支路电流法和支路电压法.
§2-1 支路电流法和支路电压法-zu
![§2-1 支路电流法和支路电压法-zu](https://img.taocdn.com/s3/m/13b2426db84ae45c3b358cad.png)
1.支路电流法
3 页
以各支路电流为未知量列写方程求解的方法。 以各支路电流为未知量列写方程求解的方法。 方法: 法中的VCR方程代入到 方程代入到KVL方程中 方法:将2b法中的 法中的 方程代入到 方程中 消去电压未知量。 消去电压未知量。 联立方程数是几个? 联立方程数是几个? 对有b条支路的电路来说 联立方程个数为b个 条支路的电路来说, 对有 条支路的电路来说,联立方程个数为 个。 若电路中含有给定的电流源,则在KVL方程中 若电路中含有给定的电流源,则在 方程中 将出现相应的未知电压, 将出现相应的未知电压,此电压将在求解联立 方程时一并求出。此时, 方程时一并求出。此时,电流源所在支路的电 流是已知的。 流是已知的。 返回
§2-1 支路电流法和 支路电压法
北京邮电大学电子工程学院 2005.2
退出
开始
第
基本思想
2 页
各支路的电压与电流都是由相应支路的VCR相 相 各支路的电压与电流都是由相应支路的 联系的,所以,一旦求得各支路的电流( 联系的,所以,一旦求得各支路的电流(或电 ),则各支路的电压 或电流) 则各支路的电压( 压),则各支路的电压(或电流)也就可由相 应支路的VCR求得。法。 求得。 应支路的 求得
X
第
2.支路电压法
4 页
以各支路电压为未知量列写方程求解的方法。 以各支路电压为未知量列写方程求解的方法。 方法: 法中的VCR方程代入到 方程代入到KCL方程中 方法:将2b法中的 法中的 方程代入到 方程中 消去电流未知量。 消去电流未知量。 联立方程数是几个? 联立方程数是几个? 对有b条支路的电路来说 联立方程个数为b个 条支路的电路来说, 对有 条支路的电路来说,联立方程个数为 个。 若电路中含有给定的电压源,则在KCL方程中 若电路中含有给定的电压源,则在 方程中 将出现相应的未知电流, 将出现相应的未知电流,此电流将在求解联立 方程时一并求出。此时, 方程时一并求出。此时,电压源所在支路的电 压是已知的。 压是已知的。
第3章 电阻电路的一般分析总结
![第3章 电阻电路的一般分析总结](https://img.taocdn.com/s3/m/ddced61de2bd960590c67756.png)
第三章电阻电路的一般分析◆重点:1、支路法2、节点法3、网孔法和回路法◆难点:1、熟练掌握支路法、网孔法和割集分析法的计算思路,会用这几种方法列写电路方程。
2、熟练地运用节点法和回路法分析计算电路。
3-1 电网络中的基本概念网络图论与矩阵论、计算方法等构成电路的计算机辅助分析的基础。
其中网络图论主要讨论电路分析中的拓扑规律性,从而便于电路方程的列写。
1.支路——Branch流过同一个电流的电路部分为一条支路。
2.节点——node三条或者三条以上支路的汇集称为节点。
4.网络的图——graph节点和支路的集合,称为图,每一条支路的两端都连接到相应的节点上。
6.回路——loop电路中的任意闭合路径,称为回路。
8.网孔——mesh一般是指内网孔。
平面图中自然的“孔”,它所限定的区域不再有支路。
例如:在下图中,支路数6,节点数4,网孔数3,回路数79.树一个连通图G的树T是指G的一个连通子图,它包含G的全部节点,但不含任何回路。
树中的支路称为“树支”——tree branch,图G中不属于T 的其他支路称为“连支”——link,其集合称为“树余”。
一个连通图的树可能存在多种选择方法。
10.基本回路只含一条连支的回路称为单连支回路,它们的总和为一组独立回路,称为“基本回路”。
树一经选定,基本回路唯一地确定下来。
对于平面电路而言,其全部网孔是一组独立回路。
