bx+2=0的一个根,那么常数b 的值为_____________.10.菱形ABCD 中,如果对角线AC=2cm,BD=4cm,那么该菱形的面积等于____________.BOr 180ºCADBHFEC A第8题图 主视方向11.若P=a-2,Q=a a 32+(a 为实数),则P 、Q 的大小关系为__________.12.如图,AB 为半圆O 的直径,OC AB OD ⊥,平分BOC ∠,交半圆于点D ,AD 交OC 于点E ,则AEO ∠的度数是____________°. 13、从1、2、3、4这四个数中,任意取两个不同数字组成一个两位数,则这个两位数能被3整除的概率是___________. 14.如图是用棋子摆成的图案,摆第一个图案需要4枚棋子,摆第二个图案需要12枚棋子,摆第三个图案需要24枚棋子,按照这样方式摆下去,摆第八个图案需要_______枚棋子. ┅15. 如图,将一副三角板拼在一起得到四边形ABCD ,E 为CD 的中点,AB=c ,将△ADE 沿直线AE 翻折得△AD ′E ,则点D ′到AB 边的距离为____________.三、解答题(本大题共8个题,共75分)16.(8分)先化简1121221222-+--÷+++a a a a a a ,然后对a 选取一个你认为合适的数代入求值.ABC E ODE 45º30ºAC ED ′BD第14题图17.(9分)如图,四边形ABCD 中,BD>AC,∠ACB=∠DBC,∠BAC+∠BDC=180º,E 为BD 上一点,BE=AC,判断△EDC 的形状,并证明你的结论.18.(9分)参与我市教育资源倍增工程的学校有A 、B 两个校区,为了加强融合,两个校区的学生特举办了以“弘扬校园真善美,文名礼仪在我心”为主题的演讲比赛.两校区参赛人数相等,比赛结束后,按分数进行分类统计,共有7分、8分、9分、10分(满分10分)四个等级.依据统计数据绘制了如下尚不完整的统计图表.A 校区成绩统计表根据图标信息可知两个校区参加的人数为__________人, 并将图2的统计图补充完整;(2)经计算,B 校区的平均分是8.3分,中位数是8分,请计算A 校区的 平均分、中位数,并从平均数和中位数的角度分析哪个校区成绩较好; (3) 如果该学校要组织8人的代表队参加学区内的演讲团体赛,决定从这 两个校区中的一所挑选参赛选手,请你分析,应选哪个小区?分数 7分 8分 9分 10分 人数118B 校区成绩统计表 B CE D A 9分8分5488 642分数人数 7分10分图219、(9分)已知抛物线bx ax y +=2经过点A(3,3)和点B (m,0),且m ≠0.(1)若该抛物线的对称轴经过点A ,如图所示,请通过观察图像,写出此时y 的最大值及m 的值;(2)若m=4,求a 、b 的值.(3)直接写出使抛物线bx ax y +=2开口向上的m 的一个值.O B 33 Ayx20.(9分)如图,梯形ABCD 中,AD ∥BC,AB=DC,AE ⊥BC 于点E,AB 的垂直平分线GF 交BC 于点F ,交AB 于点G ,连接AF.已知AD=1.4,AF=5,GF=4. (1)求梯形 ABCD 的腰AB 的长; (2)求梯形AFCD 的面积.EGF BA DC21.(10分)某工厂用如图1所示的长方形和正方形纸板,做成如图2所示的A种与B种两种长方体形状的无盖纸盒.现有正方形和长方形纸板共502张,其中正方形纸版比长方形纸板少138张.(1)求长方形纸板和正方形纸板的张数;(2)若要生产两种纸盒共100个,按两种纸盒的生产个数分,有哪几种生产方案?A B图2图122.(10分)问题背景:如图,点C是半圆O上一动点(点C与A、B不重合),AB=2,连接AC、BC、OC,将△AOC沿直线AC翻折得△ADC,点、E、F、G、H分别是DA、AO、OC、CD的中点.(1)猜想证明:猜想四边形AOCD以及四边形EFGH的形状,并证明你的结论;(2)拓展探究:探究点C在半圆弧上哪个位置时,四边形EFGH面积最大?求出这个最大值,判断此时四边形EFGH 的形状,并说明理由.E HDCBA OFG23.(11分)如图,在平面直角坐标系中,x 轴上有两点A(-2,0),B(2,0),以AB 为边在x 轴上方作正方形ABCD ,点E 是AD 边的中点, F 是x 轴上一动点,连接EF ,过点E 作EG ⊥EF,交BC 所在的直线与点G ,连接FG.. (1)当点F 与点A 重合时,易得21 EG EF ;若点F 与点A 不重合时,试问EGEF的值是否改变?直接写出正确判断;(2)设点F 的横坐标为x (-2<x<2),△FBG 的面积为S ,求S 关于x 的函数关系式,并求出S 的最大值;(3)当点F 在 x 轴上运动时,判断有几个位置能够使得以点E 、F 、G 为顶点三角形和以点B 、F 、G 为顶点的三角形全等?直接写出相应的点F 的坐标.GOEE D-2 2B A xC y2011年九年级第二次质量预测 数学 参考答案及评分标准一、选择题1.D 2.C 3.C 4.A 5.D 6.B 二、填空题7.-1;8.65;9.-3;10.4;11.P <Q ;12.22.5;13.13;14.144;15.c 633-. 三、解答题16.解:原式112)1)(1()1(2)1(2-+--+÷++=a a a a a a --------------------------------------------2分11)1)(1(2)1(2)1(2-+-+-⨯++=a a a a a a 11)1(22-+--=a a a --------------------------------------------------5分)1(22)1(22-+--=a a a)1(2-=a a.--------------------------------------------------7分如取a =0,代入原式0)10(20=-=.--------------------------------------------------8分(a 不能取±1, 2)17.解:△EDC 是等腰三角形;--------------------------------------------------2分证明如下:在△ABC 和△ECB 中,⎪⎩⎪⎨⎧=∠=∠=.,,BC CB EBC ACB EB AC ∴△ABC ≌△ECB (SAS ) .-------------------------------------------------6分 ∴∠BAC =∠CEB .又∵∠BAC +∠BDC =180°,∠CEB +∠DEC =180°,∴∠DEC=∠BDC .∴CE=CD .即△EDC 是等腰三角形.------------------9分18.解:(1)20;补充统计图如图所示;----------3分(2)A 校区的平均分为208101908117⨯+⨯+⨯+⨯=8.3分,中位数为7分;由于两校区平均分相等,B 校区成绩的中位数大于A 校区的中位数,所以B 校区的成绩较好. --------------------------------------------------7分(3)因为选8名学生参加学区内的演讲团体赛,A 校区得10分的有8人,而B 校区得10分的只有5人,所以应选A 校区.--------------------------------------------------9分19.解:(1)3;m =6.-------------------------------------------------2分 (2)分别将点B (4,0)和点A (3, 3)代入2y ax bx =+,得⎩⎨⎧=+=+.339,0416b a b a 解得⎩⎨⎧=-=.4,1b a ---------------------------7分 (3)1(答案不唯一).【注:写出m <3且m ≠0其中任意一个数均给分】------9分20.解:(1)在Rt △AGF 中,AF =5,GF=4, ∴AG =3452222=-=-GF AF .又∵GF 垂直平分AB ,∴AB =2AG =6. --------------------------------------------------4分 (2)∵GF 垂直平分AB ,∴BF =AF=5.∴∠B =∠F AG .由(1)知54sin sin ==∠=AF GF FAG B .∴53cos =B . 在Rt △ABE 中,524546sin =⨯=⋅=B AB AE .--------------------------------------7分518536cos =⨯=⋅=B AB BE .在Rt △AFE 中, AF =5,AE =524,可求得EF =AD =1.4.∴6.354.151822=-+⨯=-+=BF EF BE CF . 梯形AFCD 的面积为:12524)6.34.1(21)(21=⨯+=⋅+AE CF AD .-------------------------------------9分B 校区成绩条形统计图 8 6 4 8分 9分 分数 人数2 10分 图27分834521.解:(1)设长方形纸板有x 张,正方形纸板有y 张,则根据题意可得⎩⎨⎧=-=+.138,502y x y x ---------------------------------3分 解得 ⎩⎨⎧==.182,320y x 则长方形纸板有320张,正方形纸板有182张.---------------------------------5分(2)设做A 种纸盒a 个,则B 种纸盒需做(100-a )个.由题意可得⎩⎨⎧≤-+≤-+.320)100(34,182)100(2a a a a 解这个不等式组,得 2018≤≤a .----------------------------------------------8分 又∵a 是正整数,∴a =18,19,20.∴共有如下三种生产方案:方案一:A 种18个,B 种82个;方案二:A 种19个,B 种81个;方案三:A 种20个,B 种80个.---------------------------------------------10分22.解:(1)四边形AOCD 是菱形;四边形EFGH 是矩形.证明如下:由翻折可得AO=AD ,CO =CD .∵OA =OC ,∴AO =OC =CD =DA .∴四边形AOCD 是菱形; ---------------------------------------------3分 ∴AC ⊥OD .又∵EF 是△AOD 的中位线,∴EF //OD ,且OD EF 21=. 同理可得FG //AC ,且AC FG 21=, EH //AC ,且AC EH 21=.∴FG 平行且等于EH. ∴四边形EFGH 是平行四边形, 且FG ⊥EF ,∴四边形EFGH 是矩形. -------------------------------------------6分(2)∵AB 为半圆O 的直径,∴∠ACB =90°.∴AC ⊥BC .∵四边形AOCD 是菱形,∴DC 平行且等于OA ,又∵AO =OB ,∴DC 平行且等于OB .∴四边形OBCD 是平行四边形. ∴DO 平行且等于BC . ∴ACB EFGH S AC BC AC OD EH EF S ∆⨯=⋅=⋅=⋅=21412121矩形.----------8分 ∴当点C 位于半圆弧中点时, AB 边上的高最大,即ACB S ∆的最大值为1. ∴EFGH S 矩形的最大值为21.此时AC =BC ,∴AC =OD . ∴EF =FG ,∴矩形EFGH 是正方形. --------------------------------------------10分23.解:(1)21=EG EF 仍然成立. -----------------------------------------------2分 (2)过点E 作EH ⊥BC 于点H . ∴EH ⊥AE .∴∠GEH +∠FEH =∠AEF +∠FEH =90°, ∴∠GEH =∠AEF . 而∠EAF=∠EHG =90°, ∴△EA F ∽△EHG . ∴.21===EG EF EH EA HG AF -----------------------------------------------5分 ∵2)2(+=--=x x AF , ∴42)2(2+=+=x x HG .∴BG =BH +HG = 2+2x +4=2x +6.∵BF =2-x .∴△FBG 的面积)62)(2(2121+-=⋅=x x BG BF S . 即425)21(2++-=x S . ∴当x =21-时,S 的最大值为425.-------------------------------7分 (3)满足要求的点F 共有三个位置,-------------------------------8分即)0,2(1-F ,)0,21(2-F ,)0,314(3-F .-------------------------------11 2-2yx O GE D A BCF H。
河南省郑州市重点中学2023-2024学年九年级上学期第二次月考数学试题(含答案)

