如何确定分数乘除法应用题中的单位一(供参考)

合集下载

分数乘除法应用题解题步骤与技巧

分数乘除法应用题解题步骤与技巧

分数乘除法应用题解题步骤与技巧分数乘除法应用题解题步骤与技巧分数百分数应用题是五、六年级数学中的重点和难点,也是进一步学习初中数学的重要基础。

但是有相当多的学生遇到分数应用题就感到困难。

以下是店铺整理的关于分数乘除法应用题解题步骤与技巧,希望大家认真阅读!解答分数应用题的步骤概括的说是:一找、二转、三画、四列、五算、六查这六个环节。

一找:找单位“1”的量。

找单位“1”的量是解答分数应用题的前提,靠“是”谁、“比”谁、“占”谁,“相当于”谁就把谁看做单位“1”的'量,靠生搬硬套仅能解决一部分分数应用题。

例如:甲的2/5比乙多3/8米,比乙就把乙看作单位“1”是错误的,正确的是要分析2/5是谁的,就把谁看作单位“1”。

分析应用题句子中的分率是分谁就把谁看作单位“1”是最可靠的找单位“1”的方法。

二转:转化单位“1”在分数应用题中,如果题中只有一个单位“1”,那么再难也难不到哪里去了。

只有一个单位“1”的题,可以直接进入下一步,画线段图。

如果题中有多个单位“1”就需要先转化单位“1”再画线段图。

转化单位“1”也是有技巧的,例如:甲是乙的3/5可以转化成乙是甲的5/3、甲比乙少2/5、乙比甲多2/3、甲是甲乙之和的3/8等13种不同的情况,在单位“1”统一后,才能进行下一步,画线段图来解答。

三画:画线段图很多复杂的分数应用题,不画线段图是无法找到数量、分率之间的关系的。

只有学会画线段图,才能找到解答分数应用题的钥匙。

要把线段图画的准,应先画应用题中含有分率的句子,再画既有分率又有数量的句子,第三画含有数量的句子,最后画问题。

把分率画在线段的上方、数量画在线段的下方,可以避免学生把分率和数量相加,也方便清晰的找到数量和分率的对应关系。

四列:看图列式画完线段图,要学会看图,根据分数应用题数量关系列式。

单位“1”的量×所求问题的对应分率=所求问题对应量÷对应分率=单位“1”的量对应量÷单位“1”的量=对应分率五算:准确计算六查:认真检查把计算结果代入到原题中,能够推导回去或者用不同的解题方法得到同一个结果,可以验证,这道题解答正确。

如何判断单位“1”

如何判断单位“1”

如何判断单位“1”学生在做应用题时经常列式错误,这样即使运算正确结果也肯定是错误的。

仔细检查会发现是该用乘法的地方用了除法。

我想学生列式错误原因归根结底是因为没有搞清楚单位“1”这个概念。

有些老师在讲授应用题部分避免讲单位“1”的概念,短期来看可能效果还好,但是我觉得长期来看不可取。

现在对如何判断单位“1”进行总结归纳:最简单的方法是:“比”字后面是单位“1”(分率在后面)“的”字前面是单位“1”(分率在后面)“是”字后面是单位“1”(分率在后面)“占”字后面是单位“1”(分率在后面)“相当于”后面是单位“1”(分率在后面)稍复杂的方法是:一、部分数和总数在同一整体中,部分数和总数作比较关系时,部分数通常作为比较量,而总数则作为标准量,那么总数就是单位“1”。

例如我国人口约占世界人口的1/5,世界人口是总数,我国人口是部分数,所以,世界人口就是单位“1”。

再如,食堂买来100千克白菜,吃了2/5,吃了多少千克?在这里,食堂一共买来的白菜是总数,吃掉的是部分数,所以100千克白菜就是单位“1”。

解答这类分数应用题,只要找准总数和部分数,确定单位“1”就很容易了。

二、两种数量比较分数应用题中,两种数量相比的关键句非常多。

有的是“比”字句,有的则没有“比”字,而是带有指向性特征的“占”、“是”、“相当于”。

在含有“比”字的关键句中,比后面的那个数量通常就作为标准量,也就是单位“1”。

例如:六(2)班男生比女生多1/2。

就是以女生人数为标准(单位“1”),男生比女生多的人数作为比较量。

在另外一种没有比字的两种量相比的时候,我们通常找到分率,看“占”谁的,“相当于”谁的,“是”谁的几分之几。

这个“占”,“相当于”,“是”后面的数量——谁就是单位“!”。

例如,一个长方形的宽是长的5/12。

在这关键句中,很明显是以长作为标准,宽和长相比较,也就是说长是单位“1”。

又如,今年的产量相当于去年的4/3倍。

那么相当于后面的去年的产量就是标准量,也就是单位“1”。

第三讲 分数乘除法应用题中的单位1问题

第三讲  分数乘除法应用题中的单位1问题

第三讲分数乘除法应用题中的单位1问题一正确找准单位“1”,是解答分数(百分数)应用题的关键,每一道分数应用题中总是有关键句(含有分率的句子)。

1、单位1 是与分数作比较的;就是被分成若干份的那个量.;是谁的几分之几;比谁多(少)几分之几;谁就是单位1。

2、单位“1:往往在(比,占,是,相当于、正好等)字的后面的那一个量,注意"比"(占,是,相当于等)后面是分数;你要看单位“1”的话,你就看“的”、“几分之几的”前面的那几个字眼,就是单位“1” ,3、如果单位“1”是已知的,就用乘法。