3-2 2B 法与1B 法3.2.1 支路法(2B 法)介绍1.方法概述以支路电压和支路电流作为变量,对节点列写电流(KCL )方程,对回路列写电压(KVL )方程,再对各个支路写出其电压电流关系方程,简称支路方程。
从而得到含2b 个变量的2b 个独立方程。
又称为“2b 法”。
2.思路由上述方法可见,“2b 法”实际上清晰地体现了求解电路的两个不可或缺的方面,即电路的解一是要满足网络的拓扑约束,二是要满足电路中各个元件的伏安关系约束。
3.方程结构b 个支路方程,)1(-n 个电流(KCL )方程,))1((--n b 个电压(KVL )方程。
《电路分析》支路电流法和支路电压法
![《电路分析》支路电流法和支路电压法](https://img.taocdn.com/s3/m/4eec809afe4733687f21aacc.png)
仍以图示电路为例说明如何建立支路电流法方程。
i1
i1
i4
i2
0
i3Байду номын сангаас
0
i2 i5 0
u1 R1i1
uu32
R2i2 R3i3
u4 uS1
u5 uS2
uu12
u3 u5
u4 u3
0 0
§1-7 支路电流法和支路电压法
一、支路电流法
上节介绍2b方程的缺点是方程数太多,给手算求解联 立方程带来困难。如何减少方程和变量的数目呢?
如果电路仅由独立电压源和线性二端电阻构成,可将 欧姆定律u=Ri代人KVL方程中,消去全部电阻支路电压, 变成以支路电流为变量的KVL方程。加上原来的KCL方程, 得到以b个支路电流为变量的b个线性无关的方程组(称为支 路电流法方程)。
i1 i2 i3 0
用观察法直接列出两个网孔的 KVL方程
(2)i1 (3)i2 14V 2V (3)i2 (8)i3 2V
求解以上三个方程得到: i1=3A,i2=-2A和i3=1A。
二、 支路电压法
与支路电流法类似,对于由线性二端电阻和独立电流 源构成的电路,也可以用支路电压作为变量来建立电路方 程。在2b方程的基础上,我们将电阻元件的VCR方程i=Gu 代入到KCL方程中,将支路电流转换为支路电压,得到n1个以支路电压作为变量的KCL方程,加上原来的b-n+1个 KVL方程,就构成b个以支路电压作为变量的电路方程, 这组方程称为支路电压法方程。对于由线性二端电阻和独 立电流源构成的电路,可以用观察电路的方法,直接列出 这b个方程,求解方程得到各支路电压后,再用欧姆定律 i=Gu可以求出各电阻的电流。
EDA2.1.2 支路电流法和节点电压分析法仿真
![EDA2.1.2 支路电流法和节点电压分析法仿真](https://img.taocdn.com/s3/m/bdb96b6f58fafab069dc02ad.png)
2.1.3 叠加定理仿真 在线性唯一解的电路中, 在线性唯一解的电路中,由几个独立电源共同作用产生的响应等于各个独立 电源单独作用时产生相应响应的代数叠加 。 中的电压U 例:用叠加定理计算(a)中的电压 用叠加定理计算 中的电压
先使独立电流源单独作用, ① 先使独立电流源单独作用,电压源用短路代替 U′ =2.1V ② 再使独立电压源单独作用, 电流源用开路代替
练习:用节点电压法求图示电路的电流 练习:用节点电压法求图示电路的电流I
(a)
1 1 2 1 1 1 + U n1 − U n 2 − U n3 = − + 0.5 2 5 1 0.5 2 1 1 1 1 − + U n 2 − U n 3 = I U n1 + 0.5 1 0.5 1 1 1 1 1 − U n1 − U n 2 + + U n 3 2 20 20 10 U n 2 = 10
例:列出节点电压法方程
例:列出图中对应不同参考点的节点电压方程,并用万用表测量 列出图中对应不同参考点的节点电压方程,
(a)
(b)
1 1 1 1 10 20 1 − + + U n1 − U n 2 − U n 3 = 25 10 50 10 50 25 10 1 1 1 1 1 − U n1 + + + U n 2 − U n 3 = 0 25 20 25 20 40 1 1 1 20 1 − U n1 − U n 2 + + U n 3 = I + 10 20 20 10 10 U n 3 = 30