九年级学情调研2数学试卷(时间:100分钟满分:120分)一、选择题(每小题3分,共30分)1.我国古代建筑中经常使用榫卯构件,如图是某种卯构件的示意图,其俯视图是()卯A .B .C .D .2.若点在反比例函数的图象上,则下列结论证确的是( )A .B .C .D .3.如图,电路图上有4个开关和1个小题,同时闭合开关或同时的合开关都可以使小灯泡发光.随机同时闭合两个开关,小大泡发光的概率是()第3题图A.B .C .D .4.如图,滑雪场有一坡角为20°的滑雪道,滑雪道AC 长为200米,则滑雪道的坡顶到坡底的竖直高度的长为()()()()1232,,1,,2,A y B y C y -2y x=123y y y >>231y y y >>321y y y >>312y y y >>,,,A B C D ,A B ,C D 131211216AB第4题图A.米B .米C .米D .米5.近年来,由于新能源汽车的崛起,燃油汽车的销量出现了不同程度的下滑,经销商纷纷开展降价促销活动.某款燃油汽车今年2月份售价为23万元,4月份售价为18.63万元,设该款汽车这两月售价的月平均降价率是x ,则所列方程正确的是( )A .B .C .D .6.如图,将视力表中的两个“”放在平面直角坐标系中,两个“”字是位似图形,位似中心点,①号“”与②号“”的相似比为.点与为一组对应点,若点坐标为,则点的坐标为()第6题图A .B .C .D .7.关于二次函数,下列说法错误的是( )A .图象的开口方向向上B .函数的最小值为C .图象可由抛物线向左平移3个单位长度,再向上平移1个单位长度得到D .当时,随的增大而减小8.如图,菱形的对角线与相交于点为的中点,连接,,则等于( )200cos 20︒200sin 20︒200cos 20︒200sin 20︒223(1)18.63x -=218.63(1)23x +=218.63(1)23x -=223(1)18.63x +=E E O E E 2:1P Q Q (2,3)-P 93,2⎛⎫- ⎪⎝⎭(6,4)-9,32⎛⎫-⎪⎝⎭(4,6)-2(1)3y x =+-3-2y x =1x <-y x ABCD AC BD ,O E AD OE 120,12BAD BD ∠=︒=OE第8题图A .6B .C .4D .9.如图,一块材料的形状是锐角三角形,边长,边上的高为,把它加工成正方形零件,使正方形的一边在上,其余两个顶点分别在、上,则这个正方形零件的边长是()第9题图A.B .C .D .10.如图,在轴的正半轴上依次截取,过分别作轴的垂线,与反比例函数的图象交于点,并设面积分别为,其中为正整数,按此作法进行下去,的值为( )第10题图ABC BC 12cm BC AD 10cm GH BC E F 、AB AC 60cm 115cm 6cm 7cmx 1122334451n n OA A A A A A A A A A A -====== 12345n A A A A A A 、、、、x 4y x=12345n P P P P P P 、、、、111222331n n n OA P A A P A A P A A P - △△△、、△123n S S S S 、、n n SA.B .C .D .二、填空题(每小题3分,共15分)11.一元二次方程的解是______.12.将放置在的正方形网格中,顶点都在格点上.则的值为______.第12题图13.如图,小树在路灯的照射下形成投影.若树高,树影,树与路灯的水平距离.则路灯的高度为______.第13题图14.在平面直角坐标系中,若一个点的横坐标与纵坐标的和为零,则称这个点为“零和点”.已知二次函数的图像上有且只有一个“零和点”,则______.15.如图,菱形中,,点为射线上一个动点,连接,点关于直线的对称点为,连接,当时,的长为______.三、解答题(本大题共8个小题,共75分)16.(8分)(课本原题)(1)计算4n 2n12n2n2(1)4x -=BAC ∠44⨯A B C 、、tan BAC ∠AB O BC 2m AB =3m BC =4m BP =OP m 23y x x m =++m =ABCD 30CD BCD =∠=︒P AB DP A DP A',A'P A'D A'P BC ⊥AP 22sin 302sin 60tan 45tan 60cos 30︒︒︒︒︒++-+(2)(课本原题)解方程17.(9分)【问题情境】大自然中的植物千姿百态,如果细心观察,就会发现:不同植物的叶子通常有着不同的特征,如果我们用数学的眼光来观察,会有什么发现呢?“思维math ”小组的四位同学小颖、小平、小名和小字,一起开展了“利用树叶的特征对树木进行分类”的项目化学习活动.【实践发现】同学们从收集的杨树叶、柳树叶中各随机选取10片,通过测量得到这些树叶的长和宽(单位:cm )的数据后,分别计算长宽比,整理数据如下:序号12345678910杨树叶的长宽比2 2.4 2.1 2.4 2.8 1.8 2.4 2.2 2.1 1.7柳树叶的长宽比 1.51.61.51.41.51.41.71.51.61.4【实贱探究】分析数据如下:平均数中位数众数方差杨树叶的长宽比 2.19m 2.40.0949柳树叶的长宽比 1.511.5n0.0089【问题解决】(1)上述表格中:m =______,n =______.(2)①这两种树叶从长宽比的方差来看,______树叶的形状差别较小;②该小组收集的树叶中有一片长为11.5cm ,宽为5cm 的树叶,这片树叶来自于______树的可能性大;(3)该小组准备从小颖、小平、小名和小宇四位成员中随机选取两名同学进行成果汇报,请用列表或画树状图的方法,求成员小颍和小平同时被选中的概率.18.(9分)(《学练优》原题)为建设美好公园社区,增强民众生活幸福感,文化路社区服务中心在文化活动室墙外安装遮阳篷,便于社区居民休憩.如图,在侧面示意图中,遮阳篷AB 长为5米,与水平面的夹角为,且靠墙端离地高BC 为4米,当太阳光线与地面的夹角为时,求阴影的长.(结果精确到0.1米;多考数据:)22410x x --=16︒AD CE 45︒CD sin160.28,cos160.96,tan160.29︒︒≈︒≈≈19.(9分)“直播带货”已经成为信息社会中商家的一种新型促销手段.某主播小佳在直播间销售一种进价为每件10元的日用商品,经调查发现,该商品每天的销售量y (件)与销售单价x (元)满足一次函数关系,它们的关系如图所示:(1)当定价为______元时,开始无人购买;(2)设小佳每天的销售利润(快递费用等不考虑)为w 元,求w 与x 之间的函数关系式(不需要写出自变量x 的取值范围);(3)若小佳每天想获得的销售利润w 为910元,又要尽可能地减少库存,应将销售单价定为多少元?20.(10分)如图,一次函数的图象与反比例函数的图象交于,两点.(1)求反比例函数的表达式;(2)直接写出不等式的解集;(3)设直线与轴交于点,若为轴上的一动点,连接,当的面积为时,求点的坐标.21.(10分)如图,菱形的对角线相交于点,112y x =-my x=(,1)A a (2,)B b -112mx x-<AB x C (0,)P n y ,AP CP APC △52P ABCD AC BD 、O(1)尺规作图:在边的左侧,作,使;(2)在(1)的条件下,连接.求证:四边形为矩形;(3)在(2)的条件下,连接,交于点,菱形中,若,,求的长.22.(10分)如图,已知二次函数的图象经过点,点.(1)求该二次函数的表达式,并求出对称轴和顶点坐标;(2)点在该二次函数图像上,当时,的最大值为,最小值为1,请根据图像直接写出的取值范围.23.(10分)综合与实践:综合与实践课上,老师带领同学们,以“特殊四边形旋转”为主题,开展数学活动.图1 图2CD CDE ACB ∠=∠12DE AC =CE OCED AE CD F ABCD 10DB =12AC =EF 2y x bx c =-++(4,1)A (0,5)B (,)C m n 4m x ≤≤n 294m图3备用图【问题发现】如图1,在矩形中,,点在对角线上,过点分别作和的垂线,垂足为,则四边形为矩形.请问线段与的数量关系为______;【拓展探究】如图2,将图1中的矩形绕点逆时针旋转,记旋转角为,当时,连接.在旋转的过程中,与的数量关系是否仍然成立?请利用图2进行证明.【解决问题】如图3,当矩形的边时,点为直线上异于的一点,以为边作正方形,点为正方形的中心,连接,若,直接写出的长.九年级学情调研2数学评分标准一、选择题(每小题3分,共30分)1.C .2.B .3.A .4.D .5.A .6.D .7.C .8.B .9.A .10.D .二、填空题(每小题3分,共15分)11.. 12.1. 13.. 14.4. 15.2或6.三、解答题(本大题共8个小题,共75分)16.(8分)(1)原式;(2)解:这里,,,;17.(9分)解:(1)2.15,1.5;(2)①柳;②杨;ABCD :AD CD =F AC F AB AD ,E G AEFG CFDG AEFG A α0180α<<︒︒,CF DG CF DG ABCD AD AB =E CD ,DC AE AEFG H AEFG DH4,2AD DE ==DH 1,3-14312sin 60tan 45tan 60︒︒=++-︒1212=+=2,4,1a b c ==-=-2(4)421240∴∆=-+⨯⨯=>x ∴==12x x ∴==(3)四位同学分别用A 、B 、C 、D 表示,其中A 代表小颖,B 代表小平,C 代表小名,D 代表小宇,画树状图为:共有12中等可能的结果,其中成员小颖和小平同时被选中的结果数为2,所以成员小颖和小平同时被选中的概率.18.(9分)解:过作于于,如图:在中,(米),(米),,四边形是矩形,米,(米),在中,,米(米),阴影的长约为2.2米.19.(9分)解:(1)设每天的销售量(件)与销售单价(元)的函数解析式为,把和代入解析式得:,解得,,令,即,解得,当定价为30元时,开始无人购买,故答案为:30;(2)由题意得:.21126==A AT BC ⊥,T AK CE ⊥K Rt ABT △sin 5sin16 1.4BT AB BAT =⋅∠=≈︒⨯cos 5cos16 4.8AT AB BAT =⋅∠=≈︒⨯90ATC C CKA ∠=∠=∠=︒ ∴ATCK 4.8CK AT ∴==4 1.4 2.6AK CT BC BT ==-=-=Rt AKD △45ADK =︒∠ 2.6DK AK ∴==4.8 2.6 2.2CD CK DK ∴=-=-=∴CD y x (0)y kx b k =+≠(10,200)(20,100)1020020100k b k b +=⎧⎨+=⎩10300k b =-⎧⎨=⎩10300y x ∴=-+0y =103000x -+=30x =∴2(10)(10300)104003000w x x x x =--+=-+-与之间的函数关系式为;(3)由题意,令,..又尽可能地减少库存,,.应将销售单价定为17元;20.(10分)解:(1)图象经过,,反比例函数表达式为:(2)由图可得,不等式的解集是或;(3)设直线交轴于,交轴于,在中,当时,,当时,得,解得:,,,,,,,解得:或,点的坐标为或.21.(10分)(1)如图,即为所求.w ∴x 2104003000w x x =-+-910w =2104003000910x x ∴-+-=1217,23x x ∴==10173002310300-⨯+>-⨯+17x ∴=∴112y x =- (,1)A a 4a ∴=∴4y x=112mx x-<2x <-04x <<AB x C y D 112y x =-0x =1y =-(0,1), D ∴-0y =1102x -=2x =(2,0)C ∴2OC ∴=(0,),(4,1)P n A |1|PD n ∴=+52APC S =△15|1|(42)22n ∴+⋅-=32n =72-∴P 30,2⎛⎫ ⎪⎝⎭70,2⎛⎫- ⎪⎝⎭(2)证明:四边形是菱形,,,,,,,四边形是平行四边形,又,平行四边形是矩形;(3)解:四边形是菱形,,,平行四边形是矩形;在中,,,,.22.(10分)解:(1)将点的坐标分别代入二次函数,得方程组:解之,得得.所以,对称轴是:直线,顶点坐标为.答:该二次函数的表达式为,对称轴是:直线,顶点坐标为. ABCD 1,2AC BD AO OC AC ∴⊥==90DOC ∴∠=︒DE AC ∥12DE AC =DE OC ∴=DE OC ∥∴OCED 90DOC =︒∠ ∴OCED ABCD 10,12DB AC ==,5,6AC BD OB OD OA OC ∴⊥==== OCED 5,6,CE OD DE OC ∴====∴Rt ACE △13AE ===DE AC ∥,EDF FCA DEF FAC ∴∠=∠∠=∠61113,,12233EF DE DEF CAF EF AE AF AC ∴∴===∴==△△∽A B 、1641,5b c c -++=⎧⎨=⎩3,5b c =⎧⎨=⎩235y x x =-++2232935,24y x x x ⎛⎫=-++=--+ ⎪⎝⎭32x =329,24⎛⎫ ⎪⎝⎭235y x x =-++32x =329,24⎛⎫ ⎪⎝⎭(2)当,解得或,因为,顶点是.根据题意,点应在点之间的函数图象上,可以看出,.23.(10分)解:【问题发现】;【拓展探究】仍然成立.理由如下:图1中,,,,图2中,由旋转可得:,,,,,,;2351x x -++=1x =-4x =(4,1),(1,1)A D -329,24E ⎛⎫ ⎪⎝⎭C A D 、312m -≤≤2CF GD =,FAG CAD FGA CDA ∠=∠∠=∠AFG ACD ∴△△∽AG AD AF AC∴=CAF DAG ∠=∠ACF ADG ∴△△∽CF AC DG AD∴=:AD CD = AC 2AD 1∴=CF 2DG 1∴=2CF GD ∴=图3【解决问题】①如图3,当点在线段上时,连接,四边形,四边形为正方形,,,,,,,图4②如图4,当点在线段延长线上时,连接,四边形,四边形为正方形,,,,,;综上所述,或.E CD AC AH 、 ABCD AEFG 45CAD EAH ∴∠=∠=︒AC AE AD AH==CAE DAH ∴∠=∠ACE ADH ∴△△∽DH AD CE AC ∴==4,2AD CD DE === 422CE ∴=-=DH ∴==E CD AC AH 、 ABCD AEFG 45,AC AE CAD EAH AD AH ︒∴∠=∠===CAE DAH ∴∠=∠ACE ADH ∴△△∽DH AD CE AC ∴==4,2AD CD DE === 426CE ∴=+=DH ∴==DH。
