高一数学习题课(解析)

合集下载

高一数学第一章集合及基本运算章末习题课

高一数学第一章集合及基本运算章末习题课

第一章章末习题课(时间:80分钟)一、单项选择题1.已知集合A={1,2},B={1},则下列关系正确的是(C)A.B∉A B.B∈AC.B⊆A D.A⊆B解析:两个集合之间不能用“∈或∉”,首先排除选项A,B,因为集合A={1,2},B={1},所以集合B中的元素都是集合A中的元素,由子集的定义知B⊆A.故选C.2.命题“存在一个无理数,它的平方是有理数”的否定是(B)A.任意一个有理数,它的平方是有理数B.任意一个无理数,它的平方不是有理数C.存在一个有理数,它的平方是有理数D.存在一个无理数,它的平方不是有理数3.已知集合M={x|-3<x≤5},N={x|x>3},则M∪N=(A)A.{x|x>-3} B.{x|-3<x≤5}C.{x|3<x≤5} D.{x|x≤5}解析:在数轴上表示集合M,N,如图所示,则M∪N={x|x>-3}.4.“-2<x<4”是“x<4”的(A)A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:由“-2<x<4”可得“x<4”,反之不成立,故“-2<x<4”是“x<4”的充分不必要条件.故选A.5.已知集合U={1,2,3,4,5},集合A={1,3,4},集合B={2,4},则(∁U A)∪B=(A) A.{2,4,5} B.{1,3,4}C.{1,2,4} D.{2,3,4,5}解析:由题意知∁U A={2,5},所以(∁U A)∪B={2,4,5}.故选A.6.“⎩⎪⎨⎪⎧x >0,y >0”是“1xy >0”的( A ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:因为⎩⎨⎧ x >0,y >0⇒1xy >0,1xy >0⇒⎩⎨⎧ x >0,y >0或⎩⎪⎨⎪⎧ x <0,y <0,所以“⎩⎨⎧x >0,y >0”是“1xy >0”的充分不必要条件.故选A.7.满足M ⊆{a 1,a 2,a 3,a 4},且M ∩{a 1,a 2,a 3}={a 1,a 2}的集合M 的个数是( B )A .1B .2C .3D .4 解析:集合M 必须含有元素a 1,a 2,并且不能含有元素a 3,故M ={a 1,a 2}或M ={a 1,a 2,a 4}.8.设全集U =A ∪B ,定义:A -B ={x |x ∈A ,且x ∉B },集合A ,B 分别用圆表示,则下列图中阴影部分表示A -B 的是( C )解析:因为A -B ={x |x ∈A ,且x ∉B },所以A -B 是集合A 中的元素去掉A ∩B 中的元素构成的集合.故选C.二、多项选择题9.下列命题正确的有( ABD )A .0是最小的自然数B .每个正方形都有4条对称轴C .∀x ∈{1,-2,0},2x +1>0D .∃x ∈N ,使x 2≤x解析:对于A :根据自然数集的定义知,最小的自然数是0,命题A 正确;对于B :由正方形的图形特点知,每个正方形都有两条对角线和过对边中点的直线四条对称轴,命题B 正确;对于C:这是全称量词命题,当x=-2时,2×(-2)+1<0,命题C错误;对于D:这是存在量词命题,当x=1或x=0时,可得x2≤x成立,命题D正确.故选ABD.10.已知集合M={-2,3x2+3x-4,x2+x-4},若2∈M,则满足条件的实数x可能为(AC)A.2 B.-2C.-3 D.1解析:由题意得2=3x2+3x-4或2=x2+x-4,若2=3x2+3x-4,即x2+x-2=0,所以x=-2或x=1,检验:当x=-2时,x2+x-4=-2,与元素互异性矛盾,舍去;当x=1时,x2+x-4=-2,与元素互异性矛盾,舍去.若2=x2+x-4,即x2+x-6=0,所以x=2或x=-3,经验证x=2或x=-3为满足条件的实数x.故选AC.11.下列命题正确的有(CD)A.A∪∅=∅B.∁U(A∪B)=(∁U A)∪(∁U B)C.A∩B=B∩AD.∁U(∁U A)=A解析:在A中,A∪∅=A,故A错误;在B中,∁U(A∪B)=(∁U A)∩(∁U B),故B错误;在C中,A∩B=B∩A,故C正确;在D中,∁U(∁U A)=A,故D正确.故选CD.12.若-1<x<2是-2<x<a的充分不必要条件,则实数a的值可以是(BCD)A.1 B.2C.3 D.4解析:由题意得a≥2.所以实数a的值可以是2,3,4.故选BCD.三、填空题13.若命题p:∀a,b∈R,方程ax2+b=0恰有一解,则命题p的否定为∃a,b∈R,方程ax2+b=0无解或至少有两解.14.已知集合A,B均为全集U={1,2,3,4}的子集,且∁U(A∪B)={4},B={1,2},则A∩(∁B)=__{3}__.U解析:由U={1,2,3,4},且∁U(A∪B)={4},得A∪B={1,2,3},又B={1,2},所以A中一定有元素3,没有元素4,所以A∩(∁U B)={3}.15.设p:-m≤x≤m(m>0),q:-1≤x≤4,若p是q的充分条件,则m的最大值为__1__;若p 是q 的必要条件,则m 的最小值为__4__.解析:设A ={x |-m ≤x ≤m }(m >0),B ={x |-1≤x ≤4},若p 是q 的充分条件,则A ⊆B ,所以⎩⎪⎨⎪⎧ -m ≥-1,m ≤4,所以0<m ≤1,所以m 的最大值为1;若p 是q 的必要条件,则B ⊆A ,所以⎩⎪⎨⎪⎧ -m ≤-1,m ≥4,所以m ≥4,所以m 的最小值为4. 16.若“x <-1”是“x ≤a ”的必要不充分条件,则a 的取值范围是__{a |a <-1}__. 解析:若“x <-1”是“x ≤a ”的必要不充分条件,则{x |x ≤a }⊆{x |x <-1},∴a <-1.四、解答题17.已知集合A ={x |2≤x ≤5},B ={x |-2m +1<x <m },全集为R .(1)若m =3,求A ∪B 和(∁R A )∩B ;(2)若A ∩B =A ,求实数m 的取值范围.解:(1)∵m =3,∴B ={x |-5<x <3}.又A ={x |2≤x ≤5},∴∁R A ={x |x <2或x >5}.∴A ∪B ={x |-5<x ≤5},(∁R A )∩B ={x |-5<x <2}.(2)∵A ∩B =A ,∴A ⊆B .∴⎩⎪⎨⎪⎧-2m +1<2,m >5,解得m >5. ∴实数m 的取值范围为{m |m >5}.18.在①{x |a -1≤x ≤a },②{x |a ≤x ≤a +2},③{x |a ≤x ≤a +3}这三个条件中任选一个,补充在下面问题中,若问题中的a 存在,求a 的值;若a 不存在,请说明理由.已知集合A =________,B ={x |1≤x ≤3}.若“x ∈A ”是“x ∈B ”的充分不必要条件,求实数a 的取值范围.注:如果选择多个条件分别解答,按第一个解答计分.解:由题意知,A 不为空集,B ={x |1≤x ≤3}.当选条件①时,因为“x ∈A ”是“x ∈B ”的充分不必要条件,所以A B ,即⎩⎪⎨⎪⎧ a -1≥1,a <3或⎩⎪⎨⎪⎧a -1>1,a ≤3,解得2≤a ≤3. 所以实数a 的取值范围是{a |2≤a ≤3}.当选条件②时,因为“x ∈A ”是“x ∈B ”的充分不必要条件,所以A B ,即⎩⎪⎨⎪⎧ a ≥1,a +2<3或⎩⎪⎨⎪⎧a >1,a +2≤3,无解.故不存在满足题意的a . 当选条件③时,因为“x ∈A ”是“x ∈B ”的充分不必要条件,所以A B ,即⎩⎨⎧a ≥1,a +3<3或⎩⎨⎧ a >1a +3≤3,无解. 故不存在满足题意的a .。

高一数学(必修一)《第五章 函数y=Asin(ωxφ)》练习题及答案解析-人教版

高一数学(必修一)《第五章 函数y=Asin(ωxφ)》练习题及答案解析-人教版

高一数学(必修一)《第五章 函数y=Asin (ωx φ)》练习题及答案解析-人教版班级:___________姓名:___________考号:___________一、解答题1.已知函数()2sin(2)16f x x a π=+++,且当[0,]2x π∈时()f x 的最小值为2.(1)求a 的值;(2)先将函数()y f x =的图像上点的纵坐标不变,横坐标缩小为原来的12,再将所得的图像向右平移12π个单位,得到函数()y g x =的图像,求方程()4g x =在区间[0,]2π上所有根之和.2.写出将sin y x =的图像变换后得到2sin 24y x π⎛⎫=- ⎪⎝⎭的图像的过程,并在同一个直角坐标平面内画出每一步变换对应的函数一个周期的图像(保留痕迹). 3.已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<2π)的部分图象如图所示.(1)求函数f (x )的解析式;(2)如何由函数y =sin x 的图象通过相应的平移与伸缩变换得到函数f (x )的图象,写出变换过程. 4.用“五点法”画出函数2sin y x =在区间[]0,2π上的图象. 5.已知函数()()sin f x A x ωϕ=+(0A >,0>ω与2πϕ<),在同一个周期内,当4x π=时,则y 取最大值1,当712x π=时,则y 取最小值-1. (1)求函数()f x 的解析式.(2)函数sin y x =的图象经过怎样的变换可得到()y f x =的图象 (3)求方程()()01f x a a =<<在[]0,2π内的所有实数根之和. 6.已知函数()2cos 44f x x ππ⎛⎫=-⎪⎝⎭. (1)求函数()f x 图象的对称轴;(2)将函数()f x 图象上所有的点向左平移1个单位长度,得到函数()g x 的图象,若函数()y g x k =+在()2,4-上有两个零点,求实数k 的取值范围.7.2021年12月9日15时40分,神舟十三号“天宫课堂”第一课开讲!受“天宫课堂”的激励与鼓舞,某同学对航天知识产生了浓厚的兴趣.通过查阅资料,他发现在不考虑气动阻力和地球引力等造成的影响时,则火箭是目前唯一能使物体达到宇宙速度,克服或摆脱地 球引力,进入宇宙空间的运载工具.早在1903年齐奥尔科夫斯基就推导出单级火箭的最大理想速度公式: 0lnkm v m ω=,被称为齐奥尔科夫斯基公式,其中ω为发动机的喷射速度,0m 和k m 分别是火箭的初始质量和发动机熄火(推进剂用完 )时的质量.0km m 被称为火箭的质量比.(1)某单级火箭的初始质量为160吨,发动机的喷射速度为2千米/秒,发动机熄火时的质量为40吨,求该单级火箭的最大理想速度(保留2位有效数字);(2)根据现在的科学水平,通常单级火箭的质量比不超过10.如果某单级火箭的发动机的喷射速度为2千米/秒,请判断该单级火箭的最大理想速度能否超过第一宇宙速度7.9千米/秒,并说明理由.(参考数据:ln20.69≈,无理数e 2.71828=)二、单选题8.为了得到函数3sin 2y x =的图象,只要将函数3sin(21)y x =-的图象( ) A .向左平移1个单位长度 B .向左平移12个单位长度C .向右平移1个单位长度D .向右平移12个单位长度9.函数sin3y x =的图象可以由函数cos3y x =的图象( ) A .向右平移6π个单位得到 B .向左平移6π个单位得到 C .向右平移3π个单位得到 D .向左平移3π个单位得到 10.要得到函数()2cos 23f x x π⎛⎫=- ⎪⎝⎭的图像,只需将cos2y x =的图像( )A .向左平移3π个单位长度B .向右平移3π个单位长度C .向左平移23π个单位长度 D .向右平移23π个单位长度 11.为了得到函数3sin 23y x π⎛⎫=+ ⎪⎝⎭的图像,只需把函数3sin y x =图像上所有点( )A .向左平行移动3π个单位长度,再把所得各点的横坐标缩短到原来的12B .向左平行移动3π个单位长度,再把所得各点的横坐标伸长到原来的2倍 C .向左平行移动6π个单位长度,再把所得各点的横坐标缩短到原来的12D .向右平行移动3π个单位长度,再把所得各点的横坐标缩短到原来的12 12.要得到函数π3sin 25y x ⎛⎫=+ ⎪⎝⎭的图像,需( )A .将函数3sin π5y x =⎛⎫+ ⎪⎝⎭图像上所有点的横坐标变为原来的2倍(纵坐标不变)B .将函数π3sin 10y x ⎛⎫=+ ⎪⎝⎭图像上所有点的横坐标变为原来的2倍(纵坐标不变)C .将函数3sin 2y x =图像上所有点向左平移π5个单位长度D .将函数3sin 2y x =图像上所有点向左平移π10个单位长度13.为了得到函数2cos2y x =的图象,只需把函数2cos 2y x x =+的图象( ) A .向左平移3π个单位长度 B .向右平移3π个单位长度 C .向左平移6π个单位长度 D .向右平移6π个单位长度三、填空题14.将函数()f x 的图象向左平移π6个单位长度后得到()()sin y g x A x ωϕ==+(0A >,0>ω与π2ϕ≤)的图象如图,则()f x 的解析式为_____.15.彝族图案作为人类社会发展的一种物质文化,有着灿烂历史.按照图案的载体大致分为彝族服饰图案、彝族漆器图案、彝族银器图案等,其中蕴含着丰富的数学文化,如图1,漆器图案中出现的“阿基米德螺线”,该曲线是由一动点匀速离开一个固定点的同时又以固定的角速度绕该固定点转动所形成的轨迹.这些螺线均匀分布,将其简化抽象为图2,若2OA =,则AOB ∠所对应的弧长为______.参考答案与解析1.(1)2a =;(2)3π. 【分析】(1)由于当[0,]2x π∈时()f x 的最小值为2,所以min ()112f x a =-++=,从而可求出a 的值;(2)由图像变化可得()2sin(4)36g x x π=-+,由()4g x =得1sin(4)62x π-=,从而可求出x 的值【详解】(1)()2sin(2)16f x x a π=+++,∵[0,]2x π∈,∴72[,]666x πππ+∈∴min ()112f x a =-++=,∴2a =;(2)依题意得()2sin(4)36g x x π=-+,由()4g x =得1sin(4)62x π-=∴4266x k πππ-=+(k Z ∈)或54266x k πππ-=+(k Z ∈) ∴212k x ππ=+或24k x =+ππ,解得12x π=或4x π= ∴所有根的和为1243πππ+=.【点睛】此题考查三角函数的图像和性质,考查三角函数的图像的变换,考查转化能力和计算能力,属于基础题2.答案见解析.图像见解析【分析】由三角函数图像中的相位变换、周期变换、振幅变换叙述变换过程,然后作出图像变换的过程即可.【详解】先将sin y x =的图像上各点向右平移4π个单位得到函数sin 4y x π⎛⎫=- ⎪⎝⎭的图像再将函数sin 4y x π⎛⎫=- ⎪⎝⎭图像上的每一个点保持纵坐标不变,横坐标缩短到原来的一半,得到函数sin 24y x π⎛⎫=- ⎪⎝⎭的图像.再将函数sin 24y x π⎛⎫=- ⎪⎝⎭图像上的每一个点保持横坐标不变,纵坐标扩大到原来的2倍,得到函数2sin 24y x π⎛⎫=- ⎪⎝⎭的图像.3.(1)f (x )=sin (2)6x π+ ;(2) 答案见解析.【分析】(1)由图像可得A =1,51264Tππ-=结合2T πω=可求出ω的值,然后将点(,1)6π代入解析式可求出ϕ的值,从而可求出函数f (x )的解析式; (2)利用三角函数图像变换规律求解【详解】(1)由图像知A =1.f (x )的最小正周期T =4×5()126ππ-=π,故ω=2Tπ=2 将点(,1)6π代入f (x )的解析式得sin ()3πϕ+=1又|φ|<2π,∴φ=6π.故函数f (x )的解析式为f (x )=sin (2)6x π+.(2)变换过程如下:y =sin x 图像上的所有点的横坐标缩小为原来的一半,纵坐标不变,得到y =sin 2x 的图像,再把y =sin 2x 的图像,向左平移12π个单位y =sin (2)6x π+的图像. 4.答案见解析【分析】利用五点作图法,列表、描点、连线可作出函数sin y x =在区间[]0,2π上的图象. 【详解】解:按五个关键点列表如下:描点并将它们用光滑的曲线连接起来,如图所示.5.(1)()sin 34f x x π⎛⎫=- ⎪⎝⎭(2)答案见解析 (3)112π【分析】(1)结合已知条件可求出A ,最小正周期T ,然后利用最小正周期公式求ω,通过代值求出ϕ即可;(2)利用平移变换和伸缩变换求解即可;(3)利用正弦型函数的对称性求解即可. (1)设()()sin f x A x ωϕ=+的最小正周期为T 由题意可知,1A =,1721243T πππ=-=即223T ππω== ∴3ω=,即()()sin 3f x x φ=+∵3sin 14πϕ⎛⎫+= ⎪⎝⎭∴3242k ππϕπ+=+ k Z ∈ 又2πϕ<,∴4πϕ=-∴()sin 34f x x π⎛⎫=- ⎪⎝⎭.(2)利用平移变换和伸缩变换可知,sin y x =的图象向右平移4π个单位长度,得到sin 4y x π⎛⎫=- ⎪⎝⎭的图象再将sin 4y x π⎛⎫=- ⎪⎝⎭的图象上所有点的横坐标缩短为原来的13,纵坐标不变,得到sin 34y x π⎛⎫=- ⎪⎝⎭的图象.(3)∵()sin 34f x x π⎛⎫=- ⎪⎝⎭的最小正周期为23π∴()sin 34f x x π⎛⎫=- ⎪⎝⎭在[]0,2π内恰有3个周期故所有实数根之和为1119112662ππππ++=. 6.(1)14x k =+ k ∈Z (2)()2,0-.【分析】(1)求出()2sin 44f x x ππ⎛⎫=+ ⎪⎝⎭,解方程442x k ππππ+=+,k ∈Z 即得解;(2)求出()2cos 4g x x π=,即函数()y g x =的图象与直线y k =-在()2,4-上有两个交点,再利用数形结合分析求解. (1)解:因为()2cos 44f x x ππ⎛⎫=- ⎪⎝⎭,所以()2sin 44f x x ππ⎛⎫=+ ⎪⎝⎭.令442x k ππππ+=+,k ∈Z ,解得14x k =+ k ∈Z 所以函数()f x 图象的对称轴为直线14x k =+ k ∈Z . (2)解:依题意,将函数()f x 的图象向左平移1个单位长度后,得到的图象对应函数的解析式为()()2sin 12cos 444g x x x πππ⎡⎤=++=⎢⎥⎣⎦.函数()y g x k=+在()2,4-上有两个零点即函数()y g x =的图象与直线y k =-在()2,4-上有两个交点,如图所示所以02k <-<,即20k -<< 所以实数k 的取值范围为()2,0-. 7.(1)2.8千米/秒(2)该单级火箭最大理想速度不可以超过第一宇宙速度7.9千米/秒,理由见解析【分析】(1)明确0k m m ω、、各个量的值,代入即可;(2)求出最大理想速度max v ,利用放缩法比较max 2ln10v =与7.9的大小即可. (1)2ω=,0160m =和40k m =0lnk m v m ω∴=21602ln 2ln 42ln 24ln 2 2.7640=⨯===≈ ∴该单级火箭的最大理想速度为2.76千米/秒.(2)10km M ≤ 2ω= 0max ln km v m ω∴=2ln10= 7.97.97128e22>>=7.97.9ln ln128ln1002ln10e ∴=>>=max v ∴2ln107.9=<.∴该单级火箭最大理想速度不可以超过第一宇宙速度7.9千米/秒.8.B【分析】根据已知条件,结合平移“左加右减”准则,即可求解.【详解】解:()13sin 213sin 22y x x ⎛⎫=-- ⎪⎝=⎭∴把函数13sin 22x y ⎛⎫- ⎝=⎪⎭的图形向左平移12个单位可得到函数3sin 2y x =.故选:B . 9.A【分析】化简函数sin 3cos[3()]6y x x π==-,结合三角函数的图象变换,即可求解.【详解】由于函数3sin 3cos(3)cos(3)cos[3()]226y x x x x πππ==+=-=- 故把函数cos3y x =的图象向右平移6π个单位,即可得到cos3sin 36y x x π⎛⎫=-= ⎪⎝⎭的图象.故选:A. 10.B【分析】直接由三角函数图象的平移变换求解即可. 【详解】将cos2y x =的图像向右平移3π个单位长度可得2cos2cos 233y x x ππ⎛⎫⎛⎫=-=-⎪ ⎪⎝⎭⎝⎭. 故选:B. 11.A【分析】利用三角函数图象变换规律求解即可【详解】将3sin y x =向左平移3π长度单位,得到3sin 3y x π⎛⎫=+ ⎪⎝⎭,再把所得的各点的横坐标缩短到原来的12,可得3sin 23y x π⎛⎫=+ ⎪⎝⎭的图象 故选:A 12.D【分析】根据三角函数的图像变换逐项判断即可.【详解】解:对于A ,将3sin π5y x =⎛⎫+ ⎪⎝⎭图像上所有点的横坐标变为原来的2倍(纵坐标不变),得到1π3sin 25y x ⎛⎫=+ ⎪⎝⎭的图像,错误;对于B ,将π3sin 10y x ⎛⎫=+ ⎪⎝⎭图像上所有点的横坐标变为原来的2倍(纵坐标不变),得到1π3sin 210y x ⎛⎫=+ ⎪⎝⎭的图像,错误;对于C ,将3sin 2y x =图像上所有点向左平移π5个单位长度后,得到2π3sin 25y x ⎛⎫=+ ⎪⎝⎭的图像,错误;对于D ,将3sin 2y x =图像上所有点向左平移π10个单位长度后,得到π3sin 25y x ⎛⎫=+ ⎪⎝⎭的图像,正确.故选:D. 13.C【分析】化简2cos 2y x x =+,再根据三角函数图象平移的方法求解即可【详解】12cos 22cos 222cos 223y x x x x x π⎛⎫⎛⎫+==- ⎪ ⎪ ⎪⎝⎭⎝⎭,因为2cos 23y x π⎛⎫=- ⎪⎝⎭向左平移6π个单位长度得到2cos 22cos263ππ⎡⎤⎛⎫=+-= ⎪⎢⎥⎝⎭⎣⎦y x x故选:C14.()2π2sin 23f x x ⎛⎫=- ⎪⎝⎭【分析】由图像可知,函数的最值、最小正周期,可得,A ω的值,代入点5,212π⎛⎫⎪⎝⎭,进而解得ϕ的值,根据函数的图像变换规律,可得答案.【详解】由题图可知()max 2A g x ==,函数()g x 的最小正周期为45πππ3123T ⎛⎫=+= ⎪⎝⎭,所以2π2T ω==,所以()()2sin 2g x x ϕ=+.又5π5π2sin 2126g ϕ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,所以5πsin 16ϕ⎛⎫+= ⎪⎝⎭,所以5ππ2π62k ϕ+=+(k ∈Z ),解得π2π3k ϕ=-(k ∈Z ). 因为π2ϕ≤,所以π3ϕ=-,所以()π2sin 23g x x ⎛⎫=- ⎪⎝⎭.将函数()g x 的图象向右平移π6个单位长度后可得到函数()f x 的图象故()ππ2π2sin 22sin 2633f x x x ⎡⎤⎛⎫⎛⎫=--=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦.故答案为:()2π2sin 23f x x ⎛⎫=- ⎪⎝⎭15.4π9【分析】根据题意得到圆心角2π9AOB α=∠=,结合弧长公式,即可求解.第 11 页 共 11 页 【详解】由题意,可知圆心角2π9AOB α=∠=,半径2r OA == 所以AOB ∠所对应的弧长为2π4π299l r α==⨯=. 故答案为:4π9.。

人教版高中数学必修一1.1.3.3课时练习习题(含答案解析)

人教版高中数学必修一1.1.3.3课时练习习题(含答案解析)