如果单位“1”是要求的问题的,就用除法。

二、原数量与现数量有的关键句中不是很明显地带有一些指向性特征的词语,也不是部分数和总数的关系。

这类分数应用题的单位“1”比较难找。

例如,水结成冰后体积增加了1/10,冰融化成水后,体积减少了1/12。

象这样的水和冰两种数量到底谁作为单位“1”?两句关键句的单位“1”是不是相同?用上面讲过的两种方法不容易找出单位“1”。

其实我们只要看,原来的数量是谁?这个原来的数量就是单位“1”!比如水结成冰,原来的数量就是水,那么水就是单位“1”。

冰融化成水,原来的数量是冰,所以冰的体积就是单位“1”。

例1.小英三天读完一本书,第一天读了全书的1/4多6页,第二天读了全书的1/2,第三天读的是第一天的2/3,这本书有多少页?例2.②甲乙丙丁四人共植树60棵,甲植树的棵树是其余3人的3/17,乙、丙植树的棵树分别是其余三人的3/7、1/2,丁植树多少颗?例三③一缸金鱼,红金鱼占总数的1/4,黑金鱼是红金鱼的3/5,其余24条是花金鱼,红金鱼有几条?例四,果园里有桃树和梨树共580棵,桃树棵数的2/5等于梨树的3/7,问这两种果树各有多少棵?例五,羊的只数是牛的75%,那么,牛比羊多几分之几?(相关问题)例六,水结成冰体积增加1/11,那么有4立方米的冰可化成多少千克水?例七,两种商品的售价都是120元,其中一件亏25%,另一件赚25%,结果是亏了还是赚了?例八,一人从海南运一车西瓜到杭州,购买时测得含水量99%,单价1元共购5000千克,到达杭州后,测得含水量为96%,若他以每千克2.2元的价格出售,结果是亏了还是赚了?(运费由供方负责)。

如何确定单位“1”的方法

如何确定单位“1”的方法

如何确定分数乘除法应用题中的单位1(只要找出关键字,关键字后面的就是单位1)正确找准单位“1”,是解答分数(百分数)应用题的关键,每一道分数应用题中总是有关键句(含有分率的句子)。

如何从关键句中找准单位“1”,我觉得可以从以下这些方面进行考虑。

一、部分数和总数在同一整体中,部分数和总数作比较关系时,部分数通常作为比较量,而总数则作为标准量,那么总数就是单位“1”。

例如我国人口约占世界人口的1/5,世界人口是总数,我国人口是部分数,所以,世界人口就是单位“1”。

再如,食堂买来100千克白菜,吃了2/5,吃了多少千克?在这里,食堂一共买来的白菜是总数,吃掉的是部分数,所以100千克白菜就是单位“1”。

解答这类分数应用题,只要找准总数和部分数,确定单位“1”就很容易了。

二、两种数量比较分数应用题中,两种数量相比的关键句非常多。

有的是“比”字句,有的则没有“比”字,而是带有指向性特征的“占”、“是”、“相当于”、“正好”。

在含有“比”字的关键句中,比后面的那个数量通常就作为标准量,也就是单位“1”。

例如:六(2)班男生比女生多1/2。

就是以女生人数为标准(单位“1”),男生比女生多的人数作为比较量。

在另外一种没有比字的两种量相比的时候,我们通常找到分率,看“占”谁的,“相当于”谁的,“是”谁的几分之几。

这个“占”,“相当于”,“是”后面的数量——谁就是单位“!”。

例如,一个长方形的宽是长的5/12。

在这关键句中,很明显是以长作为标准,宽和长相比较,也就是说长是单位“1”。

又如,今年的产量相当于去年的4/3倍。

那么相当于后面的去年的产量就是标准量,也就是单位“1”。

三、原数量与现数量有的关键句中不是很明显地带有一些指向性特征的词语,也不是部分数和总数的关系。

这类分数应用题的单位“1”比较难找。

例如,水结成冰后体积增加了1/10,冰融化成水后,体积减少了1/12。

象这样的水和冰两种数量到底谁作为单位“1”?两句关键句的单位“1”是不是相同?用上面讲过的两种方法不容易找出单位“1”。

人教新版数学小学五年级上册解答分数乘除法应用题时单位“1”怎么找

人教新版数学小学五年级上册解答分数乘除法应用题时单位“1”怎么找

人教新版数学小学五年级上册解答分数乘除法应用题时,单位“1”怎么找?在解答分数乘除法应用题时,如何确定分数乘除法应用题中的单位“1”(只要找出关键字,关键字后面的就是单位“1”)正确找准单位“1”是解答分数(百分数)应用题的关键,每一道分数应用题中总是有关键句(含有分率的句子)。

如何从关键句中找准单位“1”,我觉得可以从以下这些方面进行考虑。

一、部分数和总数在同一整体中,部分数和总数作比较关系时,部分数通常作为比较量,而总数则作为标准量,那么总数就是单位“1”。

例如,(1)小明看一本100页的书,看了这本书的4/5,他看了多少页?在这里,这本100页的书是总数,看了的是部分数,所以100页就是单位“1”。

(2)六年级一班有学生44人,参加合唱队的占全班学生的2/11。

参加合唱队的有多少人?这里六年级一班有学生44人是总数,参加合唱队的学生数是部分数,所以44人就是单位“1”。

解答这类分数应用题,只要找准总数和部分数,确定单位“1”就很容易了。

二、两种数量比较分数应用题中,两种数量相比的关键句非常多。

有的是“比”字句,有的则没有“比”字,而是带有指向性特征的“占”、“是”、“相当于”、“正好”。

在含有“比”字的关键句中,比后面的那个数量通常就作为标准量,也就是单位“1”。

例如:篮球的价钱比排球多1/2。

就是以排球的价钱为标准(单位“1”),篮球比排球多的钱数作为比较量。

在另外一种没有比字的两种量相比的时候,我们通常找到分率,看“占”谁的,“相当于”谁的,“是”谁的几分之几。

这个“占”,“相当于”,“是”后面的数量——谁就是单位“!”。

例如,(1)有一块4公顷的果园,苹果树占果园面积的3/4,苹果树占地多少公顷?在这关键句中,很明显是以果园面积作为标准,苹果树面积和果园面积相比较,也就是说果园面积是单位“1”。