郑州市中考数学二模试卷(含解析)

20XX年河南省郑州市中考数学二模试卷一、选择题(每小题3分,共24分)在每小题四个选项中,只有一项是符合题目要求1.给出四个数0,,﹣1,其中最小的是()A.0 B.C.D.﹣12.有一种圆柱体茶叶筒如图所示,则它的左视图是()A. B.C.D.3.把不等式组的解集表示在数轴上,下列选项正确的是()A.B.C.D.4.如图,已知△ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得PA+PC=BC,则下列选项正确的是()A.B.C.D.5.马老师想知道学生每天上学路上要花多少时间,于是让大家将每天来校的单程时间写在纸上用于统计,下面是全班45名学生单程所花时间(单位:分)与对应人数(单位:人)6.如图,在一单位长度为1的方格纸上,依如图所示的规律,设定点A1,A2,A3,A4,A5,A6,A7,…A n,连接点O,A1,A2组成三角形,记为△1,连接O,A2,A3组成三角形,记为△2,…,连接O,A n,A n+1组成三角形,记为△n(n为正整数),请你推断,当n为10时,△n的面积=()平方单位.A.45 B.55 C.66 D.1007.郑徐客运专线(简称郑徐高铁),即郑州至徐州高速铁路,是《国家中长期铁路网规划》中“四纵四横”之一的徐兰客运专线的重要组成部分.20XX年7月将要开通运营.高铁列车从郑州到徐州的运行时间比原普通车组的运行时间要快约1.4个小时.已知郑州到徐州的铁路长约为361千米,原普通车组列车的平均速度为x千米/时,高铁列车的平均速度比原普通车组列车增加了145千米/时,依题意,下面所列方程正确的是()A.﹣=1.4 B.﹣=1.4C.﹣=1.4 D.x+1.4(x+145)=3618.如图,边长为6的等边三角形ABC中,E是对称轴AD上的一个动点,连接EC,将线段EC绕点C逆时针转60°得到FC,连接DF.则在点E运动过程中,DF的最小值是()A.6 B.3 C.2 D.1.5二、填空题(每小题3分,共21分)9. =______.10.如图,已知直线AB∥CD,直线EG垂直于AB,垂足为G,直线EF交CD于点F,∠1=50°,则∠2=______.11.微信根据移动ID所带来的数据,发布了“微信用户春节迁徙数据报告”.该报告显示,20XX年1月24日春运首日至2月4日期间,人口流入最多的省份是河南,作为劳务输出大省,河南约有313万微信用户在春节期间返乡,313万用科学记数法可表示为______.12.一个不透明的盒子里有4个除颜色外其他完全相同的小球,其中每个小球上分别标有1,﹣1,﹣2,﹣3四个不同的数字,每次摸球前先将盒子里的球摇匀,任意摸出一个球记下数字后再放回盒子,那么两次摸出的小球上两个数字乘积是负数的概率为______.13.反比例函数y=经过点A(﹣3,1),设B(x1,y1),C(x2,y2)是该函数图象上的两点,且x1<x2<0,那么y1与y2的大小关系是______(填“y1>y2”,“y1=y2”或“y1<y2”).14.如图,在△ABC中,∠C=90°,AC=BC,斜边AB=4,O是AB的中点,以O为圆心,线段OC的长为半径画圆心角为90°的扇形OEF,弧EF经过点C,则图中阴影部分的面积为______平方单位.15.已知一个矩形纸片OACB,OB=6,OA=11,点P为BC边上的动点(点P不与点B,C重合),经过点O折叠该纸片,得折痕OP和点B′,经过点P再次折叠纸片,使点C落在直线PB′上,得折痕PQ和点C′,当点C′恰好落在边OA上时BP的长为______.三、解答题(共75分)16.先化简(+),再求值.a为整数且﹣2≤a≤2,请你从中选取一个合适的数代入求值.17.今年3月12日,某校九年级部分学生参加植树节活动,以下是根据本次植树活动的有关数据制作的统计图的一部分.请根据统计图所提供的有关信息,完成下列问题:(1)参加植树的学生共有______ 人;(2)请将该条形统计图补充完整;(3)参加植树的学生平均每人植树______棵.(保留整数)18.如图,已知⊙A的半径为4,EC是圆的直径,点B是⊙A的切线CB上的一个动点,连接AB交⊙A于点D,弦EF平行于AB,连接DF,AF.(1)求证:△ABC≌△ABF;(2)当∠CAB=______时,四边形ADFE为菱形;(3)当AB=______时,四边形ACBF为正方形.19.已知:关于x的一元二次方程x2+2x+k=0有两个不相等的实数根.(1)求k的取值范围;(2)当k取最大整数值时,用合适的方法求该方程的解.20.图1是小明在健身器材上进行仰卧起坐锻炼时情景.图2是小明锻炼时上半身由EM位(sin18°置运动到与地面垂直的EN位置时的示意图.已知BC=0.64米,AD=0.24米,α=18°.≈0.31,cos18°≈0.95,tan18°≈0.32)(1)求AB的长(精确到0.01米);(2)若测得EN=0.8米,试计算小明头顶由M点运动到N点的路径弧MN的长度(结果保留π)21.某公司推销一种产品,公司付给推销员的月报酬有两种方案如图所示:其中方案一所示图形是顶点在原点的抛物线的一部分,方案二所示的图形是射线.设推销员销售产品的数量为x(件),付给推销员的月报酬为y(元).(1)分别求两种方案中y关于x的函数关系式;(2)当销售量达到多少件时,两种方案的月报酬差额将达到3 800元?(3)若公司决定改进“方案二”:基本工资1 200元,每销售一件产品再增加报酬m元,当推销员销售量达到40件时,方案二的月报酬不低于方案一的月报酬.求m至少增加多少元?22.如图1,在Rt△ABC中,∠ACB=90°,∠B=60°,D为AB的中点,∠EDF=90°,DE交AC于点G,DF经过点C.(1)求∠ADE的度数;(2)如图2,将图1中的∠EDF绕点D顺时针方向旋转角α(0°<α<60°),旋转过程中的任意两个位置分别记为∠E1DF1,∠E2DF2,DE1交直线AC于点P,DF1交直线BC于点Q,DE2交直线AC于点M,DF2交直线BC于点N,求的值;(3)若图1中∠B=β(60°<β<90°),(2)中的其余条件不变,判断的值是否为定值?如果是,请直接写出这个值(用含β的式子表示);如果不是,请说明理由.23.如图1,抛物线y=ax2+bx+3(a≠0)与x轴、y轴分别交于点A(﹣1,0)、B(3,0)、点C三点.(1)试求抛物线的解析式;(2)点D(2,m)在第一象限的抛物线上,连接BC、BD.试问,在对称轴左侧的抛物线上是否存在一点P,满足∠PBC=∠DBC?如果存在,请求出点P点的坐标;如果不存在,请说明理由;(3)如图2,在(2)的条件下,将△BOC沿x轴正方向以每秒1个单位长度的速度向右平移,记平移后的三角形为△B′O′C′.在平移过程中,△B′O′C′与△BCD重叠的面积记为S,设平移的时间为t秒,试求S与t之间的函数关系式?20XX年河南省郑州市中考数学二模试卷参考答案与试题解析一、选择题(每小题3分,共24分)在每小题四个选项中,只有一项是符合题目要求1.给出四个数0,,﹣1,其中最小的是()A.0 B.C.D.﹣1【考点】实数大小比较.【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【解答】解:根据实数比较大小的方法,可得﹣1<0<,∴四个数0,,﹣1,其中最小的是﹣1.故选:D.2.有一种圆柱体茶叶筒如图所示,则它的左视图是()A. B.C.D.【考点】简单几何体的三视图.【分析】找到从几何体的左面看所得到的视图即可.【解答】解:圆柱体茶叶筒的左视图是矩形,故选:D.3.把不等式组的解集表示在数轴上,下列选项正确的是()A.B.C.D.【考点】在数轴上表示不等式的解集.【分析】求得不等式组的解集为﹣1<x≤1,所以B是正确的.【解答】解:由第一个不等式得:x>﹣1;由x+2≤3得:x≤1.∴不等式组的解集为﹣1<x≤1.故选B .4.如图,已知△ABC ,AB <BC ,用尺规作图的方法在BC 上取一点P ,使得PA+PC=BC ,则下列选项正确的是( )A .B .C .D .【考点】作图—复杂作图.【分析】由PB+PC=BC 和PA+PC=BC 易得PA=PB ,根据线段垂直平分线定理的逆定理可得点P 在AB 的垂直平分线上,于是可判断D 选项正确.【解答】解:∵PB+PC=BC ,而PA+PC=BC ,∴PA=PB ,∴点P 在AB 的垂直平分线上,即点P 为AB 的垂直平分线与BC 的交点.故选D .5.马老师想知道学生每天上学路上要花多少时间,于是让大家将每天来校的单程时间写在纸上用于统计,下面是全班45名学生单程所花时间(单位:分)与对应人数(单位:人)【考点】中位数.【分析】根据总人数找出最中间的数,再根据中位数的定义即可得出答案.【解答】解:∵共有45名学生,∴最中间的数是第23个数,∴这45名学生单程所花时间的数据的中位数是20.故选B .6.如图,在一单位长度为1的方格纸上,依如图所示的规律,设定点A 1,A 2,A 3,A 4,A 5,A 6,A 7,…A n ,连接点O ,A 1,A 2组成三角形,记为△1,连接O ,A 2,A 3组成三角形,记为△2,…,连接O ,A n ,A n+1组成三角形,记为△n (n 为正整数),请你推断,当n 为10时,△n 的面积=( )平方单位.A.45 B.55 C.66 D.100【考点】规律型:图形的变化类.【分析】分别求出△1,△2,△3,△4的面积,探究规律后,利用规律解决问题即可.【解答】解:由图象可知,因为S△1=×1×2,S△2=×2×3,S△3=×3×4,S△4=×4×5,…,所以S△10=×10×11=55.故选B.7.郑徐客运专线(简称郑徐高铁),即郑州至徐州高速铁路,是《国家中长期铁路网规划》中“四纵四横”之一的徐兰客运专线的重要组成部分.20XX年7月将要开通运营.高铁列车从郑州到徐州的运行时间比原普通车组的运行时间要快约1.4个小时.已知郑州到徐州的铁路长约为361千米,原普通车组列车的平均速度为x千米/时,高铁列车的平均速度比原普通车组列车增加了145千米/时,依题意,下面所列方程正确的是()A.﹣=1.4 B.﹣=1.4C.﹣=1.4 D.x+1.4(x+145)=361【考点】由实际问题抽象出分式方程.【分析】直接利用高铁列车从郑州到徐州的运行时间比原普通车组的运行时间要快约1.4个小时,进而表示出两种列车行驶的时间得出等式即可.【解答】解:设原普通车组列车的平均速度为x千米/时,高铁列车的平均速度为:(x+145)千米/时,依题意得:﹣=1.4.故选:C.8.如图,边长为6的等边三角形ABC中,E是对称轴AD上的一个动点,连接EC,将线段EC绕点C逆时针转60°得到FC,连接DF.则在点E运动过程中,DF的最小值是()A.6 B.3 C.2 D.1.5【考点】全等三角形的判定与性质;等边三角形的性质.【分析】取线段AC的中点F,连接EF,根据等边三角形的性质以及角的计算即可得出CD=CF 以及∠FCE=∠DCF,由旋转的性质可得出EC=FC,由此即可利用全等三角形的判定定理SAS 证出△FCE≌△DCF,进而即可得出DF=FE,再根据点F为AC的中点,即可得出FE的最小值,此题得解.【解答】解:取线段AC的中点F,连接EF,如图所示.∵△ABC为等边三角形,且AD为△ABC的对称轴,∴CD=CF=AB=3,∠ACD=60°,∵∠ECF=60°,∴∠FCE=∠DCF.在△FCE和△DCF中,,∴△FCE≌△DCF(SAS),∴DF=FE.当FE∥BC时,FE最小,∵点F为AC的中点,∴此时FE=CD=.故选D.二、填空题(每小题3分,共21分)9. = 2 .【考点】算术平方根.【分析】如果一个数x的平方等于a,那么x是a的算术平方根,由此即可求解.【解答】解:∵22=4,∴=2.故答案为:210.如图,已知直线AB∥CD,直线EG垂直于AB,垂足为G,直线EF交CD于点F,∠1=50°,则∠2= 140°.【考点】平行线的性质.【分析】先根据垂直的定义求出∠AGE=90°,由三角形外角的性质得出∠AHE的度数,根据平行线的性质即可得出结论.【解答】解:∵EG⊥AB,∴∠AGE=90°.∵∠1=50°,∴∠AHE=∠1+∠AGE=50°+90°=140°.∵AB∥CD,∴∠2=∠AHE=140°.故答案为:140°.故答案为:140°.11.微信根据移动ID所带来的数据,发布了“微信用户春节迁徙数据报告”.该报告显示,20XX年1月24日春运首日至2月4日期间,人口流入最多的省份是河南,作为劳务输出大省,河南约有313万微信用户在春节期间返乡,313万用科学记数法可表示为 3.13×106.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于313万有7位,所以可以确定n=7﹣1=6.