1.1.3.3一、选择题1.(杭州夏衍中学2009年高一期末)下列正确的有几个()①0∈∅②1⊆{1,2,3}③{1}∈{1,2,3}④∅⊆{0}A.0个B.1个C.2个D.3个[答案] B[解析]只有④正确.2.满足条件{1,3}∪A={1,3,5}的所有集合A的个数是()A.1B.2C.3D.4[答案] D[解析]A中一定含有5,由1、3是否属于A可知集合A的个数为22=4个.即A可能为{5},{5,1},{5,3},{5,1,3}.3.(2010·全国Ⅰ文,2)设全集U={1,2,3,4,5},集合M={1,4},N={1,3,5},则N∩(∁U M)()A.{1,3} B.{1,5}C.{3,5} D.{4,5}[答案] C[解析]∁U M={2,3,5},∴N∩(∁U M)={3,5},∴选C.4.集合M={x|x<-2或x≥3},N={x|x-a≤0},若N∩∁R M≠∅(R为实数集),则a的取值范围是() A.{a|a≤3} B.{a|a>-2}C.{a|a≥-2} D.{a|-2≤a≤2}[答案] C[解析]∁R M={x|-2≤x<3}.结合数轴可知.a≥-2时,N∩∁R M≠∅.5.(胶州三中2010年模拟)设全集U=R,集合M={x|-2≤x<3},N={x|-1≤x≤4},则N∩∁U M=() A.{x|-4≤x≤-2}B.{x|-1≤x≤3}C.{x|3≤x≤4}D .{x |3<x ≤4}[答案] C[解析] ∁U M ={x |x <-2或x ≥3},N ∩∁U M ={x |3≤x ≤4}.6.(09·全国Ⅱ文)已知全集U ={1,2,3,4,5,6,7,8},M ={1,3,5,7},N ={5,6,7},则∁U (M ∪N )=( )A .{5,7}B .{2,4}C .{2,4,8}D .{1,3,5,6,7} [答案] C[解析] ∵M ∪N ={1,3,5,6,7},U ={1,2,3,4,5,6,7,8},∴∁U (M ∪N )={2,4,8}.7.(09·北京文)设集合A =⎩⎨⎧⎭⎬⎫x ⎪⎪ -12<x <2,B ={x |x 2≤1},则A ∪B =( ) A .{x |-1≤x <2}B .A =⎩⎨⎧⎭⎬⎫x ⎪⎪-12<x ≤1 C .{x |x <2}D .{x |1≤x <2}[答案] A[解析] A =⎩⎨⎧⎭⎬⎫x ⎪⎪-12<x <2,B ={x |-1≤x ≤1} A ∪B ={x |-1≤x <2},∴选A.8.设P ={3,4},Q ={5,6,7},集合S ={(a ,b )|a ∈P ,b ∈Q },则S 中元素的个数为( )A .3B .4C .5D .6[答案] D[解析] S ={(3,5),(3,6),(3,7),(4,5),(4,6),(4,7)}共6个元素,故选D.9.设全集U ={1,3,5,7},集合M ={1,|a -5|},M ⊆U ,∁U M ={5,7},则a 的值为( )A .2或-8B .-8或-2C .-2或8D .2或8 [答案] D[解析] 由∁U M ={5,7}得,M ={1,3},所以|a -5|=3,即a =2或a =8.10.已知集合M 满足M {a 1,a 2,a 3,a 4,a 5},且M ∪{a 1,a 2}={a 1,a 2,a 4,a 5},则满足条件的集合M 的个数为( )A .2B .3C .4D .5 [答案] C[解析] 由条件知,集合M 中一定含有a 4,a 5,一定不含a 3,又M {a 1,a 2,a 3,a 4,a 5}, ∴M 中可能含有a 1,a 2,故M ={a 4,a 5}或M ={a 1,a 4,a 5}或M ={a 2,a 4,a 5}或M ={a 1,a 2,a 4,a 5}.二、填空题11.U ={1,2},A ={x |x 2+px +q =0},∁U A ={1},则p +q =________.[答案] 0[解析] 由∁U A ={1},知A ={2}即方程x 2+px +q =0有两个相等根2,∴p =-4,q =4,∴p +q =0.12.已知集合A ={(x ,y )|y =2x -1},B ={(x ,y )|y =x +3},若M ∈A ,M ∈B ,则M 为________.[答案] (4,7)[解析] 由M ∈A ,M ∈B 知M ∈A ∩B由⎩⎪⎨⎪⎧ y =2x -1y =x +3得⎩⎪⎨⎪⎧x =4y =7∴A ∩B ={(4,7)}. 13.已知A ={x |x 2-x -2=0},B ={x |x 2+4x +P =0},若B ⊆A ,则实数P 的取值范围是________.[答案] P >4[解析] A ={-1,2},若B =A ,则2+(-1)=-4矛盾;若B 是单元素集,则Δ=16-4P =0∴P =4 ∴B ={-2}⃘A .∴B =∅,∴P >4.14.定义集合运算:A ⊙B ={x |x =nm (n +m ),n ∈A ,m ∈B }.设集合A ={0,1},B ={2,3},则集合A ⊙B 的所有元素之和为________.[答案] 18[解析] 由题意,n 可取值为0、1,m 可取值为2、3.当n =0时,x =0;当n =1,m =2时,x =6;当n =1,m =3时,x =12.综上所述,A ⊙B ={0,6,12}.故所有元素之和为18.三、解答题15.设全集U =R ,集合A ={x ∈R |-1<x ≤5,或x =6},B ={x ∈R |2≤x <5};求∁U A 、∁U B 及A ∩(∁U B ).[解析] ∁U A ={x |x ≤-1,或5<x <6,或x >6},∁U B ={x |x <2,或x ≥5},A ∩(∁UB )={x |-1<x <2,或x =5,或x =6}.16.已知集合A ={a 2,a +1,-3},B ={a -3,a 2+1,2a -1},若A ∩B ={-3},求实数a 的值.[解析] ∵A ∩B ={-3},∴-3∈B ,∴当a -3=-3,即a =0时,A ∩B ={-3,1},与题设条件A ∩B ={-3}矛盾,舍去;当2a -1=-3,即a =-1时,A ={1,0,-3},B ={-4,2,-3},满足A ∩B ={-3},综上可知a =-1.17.已知集合M ={2,a ,b },N ={2a,2,b 2}且M =N .求a 、b 的值.[解析] 解法1:由M =N 及集合元素的互异性得:⎩⎪⎨⎪⎧ a =2a b =b 2或⎩⎪⎨⎪⎧a =b 2b =2a 解上面的方程组得,⎩⎪⎨⎪⎧ a =0b =1或⎩⎪⎨⎪⎧ a =0b =0或⎩⎨⎧ a =14b =12 再根据集合中元素的互异性得,⎩⎪⎨⎪⎧ a =0b =1或⎩⎨⎧ a =14b =12解法2:∵M =N ,∴M 、N 中元素分别对应相同,∴⎩⎪⎨⎪⎧ a +b =2a +b 2a ·b =2a ·b 2即⎩⎪⎨⎪⎧a +b (b -1)=0 ①ab (2b -1)=0 ② ∵集合中元素互异,∴a ,b 不能同时为0.当b ≠0时,由②得a =0或b =12. 当a =0时,由①得b =1或b =0(舍);当b =12时,由①得a =14. ∴a ,b 的值为⎩⎪⎨⎪⎧ a =0b =1或⎩⎨⎧ a =14b =1218.某班有50名学生,先有32名同学参加学校电脑绘画比赛,后有24名同学参加电脑排版比赛.如果有3名学生这两项比赛都没参加,问这个班有多少同学同时参加了两项比赛?[解析] 设同时参加两项比赛的学生有x 名,则只参加电脑绘画比赛的学生有32-x 名,只参加电脑排版比赛的学生有24-x 名,由条件知,(32-x )+(24-x )+x +3=50,∴x =9.答:有9名同学同时参加了两项比赛.。

人教版高中数学必修一1.3.2.2课时练习习题(含答案解析)

人教版高中数学必修一1.3.2.2课时练习习题(含答案解析)

1.3.2.2一、选择题1.已知定义域为R 的函数f (x )在(8,+∞)上为减函数,且函数f (x +8)为偶函数,则( ) A .f (6)>f (7) B .f (6)>f (9) C .f (7)>f (9)D .f (7)>f (10)[答案] D[解析] ∵y =f (x +8)为偶函数, ∴y =f (x )的图象关于直线x =8对称, 又f (x )在(8,+∞)上为减函数, ∴f (x )在(-∞,8)上为增函数, ∴f (10)=f (6)<f (7)=f (9),故选D.2.(胶州三中2009~2010高一模块测试)设奇函数f (x )在(0,+∞)上为增函数,且f (1)=0,则不等式f (x )-f (-x )x<0的解集为( ) A .(-1,0)∪(1,+∞) B .(-∞,-1)∪(0,1) C .(-∞,-1)∪(1,+∞) D .(-1,0)∪(0,1) [答案] D[解析] 奇函数f (x )在(0,+∞)上为增函数,且f (1)=0,f (x )-f (-x )x =2f (x )x<0.由函数的图象得解集为(-1,0)∪(0,1).3.f (x )为偶函数,当x >0时,f (x )=2x -1,则当x <0时,f (x )=( ) A .2x -1B .-2x +1C .2x +1D .-2x -1[答案] D[解析] x <0时,-x >0,∴f (-x )=2·(-x )-1, ∵f (x )为偶函数,∴f (x )=-2x -1.4.偶函数f (x )=ax 2-2bx +1在(-∞,0]上递增,比较f (a -2)与f (b +1)的大小关系( ) A .f (a -2)<f (b +1) B .f (a -2)=f (b +1) C .f (a -2)>f (b +1)D .f (a -2)与f (b +1)大小关系不确定 [答案] A[解析] 由于f (x )为偶函数,∴b =0,f (x )=ax 2-1,又在(-∞,0]上递增,∴a <0,因此,a -2<-1<0<1=b +1,∴f (a -2)<f (-1)=f (1)=f (b +1),故选A.5.已知f (x )为奇函数,当x ∈(-∞,0)时,f (x )=x +2,则f (x )>0的解集为( ) A .(-∞,-2) B .(2,+∞) C .(-2,0)∪(2,+∞) D .(-∞,-2)∪(0,2) [答案] C[解析] 如图,∵x <0时,f (x )=x +2,又f (x )为奇函数,其图象关于原点对称,可画出在(0,+∞)上的图象,∴f (x )>0时,-2<x <0或x >2.6.对于函数f (x )=⎩⎪⎨⎪⎧(x -1)2 (x ≥0)(x +1)2(x <0),下列结论中正确的是( ) A .是奇函数,且在[0,1]上是减函数 B .是奇函数,且在[1,+∞)上是减函数 C .是偶函数,且在[-1,0]上是减函数 D .是偶函数,且在(-∞,-1]上是减函数 [答案] D[解析] 画出函数图象如图,可见此函数为偶函数,在(-∞,-1]上为减函数.7.(曲师大附中2009~2010高一上期末)若函数f (x )是定义在R 上的偶函数,在(-∞,0]上是减函数,且f (3)=0,则使得f (x )<0的x 的取值范围是( )A .(-∞,3)∪(3,+∞)B .(-∞,3)C .(3,+∞)D .(-3,3) [答案] D[解析] ∵f (x )为偶函数,f (3)=0,∴f (-3)=0,又f (x )在(-∞,0]上是减函数,故-3<x ≤0时,f (x )<0.x <-3时,f (x )>0,故0<x <3时,f (x )<0,x >3时,f (x )>0,故使f (x )<0成立的x ∈(-3,3).[点评] 此类问题画示意图解答尤其简便,自己试画图解决.8.(09·浙江)若函数f (x )=x 2+ax (a ∈R),则下列结论正确的是( )A .∀a ∈R ,f (x )在(0,+∞)上是增函数B .∀a ∈R ,f (x )在(0,+∞)上是减函数C .∃a ∈R ,f (x )是偶函数D .∃a ∈R ,f (x )是奇函数 [答案] C[解析] 显见当a =0时,f (x )=x 2为偶函数,故选C.[点评] 本题是找正确的选项,应从最简单的入手,故应从存在性选项考察.若详加讨论本题将变得复杂.对于选项D ,由f (-x )=-f (x )得x =0,故不存在实数a ,使f (x )为奇函数;对于选项B ,令a =0,则f (x )=x 2在(0,+∞)上单调增,故B 错;对于选项A ,若结论成立,则对∀x 1,x 2∈R ,x 1<x 2时,有f (x 1)-f (x 2)=x 21+a x 1-x 22-a x 2=(x 1-x 2)[x 1+x 2-a x 1x 2]<0恒成立,∴x 1+x 2>ax 1x 2恒成立,这是不可能的.9.(2010·安徽理,6)设abc >0,二次函数f (x )=ax 2+bx +c 的图象可能是( )[答案] D[解析] 若a <0,则只能是 A 或B 选项,A 中-b 2a <0,∴b <0,从而c >0与A 图不符;B 中-b2a >0,∴b >0,∴c <0与B 图也不符;若a >0,则抛物线开口向上,只能是C 或D 选项,则当b >0时,有c >0与C 、D 不符.当b <0时,有c <0,此时-b2a>0,且f (0)=c <0,故选D.10.(2010·广东文,10)在集合{a ,b ,c ,d }上定义两种运算、⊗如下: 那么d ⊗(ac )=( )A .aB .bC .cD .d[答案] A[解析] 要迅速而准确地理解新规则,并能立即投入运用,a c =c ,d ⊗c =a ,故选A. 二、填空题11.已知函数y =ax 2+bx +c 的图象过点A (0,-5),B (5,0),它的对称轴为直线x =2,则这个二次函数的解析式为________.[答案] y =x 2-4x -5[解析] 设解析式为y =a (x -2)2+k ,把(0,-5)和(5,0)代入得⎩⎪⎨⎪⎧-5=4a +k0=9a +k ,∴a =1,k =-9,∴y =(x -2)2-9,即y =x 2-4x -5.12.函数f (x )=ax +1x +2在区间(-2,+∞)上是增函数,则a 的取值范围是________.[答案] ⎝⎛⎭⎫12,+∞ [解析] 解法1:f (x )=a +1-2a x +2可视作反比例函数y =1-2ax 经平移得到的.由条件知1-2a <0,∴a >12.解法2:∵f (x )在(-2,+∞)上为增函数,故对于任意x 1,x 2∈(-2,+∞)且x 1<x 2, 有f (x 1)<f (x 2)恒成立,而 f (x 1)-f (x 2)=ax 1+1x 1+2-ax 2+1x 2+2=(x 1-x 2)(2a -1)(x 1+2)(x 2+2)∵-2<x 1<x 2,∴x 1-x 2<0,x 1+2>0,x 2+2>0, 若要f (x 1)-f (x 2)<0,则必须且只需2a -1>0,故a >12.∴a 的取值范围是⎝⎛⎭⎫12,+∞. 三、解答题13.设函数f (x )=ax 2+1bx +c 是奇函数(a 、b 、c ∈Z ),且f (1)=2,f (2)<3,求a 、b 、c 的值.[解析] 由条件知f (-x )+f (x )=0,∴ax 2+1bx +c +ax 2+1c -bx =0,∴c =0又f (1)=2,∴a +1=2b , ∵f (2)<3,∴4a +12b <3,∴4a +1a +1<3,解得:-1<a <2,∴a =0或1,∴b =12或1,由于b ∈Z ,∴a =1、b =1、c =0.14.已知f (x )是定义在(-1,1)上的偶函数,且在(0,1)上为增函数,若f (a -2)-f (4-a 2)<0,求实数a 的取值范围.[解析] 由f (a -2)-f (4-a 2)<0得 f (a -2)<f (4-a 2)又f (x )在(-1,1)上为偶函数,且在(0,1)上递增,∴⎩⎪⎨⎪⎧-1<a -2<1-1<4-a 2<10<|a -2|<|4-a 2|,解得3<a <5,且a ≠2. 15.设f (x )为定义在R 上的偶函数,当0≤x ≤2时,y =x ;当x >2时,y =f (x )的图象是顶点为P (3,4)且过点A (2,2)的抛物线的一部分.(1)求函数f (x )在(-∞,-2)上的解析式; (2)在图中的直角坐标系中画出函数f (x )的图象; (3)写出函数f (x )的值域和单调区间. [解析] (1)当x >2时,设f (x )=a (x -3)2+4. ∵f (x )的图象过点A (2,2),∴f (2)=a (2-3)2+4=2,∴a =-2, ∴f (x )=-2(x -3)2+4. 设x ∈(-∞,-2),则-x >2, ∴f (-x )=-2(-x -3)2+4.又因为f (x )在R 上为偶函数,∴f (-x )=f (x ), ∴f (x )=-2(-x -3)2+4,即f (x )=-2(x +3)2+4,x ∈(-∞,-2). (2)图象如图所示.(3)由图象观察知f (x )的值域为{y |y ≤4}. 单调增区间为(-∞,-3]和[0,3]. 单调减区间为[-3,0]和[3,+∞). *16.已知函数f (x )=2x x 2+1(1)求函数的定义域;(2)判断奇偶性;(3)判断单调性;(4)作出其图象,并依据图象写出其值域.[解析](1)函数的定义域为R.(2)∵f(-x)=-2x1+x2=-f(x)∴f(x)是奇函数,其图象关于原点O对称,故在区间(0,+∞)上研究函数的其它性质.(3)单调性:设x1、x2∈(0,+∞)且x1<x2,则f(x1)-f(x2)=2x11+x21-2x21+x22=2(x1-x2)(1-x1x2) (1+x21)(1+x22)当0<x1<x2≤1时,可知f(x1)-f(x2)<0,∴f(x)在(0,1]上是增函数.当1<x1<x2时,f(x1)-f(x2)>0,∴f(x)在(1,+∞)上是减函数,由于f(x)是奇函数,且f(0)=0,因此,f(x)的减区间为(-∞,-1]、[1,+∞),增区间为[-1,1].并且当x→+∞时,f(x)→0,图象与x轴无限接近.其图象如图所示.可见值域为[-1,1].。

人教版高中数学必修一1.3.2.3课时练习习题(含答案解析)

人教版高中数学必修一1.3.2.3课时练习习题(含答案解析)

1.3.2.3一、选择题1.已知函数f (x )=x 2-2x 的定义域为{0,1,2,3},那么其值域为( )A .{-1,0,3}B .{0,1,2,3}C .[-1,3]D .[0,3][答案] A[解析] f (0)=0,f (1)=-1,f (2)=0,f (3)=3.2.下列函数中,在(-∞,0)上单调递减的函数为( )A .y =x x -1B .y =3-x 2C .y =2x +3D .y =x 2+2x [答案] A[解析] y =3-x 2,y =2x +3在(-∞,0)上为增函数,y =x 2+2x 在(-∞,0)上不单调,故选A.3.函数f (x )=2x 2-mx +3,在(-∞,-2]上单调递减,在[-2,+∞)上单调递增,则f (1)=( )A .-3B .7C .13D .不能确定 [答案] C[解析] 对称轴x =m 4,即x =-2. ∴m =-8,∴f (x )=2x 2+8x +3,∴f (1)=13.4.函数y =x -2x(1≤x ≤2)的最大值与最小值的和为( ) A .0B .-52C .-1D .1 [答案] A[解析] y =x -2x在[1,2]上为增函数,当x =1时y min =-1,当x =2时,y max =1.故选A. 5.(哈三中2009~2010高一学情测评)已知y =f (x )是定义在R 上的奇函数,当x >0时,f (x )=x -2,那么不等式f (x )<12的解集是( ) A .{x |0≤x <52}B .{x |-32<x ≤0} C .{x |-32<x <0,或x >52} D .{x |x <-32或0≤x <52} [答案] D[解析] x <0时,-x >0,∴f (-x )=-x -2,∵f (x )为奇函数,∴f (x )=x +2,又当x =0时,f (x )=0,∴f (x )=⎩⎪⎨⎪⎧ x -2 x >00 x =0x +2 x <0,故不等式f (x )<12化为 ⎩⎪⎨⎪⎧ x >0x -2<12或⎩⎪⎨⎪⎧ x =00<12或⎩⎪⎨⎪⎧ x <0x +2<12, ∴0≤x <52或x <-32,故选D. 6.将一根长为12m 的铁丝弯折成一个矩形框架,则矩形框架的最大面积是( )A .9m 2B .36m 2C .45m 2D .不存在 [答案] A[解析] 设矩形框架一边长x (m),则另一边长为12-2x 2=6-x (m) 故面积S =x (6-x )=-(x -3)2+9≤9(m 2).7.已知f (x )为奇函数,当x >0时,f (x )=(1-x )x ,则x <0时,f (x )=( )A .-x (1+x )B .x (1+x )C .-x (1-x )D .x (1-x )[答案] B[解析] 当x <0时,-x >0,∴f (-x )=(1+x )·(-x ),∵f (x )为奇函数∴-f (x )=-x (1+x ),∴f (x )=x (1+x ),选B.8.已知抛物线y =ax 2+bx +c (a ≠0)的图象经过第一、二、四象限,则直线y =ax +b 不经过第______象限.( )A .一B .二C .三D .四 [答案] B[解析] ∵抛物线经过一、二、四象限,∴a >0,-b 2a>0,∴a >0,b <0, ∴直线y =ax +b 不经过第二象限.9.(2010·湖南理,8)已知min{a ,b }表示a ,b 两数中的最小值,若函数f (x )=min{|x |,|x +t |}的图象关于直线x =-12对称,则t 的值为( ) A .-2B .2C .-1D .1[答案] D[解析] 如图,要使f (x )=min{|x |,|x +t |}的图象关于直线x =-12对称,则t =1.10.(2010·四川文,5)函数f (x )=x 2+mx +1的图象关于直线x =1对称的条件是( )A .m =-2B .m =2C .m =-1D .m =1[答案] A[解析] 由题意知,-m 2=1,m =-2. 二、填空题11.若函数f (x )的图象关于原点对称,且在(0,+∞)上是增函数,f (-3)=0,不等式xf (x )<0的解集为__________.[答案] (-3,0)∪(0,3)[解析] 画出示意图如图.f (x )在(0,+∞)上是增函数.又f (x )的图象关于原点对称.故在(-∞,0)上也是增函数.∵f (-3)=0, ∴f (3)=0∴xf (x )<0的解集为(-3,0)∪(0,3).也可根据题意构造特殊函数解决,例如令f (x )=⎩⎪⎨⎪⎧x -3 (x >0)x +3 (x <0). 12.函数y =3-2x -x 2的增区间为________.[答案] [-3,-1][解析] 函数y =3-2x -x 2的定义域为[-3,1],因此增区间为[-3,-1].13.已知二次函数f (x )的图象顶点为A (2,3),且经过点B (3,1),则解析式为________.[答案] f (x )=-2x 2+8x -5[解析] 设f (x )=a (x -2)2+3,∵过点B (3,1),∴a =-2,∴f (x )=-2(x -2)2+3,即f (x )=-2x 2+8x -5.14.已知f (x )=x 2+bx +c 且f (-2)=f (4),则比较f (1)、f (-1)与c 的大小结果为(用“<”连接起来)______.[答案] f (1)<c <f (-1)[解析] ∵f (-2)=f (4),∴对称轴为x =-2+42=1, 又开口向上,∴最小值为f (1),又f (0)=c ,在(-∞,1)上f (x )单调减,∴f (-1)>f (0),∴f (1)<c <f (-1).三、解答题15.已知y +5与3x +4成正比例,当x =1时,y =2.(1)求y 与x 的函数关系式;(2)求当x =-1时的函数值;(3)如果y 的取值范围是[0,5],求相应的x 的取值范围.[解析] (1)设y +5=k (3x +4),∵x =1时,y =2,∴2+5=k (3+4),∴k =1.∴所求函数关系式为y =3x -1.(2)当x =-1时,y =3×(-1)-1=-4.(3)令0≤3x -1≤5得,13≤x ≤2, ∴所求x 的取值范围是[13,2]. 16.已知函数f (x )=x 2-4x -4.①若函数定义域为[3,4],求函数值域.②若函数定义域为[-3,4],求函数值域.③当x ∈[a -1,a ]时,y 的取值范围是[1,8],求a .[解析] ①f (x )=(x -2)2-8开口向上,对称轴x =2,∴当x ∈[3,4]时,f (x )为增函数,最小值f (3)=-7,最大值f (4)=-4.∴值域为[-7,-4].②f (x )=(x -2)2-8在[-3,2]上是减函数,在[2,4]上是增函数,∴最小值为f (2)=-8,又f (-3)=17,f (4)=-4.(也可以通过比较-3和4哪一个与对称轴x =2的距离远则哪一个对应函数值较大,开口向下时同样可得出.)∴最大值为17,值域为[-8,17].③∵f (x )=(x -2)2-8,当x ∈[a -1,a ]时y 的取值范围是[1,8],∴2∉[a -1,a ].当a <2时,函数f (x )在[a -1,a ]上是减函数.∴⎩⎪⎨⎪⎧f (a -1)=8f (a )=1∴a =-1; 当a -1>2即a >3时,f (x )在[a -1,a ]上是增函数,则⎩⎪⎨⎪⎧ f (a -1)=1f (a )=8∴a =6.综上得a =-1或a =6. 17.已知二次函数f (x )=ax 2+bx +c (x ∈R),当x =2时,函数取得最大值2,其图象在x 轴上截得线段长为2,求其解析式.[解析] 解法1:由条件知a <0,且顶点为(2,2),设f (x )=a (x -2)2+2,即y =ax 2-4ax +4a +2,设它与x 轴两交点为A (x 1,0),B (x 2,0),则x 1+x 2=4,x 1x 2=4+2a, 由条件知,|x 1-x 2|=(x 1+x 2)2-4x 1x 2 =16-4(4+2a )=-8a=2,∴a =-2, ∴解析式为f (x )=-2x 2+8x -6.解法2:由条件知f (x )的对称轴为x =2,设它与x 轴两交点为A (x 1,0),B (x 2,0)且x 1<x 2,则⎩⎪⎨⎪⎧ x 2-x 1=2x 1+x 2=4,∴⎩⎪⎨⎪⎧x 1=1x 2=3, 故可设f (x )=a (x -1)(x -3),∵过(2,2)点,∴a =-2,∴f (x )=-2x 2+8x -6.。