戴维南定理图示
例: 计算图 ( a )电桥中 R x 分别等于 0 该支路的电流
§1-7 支路电流法和支路电压法
![§1-7 支路电流法和支路电压法](https://img.taocdn.com/s3/m/441e9a364431b90d6c85c729.png)
上式可以理解为回路中全部电阻电压降的代数和,等于该回 路中全部电压源电压升的代数和。据此可用观察法直接列出以支 路电流为变量的 KVL方程。
例1-12 用支路电流法求图示电路中各支路电流。
解:由于电压源与电阻串联时电流相同,本电路仅需假设 三个支路电流:i1、i2和i3。
此时只需列出一个 KCL方程 Nhomakorabea i1 i2 i3 0
用观察法直接列出两个网孔的 KVL方程
( 2 )i1 (8 )i3 14V (3 )i2 (8 )i3 2V
求解以上三个方程得到:
i1 3A, i2 2A, i3 1A
二、 支路电压法
与支路电流法类似,对于由线性二端电阻和独立电流源
就构成以三个支路电压作为变量的支路电压法的电路 方程,求解以上三个方程得到
u1 6V, u2 4V,u3 2V
根据教学需要,用鼠标点击名称的方法放映相关录像。
名 称 各种电压波形 电桥电路的电压 基尔霍夫电压定律 线性电阻器件VCR曲线 电位器及其应用 时间 3:03 1:20 3:38 3:31 3:10 名 称 2 电压的参考方向 4 信号发生器和双踪示波器 6 基尔霍夫电流定律 8 电位器 10 可变电阻器 时间 3:55 2:13 2:45 3:06 3:27
§1-7 支路电流法和支路电压法
一、支路电流法
上节介绍2b方程的缺点是方程数太多,给手算求解联 立方程带来困难。如何减少方程和变量的数目呢? 如果电路仅由独立电压源和线性二端电阻构成,可将 欧姆定律u=Ri代人KVL方程中,消去全部电阻支路电压,
变成以支路电流为变量的KVL方程。加上原来的KCL方程,
郁 金 香
1 3 5 7 9
常见的电路分析讲解
![常见的电路分析讲解](https://img.taocdn.com/s3/m/5225663f974bcf84b9d528ea81c758f5f61f29de.png)
常见的电路分析讲解电路中常用电路分析方法主要有支路电流法、回路电流法、节点电压法、电源等效变换法、叠加定理、戴维南定理和诺顿定理等,每种电路分析方法的原理及其适用范围是不同的,本文主要对几种常用电路分析方法的原理、解题步骤和适用范围进行总结与分析。
一支路电流法1、什么是支路电流法以支路电流为未知量、应用基尔霍夫定律(KCL、KVL)列方程组进行求解。
2、支路电流法的解题步骤(1)确定电路中支路、节点、网孔的数目。
其中,支路个数用b表示、节点个数用n表示、网孔个数用m表示;(2)在图中标出各支路电流的参考方向,对选定的回路标出回路循行方向;(3)应用KCL对结点列出(n-1)个独立的节点电流方程;(4)应用KVL对回路列出b-(n-1)个独立的回路电压方程(通常可取网孔列出);(5)联立求解b个方程,求出各支路电流。
3、支路电流法的适用范围如果用手工进行计算时,一般适用于支路个数不大于3的情况下,用手工计算方程组比较方便,如果支路个数大于3的情况下用手工计算就比较麻烦了。
支路个数较多的情况下可以用矩阵结合matlab进行计算。
二节点电压法采用回路电流法。
对于b个支路,n个节点的电路,只需列出[b-(n-1)]个方程,即网孔m个数方程,就可以解出各个支路电流,比支路电流法要方便的多。
但是有时存在这样的电路,即支路较多而节点较少的电路。
如下图电路中,有5条支路,2个节点,若用回路电流法求解,也需列出4个独立方程式,如果采用节点电压法则更加方便求解。
1、什么是节点电压法以基尔霍夫电流定律为基础,先求出各节点与参考点之间的电压,然后运用欧姆定律求出各支路电流的方法。