又如(2)一种小汽车的最快速度是每小时行140千米。

相当于一种超音速飞机速度的1/15。

这种超音速飞机每小时飞行多少千米?小汽车的最快速度相当于一种超音速飞机速度的1/15。

在分数应用题中如何确定单位“1”

在分数应用题中如何确定单位“1”

在分数应用题中如何确定单位“1”的量在我的教学实践中,我发现在小学数学的学习阶段,让学生感到困惑和难以掌握的就是应用题的学习,特别是分数应用题难度更大,而解这类应用题的关键,就是能否准确判断单位“1”的量(标准量)、分率对就量(比较量)和对应分率,而单位“1”的量是这个三个量的核心。

为此,我根据多种题型和自己的教学经验,认为单位“1”的量的确定方法大致有以下四种,仅供参考:1.找关键字,题中如在分数前出现“是谁”、“占谁”、“比谁”、或“超过谁”等词时,那么“是、占、比、超过”等字后的这个“谁”就是该分数所对应的单位“1”的量。

例如:(1)一套西服160元,其中裤子的价格是上衣的3/5,上衣是多少元》?分析:3/5前有“是上衣”一词,则“是”后的“上衣”是3/5对应的单位“1”的量。

(2)校园里有60棵树,杨树占总株数的1/5,杨树有多少棵?分析:“占”的后面是总株数,则它就是1/5对应的单位“1”的量。

2.在没有关键字时,如果在分数前有若干个量,可找最接近分数的这个量,就是这个分数对应的单位“1”的量。

例如:某汽车厂去年计划生产汽车12600辆,结果上半年完成全年计划的5/9,下半年完成全年计划的3/5,去年超产汽车多少辆?分析:题中5/9和3/5为两个量,但最接近分数的是“全年计划”,则它就是该分数对应的单位“1”的量。

3.在某些题中的分数前,既没有关键字,又没有出现量,那么这个分数的单位“1”的量便隐含题中,但通过读该题,便让单位“1”浮现在上面,很容易确定。

例如:六(1)班有学生68人,今天到校了33/34,到校人数有多少人?分析:很明显,全班人数是分数对应的单位(1)的量。

4.较复杂的分数应用题是基本应用题的延续和发展,题中的单位“1”的量不定,因为这类题中的已知条件之间,已知条件与所求问题之间的变幻关系可逐步确定而灵活选择。

例如:某学校六年级有四个班去植树,一班植树的棵数是其他班级的1/2,二班植树棵数是其他班级的1/3,三班植树棵数是其他班级的1/4,而四班植了130棵,问四个班级一共植树多少棵?分析:题中出现了3个不同的单位“1”的量,1/2对应的是二、三、四班植树的总棵数,1/3对应的是一、三、四班植的总棵数,1/4对应的一、二、四班植的总棵数,但解这道题如果逐步进行,按对应关系计算就太复杂,可选择不变量四个班植树总棵数来统一单位“1”的量,此计算过程要简单些。

分数应用题技巧(一)——单位“1”的确定(含例题)

分数应用题技巧(一)——单位“1”的确定(含例题)

分数应用题解题技巧(一)——单位“1”的确定(含例题)我们知道,在分数乘、除法应用题中:分率对应的量=单位“1”×分率单位“1”=分率对应的量÷分率因此,在分数学习中,单位“1”是一个重要的问题。

从广泛的意义来讲,它可以是一个整体,比如一本书,一项工程,或者一条路等。

它也可以是两个或几个量中的一个。

打个比方,单位“1”就是一把尺子,我们把这把尺子看做自然数意义上的1,其它量都来与它作比较,比较出的结果就是其它量相对应的分率或分量。

判断单位“1”是分数解题的重要一步,除了理解它的意义,再进行判断之外,可总结以下方法。

第一,单位“1”是一个整体。

这种情况最容易判断,如一本书,一项工程,一条路,一桶水等等,题目中出现的只有这个整体,其它都是它的一部分,这个时候,单位“1”就是这个整体。

第二,题目中有多个量的,需要确定哪个量是单位“1”,我们从题目中找到如:去年的几分之几,比乙多几分之几,比一班少几分之几等这种与分量连在一起的量,这个量就是单位“1” 。

另外,有的题目中出现如,今年减产两成,打八折等,这种有省略的,我们可以把它补充完整再判断。

比如,今年减产两成,应该是今年比去年减产两成。

打八折,应该是原价打八折。

因为不可能说今年比今年减产两成,也不可能说卖出价打八折(这与折上折不同)。

可以判断,去年产量是单位“1”,原价是单位“1”。

在题目中出现有多个量的时候,单位“1”是可能变化的,例如:甲是乙的15,乙又是丙的13,在甲和乙的关系中,乙是单位“1”,在乙和丙的关系中,丙是单位“1”。

这时,要根据题目中给出的已知条件,例如题目中给出是的甲的量,那就先利用甲和乙的关系,先求乙,在利用求出来的乙,去求丙。

在确定了单位“1”之后,我们可根据公式;分率对应的量=单位“1”×分率;单位“1”=分率对应的量÷分率,得出;如果单位“1”已知,用乘法;如果要求单位“1”,用除法。