高一数学课后习题与答案

高一数学课后习题与答案

人教版高一数学课后答案 第一章 集合与函数概念1.1集合1.1.1集合的含义与表示练习(第5页)1.用符号“∈”或“∉”填空:(1)设A 为所有亚洲国家组成的集合,则:中国_______A ,美国_______A ,印度_______A ,英国_______A ;(2)若2{|}A x x x ==,则1-_______A ; (3)若2{|60}B x x x =+-=,则3_______B ;(4)若{|110}C x N x =∈≤≤,则8_______C ,9.1_______C . 1.(1)中国∈A ,美国∉A ,印度∈A ,英国∉A ;中国和印度是属于亚洲的国家,美国在北美洲,英国在欧洲.(2)1-∉A 2{|}{0,1}A x x x ===. (3)3∉B 2{|60}{3,2}B x x x =+-==-. (4)8∈C ,9.1∉C 9.1N ∉. 2.试选择适当的方法表示下列集合:(1)由方程290x -=的所有实数根组成的集合; (2)由小于8的所有素数组成的集合;(3)一次函数3y x =+与26y x =-+的图象的交点组成的集合; (4)不等式453x -<的解集.2.解:(1)因为方程290x -=的实数根为123,3x x =-=,所以由方程290x -=的所有实数根组成的集合为{3,3}-; (2)因为小于8的素数为2,3,5,7,所以由小于8的所有素数组成的集合为{2,3,5,7};(3)由326y x y x =+⎧⎨=-+⎩,得14x y =⎧⎨=⎩,即一次函数3y x =+与26y x =-+的图象的交点为(1,4),所以一次函数3y x =+与26y x =-+的图象的交点组成的集合为{(1,4)};(4)由453x -<,得2x <,所以不等式453x -<的解集为{|2}x x <.1.1.2集合间的基本关系练习(第7页)1.写出集合{,,}a b c 的所有子集.1.解:按子集元素个数来分类,不取任何元素,得∅;取一个元素,得{},{},{}a b c ; 取两个元素,得{,},{,},{,}a b a c b c ; 取三个元素,得{,,}a b c ,即集合{,,}a b c 的所有子集为,{},{},{},{,},{,},{,},{,,}a b c a b a c b c a b c ∅.2.用适当的符号填空:(1)a ______{,,}a b c ; (2)0______2{|0}x x =; (3)∅______2{|10}x R x ∈+=; (4){0,1}______N ;(5){0}______2{|}x x x =; (6){2,1}______2{|320}x x x -+=. 2.(1){,,}a a b c ∈ a 是集合{,,}a b c 中的一个元素; (2)20{|0}x x ∈= 2{|0}{0}x x ==; (3)2{|10}x R x ∅=∈+= 方程210x +=无实数根,2{|10}x R x ∈+==∅;(4){0,1}N (或{0,1}N ⊆) {0,1}是自然数集合N 的子集,也是真子集;(5){0}2{|}x x x = (或2{0}{|}x x x ⊆=) 2{|}{0,1}x x x ==; (6)2{2,1}{|320}x x x =-+= 方程2320x x -+=两根为121,2x x ==.3.判断下列两个集合之间的关系:(1){1,2,4}A =,{|8}B x x =是的约数;(2){|3,}A x x k k N ==∈,{|6,}B x x z z N ==∈;(3){|410}A x x x N +=∈是与的公倍数,,{|20,}B x x m m N +==∈.3.解:(1)因为{|8}{1,2,4,8}B x x ==是的约数,所以AB ;(2)当2k z =时,36k z =;当21k z =+时,363k z =+,即B 是A 的真子集,BA ;(3)因为4与10的最小公倍数是20,所以A B =.1.1.3集合的基本运算练习(第11页)1.设{3,5,6,8},{4,5,7,8}A B ==,求,A B A B . 1.解:{3,5,6,8}{4,5,7,8}{5,8}A B == , {3,5,6,8}{4,5,7,8}{3,4,5,6,7,8}A B == .2.设22{|450},{|1}A x x x B x x =--===,求,A B A B . 2.解:方程2450x x --=的两根为121,5x x =-=, 方程210x -=的两根为121,1x x =-=, 得{1,5},{1,1}A B =-=-, 即{1},{1,1,5}A B A B =-=- .3.已知{|}A x x =是等腰三角形,{|}B x x =是直角三角形,求,A B A B . 3.解:{|}A B x x = 是等腰直角三角形,{|}A B x x = 是等腰三角形或直角三角形. 4.已知全集{1,2,3,4,5,6,7}U =,{2,4,5},{1,3,5,7}A B ==, 求(),()()U U U A B A B 痧 .4.解:显然{2,4,6}U B =ð,{1,3,6,7}U A =ð, 则(){2,4}U A B = ð,()(){6}U U A B = 痧.1.1集合习题1.1 (第11页) A 组 1.用符号“∈”或“∉”填空:(1)237_______Q ; (2)23______N ; (3)π_______Q ;(4R ; (5Z ; (6)2_______N . 1.(1)237Q ∈ 237是有理数; (2)23N ∈ 239=是个自然数;(3)Q π∉ π是个无理数,不是有理数; (4R(5Z3=是个整数; (6)2N ∈ 2)5=是个自然数. 2.已知{|31,}A x x k k Z ==-∈,用 “∈”或“∉” 符号填空: (1)5_______A ; (2)7_______A ; (3)10-_______A .2.(1)5A ∈; (2)7A ∉; (3)10A -∈.当2k =时,315k -=;当3k =-时,3110k -=-; 3.用列举法表示下列给定的集合: (1)大于1且小于6的整数;(2){|(1)(2)0}A x x x =-+=; (3){|3213}B x Z x =∈-<-≤.3.解:(1)大于1且小于6的整数为2,3,4,5,即{2,3,4,5}为所求;(2)方程(1)(2)0x x -+=的两个实根为122,1x x =-=,即{2,1}-为所求; (3)由不等式3213x -<-≤,得12x -<≤,且x Z ∈,即{0,1,2}为所求. 4.试选择适当的方法表示下列集合:(1)二次函数24y x =-的函数值组成的集合;(2)反比例函数2y x=的自变量的值组成的集合; (3)不等式342x x ≥-的解集.4.解:(1)显然有20x ≥,得244x -≥-,即4y ≥-,得二次函数24y x =-的函数值组成的集合为{|4}y y ≥-;(2)显然有0x ≠,得反比例函数2y x =的自变量的值组成的集合为{|0}x x ≠; (3)由不等式342x x ≥-,得45x ≥,即不等式342x x ≥-的解集为4{|}5x x ≥.5.选用适当的符号填空:(1)已知集合{|233},{|2}A x x x B x x =-<=≥,则有:4-_______B ; 3-_______A ; {2}_______B ; B _______A ;(2)已知集合2{|10}A x x =-=,则有:1_______A ; {1}-_______A ; ∅_______A ; {1,1}-_______A ; (3){|}x x 是菱形_______{|}x x 是平行四边形; {|}x x 是等腰三角形_______{|}x x 是等边三角形.5.(1)4B -∉; 3A -∉; {2}B ; BA ;2333x x x -<⇒>-,即{|3},{|2}A x x B x x =>-=≥;(2)1A ∈; {1}-A ; ∅A ; {1,1}-=A ; 2{|10}{1,1}A x x =-==-;(3){|}x x 是菱形{|}x x 是平行四边形;菱形一定是平行四边形,是特殊的平行四边形,但是平行四边形不一定是菱形;{|}x x 是等边三角形{|}x x 是等腰三角形.等边三角形一定是等腰三角形,但是等腰三角形不一定是等边三角形.6.设集合{|24},{|3782}A x x B x x x =≤<=-≥-,求,A B A B . 6.解:3782x x -≥-,即3x ≥,得{|24},{|3}A x x B x x =≤<=≥, 则{|2}A B x x =≥ ,{|34}A B x x =≤< .7.设集合{|9}A x x =是小于的正整数,{1,2,3},{3,4,5,6}B C ==,求A B , A C ,()A B C ,()A B C .7.解:{|9}{1,2,3,4,5,6,7,8}A x x ==是小于的正整数, 则{1,2,3}A B = ,{3,4,5,6}A C = ,而{1,2,3,4,5,6}B C = ,{3}B C = , 则(){1,2,3,4,5,6}A B C = ,(){1,2,3,4,5,6,7,8}A B C = .8.学校里开运动会,设{|}A x x =是参加一百米跑的同学,{|}B x x =是参加二百米跑的同学,{|}C x x =是参加四百米跑的同学,学校规定,每个参加上述的同学最多只能参加两项,请你用集合的语言说明这项规定, 并解释以下集合运算的含义:(1)A B ;(2)A C . 8.解:用集合的语言说明这项规定:每个参加上述的同学最多只能参加两项, 即为()A B C =∅ .(1){|}A B x x = 是参加一百米跑或参加二百米跑的同学; (2){|}A C x x = 是既参加一百米跑又参加四百米跑的同学.9.设{|}S x x =是平行四边形或梯形,{|}A x x =是平行四边形,{|}B x x =是菱形, {|}C x x =是矩形,求B C ,A B ð,S A ð. 9.解:同时满足菱形和矩形特征的是正方形,即{|}B C x x = 是正方形,平行四边形按照邻边是否相等可以分为两类,而邻边相等的平行四边形就是菱形, 即{|}A B x x =是邻边不相等的平行四边形ð, {|}S A x x =是梯形ð.10.已知集合{|37},{|210}A x x B x x =≤<=<<,求()R A B ð,()R A B ð,()R A B ð,()R A B ð.10.解:{|210}A B x x =<< ,{|37}A B x x =≤< , {|3,7}R A x x x =<≥或ð,{|2,10}R B x x x =≤≥或ð, 得(){|2,10}R A B x x x =≤≥ 或ð, (){|3,7}R A B x x x =<≥ 或ð, (){|23,710}R A B x x x =<<≤< 或ð, (){|2,3710}R A B x x x x =≤≤<≥ 或或ð.B 组1.已知集合{1,2}A =,集合B 满足{1,2}A B = ,则集合B 有 个. 1.4 集合B 满足A B A = ,则B A ⊆,即集合B 是集合A 的子集,得4个子集. 2.在平面直角坐标系中,集合{(,)|}C x y y x ==表示直线y x =,从这个角度看, 集合21(,)|45x y D x y x y ⎧-=⎫⎧=⎨⎨⎬+=⎩⎩⎭表示什么?集合,C D 之间有什么关系?2.解:集合21(,)|45x y D x y x y ⎧-=⎫⎧=⎨⎨⎬+=⎩⎩⎭表示两条直线21,45x y x y -=+=的交点的集合,即21(,)|{(1,1)}45x y D x y x y ⎧-=⎫⎧==⎨⎨⎬+=⎩⎩⎭,点(1,1)D 显然在直线y x =上,得D C .3.设集合{|(3)()0,}A x x x a a R =--=∈,{|(4)(1)0}B x x x =--=,求,A B A B . 3.解:显然有集合{|(4)(1)0}{1,4}B x x x =--==,当3a =时,集合{3}A =,则{1,3,4},A B A B ==∅ ; 当1a =时,集合{1,3}A =,则{1,3,4},{1}A B A B == ; 当4a =时,集合{3,4}A =,则{1,3,4},{4}A B A B == ; 当1a ≠,且3a ≠,且4a ≠时,集合{3,}A a =,则{1,3,4,},A B a A B ==∅ .4.已知全集{|010}U A B x N x ==∈≤≤ ,(){1,3,5,7}U A B = ð,试求集合B . 4.解:显然{0,1,2,3,4,5,6,7,8,9,10}U =,由U A B = ,得U B A ⊆ð,即()U UA B B =痧,而(){1,3,5,7}U A B = ð, 得{1,3,5,7}U B =ð,而()U U B B =痧, 即{0,2,4,6,8.9,10}B =.第一章 集合与函数概念1.2函数及其表示1.2.1函数的概念练习(第19页)1.求下列函数的定义域:(1)1()47f x x =+; (2)()1f x =.1.解:(1)要使原式有意义,则470x +≠,即74x ≠-,得该函数的定义域为7{|}4x x ≠-;(2)要使原式有意义,则1030x x -≥⎧⎨+≥⎩,即31x -≤≤,得该函数的定义域为{|31}x x -≤≤. 2.已知函数2()32f x x x =+,(1)求(2),(2),(2)(2)f f f f -+-的值; (2)求(),(),()()f a f a f a f a -+-的值.2.解:(1)由2()32f x x x =+,得2(2)322218f =⨯+⨯=, 同理得2(2)3(2)2(2)8f -=⨯-+⨯-=,则(2)(2)18826f f +-=+=,即(2)18,(2)8,(2)(2)26f f f f =-=+-=;(2)由2()32f x x x =+,得22()3232f a a a a a =⨯+⨯=+, 同理得22()3()2()32f a a a a a -=⨯-+⨯-=-, 则222()()(32)(32)6f a f a a a a a a +-=++-=,即222()32,()32,()()6f a a a f a a a f a f a a =+-=-+-=.3.判断下列各组中的函数是否相等,并说明理由:(1)表示炮弹飞行高度h 与时间t 关系的函数21305h t t =-和二次函数21305y x x =-; (2)()1f x =和0()g x x =.3.解:(1)不相等,因为定义域不同,时间0t >; (2)不相等,因为定义域不同,0()(0)g x x x =≠. 1.2.2函数的表示法练习(第23页)1.如图,把截面半径为25cm 的圆形木头锯成矩形木料,如果矩形的一边长为xcm , 面积为2ycm ,把y 表示为x 的函数.1,y ==,且050x <<,即(050)y x =<<.2.下图中哪几个图象与下述三件事分别吻合得最好?请你为剩下的那个图象写出一件事. (1)我离开家不久,发现自己把作业本忘在家里了,于是返回家里找到了作业本再上学;(2)我骑着车一路匀速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间; (3)我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速.2.解:图象(A )对应事件(2),在途中遇到一次交通堵塞表示离开家的距离不发生变化; 图象(B )对应事件(3),刚刚开始缓缓行进,后来为了赶时间开始加速; 图象(D )对应事件(1),返回家里的时刻,离开家的距离又为零;图象(C )我出发后,以为要迟到,赶时间开始加速,后来心情轻松,缓缓行进. 3.画出函数|2|y x =-的图象. 3.解:2,2|2|2,2x x y x x x -≥⎧=-=⎨-+<⎩,图象如下所示.{|},{0,1}A x x B ==是锐角,从A 到B 的映射是“求正弦”,4.设中元素60相对应与AB 中的元素是什么?与B中的元素2相对应的A 中元素是什的么?4.解:因为sin 60=,所以与A 中元素60相对应的B;因为sin 45=,所以与B相对应的A 中元素是45.(A )(B )(C )(D )1.2函数及其表示 习题1.2(第23页)1.求下列函数的定义域:(1)3()4xf x x =-; (2)()f x =(3)26()32f x x x =-+; (4)()f x =1.解:(1)要使原式有意义,则40x -≠,即4x ≠, 得该函数的定义域为{|4}x x ≠;(2)x R ∈,()f x =即该函数的定义域为R ;(3)要使原式有意义,则2320x x -+≠,即1x ≠且2x ≠,得该函数的定义域为{|12}x x x ≠≠且;(4)要使原式有意义,则4010x x -≥⎧⎨-≠⎩,即4x ≤且1x ≠,得该函数的定义域为{|41}x x x ≤≠且. 2.下列哪一组中的函数()f x 与()g x 相等?(1)2()1,()1x f x x g x x=-=-; (2)24(),()f x x g x ==;(3)2(),()f x x g x ==.2.解:(1)()1f x x =-的定义域为R ,而2()1x g x x=-的定义域为{|0}x x ≠, 即两函数的定义域不同,得函数()f x 与()g x 不相等;(2)2()f x x =的定义域为R ,而4()g x =的定义域为{|0}x x ≥, 即两函数的定义域不同,得函数()f x 与()g x 不相等;(32x =,即这两函数的定义域相同,切对应法则相同,得函数()f x 与()g x 相等.3.画出下列函数的图象,并说出函数的定义域和值域.(1)3y x =; (2)8y x=; (3)45y x =-+; (4)267y x x =-+. 3.解:(1)定义域是(,)-∞+∞,值域是(,)-∞+∞; (2)定义域是(,0)(0,)-∞+∞ ,值域是(,0)(0,)-∞+∞ ;(3)域是(,)-∞+∞,值域是(,)-∞+∞;定义(4)定义域是(,)-∞+∞,值域是[2,)-+∞.4.已知函数2()352f x x x =-+,求(f ,()f a -,(3)f a +,()(3)f a f +.4.解:因为2()352f x x x =-+,所以2(3(5(28f =⨯-⨯+=+即(8f =+同理,22()3()5()2352f a a a a a -=⨯--⨯-+=++, 即2()352f a a a -=++;22(3)3(3)5(3)231314f a a a a a +=⨯+-⨯++=++, 即2(3)31314f a a a +=++;22()(3)352(3)3516f a f a a f a a +=-++=-+, 即2()(3)3516f a f a a +=-+. 5.已知函数2()6x f x x +=-, (1)点(3,14)在()f x 的图象上吗? (2)当4x =时,求()f x 的值; (3)当()2f x =时,求x 的值. 5.解:(1)当3x =时,325(3)14363f +==-≠-, 即点(3,14)不在()f x 的图象上; (2)当4x =时,42(4)346f +==--, 即当4x =时,求()f x 的值为3-;(3)2()26x f x x +==-,得22(6)x x +=-, 即14x =.6.若2()f x x bx c =++,且(1)0,(3)0f f ==,求(1)f -的值. 6.解:由(1)0,(3)0f f ==,得1,3是方程20x bx c ++=的两个实数根, 即13,13b c +=-⨯=,得4,3b c =-=,即2()43f x x x =-+,得2(1)(1)4(1)38f -=--⨯-+=, 即(1)f -的值为8.7.画出下列函数的图象:(1)0,0()1,0x F x x ≤⎧=⎨>⎩; (2)()31,{1,2,3}G n n n =+∈.7.图象如下:8.如图,矩形的面积为10,如果矩形的长为x ,宽为y ,对角线为d ,周长为l ,那么你能获得关于这些量的哪些函数? 8.解:由矩形的面积为10,即10xy =,得10(0)y x x=>,10(0)x y y=>,由对角线为d ,即d =,得0)d x =>, 由周长为l ,即22l x y =+,得202(0)l x x x=+>, 另外2()l x y =+,而22210,xy d x y ==+,得(0)l d ===>,即0)l d =>.9.一个圆柱形容器的底部直径是dcm ,高是hcm ,现在以3/vcm s 的速度向容器内注入某种溶液.求溶液内溶液的高度xcm 关于注入溶液的时间ts 的函数解析式,并写出函数的定义域和值域. 9.解:依题意,有2()2d x vt π=,即24vx t d π=, 显然0x h ≤≤,即240v t h d π≤≤,得204h d t vπ≤≤, 得函数的定义域为2[0,]4h d vπ和值域为[0,]h . 10.设集合{,,},{0,1}A a b c B ==,试问:从A 到B 的映射共有几个? 并将它们分别表示出来.10.解:从A 到B 的映射共有8个.分别是()0()0()0f a f b f c =⎧⎪=⎨⎪=⎩,()0()0()1f a f b f c =⎧⎪=⎨⎪=⎩,()0()1()0f a f b f c =⎧⎪=⎨⎪=⎩,()0()0()1f a f b f c =⎧⎪=⎨⎪=⎩,()1()0()0f a f b f c =⎧⎪=⎨⎪=⎩,()1()0()1f a f b f c =⎧⎪=⎨⎪=⎩,()1()1()0f a f b f c =⎧⎪=⎨⎪=⎩,()1()0()1f a f b f c =⎧⎪=⎨⎪=⎩.B组1.函数()r f p =的图象如图所示. (1)函数()r f p =的定义域是什么? (2)函数()r f p =的值域是什么?(3)r 取何值时,只有唯一的p 值与之对应? 1.解:(1)函数()r f p =的定义域是[5,0][2,6)- ; (2)函数()r f p =的值域是[0,)+∞;(3)当5r >,或02r ≤<时,只有唯一的p 值与之对应.2.画出定义域为{|38,5}x x x -≤≤≠且,值域为{|12,0}y y y -≤≤≠的一个函数的图象.(1)如果平面直角坐标系中点(,)P x y 的坐标满足38x -≤≤,12y -≤≤,那么其中哪些点不能在图象上?(2)将你的图象和其他同学的相比较,有什么差别吗?2.解:图象如下,(1)点(,0)x 和点(5,)y 不能在图象上;(2)省略.3.函数()[]f x x =的函数值表示不超过x 的最大整数,例如,[ 3.5]4-=-,[2.1]2=. 当( 2.5,3]x ∈-时,写出函数()f x 的解析式,并作出函数的图象.3.解:3, 2.522,211,10()[]0,011,122,233,3x x x f x x x x x x --<<-⎧⎪--≤<-⎪⎪--≤<⎪==≤<⎨⎪≤<⎪≤<⎪⎪=⎩图象如下4.如图所示,一座小岛距离海岸线上最近的点P 的距离是2km ,从点P 沿海岸正东12km 处有一个城镇.(1)假设一个人驾驶的小船的平均速度为3/km h ,步行的速度是5/km h ,t (单位:h )表示他从小岛到城镇的时间,x (单位:km )表示此人将船停在海岸处距P 点的距离.请将t 表示为x 的函数. (2)如果将船停在距点P 4km 处,那么从小岛到城镇要多长时间(精确到1h )?4.解:(112x -,得1235xt -=+,(012)x ≤≤,即1235xt -=+,(012)x ≤≤.(2)当4x =时,12483()355t h -=+=+≈.第一章 集合与函数概念1.3函数的基本性质1.3.1单调性与最大(小)值练习(第32页)1.请根据下图描述某装配线的生产效率与生产线上工人数量间的关系.1.答:在一定的范围内,生产效率随着工人数量的增加而提高,当工人数量达到某个数量时,生产效率达到最大值,而超过这个数量时,生产效率随着工人数量的增加而降低.由此可见,并非是工人越多,生产效率就越高. 2.整个上午(8:0012:00) 天气越来越暖,中午时分(12:0013:00) 一场暴风雨使天气骤然凉爽了许多.暴风雨过后,天气转暖,直到太阳落山(18:00)才又开始转凉.画出这一天8:0020:00 期间气温作为时间函数的一个可能的图象,并说出所画函数的单调区间. 2.解:图象如下[8,12]是递增区间,[12,13]是递减区间,[13,18]是递增区间,[18,20]是递减区间. 3.根据下图说出函数的单调区间,以及在每一单调区间上,函数是增函数还是减函数.3.解:该函数在[1,0]-上是减函数,在[0,2]上是增函数,在[2,4]上是减函数,在[4,5]上是增函数.4.证明函数()21f x x =-+在R 上是减函数.4.证明:设12,x x R ∈,且12x x <,因为121221()()2()2()0f x f x x x x x -=--=->, 即12()()f x f x >,所以函数()21f x x =-+在R 上是减函数.5.设()f x 是定义在区间[6,11]-上的函数.如果()f x 在区间[6,2]--上递减,在区间[2,11]-上递增,画出()f x 的一个大致的图象,从图象上可以发现(2)f -是函数()f x 的一个 . 5.最小值.1.3.2单调性与最大(小)值练习(第36页)1.判断下列函数的奇偶性:(1)42()23f x x x =+; (2)3()2f x x x =-(3)21()x f x x+=; (4)2()1f x x =+.1.解:(1)对于函数42()23f x x x =+,其定义域为(,)-∞+∞,因为对定义域内每一个x 都有4242()2()3()23()f x x x x x f x -=-+-=+=, 所以函数42()23f x x x =+为偶函数;(2)对于函数3()2f x x x =-,其定义域为(,)-∞+∞,因为对定义域内每一个x 都有33()()2()(2)()f x x x x x f x -=---=--=-, 所以函数3()2f x x x =-为奇函数;(3)对于函数21()x f x x+=,其定义域为(,0)(0,)-∞+∞ ,因为对定义域内每一个x 都有22()11()()x x f x f x x x -++-==-=--, 所以函数21()x f x x+=为奇函数;(4)对于函数2()1f x x =+,其定义域为(,)-∞+∞,因为对定义域内每一个x 都有22()()11()f x x x f x -=-+=+=, 所以函数2()1f x x =+为偶函数.2.已知()f x 是偶函数,()g x 是奇函数,试将下图补充完整.2.解:()f x 是偶函数,其图象是关于y 轴对称的;()g x 是奇函数,其图象是关于原点对称的.习题1.3A 组1.画出下列函数的图象,并根据图象说出函数()y f x =的单调区间,以及在各单调区间 上函数()y f x =是增函数还是减函数.(1)256y x x =--; (2)29y x =-. 1.解:(1)函数在5(,)2-∞上递减;函数在5[,)2+∞上递增; (2)(,0)-∞上递增;函数在[0,)+∞上递减.函数在2.证明:(1)函数2()1f x x =+在(,0)-∞上是减函数;(2)函数1()1f x x=-在(,0)-∞上是增函数.120x x <<,而2.证明:(1)设2212121212()()()()f x f x x x x x x x -=-=+-,由12120,0x x x x +<-<,得12()()0f x f x ->,即12()()f x f x >,所以函数2()1f x x =+在(,0)-∞上是减函数;(2)设120x x <<,而1212211211()()x x f x f x x x x x --=-=, 由12120,0x x x x >-<,得12()()0f x f x -<,即12()()f x f x <,所以函数1()1f x x=-在(,0)-∞上是增函数. 3.探究一次函数()y mx b x R =+∈的单调性,并证明你的结论. 3.解:当0m >时,一次函数y mx b =+在(,)-∞+∞上是增函数; 当0m <时,一次函数y mx b =+在(,)-∞+∞上是减函数, 令()f x mx b =+,设12x x <, 而1212()()()f x f x m x x -=-,当0m >时,12()0m x x -<,即12()()f x f x <, 得一次函数y mx b =+在(,)-∞+∞上是增函数;当0m <时,12()0m x x ->,即12()()f x f x >,得一次函数y mx b =+在(,)-∞+∞上是减函数.4.一名心率过速患者服用某种药物后心率立刻明显减慢,之后随着药力的减退,心率再次 慢慢升高.画出自服药那一刻起,心率关于时间的一个可能的图象(示意图). 4.解:自服药那一刻起,心率关于时间的一个可能的图象为5.某汽车租赁公司的月收益y 元与每辆车的月租金x 元间的关系为21622100050x y x =-+-,那么,每辆车的月租金多少元时,租赁公司的月收益最大?最大月收益是多少?5.解:对于函数21622100050x y x =-+-, 当162405012()50x =-=⨯-时,max 307050y =(元), 即每辆车的月租金为4050元时,租赁公司最大月收益为307050元.6.已知函数()f x 是定义在R 上的奇函数,当0x ≥时,()(1)f x x x =+.画出函数()f x 的图象,并求出函数的解析式.6.解:当0x <时,0x ->,而当0x ≥时,()(1)f x x x =+,即()(1)f x x x -=--,而由已知函数是奇函数,得()()f x f x -=-, 得()(1)f x x x -=--,即()(1)f x x x =-, 所以函数的解析式为(1),0()(1),0x x x f x x x x +≥⎧=⎨-<⎩.B 组1.已知函数2()2f x x x =-,2()2([2,4])g x x x x =-∈.(1)求()f x ,()g x 的单调区间; (2)求()f x ,()g x 的最小值. 1.解:(1)二次函数2()2f x x x =-的对称轴为1x =,则函数()f x 的单调区间为(,1),[1,)-∞+∞,且函数()f x 在(,1)-∞上为减函数,在[1,)+∞上为增函数, 函数()g x 的单调区间为[2,4], 且函数()g x 在[2,4]上为增函数; (2)当1x =时,min ()1f x =-, 因为函数()g x 在[2,4]上为增函数, 所以2min ()(2)2220g x g ==-⨯=.2.如图所示,动物园要建造一面靠墙的2间面积相同的矩形熊猫居室,如果可供建造围墙的材料总长是30m ,那么宽x (单位:m )为多少才能使建造的每间熊猫居室面积最大?每间熊猫居室的最大面积是多少?2.解:由矩形的宽为x m ,得矩形的长为3032xm -,设矩形的面积为S , 则23033(10)22x x x S x --==-, 当5x =时,2max 37.5S m =,即宽5x =m 才能使建造的每间熊猫居室面积最大,且每间熊猫居室的最大面积是237.5m .3.已知函数()f x 是偶函数,而且在(0,)+∞上是减函数,判断()f x 在(,0)-∞上是增函数还是减函数,并证明你的判断.3.判断()f x 在(,0)-∞上是增函数,证明如下: 设120x x <<,则120x x ->->,因为函数()f x 在(0,)+∞上是减函数,得12()()f x f x -<-, 又因为函数()f x 是偶函数,得12()()f x f x <,所以()f x 在(,0)-∞上是增函数.复习参考题A 组1.用列举法表示下列集合: (1)2{|9}A x x ==; (2){|12}B x N x =∈≤≤; (3)2{|320}C x x x =-+=.1.解:(1)方程29x =的解为123,3x x =-=,即集合{3,3}A =-; (2)12x ≤≤,且x N ∈,则1,2x =,即集合{1,2}B =;(3)方程2320x x -+=的解为121,2x x ==,即集合{1,2}C =. 2.设P 表示平面内的动点,属于下列集合的点组成什么图形? (1){|}P PA PB =(,)A B 是两个定点; (2){|3}P PO cm =()O 是定点.2.解:(1)由PA PB =,得点P 到线段AB 的两个端点的距离相等, 即{|}P PA PB =表示的点组成线段AB 的垂直平分线;(2){|3}P PO cm =表示的点组成以定点O 为圆心,半径为3cm 的圆. 3.设平面内有ABC ∆,且P 表示这个平面内的动点,指出属于集合{|}{|}P PA PB P PA PC == 的点是什么.3.解:集合{|}P PA PB =表示的点组成线段AB 的垂直平分线, 集合{|}P PA PC =表示的点组成线段AC 的垂直平分线,得{|}{|}P PA PB P PA PC == 的点是线段AB 的垂直平分线与线段AC 的垂直平分线的交点,即ABC ∆的外心.4.已知集合2{|1}A x x ==,{|1}B x ax ==.若B A ⊆,求实数a 的值.4.解:显然集合{1,1}A =-,对于集合{|1}B x ax ==, 当0a =时,集合B =∅,满足B A ⊆,即0a =;当0a ≠时,集合1{}B a =,而B A ⊆,则11a =-,或11a=, 得1a =-,或1a =, 综上得:实数a 的值为1,0-,或1.5.已知集合{(,)|20}A x y x y =-=,{(,)|30}B x y x y =+=,{(,)|23}C x y x y =-=,求A B ,A C ,()()AB BC .5.解:集合20(,)|{(0,0)}30x y A B x y x y ⎧-=⎫⎧==⎨⎨⎬+=⎩⎩⎭,即{(0,0)}A B = ;集合20(,)|23x y A C x y x y ⎧-=⎫⎧==∅⎨⎨⎬-=⎩⎩⎭,即A C =∅ ;集合3039(,)|{(,)}2355x y B C x y x y ⎧+=⎫⎧==-⎨⎨⎬-=⎩⎩⎭;则39()(){(0,0),(,)}55A B B C =- . 6.求下列函数的定义域:(1)y ;(2)||5y x =-.6.解:(1)要使原式有意义,则2050x x -≥⎧⎨+≥⎩,即2x ≥,得函数的定义域为[2,)+∞;(2)要使原式有意义,则40||50x x -≥⎧⎨-≠⎩,即4x ≥,且5x ≠,得函数的定义域为[4,5)(5,)+∞ . 7.已知函数1()1xf x x-=+,求: (1)()1(1)f a a +≠-; (2)(1)(2)f a a +≠-.7.解:(1)因为1()1xf x x -=+, 所以1()1a f a a -=+,得12()1111a f a a a-+=+=++,即2()11f a a +=+; (2)因为1()1xf x x-=+,所以1(1)(1)112a af a a a -++==-+++,即(1)2af a a +=-+.8.设221()1x f x x +=-,求证:(1)()()f x f x -=; (2)1()()f f x x=-.8.证明:(1)因为221()1x f x x+=-, 所以22221()1()()1()1x x f x f x x x+-+-===---, 即()()f x f x -=;(2)因为221()1x f x x+=-, 所以222211()11()()111()x x f f x x x x++===---,即1()()f f x x=-.9.已知函数2()48f x x kx =--在[5,20]上具有单调性,求实数k 的取值范围. 9.解:该二次函数的对称轴为8k x =, 函数2()48f x x kx =--在[5,20]上具有单调性,则208k ≥,或58k≤,得160k ≥,或40k ≤, 即实数k 的取值范围为160k ≥,或40k ≤.10.已知函数2y x -=,(1)它是奇函数还是偶函数? (2)它的图象具有怎样的对称性? (3)它在(0,)+∞上是增函数还是减函数?(4)它在(,0)-∞上是增函数还是减函数?10.解:(1)令2()f x x -=,而22()()()f x x x f x ---=-==, 即函数2y x -=是偶函数;(2)函数2y x -=的图象关于y 轴对称; (3)函数2y x -=在(0,)+∞上是减函数; (4)函数2y x -=在(,0)-∞上是增函数.B 组1.学校举办运动会时,高一(1)班共有28名同学参加比赛,有15人参加游泳比赛,有8人参加田径比赛,有14人参加球类比赛,同时参加游泳比赛和田径比赛的有3人,同时参加游泳比赛和球类比赛的有3人,没有人同时参加三项比赛.问同时参加田径和球类比赛的有多少人?只参加游泳一项比赛的有多少人? 1.解:设同时参加田径和球类比赛的有x 人, 则158143328x ++---=,得3x =, 只参加游泳一项比赛的有15339--=(人),即同时参加田径和球类比赛的有3人,只参加游泳一项比赛的有9人. 2.已知非空集合2{|}A x R x a =∈=,试求实数a 的取值范围. 2.解:因为集合A ≠∅,且20x ≥,所以0a ≥.3.设全集{1,2,3,4,5,6,7,8,9}U =,(){1,3}U A B = ð,(){2,4}U A B = ð,求集合B . 3.解:由(){1,3}U A B = ð,得{2,4,5,6,7,8,9}A B = , 集合A B 里除去()U A B ð,得集合B , 所以集合{5,6,7,8,9}B =.4.已知函数(4),0()(4),0x x x f x x x x +≥⎧=⎨-<⎩.求(1)f ,(3)f -,(1)f a +的值.4.解:当0x ≥时,()(4)f x x x =+,得(1)1(14)5f =⨯+=; 当0x <时,()(4)f x x x =-,得(3)3(34)21f -=-⨯--=;(1)(5),1(1)(1)(3),1a a a f a a a a ++≥-⎧+=⎨+-<-⎩.5.证明:(1)若()f x ax b =+,则1212()()()22x x f x f x f ++=; (2)若2()g x x ax b =++,则1212()()()22x x g x g x g ++≤. 5.证明:(1)因为()f x ax b =+,得121212()()222x x x x af a b x x b ++=+=++,121212()()()222f x f x ax b ax b ax x b ++++==++, 所以1212()()()22x x f x f x f ++=; (2)因为2()g x x ax b =++,得22121212121()(2)()242x x x x g x x x x a b ++=++++, 22121122()()1[()()]22g x g x x ax b x ax b +=+++++2212121()()22x x x x a b +=+++, 因为2222212121212111(2)()()0424x x x x x x x x ++-+=--≤,即222212121211(2)()42x x x x x x ++≤+, 所以1212()()()22x x g x g x g ++≤. 6.(1)已知奇函数()f x 在[,]a b 上是减函数,试问:它在[,]b a --上是增函数还是减函数? (2)已知偶函数()g x 在[,]a b 上是增函数,试问:它在[,]b a --上是增函数还是减函数? 6.解:(1)函数()f x 在[,]b a --上也是减函数,证明如下: 设12b x x a -<<<-,则21a x x b <-<-<,因为函数()f x 在[,]a b 上是减函数,则21()()f x f x ->-,又因为函数()f x 是奇函数,则21()()f x f x ->-,即12()()f x f x >, 所以函数()f x 在[,]b a --上也是减函数; (2)函数()g x 在[,]b a --上是减函数,证明如下: 设12b x x a -<<<-,则21a x x b <-<-<,因为函数()g x 在[,]a b 上是增函数,则21()()g x g x -<-, 又因为函数()g x 是偶函数,则21()()g x g x <,即12()()g x g x >,所以函数()g x 在[,]b a --上是减函数.7.《中华人民共和国个人所得税》规定,公民全月工资、薪金所得不超过2000元的部分 不必纳税,超过2000元的部分为全月应纳税所得额.此项税款按下表分段累计计算: 某人一月份应交纳此项税款为26.78元,那么他当月的工资、薪金所得是多少7.解:设某人的全月工资、薪金所得为x 元,应纳此项税款为y 元,则0,02000(2000)5%,2000250025(2500)10%,25004000175(4000)15%,40005000x x x y x x x x ≤≤⎧⎪-⨯<≤⎪=⎨+-⨯<≤⎪⎪+-⨯<≤⎩由该人一月份应交纳此项税款为26.78元,得25004000x <≤,25(2500)10%26.78x +-⨯=,得2517.8x =, 所以该人当月的工资、薪金所得是2517.8元.。