2、节点电压法计算步骤本文主要讨论两节点电路,节点电压法计算步骤如下。
(1)选定电路中一个节点为参考节点用接地符号表示,另一个节点的节点电位作为电路变量。
(2)列写关于节点电位的节点电压方程,如下式所示。
式中,分子表示电源的电流的代数和,电源电流有两部分构成,一部分是电压源的输出的电流等于电压源的数值除以其串联的电阻;另一部分电流源输出的电流。
电位支路电流法支路电压法
![电位支路电流法支路电压法](https://img.taocdn.com/s3/m/474c414b03020740be1e650e52ea551810a6c9e9.png)
在实际应用中,电位支路电流法在解决复杂电路问题时表现出更高的 精度和稳定性,尤其适用于含有多个电源和元件的电路。
03
支路电压法在简单电路中表现良好,但在复杂电路中可能会因为误差 累积导致精度下降。
04
综合比较两种方法,电位支路电流法具有更广泛的应用前景,尤其在 处理实际工程问题时表现出更高的实用价值。
原理
利用基尔霍夫定律,通过电位和电流 的关系,建立方组并求解,从而得 到电路中各支路的电流和电位。
计算步骤
1. 列出电路中各元件的电压和 电流关系式。
2. 根据基尔霍夫定律列出电路 的方程组。
3. 解方程组,得到各支路的电 流和电位。
4. 对解进行验证,确保符合电 路实际情况。
实例分析
01
实例电路
首先,列出各支路的电流和电压 :I1、I2、U1、U2。
01
03
02 04
然后,根据基尔霍夫定律列出两 个电压方程:U1 = I1 * R1 和 U2 = I2 * R2。
最后,解这个方程组,求出各支 路电压和电流的值。
04 比较与讨论
优缺点比较
电位支路电流法
01
缺点:对于复杂电路,可能需要多个测量 点,且计算过程可能较为复杂。
未来发展方向
01
结合两种方法的特点,发展更为精确和简便的测量方法。
02
针对非线性电路和复杂电路,研究更为有效的数据处理和分 析方法。
03
结合现代技术,如人工智能和机器学习,开发智能化的电位 支路电流法和支路电压法测量系统。
05 结论
研究成果总结
01
电位支路电流法与支路电压法在电路分析中具有重要应用,通过这两 种方法可以更准确地求解电路中的电流和电压。
第3章 电路分析的一般方法
![第3章 电路分析的一般方法](https://img.taocdn.com/s3/m/991c2a3e5727a5e9856a6154.png)
−
uS1
−
uS2
4
R11、R22、R33 为相应回路中所有电阻之和,称为自
阻,自阻总为正值;
R12、R13、R21、R23、R31、R32 为互阻,互阻是相邻回
路间的公共电阻,其值可正可负可为零。当两个回路 电流同向流过互阻时,取正号,否则取负号;
uS11、uS22、uS33 分别表示各回路独立源电压升之和。
iL1
R2 R3 i3
iL2
i2
+
求出 i3 = iL1 = 10A i2 = −iL2 = 6A
i1 = iL1 + iL2 = 4A
uS1
+
−
−
uS2
【例3-5】求所示电路的各支路电流。已知
uS1 = 140V R1 = 20Ω R2 = 5Ω R3 = 6Ω iS2 = 6A
解 方法一
已知 iL2 = iS2 = 6A
L = b − (n − 1)
R3
i3
1
R1
+
i5 R5 i1
Ⅰ
Ⅲ
2 i6 R6
Ⅱ
Ⅰ − R1i1 + R4i4 + R5i5 = uS1
R2
i4 R4
3 i2
Ⅱ − R2i2 − R4i4 + R6i6 = −uS2 Ⅲ
R3i3 − R5i5 − R6i6 = 0
(3 − 5)
−Leabharlann uS1+−
uS2
u6 = u4 − u5 = u N1 − uN 2 + u N2 − uN3 = uN1 − uN3
iS1
R6 i4 R4 i1 R1
第三章 支路电流法 节点电压法资料讲解