小学六年级:分数应用题中单位“1”的确定方法,别再弄错了

小学六年级:分数应用题中单位“1”的确定方法,别再弄错了

小学六年级:分数应用题中单位“1”的确定方法,别再弄错了分数应用题中怎样分析数量之间的关系,如求一个数比另一个数多(或少)百分之几的问题.解决的核心是要弄清楚哪个量是“单位1”,这多(或少)的百分之几究竟是谁的百分之几?常用的方法有以下3种:(1)在同一整体中,部分数和总数作比较关系时,部分数通常作为比较量,而总数则作为标准量,那么总数就是单位“1”.如:有120吨货物,运走了24吨,还剩下百分之几没有运走?这个问题中120吨是总数量,24吨是部分数量,因此120吨就是单位1;六(1)班女生占总人数的3/5,六(1)班总人数就是单位1.(2)熟练掌握几个关键的字:“比”、“是”、“的”、“占”、“相当于”等. 一般情况下,“比”后“的”前的量是“单位1”,“是”、“相当于”、“占”后面的量是“单位1”.举例说明如下:将正确列式的选项填在相应的括号里.①李明家养了120只灰兔,白兔的只数是灰兔的40%,李明家养了多少只白兔?()②李明家养了120只灰兔,占白兔只数的40%,李明家养了多少只白兔?()③李明家养了120只灰兔,比白兔的只数少40%,李明家养了多少只白兔?()④李明家养了120只灰兔,白兔的只数比灰兔少40%,李明家养了多少只白兔?()A.120×(1-40%)B.120÷40%C.120÷(1-40%)D.120×40%解析:①中,“白兔的只数是灰兔的40% ”,“是”后面是灰兔,因此灰兔的只数是“单位1”;②中,“占白兔只数的40% ”,“占”后面是白兔,因此白兔的只数是“单位1”;③中,“比白兔的只数少40% ”,“比”后面是白兔,因此白兔的只数是“单位1”;④中,“白兔的只数比灰兔少40% ”,“比”后面是灰兔,因此灰兔的只数是“单位1”.正确答案是(1)D(2)B(3)C(4)A.(3)原数量与现数量的比较型问题,一般原数量是单位1.如:一种机器零件成本从8元降到6元,成本降低了百分之几?原来的数量是8元,现在是6元,单位1就是原数量8元.再如:水结成冰后体积增加了1/10,冰融化成水后,体积减少了1/12.象这样的水和冰两种数量到底谁作为单位“1”?我们只要看,原来的数量是谁,谁就是单位“1”.比如水结成冰,原来的数量是水,那么水就是单位“1”;冰融化成水,原来的数量是冰,所以冰的体积就是单位“1”.【易错题型练习】1.()比28千克多12.5%.A.3.5千克B.24.5千克C. 31.5千克D.32千克2.今年棉花产量比去年增加20%,就是()A.今年的棉花产量是去年的102%;B.去年棉花产量比今年少20%;C.今年的棉花产量是去年的120%;D.去年产量比今年少80%.3.李叔叔10月份看中的轿车是12万元,到了年底降到了10.8万元.问降了百分之几?4.李奶奶家养母鸡25只,公鸡20只.(1)李奶奶家养的母鸡比公鸡多百分之几?(2)李奶奶家养的公鸡比母鸡少百分之几?5.(1)利民服装厂计划11月份加工服装25万件,实际加工30万件.实际比计划多加工百分之几?(2)利民服装厂计划11月份加工服装25万件,实际比计划多加工5万件.实际比计划多加工百分之几?(3)利民服装厂计划11月份加工服装25万件,实际比计划多加工5万件. 实际加工的相当于计划的百分之几?(4)利民服装厂11月份实际加工服装30万件,比计划多加工5万件. 实际比计划多加工百分之几?6.把一个长6厘米、宽5厘米、高4厘米的长方体木块,加工成一个棱长是4厘米的正方体木块.体积减少了百分之几?7.甲校学生人数比乙校学生人数多25%,求乙校学生人数比甲校学生人数少百分之几?8.已知甲数比乙数多3/5,那么乙数比甲数少百分之几?9.一本科幻小说有96页,小军看了43页.小军说“剩下的比这本书的1/2少5页”,小丽说“剩下的比这本书的5/12多13页”.小军和小丽谁说的对?10.建筑工地要运进一批沙子,第一次运进总量的25%,第二次运进总量的40%,第二次比第一次多运30吨.这批沙子共有多少吨?11.一根竹竿不足8米,如果从一头量到4米做一记号,再从另一头量到4米做一记号,若这两个记号之间的长度是全长的25%,那么竹竿全长是多少米?【答案】1. 28千克就是单位1,比28多12.5%的数就是28×(1+12.5%)=31.5,正确答案选C.2.“比去年增加20%”,“ 比”后的“去年”就是单位1,因此今年的产量就是(1+20%)=120%,正确答案是C.3.原数量12万元就是单位1,(12-10.8)÷12=10%.4.(1)公鸡是单位1:(25-20)÷20=25%;(2)母鸡是单位1:(25-20)÷25=20%.5.本题的4问中,单位1都是计划加工服装的件数.(1)(30-25)÷25=20%;(2)5÷25=20%;(3)(25+5)÷25=120%;(4)5÷(30-5)=20%.6.虽然没有“比、是、的”这些关键的字,但是认真读题,不难看出题中的意思是“正方体的体积比长方体的体积减少了百分之几?”,因此长方体的体积是单位1.(6×5×4-4×4×4)÷(6×5×4)≈46.7%.7.1+25%=125% (125%-1)÷125%=20%.8.第一句是“甲数比乙数”,因此“比”后的乙数就是单位1,甲数就是(1+3/5)=8/5.;第二句“乙数比甲数”,因此甲数就是单位1,(8/5-1)÷8/5= 37.5%.9.小军说“剩下的比这本书的1/2少5页”,是以“这本书”为单位1的,96×1/2=48,48-5=43,而剩下的页数是(96-43)=53页,因此小军说错了;小丽说“剩下的比这本书的5/12多13页”,也是以“这本书”为单位1的,96×5/12=40,40+13=53,和剩下的页数是相等的,因此小丽说的对.10.题中的25%和40%都是针对总量的,也就是总量就是单位1,两次的差额40%-25%=15%,也是占总量的15%,30÷15%=200吨.11.画出示意图:25%就是两次重合的部分,设竹竿的全长是x米,由题意可得x+25%x=4+4 ,可解得x=6.4,即竹竿全长为6.4米.。