人教版高一数学A必修1全册例题讲解及练习题(65页)

人教版高一数学A必修1全册例题讲解及练习题(65页)

(i)若 a = 0 时,得 N = Æ ,此时, N Í M ;
(ii)若 a ¹ 0 时,得 N
1 ={ }.
若N
ÍM
,满足 1
= 2或 1
= -3 ,解得 a =
1 或a = - 1 .
a
a
a
2
3
故所求实数 a 的值为 0 或 1 或 - 1 . 23
点评:在考察“ A Í B ”这一关系时,不要忘记“ Æ ” ,因为 A = Æ 时存在 A Í B . 从而需要分情况讨
第 1~27 练 答案 …………………………(55~65)
《新课标高中数学必修①精讲精练》——精讲
第一章 集合与函数概念
第 1 讲 §1.1.1 集合的含义与表示
¤学习目标:通过实例,了解集合的含义,体会元素与集合的“属于”关系;能选择自然语言、图形语言、 集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;掌握集合的表示方法、常用 数集及其记法、集合元素的三个特征.
A ¹Ì B(或 B ¹É A).
4. 不含任何元素的集合叫作空集(empty set),记作 Æ ,并规定空集是任何集合的子集. 5. 性质: A Í A ;若 A Í B , B Í C ,则 A Í C ;
若 A I B = A ,则 A Í B ;若 A U B = A ,则 B Í A .
={x |
x
=
2n +1,n 2
Î Z} ,易知
B ¹Ì
A,故答案选
A.
{ } 【例 3】若集合 M = x | x2 + x - 6 = 0 , N = {x | ax - 1 = 0} ,且 N Í M ,求实数 a 的值.

高中数学 习题课(一)新人教B版必修1-新人教B版高一必修1数学试题

高中数学 习题课(一)新人教B版必修1-新人教B版高一必修1数学试题

习题课(一)C.{a|a≥2} D.{a|a>2}答案:C解析:由已知,得∁R B={x|x≤1或x≥2},又A∪(∁R B)=R,所以a≥2,故选C.6.定义集合运算:A⊙B={z|z=xy(x+y),x∈A,y∈B},设集合A={0,1},B={2,3},则集合A⊙B的所有元素之和为( )A.0 B.6C.12 D.18答案:D解析:x=0,y=2或y=3时z=0;x=1,y=2时z=6;x=1,y=3时z=12,∴A ⊙B={0,6,12},故选D.二、填空题(每小题5分,共15分)7.已知集合M={0,1,2},N={x|x=2a,a∈M},则集合M∩N=________.答案:{0,2}解析:N={0,2,4},∴M∩N={0,2}.8.设A={(x,y)|ax+y-3=0},B={(x,y)|x-y-b=0}.若A∩B={(2,1)},则a =________,b=________.答案:1 1解析:∵A∩B={(2,1)},∴(2,1)∈A,∴2a+1-3=0,a=1.(2,1)∈B,∴2-1-b =0,b=1.9.方程x2-px+6=0的解集为M,方程x2+6x-q=0的解集为N,且M∩N={2},那么以p、q为根的一元二次方程为________.答案:x2-21x+80=0解析:由M∩N={2},∴22-2p+6=0,p=5;22+12-q=0,q=16,p+q=21,p·q =80,所以以p、q为根的一元二次方程为x2-21x+80=0.三、解答题(本大题共4小题,共45分)10.(12分)已知集合A={-4,2a-1,a2},B={a-5,1-a,9},若9∈(A∩B),求a 的值.解:∵9∈(A∩B),∴9∈A,且9∈B,∴2a-1=9或a2=9,∴a=5或a=±3.当a=3时,B={-2,-2,9},违反了元素的互异性,故a=3(舍去).当a =-3时,A ={-4,-7,9},B ={-8,4,9}, 满足9∈(A ∩B ).当a =5时,A ={-4,9,25},B ={0,-4,9}, 满足9∈(A ∩B ).综上所述,a =-3或a =5时,有9∈(A ∩B ).11.(13分)已知集合A ={-3,4},B ={x |x 2-2ax +b =0},若B ≠∅且A ∩B =B ,求a ,b 的值.解:因为A ∩B =B ,所以B ⊆A .又因为A ={-3,4}且B ≠∅,所以B ={-3}或{4}或{-3,4}. 若B ={-3},则⎩⎪⎨⎪⎧ 2a =-3+-3=-6b =-3×-3=9,即⎩⎪⎨⎪⎧a =-3b =9;若B ={4},则⎩⎪⎨⎪⎧2a =4+4=8b =4×4=16,即⎩⎪⎨⎪⎧ a =4b =16;若B ={-3,4},则⎩⎪⎨⎪⎧2a =-3+4=1b =-3×4=-12,即⎩⎪⎨⎪⎧a =12b =-12.综上所述,a =-3,b =9或a =4,b =16或a =12,b =-12.能力提升12.(5分)设2 013∈{x ,x 2,x 2}则满足条件的所有x 组成的集合的真子集个数为( ) A .3 B .4 C .7 D .8 答案:A解析:由集合元素的不可重复性x =-2 013或x =- 2 013,∴满足条件的所有x 构成集合含有两个元素,其真子集有22-1=3个.13.(15分)若函数f (x )=ax 2-ax +1a的定义域是一切实数,某某数a 的取值X 围.解:函数y = ax 2-ax +1a 的定义域是一切实数,即对一切实数x ,ax 2-ax +1a≥0恒成立,即⎩⎪⎨⎪⎧a >0,Δ=-a 2-4×a ×1a≤0,∴⎩⎪⎨⎪⎧a >0,a 2≤4解得0<a ≤2.故所某某数a 的取值X 围是{a |0<a ≤2}.。

高中数学(人教A版)必修一课后习题:对数的概念(课后习题)【含答案及解析】

高中数学(人教A版)必修一课后习题:对数的概念(课后习题)【含答案及解析】

对数对数的概念课后篇巩固提升合格考达标练1.方程2log 3x =14的解是( )A.19B.√3C.√33D.92log 3x =14=2-2,∴log 3x=-2,∴x=3-2=19.2.(多选题)下列指数式与对数式互化正确的是( )A.e 0=1与ln 1=0B.8-13=12与log 812=-13C.log 39=2与912=3D.log 77=1与71=739=2应转化为32=9.3.(多选题)(2021湖南邵阳十一中高一期末)下列结论正确的是( )A.log 24=2B .2.10.5>2.1-1.8C .3log 32=2D .-ln e =124=2,故A 正确;根据函数y=2.1x 是增函数可知2.10.5>2.1-1.8,故B 正确;根据指对恒等式可知3log 32=2,故C 正确;-ln e =-1,故D 不正确.故选ABC .4.(2021北京大兴高一期末)813+log 122等于( ) A.0B .1C .2D .3813+log 122=23×13-log 22=2-1=1.故选B .5.若a>0,a 2=49,则lo g 23a= .a 2=49且a>0,∴a=23,∴lo g 2323=1.6.解答下列各题.(1)计算:lg 0.000 1;log 2164;log 3.12(log 1515).(2)已知log 4x=-32,log 3(log 2y )=1,求xy 的值.因为10-4=0.000 1,所以lg 0.000 1=-4.因为2-6=164,所以log 2164=-6.log 3.12(log 1515)=log 3.121=0.(2)因为log 4x=-32,所以x=4-32=2-3=18.因为log 3(log 2y )=1,所以log 2y=3.所以y=23=8.所以xy=18×8=1.7.求下列各式的值:(1)lo g 1162; (2)log 7√493; (3)log 2(log 93).设lo g 1162=x ,则(116)x =2,即2-4x =2,∴-4x=1,x=-14,即lo g 1162=-14. (2)设log 7√493=x ,则7x =√493=723. ∴x=23,即log 7√493=23.(3)设log 93=x ,则 9x =3,即32x =3,∴x=12.设log 212=y ,则2y =12=2-1,∴y=-1.∴log 2(log 93)=-1.等级考提升练8.若log a 3=m ,log a 5=n (a>0且a ≠1),则a 2m+n 的值是( )A.15B.75C.45D.225log a 3=m ,得a m =3,由log a 5=n ,得a n =5, ∴a 2m+n =(a m )2·a n =32×5=45.9.函数y=log (2x-1)√3x -2的定义域是( )A.23,1∪(1,+∞)B.12,1∪(1,+∞)C.23,+∞ D.12,+∞解析要使函数有意义,则{2x -1>0,2x -1≠1,3x -2>0,解此不等式组可得x>12且x ≠1且x>23,故函数的定义域是23,1∪(1,+∞),故选A .10.已知f (x 6)=log 2x ,则f (8)=( )A.43B .8C .18D .12x 6=8,则x 2=2,因为x>0,则x=√2,故f (8)=log 2√2=12.11.(多选题)(2021福建泉州高一期末)下列函数中,与y=x 是同一个函数的是( )A.y=√x 33B .y=√x 2C .y=lg 10xD .y=10lg x的定义域为R ,值域为R ,函数y=√x 33=x 的定义域为R ,故是同一函数;函数y=√x 2=|x|≥0,与y=x 解析式、值域均不同,故不是同一函数;函数y=lg 10x =x ,且定义域为R ,对应关系相同,故是同一函数;y=10lg x =x 的定义域为(0,+∞),与函数y=x 的定义域不相同,故不是同一函数.故选AC .12.已知f (x )={1+log 2(2-x ),x <1,2x -1,x ≥1,则f (-2)+f (2)的值为( ) A.6B .5C .4D .3f (-2)+f (2)=(1+log 24)+2=5,故选B .13.已知lo g 12(log 2x )=lo g 13(log 3y )=1,则x ,y 的大小关系是( )A.x<yB.x=yC.x>yD.不确定lo g 12(log 2x )=1,所以log 2x=12.所以x=212=√2.又因为lo g 13(log 3y )=1,所以log 3y=13.所以y=313=√33.因为√2=√236=√86<√96=√326=√33,所以x<y.故选A . 14.21+12·log 25的值等于 .√51+12log 25=2×212log 25=2×(2log 25)12=2×512=2√5.15.已知log a b=log b a (a>0,a ≠1,b>0,b ≠1),求证:a=b 或ab=1.log a b=log b a=k ,则b=a k ,a=b k ,因此b=(b k )k =b k 2.因为b>0,b ≠1,所以k 2=1,即k=±1.当k=1时,a=b ;当k=-1时,a=b -1=1b ,即ab=1.综上可知a=b 或ab=1. 新情境创新练16.已知二次函数f (x )=(lg a )x 2+2x+4lg a (a>0)的最大值是3,求a 的值.f (x )有最大值,所以lg a<0.又f (x )max =16lg 2a -44lga =4lg 2a -1lga=3, 所以4lg 2a-3lg a-1=0.所以lg a=1或lg a=-14.因为lg a<0,所以lg a=-14.所以a=10-14.。