![第三章 支路电流法 节点电压法资料讲解](https://img.taocdn.com/s3/m/d309eec0011ca300a6c390e1.png)
那么,我们可以考虑,如果对于一个电路,假设如图 3.1所示,电路中所有的元件的取值都是已知的,只有电 路中各条支路的电流是未知的被求量,那么以支路电流为 未知数列出的KCL方程和KVL方程数正好等于支路数,而 这些方程又都是关于支路电流的方程,所以联立求解就可 求出各支路电流。
对我们研究的例题,有6条支路,4个节点,所以可列出4-1=3个独立的 节点电流方程;列出6-(4-1)=3个独立的回路电压方程,而这两组方程的 数目正好等于电路的支路数。
下面我们再来研究电路中的回路,对图3.1的电 路,它的回路是很多的,因为只要若干支路组成的 闭合路径,其中每个节点只经过一次, 这条闭合路径 称为回路。那是不是我们必须把所有的回路中电压 方程都列出来,才能求出电路中所要求的参量呢? 下面我们就来研究这个问题。对应于图中标出的三 个回路,应用KVL,可以列出回路电压方程如下:
-I5-I4+I1=0
-I2+I4+I6-I3-I6+I5 -I5-I4+I1=0 <=>
-I1+I2+I3 =0
观察以上四个表达式,可看出其中的任 一个方程都可由其它三个方程得出。说 明这四个方程中只有三个方程是独立的。 对于更多节点的电路,情况也一样。一 般来讲,具有n个节点的电路,只能列出 (n-1)个独立的KCL方程。
回路L1: i1 +2i2 +4i4 =10
- i1 + L1
i2 i3
L2
i6
i4 L3 i5
回路L2:-2i2+3i3 - 6i6 =8
回路L3:-4i4 + 5i5 +6i6 =-8
以上三个回路方程中,没有哪个方程能从 另外两个方程中推出,所以都是独立的回路方 程。
线性电路分析方法
![线性电路分析方法](https://img.taocdn.com/s3/m/be911d38a8114431b90dd8c5.png)
线性电路分析方法
简单电路:仅有一个独立节点或一个回路. 复杂电路:含有多个节点或回路。 平面电路:可画在一个平 面上,且使各条支路除连 接点外不再有交叉支路的 电路。
对于平面电路,可以引入 网孔的概念。
1
3-1 支路法:
定义:以支路电压、支路电流为待求量列写电路方程 求解电路的方法。 KCL方程列写: (3个) - i1 + i2 + i3=0 - i2 + i4 + i6=0 - i3 + i5 - i6=0 i1 方程列写: – i4 - i5=0 KVL (3个) - u1+ u2 + u4 = 0 - u2 + u3 – u6 = 0
回路电流,列写其余方程时避开该理想电流源支路。
ia
ib
ic
ia =1.6 -10ia+18ib-4ic=0 -4ib+6ic=-70
ia + u -
ib
ic
12ia- 2ib = -u -2ia+10ib-4ic= u -4ib+6ic= -70 ib-ia=1.6
方法3: 设理想电流源端电压,将此电压暂当作电压源电压列 写方程,并利用理想电流源与相应回路电流关系补充方程。
I3 20 10 8 20 10 8
I1 I2
10 24 4 10 24 4
I3
8 4 20 40 20 20
9
=-0.956A
i = I3= -0.956A
2、求图示电路中各支路电流。
I1
I2
I3
ia ib
(1) 选择网孔电流,参考 方向取顺时针方向; (2) 列写网孔电流方程: 15ia - 5 ib = 40 - 5ia +20 ib = 5 (3) 解网孔电流 ib = 1A ia = 3A (4) 求各支路电流 I1 =ia = 3A I2 = ib = 1A I3 = ia - ib = 2A (10ia+ 5 ib = 35+10)
支路电流法和支路电压法
![支路电流法和支路电压法](https://img.taocdn.com/s3/m/a73547f6284ac850ac02424c.png)