确定单位“1”的方法(一)

确定单位“1”的方法(一)
例1:苹果重量(A)的 (对应分率C) “是”、 “相当于”、“等于” 橘子重量(B) 的 。如果苹果重60kg,那么橘子是多重?
这里的“苹果的重量”是已知的量而“橘子的重量”是未知的量,所以“橘子的重量” 就是单位“1”
例2:苹果重量(A)的 (对应分率C) “是”、 “相当于”、“等于” 橘子重量(B) 的 。如果橘子重40kg,那么苹果是多重?
一、单位“1”的寻找和确定
单位“1”的存在情况有很多种,大体可分为如下几种:
(一)、部分和总量之间;
(二)、两种数量之间;
(三)、原数量与现数量之间;
(四)、三个量(多个量)之间;
这里主要考虑两个量之间单位“1”的寻找方法:在题中找“是”、“比”、“占”、“相当于”、“等于”等关键词和对应的分率所在的位置......
一个数量A和另一个数量B,对应分率C(几分之几)
单位“1”在前(前一个量)的情况:
A的C是B或C的A是B;
A的C占B或C的A占B;
A的C相当于B或C的A相当于B;
A的C等于B或C的A等于B;
例:苹果重量(A)的 (对应分率C)“是”、“占”、“相当于”、“等于”橘子的重量(B)
“苹果的重量”就是单位“1”
这里的“橘子的重量”是已知的量而“苹果的重量”是未知的量,所以“苹果的重量” 就是单位“Biblioteka ”二、单位“1”的运算方法
单位“1”确定了的话,应用题的难度就会降低很多:
1、单位“1”已知的用乘法:单位“1”×对应分率=对应的量
2、单位“1”未知的用除法:对应的量÷对应分率=单位“1”
“橘子的重量” 就是单位“1”
这里的对应的分率与后一个量紧密相连,在“是”、“比”、“占”、“相当于”、“等于”等关键词的后面,所以单位“1”在后。

巧找单位“1”及分数乘除法应用题的解题技巧

巧找单位“1”及分数乘除法应用题的解题技巧

案例分析新课程NEW CURRICULUM一、找单位“1”的方法(一)两种数量比较1.一个数是(占、相当于)另一个数的几分之几。

此种表述找单位“1”的。

方法:关键词是(占、相当于)后面的量,即另一个数是单位“1”。

例如:(1)乙数是甲数的23关键词“是”后面的量是甲数,因此甲数就是单位。

(2)今年的小麦产量相当于去年的34,关键词“相当于”后面的量是去年的产量,因此单位“1”就是去年的产量。

2.一个数的几分之几是(等于、相当于)另一个数的几分之几。

此种表述找单位“1”的方法是几分之几前面的量。

例如:(1)甲的23等于乙。

23前面的量是甲,所以应把甲看作单位“1”。

(2)男生人数的35相当于女生人数。

35前面的量是男生人数,所以应把男生人数看作单位“1”。

3.一个数比另一个数多或少几分之几。

此种表述找单位“1”的方法是关键词“比”后面的量。

例如:二班植树的棵数比三班多14。

“比”后面的量是三班植树的棵数,所以单位“1”就是三班植树的棵数。

(二)部分量和总量作比较例如:(1)小红家买来一袋面粉,吃了47,还剩15千克。

这道题中小红家买来的面粉就是总数,所以一袋面粉的重量就是单位“1”。

(2)我国人口约占世界人口的15。

我国人口是部分量,世界人口是总量,所以单位“1”就是世界人口。

(三)原来的数量与现在的数量例如:水结成冰后体积增加了110,冰融化成水后体积减小了111。

像这样的冰和水两种数量到底谁是单位“1”,此种类型中我们只看原来的数量是谁,谁就是单位“1”,水结成冰这一句话中原来的数量是水,那么水的体积就是单位“1”,则冰的体积是1×(1+110)=1110。

冰融化成水这一句中原来的数量是冰,那么冰的体积就是单位“1”。

二、常见的典型分数乘除法应用题1.已知一个数,求它的几分之几是多少。

单位“1”是一个数,一个数已知用乘法计算。

解题规律:一个数×几分之几=多少例如:15的23是多少?列式15×232.已知一个数的几分之几是多少,求这个数?单位“1”是一个数,一个数未知用除法计算或列方程计算。

分数乘除法应用题解题方法总结汇总(全面完整)

分数乘除法应用题解题方法总结汇总(全面完整)

分数应用题解题方法一、解题技巧:一抓,二找,三确定,四对应。

1、一抓:抓住关键句——分率句;(含几分之几的句子)2、二找:找准单位“1”的量;(不是藏在“的”前面,就是躲在“比”、“是、占、相当于”后面。

)(看分率是谁的几分之几,谁就是单位“1”的量)3、三确定:确定单位“1”是已知还是未知(已知单位“1”用乘法,未知单位“1”用除法)4、四对应:找出相对应的数量与分率,列出算式。