高一数学第三章函数 章末习题课

高一数学第三章函数 章末习题课

第三章 章末习题课 (时间:80分钟)一、单项选择题1.函数f (x )=1+x +1x 的定义域是( C )A .[-1,+∞)B .(-∞,0)∪(0,+∞)C .[-1,0)∪(0,+∞)D .R解析:要使函数有意义,需满足⎩⎪⎨⎪⎧1+x ≥0,x ≠0,解得x ≥-1且x ≠0.故选C.2.已知函数f (x )=⎩⎪⎨⎪⎧1-x 2,x ≤1,x 2-x -3,x >1,则f ⎝⎛⎭⎫1f (3)的值为( C )A .1516B .-2716C .89D .18解析:由题意得f (3)=32-3-3=3,那么1f (3)=13,所以f ⎝⎛⎭⎫1f (3)=f ⎝⎛⎭⎫13=1-⎝⎛⎭⎫132=89. 3.已知f ⎝⎛⎭⎫12x -1=2x -5,且f (a )=6,则a 等于( B ) A .-74B .74C .43D .-43解析:令t =12x -1,得x =2(t +1),则f (t )=4(t +1)-5=4t -1.由f (a )=6,得4a -1=6,解得a =74.4.已知幂函数f (x )=kx α(k ∈R ,α∈R )的图象过点⎝⎛⎭⎫12,2,则k +α等于( A ) A .12B .1C .32D .2解析:∵幂函数f (x )=kx α(k ∈R ,α∈R )的图象过点⎝⎛⎭⎫12,2,∴k =1,⎝⎛⎭⎫12α=2,∴α=-12,∴k +α=1-12=12. 5.下列函数中,既是偶函数又在(0,+∞)上单调递增的是( B ) A .y =x B .y =|x |+1 C .y =-x 2+1D .y =-1x解析:y =x 是奇函数,故A 不符合题意;y =|x |+1是偶函数,在(0,+∞)上单调递增,故B 正确;y =-x 2+1是偶函数,在区间(0,+∞)上单调递减,故C 不符合题意;y =-1x 是奇函数,故D 不符合题意.6.长为4,宽为3的矩形,当长增加x ,宽减少x2时,面积达到最大,此时x 的值为( B )A .12B .1C .32D .2解析:由题意,S =(4+x )⎝⎛⎭⎫3-x 2=-12x 2+x +12,∴当x =1时,S 最大. 7.已知f (x )为奇函数,当x >0时,f (x )=-x 2+2x ,则f (x )在[-3,-1]上( C ) A .单调递增,最小值为-1 B .单调递增,最大值为-1 C .单调递减,最小值为-1 D .单调递减,最大值为-1解析:f (x )=-x 2+2x ,图象为开口向下,对称轴为x =1的抛物线,所以x >0时f (x )在[1,3]上单调递减.因为f (x )为奇函数,且图象关于原点对称,所以函数f (x )在[-3,-1]上也单调递减.因此最大值为f (-3)=-f (3)=-(-9+6)=3,最小值为f (-1)=-f (1)=-(-1+2)=-1.8.已知函数f (x )=⎩⎪⎨⎪⎧(a -3)x +5,x ≤1,2a x ,x >1是R 上的减函数,那么a 的取值范围是( D )A .(0,3)B .(0,3]C .(0,2)D .(0,2]解析:∵函数f (x )=⎩⎪⎨⎪⎧(a -3)x +5,x ≤1,2a x ,x >1是R 上的减函数,∴x ≤1时,f (x )单调递减,即a -3<0①, x >1时,f (x )单调递减,即a >0②, 且(a -3)×1+5≥2a1③.联立①②③解得0<a ≤2,故选D. 二、多项选择题9.已知f (2x -1)=4x 2,则下列结论正确的是( BD ) A .f (3)=9 B .f (-3)=4 C .f (x )=x 2 D .f (x )=(x +1)2解析:因为f (2x -1)=4x 2=(2x -1)2+2(2x -1)+1,故f (x )=x 2+2x +1=(x +1)2,故选项C 错误,选项D 正确;f (3)=16,f (-3)=4,故选项A 错误,选项B 正确.故选BD.10.已知函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≤0,2x ,x >0,若f (a )=10,则a 的值是( BD )A .3B .-3C .-5D .5解析:若a ≤0,则f (a )=a 2+1=10,解得a =-3(a =3舍去); 若a >0,则f (a )=2a =10,解得a =5. 综上可得,a =5或a =-3.11.设f (x )=1+x 21-x 2,则下列结论一定正确的有( BD )A .f (-x )=-f (x )B .f ⎝⎛⎭⎫1x =-f (x )C .f ⎝⎛⎭⎫-1x =f (x ) D .f (-x )=f (x )解析:因为f (x )=1+x 21-x 2,所以f (-x )=1+(-x )21-(-x )2=f (x ),D 正确,A 错误;f ⎝⎛⎭⎫1x =1+⎝⎛⎭⎫1x 21-⎝⎛⎭⎫1x 2=x 2+1x 2-1=-f (x ),B 正确; f ⎝⎛⎭⎫-1x =1+⎝⎛⎭⎫-1x 21-⎝⎛⎭⎫-1x 2=x 2+1x 2-1=-f (x ),C 错误.故选BD. 12.具有性质:f ⎝⎛⎭⎫1x =-f (x )的函数,我们称为满足“倒负”变换的函数,下列函数中满足“倒负”变换的函数是( AC )A .f (x )=x -1xB .f (x )=x +1xC .f (x )=⎩⎪⎨⎪⎧ x ,0<x <1,0,x =1,-1x ,x >1D .f (x )=⎩⎪⎨⎪⎧x ,0<x <1,0,x =1,1x ,x >1解析:对于A ,f ⎝⎛⎭⎫1x =1x -x =-⎝⎛⎭⎫x -1x =-f (x ),满足“倒负”变换.对于B ,f ⎝⎛⎭⎫1x =1x +x =x +1x =f (x )≠-f (x ),不满足“倒负”变换.对于C ,当0<x <1时,1x >1,f ⎝⎛⎭⎫1x =-11x =-x =-f (x );当x =1时,1x =1,f ⎝⎛⎭⎫1x =0=-f (x );当x >1时,0<1x <1,f ⎝⎛⎭⎫1x =1x =-⎝⎛⎭⎫-1x =-f (x ),满足“倒负”变换.对于D ,当0<x <1时,1x>1,f ⎝⎛⎭⎫1x =11x=x ≠-f (x ),不满足“倒负”变换. 三、填空题13.已知幂函数f (x )=(m +1)x 2m -1,则f (2)= 12.解析:因为f (x )=(m +1)x 2m -1是幂函数,所以m +1=1,即m =0,所以f (x )=x -1,所以f(2)=2-1=12.14.已知函数f(x)是奇函数,当x>0时,f(x)=x(1-x),则当x<0时,f(x)=__x(1+x)__.解析:因为x<0,所以-x>0,所以f(-x)=(-x)(1+x),又函数f(x)是奇函数,所以f(x)=-f(-x)=-(-x)(1+x)=x(1+x),所以当x<0时,f(x)=x(1+x).15.已知f(x)为定义在R上的奇函数,当x≥0时,f(x)=x2,则f(-3)=__-3__,不等式f(1-2x)<f(3)的解集是__(-1,+∞)__.解析:由f(x)为奇函数且x≥0时,f(x)=x2,可得f(-3)=-f(3)=-3.因为x≥0时,f(x)=x2单调递增,根据奇函数的对称性可知,f(x)在R上单调递增,故由f(1-2x)<f(3)可得,1-2x<3,解得x>-1.16.某学校要装备一个实验室,需要购置实验设备若干套,与厂家协商,同意按出厂价结算,若超过50套就可以每套比出厂价低30元给予优惠.如果按出厂价购买应付a元,但再多买11套就可以按优惠价结算,恰好也付a元(价格为整数),则a的值为__6_600__.解析:设按出厂价y元购买x(x≤50)套应付a元,则a=xy.再多买11套就可以按优惠价结算恰好也付a元,则a=(x+11)(y-30),其中x+11>50.∴xy=(x+11)(y-30)(39<x≤50).∴3011x=y-30.又x∈N,y∈N(因价格为整数),39<x≤50,∴x=44,y=150,a=44×150=6 600.四、解答题17.已知f(x)是R上的奇函数,且当x>0时,f(x)=x2-x-1.(1)求f(x)的解析式;(2)作出函数f(x)的图象(不用列表),并指出它的单调递增区间.解:(1)设x<0,则-x>0,所以f(-x)=(-x)2-(-x)-1=x2+x-1.又函数f(x)是奇函数,所以f(-x)=-f(x),所以f(x)=-f(-x)=-x2-x+1.当x=0时,由f(0)=-f(0),得f(0)=0,所以f (x )=⎩⎪⎨⎪⎧x 2-x -1,x >0,0,x =0,-x 2-x +1,x <0.(2)作出函数图象,如图所示.由函数图象易得函数f (x )的单调递增区间为⎝⎛⎭⎫-∞,-12,⎝⎛⎭⎫12,+∞. 18.已知函数f (x )=2x -ax ,且f ⎝⎛⎭⎫12=3. (1)求实数a 的值;(2)判断函数f (x )在(1,+∞)上的单调性,并证明. 解:(1)因为f (x )=2x -ax ,且f ⎝⎛⎭⎫12=3, 所以f ⎝⎛⎭⎫12=1-2a =3,解得a =-1.(2)由(1)得f (x )=2x +1x ,f (x )在(1,+∞)上单调递增.证明如下:设x 1,x 2∈(1,+∞),且x 1<x 2,所以f (x 1)-f (x 2)=2x 1+1x 1-2x 2-1x 2=2(x 1-x 2)+x 2-x 1x 1x 2=(x 1-x 2)⎝⎛⎭⎫2-1x 1x 2. 由x 1,x 2∈(1,+∞)知x 1x 2>1,1x 1x 2<1,所以2-1x 1x 2>0.又x 1-x 2<0,所以f (x 1)-f (x 2)<0, 故f (x )在(1,+∞)上单调递增.。

高一数学课后习题与答案

高一数学课后习题与答案

高一数学课后习题与答案复习参考题A 组1.用列举法表示下列集合:(1)A ={x |x 2=9};(2)B ={x ∈N |1≤x ≤2};(3)C ={x |x 2-3x +2=0}.1.解:(1)方程x =9的解为x 1=-3, x 2=3,即集合A ={-3,3};(2)1≤x ≤2,且x ∈N ,则x =1, 2,即集合B ={1, 2};(3)方程x -3x +2=0的解为x 1=1, x 2=2,即集合C ={1,2}.2.设P 表示平面内的动点,属于下列集合的点组成什么图形?(1){P |PA =PB }(A , B 是两个定点) ;(2){P |PO =3cm }(O 是定点) .2.解:(1)由PA =PB ,得点P 到线段AB 的两个端点的距离相等,即{P |PA =PB }表示的点组成线段AB 的垂直平分线;(2){P |PO =3cm }表示的点组成以定点O 为圆心,半径为3cm 的圆.3. 设平面内有∆ABC ,且P 表示这个平面内的动点,指出属于集合 22{P |PA =PB } {P |PA =PC }的点是什么.3.解:集合{P |PA =PB }表示的点组成线段AB 的垂直平分线,集合{P |PA =PC }表示的点组成线段AC 的垂直平分线,得{P |PA =PB } {P |PA =PC }的点是线段AB 的垂直平分线与线段AC 的垂直平分线的交点,即∆ABC 的外心.24. 已知集合A ={x |x =1},B ={x |ax =1}. 若B ⊆A ,求实数a 的值. 4.解:显然集合A ={-1,1},对于集合B ={x |ax =1},当a =0时,集合B =∅,满足B ⊆A ,即a =0;当a ≠0时,集合B ={,而B ⊆A ,则1a 11=-1,或=1, a a得a =-1,或a =1,综上得:实数a 的值为-1,0,或1.5. 已知集合A ={(x , y ) |2x -y =0},B ={(x , y ) |3x +y =0},C ={(x , y ) |2x -y =3},求A B ,A C ,(A B ) (B C ) .⎧⎧2x -y =0⎧5.解:集合A B =⎧(x , y ) |⎧⎧={(0,0)},即A B ={(0,0)};3x +y =0⎧⎧⎧集合A C =⎧(x , y ) |⎧⎧⎧⎧2x -y =0⎧⎧=∅,即A C =∅;⎧2x -y =3⎧⎧⎧3x +y =0⎧39 集合B C =⎧(x , y ) |⎧={(, -)};⎧2x -y =355⎧⎧⎧则(A B ) (B C ) ={(0,0),(, -)}.6. 求下列函数的定义域:(1)y 3595;. |x |-5⎧x -2≥0,即x ≥2,⎧x +5≥0(2)y =6.解:(1)要使原式有意义,则⎧得函数的定义域为[2,+∞) ;(2)要使原式有意义,则⎧⎧x -4≥0,即x ≥4,且x ≠5,⎧|x |-5≠0得函数的定义域为[4,5) (5,+∞) .7. 已知函数f (x ) =1-x ,求: 1+x(1)f (a ) +1(a ≠-1) ;(2)f (a +1)(a ≠-2) .1-x , 1+x1-a 1-a 2+1= 所以f (a ) =,得f (a ) +1=, 1+a 1+a 1+a2 即f (a ) +1=; 1+a 7.解:(1)因为f (x ) =1-x , 1+x1-(a +1) a =- 所以f (a +1) =, 1+a +1a +2a 即f (a +1) =-. a +2 (2)因为f (x ) =1+x 28. 设f (x ) =,求证: 21-x(1)f (-x ) =f (x ) ;(2)f () =-f (x ) . 1x1+x 28.证明:(1)因为f (x ) =, 1-x 21+(-x ) 21+x 2所以f (-x ) ===f (x ) , 1-(-x ) 21-x 2即f (-x ) =f (x ) ;1+x 2(2)因为f (x ) =, 21-x11+() 2211+x = 所以f () ==-f (x ) , 21x 1-() 2x -1x1 即f () =-f (x ) . x9. 已知函数f (x ) =4x 2-kx -8在[5,20]上具有单调性,求实数k 的取值范围.9.解:该二次函数的对称轴为x =k , 8函数f (x ) =4x 2-kx -8在[5,20]上具有单调性,k k ≥20,或≤5,得k ≥160,或k ≤40, 88即实数k 的取值范围为k ≥160,或k ≤40.则10.已知函数y =x ,(1)它是奇函数还是偶函数?(2)它的图象具有怎样的对称性?(3)它在(0,+∞) 上是增函数还是减函数?(4)它在(-∞,0) 上是增函数还是减函数?-210.解:(1)令f (x ) =x -2,而f (-x ) =(-x ) -2=x -2=f (x ) ,即函数y =x -2是偶函数;(2)函数y =x -2的图象关于y 轴对称;(3)函数y =x -2在(0,+∞) 上是减函数;(4)函数y =x -2在(-∞,0) 上是增函数.B 组1. 学校举办运动会时,高一(1)班共有28名同学参加比赛,有15人参加游泳比赛,有8人参加田径比赛,有14人参加球类比赛,同时参加游泳比赛和田径比赛的有3人,同时参加游泳比赛和球类比赛的有3人,没有人同时参加三项比赛. 问同时参加田径和球类比赛的有多少人?只参加游泳一项比赛的有多少人?1.解:设同时参加田径和球类比赛的有x 人,则15+8+14-3-3-x =28,得x =3,只参加游泳一项比赛的有15-3-3=9(人),即同时参加田径和球类比赛的有3人,只参加游泳一项比赛的有9人.2. 已知非空集合A ={x ∈R |x 2=a },试求实数a 的取值范围.2.解:因为集合A ≠∅,且x ≥0,所以a ≥0. 2B . 3. 设全集U ={1,2,3,4,5,6,7,8,9},ð1,3},A (ðU (A B ) ={U B ) ={2,4},求集合3.解:由ð1,3},得A B ={2,4,5,6,7,8,9}, U (A B ) ={B ,集合A B 里除去A (ðU B ) ,得集合所以集合B ={5,6,7,8,9}.4. 已知函数f (x ) =⎧⎧x (x +4), x ≥0. 求f (1),f (-3) ,f (a +1) 的值.⎧x (x -4), x4.解:当x ≥0时,f (x ) =x (x +4) ,得f (1)=1⨯(1+4) =5;当xf (a +1) =⎧5. 证明:(1)若f (x ) =ax +b ,则f (⎧(a +1)(a +5), a ≥-1.⎧(a +1)(a -3), ax 1+x 2g (x 1) +g (x 2) ) ≤. 22x +x 2x +x a ) =a 12+b =(x 1+x 2) +b , 5.证明:(1)因为f (x ) =ax +b ,得f (1222f (x 1) +f (x 2) ax 1+b +ax 2+b a ==(x 1+x 2) +b , 222x +x 2f (x 1) +f (x 2) ) = 所以f (1; 22(2)若g (x ) =x 2+ax +b ,则g ((2)因为g (x ) =x 2+ax +b , x 1+x 2x +x 1) =(x 12+x 22+2x 1x 2) +a (12) +b , 242g (x 1) +g (x 2) 1=[(x 12+ax 1+b ) +(x 22+ax 2+b )] 22x +x 2122) +b , =(x 1+x 2) +a (12212121222因为(x 1+x 2+2x 1x 2) -(x 1+x 2) =-(x 1-x 2) ≤0, 424121222即(x 1+x 2+2x 1x 2) ≤(x 1+x 2) , 42x +x 2g (x 1) +g (x 2) ) ≤所以g (1. 22得g (6. (1)已知奇函数f (x ) 在[a , b ]上是减函数,试问:它在[-b , -a ]上是增函数还是减函数?(2)已知偶函数g (x ) 在[a , b ]上是增函数,试问:它在[-b , -a ]上是增函数还是减函数?6.解:(1)函数f (x ) 在[-b , -a ]上也是减函数,证明如下:设-b因为函数f (x ) 在[a , b ]上是减函数,则f (-x 2) >f (-x 1) ,又因为函数f (x ) 是奇函数,则-f (x 2) >-f (x 1) ,即f (x 1) >f (x 2) ,所以函数f (x ) 在[-b , -a ]上也是减函数;(2)函数g (x ) 在[-b , -a ]上是减函数,证明如下:设-b因为函数g (x ) 在[a , b ]上是增函数,则g (-x 2)又因为函数g (x ) 是偶函数,则g (x 2) g (x 2) ,所以函数g (x ) 在[-b , -a ]上是减函数.7. 《中华人民共和国个人所得税》规定,公民全月工资、薪金所得不超过2000元的部分不必纳税,超过2000元的部分为全月应纳税所得额. 此项税款按下表分段累计计算:某人一月份应交纳此项税款为26.78元,那么他当月的工资、薪金所得是多少7.解:设某人的全月工资、薪金所得为x 元,应纳此项税款为y 元,则⎧0,0≤x ≤2000⎧(x -2000) ⨯5%,2000由该人一月份应交纳此项税款为26.78元,得250025+(x -2500) ⨯10%=26.78,得x =2517.8,所以该人当月的工资、薪金所得是2517.8元.。

高中数学(人教A版)必修一课后习题:三角恒等变换的应用(课后习题)【含答案及解析】

高中数学(人教A版)必修一课后习题:三角恒等变换的应用(课后习题)【含答案及解析】

三角恒等变换的应用课后篇巩固提升合格考达标练1.(2021济宁高一期末)若tan α=2,则sin2α1+cos 2α=( )A.16 B .13C .23D .1tan α=2,则sin2α1+cos 2α=2sinαcosα2cos 2α+sin 2α=2tanα2+tan 2α=2×22+22=23.故选C .2.化简sin α2+cos α22+2sin 2π4−α2得( )A.2+sin α B .2+√2sin α-π4 C .2 D .2+√2sin α+π4解析原式=1+2sin α2cos α2+1-cos 2π4−α2=2+sin α-cos π2-α=2+sin α-sin α=2. 3.函数f (x )=sin x cos x+cos 2x-1的值域为( ) A.[-√2+12,√2-12] B.[√2-12,√2+12] C.[-1,0] D.[0,12](x )=sin x cos x+cos 2x-1=12sin 2x+1+cos2x 2-1=12sin 2x+12cos 2x-12=√22sin (2x +π4)−12, 因为-1≤sin (2x +π4)≤1,所以y ∈[-√2+12,√2-12].4.函数f (x )=sin 2x-π4-2√2sin 2x 的最小正周期是 .解析f (x )=√22sin 2x-√22cos 2x-√2(1-cos 2x )=√22sin 2x+√22cos 2x-√2=sin 2x+π4-√2,所以T=2π2=π. 5.若3sin x-√3cos x=2√3sin(x+φ),φ∈(-π,π),则φ= . -π6解析因为3sin x-√3cos x=2√3√32sin x-12cos x =2√3sin x-π6,因为φ∈(-π,π),所以φ=-π6. 6.化简:sin4x 1+cos4x ·cos2x 1+cos2x ·cosx1+cosx = .tan x2=2sin2xcos2x 2cos 22x ·cos2x 1+cos2x ·cosx1+cosx=sin2x 1+cos2x ·cosx1+cosx=2sinxcosx 2cos 2x ·cosx1+cosx=sinx 1+cosx =tan x2. 7.已知函数f (x )=4cos 4x -2cos2x -1sin (π4+x )sin (π4-x ). (1)求f (-11π12)的值; (2)当x ∈[0,π4)时,求函数g (x )=12f (x )+sin 2x 的最大值和最小值.f (x )=(1+cos2x )2-2cos2x -1sin (π4+x )sin (π4-x )=cos 22xsin (π4+x )cos (π4+x )=2cos 22x sin (π2+2x )=2cos 22xcos2x=2cos 2x , 所以f (-11π12)=2cos (-11π6)=2cos π6=√3.(2)g (x )=cos 2x+sin 2x=√2sin (2x +π4).因为x ∈[0,π4),所以2x+π4∈[π4,3π4), 所以当x=π8时,g (x )max =√2, 当x=0时,g (x )min =1.等级考提升练8.已知α满足sin α=13,则cos (π4+α)cos (π4-α)= ( )A.718B.2518C.-718D.-2518解析cos (π4+α)cos (π4-α)=cosπ2-π4-α·cosπ4-α=sinπ4-αcosπ4-α=12sinπ2-2α=12cos 2α=12(1-2sin 2α)=12(1-2×19)=718,故选A .9.(2021黑龙江哈尔滨道里高一期末)已知函数f (x )=sin 2x+2√3sin x cos x-cos 2x ,x ∈R ,则( ) A.f (x )的最大值为1B .f (x )在区间(0,π)上只有1个零点C .f (x )的最小正周期为π2 D .x=π3为f (x )图象的一条对称轴 解析函数f (x )=sin 2x+2√3sin x cos x-cos 2x=√3sin 2x-cos 2x=2√32sin 2x-12cos 2x =2sin 2x-π6,可得f (x )的最大值为2,最小正周期为T=2π2=π,故A,C 错误;由f (x )=0,可得2x-π6=k π,k ∈Z ,即为x=kπ2+π12,k ∈Z ,可得f (x )在(0,π)内的零点为π12,7π12,故B 错误;由fπ3=2sin2π3−π6=2,可得x=π3为f (x )图象的一条对称轴,故D 正确.故选D .10.设a=2sin 13°cos 13°,b=2tan13°1+tan 213°,c=√1-cos50°2,则有( )A.c<a<bB.a<b<cC.b<c<aD.a<c<ba=2sin 13°cos 13°=sin 26°,b=2tan13°1+tan 213°=tan 26°,c=√1-cos50°2=sin 25°,且正弦函数y=sin x 在区间[0,π2]上单调递增,所以a>c ;在区间[0,π2]上tan α>sin α,所以b>a ,所以c<a<b ,故选A . 11.已知函数f (x )=sin x+λcos x 的图象的一个对称中心是点(π3,0),则函数g (x )=λsin x cos x+sin 2x 的图象的一条对称轴是直线( ) A.x=5π6B.x=4π3C.x=π3D.x=-π3f (x )=sin x+λcos x 的图象的一个对称中心是点(π3,0),所以f (π3)=0,即sin π3+λcos π3=0,解得λ=-√3,故g (x )=-√3sin x cos x+sin 2x ,整理得g (x )=-sin (2x +π6)+12,所以对称轴直线方程为2x+π6=k π+π2(k ∈Z ),当k=-1时,一条对称轴是直线x=-π3.12.(多选题)(2020福建福州一中高一期末)以下函数在区间0,π2上单调递增的有( ) A.y=sin x+cos x B.y=sin x-cos x C .y=sin x cos xD .y=sinxcosx解析对于A 选项,y=sin x+cos x=√2sin x+π4,当x ∈0,π2时,x+π4∈π4,3π4,所以函数在区间0,π2上不单调;对于B 选项,y=sin x-cos x=√2sin x-π4,当x ∈0,π2时,x-π4∈-π4,π4,所以函数在区间0,π2上单调递增;对于C 选项,y=sin x cos x=12sin 2x ,当x ∈0,π2时,2x ∈(0,π),所以函数在区间0,π2上不单调;对于D 选项,当x ∈0,π2时,y=sinxcosx=tan x ,所以函数在区间0,π2上单调递增.13.(多选题)(2020山东枣庄高一期末)设函数f (x )=sin 2x+π4+cos 2x+π4,则f (x )( ) A.是偶函数B.在区间0,π2单调递减 C .最大值为2D .其图象关于直线x=π2对称解析f (x )=sin 2x+π4+cos 2x+π4=√2sin 2x+π4+π4=√2cos 2x.f (-x )=√2cos(-2x )=√2cos 2x=f (x ),故f (x )是偶函数,A 正确;∵x ∈0,π2,所以2x ∈(0,π),因此f (x )在区间0,π2上单调递减,B 正确;f (x )=√2cos 2x 的最大值为√2,C 不正确;当x=π2时,f (x )=√2cos 2×π2=-√2,因此当x=π2时,函数有最小值,因此函数图象关于x=π2对称,D 正确.14.已知cos θ=-725,θ∈(π,2π),则sin θ2+cos θ2的值为 .解析因为θ∈(π,2π),所以θ2∈π2,π,所以sin θ2=√1-cosθ2=45,cos θ2=-√1+cosθ2=-35, 所以sin θ2+cos θ2=15.15.化简:tan 70°cos 10°(√3tan 20°-1)= .1 解析原式=sin70°cos70°·cos 10°·√3sin20°cos20°-1=sin70°cos70°·cos 10°·√3sin20°-cos20°cos20°=sin70°cos70°·cos 10°·2sin (-10°)cos20°=-sin70°cos70°·sin20°cos20°=-1. 16.已知函数f (x )=4tan x sin (π2-x)cos (x -π3)−√3.(1)求f (x )的定义域与最小正周期; (2)讨论f (x )在区间[-π4,π4]上的单调性.f (x )的定义域为{x |x ≠π2+kπ,k ∈Z}.f (x )=4tan x cos x cos (x -π3)−√3 =4sin x cos (x -π3)−√3 =4sin x (12cosx +√32sinx)−√3 =2sin x cos x+2√3sin 2x-√3=sin 2x+√3(1-cos 2x )-√3 =sin 2x-√3cos 2x=2sin (2x -π3). 所以f (x )的最小正周期T=2π2=π.(2)令z=2x-π3,函数y=2sin z 的单调递增区间是[-π2+2kπ,π2+2kπ],k ∈Z .由-π2+2k π≤2x-π3≤π2+2k π,k ∈Z ,得-π12+k π≤x ≤5π12+k π,k ∈Z . 设A=[-π4,π4],B=x -π12+k π≤x ≤5π12+k π,k ∈Z ,易知A ∩B=[-π12,π4].所以,当x ∈[-π4,π4]时,f (x )在区间[-π12,π4]上单调递增,在区间[-π4,-π12]上单调递减.新情境创新练17.如图,某污水处理厂要在一个矩形ABCD 的池底水平铺设污水净化管道(Rt △EFG ,E 是直角顶点)来处理污水,管道越长,污水净化效果越好,设计要求管道的接口E 是AB 的中点,F ,G 分别落在AD ,BC 上,且AB=20 m,AD=10√3 m,设∠GEB=θ.(1)试将污水管道的长度l 表示成θ的函数,并写出定义域; (2)当θ为何值时,污水净化效果最好,并求此时管道的长度.由题意,∠GEB=θ,∠GEF=90°,则∠AEF=90°-θ.∵E 是AB 的中点,AB=20 m,AD=10√3 m . ∴EG=10cosθ,EF=10cos (90°-θ)=10sinθ. ∴FG=√EG 2+EF 2=10cosθsinθ. 则l=10sinθ+10cosθ+10sinθcosθ,定义域θ∈π6,π3.(2)由(1)可知,l=10sinθ+10cosθ+10sinθcosθ,θ∈π6,π3.化简可得l=10(sinθ+cosθ)+10sinθcosθ.令t=sin θ+cos θ=√2sin θ+π4.∵θ∈π6,π3,∴θ+π4∈5π12,7π12,可得sin θ+π4∈√6+√24,1,则t ∈√3+12,√2.可得sin θcos θ=t 2-12,且t ≠1, 那么l=10+10t t 2-12=20(1+t )t 2-1=20t -1. 当t=√3+12时,l 取得最大值为20(1+√3).此时t=√2sin θ+π4=√3+12,即θ+π4=5π12或7π12,∴θ=π6或π3.故当θ=π6或π3时,污水净化效果最好,此时管道的长度为20(1+√3)m .。