2 i2 R2
3
以电阻支路和电源支路电
流i0、i1、i2、i3、i4为未知变量, 其联列方程可写出如下:
i0 +
+ u1 – +
us1
u3
–
–
i3 + u2 – + i4 R3 us2
–
由独立节点 KCL
由独立回路 KVL和元件
VAR
i0 - i1 = 0 i1 - i2 - i3 = 0
i2 + i4 = 0 R1i1 + R3i3 - us1 = 0
(或电压)为未知量,需要b=5个
4
联列方程,比2b法的8个要少。
支路电流法:以支路电流作为未知变量,通知变量,通过KCL、KVL联列 方程求解。
电路分析基础——第一部分:1-10
3/5
支路电流法: {以图(1-71)为例} 1 i1 R1
电路分析基础——第一部分:1-10
1/5
1-10 支路电流法和支路电压法
方法综述:(两步法)
• 首先设法求得各电阻支路的电流(或电压)以 及电压源电流和电流源电压,
• 然后再利用电阻支路的VAR求得电阻支路的电 压(或电流)。
与2b法比较:2b法则为一步法,而本节介绍的支路电 流法和支路电压法,通过分两步进行,使所需的 联列方程数大为减少。
电路分析基础——第二部分:第一章 目录
第一章 集总电路电压电流约束关系
1 电路及电路模型 集总假设
2 电路变量 电流、 电压及功率
3 基尔霍夫定律
4 电阻元件
7 分压电路和分流电路
8 受控源
9 两类约束 电路KCL、 KVL方程的独立性
10 支路电流法和支路电压法
电工技术--第二章 电路的分析方法
![电工技术--第二章 电路的分析方法](https://img.taocdn.com/s3/m/d155103652d380eb62946d66.png)
A
R1 Us1 R2
I2
R3 Us2 B
I3
A
I1 '
A
I2' I1"
R1 Us1
R2
R1
R2
I2"
R3
I3'
+
R3 Us2
I3 "
B
B
A
I1
R1 R2
A
I2
R3
A
I2'
R3
I1' I3
R1
R2
I1" I3'
R1
R2
I2"
R3
Us1 Us2
=
Us1
+
Us2
I3"
B
B
B
解: I1
U S1 R 2R 3 R1 + R2 + R3
例1 :
I1 R1 I3
a
I2 R2 R3 2 +
对结点 a: I1+I2–I3=0 对网孔1: I1 R1 +I3 R3=E1 E2 对网孔2: I2 R2+I3 R3=E2
+ E1
-
1
-
b
联立求解各支路电流
例:试求各支路电流。
a
c
支路中含有恒流源 I3 注意:当支路中含有恒流源 时,若在列KVL方程时,所选 回路中不包含恒流源支路
+
U -
I RL
Ro Uo
+
+ _
I RL
网络
U B
B 有源二端网络
戴维南等效电路
任意一个线性有源二端网络对外都可等 效为等效电压源。
电路分析第二章解题过程
![电路分析第二章解题过程](https://img.taocdn.com/s3/m/39ccf7ef195f312b3069a50c.png)
ïïìçèæ
1 2
+
1 1
+
1 1
÷övn1 ø
-
1 1
vn2
=
2
ïïìvn1
=
20 11
V
í ïïî-
1 1
vn1
+
çæ è
1 2
+
1 1
÷övn2 ø
=
4
-
2
解得:
í ïïîvn2
=
28 11
V
,
10
20
14
8
因此,有: i1
=
A 11
, i2
=
11
A
, i3
=
A 11
, i4
=
-A 11
。
2-9 用节点电压法求题图 2-9 所示电路中的电流 。
解得: i1 = 2A , i2 = 3A 。 2-6 用支路电流法求题图 2-6 中的各支路电流 I1 、 I2 和V 。
解:根据 KCL 有: I1 + 2 = I2 ,根据 KVL 有: 4 - 3I2 + 5V + 2I1 = 0
解得: I1 = 2A , I2 = 4A ,
。
题图 2-5
题图 2-6