( 单位“1”的量×分率=分率对应量 ) (分率对应量÷分率=单位“1”的量)二、解题方法:解答分数乘法应用题时,可以借助于线段图来分析数量关系。

线段图有直观、形象等特点。

按题中的数量比例,恰当选用实线或虚线把已知条件和问题表示出来,数形三、分数应用题主要讨论的是以下三者之间的关系。

1、分率:表示一个数是另一个数的几分之几,这几分之几通常称为分率。

2、标准量:解答分数应用题时,通常把题目中作为单位“1”的那个数,称为标准量。

(也叫单位“1”的数量)3、比较量:解答分数应用题时,通常把题目中同标准量比较的那个数,称为比较量。

(也叫分率对应的数量)四、分数应用题的分类。

(三类)1这类问题特点是已知一个看作单位“1”的数,求它的几分之几是多少,它反映的是整体与部分之间关系的应用题,基本的数量关系是2这类问题特点是已知一个数的几分之几是多少的数量,求单位“1”的量。

基本的数量关系是:3、求一个数是另一个数的几分之几。

这类问题特点是已知两个数量,比较它们之间的倍数关系,解这类应用题用除法。

基本的数量关系是:五、分析解答实际的应用题。

第一类1、求一个数的几分之几是多少。

(用乘法计算) (1)学校买来100千克白菜,吃了 45,吃了多少千克?(2)一个排球定价60元,篮球的价格是排球的56。

篮球的价格是多少元?(3)小红体重42千克,小云体重40千克,小新体重相当于小红和小云体重总和的 2341,小新的体重是多少千克?(4)有一摞纸,共120张。

如何确定分数乘除法应用题中的单位一

如何确定分数乘除法应用题中的单位一

如何确定分数乘除法应用题中的单位1西吉回民小学李哲才正确找准单位“1”,是解答分数(百分数)应用题的关键,每一道分数应用题中总是有关键句(含有分率的句子)。

基本思路:分数的意义,“把单位1平均分成若干份,表示这样的一份或几份的数,叫分数”。

一:单位1的判定,就是看把谁平均分了,就把谁看作单位1.谁的几分之几,谁就把谁看作单位1。

如何从关键句中找准单位“1”,我觉得可以从以下这些方面进行考虑。

一、部分数和总数在同一整体中,部分数和总数作比较关系时,部分数通常作为比较量,而总数则作为标准量,那么总数就是单位“1”。

关系式是:总数×占总数的几分之几=部分数单位“1”的量×占单位“1”的几分之几=比较量例如我国人口约占世界人口的1/5,世界人口是总数,我国人口是部分数,所以,世界人口就是单位“1”。

再如,食堂买来100千克白菜,吃了2/5,吃了多少千克?在这里,食堂一共买来的白菜是总数,吃掉的是部分数,所以100千克白菜就是单位“1”。

解答这类分数应用题,只要找准总数和部分数,确定单位“1”就很容易了。

二、两种数量比较分数应用题中,两种数量相比的关键句非常多。

有的是“比”字句,有的则没有“比”字,而是带有指向性特征的“占”、“是”、“相当于”、“正好”。

在含有“比”字的关键句中,比后面的那个数量通常就作为标准量,也就是单位“1”。

例如:六(2)班男生比女生多1/2。

就是以女生人数为标准(单位“1”),男生比女生多的人数作为比较量。

在另外一种没有比字的两种量相比的时候,我们通常找到分率,看“占”谁的,“相当于”谁的,“是”谁的几分之几。

这个“占”,“相当于”,“是”后面的数量——谁就是单位“!”。

例如,一个长方形的宽是长的5/12。

在这关键句中,很明显是以长作为标准,宽和长相比较,也就是说长是单位“1”。

又如,今年的产量相当于去年的4/3倍。

那么相当于后面的去年的产量就是标准量,也就是单位“1”。

怎样找准分数应用题中单位“1”的量

怎样找准分数应用题中单位“1”的量

怎样找准分数应用题中单位“1”的量
在分数应用题中,单位“1”通常代表了一个特定的数量或值。

要找准这个数量或值,可以根据题目给出的条件和信息逐步推导。

以下是一些方法:
1. 找到已知量和未知量:首先找到已知量和未知量,根据它们
的关系来寻找单位“1”的量。

例如,如果题目中已知2个苹果等于
1个梨,那么单位“1”就是1个梨。

2. 注意题目中的比例关系:有时题目中会给出比例关系,可以
根据比例关系来推算出单位“1”的量。

例如,题目中给出每10个
人中有3个女性,那么单位“1”就是3/10的女性。

3. 找到数学关系:有些分数应用题中有明显的数学关系,例如,如果题目中说1/4等于25%,那么单位“1”就是25。

4. 审查单位:有时候单位本身就能够揭示出单位“1”的量。

例如,如果题目中给出了每分钟跑4公里,那么单位“1”就是4公
里/分钟。

总之,要找准分数应用题中的单位“1”,需要仔细阅读、分析
和推导题目,特别是注意题目中给出的已知量、未知量、比例关系
和数学关系,以及单位本身的意义。

分数乘法应用题单位1的确定

分数乘法应用题单位1的确定

汇智百年教育教师教学讲义2汇智百年—品质教育领导者全程个性化辅导Hui zhi Education Co., Ltd.巩固提高:一.填空。

找出单位“1”,用波浪线划出,并完成数量关系式。

(1)男生人数占女生人数的4/5。

()(2)甲的6/7相当于乙。

()(3)乙的5/9与甲相等。

()(4)鸡的只数是鸭的7/8 ()×7/8=( )(5)乙数是甲数的 1/3 ()×()=( )(6)大鸡只数的4/5相当于小鸡的只数。

()×()=( )(7)读了一本书的 2/7 ()×()=( )(8)三好学生占全校人数的 1/10 ()×()=( )(9)完成了计划工作量的 3/4 ()×()=( )(10)小军的体重是爸爸体重的3/8 。