【解答】解:313万=3.13×106.故答案为:3.13×106.12.一个不透明的盒子里有4个除颜色外其他完全相同的小球,其中每个小球上分别标有1,﹣1,﹣2,﹣3四个不同的数字,每次摸球前先将盒子里的球摇匀,任意摸出一个球记下数字后再放回盒子,那么两次摸出的小球上两个数字乘积是负数的概率为.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果以及两次摸出的小球上两个数字乘积是负数的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有16种等可能的结果,两次摸出的小球上两个数字乘积是负数的有6种情况,∴两次摸出的小球上两个数字乘积是负数的概率为: =.故答案为:.13.反比例函数y=经过点A(﹣3,1),设B(x1,y1),C(x2,y2)是该函数图象上的两点,且x1<x2<0,那么y1与y2的大小关系是y1<y2(填“y1>y2”,“y1=y2”或“y1<y2”).【考点】反比例函数图象上点的坐标特征.【分析】先根据反比例函数y=经过点A(﹣3,1)得出反比例函数y=﹣,判断此函数图象所在的象限,再根据x1<x2<0判断出A(x1,y1)、B(x2,y2)所在的象限,根据此函数的增减性即可解答.【解答】解:∵反比例函数y=经过点A(﹣3,1),∴反比例函数y=﹣中,k=﹣3<0,∴此函数的图象在二、四象限,在每一象限内y随x的增大而增大,∵x1<x2<0,∴A(x1,y1)、B(x2,y2)两点均位于第二象限,∴y1<y2.故答案为:y1<y2.14.如图,在△ABC中,∠C=90°,AC=BC,斜边AB=4,O是AB的中点,以O为圆心,线段OC的长为半径画圆心角为90°的扇形OEF,弧EF经过点C,则图中阴影部分的面积为π﹣2 平方单位.【考点】扇形面积的计算.【分析】连接OC,作OM⊥BC,ON⊥AC,证明△OMG≌△ONH,则S四边形OGCH=S四边形OMCN,求得扇形FOE的面积,则阴影部分的面积即可求得.【解答】解:连接OC,作OM⊥BC,ON⊥AC.∵CA=CB,∠ACB=90°,点O为AB的中点,∴OC=AB=2,四边形OMCN是正方形,OM=,则扇形FOE的面积是: =π,∵OA=OB,∠AOB=90°,点D为AB的中点,∴OC平分∠BCA,又∵OM⊥BC,ON⊥AC,∴OM=ON,∵∠GOH=∠MON=90°,∴∠GOM=∠HON,则在△OMG和△ONH中,,∴△OMG≌△ONH(AAS),∴S四边形OGCH=S四边形OMCN=()2=2.则阴影部分的面积是:π﹣2,故答案为:π﹣2.15.已知一个矩形纸片OACB,OB=6,OA=11,点P为BC边上的动点(点P不与点B,C重合),经过点O折叠该纸片,得折痕OP和点B′,经过点P再次折叠纸片,使点C落在直线PB′上,得折痕PQ和点C′,当点C′恰好落在边OA上时BP的长为或.【考点】翻折变换(折叠问题).【分析】设BP=t,AQ=m,首先过点P作PE⊥OA于E,易证△PC′E∽△C′QA,由勾股定理可求得C′Q的长,然后利用相似三角形的对应边成比例得到m=t2﹣t+6,即可求得t的值.【解答】解:过点P作PE⊥OA于E,∴∠PEA=∠QAC′=90°,∴∠PC′E+∠EPC′=90°,∵∠PC′E+∠QC′A=90°,∴∠EPC′=∠QC′A,∴△PC′E∽△C′QA,∴=,设BP=t,AQ=m,∵PC′=PC=11﹣t,PE=OB=6,C′Q=CQ=6﹣m,AC′==,∴=.∵=,∴m=t2﹣t+6,又∵36﹣12m=t2,将m=t2﹣t+6代入36﹣12m=t2,化简得,3t2﹣22t+36=0,解得:t1=,t2=.故答案为:或.三、解答题(共75分)16.先化简(+),再求值.a为整数且﹣2≤a≤2,请你从中选取一个合适的数代入求值.【考点】分式的化简求值.【分析】先算括号里面的,再算除法,选取合适的a的值代入进行计算即可.【解答】解:原式=•=•=•=,当a=﹣1时,原式=(答案不唯一).17.今年3月12日,某校九年级部分学生参加植树节活动,以下是根据本次植树活动的有关数据制作的统计图的一部分.请根据统计图所提供的有关信息,完成下列问题:(1)参加植树的学生共有50 人;(2)请将该条形统计图补充完整;(3)参加植树的学生平均每人植树 3 棵.(保留整数)【考点】条形统计图;扇形统计图;加权平均数.【分析】(1)用植2棵树的学生数除以其百分比即可解答.(2)用总人数减去其他人数即可解答,再填图即可.(3)利用加权平均数的求法,求出总棵树再除以人数即可解答.【解答】解:(1)16÷32%=50;(2)50﹣10﹣16﹣8﹣4=12人,画图如下(3)(1×10+2×16+4×12+5×8+6×4)÷50=3.18.如图,已知⊙A的半径为4,EC是圆的直径,点B是⊙A的切线CB上的一个动点,连接AB交⊙A于点D,弦EF平行于AB,连接DF,AF.(1)求证:△ABC≌△ABF;(2)当∠CAB= 60°时,四边形ADFE为菱形;(3)当AB= 4时,四边形ACBF为正方形.【考点】圆的综合题.【分析】(1)根据EF∥AB,可以得到∠FAB和∠CAB的关系,由AC和AF都是圆的半径,AB 是△ABC和△ABF的公共边可以得到△ABC和△ABF关系;(2)根据四边形ADFE为菱形,通过变形可以得到∠CAB的度数;(3)根据四边形ACBF为正方形,AC=4,AB是该正方形的对角线,可以求得AB的长.【解答】(1)证明:∵EF∥AB,∴∠AEF=∠CAB,∠AFE=∠FAB,又∵AE=AF,∴∠AEF=∠AFE,∴∠FAB=∠CAB,在△ABC和△ABF中,,∴△ABC≌△ABF(SAS);(2)连接CF,如右图所示,若四边形ADFE为菱形,则AE=EF=FD=DA,又∵CE=2AE,CE是圆A的直径,∴CE=2EF,∠CFE=90°,∴∠ECF=30°,∴∠CEF=60°,∵EF∥AB,∴∠AEF=∠CAB,∴∠CAB=60°,故答案为:60°;(3)若四边形ACBF为正方形,则AC=CB=BF=FA,AB是正方形ACBF的对角线,∵AC=4,∴AB=.故答案为:4.19.已知:关于x的一元二次方程x2+2x+k=0有两个不相等的实数根.(1)求k的取值范围;(2)当k取最大整数值时,用合适的方法求该方程的解.【考点】根的判别式.【分析】(1)根据一元二次方程的根的判别式,建立关于k的不等式,求出k的取值范围.(2)从上题中找到K的最大整数,代入方程后求解即可.【解答】解:(1)∵关于x的一元二次方程x2+2x+k=0有两个不相等的实数根,∴△>0,即22﹣4×1×k>0,解得:k<1;(2)根据题意,当k=0时,方程为:x2+2x=0,左边因式分解,得:x(x+2)=0,∴x1=0,x2=﹣2.20.图1是小明在健身器材上进行仰卧起坐锻炼时情景.图2是小明锻炼时上半身由EM位置运动到与地面垂直的EN位置时的示意图.已知BC=0.64米,AD=0.24米,α=18°.(sin18°≈0.31,cos18°≈0.95,tan18°≈0.32)(1)求AB的长(精确到0.01米);(2)若测得EN=0.8米,试计算小明头顶由M点运动到N点的路径弧MN的长度(结果保留π)【考点】解直角三角形的应用;弧长的计算.【分析】(1)构造∠α为锐角的直角三角形,利用α的正弦值可得AB的长;(2)弧MN的长度为圆心角为90+α,半径为0.8的弧长,利用弧长公式计算即可.【解答】解:(1)作AF⊥BC于F.∴BF=BC﹣AD=0.4米,∴AB=BF÷sin18°≈1.29米;(2)∵∠NEM=90°+18°=108°,∴弧长为=0.48π米.21.某公司推销一种产品,公司付给推销员的月报酬有两种方案如图所示:其中方案一所示图形是顶点在原点的抛物线的一部分,方案二所示的图形是射线.设推销员销售产品的数量为x(件),付给推销员的月报酬为y(元).(1)分别求两种方案中y关于x的函数关系式;(2)当销售量达到多少件时,两种方案的月报酬差额将达到3 800元?(3)若公司决定改进“方案二”:基本工资1 200元,每销售一件产品再增加报酬m元,当推销员销售量达到40件时,方案二的月报酬不低于方案一的月报酬.求m至少增加多少元?【考点】二次函数的应用.【分析】(1)分别设出两种方案中y关于x的函数关系式,用待定系数法求解,即可解答;(2)根据“两种方案月报酬差额将达到3800元”,得到方程30x2﹣(50x+1200)=3800,即可解答;(3)分别计算出当销售员销售产量达到40件时,方案一与方案二的月报酬,根据方案二的月报酬不低于方案一的月报酬,列出不等式组,即可解答.【解答】解:(1)设y1=ax2,把(30,2700)代入得:900a=2700,解得:a=3,∴y1=3x2.设y2=kx+b,把(0,1200),(30,2700)代入得:,解得:,∴y2=50x+1200.(2)由题意得:30x2﹣(50x+1200)=3800,解得:x1=50,x2=﹣(舍去),答:当销售达到50件时,两种方案月报酬差额将达到3800元.(3)当销售员销售产量达到40件时,方案一的月报酬为:3×402=4800,方案二的月报酬为:(50+m)×40+1200=40m+3200,由题意得:40m+3200≥4800,解得:m≥40,答:当推销员销售量达到40件时,方案二的月报酬不低于方案一的月报酬,m至少增加40元.22.如图1,在Rt△ABC中,∠ACB=90°,∠B=60°,D为AB的中点,∠EDF=90°,DE交AC于点G,DF经过点C.(1)求∠ADE的度数;(2)如图2,将图1中的∠EDF绕点D顺时针方向旋转角α(0°<α<60°),旋转过程中的任意两个位置分别记为∠E1DF1,∠E2DF2,DE1交直线AC于点P,DF1交直线BC于点Q,DE2交直线AC于点M,DF2交直线BC于点N,求的值;(3)若图1中∠B=β(60°<β<90°),(2)中的其余条件不变,判断的值是否为定值?如果是,请直接写出这个值(用含β的式子表示);如果不是,请说明理由.【考点】几何变换综合题.【分析】(1)根据含30°的直角三角形的性质和等边三角形的性质解答即可;(2)根据相似三角形的判定和性质以及直角三角形中的三角函数解答即可;(3)由(2)的推理得出,再利用直角三角形的三角函数解答.【解答】解:(1)∵∠ACB=90°,D为AB的中点,∴CD=DB,∴∠DCB=∠B,∵∠B=60°,∴∠DCB=∠B=∠CDB=60°,∴∠CDA=120°,∵∠EDC=90°,∴∠ADE=30°;(2)∵∠C=90°,∠MDN=90°,∴∠DMC+∠CND=180°,∵∠DMC+∠PMD=180°,∴∠CND=∠PMD,同理∠CPD=∠DQN,∴△PMD∽△QND,过点D分别做DG⊥AC于G,DH⊥BC于H,可知DG,DH分别为△PMD和△QND的高∴=,∵DG⊥AC于G,DH⊥BC于H,∴DG∥BC,又∵D为AC中点,∴G为AC中点,∵∠C=90°,∴四边形CGDH 为矩形有CG=DH=AG,Rt△AGD中,即(3)是定值,定值为tan(90°﹣β),∵,四边形CGDH 为矩形有CG=DH=AG,∴Rt△AGD中, =tan∠A=tan(90°﹣∠B)=tan(90°﹣β),∴=tan(90°﹣β).23.如图1,抛物线y=ax2+bx+3(a≠0)与x轴、y轴分别交于点A(﹣1,0)、B(3,0)、点C三点.(1)试求抛物线的解析式;(2)点D(2,m)在第一象限的抛物线上,连接BC、BD.试问,在对称轴左侧的抛物线上是否存在一点P,满足∠PBC=∠DBC?如果存在,请求出点P点的坐标;如果不存在,请说明理由;(3)如图2,在(2)的条件下,将△BOC沿x轴正方向以每秒1个单位长度的速度向右平移,记平移后的三角形为△B′O′C′.在平移过程中,△B′O′C′与△BCD重叠的面积记为S,设平移的时间为t秒,试求S与t之间的函数关系式?【考点】二次函数综合题.【分析】(1)将点A、B代入抛物线解析式,求出a、b值即可得到抛物线解析式;(2)根据已知求出点D的坐标,并且由线段OC、OB相等、CD∥x轴及等腰三角形性质证明△CDB≌△CGB,利用全等三角形性质求出点G的坐标,写出直线BP解析式,联立二次函数解析式,求出点P坐标;(3)分两种情况,第一种情况重叠部分为四边形,利用大三角形减去两个小三角形求得解析式,第二种情况重叠部分为三角形,可利用三角形面积公式求得.【解答】解:(1)将A(﹣1,0)、B(3,0)代入抛物线y=ax2+bx+3(a≠0),,解得:a=﹣1,b=2.故抛物线解析式为:y=﹣x2+2x+3.(2)存在将点D代入抛物线解析式得:m=3,∴D(2,3),令x=0,y=3,∴C(0,3),∴OC=OB,∴∠OCB=∠CBO=45°,如下图,设BP交y轴于点G,∵CD∥x轴,∴∠DCB=∠BCO=45°,在△CDB和△CGB中:∵∠∴△CDB≌△CGB(ASA),∴CG=CD=2,∴OG=1,∴点G(0,1),设直线BP:y=kx+1,代入点B(3,0),∴k=﹣,∴直线BP:y=﹣x+1,联立直线BP和二次函数解析式:,解得:或(舍),∴P(﹣,).(3)直线BC:y=﹣x+3,直线BD:y=﹣3x+9,当0≤t≤2时,如下图:设直线C′B′:y=﹣(x﹣t)+3联立直线BD求得F(,),S=S△BCD﹣S△CC′E﹣S△C′DF=×2×3﹣×t×t﹣×(2﹣t)(3﹣)整理得:S=﹣t2+3t(0≤t≤2).当2<t≤3时,如下图:H(t,﹣3t+9),I(t,﹣t+3)S=S△HIB= [(﹣3t+9)﹣(﹣t+3)]×(3﹣t)整理得:S=t2﹣6t+9(2<t≤3)综上所述:S=.。