一条支路时,也可以认为有 4 个节点,8 条支路)。 (2)可列写 4 个独立且完备的 KCL 方程。
(3)可列写 5 个独立且完备的 KVL 方程。
2-2 如题图 2-2 所示电路,未知量为 方程。
,列写独立且完备的 KCL 和 KVL
题图 2-1
题图 2-2
解:一个独立且完备的 KCL 方程: i1 - 4 + i2 = 0 ;两个独立且完备的 KVL 方程:
支路电流法与结点电压法
![支路电流法与结点电压法](https://img.taocdn.com/s3/m/fdcba491f5335a8103d220de.png)
取正号,相反时取负号,与支路电流的参考方向无关。
例2-7 试用结点电压法计算图示电路中的电流。
解: 电路只有两个结点a、b,选b为参考结点,利用公式217,得a结点的结点电压为:
I1 R1
A I2 R2
+
US1 _
I3 R3
I
+
II
US3 _
B
+
E E1 E2 E3
U
R R1 R2 R3
US2
所选回路中不包含恒流源支路,这时,电路中有几
条支路含有恒流源,则可少列几个KVL方程。
(2) 若所选回路中包含恒流源支路,则因恒流源
两端的电压未知,所以,有一个恒流源就出现一个
未知电压,因此,在此种情况下不可少列KVL方程
。
例:试求各支路电流。
a
c
支路数b =4,但恒流
+ 42V– 12
1 6 I1
联立
15I1 - I3 15-9 解得: 1.5I2 + I3 9-4.5
I1 0.5A,I2 I3 1.5A
2A,
支路电流法分析电路的步骤:
⑴ 分析电路结构:有几条支路、几个网孔,选定并 标出各支路电流的参考方向。
⑵ 任选 n-1 个结点,根据KCL列独立节点电流方程。 ⑶ 选定 b-n+1 个独立的回路(通常可取网孔),指 定网孔或回路电压的绕行方向,根据KVL列写独立 回路的电压方程。
选取两个网孔,并假定两个网孔的绕行方向为顺时针(已 在图中标出),根据KVL列出两个网孔的回路电压方程。
网孔Ⅰ
I1R1 - I3R3 = U S1 -U S 3
网孔Ⅱ I 3R3 I 2R2 U s3 U s2
大学简化电路的方法
![大学简化电路的方法](https://img.taocdn.com/s3/m/7e2329ea370cba1aa8114431b90d6c85ec3a88c3.png)
大学简化电路的方法
大学简化电路的方法主要有以下几种:
1.串并联简化法:根据电路中的串联和并联关系,将电路中的元件进行简化。
对于串联关系的元件,可以将其简化为一个等效电阻;对于并联关系的元件,可以将其简化为一个等效电导。
2.戴维南定理:利用戴维南定理可以将任意线性电路简化为一个等效电源和一个等效电阻,从而简化复杂的电路。
3.叠加原理:对于包含多个独立电源和信号源的电路,可以利用叠加原理将其分解为多个小电路,每个小电路只包含一个独立源,然后分别计算每个小电路的电流和电压,最后再求和得到整个电路的电流和电压。
4.节点电压法和支路电流法:对于复杂的电路,可以利用节点电压法和支路电流法进行分析,通过写出节点电压和支路电流的方程组,然后利用线性方程组的求解方法,计算出电路中各个节点的电压和各个支路的电流,从而简化电路。
5.等效电路模型:对于一些常见的电路元件,可以利用等效电路模型进行简化。
例如,对于二极管,可以使用正向电阻和反向电导的等效电路模型进行分析;对于三极管,可以使用基本放大电路等效电路模型进行分析。
电位支路电流法支路电压法
![电位支路电流法支路电压法](https://img.taocdn.com/s3/m/7a5bfc2e770bf78a64295450.png)
2b法的方程
KCL方程
i1 i3 i4 0 i2 i4 i5 0
KVL方程
u1 u3 uS1 uS3 0 u2 u5 uS 2 0 u3 u4 u5 uS3 0
VCR方程
u1 R1i1 u2 R2i2 u3 R3i3
u4 R4i4 u5 R5i5
20