人教版高一数学上册必修一 第二章同步练习题课后练习题含答案解析及章知识点总结

人教版高一数学上册必修一 第二章同步练习题课后练习题含答案解析及章知识点总结

2.1 等式性质与不等式性质 第1课时 不等关系与不等式基 础 练巩固新知 夯实基础 1.若某高速公路对行驶的各种车辆的最大限速为120 km/h ,行驶过程中,同一车道上的车间距d 不得小于10 m ,则用不等式表示为( ) A .v ≤120 km/h 或d ≥10 mB .⎩⎪⎨⎪⎧v ≤120 km/h ,d ≥10 mC .v ≤120 km/hD .d ≥10 m2.若x <y <0,设M =(x 2+y 2)(x -y ),N =(x 2-y 2)(x +y ),则( ) A .M >N B .M <N C .M ≤ND .M ≥N3.若y 1=3x 2-x +1,y 2=2x 2+x -1,则y 1与y 2的大小关系是( ) A .y 1<y 2 B .y 1=y 2C .y 1>y 2D .随x 值变化而变化4.(多选题)下列不等式恒成立的是( ) A .a 2+2>2a B .a 2+1>2a C .a 2+b 2≥2(a -b -1)D .a 2+b 2>ab 5.完成一项装修工程,请木工需付工资每人400元,请瓦工需付工资每人500元,现有工人工资预算不超过20 000元.设木工x 人,瓦工y 人,则工人满足的关系式是( )A .4x +5y ≤200B .4x +5y <200C .5x +4y ≤200D .5x +4y <2006.已知两实数a =-2x 2+2x -10,b =-x 2+3x -9,a ,b 分别对应数轴上两点A ,B ,则点A 在点B 的 (填“左边”或“右边”).7.比较2x 2+5x +3与x 2+4x +2的大小.8.已知a >b >c >0,试比较a -c b 与b -c a 的大小;能 力 练综合应用 核心素养9.已知三角形的任意两边之和大于第三边,设△ABC 的三边长为a ,b ,c ,将上述文字语言用不等式(组)可表示为( ) A .a +b >cB .⎩⎪⎨⎪⎧a +b >c a +c >bC .⎩⎪⎨⎪⎧a +c ≥bb +c ≥aD .⎩⎪⎨⎪⎧a +b >c a +c >bb +c >a10.不等式a 2+1≥2a 中等号成立的条件是( )A.a=±1B.a=1C.a=-1D.a=011.下列不等式:△a 2+3>2a ;△a 2+b 2>2(a -b -1);△x 2+y 2>xy.其中恒成立的不等式的个数为( ) A.0 B.1 C.2 D.3 12.(多选题)若x <a <0,则下列不等式不一定成立的是( ) A .x 2<ax <a 2 B .x 2>ax >a 2 C .x 2<a 2<axD .x 2>a 2>ax13.已知b 克糖水中有a 克糖(b >a >0),若再添上m 克糖(m >0),则糖水就变甜了,试根据此事实提炼一个不等式,当b >a >0且m >0时, .14.已知|a |<1,则11+a与1-a 的大小关系为 .15.用一段长为30 m 的篱笆围成一个一边靠墙的矩形菜园,墙长为18 m,靠墙的一边长为x m . (1)若要求菜园的面积不小于110 m 2,试用不等式组表示其中的不等关系; (2)若矩形的长、宽都不能超过11 m,试求x 满足的不等关系.16.已知x <1,比较x 3-1与2x 2-2x 的大小.【参考答案】1.B 解析:考虑实际意义,知v ≤120 km/h ,且d ≥10 m.2.A 解析:M -N =(x 2+y 2)(x -y )-(x 2-y 2)(x +y )=(x -y )[x 2+y 2-(x +y )2]=-2xy (x -y ), 又△x <y <0,△xy >0,x -y <0,△-2xy (x -y )>0,△M >N .3. C 解析:y 1-y 2=(3x 2-x +1)-(2x 2+x -1)=x 2-2x +2=(x -1)2+1>0, 所以y 1>y 2.故选C.4.AC 解析:对于A ,a 2+2-2a =(a -1)2+1>0,故A 成立;对于B ,因a 2+1-2a =(a -1)2≥0,故B 不成立;对于C ,a 2+b 2-2a +2b +2=(a -1)2+(b +1)2≥0,故C 成立;对于D ,a 2+b 2-ab =(a -b 2)2+34b 2≥0,故D 不成立,故选AC .5.A 解析:由题意,可得400x +500y ≤20 000,化简得4x +5y ≤200,故选A .6.左边 解析:△a -b =-2x 2+2x -10-(-x 2+3x -9)=-2x 2+2x -10+x 2-3x +9 =-x 2-x -1=-(x +12)2-34<0,△a <b ,△点A 在点B 的左边.7.解:(2x 2+5x +3)-(x 2+4x +2)=x 2+x +1=(x +12)2+34.因为(x +12)2≥0,所以(x +12)2+34≥34>0,所以(2x 2+5x +3)-(x 2+4x +2)>0,所以2x 2+5x +3>x 2+4x +2. 8.解:a -c b -b -c a=aa -c -b b -cab=a 2-ac -b 2+bc ab =a 2-b 2-a -bc ab=a -ba +b -cab.因为a >b >c >0,所以a -b >0,ab >0,a +b -c >0.所以a -ba +b -c ab >0,即a -c b >b -ca.9.D 解析:由三角形三边关系及题意易知选D . 10.B11.B 解析:∵a 2+3-2a=(a -1)2+2>0,∵a 2+3>2a ,即△正确; ∵a 2+b 2-2(a -b -1)=(a -1)2+(b+1)2≥0,∵△错误; ∵x 2+y 2-xy=(x -y 2)2+34y 2≥0,∵△错误,选B .12.ACD 解析:△x 2-ax =x (x -a )>0,△x 2>ax .又ax -a 2=a (x -a )>0,△ax >a 2,△x 2>ax >a 2,故选项B 一定成立,故选ACD .13.a +m b +m >a b 解析:变甜了,意味着含糖量大了,即浓度高了,所以当b >a >0且m >0时,a +m b +m >a b . 14. 11+a ≥1-a 解析:由|a |<1,得-1<a <1.△1+a >0,1-a >0.△11+a 1-a =11-a 2.15.(1)因为矩形菜园靠墙的一边长为x m,而墙长为18m,所以0<x ≤18,这时菜园的另一边长为30-x2=(15-x2)(m).所以菜园的面积S=x ·(15-x2),依题意有S ≥110,即x (15-x2)≥110,故该题中的不等关系可用不等式组表示为{0<x ≤18,x (15-x 2)≥110.(2)因为矩形的另一边长15-x2≤11,所以x ≥8,又0<x ≤18,且x ≤11,所以8≤x ≤11. 16.解析:x 3-1-(2x 2-2x )=x 3-2x 2+2x -1 =(x 3-x 2)-(x 2-2x +1)=x 2(x -1)-(x -1)2 =(x -1)(x 2-x +1)=(x -1)⎣⎡⎦⎤⎝⎛⎭⎫x -122+34. △x <1,△x -1<0.又⎝⎛⎭⎫x -122+34>0, △(x -1)⎣⎡⎦⎤⎝⎛⎭⎫x -122+34<0, △x 3-1<2x 2-2x .2.1 第2课时 等式性质与不等式性质基 础 练巩固新知 夯实基础1.下列运用等式的性质,变形不正确的是( )A .若x =y ,则x +5=y +5B .若a =b ,则ac =bcC .若a c =bc,则a =bD .若x =y ,则x a =ya2.若1a <1b<0,则下列结论中不正确的是( )A .a 2<b 2B .ab <b 2C .a +b <0D .|a |+|b |>|a +b | 3.已知a >b >0,则下列不等式一定成立的是( )A .a +1b >b +1aB .a +1a ≥b +1bC .b a >b +1a +1D .b -1b >a -1a4.(多选题)下列说法中正确的是( )A .若a >b ,则a c 2+1>bc 2+1B .若-2<a <3,1<b <2,则-3<a -b <1C .若a >b >0,m >0,则m a <mbD .若a >b ,c >d ,则ac >bd5.已知三个不等式△ab >0;△c a >db;△bc >ad .若以其中的两个作为条件,余下的一个作为结论,则可以组成________个正确命题.6.已知1<α<3,-4< β <2,若z =12α-β,则z 的取值范围是________.7.已知a >b ,1a <1b,求证:ab >0.8.已知-2<a ≤3,1≤b <2,试求下列代数式的取值范围. (1)|a |; (2)a +b ; (3)a -b ; (4)2a -3b .能 力 练综合应用 核心素养9.设a >b >c ,且a +b +c =0,则下列不等式恒成立的是( ) A .ab >bc B .ac >bc C .ab >ac D .a |b |>c |b | 10.(多选题)设0<b <a <1,则下列不等式不成立的是( ) A .ab <b 2<1 B .a <b <1 C .1<1a <1b D .a 2<ab <111.若abcd <0,且a >0,b >c ,d <0,则( )A .b <0,c <0B .b >0,c >0C .b >0,c <0D .0<c <b 或c <b <0 12.给出下列命题: ①若a <b ,c <0,则c a <cb ;②若ac -3>bc -3,则a >b ; ③若a >b 且k ∈N +,则a k >b k ; ④若c >a >b >0,则a c -a >bc -b .其中正确命题的序号是____.13.实数a ,b ,c ,d 满足下列三个条件:△d >c ;△a +b =c +d ;△a +d <b +c .则将a ,b ,c ,d 按照从小到大的次序排列为________. 14.已知2b <a <-b ,则ab 的取值范围为 .15.已知a >b >0,c <d <0,比较b a -c 与ab -d 的大小.16.已知1≤a -b ≤2,2≤a +b ≤4,求4a -2b 的取值范围.【参考答案】1.D 解析:对于选项A ,由等式的性质3知,若x =y ,则x +5=y +5,正确;对于选项B ,由等式的性质4知,若a =b ,则ac =bc ,正确;对于选项C ,由等式的性质4知,若a c =bc ,则a =b ,正确;对于选项D ,若x =y ,则x a =ya的前提条件为a ≠0,故此选项错误.2.D 解析:△1a <1b <0,△b <a <0,△b 2>a 2,ab <b 2,a +b <0,△A 、B 、C 均正确,△b <a <0,△|a |+|b |=|a +b |,故D 错误.3. A 解析:因为a >b >0,所以1b >1a >0,所以a +1b >b +1a,故选A.4.AC 解析:对于A ,∵c 2+1>0,∴1c 2+1>0,∵a >b ,∴a c 2+1>bc 2+1,故A 正确;对于B ,因为1<b <2,所以-2<-b <-1,同向不等式相加得-4<a -b <2,故B 中说法错误;对于C ,因为a >b >0,所以1a <1b ,又因为m >0,所以m a <mb ,故C 中说法正确;对于D ,只有当a >b >0,c >d >0时,才有ac >bd ,故D 中说法错误,故选AC .5. 3 解析:△△△△,△△△△.(证明略)由△得bc -ad ab>0,又由△得bc -ad >0.所以ab >0△△.所以可以组成3个正确命题.6. ⎩⎨⎧⎭⎬⎫z ⎪⎪-32<z <112 解析:△1<α<3,△12<12α<32,又-4<β<2,△-2<-β<4.△-32<12α-β<112,即-32<z <112. 7.证明:△1a <1b ,△1a -1b <0,即b -a ab <0,而a >b ,△b -a <0,△ab >0. 8. 解:(1)|a |△[0,3].(2)-1<a +b <5.(3)依题意得-2<a ≤3,-2<-b ≤-1,相加得-4<a -b ≤2;(4)由-2<a ≤3得-4<2a ≤6,△由1≤b <2得-6<-3b ≤-3,△由△+△得,-10<2a -3b ≤3. 9. C 解析:选C.因为a >b >c ,且a +b +c =0,所以a >0,c <0,b 可正、可负、可为零. 由b >c ,a >0知,ab >ac .10.ABD 解析:取a =12,b =13验证可得A ,B ,D 不正确.11. D 解析: 由a >0,d <0,且abcd <0,知bc >0,又△b >c ,△0<c <b 或c <b <0. 12.④ 解析:①当ab <0时,c a <cb 不成立,故①不正确;②当c <0时,a <b ,故②不正确;③当a =1,b =-2,k =2时,命题不成立,故③不正确; ④a >b >0⇒-a <-b <0⇒0<c -a <c -b , 两边同乘以1(c -a )(c -b ),得0<1c -b <1c -a,又a >b >0,∴a c -a >bc -b,故④正确.13. a <c <d <b 解析:由△得a =c +d -b 代入△得c +d -b +d <b +c ,△c <d <b . 由△得b =c +d -a 代入△得a +d <c +d -a +c ,△a <c .△a <c <d <b .14.-1<a b <2 解析:∵2b <a <-b ,∴2b <-b .∴b <0. ∴-b b <a b <2b b ,即-1<ab <2.15.解:∵c <d <0,∴-c >-d >0. 又a >b >0, ∴a -c >b -d >0, ∴1b -d >1a -c>0, 又a >b >0,∴a b -d >ba -c.16.解:令4a -2b =m (a -b )+n (a +b ),△⎩⎪⎨⎪⎧ m +n =4,-m +n =-2,解得⎩⎪⎨⎪⎧m =3,n =1.又△1≤a -b ≤2,△3≤3(a -b )≤6,又△2≤a +b ≤4,△5≤3(a -b )+(a +b )≤10,即5≤4a -2b ≤10. 故4a -2b 的取值范围为5≤4a -2b ≤10.2.2 基本不等式1. 已知0a ≥,0b ≥,且2a b +=,则( )A .12ab ≤B .12ab ≥C .222a b +≥D .223a b +≤2. 设0a >,0b >,若3是3a 与3b 的等比中项,则11a b+的最小值为( ) A .8 B .4 C .1 D .143. 已知()110m a a a=++>,()31x n x =<,则m ,n 之间的大小关系是( ) A .m n > B .m n < C .m n = D .m n ≤ 4. 已知0a >,0b >,则112ab a b++的最小值为( ) A .2 B .22C .4D .55. 已知0a >,0b >,2a b +=,则14y a b=+的最小值是( ) A .72B .4C .92D .56. 某车间分批生产某种产品,每批的生产准备费用为800元,若每批生产x 件,则平均仓储时间为8x天,且每件产品每天的仓储费用为1元.为使平均每件产品的生产准备费用与仓储费用之和最小,每批应生产产品( )A .60件B .80件C .100件D .120件7. 已知54x <,则函数1445y x x =+-的最大值为___________.8.设点(),P x y 在直线1x y +=位于第一象限内的图象上运动,则22log log x y +的最大值是________. 9. 设0a >,0b >,且不等式110k a b a b++≥+恒成立,则实数k 的最小值为___________. 10.函数()log 31a y x =+-(0a >,1a ≠)的图象恒过定点A ,若点A 在直线+1=0mx ny +上,其中0mn >,则12m n+的最小值为___________. 11.求()()2252log 01log f x x x x=++<<的最小值.12.住宅小区为了使居民有一个优雅、舒适的生活环境,计划建一个八边形的休闲小区,它的主体造型的平面图是由两个相同的矩形ABCD和EF GH构成的面积为2200m的十字形区域.现计划在正方形MNPQ上建一花坛,造价为4200元/2m,在四个相同的矩形上(如图中阴影部分)铺花岗岩地坪,造价为210元/2m.m,再在四个空角上铺草坪,造价为80元/2⑴设总造价为S元,AD的边长为xm,试建立S关于x的函数关系式;⑵计划至少要投入多少元,才能建造这个休闲小区?答案与解析1. C 解析:由2a b +=,得212a b ab +⎛⎫≤= ⎪⎝⎭,排除选项A ,B .由22222a b a b ++⎛⎫≥ ⎪⎝⎭,得222a b +≥. 2. B 解析:由题意,知333a b ⋅=,即33a b +=,故1a b +=.因为0a >,0b >,所以()1111a b a b a b ⎛⎫+=++ ⎪⎝⎭2224b a b aa b a b=++≥+⋅=,当且仅当a b =时,等号成立. 3. A 解析:因为0a >,所以111213m a a a a=++≥⋅+=,当且仅当1a =时,等号成立.又因为1x <,所以1333x n =<=,所以m n >.4. C 解析:1122a bab ab a b ab+++=+,因为0a >,0b >,所以2a b ab +≥,当且仅当a b =时,等号成立.所以21222224a b ab ab ab ab ab ab ab +⎛⎫+≥+=+≥⨯= ⎪⎝⎭,当且仅当1ab ab =时,等号成立.综上所述,1a b ==时,取等号. 5. C 解析:因为2a b +=,所以12a b+=,又因为0a >,0b >,所以14142a b y a b a b +⎛⎫=+=+⋅⎪⎝⎭52529222222a b a b b a b a ⎛⎫=++≥+= ⎪⎝⎭(当且仅当22a b b a =,即2b a =时,等号成立),故14a b+的最小值为92. 6. B 解析:设每件产品的平均费用为y 元,由题意,得80080022088x xy x x =+≥⋅=. 当且仅当()80008xx x =>,即80x =时,等号成立.故选B . 7. 3 解析:因为54x <,所以450x -<,所以540x ->.所以()1144554545y x x x x =+=-++--()()11545254535454x x x x⎡⎤=--++≤--⋅+=⎢⎥--⎣⎦当且仅当15454x x-=-,即1x =时,等号成立.故当1x =时,y 取最大值,即max 3y =. 8. 2- 解析:要求22log log x y +的最大值,即求()2log xy 的最大值,应先求xy 的最大值.显然当12x y ==时,xy 的最大值为14,故22log log x y +的最大值为2-. 9. 4- 解析:由0a >,0b >,110ka b a b++≥+,得()2a b k ab +≥-.又因为()224a b b a ab a b +=++≥(a b =时,取等号),所以()24a b ab+-≤-.因此要使()2a b k ab+≥-恒成立,应有4k ≥-,即实数k 的最小值为4-.10.8 解析:因为()log 31a y x =+-恒过点()2,1--,所以()2,1A --.因为A 在直线上,所以210m n --+=,即21m n +=.又因为0mn >,所以0m >,0n >.又因为122m n m n m ++=42m nn++4224248n m m n =+++≥+=,当12n =,14m =时,等号成立,所以12m n +的最小值为8. 11.解:因为01x <<,所以2log 0x <,所以2log 0x ->,250log x->.所以()()222255log 2log log log x x x x ⎛⎫⎛⎫-+-≥--⎪ ⎪⎝⎭⎝⎭25=,即225log 25log x x ⎛⎫-+≥ ⎪⎝⎭.所以225log 25log x x +≤-.所以()2252log 225log f x x x =++≤-,当且仅当225log log x x =,即512x =时,等号成立.所以()max 225f x =-.12.解:⑴设DQ y =,则24200x xy +=,22004x y x -=.221420021048042S x xy y =+⨯+⨯⨯()224000003800040000102x x x=++<< . ⑵2824000003800040003800021610118000S x x =++≥+⨯=,当且仅当224000004000x x =,即10x =时,min 118000S =,即计划至少要投入11.8万元才能建造2.3 第2课时 一元二次不等式的应用基 础 练巩固新知 夯实基础1.不等式4x +23x -1>0的解集是( )A.⎩⎨⎧⎭⎬⎫x | x >13或x <-12 B.⎩⎨⎧⎭⎬⎫x | -12<x <13C.⎩⎨⎧⎭⎬⎫x | x >13D.⎩⎨⎧⎭⎬⎫x | x <-12 2.若集合A ={x |ax 2-ax +1<0}=∅,则实数a 的值的集合是 ( ) A .{a |0<a <4} B .{a |0≤a <4} C .{a |0<a ≤4}D .{a |0≤a ≤4}3.若关于x 的不等式x 2-4x -m ≥0对任意x △(0,1]恒成立,则m 的最大值为 ( )A .1B .-1C .-3D .34.在如图所示的锐角三角形空地中,欲建一个面积不小于300 m 2的内接矩形花园(阴影部分),则其边长x (单位:m)的取值范围是( ) A .15≤x ≤30 B .12≤x ≤25 C .10≤x ≤30 D .20≤x ≤305.若关于x 的不等式x -a x +1>0的解集为(-∞,-1)△(4,+∞),则实数a =________.6.若不等式x 2+mx +1>0的解集为R ,则m 的取值范围是__________.7.解下列分式不等式: (1)x +12x -3≤1; (2)2x +11-x<0.8.当a 为何值时,不等式(a 2-1)x 2-(a -1)x -1<0的解集为R?能 力 练综合应用 核心素养9.不等式x 2-2x -2x 2+x +1<2的解集为( )A .{x |x ≠-2}B .RC .△D .{x |x <-2或x >2}10.若不等式mx 2+2mx -4<2x 2+4x 的解集为R ,则实数m 的取值范围是( ) A .(-2,2)B .(-2,2]C .(-∞,-2)△[2,+∞)D .(-∞,2)11.下列结论错误的是 ( )A.若方程ax 2+bx +c =0(a ≠0)没有实数根,则不等式ax 2+bx +c >0的解集为RB.不等式ax 2+bx +c =0≤0在R 上恒成立的条件是a <0且Δ=b 2-4ac ≤0C.若关于x 的不等式ax 2+x -1≤0的解集为R ,则a ≤-D.不等式>1的解集为x <112.对任意a △[-1,1],函数f (x )=x 2+(a -4)x +4-2a 的值恒大于零,则x 的取值范围是( ) A .1<x <3B .x <1或x >3C .1<x <2D .x <1或x >2 13.在R 上定义运算△:x △y =x (1-y ).若不等式(x -a )△(x +a )<1对任意的实数x 都成立,则a 的取值范围是________.14.已知2≤x ≤3时,不等式2x 2-9x +a <0恒成立,则a 的取值范围为________.15.已知关于x 的一元二次方程x 2+2mx +2m +1=0.若方程有两根,其中一根在区间(-1,0)内,另一根在区间(1,2)内,求m 的取值范围.16.某地区上年度电价为0.8元/kW·h ,年用电量为a kW·h ,本年度计划将电价降低到0.55元/kW·h 至0.75元/kW·h 之间,而用户期望电价为0.4元/kW·h.经测算,下调电价后新增的用电量与实际电价和用户期望电价的差成反比(比例系数为k ).该地区电力的成本价为0.3元/kW·h.(1)写出本年度电价下调后,电力部门的收益y 与实际电价x 的函数关系式;(2)设k =0.2a ,当电价最低定为多少时仍可保证电力部门的收益比上年度至少增长20%? 注:收益=实际用电量×(实际电价-成本价).【参考答案】1. A 解析:4x +23x -1>0△(4x +2)(3x -1)>0△x >13或x <-12,此不等式的解集为⎩⎨⎧⎭⎬⎫x | x >13或x <-12.2.D 解析:a =0时符合题意,a >0时,相应二次方程中的Δ=a 2-4a ≤0,得{a |0<a ≤4},综上得{a |0≤a ≤4}.3.C 解析:由已知可得m ≤x 2-4x 对一切x △(0,1]恒成立, 又f (x )=x 2-4x 在(0,1]上为减函数,△f (x )min =f (1)=-3,△m ≤-3.4.C 解析:设矩形的另一边长为y m ,则由三角形相似知,x 40=40-y40,△y =40-x ,△xy ≥300,△x (40-x )≥300,△x 2-40x +300≤0,△10≤x ≤30.5. 4解析:x -ax +1>0△(x +1)(x -a )>0 △(x +1)(x -4)>0,△a =4.6.-2<m <2 解析:由题意知,不等式x 2+mx +1>0对应的函数的图象在x 轴的上方,所以Δ=(m )2-4×1×1<0,所以-2<m <2.7. 解 (1)△x +12x -3≤1,△x +12x -3-1≤0,△-x +42x -3≤0,即x -4x -32≥0.此不等式等价于(x -4)⎝⎛⎭⎫x -32≥0且x -32≠0,解得x <32或x ≥4.△原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x <32或x ≥4. (2)由2x +11-x <0得x +12x -1>0,此不等式等价于⎝⎛⎭⎫x +12(x -1)>0,解得x <-12或x >1, △原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x <-12或x >1. 8.解 △当a 2-1=0时,a =1或-1.若a =1,则原不等式为-1<0,恒成立.若a =-1,则原不等式为2x -1<0即x <12,不合题意,舍去.△当a 2-1≠0时,即a ≠±1时,原不等式的解集为R 的条件是⎩⎪⎨⎪⎧a 2-1<0,Δ=[-a -1]2+4a 2-1<0.解得-35<a <1.综上a 的取值范围是⎝⎛⎦⎤-35,1. 9.A 解析:△x 2+x +1>0恒成立,△原不等式△x 2-2x -2<2x 2+2x +2△x 2+4x +4>0△(x +2)2>0,△x ≠-2. △不等式的解集为{x |x ≠-2}.10.B 解析:△mx 2+2mx -4<2x 2+4x , △(2-m )x 2+(4-2m )x +4>0.当m =2时,4>0,x △R ;当m <2时,Δ=(4-2m )2-16(2-m )<0,解得-2<m <2.此时,x △R . 综上所述,-2<m ≤2.11.ABD 解析:A 选项中,只有a>0时才成立;B 选项当a=b=0,c≤0时也成立;D 选项x 是大于0的.12.B 解析:设g (a )=(x -2)a +(x 2-4x +4),g (a )>0恒成立且a △[-1,1]△⎩⎪⎨⎪⎧g 1=x 2-3x +2>0g -1=x 2-5x +6>0△⎩⎪⎨⎪⎧x <1或x >2x <2或x >3△x <1或x >3. 13. -12<a <32 解析:根据定义得(x -a )△(x +a )=(x -a )[1-(x +a )]=-x 2+x +a 2-a ,又(x -a )△(x +a )<1对任意的实数x 都成立,所以x 2-x +a +1-a 2>0对任意的实数x 都成立,所以Δ<0,即1-4(a +1-a 2)<0,解得-12<a <32.14. a <9 解析:△当2≤x ≤3时,2x 2-9x +a <0恒成立,△当2≤x ≤3时,a <-2x 2+9x 恒成立. 令y =-2x 2+9x .△2≤x ≤3,且对称轴方程为x =94,△y min =9,△a <9.△a 的取值范围为a <9.15.解 设f (x )=x 2+2mx +2m +1,根据题意,画出示意图由图分析可得, m 满足不等式组⎩⎪⎨⎪⎧f 0=2m +1<0f-1=2>0f1=4m +2<0f2=6m +5>0解得-56<m <-12.16.解(1)设下调后的电价为x 元/kW·h ,依题意知,用电量增至kx -0.4+a ,电力部门的收益为y =⎝⎛⎭⎫k x -0.4+a(x -0.3)(0.55≤x ≤0.75).(2)依题意,有⎩⎪⎨⎪⎧⎝⎛⎭⎫0.2a x -0.4+a (x -0.3)≥[a ×(0.8-0.3)](1+20%),0.55≤x ≤0.75.整理,得⎩⎪⎨⎪⎧x 2-1.1x +0.3≥0,0.55≤x ≤0.75.解此不等式,得0.60≤x ≤0.75.△当电价最低定为0.60元/kW·h 时,仍可保证电力部门的收益比上年度至少增长20%.2.3 第1课时二次函数与一元二次方程、不等式基础练巩固新知夯实基础1.(多选)下面所给关于x的不等式,其中一定为一元二次不等式的是( )A.3x+4<0B.x2+m x-1>0C.a x2+4x-7>0D.x2<02.已知集合M={x|x2-3x-28≤0},N={x|x2-x-6>0},则M∩N为()A.{x|-4≤x<-2或3<x≤7} B.{x|-4<x≤-2或3≤x<7}C.{x|x≤-2或x>3} D.{x|x<-2或x≥3}3.一元二次方程ax2+bx+c=0的根为2,-1,则当a<0时,不等式ax2+bx+c≥0的解()A.{x|x<-1或x>2} B.{x|x≤-1或x≥2}C.{x|-1<x<2} D.{x|-1≤x≤2}4.关于x的不等式ax-b>0的解集是(1,+∞),则关于x的不等式(ax+b)(x-3)>0的解集是() x|x<-1或x>3B.{x|-1<x<3}A.{}C.{x|1<x<3} D.{x|x<1或x>3}5.若不等式ax2-x-c>0的解集为{x|-2<x<1},则函数y=ax2-x-c的图象为()6. 不等式-1<x2+2x-1≤2的解集是________.7.方程x2+(m-3)x+m=0的两根都是负数,则m的取值范围为________.8. 解关于x的不等式:x2+(1-a)x-a<0.能 力 练综合应用 核心素养9.若0<t <1,则关于x 的不等式(t -x )(x -1t)>0的解集是 ( )A.⎩⎨⎧⎭⎬⎫x |1t <x <t B.⎩⎨⎧⎭⎬⎫x |x >1t 或x <tC.⎩⎨⎧⎭⎬⎫x |x <1t 或x >tD.⎩⎨⎧⎭⎬⎫x |t <x <1t10.设函数f (x )=⎩⎪⎨⎪⎧x 2-4x +6,x ≥0,x +6, x <0,则不等式f (x )>f (1)的解集是 ( )A .(-3,1)△(3,+∞)B .(-3,1)△(2,+∞)C .(-1,1)△(3,+∞)D .(-∞,-3)△(1,3)11.不等式x 2-px -q <0的解集是{x |2<x <3},则不等式qx 2-px -1>0的解是( )A.⎩⎨⎧⎭⎬⎫x ⎪⎪ x <-12或x >-13 B.⎩⎨⎧⎭⎬⎫x ⎪⎪-12<x <-13 C.⎩⎨⎧⎭⎬⎫x ⎪⎪13<x <12 D.{}x | x <2或x >3 12. (多选题)已知关于x 的方程x 2+(m -3)x +m =0,下列结论正确的是( ) A .方程x 2+(m -3)x +m =0有实数根的充要条件是m ∈{m |m <1或m >9} B .方程x 2+(m -3)x +m =0有一正一负根的充要条件是m ∈{m |m <0} C .方程x 2+(m -3)x +m =0有两正实数根的充要条件是m ∈{m |0<m ≤1} D .方程x 2+(m -3)x +m =0无实数根的必要条件是m ∈{m |m >1}13.已知x =1是不等式k 2x 2-6kx +8≥0的解,则k 的取值范围是______________. 14.若关于x 的不等式ax 2-6x +a 2>0的解集为{x |1<x <m },则a =________,m =________. 15.若不等式ax 2+bx +c ≥0的解集为⎩⎨⎧⎭⎬⎫x |-13≤x ≤2,求关于x 的不等式cx 2-bx +a <0的解集.16.解关于x 的不等式ax 2-2(a +1)x +4>0.【参考答案】1.BD 解析:根据一元二次不等式的定义以及特征可判定A 一定不是,C 不一定是,B ,D 一定是.2.A 解析:△M ={x |x 2-3x -28≤0}={x |-4≤x ≤7},N ={x |x 2-x -6>0}={x |x <-2或x >3}, △M ∩N ={x |-4≤x <-2或3<x ≤7}.3. D 解析:由方程ax 2+bx +c =0的根为2,-1,知函数y =ax 2+bx +c 的零点为2,-1,又△a <0,△函数y =ax 2+bx +c 的图象是开口向下的抛物线,△不等式ax 2+bx +c ≥0的解集为{x |-1≤x ≤2}.4. A 解析:由题意,知a >0,且1是ax -b =0的根,所以a =b >0,所以(ax +b )(x -3)=a (x +1)(x -3)>0,所以x <-1或x >3,因此原不等式的解集为{x |x <-1或x >3}.5. B 解析:因为不等式的解集为{x |-2<x <1},所以a <0,排除C 、D ;又与坐标轴交点的横坐标为-2,1,故选B.6. {x |-3≤x <-2或0<x ≤1} 解析: △⎩⎪⎨⎪⎧x 2+2x -3≤0,x 2+2x >0,△-3≤x <-2或0<x ≤1.7.{m |m ≥9} 解析:∵⎩⎪⎨⎪⎧Δ=(m -3)2-4m ≥0,x 1+x 2=3-m <0,x 1x 2=m >0,∴m ≥9.8. 解:方程x 2+(1-a )x -a =0的解为x 1=-1,x 2=a .函数y =x 2+(1-a )x -a 的图象开口向上,所以 (1)当a <-1时,原不等式解集为{x |a <x <-1}; (2)当a =-1时,原不等式解集为△; (3)当a >-1时,原不等式解集为{x |-1<x <a }.9.D 解析:△0<t <1,△1t >1,△1t >t .△(t -x )(x -1t )>0△(x -t )(x -1t )<0△t <x <1t .10.A 解析:f (1)=12-4×1+6=3,当x ≥0时,x 2-4x +6>3,解得x >3或0≤x <1; 当x <0时,x +6>3,解得-3<x <0.所以f (x )>f (1)的解集是(-3,1)△(3,+∞).11. B 解析:易知方程x 2-px -q =0的两个根是2,3.由根与系数的关系得⎩⎪⎨⎪⎧ 2+3=p ,2×3=-q ,解得⎩⎪⎨⎪⎧p =5,q =-6,不等式qx 2-px -1>0为-6x 2-5x -1>0,解得-12<x <-13.12. BCD 解析:在A 中,由Δ=(m -3)2-4m ≥0得m ≤1或m ≥9,故A 错误;在B 中,当x =0时,函数y =x 2+(m -3)x +m 的值为m ,由二次函数的图象知,方程有一正一负根的充要条件是m ∈{m |m <0},故B 正确;在C 中,由题意得m>0,3-m>0,解得0<m ≤1,故C 正确;在D 中,由Δ=(m -3)2-4m <0得1<m <9,又{m |1<m <9}⊆{m |m >1},故D 正确,故选BCD .13.k ≤2或k ≥4解析:x =1是不等式k 2x 2-6kx +8≥0的解,把x =1代入不等式得k 2-6k +8≥0,解得k ≥4或k ≤2. 14. -3 -3 解析:在A 中,由Δ=(m -3)2-4m ≥0得m ≤1或m ≥9,故A 错误;在B 中,当x =0时,函数y =x 2+(m -3)x +m 的值为m ,由二次函数的图象知,方程有一正一负根的充要条件是m ∈{m |m <0},故B 正确;在C 中,由题意得m>0,3-m>0,解得0<m ≤1,故C 正确;在D 中,由Δ=(m -3)2-4m <0得1<m <9,又{m |1<m <9}⊆{m |m >1},故D 正确,故选BCD . 可知1,m 是方程ax 2-6x +a 2=0的两个根,且a <0, △⎩⎪⎨⎪⎧1+m =6a 1×m =a解得⎩⎪⎨⎪⎧ a =-3m =-3或⎩⎪⎨⎪⎧a =2m =2(舍去). 15.解 由ax 2+bx +c ≥0的解集为⎩⎨⎧⎭⎬⎫x |-13≤x ≤2,知a <0,且关于x 的方程ax 2+bx +c =0的两个根分别为-13,2,△⎩⎨⎧-13+2=-ba-13×2=ca,△b =-53a ,c =-23a .所以不等式cx 2-bx +a <0可变形为⎝⎛⎭⎫-23a x 2-⎝⎛⎭⎫-53a x +a <0,即2ax 2-5ax -3a >0. 又因为a <0,所以2x 2-5x -3<0,所以所求不等式的解集为⎩⎨⎧⎭⎬⎫x |-12<x <3.16.解 (1)当a =0时,原不等式可化为-2x +4>0,解得x <2,所以原不等式的解集为{x |x <2}. (2)当a >0时,原不等式可化为(ax -2)(x -2)>0,对应方程的两个根为x 1=2a,x 2=2.△当0<a <1时,2a >2,所以原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x >2a ,或x <2; △当a =1时,2a=2,所以原不等式的解集为{x |x ≠2};△当a >1时,2a <2,所以原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x >2,或x <2a . (3)当a <0时,原不等式可化为(-ax +2)(x -2)<0,对应方程的两个根为x 1=2a ,x 2=2,则2a<2,所以原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪2a<x <2. 综上,a <0时,原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪2a<x <2; a =0时,原不等式的解集为{x |x <2};0<a ≤1时,原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪ x >2a,或x <2; 当a >1时,原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪ x >2,或x <2a .2.3二次函数与一元二次方程、不等式一、选择题1.不等式9x 2+6x +1≤0的解集是( ) A.1|3x x ⎧⎫≠-⎨⎬⎩⎭B.11|33x x ⎧⎫-≤≤⎨⎬⎩⎭C .∅D.1|3x x ⎧⎫=-⎨⎬⎩⎭2.下列不等式中,解集是R 的是( ) A .x 2+4x +4>0B.20x >C.1102x⎛⎫+> ⎪⎝⎭D .-x 2+2x -1>03.不等式ax 2+5x+c >0的解集为11{|}32x x <<,则a ,c 的值为( ) A .a=6,c=1 B .a=-6,c=-1 C .a=1,c=1 D .a=-1,c=-6 4.若0<t <1,则不等式1()()0x t x t--<的解集为( ) A.1|x x t t⎧⎫<<⎨⎬⎩⎭B.1|x x x t t ⎧⎫><⎨⎬⎩⎭或 C.1|x x x t t⎧⎫<>⎨⎬⎩⎭或D.1|x t x t ⎧⎫<<⎨⎬⎩⎭5.不等式x 2-ax -b <0的解集是{x|2<x <3},则bx 2-ax -1>0的解集是( ) A .{|23}x x << B .11{|}32x x << C .11{|}23x x -<<- D .{|32}x x -<<- 6. 关于x 的不等式(1+m )x 2+mx +m <x 2+1对x ∈R 恒成立,则实数m 的取值范围是( ) A .(-∞,0) B .(-∞,0)∪3,4⎛⎫+∞⎪⎝⎭C .(-∞,0]D .(-∞,0]∪4,3⎛⎫-+∞ ⎪⎝⎭二、填空题7.如果A ={x |ax 2-ax +1<0}=∅,则实数a 的取值范围是________.8.如果关于x 的方程x 2-(m -1)x+2-m=0的两根为正实数,则m 的取值范围是________. 9. 函数21()31f x ax ax =++的定义域是R ,则实数a 的取值范围为________.10.若关于x 的不等式2260ax x a -+<的解集为(1,)m ,则实数m 等于 . 三、解答题 11.解下列不等式(1)2x 2+7x +3>0; (2)-x 2+8x -3>0;12. 不等式mx 2+1>mx 的解集为实数集R ,求实数m 的取值范围.13. 解关于x 的不等式m 2x 2+2mx -3<0(其中m ∈R ).14.已知2()2(2)4f x x a x =+-+,(1)如果对一切x ∈R ,f(x)>0恒成立,求实数a 的取值范围; (2)如果对x ∈[-3,1],f(x)>0恒成立,求实数a 的取值范围. 15.解下列关于x 的不等式 0)1)(1(>+-x ax ;答案与解析1.【答案】 D【解析】 9x 2+6x +1=(3x +1)2≤0 ∴13x =-,故选D.2.【答案】 C【解析】 ∵x 2+4x +4=(x +2)2≥0, ∴A 不正确;∵2||0x x =≥,∴B 不正确;∵102x ⎛⎫> ⎪⎝⎭,∴11102x⎛⎫+>> ⎪⎝⎭(x ∈R ),故C 正确;∵-x 2+2x -1>0 ∴x 2-2x +1=(x -1)2<0, ∴D 不正确.3.【答案】B【解析】由题意可知方程250ax x c ++>的两根为12x =和13x =,由韦达定理得: 11115,2323c a a⨯=+=-,求得a=-6,c=-14.【答案】 D【解析】 ∵0<t <1,∴11t >,∴1t t< ∴11()()0x t x t x t t--<⇔<<.5.【答案】C【解析】由题意得,方程x 2-ax -b=0的两根为x=2,x=3,由韦达定理得23a +=,23b ⨯=-,求得5 a =,b=-6,从而解得bx 2-ax -1>0的解集为11{|}23x x -<<-6. 【答案】C【解析】 原不等式等价于mx 2+mx+m -1<0对x ∈R恒成立,当m =0时,0·x 2+0·x -1<0对x ∈R恒成立. 当m ≠0时,由题意,得220000404103403m m m m m m m mm m m <⎧<<⎧⎧⎪⇔⇔⇔<⎨⎨⎨<>∆=--<->⎩⎩⎪⎩或. 综上,m 的取值范围为(-∞,0].7.【答案】 [0,4)【解析】 由题意知2040a a a >⎧⎨∆=--<⎩,∴0<a <4. 当a =0时,A ={x |1<0}=∅,符合题意.8.【答案】{|1222}m m -+<< 【解析】由题意得:1212000x x x x ∆>⎧⎪+>⎨⎪>⎩,解得1222m -+<<9. 【答案】 40,9⎡⎫⎪⎢⎣⎭【解析】 由已知f (x )的定义域是R . 所以不等式ax 2+3ax +1>0恒成立.(1)当a =0时,不等式等价于1>0,显然恒成立; (2)当a ≠0时,则有2000400(94)09(3)40a a a a a a a a >>>⎧⎧⎧⎧⇔⇔⇔<<⎨⎨⎨⎨∆<-<-<⎩⎩⎩⎩. 由(1)(2)知,409a ≤<. 即所求a 的取值范围是40,9⎡⎫⎪⎢⎣⎭.10.【答案】2【解析】由题意,得1,m 是关于x 的方程2260ax x a -+=的两根,则2611m a ama ⎧+=⎪⎪⎨⎪⨯=⎪⎩解得 23m m ==-或(舍去)11.【解析】(1)因为Δ=72-4×2×3=25>0,所以方程2x 2+7x +3=0有两个不等实根x 1=-3,212x =-. 又二次函数y =2x 2+7x +3的图象开口向上, 所以原不等式的解集为1|32x x x ⎧⎫>-<-⎨⎬⎩⎭或. (2)因为Δ=82-4×(-1)×(-3)=52>0, 所以方程-x 2+8x -3=0有两个不等实根1413x =-,2413x =+.又二次函数y =-x 2+8x -3的图象开口向下, 所以原不等式的解集为{}|413413x x -<<+.12.【解析】当m =0时,不等式即为1>0,满足条件.当m≠0时,若不等式的解集为R ,则应有⎪⎩⎪⎨⎧<--=∆>0m 4)m (0m 2, 解得0<m <4.综上,m 的取值范围是{m|0≤m<4}.13.【解析】 当m =0时,原不等式可化为-3<0,其对一切x ∈R 都成立, 所以原不等式的解集为R . 当m ≠0时,m 2>0,由m 2x 2+2mx -3<0,得(mx -1)(mx +3)<0, 即130x x m m ⎛⎫⎛⎫-+< ⎪⎪⎝⎭⎝⎭, 若m >0,则13m m>-, 所以原不等式的解集为31,m m ⎛⎫- ⎪⎝⎭; 若m <0,则13m m<-,所以原不等式的解集为13,m m ⎛⎫-⎪⎝⎭.综上所述,当m =0时,原不等式的解集为R ;当m>0时,原不等式的解集为31,m m⎛⎫-⎪⎝⎭;当m<0时,原不等式的解集为13,m m⎛⎫-⎪⎝⎭.14.【解析】(1)由题意得:△=2[2(2)]160a--<,即0<a<4;(2)由x∈[-3,1],f(x)>0得,有如下两种情况:2[3,1](3)0(1)0aff-∉-⎧⎪->⎨⎪>⎩或2[3,1](2)0af a-∈-⎧⎨->⎩综上所述:1,42a⎛⎫∈-⎪⎝⎭.15.【解析】当a=0时,原不等式即为-(x+1)>0,解得x<-1;当a≠0时,原不等式为关于x的一元二次不等式,方程(ax-1)(x+1)=0有两个实数根ax11=和12-=x.(Ⅰ)当21xx<,即11-<a,01<<-a时,函数)1)(1()(+-=xaxxf的图象开口向下,与x轴有两个交点,其简图如下:故不等式0)1)(1(>+-xax的解集为⎪⎭⎫⎝⎛-1,1a;(Ⅱ)当,即1,11-=-=aa时,函数)1)(1()(+-=xaxxf的图象开口向下,与x轴有一个交点,其简图如下:21xx=故不等式0)1)(1(>+-xax的解集为空集;(Ⅲ)当21xx>,即11->a,1-<a或0>a,①若1-<a,函数)1)(1()(+-=xaxxf的图象开口向下,与x轴有两个交点,其简图如下:故不等式0)1)(1(>+-xax的解集为11,a⎛⎫-⎪⎝⎭;②若a>0,数()(1)(1)f x ax x=-+的图象开口向上,与x轴有两个交点,其简图如下:故不等0)1)(1(>+-xax的解集为1(,1),a⎛⎫-∞-+∞⎪⎝⎭;综上所述,当a<-1时,不等式的解集为⎪⎭⎫⎝⎛-a1,1;当a=-1时,不等式的解集为空集;当-1<a<0时,不等式的解集为⎪⎭⎫⎝⎛-1,1a;当a=0时,不等式的解集为)1,(--∞;当a>0时,不等式的解集为⎪⎭⎫⎝⎛+∞--∞,1)1,(a.必修 第一册 第二章 一元二次函数、方程和不等式2.1 等式性质与不等式性质1.比较大小的基本事实:比较两实数大小的方法——求差比较法 0a b a b >⇔->; 0a b a b =⇔-=; 0a b a b <⇔-<。