九年级郑州市第二次质量预测数学试卷

2012年九年级第二次质量预测数学 参考答案一、选择题(每小题3分,共18分)1. A ; 2.D ; 3. D ; 4. B ; 5. A ; 6. C.二、填空题 (每小题3分,共27分)7. 105.898810⨯; 8. 64; 9. 15度; 10. 28°; 11. 49;12.4; 13. 54π; 14. 4; 15. 70°或120°.三、解答题 (本大题共8个小题,满分75分)16. (8分) 解:⎪⎭⎫ ⎝⎛--+2122x x ÷24--x x=⎪⎪⎭⎫⎝⎛----212242x x x x x --∙42 ………………………(3分)()()x x x x x --∙--+=422444--=x . ………………………(6分)当x =45-时,原式=()5445-=---.………………………(8分)17. (9分)解:添加的条件可以是:F 是CE 的中点;或AF ⊥CE ;或∠CAF =∠EAF 等.(选一个即可) …………………(2分)(下面以添加“AF ⊥CE ”为例进行证明,其他情况请参考给分)证明:∵CP 平分∠ACD ,∴∠ACP =∠PCD .∵AB ∥CD ,∴∠AEC =∠PCD .∴∠ACE =∠AEC .…………………(6分)∵AF ⊥CE ,∴∠AFC =∠AFE =90°.…………………(7分)又∵AF =AF ,∴△ACF ≌△AEF .…………………(9分)18.(9分)解:(1) ∵41360270360=-,∴选出的恰好是“每天锻炼超过1小时”的学生的概率是41.………………………(3分)(2) 720×(1-41)-120-20=400(人) .∴“没时间”的人数是400人. ………………………(5分)补全频数分布直方图如图所示. ………………(6分)(3)4.4×(1-41)=3.3(万人) . ∴2012年全市初中毕业生每天锻炼未超过1小时的学生约有3.3万人.…………………(9分)19. (9分)解:⑴过点O 作OD ⊥AB 于点D ,交A ′C 于点E .根据题意可知EC =DB =OO ′=2,ED =BC .∴∠A ′EO =∠ADO =90°.在Rt △AOD 中,∵cos A =35ADOA =,OA =20,∴AD =12. ………………(2分)∴OD =22OA AD -=222012-=16.在Rt △A ′OE 中,∵sin A ′=12OEOA =′,OA ′=20,∴ OE =10. …………………… (4分)∴BC =ED=OD -OE =16-10=6.…………………… (5分)⑵在Rt △A ′OE 中,A ′E =22A O OE -′=222010-=310.∴B ′C =A ′C -A ′B ′=A ′E +CE -AB=A ′E +CE -(AD +BD ) =310+2-(12+2) =310-12. …………………… (8分)答:此重物水平方向移动的距离BC 是6米,竖直方向移动的距离B ′C 是(310-12)米.………… (9分) 20.(9分)解:(1)由题意,得01=--k ,解得:1-=k . ∴直线1l 的表达式为1--=x y .……………………(1分)21BOPB A yx∵点(1,0)P -在直线2l 上,∴021=--m .∴21-=m .∴直线2l 的表达式为2121--=x y .……………………(2分)(2)① 由题意得A 点坐标为 (0,-1),则1B 点的纵坐标为-1,设)1,(11-x B ,∴12121-=--x .∴11=x .∴1B 点的坐标为)1,1(-.……………………(4分)则1A 点的横坐标为1,设),1(11y A ,∴2111-=--=y .∴1A 点的坐标为 )2,1(-.…………………… (5分)同理,可得)4,3(),2,3(22--A B .……………………7分②当动点C 到达6A 处时,运动的总路径的长为: 126.…………… (9分)21. (10分)解:(1)设一台甲型设备的价格为x 万元,由题意有 46%8023=⨯+x x ,解得x =10,∵ 10×80%=8 ,……………………2分∴ 一台甲型设备的价格为10万元,一台乙型设备的价格是8万元.…………………… (3分)(2)设二期工程中,购买甲型设备a 台,由题意有⎩⎨⎧≥-+≤-+1250)8(15018074)8(810a a a a ,解得:535≤≤a .…………………… (5分)由题意a 为正整数,∴a =2,3,4,5. ∴所有购买方案有四种,分别为:方案一:甲型2台,乙型6台; 方案二:甲型3台,乙型5台;方案三:甲型4台,乙型4台; 方案四:甲型5台,乙型3台. …………………… (7分)(3)设二期工程10年用于治理污水的总费用为W 万元.)8(105.1101)8(810a a a a w -⨯+⨯+-+=.化简得: =w -3a +184,∵W 随a 的增大而减少 , ∴当a =5时, W 最小. ……………………(9分)(对四种方案逐一验算也可)∴按方案四甲型购买5台,乙型购买3台的总费用最少. ……………………(10分)22. (10分)解:(1)MP=ME .……………………(1分)证明:过点M 作MF ⊥BC 于点F ,在矩形ABCD 中,点M 是AD 的中点,22,24==CD AD .∴四边形CDMF 是正方形.∴MD =MF ,∠DMF =90°.∵PME ∠=90°,∴∠DME=∠FMP .又∵∠D =∠MFP= 90°,∴MFP ∆≌MDE ∆.∴MP=ME . ……………………(4分)(2)在△MDC 中,16)22()22(22222=+=+=CD MD MC ,∴4=MC .同理4=MB ,又∵24=BC ,∴MBC △是等腰直角三角形,45MBC MCB ∠=∠=︒.依题意,得4QC y =-.由旋转的性质可知,42BP EC x ==-.在PEC △中,由PCQ CEQ PCE S S S ∆∆∆+=可得,111(4)sin 45(4)(42)sin 45(42)222x y y x x x -︒+--︒=-. ∴42412+-=x x y . ……………………(8分)(3)42412+-=x x y =2)22(412+-x .当22=x 时,2有最小值y .…………………(9分)此时,点P 、Q 分别为BC 、CM 的中点,∴PQ ∥BM .即:PE ∥BM . ………………… (10分)23. (11分)解:(1)设抛物线的解析式为y=a(x -1)(x +2),将C (0,-2)坐标代入,得a=1,∴22-+=x x y ;其顶点M 的坐标是(19,24--).……………………(3分) (2)设线段BM 所在直线的解析式为y=kx+b , ∴⎪⎩⎪⎨⎧+-=-+-=b k b k 214920.解得:k =-23,b =-3, ∴线段BM 所在的直线的解析式为y =-23x -3. ∵ -t =-23x -3,∴232-=t x ,点N 的坐标为N (232-t , -t ), ∴S =S △AOC +S 梯形OCNQ =21×1×2+21(2+t )·∣232-t ∣=331312++-t t . ∴S 与t 间的函数关系式为S 113332t t =-++.12t =时,S 的最大值为3712.……………(7分) (3)存在符合条件的点P , 设点P 的坐标为P ),21(m -,如图,连接PA 、PC ,作CE ⊥MF 于E . 则521222=+=AC ;222)121(m PA +--=;222)2()21(++=m PC .………(8分) 分以下几种情况讨论:①若90APC ∠=︒,则2PC +2PA =2AC , 22)121(m +--+22)2()21(++m =5,解得:23,2121-=-=m m , ②若90ACP ∠=︒,则2PC +2AC =2PA ,22)2()21(++m +5=22)121(m +--,解得:47-=m . ③若90PAC ∠=︒,则2AC +2PA =2PC ,22)121(m +--+5=22)2()21(++m ,解得:43=m .11 综上所述,存在满足条件的点P ,其坐标分别是:),21,21(1--P ),23,21(2--P ),47,21(3--P ).43,21(4-P ……………………(11分)。
郑州市九年级第二次质量预测数学试卷

郑州市九年级第二次质量预测数学试卷一、选择题(每小题3分,共24分) 1、2015的倒数是 ( ) A 、-2015 B 、20151-C 、20151D 、2015 2、PM2.5是指大气中直径小于等于2.5微米,即0.0000025米的颗粒物,将0.0000025用科学记数法表示为( )A 、7105.2-⨯ B 、6105.2-⨯ C 、71025-⨯ D 、51025.0-⨯ 3、如图,从左面观察这个立体图形,能得到的平面图形是( )A. B. C. D.4、如图,直线m l //,等边三角形ABC 的顶点B 在直线m 上,251=∠,则2∠的度数为( ) A 、35 B 、25 C 、30 D 、45(第4题图) (第5题图) (第6题图)5、如图是交警在一个路口统计的某个时段来往车辆的车速(单位:千米/时)情况.则这些车的车速的众数、中位数分别是( )A.8,6B.8,5C.52,52D.52,536、如图,已知菱形ABCD 的对角线AC ,BD 的长分别为6,8,AE ⊥BC ,垂足为点E ,则AE 的长是( ) A 、35 B 、52 C 、548 D 、5247、如图,矩形ABCD 中,AB=5,AD=12,将矩形ABCD 按如图所示的方式在直线l 上进行两次旋转,使点B 旋转到'B 点,则点B 在两次旋转过程中经过的路径的长是( )8、如图①,在四边形ABCD 中,AD ∥BC ,∠A=60°,动点P 从A 点出发,以1cm/s 的速度沿着A →B →C →D 的方向向点D 移动,已知△PAD 的面积S (单位:cm 2)与点P 移动的时间t (单位:s )的函数如图②所示,则点P 从开始移动到停止共用时( )A 、、8秒B 、)324(+秒C 、)334(+秒D 、)34(+秒二、填空题(每小题3分,共21分) 9、计算:2-8-3+=_____.10、如图,四边形ABCD 内接于圆O ,若77=∠B ,则______=∠D .11、若关于x 的一元二次方程022=++m x x 有实数根,则m 的取值范围是_________.12、如图,ABC Rt ∆中,90=∠ACB ,AC=3cm,BC=6cm,以斜边AB 上的一点O 为圆心所作的半圆分别与AC 、BC 相切于点D ,E ,则圆O 的半径为_______cm.13、在一个口袋中有4个完全相同的小球,它们的标号分别为1,2,3,4,一人从中随机摸出一球记下标号后放回,再从中随机摸出一个小球记下标号,则两次摸出的小球的标号之和大于4的概率是_______.14、如图,四边形ABCD 中,AD//BC ,90=∠B ,E 为AB 上一点,分别以ED ,EC 为折痕将两个角(∠A ,∠B )向内折起,点A ,B 恰好落在CD 边的点F 处.若AD=5,BC=9,则EF=____.(14题图) (15题图)15、如图,在一张长为6cm ,宽为5cm 的矩形纸片上,现要剪下一个腰长为4cm 的等腰三角形(要求:等腰三角形的一个顶点与矩形的一个顶点重合,其余的两个顶点在矩形的边上).则剪下的等腰三角形的面积为_____cm 2.三、解答题(本题共8道小题,共75分)16、(8分)先化简)111(122-+÷-x x x ,再从-2<x<3中选一个合适的整数代入求值。
2023年河南省郑州市中考二模数学试题(含答案解析)