()×()=( )(11)苹果树的棵数占果树总棵数的2/5 ()×()=( )(12)汽车速度相当于飞机速度的1/5 ()×()=( )(13)已经修了一条路的1/4 ()×()=( )(14)黑兔是白兔的3/7 ()×()=( )(15)黑兔的3/4相当于白兔()×()=( )(16)甲数的 5/6是乙数()×()=( )(17)甲数是乙数的3/4 ()×()=( )(18)苹果树占果园面积的2/5 ()×()=( )(19)钢笔的价钱等于书的7/8 ()×()=( )(20)甲仓货物的重量相当于乙仓货物的8/9()×()=( )(21)鹅只数的11/16是鸭的只数()×()=( )地址:攀枝花西区苏铁中路291号(玉泉广场政务中心大楼二楼)咨询电话:0812—4汇智百年—品质教育领导者全程个性化辅导Hui zhi Education Co., Ltd.五.应用题。

1.一桶油10千克,用去这桶油的4/5,用去了多少千克?2.育民小学有男同学840人,女同学人数是男同学的4/7,这个学校有女同学多少人?3.一堆煤12吨,又运来它的1/4,又运来的煤是多少吨?4.教师公寓有三居室180套,二居室的套数是三居室的2/3,一居室的套数是二居室的1/4。

如何分辨乘法除法应用题

如何分辨乘法除法应用题

如何分辨乘法除法应用题分数乘除法应用题是小学数学知识的一个重点,也是学生学习的一个难点。

在教学中如何使学生突破难点,达到好的教学效果呢?结合自己教学实践,谈谈浅显看法:一、首先找准单位“1”,理解分数的含义分数乘除法应用题的教学是以分数的意义为基础的。

而分数的意义的理解关键是对单位“1”的认识。

比如:全校同学人数的与一个班人数的。

都是,但是它们的人数不相等。

为什么呢?就是因为单位“1”不同。

一个是用全校人数做单位“1”,一个是用一个班的人数做单位“1”。

我们在分析分数应用题时,一定要引导学生首先找准单位“1”,怎样找单位“1”呢?一般在题中找“占”字或“是”字后面,分率前面的量就是单位“1”的量,如果“占”字或“是”字后面,分率前面没有具体的量,那就趁前面省略了,就要看前面告诉的是什么量即是单位“1”。

其次,再看单位“1”在题中告诉没?如果告诉了就用单位“1”的量×已知分率=对应数量,如果没告诉而是要求的就用具体数量÷对应分率=单位“1”的量。

或用方程解答,即设单位“1”为x,X×已知分率=对应数量。

比如:六年级有32名学生参加体操比赛,占六年级学生人数的,六年级学生人数占全校的。

全校共有学生多少人?题中有两个分率,它们对应的单位“1”是不同的,第一个分率的单位“1”是六年级学生人数,第二个分率的单位“1”是全校学生人数。

首先看这两个单位“1”的量在题中告诉没?都没告诉,确定求这两个单位“1”的量都用除法。

首先求第一个单位“1”即六年级学生人数,用已知数量32÷对应分率 =176(人),再把求出的六年级学生人数当成已知的数量来求第二个单位“1”即全校学生人数, 176÷ =880(人)这样就把这个问题解决了。

因此,掌握解分数应用题的方法非常重要,只有掌握了解分数应用题的方法才能够对应用题中出现的分数进行正确的理解,才能够准确把握题中的数量关系。

进而正确解答分数乘除法应用题。

在分数应用题的教学中如何寻找单位“1”

在分数应用题的教学中如何寻找单位“1”

在分数应用题的教学中如何寻找单位“1”分数应用题的教学,是九年制义务教育小学数学教材的重要内容,学好分数应用题,为今后学好数理化打下良好的基础,要学好分数应用题,必须懂得寻找单位“1”,找准单位“1”是解答分数应用题的关键,掌握寻找单位“1”的方法,解答分数应用题就会得心应手。

本人从多年的教学实践中,总结以下三种寻找单位“1”的方法。

(一)把分率作为突破口,找准单位“1”分数应用题存在着三种数量(即比较量、标准量和分率),这三种数量有着如下的关系:标准量×分率=比较量,比较量÷标准量=分率,比较量÷分率=标准量,要正确找准单位“1”的量(即标准量)必须从题目中的分率着手,看这个分率是哪个量的分率,哪个量就是标准量。

例如:幸福村有旱地300亩,水亩面积是旱地面积的3/5,水田面积有多少亩?这道题中的分率3/5是旱地面积的3/5,所以旱地面积是单位“1”的量。

(二)抓关键词“是”、“比”、“等于”、“相当于”找准单位“1”分数应用题,题目中经常出现“是”、“占”、“比”、“等于”、“相当于”这些词,一般来说,单位“1”的量就隐藏在这些的后面,只要从这些词的后面寻找,就可以找出单位“1”的量,例如:1、甲有人民币100元,乙的钱数是甲的1/2,求乙有人民币多少元?在这道题中,甲的钱数是单位“1”的量。

2、甲有人民币100元,乙的钱数占甲的1/2,求乙有人民币多少元?在这道题中,甲的钱数是单位“1”的量。

3、甲有人民币100元,乙的钱数比甲多1/2,求乙有人民币多少元?在这道题中,甲的钱数是单位“1”的量。

4、甲有人民币100元,乙的钱数等于甲的1/2,求乙有人民币多少元?在这道题中,甲的钱数是单位“1”的量。

5、甲有人民币100元,乙的钱数相当于甲的1/2,求乙有人民币多少元?在这道题中,甲的钱数是单位“1”的量。

(三)分析整体和部分之间的数量关系,找准单位“1”有些分数应用题,存在着整体和部分两个数量,一般来说,部分是比较量,整体是标准量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