练习题1-20的支路电流法
17
2、1b法分类 支路电流法:以支路电流为变量,建立联立 方程组求解电路。
支路电压法:以支路电压为变量,建立联立 方程组求解电路。
18
1.10.2 支路分析
支路分析方法: 2b分析法:计算机分析比较适用,人工分 析嫌麻烦。 1b分析法:一般采用支路电流法。
19
课堂练习 P51 练习题1-20
解得:
I2 2(A) I3 4(A) I1 6(A)
22
课外作业
PP.58~61 1-29, 1-33, 1-36
END 23
i1 i2 i3 0
u1 u3 uS1 u2 u3 uS 2
VCR方程 u1 R1i1
u2 R2i2
u3 R3i3
16
§ 1.10 支路分析
1.10.1 1b分析法
1、 1b法的步骤 (1)先求得各支路电流(或支路电压); (2)再利用电阻支路的VCR关系求得电阻支路 电压(或支路电流)。
i1
G1 G1 G2
i
i2
G2 G1 G2
i
(分流公式)
或
Req
R1R2 R1 R2
i1
R2 R1 R2
i
i2
R1 R1 R2
i
7
若有n个电导并联,则第k个电导电流为:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
u1 u2 u3 0
就构成以三个支路电压作为变量的支路电压法的电路 方程。
i1 i2 i3 0
用观察法直接列出两个网孔的 KVL方程
(2)i1 (3)i2 14V 2V (3)i2 (8)i3 2V
求解以上三个方程得到: i1=3A,i2=-2A和i3=1A。
二、 支路电压法
与支路电流法类似,对于由线性二端电阻和独立电流 源构成的电路,也可以用支路电压作为变量来建立电路方 程。在2b方程的基础上,我们将电阻元件的VCR方程i=Gu 代入到KCL方程中,将支路电流转换为支路电压,得到n-1 个以支路电压作为变量的KCL方程,加上原来的b-n+1个 KVL方程,就构成b个以支路电压作为变量的电路方程, 这组方程称为支路电压法方程。对于由线性二端电阻和独 立电流源构成的电路,可以用观察电路的方法,直接列出 这b个方程,求解方程得到各支路电压后,再用欧姆定律 i=Gu可以求出各电阻的电流。
Hale Waihona Puke RR12ii12R3i3 R3i3
uS1 uS2
上式可以理解为回路中全部电阻电压降的代数和,等于该回
路中全部电压源电压升的代数和。据此可用观察法直接列出以支
路电流为变量的 KVL方程。
例1-11 用支路电流法求图示电路中各支路电流。
解:由于电压源与电阻串联时电流相同,本电路仅需假设 三个支路电流:i1、i2和i3。 此时只需列出一个 KCL方程
以图示电路说明支路电压法方程的建立过程
列出2个KCL方程
i1 i3 iS1 i2 i3 iS2
代入以下三个电阻的VCR方程
i1 G1u1 i2 G2u2 i3 G3u3
得到以u1、u2、u3为变量的KCL方程
G1u1 G3u3 iS1 G2u2 G3u3 iS2
这两个方程表示流出某个结点的各电阻支路电流Gkuk 之和等于流入该结点电流源电流iSk之和,根据这种理解, 可以用观察电路的方法直接写这些方程。
这样,只需求解b个方程,就能得到全部支路电流,再 利用VCR方程即可求得全部支路电压。
仍以图示电路为例说明如何建立支路电流法方程。
i1
i1
i4
i2
0
i3
0
i2 i5 0
u1 R1i1
uu32
R2i2 R3i3
u4 uS1
u5 uS2
u1 u3 u4 0 u2 u5 u3 0
§1-7 支路电流法和支路电压法
一、支路电流法
上节介绍2b方程的缺点是方程数太多,给手算求解联 立方程带来困难。如何减少方程和变量的数目呢?
如果电路仅由独立电压源和线性二端电阻构成,可将 欧姆定律u=Ri代人KVL方程中,消去全部电阻支路电压, 变成以支路电流为变量的KVL方程。加上原来的KCL方程, 得到以b个支路电流为变量的b个线性无关的方程组(称为支 路电流法方程)。