2023年河南省郑州市中考二模数学试题学校:___________姓名:___________班级:___________考号:___________A.知4.某校开展了丰富多彩的学雷锋志愿服务活动,为了了解同学们所做志愿者服务活动的情况,数学兴趣小组的同学在全校范围内随机抽查了部分同学,A.200B5.如图,一副三角尺按如图所示的方式放置,若A .75︒B .6.一元二次方程223x x -+A .有两个相等的实数根C .无实数根7.凸透镜成像的原理如图所示,焦点1F 的距离与焦点2F 到凸透镜的中心线称)()A .32B .238.如图,已知点()2A a ,在反比例函数14y =为B ,连接OA ,将AOB 沿OA 翻折,点B 的对应点上,则k 的值为()A .3B .3-9.在平面直角坐标系中,边长为2的等边三角形将AOP 绕点O 顺时针旋转60︒,得到11A OP ,得到22A OP ,再将22A OP 绕点O 顺时针旋转二、填空题15.黄金分割比是让无数科学家、数学家、艺术家为之着迷的数字.黄金矩形的长宽之比为黄金分割比,即矩形的短边为长边的倍.黄金分割比能够给画面带来美感,令人愉悦,在很多艺术品以及大自然中都能找到它.比如蜗牛壳的螺旋中就隐藏了黄金分割比.如下图,用黄金矩形三、解答题16.(1)计算:(43-(2)解不等式组:122 3x x-⎧⎪-⎨⎪⎩17.郑州是一座将少林文化、黄帝文化、商都文化、黄河文化融为一体的域内留存了丰富的文化遗产.为弘扬郑州地域文化,某校七、八年级开展了郑州兴郑州”知识竞赛,竞赛后,学生的成绩用x来表示,分四个等级:90100D x≤≤.,并绘制了如下统计图表.信息1:抽样调查的20名八年级学生成绩的频数直方图为:信息2:抽样调查的20名八年级学生的成绩在80,81,82,82,85,86,86,88,89,89,89信息3:七、八年级抽取的学生竞赛成绩相关统计结果年级七年级八年级平均数85.8586.25(1)请判断四边形BOEF的形状,并说明理由;(1)在点E的运动过程中,点G的位置也随之改变,则点在,请给出证明,如果不在,请说明理由;(2)当点E 在AD 边上运动时,BHG 的面积如何变化?请写出研究过程.23.如图,抛物线2y x bx c =-++与x 轴,y 轴分别交于A ,B 两点,点B 坐标为()05,,抛物线的顶点为C ,点B 关于对称轴直线2x =的对称点为点D .(1)求该抛物线的表达式;(2)当14x -<<时,求函数值y 的取值范围;(3)将抛物线在点D 下方的图象沿着直线BD 向上翻折,抛物线的其余部分保持不变,得到一个新图象,当直线y x n =+与新图象有2个公共点时,请直接写出n 的值.参考答案:∴180606060B OD '∠=︒-︒-︒=在Rt B DO '△中,30DB O '∠=︒∵AOP 为等边三角形,且边长为∴2OP OA ==,112OB OA ==∴223PB OP OB =-=,∴点()13P -,,∵将AOP 绕点O 顺时针旋转∴点P 与点1P 关于y 轴对称,在Rt ABE △中,∴tan tan BE AE A ==在Rt DBE 中,∠tan tan BE BEDE D ==∴AD AE DE =+∵DAE B∠=∠,∥,∴AE BC∠=∠,∴EAC C即当实际拓展活动中,开展6个“能量传输”类项目,4个“鱼跃龙门”类项目,能使所用的时间最少.【点睛】本题主要考查二元一次方程组解决实际问题,一次函数与实际问题.正确理解题意,找出题中的数量关系是解题的关键.20.(1)见解析(2)140秒(3)见解析【分析】(1)从表格中可以看出,增加相同的时间时,跳绳运动中心率的增加更多;或者从比较函数解析式中10.35109y =+与20.44111y x =+,0.440.35>,跳绳运动心率心率随时间的变化更快.(2)把158y =代入函数10.35109y x =+,即可求出运动时间;(3)随着慢跑运动时间的增加,心率不会一直增加,也不会出现明显的下降,但心率增加的速度会减慢,所以用图2中函数拟合更合理.【详解】(1)跳绳这项运动中心率随时间的变化更快.(理由不唯一,可以从表格或k 的值等方面说明)(2)当1158y =时,1580.35109x =+,解得140x =即甲同学运动的时间大约为140秒.(3)随着慢跑运动时间的增加,心率不会一直增加,也不会出现明显的下降,但心率增加的速度会减慢,所以用图2中函数拟合更合理.(理由充分即可)【点睛】本题主要考查运动时间与心率的函数关系,正确理解两个变量之间的关系是解题的关键.21.(1)四边形BOEF 是菱形,理由见解析(2)18AB =【分析】(1)由切线的性质可得出90OEC ∠=︒,即可证明OE ∥AB ,得出BFO FOE ∠=∠.再根据OF DE P ,即得出BOF ODE FOE OED ∠=∠∠=∠,,结合等边对等角即得出ODE OED ∠=∠,从而推出BFO BOF ∠=∠,再根据等角对等边推出BF BO =,进而可间接∵四边形ABCD 和四边形∴A ABC BCD ∠=∠=∠=∴ABC EBC EBG ∠-∠=∠∴()SAS ABE CBG ≌ ,∴90BCG A ∠=∠=︒,∵90BCD ∠=︒,∴180BCD BCG ∠+∠=︒,即D ,C ,G 三点共线,∴点G 始终在直线DC 上;(2)解:如图,连接BH设AE x =,∵四边形ABCD 和四边形∴90A D BEF ∠=∠=∠=∴ABE AEB DEH ∠+∠=∠∴ABE DEH ∠=∠,∴ABE DEH ∽ ,∴AB AE DE DH =,∴44x x DH=-,∴244x x DH -+=,∴241644x x HC -+=-=由(1)可知,CG AE =∴21644x x HG CG +-=+∴1122BHG S BC HG =⋅⋅= ∵0x >且当点E 从点A ∴BHG 的面积随x 的增大而增大.即当点E 从点A 运动到点【点睛】本题主要考查了正方形的性质,质,二次函数的性质,熟练掌握正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质,二次函数的性质是解题的关键.23.(1)245y x x =-++(2)09y <≤(3)1n =或294n =。
郑州市九年级第二次质量预测数学试卷及

2021 年九年级第二次质量预测数学试题卷一、选择题〔每题 3 分,共 24 分〕在每题给出的四个选项中,只有一项为哪一项符合题目要求的.1.9 的绝对值是〔 〕A . 9B . - 91 1C .D .992. 如图是由 5 个大小相同的正方体组成的几何体,它的主视图是〔〕主视方向A .B .C .D .3.近年来人们越来越关注健康,我国质检总局规定:针织内衣、被套、床上用品等直接接触皮肤的衣物,每千克衣物上甲 醛含量应在 0.000 075 千克以下,将 0.000 075 用科学记数法表示为〔 〕新 | 课 | 标 | 第 | 一 | 网A . 0.75 ×10-4B .7.5 ×10-4C . 75×10-6D . 7.5 ×10-54.下面的图形中,既是轴对称图形又是中心对称图形的是〔〕DOBCA .B .C .D .A5.如图, OA 是⊙ O 的半径,弦 BC ⊥OA , D 是⊙ O 上一点,假设∠ ADC=26°,那么∠ AOB 的度数为〔〕A . 13°B . 26°C .52°D . 78°6.在一次体育达标测试中,九年级〔 3〕班 15 名男同学的引体向上成绩如下表所示:成绩〔个〕 8 9 11 12 13 15人数 1 23 432这 15 名男同学引体向上成绩的中位数和众数分别是〔 〕A . 12, 13B . 12, 12C .11, 12D . 3,47.小明用一张半径为 24cm 的扇形纸板做一个如下图的圆锥形小丑帽子的侧面〔接缝忽略不计〕 ,如果做成的圆锥形小丑帽子的底面半径为 10cm ,那么这张扇形纸板的面积是〔〕2222A . 120π cmB .240π cmC . 260π cmD . 480π cm24cmADEC'BPC第 7 题图第 8 题图如图,矩形 ABCD 中, AB=3,BC=5,点 P 是 BC 边上的一个动点〔点 P 不与点 B ,C 重合〕,现将△ PCD 沿直线 PD 折叠,使点 C 落在点 C ′处,作∠ BPC ′的角平分线交 AB 于点 E ,设 BP=x ,BE=y ,那么以下图象中,能表示 y 与 x 函数关系的图象大致是 〔〕X|k | B| 1 . c |O |m8.yyyyO 5 xO 5 x5xO5xOEA .B .C .D .DA二、填空题〔每题 3 分,共 21 分〕 CB9.计算: (1)2=___________.F10. 如图,一把矩形直尺沿直线断开并错位, 点 E ,D ,B ,F 在同一条直线上, 假设∠ ADE=128°,那么∠ DBC 的度数为___________.11. 一位园艺设计师方案在一块形状为直角三角形且有一个内角为60°的绿化区域上种植四种不同的花卉,要求种植的四种花卉分别组成面积相等、形状完全相同的几何图形图案.某同学为此提供了如下图的 4 种设计方案,其中可以满足园艺设计师要求的有___________ 种.12. 农历 5 月 5 日是中华民族的传统节日端午节,有吃粽子的习俗.端午节早上,妈妈给小华准备了 4 个粽子: 1 个肉馅, 1个豆沙馅, 2 个红枣馅. 4 个粽子除内部馅料不同外其他一切均相同,小华喜欢吃红枣馅的粽子,小华吃了一个粽子刚好是红枣馅的概率是 ___________.13. 假设一次函数 y (a 2) x (a 2) 不经过第三象限,那么a的取值范围为_______.14. 如图,在平面直角坐标系中,正方形的中心在原点 O,且正方形的一组对边与2 x 轴平行,点P(2a,a)是反比例函数yx的图象与正方形的一个交点,那么图中阴影局部的面积是___________.yP 6O x 48第 14 题图第 15 题图15.在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的局部是如下图的直角梯形,其中三边长分别为 4, 6,8,那么原直角三角形纸片的斜边长是 ___________ .三、解答题〔本大题共8 个小题,共75 分〕新课标第一网16.〔此题8分〕有三个代数式:①a2- 2ab+b2,② 2a- 2b,③ a2- b2,其中 a≠ b;〔 1〕请你从①②③三个代数式中任意选取两个代数式,分别作为分子和分母构造成一个分式;(2〕请把你所构造的分式进行化简;(3〕假设 a,b 为满足不等式 0<x<3 的整数解,且 a>b,请求出化简后的分式的值.17.〔此题 9 分〕郑州地铁 1 号线在 2021 年 12 月 28 日通车之前,为了解市民对地铁票的定价意向,市物价局向社会公开征集定价意见.某学校课外小组也开展了“你认为郑州地铁起步价定为多少适宜?〞的问卷调查,征求市民的意见,并将某社区市民的问卷调查结果整理后制成了如下统计图:5元人数12010% 4 元903元15%602元302元3元4元5元票价根据统计图解答:(1〕同学们一共随机调查了 ________人;(2〕请你把条形统计图补充完整;〔 3〕假定该社区有 1 万人,请估计该社区支持“起步价为 3 元〞的市民大约有多少人?18. 〔此题 9 分〕命题:“如图,点A,D ,B,E 在同一条直线上,且AD =BE,AC∥ DF ,那么△ ABC≌△ DEF .〞这个命题是真命题还是假命题?如果是真命题,请给出证明;如果是假命题,请添加一个适当的条件,使它成为真命题,并加以证明.C FA DB E19.〔此题 9 分〕“城市开展,交通先行〞,我市启动了缓堵保畅的高架桥快速通道建设工程,建成后将大大提升道路的通行能力.研究说明,某种情况下,高架桥上的车流速度V〔单位:千米 /时〕是车流密度 x〔单位:辆 /千米〕的函数,且当0 x ≤ 28 时,V=80;当 28 x ≤ 188 时,V是x的一次函数.函数关系如下图.(1〕求当28 x ≤188时, V 关于 x 的函数表达式;〔 2〕请你直接写出车流量P 和车流密度x 之间的函数表达式;当值是多少?新课标第一网〔注:车流量是单位时间内通过观测点的车辆数,计算公式为:车流量x 为多少时,车流量P〔单位:辆=车流速度×车流密度〕/时〕到达最大,最大V〔千米 / 时〕80O 28 188 x〔辆 / 千米〕20.〔此题 9 分〕在某飞机场东西方向的地面l 上有一长为 1km 的飞机跑道 MN 〔如图〕,在跑道 MN 的正西端 14.5 千米处有一观察站 A.某时刻测得一架匀速直线降落的飞机位于点A 的北偏西 30°,且与点 A 相距 15 千米的 B 处;经过 1 分钟,又测得该飞机位于点 A 的北偏东 60°,且与点 A 相距 5 3 千米的〔 1〕该飞机航行的速度是多少千米/小时?〔结果保存根号〕〔 2〕如果该飞机不改变航向继续航行,那么飞机能否降落在跑道C 处.MN 之间?请说明理由.北BClM N东A21. 〔此题 10 分〕某学校开展“我的中国梦〞演讲比赛,学校准备购置10 支某种品牌的水笔,每支水笔配x〔x≥ 2〕支笔芯,作为比赛获得一等奖学生的奖品. A ,B 两家文具店都有这种品牌的水笔和笔芯出售,且每支水笔的标价均为30 元,每支笔芯的标价为 3 元.目前两家文具店同时在做促销活动: A 文具店:所有商品均打九折〔按标价的90%〕销售; B 文具店:买一支水笔送 2 支笔芯.设在 A 文具店购置水笔和笔芯的费用为y A〔元〕,在 B 文具店购置水笔和笔芯的费用为y B〔元〕 .请解答以下问题:新课标第一网(1〕分别写出与 y A,y B与 x 之间的函数表达式;(2〕假设该校只在一家文具店购置奖品,你认为在哪家文具店购置更优惠?(3〕假设每支水笔配 15 支笔芯,请你帮助学校设计出最省钱的购置方案.22. 〔此题 10 分〕如图 1,点 P, Q 分别是边长为4cm 的等边△ABC 边 AB, BC 上的动点,点P 从顶点 A ,点 Q 从顶点 B 同时出发,且它们的速度都为1cm/s.(1〕连接 AQ,CP 交于点 M,在点 P,Q 运动的过程中,∠ CMQ 的大小变化吗?假设变化,那么说明理由,假设不变,请直接写出它的度数;〔 2〕点 P, Q 在运动过程中,设运动时间为t ,当 t 为何值时,△PBQ 为直角三角形?(3〕如图 2,假设点 P ,Q 在运动到终点后继续在射线 AB,BC 上运动,直线 AQ,CP 交点为 M,那么∠ CMQ 的大小变化吗?假设变化,那么说明理由;假设不变,请求出它的度数。
河南省郑州市九年级数学第二次质量预测试卷 北师大版

2007年郑州市九年级第二次质量预测数学试卷(北师大版,100分钟,共120分) 一、选择题:(每小题3分,共18分) 1.∣-2∣的相反数是 ( )A.2B.12C.-12 D.-22.已知α=60°,则COS α等于( ) A .32 B .22 C.12 D .333.在边长为a 的正方形中挖去一个边长为b 的小正方形(a >b),再沿虚线剪开,如图(1),然后拼成一个梯形,如图(2),根据这两个图形的面积关系,表明下列式子成立的是( )(A)a 2-b 2=(a+b)(a-b). (B)(a+b)2=a 2+2ab+b 2.(C)(a-b)2=a 2-2ab+b 2. (D)a 2-b 2=(a-b)2.4.如图,是正方形的平面展开图,每一个面标一个汉字,与“和”相对的面上的字是( )A .构B .建C .郑D .州5.一袋子中有若干个均匀的红球,在这个袋子中放入100个黑球(除颜色外和红球形状大小完全相同),搅匀后从此袋中取出100个球,其中有黑球80个,则袋中原有红球的个数约为( )A .20B .25C .30D .80 6.假定有一排蜂房,形状如图,一只蜜蜂在右上角,由于受了 点伤,只能爬行,不能飞,而且始终向左方(包括左上,左下) 爬行,从一间蜂房爬到左边相邻的蜂房中去.例如,蜜蜂爬到1号 蜂房的爬法有:蜜蜂→1号;蜜蜂→0号→1号,共有2种不同的爬 法。