如何确定分数乘除法应用题中的单位1
西吉回民小学李哲才
正确找准单位“1”,是解答分数(百分数)应用题的关键,每一道分数应用题中总是有关键句(含有分率的句子)。

基本思路:分数的意义,“把单位1平均分成若干份,表示这样的一份或几份的数,叫分数”。

一:单位1的判定,就是看把谁平均分了,就把谁看作单位1.谁的几分之几,谁就把谁看作单位1。

如何从关键句中找准单位“1”,我觉得可以从以下这些方面进行考虑。

一、部分数和总数
在同一整体中,部分数和总数作比较关系时,部分数通常作为比较量,而总数则作为标准量,那么总数就是单位“1”。

关系式是:总数×占总数的几分之几=部分数
单位“1”的量×占单位“1”的几分之几=比较量
例如我国人口约占世界人口的1/5,世界人口是总数,我国人口是部分数,所以,世界人口就是单位“1”。

再如,食堂买来100千克白菜,吃了2/5,吃了多少千克?在这里,食堂一共买来的白菜是总数,吃掉的是部分数,所以100千克白菜就是单位“1”。

解答这类分数应用题,只要找准总数和部分数,确定单位“1”就很容易了。

二、两种数量比较
分数应用题中,两种数量相比的关键句非常多。

有的是“比”字句,有的则没有“比”字,而是带有指向性特征的“占”、“是”、“相当于”、“正好”。

在含有“比”字的关键句中,比后面的那个数量通
常就作为标准量,也就是单位“1”。

例如:六(2)班男生比女生多1/2。

就是以女生人数为标准(单位“1”),男生比女生多的人数作为比较量。

在另外一种没有比字的两种量相比的时候,我们通常找到分率,看“占”谁的,“相当于”谁的,“是”谁的几分之几。

这个“占”,“相当于”,“是”后面的数量——谁就是单位“!”。

例如,一个长方形的宽是长的5/12。

在这关键句中,很明显是以长作为标准,宽和长相比较,也就是说长是单位“1”。

又如,今年的产量相当于去年的4/3倍。

那么相当于后面的去年的产量就是标准量,也就是单位“1”。

三、原数量与现数量
有的关键句中不是很明显地带有一些指向性特征的词语,也不是部分数和总数的关系。

这类分数应用题的单位“1”比较难找。

例如,水结成冰后体积增加了1/10,冰融化成水后,体积减少了1/12。

象这样的水和冰两种数量到底谁作为单位“1”?两句关键句的单位“1”是不是相同?用上面讲过的两种方法不容易找出单位“1”。

其实我们只要看,原来的数量是谁?这个原来的数量就是单位“1”!比如水结成冰,原来的数量就是水,那么水就是单位“1”。

冰融化成水,原来的数量是冰,所以冰的体积就是单位“1”。

1、单位1是与分数作比较的;就是被分成若干份的那个量.;是谁的几分之几;比谁多(少)几分之几;谁就是单位1。

2、单位“1:往往在(比,占,是,相当于、正好等)字的后面的那一个量,注意"比"(占,是,相当于等)后面是分数;你要
看单位“1”的话,你就看“的”、“几分之几的”前面的那几个字眼,就是单位“1” ,
3、如果单位“1”是已知的,就用乘法。

如果单位“1”是要求的问题的,就用除法。

(1)已知单位“1”的量,比较量占单位“1”的几分之几,求比较量。

单位“1”的量×占单位“1”的几分之几=比较量
(2)已知单位“1”的量,比较量比单位“1”的量多(少)几分之几,求比较量。

单位“1”的量×(1+几分之几)=比较量
单位“1”的量×(1-几分之几)=比较量
(3)一个数的几分之几是多少,求这个数。

也就是已知比较量,比较量是单位“1”的几分之几,求单位“1”的量。

比较量÷占单位“1”的几分之几=单位“1”的量
(4)已知比一个数多(少)几分之几的数是多少,求这个数. 比较量÷(1+几分之几)=单位“1”的量
比较量÷(1-几分之几)=单位“1”的量
(5)和倍问题建议用方程解。

(6)工程问题:
合作时间=1÷效率和=1÷(M 1+N
1)(M 和N 是单独完成工程的天数。

确定单位1的分数应用题
1、果园里有桃树45棵,梨树棵树是桃树的九分之五,又是橘树的七
分之一,梨树有几棵?橘树有多少棵?
2.小萍身高147厘米,小青比小萍矮1/7。

小亮比小青高1/7.小青身高多少厘米?小亮的身高是多少厘米?
3、2003年世界人均耕地面积为2500㎡,我国人均耕地面积仅占世界人均耕地面积的2/5,我国人均耕地面积是多少㎡?
4、一头鲸长28米,一个人身高是鲸体长的2/35,这个人身高多少米?
5、张大爷养了200只鹅,鹅的只数是鸭的2/5,养了多少只鸭?如果鹅的只数比鸭少3/5,养了鸭多少只?
6、张大爷养的鸭和鹅共700只,鸭和鹅的只数比四5:2,鸭和鹅分别多少只?
7、一项工程,甲队单独做完要12天,乙队单独做完要10天,两队合做多少天就可以完成?
8、一件工作,甲乙合做8天可以完成,甲独做12天可以完成.现在甲乙合做若干天后,余下的由乙继续做3天才完成.乙一共做了多少天?。

相关文档
最新文档