高中数学(人教A版)必修一课后习题:幂函数(课后习题)【含答案及解析】

高中数学(人教A版)必修一课后习题:幂函数(课后习题)【含答案及解析】

幂函数课后篇巩固提升合格考达标练1.(2021山西运城高一期中)下列函数既是幂函数又是偶函数的是( )A.f (x )=3x 2B.f (x )=√xC.f (x )=1x 4 D.f (x )=x -3f (x )=3x 2,不是幂函数;函数f (x )=√x ,定义域是[0,+∞),是幂函数,但不是偶函数;函数f (x )=1x4=x -4是幂函数,也是定义域(-∞,0)∪(0,+∞)上的偶函数;函数f (x )=x -3是幂函数,但不是偶函数.故选C .2.(2021河北唐山高一期末)已知幂函数y=f (x )的图象过点(2,√2),则下列关于f (x )的说法正确的是( ) A.奇函数 B.偶函数C.定义域为(0,+∞)D.在(0,+∞)上单调递增f (x )=x α(α为常数),∵幂函数y=f (x )图象过点(2,√2),∴2α=√2,∴α=12,∴幂函数f (x )=x 12.∵12>0,∴幂函数f (x )在(0,+∞)上单调递增,所以选项D 正确;∵幂函数f (x )=x 12的定义域为[0,+∞),不关于原点对称,∴幂函数f (x )既不是奇函数也不是偶函数,所以选项A,B,C 错误,故选D . 3.已知a=1.212,b=0.9-12,c=√1.1,则()A.c<b<aB.c<a<bC.b<a<cD.a<c<b0.9-12=(910)-12=(109)12,c=√1.1=1.112,∵12>0,且1.2>109>1.1,∴1.212>(109)12>1.112,即a>b>c.4.若(a+1)13<(3-2a )13,则a 的取值范围是 .-∞,23)f (x )=x 13的定义域为R ,且为增函数,所以由不等式可得a+1<3-2a ,解得a<23.5.为了保证信息的安全传输,有一种密钥密码系统,其加密、解密原理为:发送方由明文到密文(加密),接收方由密文到明文(解密).现在加密密钥为y=x α(α为常数),如“4”通过加密后得到密文“2”.若接收方接到密文“3”,则解密后得到的明文是 .y=x α(α是常数)是一个幂函数模型,所以要想求得解密后得到的明文,就必须先求出α的值.由题意,得2=4α,解得α=12,则y=x 12.由x 12=3,得x=9,即明文是9. 6.已知幂函数f (x )=(2m 2-6m+5)x m+1为偶函数. (1)求f (x )的解析式;(2)若函数y=f (x )-2(a-1)x+1在区间(2,3)上为单调函数,求实数a 的取值范围.由f (x )为幂函数知2m 2-6m+5=1,即m 2-3m+2=0,得m=1或m=2,当m=1时,f (x )=x 2,是偶函数,符合题意;当m=2时,f (x )=x 3,为奇函数,不合题意,舍去.故f (x )=x 2.(2)由(1)得y=x 2-2(a-1)x+1,函数的对称轴为x=a-1,由题意知函数在区间(2,3)上为单调函数, ∴a-1≤2或a-1≥3,相应解得a ≤3或a ≥4. 故实数a 的取值范围为(-∞,3]∪[4,+∞).等级考提升练7.(2021四川成都七中高一期中)若幂函数f (x )=(m 2-2m-2)·x m 在(0,+∞)上单调递减,则f (2)=( )A.8B.3C.-1D.12f (x )=(m 2-2m-2)x m 为幂函数,则m 2-2m-2=1,解得m=-1或m=3.当m=-1时,f (x )=x -1,在(0,+∞)上单调递减,满足题意,当m=3时,f (x )=x 3,在(0,+∞)上单调递增,不满足题意,所以m=-1,所以f (x )=1x ,所以f (2)=12,故选D .8.(2021吉林延边高一期末)已知幂函数f (x )=x 12,若f (a-1)<f (14-2a ),则a 的取值范围是( ) A.[-1,3) B.(-∞,5) C.[1,5) D.(5,+∞)f (x )=x 12,若f (a-1)<f (14-2a ),可得√a -1<√14-2a ,即{a -1≥0,14-2a ≥0,a -1<14-2a ,得1≤a<5.所以a 的取值范围为[1,5).9.已知幂函数g (x )=(2a-1)x a+2的图象过函数f (x )=32x+b 的图象所经过的定点,则b 的值等于( ) A.-2 B.1 C.2 D.4g (x )=(2a-1)x a+2为幂函数,则2a-1=1,∴a=1,函数的解析式为g (x )=x 3,幂函数过定点(1,1),在函数f (x )=32x+b 中,当2x+b=0时,函数过定点(-b 2,1),据此可得-b2=1,故b=-2.故选A . 10.函数f (x )=(m 2-m-1)x m2+m -3是幂函数,对任意x 1,x 2∈(0,+∞),且x 1≠x 2,满足f (x 1)-f (x 2)x 1-x 2>0,若a ,b ∈R ,且a+b>0,ab<0,则f (a )+f (b )的值 ( )A.恒大于0B.恒小于0C.等于0D.无法判断f (x )=(m 2-m-1)x m2+m -3是幂函数,可得m 2-m-1=1,解得m=2或m=-1,当m=2时,f (x )=x 3,当m=-1时,f (x )=x -3,对任意的x 1,x 2∈(0,+∞),且x 1≠x 2,满足f (x 1)-f (x 2)x 1-x 2>0,函数在(0,+∞)上单调递增,所以m=2,此时f (x )=x 3.又a+b>0,ab<0,可知a ,b 异号,且正数的绝对值大于负数的绝对值,则f (a )+f (b )恒大于0,故选A .11.(多选题)(2020江苏常州高级中学高一期末)下列说法正确的是( ) A.若幂函数的图象经过点(18,2),则解析式为y=x -3B.若函数f (x )=x -45,则f (x )在区间(-∞,0)上单调递减C.幂函数y=x α(α>0)始终经过点(0,0)和(1,1)D.若函数f (x )=√x ,则对于任意的x 1,x 2∈[0,+∞)有f (x 1)+f (x 2)2≤f (x 1+x22)(18,2),则解析式为y=x-13,故A 错误;函数f (x )=x-45是偶函数且在(0,+∞)上单调递减,故在(-∞,0)上单调递增,故B 错误;幂函数y=x α(α>0)始终经过点(0,0)和(1,1),故C 正确;任意的x 1,x 2∈[0,+∞),要证f (x 1)+f (x 2)2≤f (x 1+x 22),即√x 1+√x 22≤√x 1+x22,即x 1+x 2+2√x 1x 24≤x 1+x 22,即(√x 1−√x 2)2≥0,易知成立,故D 正确.12.(多选题)(2021广东佛山南海高一期中)已知幂函数y=x α(α∈R )的图象过点(3,27),下列说法正确的是( )A.函数y=x α的图象过原点B.函数y=x α是偶函数C.函数y=x α是减函数D.函数y=x α的值域为R(3,27),则有27=3α,所以α=3,即y=x 3.故函数是奇函数,图象过原点,函数在R 上单调递增,值域是R ,故A,D 正确,B,C 错误.故选AD . 13.(2021广东深圳宝安高一期末)幂函数f (x )=x m 2-5m+4(m ∈Z )为偶函数且在区间(0,+∞)上单调递减,则m= ,f 12= .或3 4y=x m2-5m+4为偶函数,且在(0,+∞)上单调递减,∴m 2-5m+4<0,且m 2-5m+4是偶数,由m 2-5m+4<0得1<m<4. 由题知m 是整数,故m 的值可能为2或3,验证知m=2或3时,均符合题意,故m=2或3,此时f (x )=x -2,则f 12=4. 14.已知幂函数f (x )=(m-1)2x m 2-4m+2在区间(0,+∞)上单调递增,函数g (x )=2x -k.(1)求实数m 的值;(2)当x ∈(1,2]时,记ƒ(x ),g (x )的值域分别为集合A ,B ,若A ∪B=A ,求实数k 的取值范围.依题意得(m-1)2=1.∴m=0或m=2.当m=2时,f (x )=x -2在区间(0,+∞)上单调递减,与题设矛盾,舍去.当m=0时,f (x )=x 2,符合题设,故m=0.(2)由(1)可知f (x )=x 2,当x ∈(1,2]时,函数f (x )和g (x )均单调递增.∴集合A=(1,4],B=(2-k ,4-k ]. ∵A ∪B=A ,∴B ⊆A.∴{2-k ≥1,4-k ≤4.∴0≤k ≤1.∴实数k 的取值范围是[0,1].新情境创新练15.(2020青海高一期末)已知函数f (x )=(m 2-2m+2)x 1-3m 是幂函数. (1)求函数f (x )的解析式;(2)判断函数f (x )的奇偶性,并证明你的结论;(3)判断函数f (x )在区间(0,+∞)上的单调性,并证明你的结论.提示:若m ∈N *,则x -m =1x m.∵函数f (x )=(m 2-2m+2)x 1-3m 是幂函数,∴m 2-2m+2=1,解得m=1, 故f (x )=x -2(x ≠0).(2)函数f (x )=x -2为偶函数.证明如下:由(1)知f (x )=x -2,其定义域为{x|x ≠0},关于原点对称,∵对于定义域内的任意x ,都有f (-x )=(-x )-2=1(-x )2=1x2=x -2=f (x ),故函数f (x )=x -2为偶函数.(3)f (x )在区间(0,+∞)上单调递减.证明如下:在区间(0,+∞)上任取x 1,x 2,不妨设0<x 1<x 2,则f (x 1)-f (x 2)=x 1-2−x 2-2=1x 12−1x 22 =x 22-x 12x 12x 22=(x 2-x 1)(x 2+x 1)x 12x 22, ∵x 1,x 2∈(0,+∞)且x 1<x 2,∴x 2-x 1>0,x 2+x 1>0,x 12x 22>0,∴f (x 1)>f (x 2).∴f (x )在区间(0,+∞)上单调递减.。