蜜蜂从最初的位置爬到4号蜂房共有( )种不同的爬法。
A .7B .8C .9D .6 二、选择题:(每小题3分,共27分)7.已知a <b <0,比较ba1.(用“>”“<”填空)8.某校四个绿化小组一天植树棵树分别为10、10、7、8,这组数据的中位数是 .9.如图,是一个菱形状的风筝,对角线是两根长分别为60cm构 建和 谐郑 州和80cm 的竹条,则该风筝的边长为 cm.10.31=3,32=9,33=27,34=81,35=243,36=729,…,用你发现的规律写出32007的末位数字是 .11.一种服装每件的进价为80元,经核算,每件服装的运输、房租和交税等销售费用为40元,服装商在成本之上加价85%定价,你购买这种服装时最多可以要求打 折(精确到1折)才不会使服装商赔本.12.小亮同学在探究一元二次方程ax 2+bx+c=0的近似解时,填好了下面的表格:根据以上信息请你确定方程ax2+bx+c=0的一个解的范围是 . 13.如图,有一个圆锥形粮堆,其主视图是边长为6米的正三角 形ABC ,粮堆母线AC 的中点P 处有一老鼠正在偷吃粮食,此时小 猫正在B 处.它要沿着圆锥侧面到P 处捉老鼠,则小猫所经过的 最短路程是 米.14.如图所示为农村一古老的捣碎器,已知支撑柱中的高(点A 到点B 的距离)为0.3米,踏板长(点D 到点E 的距离)为1.6米,支撑点A 到踏 脚D 的距离为0.5米,原来捣头点E着地,现在踏脚点D 着 地,则捣头点E 上升了 米.(E 点下面部分的弯 头长度忽略不计)15.如图,矩形AOBC 的两边OC 、OA 分别位于x 轴、y 轴上,点B 的坐标为(-5,25),D 是CB 边上的一点,将△CDO 沿直线OD 翻折,使C 点恰好落在对角线OB 上 的点E 处 ,若点E 在一反比例函数的图象上,那么 该函数的解析式是 . 三、解答题:(本大题共8个小题,共75分)16.(8分)解不等式组,并把解集在数轴上表示出来.⎩⎨⎧x-3(x-2)≥45x+6>4xABC17.(9分)如图,在梯形ABCD 中,CD ∥AB ,E 是BC 的中点,AE 与DC 的延长线交于点F 连接AC 、BF.(1) 在不添加辅助线的条件下,试找出一组全等三角形,并说明全等的理由; (2) 试判定四边形ABFC 是一个什么四边形?并说明你的理由.18.(9分)郑州市某甲、乙两个邮局截至到2006年底,征订数位居前列的五种报纸的征订数量统计如图,根据图中放映的信息回答下列问题: (1)哪种报纸在两个邮局的征订数都占居首位? (2)哪种报纸在乙邮局的征订数超过了甲邮局?ABFCDE(3)如果甲、乙两个邮局所服务的居民区住户数依次约为10450和7950,那么两个居民区平均每户订阅《大河报》的份数哪个比较多?19.(9分)小华与同学们利用周末去测量学校旁边景区的山高(如图).在山脚下A 点测得山顶D 的仰角为35°,沿着山坡AB 走了1000米到B 点,发现山坡较陡,坐缆车上到山顶D.若∠α=30°,∠β=45°,小华求出的山高DE 为多少米,请你帮小华写出解题过程.(结果精确到0.01米)(2≈1.41,3≈1.73,sin35°≈0.57,cos35°≈0.82,tan35°≈0.70)征订数(千份)ACE河南商报 郑州日报 郑州日报 大河报东方今报报纸名称20.(9分)有两个可以自由转动的均匀转盘A 、B ,都被分成了4等份,并在每份内标有数字,如图所示.规则如下:分别转动转盘A 、B ;两个转盘停止后,将指针所指份内的数字相乘(若指针停止在等份线上,那么重传一次 ,直到指针指向某一份为止). (1) 用列表法或树状图分别求出数字之和为3的倍数和数字之和为6的倍数的概率; (2) 小芳和小丽想用这两个转盘做游戏,他们规定:数字之和为3的倍数时,小芳得2分;数字之和为6的倍数时,小丽得3分.这个游戏对双方公平吗?如果公平,请说明理由;若你认为不公平,如何修改规则才能使该游戏对双方公平?21.(10分)如图,在平面直角坐标系中,B 点在x 轴的正半轴上,以OB 为直径的半圆⊙A 与直线BC 切于B 点,∠COB=30°,且OC 交半圆⊙A 于点D. (1) 求直线OC 的解析式;(2) 若半圆⊙A 的直径为2,求阴影部分的面积.A B22.(10)某商场销售一批名优童装,平均每天可销售20套,每套盈利40元,为了扩大销售,增加盈利,商场决定采取适当的降价措施,经调查发现,如果一套童装每降价1元,商场平均每天可多售出2套.(1)每套童装降价多少元时,商场平均每天盈利最多?(2)若商场平均每天要盈利1200元,每套童装应将价多少元?(3)要使利润高于1200元,降价幅度应在什么范围之内?23.(11分)如图,已知直线y=-x+2与坐标轴交于A、B两点,点P在x轴上.(1)求A、B两点的坐标;(2)有一动圆⊙P半径r=2,当⊙P与直线AB相切时,求圆心P的坐标;(3)当⊙P与AB相切时,恰有一条顶点坐标为C(2,2)的抛物线y=ax2+bx+c经过圆心P,若该抛物线与x轴的两个交点中一右边的交点为M,在x轴上方同时也在直线AB上方的抛物线上是否存在一点Q,使四边形ABMQ的面积最大,若存在,请求出这个最大面积;若不存在,请说明理由.007年九年级第二次质量预测 数学 参考答案及评分标准一、选择题: 1.D ; 2.C ; 3.A ; 4.D ; 5.B ; 6.B .二、填空题:7.<; 8. 9 ; 9. 50; 10. 7 ; 11.6 12. 3.24<x<3.25 13.53 14. 0.96(或2425); 15 . 2y x =-三、解答题:16.由第一个不等式可得1x ≤,由第二个不等式得 6x >-.…… 4 分所以不等式组的解集为61x -<≤. …… 6 分将不等式组的解集表示在数轴上 ,如图所示 . …… 8 分17.(1)全等的三角形有四组(△ABE ≌△FCE ,△AEC ≌△FEB , △ACF ≌△FBA ,△FCB ≌△ABC )任意找出一组并给出证明;…5分 (2)四边形ABFC 是平行四边形,理由如下: 由△ABE ≌△FCE ,可得CE =BE ,AE =EF .1所以四边形ABFC 是平行四边形. ………… 9分 18.(1)大河报 ;…… 3 分 (2)河南商报;…… 6 分(3)甲乙两个居民区平均每户订阅《大河报》的份数分别约为0.49份和0.57份.所以乙邮局服务的居民区平均每户订阅《大河报》的份数比较多. …… 9分19.解:在Rt △ABC 中,答:山高DE 大约为851.67m. …… 9分 20.解:(1)每次游戏可能出现的所有结果列表如下:表格中共有16种等可能的结果,则数字之积为3的倍数的有7种,其概率为167; 数字之积为6的倍数的有5种,其概率为165. …… 5分(2)这个游戏对双方不公平. ……6分∵小芳平均每次得分为71421616⨯=(分), 小丽平均每次得分为16151653=⨯(分). ∵14151616<,∴游戏对双方不公平. …… 8分 修改得分规定之一:若数字之积为3的倍数时,小芳得5分;若数字之积为6的倍数时,小丽得7分即可. …… 9分21.(1)设直线OC 的解析式为y =kx ,设C 点横坐标为a ,则OB =a .30,1000,1500,. 32,).tan 35 6:351.67.500351.67851.67(). 8AB m BC AB m AC DF xm AE x m Rt ADE x DE m α∠==∴====∴=∆==∴=+=分设在中,分解得分(2) ⊙A 的直径为2,∴C 点的坐标为(2,3),则BC=. 连接DA , 则0260DAB AOC ∠=∠=, 211166DAB S ππ=⨯=扇形. …… 5分过A 作AE ⊥OD ,垂足为E . 则AE =1122OA =, 2OE ==. ,OE DE OD =∴=.…… 7分12ODA S ∆==0OBC DA DAB S S S S ∆∆∴--阴影扇形=16π=. …… 10分22.(1)设每套降价x 元,商场平均每天赢利y 元,则2(40)(202)2(15)1250y x x x =-+=--+当x =15时y 有最大值为1250元. ……4分(2)当y =1200, 1200=-2(x-15)2+1250,330,tan 30.3(,).3,33.33COB BC a a C a a a ak k y x ∠=∴==∴=∴==分解得1210,20x x ==.所以应降价10元或20元; …… 8分(3)当1020x <<时利润高于1200元.… 10分23.解:(1)当x =0时,y =2,当y =0时,x =2.所以A (0,2), B (2,0) . …… 2分(2)当⊙P 从左向右运动时⊙P 与直线AB 有两种相切情况.第一种情况:如图(1)当⊙P 在直线AB 的左侧与直线AB 相切时,过切点D 作DP 1⊥x 轴于P 1,在Rt △DP 1B 中,∠OBD =45°, DP 1所以BP 1=2,恰好P 1与O 点重合,坐标为(0,0). …… 4分第二种情况:如图(2)当⊙P 在直线AB 的右侧与直线AB 相切时,过切点D 作DP 2⊥x轴与P 2,在Rt △DP 2B 中,∠P 2BD =45°,DP 2=所以BP 2=2,OP 2=4,即P 点的坐标为(4,0). …6分(3)如图(3)抛物线2y ax bx c =++过原点O ,且顶点坐标为(2,2).可设y =a (x -2)2+2,当x = 0时y = 0,求得 a =-12,所以22x x +1y=-2. …… 7分 设在x 轴上方的抛物线上存在点Q 使四边形ABMQ 的面积最大,点Q 坐标为(m ,2122m m -+),连接OQ ,由题意得 … 9分当52m =时, ABMQ S 四边形的最大值为174.…… 10分222111124(2)2222251752().24AOQ OMQ AOBABMQ S S S m m m m m m ∆∆∆=+-⨯+⨯⨯-+-⨯⨯=-+-=--+四边形S =经检验,点Q (515,28)在直线AB 上方,所以,在x 轴上方同时也在直线AB 上方的抛物线上存在点Q 使四边形ABMQ 的面积最大,ABMQ S 四边形的最大值为174. …… 11分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014 年九年级第二次质量预测数学试题卷一、选择题(每小题 3 分,共 24 分)在每小题给出的四个选项中,只有一项是符合题目要求的.1. 9 的绝对值是()A . 9B . - 91 1 C.D.9 92. 如图是由 5 个大小相同的正方体组成的几何体,它的主视图是()主视方向A .B .C. D .3.近年来人们越来越关注健康,我国质检总局规定:针织内衣、被套、床上用品等直接接触皮肤的衣物,每千克衣物上甲醛含量应在 0.000 075 千克以下,将0.000 075 用科学记数法表示为()新 | 课 | 标 | 第| 一 | 网A . 0.75 ×10-4 B.7.5 ×10-4 C. 75×10-6 D. 7.5 ×10-54.下面的图形中,既是轴对称图形又是中心对称图形的是()DOB CA.B.C. D .A5.如图,OA是⊙ O的半径,弦BC⊥OA,D是⊙ O上一点,若∠ADC=26°,则∠AOB的度数为()A . 13°B. 26°C.52°D. 78°6.在一次体育达标测试中,九年级( 3)班 15 名男同学的引体向上成绩如下表所示:成绩(个)8 9 11 12 13 15人数 1 2 3 4 3 2 这 15 名男同学引体向上成绩的中位数和众数分别是()xK b A . 12, 13 B. 12, 12 C.11, 12 D. 3,47. 小明用一张半径为24cm 的扇形纸板做一个如图所示的圆锥形小丑帽子的侧面(接缝忽略不计),如果做成的圆锥形小丑帽子的底面半径为10cm,那么这张扇形纸板的面积是()2 2 2 2A . 120π cm B.240π cm C. 260π cm D. 480π cm24cmA DEC'B P C第 7 题图第 8 题图如图,矩形 ABCD 中, AB=3,BC=5,点 P 是 BC 边上的一个动点(点P 不与点 B,C 重合),现将△ PCD 沿直线 PD 折叠,使点 C 落在点 C′处,作∠ BPC′的角平分线交AB 于点 E,设 BP=x,BE=y,则下列图象中,能表示y 与 x 函数关系的图象大致是()X|k | B| 1 . c |O |m8.y y y yO 5 xO 5 x5xO 5xO EA .B .C. D .D A二、填空题(每小题 3 分,共 21 分)C B9. 计算: ( 1)2 =___________.F10. 如图,一把矩形直尺沿直线断开并错位,点 E,D ,B ,F 在同一条直线上,若∠ ADE=128°,则∠ DBC 的度数为 ___________.11. 一位园艺设计师计划在一块形状为直角三角形且有一个内角为60°的绿化区域上种植四种不同的花卉,要求种植的四种花卉分别组成面积相等、形状完全相同的几何图形图案.某同学为此提供了如图所示的 4 种设计方案,其中可以满足园艺设计师要求的有___________ 种.12. 农历 5 月 5 日是中华民族的传统节日端午节,有吃粽子的习俗.端午节早上,妈妈给小华准备了 4 个粽子: 1 个肉馅, 1个豆沙馅, 2 个红枣馅. 4 个粽子除内部馅料不同外其他一切均相同,小华喜欢吃红枣馅的粽子,小华吃了一个粽子刚好是红枣馅的概率是 ___________.13. 若一次函数 y (a 2) x (a 2) 不经过第三象限,则a的取值范围为_______.14. 如图,在平面直角坐标系中,正方形的中心在原点 O,且正方形的一组对边与2 x 轴平行,点P(2a,a)是反比例函数yx的图象与正方形的一个交点,则图中阴影部分的面积是___________.yP 6O x 48第 14 题图第 15 题图15.在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为 4, 6,8,则原直角三角形纸片的斜边长是 ___________ .三、解答题(本大题共8 个小题,共75 分)新课标第一网16.(本题8分)有三个代数式:①a2- 2ab+b2,② 2a- 2b,③ a2- b2,其中 a≠ b;( 1)请你从①②③三个代数式中任意选取两个代数式,分别作为分子和分母构造成一个分式;(2)请把你所构造的分式进行化简;(3)若 a,b 为满足不等式 0<x<3 的整数解,且 a>b,请求出化简后的分式的值.17.(本题 9 分)郑州地铁 1 号线在 2013 年 12 月 28 日通车之前,为了解市民对地铁票的定价意向,市物价局向社会公开征集定价意见.某学校课外小组也开展了“你认为郑州地铁起步价定为多少合适?”的问卷调查,征求市民的意见,并将某社区市民的问卷调查结果整理后制成了如下统计图:5元人数12010% 4 元903元15%602元302元3元4元5元票价根据统计图解答:(1)同学们一共随机调查了 ________人;(2)请你把条形统计图补充完整;( 3)假定该社区有 1 万人,请估计该社区支持“起步价为 3 元”的市民大约有多少人?18. (本题 9 分)已知命题:“如图,点A,D ,B,E 在同一条直线上,且AD =BE,AC∥ DF ,则△ ABC≌△ DEF .”这个命题是真命题还是假命题?如果是真命题,请给出证明;如果是假命题,请添加一个适当的条件,使它成为真命题,并加以证明.C FA DB E19.(本题 9 分)“城市发展,交通先行” ,我市启动了缓堵保畅的高架桥快速通道建设工程,建成后将大大提升道路的通行能力.研究表明,某种情况下,高架桥上的车流速度V(单位:千米 /时)是车流密度 x(单位:辆 /千米)的函数,且当0 x ≤ 28 时,V=80;当 28 x ≤ 188 时,V是x的一次函数.函数关系如图所示.(1)求当28 x ≤188时, V 关于 x 的函数表达式;( 2)请你直接写出车流量P 和车流密度x 之间的函数表达式;当值是多少?新课标第一网(注:车流量是单位时间内通过观测点的车辆数,计算公式为:车流量x 为多少时,车流量P(单位:辆=车流速度×车流密度)/时)达到最大,最大V(千米 / 时)80O 28 188 x(辆 / 千米)20.(本题 9 分)在某飞机场东西方向的地面l 上有一长为 1km 的飞机跑道 MN (如图),在跑道 MN 的正西端 14.5 千米处有一观察站 A.某时刻测得一架匀速直线降落的飞机位于点A 的北偏西 30°,且与点 A 相距 15 千米的 B 处;经过 1 分钟,又测得该飞机位于点 A 的北偏东 60°,且与点 A 相距 5 3 千米的( 1)该飞机航行的速度是多少千米/小时?(结果保留根号)( 2)如果该飞机不改变航向继续航行,那么飞机能否降落在跑道C 处.MN 之间?请说明理由.北BClM N东A21. (本题 10 分)某学校开展“我的中国梦”演讲比赛,学校准备购买10 支某种品牌的水笔,每支水笔配x(x≥ 2)支笔芯,作为比赛获得一等奖学生的奖品. A ,B 两家文具店都有这种品牌的水笔和笔芯出售,且每支水笔的标价均为30 元,每支笔芯的标价为 3 元.目前两家文具店同时在做促销活动: A 文具店:所有商品均打九折(按标价的90%)销售; B 文具店:买一支水笔送 2 支笔芯.设在 A 文具店购买水笔和笔芯的费用为y A(元),在 B 文具店购买水笔和笔芯的费用为y B(元) .请解答下列问题:新课标第一网(1)分别写出与 y A,y B与 x 之间的函数表达式;(2)若该校只在一家文具店购买奖品,你认为在哪家文具店购买更优惠?(3)若每支水笔配 15 支笔芯,请你帮助学校设计出最省钱的购买方案.22. (本题 10 分)如图 1,点 P, Q 分别是边长为4cm 的等边△ABC 边 AB, BC 上的动点,点P 从顶点 A ,点 Q 从顶点 B 同时出发,且它们的速度都为1cm/s.(1)连接 AQ,CP 交于点 M,在点 P,Q 运动的过程中,∠ CMQ 的大小变化吗?若变化,则说明理由,若不变,请直接写出它的度数;( 2)点 P, Q 在运动过程中,设运动时间为t ,当 t 为何值时,△PBQ 为直角三角形?(3)如图 2,若点 P ,Q 在运动到终点后继续在射线 AB,BC 上运动,直线 AQ,CP 交点为 M,则∠ CMQ 的大小变化吗?若变化,则说明理由;若不变,请求出它的度数。
AAP MBM C QPB Q C图 1 图 223. 如图,经过原点的抛物线y x2 2mx(m>0)与x轴的另一个交点为A.过点 P(1 ,m)作直线PM x 轴于点M,交抛物线于点 B,记点 B 关于抛物线对称轴的对称点为C(点 B,点 C 不重合).连接 CB, CP.5( 1)当 m= 时,求点 A 的坐标及 BC 的长;2( 2)当 m>1 时,连接 CA,当 CA⊥CP 时,求 m 的值;( 3)过点 P 作PE PC 且PE=PC,问是否存在m,使得点E恰好落在坐标轴上?若存在,请直接写出所有满足条件的点 E 的坐标;若不存在,请说明理由.X k B 1 . c o myB CPO M A x2014 年九年级第二次质量预测 数学 参考答案一、选择题(每小题 3 分,共 18 分)1. A2. A3.D4.C5. C6. B7. B8. D二、填空题(每小题 3 分,共 27 分)9.1;10.52°;11. 3;12.1 ; 13.2 a2; 14.4;215.20 或8 5.三、解答题(本大题共 8 个小题,共 75 分)16.(本题 8 分)解:任取 2 个均可构成分式(共有 6 种情况)任意一种只要正确即可得分 .,,, 2 分 利用因式分解化简正确 . ,,, 5 分 由题知 , a=2,b=1.,,, 7 分新 -课 -标 -第 -一 - 网代入求解正确 . ,,,8 分17.(本题 9 分)解:( 1)300;,,,,,,,,,(2 分)(2)300× 15﹪=45(人), 300-120-45- 30=105(人);,,,,(6 分)图略; ,, ( 7 分)( 3)105÷ 300×10000=3500(人).答:该社区支持 “起步价为 3 元”的市民大约有 3500 人. ,,, (9 分)18.(本题 9 分)解答:是假命题 .,,,,, (2 分)新 | 课 | 标 | 第| 一 | 网添加的条件是: AC DF . ,,,,, (4 分)证明如下: ∵AD=BE,∴AD +BD=BE +BD. ∴AB=DE.∵AC ∥ DF,∠∠.∴ A= FDA在△ABC 和 △DEF 中,∵ A B=DE ,∠ A=∠FDA, AC=DF, ∴△ABC≌△DEF(SAS ).,,,,, (9 分)说明:本题除了上述添加方法外还可在以下情况任选一种:①∠C=∠F ; ②∠ CBA=∠E ; ③ BC ∥EF.只要证明正确均可得分.19 . (本题 9 分)解:( 1)设一次函数表达式是 把两点坐标( 28, 80)(188,V=kx+b.0)分别代入, 得 w ,,,,,,W w .xK(1 分)b 1.c o M28k b 80,k1 , 188k b,,,, (2 分)解之 , 得20.b 94.∴V 关于 x 的一次函数表达式是 V 1 x 94,(28 x 188). . ,,,,,, ( 5 分)2( 2) 由题知:当 0 x 28 时, P Vx 80x 2240.当 28x 188 时, PVx ( 1x 94) x1 x2 94 x 1(x94)2 4418.222当 x = 94 时,车流量 P 有最大值 4418 辆 / 时.所以当 x = 94 时,车流量 P 有最大值 4418 辆/ 时.,,,, (9 分)20. ( 本题 9 分 )解:(1)由题意,得∠ BAC=90°.,,, (1 分) w W w .x K b 1.c o M∴ BC152 (5 3)2 10 3 .,,, ( 3 分)∴飞机航行的速度为10 3 60 600 3 km/ h .,,, ( 4 分)(2)能.⋯⋯(5 分)作 CE⊥l 于点 E,直 BC交 l 于点 F.B北在 Rt△ABC 中,AC 5 3, BC 10 3 .所以∠ ABC=30°,即∠ BCA=60°.又∵∠ CAE=30°,∠ ACE=∠FCE =60°,53 ,w∴CE=AC·sin∠CAE= W w .X k b 1.c O m215l DAE=AC·cos∠ CAE= .A 2AF=2AE=15 km . ,,, (7 分)∴AN=AM+MN =14. 5+1=15. 5 km.∵AM <AF< AN,,,, (8 分)∴ 机不改航向航行,可以落在跑道MN 之. ,,, (9 分)21. (本 10 分)解:(1)由意,得y A =(10×30+3×10x)×0.9=27x+270,y B =10×30+3×10(x 2)=30x+240.,,,,, ( 4 分)(2)当 y A =y B, 27x+270=30x+240,得 x=10;当y A>y B, 27x+270>30x+240,得 x< 10;当y A<y B, 27x+270=30x+240,得 x>10;∴当 2≤x<10 ,到 B 文具店惠;当x=10 ,两个文具店一惠;当 x>10 ,在 A 文具店惠 .,,,,(8 分)(3)由意知,没限制只在一家文具店,所以既可以只在一家,也可以在两家混合,因此分两种情况:①若只在一家:因 x=15> 10,所以在 A 文具店划算,用:y A=27×15+270=675(元);②若在两家混合:根据意,可先在B文具店10 支水笔,送 20 支笔芯,后在 A 文具店剩下的笔芯×30+130×3×0.9=651(元) .因 651<675,所以最省的方案是:先在 B 文具店 10 支水笔,后在 A 文具店 130 支笔芯 .,,,,,, (10 分)22. (本 10 分)解:(1)不 , ∠CMQ = 60°. ,, ( 2 分)xK b (2) t, AP=BQ = ,tPB= 4- t.当∠ PQB=90° ,∵∠ B = 60° ,4∴ PB=2BQ. 得 4-t =2t, t =. ,,, ( 4 分)3当∠ BPQ=90° ,∵∠ B = 60° ,∴BQ =2 PB. 得 t = 2(4-t),8 t = . 3∴当第4 8,,, ( 6 分)秒或第秒, ? PBQ直角三角形 .3 3(3)不 . ,, (7 分), ∠∠在等三角形 ABC中, AC=BC ABC= BCA=60°,∴∠PBC=∠ACQ=120°.又由条件得 BP=CQ,∴ PBC ≌ ACQ (SAS). ,, ( 9 分)∴BPC MQC ,又∵∠ PCB=∠ MCQ,∴∠CMQ =∠PBC =120° . ,, (10 分)23. (本 11 分)解:(1)当 m= 5,,,, ( 1 分),y= x2+5 x .2CF东EM N10×15-20=130 个,共需用 :10令y=0, 得 x2+5x=0 .∴x 1=0, x 2=5 ,∴A (5,0) . ,,,,,, (3 分)当 x=1 时, y=4, ∴B ( 1, 4).∵抛物线 y=﹣x 2+5x 的对称轴为直线 x= 5 ,2又∵点 B ,C 关于对称轴对称 , w W w.X k b 1.c O m∴BC=3.,,,,,, (5 分)(2)过点 C 作 CH ⊥x 轴于点 H (如图) .由已知得∠ACP=∠BCH=90°, ∴∠ACH=∠PCB. 又∵∠AHC= ∠PBC=90°, tan ∠ACH =tan ∠PCB .AH PB CHBC.∵抛物线 y= ﹣x 2+2mx 的对称轴为直线 x =m ,其中 m > 1, 又∵B ,C 关于对称轴对称, ∴BC=2( m ﹣1) .∵B (1,2m ﹣1),P (1,m ), ∴BP= m ﹣1 .又∵A (2m ,0), C (2m ﹣1,2m ﹣1), ∴H (2m ﹣1,0).∴AH =1,CH=2m ﹣1 .1 m 1 .2m 1 2( m 1)∴m = 3.,,,,,,,(8 分)2(3)存在 .∵B ,C 不重合, ∴m ≠1,分两种情况 :①当 m >1 时, m=2,相对应的 E 点坐标是( 2,0)或( 0,4);②当 0<m < 1 时, m=2.,相对应的 E 点坐标是(4 ,0);334 , 0).,,,, (11 分)∴E 点坐标是( 2, 0)或( 0,4)或(3(这里直接写对一个坐标得1 分)新课标第一网 系列资料。