08.03.11高一数学《习题课》

08.03.11高一数学《习题课》

2. 教材P.41练习第5、6题;
3. 《习案》作业十.
湖南省长沙市一中卫星远程学校
湖南省长沙市一中卫星远程学校
5. 举例应用
思考.
湖南省长沙市一中卫星远程学校
课堂小结
1. 正弦函数、余弦函数的周期性; 2. 正弦函数、余弦函数的奇偶性; 3. 正弦函数、余弦函数的单调性; 4. 正弦函数、余弦函数的最值.
湖南省长沙市一中卫星远程学校
课后作业
1. 阅读教材P.34-P.40;
习题课
——正弦函数、余弦函数的性质
主讲老师:陈震
的周期:
湖南省长沙市一中卫星远程学校
2. 奇偶性及对称性
练习2.
正弦函数图象的对称中心是
对称轴为

; ,
余弦函数图象的对称中心是
对称轴为

湖南省长沙市一中卫星远程学校
2. 奇偶性及对称性

y=2cosx的单调递减区间为
.
湖南省长沙市一中卫星远程学校
4. 最大值与最小值
练习5.
湖南省长沙市一中卫星远程学校
4. 最大值与最小值
练习5.
湖南省长沙市一中卫星远程学校
4. 最大值与最小值
练习5.
湖南省长沙市一中卫星远程学校
4. 最大值与最小值
练习5.
湖南省长沙市一中卫星远程学校
4. 最大值与最小值
练习2.
正弦函数图象的对称中心是
对称轴为

; ,
余弦函数图象的对称中心是
对称轴为

湖南省长沙市一中卫星远程学校
2. 奇偶性及对称性
练习2.
正弦函数图象的对称中心是
对称轴为

《高一数学《习题课》课件

《高一数学《习题课》课件

中档题解析
总结词:提升能力
详细描述:中档题目相对于基础题目难度有所提升,需要学生具备一定的分析问题和解决问题的能力。通过解析这类题目, 可以帮助学生提升数学思维能力,掌握数学思想和方法。
难题解析
总结词:拓展思维
详细描述:难题通常具有较高的难度,需要学生具备较为扎实的数学基础和较高的思维水平。通过解 析这类题目,可以帮助学生拓展数学思维,培养创新能力和解决问题的能力。同时,也可以让学生了 解数学的深度和广度,激发学习数学的兴趣和热情。
随着知识点的深入,题目难度将逐渐加大 ,要求学生具备更扎实的数学基础和更高 的思维能力。
课堂活动
复习计划
下节课将组织更多的课堂活动,如数学竞 赛、小组讨论等,以激发学生的学习兴趣 和积极性。
建议学生提前预习下节课内容,并制定相 应的复习计划,以确保下节课的学习效果 。
THANKS
感谢观看
解题技巧
通过讲解典型例题,教授了学生如何 运用所学知识解决实际问题,以及如 何运用数学思维分析问题。
课堂互动
课堂上进行了多次小组讨论和互动问 答,鼓励学生积极参与,提高课堂氛 围。
作业布置
布置了相应的习题作业,以巩固本节 课所学内容,并要求学生按时完成。
下节课展望
知识拓展
难度提升
下节课将进一步深入学习高一数学中的其 他重要知识点,如三角函数、平面几何等 。
04
易错点分析
Chapter
常见错误分析
学生对某些数学概念理解不准确 ,导致在应用时出现偏差。
学生在解题过程中逻辑推理不严 密,导致结论错误。
计算错误 概念理解不清 公式运用不当 逻辑推理混乱
学生在解题过程中经常出现计算 失误,如加减乘除运算错误、开 方运算错误等。

高一数学必修4向量的加减法练习题含解析

高一数学必修4向量的加减法练习题含解析

2.2.1课时作业1.已知正方形ABCD 的边长为1,AB →=a ,AD →=b ,则|a +b |为( ) A .1 B. 2 C .2 D .2 2答案 B2.下列各式不正确的是( )①a +(b +c )=(a +c )+b ;②AB →+BA →≠0;③AC →=DC →+AB →+BD →. A .②③ B .② C .①D .③ 答案 B3.在平行四边形ABCD 中,O 是对角线的交点,下列结论正确的是( )A.AB →=CD →,BC →=AD →B.AD →+OD →=DA →C.AO →+OD →=AC →+CD →D.AB →+BC →+CD →=DA →答案 C4.a ,b 为非零向量,且|a +b |=|a |+|b |,则( ) A .a ∥b ,且a 与b 方向相同 B .a ,b 是共线向量且方向相反 C .a =bD .a ,b 无论什么关系均可 答案 A5.如图,在正六边形ABCDEF 中,若AB =1,则|AB →+FE →+CD →|=( ) A .1 B .2 C .3 D .2 3 答案 B6.在Rt △ABC 中,若∠A =90°,|AC →|=2,|AB →|=3,则AC →+AB →的模等于( ) A.13 B .2 2 C .3D .5 答案 A解析 由题意知|AB →+AC →|=|AB →|2+|AC →|2=22+32=13,应选A. 7.向量(AB →+MB →)+(BO →+BC →)+OM →化简后等于( )A.BC →B.AB →C.AC →D.AM →答案 C8.已知O 是△ABC 内的一点,且OA →+OB →+OC →=0,则O 是△ABC 的( ) A .垂心 B .重心 C .内心D .外心答案 B9.如图,已知梯形ABCD ,AD ∥BC ,则OA →+AB →+CD →+BC →=______.答案 OD →10.已知正方形ABCD 的边长为1,则|AB →+BC →+AD →+DC →|等于________. 答案 2 2解析 |AB →+BC →+AD →+DC →|=|2AC →|=2 2.11.若a 表示向东走8 km ,b 表示向北走8 km ,则|a +b |=________km ,a +b 的方向是________.答案 82 北偏东45°解析 如图,a +b =OA →+AB →=OB →. ∵|a |=8,|b |=8,∴△OAB 为等腰直角三角形,∴|a +b |=|OB →|=8 2.方向是北偏东45°.12.如图(1),已知向量a 、b 、c ,求作向量a +b +c .解析 如图(2),在平面内任取一点D ,作DA →=a ,AB →=b ,BC →=c ,作DB →、DC →,则DB →=a+b ,DC →=(a +b )+c =a +b +c .∴向量DC →即为所作向量.13.如图所示,在四边形ABCD 中,AC →=AB →+AD →,试判断四边形的形状.解析 由向量加法的三角形法则,得AC →=AB →+BC →. ∵AC →=AB →+AD →,∴AD →=BC →,即AD ∥BC 且|AD →|=|BC →|,∴四边形ABCD 是平行四边形. 14.如图所示,P ,Q 是△ABC 的边BC 上两点,且BP =QC. 求证:AB →+AC →=AP →+AQ →. 证明 AB →=AP →+PB →,AC →=AQ →+QC →,∴AB →+AC →=AP →+PB →+AQ →+QC →. 因为PB →和QC →大小相等、方向相反, 所以PB →+QC →=0.故AB →+AC →=AP →+AQ →+0=AP →+AQ →.2.2.2课时作业1.给出下列3个向量等式:①AB →+CA →+BC →=0;②AB →-AC →-BC →=0;③AC →-BC →-AB →=0.其中正确的等式的个数为( ) A .0 B .1 C .2 D .3答案 C 解析 ①③对.2.如右图,▱ABCD 中,下列等式中错误的是( ) A.AD →=AB →+BD → B.AD →=AC →+CD → C.AD →=AB →+BC →+CD →D.AD →=DC →+CA → 答案 D解析 DC →+CA →=DA →.3.若O ,E ,F 是不共线的任意三点,则以下各式中成立的是( ) A.EF →=OF →+OE → B.EF →=OF →-OE → C.EF →=-OF →+OE → D.EF →=-OF →-OE →答案 B4.下列命题中,正确的是( )A .差向量的方向是由被减向量的终点指向减向量的终点B .若a 、b 是任意两个向量,则|a |-|b |=|a -b |C .与a 方向相反的向量叫做a 的相反向量D .从一个向量减去一个向量,等于加上这个向量的相反向量 答案 D5.在下列各等式中,正确的个数为( )①a -b =b -a; ②a +b -c =a -c +b ;③b -(-a )=b +a; ④0-a =-a ;⑤|a -b |=|b +a |; ⑥|a +b |=|a |+|b |. A .5 B .4 C .3 D .1答案 C6.边长为1的正三角形ABC 中,|AB →-BC →|的值为( ) A .1 B .2 C.32D. 3 答案 D7.如图,在四边形ABCD 中,设AB →=a ,AD →=b ,BC →=c ,则DC →等于( )A .a -b +cB .b -(a +c )C .a +b +cD .b -a +c答案 A8.若|AB →|=8,|AC →|=5,则|BC →|的取值范围是( ) A .[3,8]B .(3,8)C .[3,13]D .(3,13)答案 C解析 BC →=AC →-AB →(1)当AB →、AC →同向时,|BC →|=8-5=3; (2)当AB →、AC →反向时,|BC →|=8+5=13; (3)当AB →、AC →不共线时,3<|BC →|<13. 综上,可知3≤|BC →|≤13.9.已知△ABC 是以A 为直角顶点的直角三角形,则在下列各等式中不成立的为( ) A .|AC →-AB →|=|AC →+AB →| B .|AC →-AB →|=|CB →| C .|AB →-AC →|2=|AB →|2+|BC →|2 D .|BC →+CA →|2+|AC →|2=|BC →|2答案 C10.如图所示,在梯形ABCD 中,AD ∥BC ,AC 与BD 交于O 点,则BA →-BC →-OA →+OD →+DA →=________. 答案 CA →11.判断正误.(1)设非零向量a 、b ,则|a +b |=|a -b |⇔a ⊥b .(2)AB →+BC →+CA →=0⇔A 、B 、C 是某个三角形三个顶点. 答案 (1)正确 (2)不正确12.如图,在边长为1的正方形ABCD 中,设AB →=a ,AD →=b ,AC →=c ,求|a -b +c |.答案 |a -b +c |=213.如图四边形ABCD 的边AD 、BC 的中点分别为E 、F , 求证:EF →=12(AB →+DC →).证明 EF →=12(EB →+EC →)=12(EA →+AB →+ED →+DC →)=12(AB →+DC →)(∵EA →+ED →=0) 14.设平面内有四边形ABCD 和O ,OA →=a ,OB →=b ,OC →=c ,OD →=d ,若a +c =b +d ,试判断四边形ABCD 的形状.解析 ∵a +c =b +d ,即OA →+OC →=OB →+OD →. ∴OA →-OB →=OD →-OC →.即BA →=CD →.∴BA 綊CD. 故四边形ABCD 是平行四边形. ►重点班·选做题15.任给向量a ,b ,则下列各项中正确的是( ) A .|a +b |=|a |+|b | B .|a -b |=|a |-|b | C .|a -b |≤|a |-|b | D .|a -b |≤|a |+|b |答案 D16.已知|a |=|b |=1,|a +b |=1,则|a -b |=( ) A .1 B. 3 C.32D .2答案 B分析 根据向量的平行四边形法则,以a 和b 为邻边表示向量a +b 和a -b ,再根据向量模的关系判断平行四边形的形状求解.解析 如右图所示,根据向量加法的平行四边形法则可知,当|a |=|b |=1,|a +b |=1时,平行四边形ABDC 为菱形.又|a +b|=1, ∴△ABD 为正三角形.∴∠ABD =60°.容易得出|a -b|=|CB →|=2|OB →|=2|AB|2-|AO|2=2·12-(12)2= 3.。

人教社B版高一数学二倍角习题课解析版

人教社B版高一数学二倍角习题课解析版

二倍角的正弦、余弦、正切基础知识部分1.和、差角公式:sin()___sin cos cos sin ___________________________αβαβαβ+=+; sin()____sin cos cos sin ____________________________αβαβαβ-=- cos()___cos cos sin sin ___________________________αβαβαβ+=-; cos()______cos cos sin sin _________________________αβαβαβ-=+;tan tan tan()__________________________________1tan tan αβαβαβ++=-;tan tan tan()_________________________________1tan tan αβαβαβ--=+.2.辅助角(合一变形)公式:()()sin cos _tan ___________tan _____________b a x b x x a a x b θθϕϕ⎛⎫+=+= ⎪⎝⎭⎛⎫=-= ⎪⎝⎭3.二倍角公式:22tan sin 2_2sin cos _______________________1tan ααααα==+;2222221tan cos 2_cos sin ___2cos 1__12sin _1tan ααααααα-=-=-=-=+;22tan tan 2__________________1tan ααα=-. 4.升降幂公式:221cos 1cos __cos _________;__sin _________22αααα+-== 5. 半角公式sin_cos __tan __222ααα=== sin 1cos tan__________21cos sin ααααα-==+典型习题 例1. 已知3sin 5θ=,(,)2πθπ∈,求tan θ、sin 2θ 、cos 2θ、tan 2θ 的值解析:3433424,,sin ,cos ,tan ,sin 2225545525πθπθθθθ⎛⎫⎛⎫∈=∴=-=-=⨯⨯-=- ⎪ ⎪⎝⎭⎝⎭247sin 224cos 221,tan 2525cos 27θθθθ⎛⎫=⨯--===- ⎪⎝⎭变式:1. 已知53)2sin(=-απ,则)2cos(απ-=( )A .257B .2524C .257-D .2524-解析:()233sin(),cos ,cos 2cos 212cos 255πααπααα-=∴=-=-=-23712525⎛⎫=-⨯=⎪⎝⎭,故选A 2. 已知3sin 5α=,且,2παπ⎛⎫∈ ⎪⎝⎭,那么2sin2cos αα的值等于( ) A. 34-B. 32-C. 34 D.32解析:343sin ,,cos ,tan ,5254πααπαα⎛⎫=∈∴=-=- ⎪⎝⎭22sin 22sin cos cos cos ααααα∴=32tan 2α==-,故选B3. 已知α∈(2π,π),sin α=53,则tan(24πα+)等于___________解析:232343244sin ,,cos ,tan ,tan 2,52547314πααπααα⎛⎫⨯- ⎪⎛⎫⎝⎭=∈∴=-=-∴==- ⎪⎝⎭⎛⎫-- ⎪⎝⎭241tan 21177tan 22441tan 23117πααα-+⎛⎫+===- ⎪-⎝⎭+ 4. 若θθθ2sin 21cos ,31tan 2+=则=( D )A 、56-B 、54- C 、54 D 、56解析:222221cos sin cos cos sin 2cos sin cos 2sin cos θθθθθθθθθθ++=+=+21tan 6tan 15θθ+==+,故选D5. 若tan α=12-,则sin 22cos 24cos 24sin 2αααα+-的值是 ( )(A)114 (B)-114 (C)52 (D)52- 解析: tan α=12-,21242tan 23112α⎛⎫⨯- ⎪⎝⎭∴==-⎛⎫-- ⎪⎝⎭,sin 22cos2tan 2214cos24sin 244tan 214αααααα++==--,故选A6. 在△ABC 中,cos A =35,tan B =2,求tan(2A +2B )的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习题课(5)
时间:45分钟 总分:90分
一、选择题(每小题5分,共30分)
1.函数f (x )=lg x -1x
的零点所在的区间是( ) A .(3,4) B .(2,3)
C .(1,2)
D .(0,1)
答案:B
解析:∵函数f (x )=lg x -1x
, ∴f (2)=lg2-12
=lg2-lg101
2<0, f (3)=lg3-13
=lg3-lg1013>0, ∴f (2)f (3)<0
由零点的存在性定理可知:零点所在的区间为(2,3),故选B.
2.如图是函数f (x )=x 2+ax +b 的部分图象,则函数g (x )=ln x +2x +a 的零点所在区间是( )
A.⎝⎛⎭⎫14,12 B .(1,2)
C.⎝⎛⎭⎫12,1 D .(2,3)
答案:C 解析:解:由函数f (x )=x 2+ax +b 的部分图象得0<b <1,f (1)=0,从而-2<a <-1, 而g (x )=ln x +2x +a 在定义域内单调递增,
g (12)=ln 12
+1+a <0, g (1)=ln1+2+a =2+a >0,
∴函数g (x )=ln x +2x +a 的零点所在的区间是(12
,1); 故选C.
3.已知函数y 1=1x
-1,y 2=-x 2+2,y 3=2x 2-1,y 4=2x -x 3,其中能用二分法求出函数零点的函数个数为( )
A .4
B .3
C .2
D .1
答案:A
解析:画出四个函数的图象,它们都存在区间[a ,b ],使f (a )·f (b )<0,因此,都可以用二分法求零点.
4.函数f (x )=ln(x +1)-2x
的零点所在的区间是( )
A .(0,1)
B .(1,2)
C .(2,e)
D .(3,4)
答案:B
解析:f (1)=ln2-2<0 f (2)ln3-1>0∴f (x )的零点所在区间是(1,2)
5.四位好朋友在一次聚会上,他们按照各自的爱好选择了形状不同、内空高度相等、杯口半径相等的圆口酒杯,如图所示,盛满酒后他们约定:先各自饮杯中酒的一半,设剩余酒的高度从左到右依次为h 1,h 2,h 3,h 4,则它们的大小关系正确的是( )
A .h 2>h 1>h 4
B .h 1>h 2>h 3
C .h 3>h 2>h 4
D .h 2>h 4>h 1
答案:A 解析:饮各自杯中酒的一半,柱形杯中酒的高度变为原来的一半,其他的比一半大,前三个杯子中圆锥形的杯子酒的高度最高,可排除选项B 、C 、D.
6.某车间分批生产某种产品,每批的生产准备费用为800元.若每批生产x 件,则每
件产品的平均仓储时间为x 8
天,且每件产品每天的仓储费用为1元.为使平均到每件产品的生产准备费用与仓储费用之和最小,每批应生产产品( )
A .60件
B .80件
C .100件
D .120件
答案:B
解析:若每批生产x 件产品,则平均每件产品的生产准备费用是800x 元,仓储费用是x 8
元,总的费用是⎝⎛⎭⎫800x +x 8元.因为y =800x +x 8=⎝⎛⎭
⎫800x -x 82+20≥20,当800x =x 8,即x =80时取等号,所以每批应生产产品80件.
二、填空题(每小题5分,共15分)
7.根据统计,一名工人组装第x 件某产品所用的时间(单位:min)为f (x )=⎩⎨⎧ c x ,x <A
c A ,x ≥A (A ,c 为常数).已知该工人组装第4件产品用时30 min ,组装第A 件产品用时15 min ,那么c 和A 的值分别是________.
答案:60,16
解析:因为组装第A 件产品用时15 min ,所以c A =15 ①;所以必有4<A ,且c 4=c 2
=30 ②,联立①②解得c =60,A =16.
8.设函数y =x 3与y =⎝⎛⎭⎫12x -2的图象的交点为(x 0,y 0),若x 0所在的区间是(n ,n +1)(n
∈Z ),则n =________.
答案:1
解析:画出函数y =x 3和y =⎝⎛⎭⎫12x -2的图象,如图所示.由函数图象,知1<x 0<2,所以n
=1.
9.若关于x 的方程|x |x -2
=kx 有三个不等实数根,则实数k 的取值范围是________. 答案:⎝⎛⎭
⎫0,12 解析:由题意可知k ≠0,
∵|x |x -2
=kx ,∴kx 2-2kx =|x |. 当x ≥0时,kx 2-2kx =x ,
解得x =0或x =2k +1k
, ∴2k +1k >0,∴k >0或k <-12
; 当x <0时,kx 2-2kx =-x ,
解得x =0(舍去)或x =2k -1k
, ∴2k -1k <0,∴0<k <12
. 综上可知,k 的取值范围是⎝⎛⎭
⎫0,12. 三、解答题(本大题共4小题,共45分)
10.(12分)已知函数f (x )=4x +m ·2x +1仅有一个零点,求m 的取值范围,并求出零点. 解:f (x )= 4x +m ·2x +1仅有一个零点,即方程(2x )2+m ·2x +1=0仅有一个实根.令t =2x .(t >0).
①当Δ=0,即m 2-4=0,
∴m =±2.∴t =1或-1(舍).∴2x =1.
即x =0满足题意,
即m =-2时,有唯一的零点0.
②当Δ>0,即m <-2或m >2.
t 2+mt +1=0有一正一负两根满足条件,则t 1t 2<0,又t 1t 2=1>0,故不成立.
综合所述,m =-2时,f (x )有唯一的零点0.
11.(13分)证明方程2x +x =4在区间(1,2)内有唯一一个实数解,并求出这个实数解(精确度为0.3).
参考数据:
x 1.125 1.25 1.375 1.5 1.625 1.75 1.875
2x 2.18 2.38 2.59 2.83 3.08 3.36 3.67
解:设函数f (x )=2x +x -4,
∵f (1)=-1<0,f (2)=2>0,
f (x )在区间(1,2)上单调递增,
∴f (x )在区间(1,2)内有唯一的零点,
则方程2x +x -4=0在区间(1,2)内有唯一一个实数解.
取区间(1,2)作为起始区间,用二分法逐次计算如下:
区间 中点的值 中点的函数值 区间长度
(1,2) 1.5 0.33 1
(1,1.5) 1.25 -0.37 0.5
(1.25,1.5) 1.375 -0.031 0.25
由上表可知,区间(1.25,1.5)的长度为0.25<0.3.。

相关文档
最新文档