轴对称图形的性质第1课时

合集下载

小学五年级上学期数学《轴对称图形(一)》(第一课时 )教学设计

小学五年级上学期数学《轴对称图形(一)》(第一课时 )教学设计
教学内容
教学重点:
1.引导学生判断轴对称图形。
2.认识对称轴并利用轴对称图形的性质在方格纸上画出简单图形的对称轴。
教学难点:
1.认识对称轴并利用轴对称图形的性质在方格纸上画出简单图形的对称轴。
教学过程
一.复习引入。
1.师:什么是轴对称图形?ቤተ መጻሕፍቲ ባይዱ
(预设1:能对折的图形就是轴对称图形。)
师:怎样用标准的数学语言描述呢?(课件出示图形对折动画)
三.知识应用。
1.方法:师:因为轴对称图形的对称轴其实就是一条对称点所在线段的垂直平分线。画平面图形的对称轴只需要找到每组对称点所在线段的中心点,连接起来。
2.你能画出下面这个图形的对称轴吗?
①学生先尝试画一画。
②交流展示。
预设:我们先在图上找到两组对称点A和A',B和B',A和A'之间有4格,B和B'之间有10格,根据对称轴就是对称点所在线段的垂直平分线的特点,找到它们各自中心点,连接起来。
预设:A和A'所在线段与对称轴是互相垂直的。同样,对称点B和B'所在的线段和对称轴也是互相垂直的,因此对称点所在的线段与对称轴都是互相垂直。
(3)总结。轴对称图形到底有什么特点呢?
【在轴对称图形中,对称点到对称轴的距离相等,对称点所在的线段和对称轴互相垂直。轴对称图形的对称轴其实就是一条对称点所在线段的垂直平分线。】
②对称点到对称轴的距离相等。
师:我们可以看到A和A'与对称轴之间的距离都是2格,B和B'到对称轴之间的距离都是5格,每组对称点到对称轴的距离都是相等的,对称轴刚好在对称点所在线段的中心点上。
③对称点所在的线段与对称轴都是互相垂直。
师:仔细观察,这是A和A'这组对称点所在的线段,这条线段和对称轴有怎样的位置关系?

轴对称(第一课时)(课件)人教版数学八年级上册

轴对称(第一课时)(课件)人教版数学八年级上册

课堂小结
定义
1、轴对称图形 2、两个图形成轴对称
轴对称图形
区别和联

轴对称图形和两个图形成轴对称
应用
利用轴对称图形和两个图形成轴 对称的定义进行判断
课后作业
1.把一圆形纸片两次对折后,得到右图,然后 沿虚线剪开,得到两部分,其中一部分展开后 的平面图形是( B )
A
B
C
D
课后作业
2.如图,在3×3的正方形网格中,已有两个小正方形被 涂黑,再将图中其余小正方形任意涂黑一个,使整个图案 (包括网格)构成一个轴对称图形,则涂色的方法有( D )
追问: 你能再举出一些两个图形成轴对称的例子吗?
互动新授
A
B C
小试牛刀
1、分别观察以下每组图形,判断它们是否关于某条直线成轴对称?
E
E
E
EE
E
不是
不是

E
E
E E E
E

不是

互动新授 仔细观察,下列两个图形有什么区别?
它们之间有什么联 系和区别呢?
轴对称图形
两个图形成轴对称
总结归纳 轴对称图形和轴对称的区别与联系
A.2种 C.4种
B.3种 D.5种
1条
2条
4条
无数条
互动新授
观察下面每对图形(如图),你能类比前面的内容概括出 它们的共同特征吗?
互动新授 共同特征:每一对图形沿着虚线折叠,左边的图形都能与右
边的图形重合.
结论:把一个图形沿着某一条直线折叠,如果它能够与另一个图形 重合,那么就说这两个图形关于这条直线(成轴)对称,这 条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.

初中数学教学课例《轴对称(第一课时)》课程思政核心素养教学设计及总结反思

初中数学教学课例《轴对称(第一课时)》课程思政核心素养教学设计及总结反思

学生的自主学习意识仍然薄弱,没有指令或者说明 力分析
的情况下很难自主探究新知,上课易不积极,由学习行
为习惯养成不良好导致,没有自己的学习方法.
(分析学生在本课中所需学习方法的掌握情况、学
生的课堂学习行为与习惯、合作学习氛围、学生认知障
碍等)
主要以探究式教学课堂为主,激发学生学习的内心
动力,同时活跃课堂气氛,使学生切身体会学习的快乐
(请您选择本课中最关注的一个学生学习活动,详
细描述这个学习活动如何开展,并描述您针对上述学生
学习活动进行哪些方面的指导)
阅读教材第 58 页内容,引出下列问题.
本节课从观察生活中的轴对称现象出发,通过生活
课例研究综 中平面图形的实例,抽象概括出轴对称图形的本质特

征,并结合具体的生活中的图形,类比得出两个图形成
初中数学教学课例《13.1.1 轴对称(第一课时)》教学设计 及总结反思
学科
初中数学
教学课例名
《13.1.1 轴对称(第一课时)》

学习内容:了解轴对称图形和两个图形关于某两个图形关于某直线对称
的概念; 教材分析
教学难点:轴对称图形和两个图形关于某直线对称
的概念之间的区别与联系.
(简单说明本课的学习内容,说明课题教学的重点
和难点)
通过轴对称图形和两个图形关于某直线对称的学
习,让学生体会数学在实际中生活中的应用,激发学生 教学目标
学习的热情,进一步发展学生的抽象概括能力.
(按最新版《课程标准》中的目标维度)
增加动手动脑能力,用作品展示、课堂互动、合作
探究等过程,进一步认识几何图形的本质特征; 学生学习能
轴对称的概念.在此基础上,通过探索成轴对称的两个

八年级数学上册 第十三章 轴对称 13.1 轴对称教案 (新版)新人教版-(新版)新人教版初中八年级

八年级数学上册 第十三章 轴对称 13.1 轴对称教案 (新版)新人教版-(新版)新人教版初中八年级

13.1 轴对称(第1课时)【教学目标】知识与技能1.在生活实例中认识轴对称图.2.分析轴对称图形,理解轴对称的概念、轴对称图形的概念.过程与方法1.在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力,逐步养成数学推理的习惯.2.在灵活运用知识解决有关问题的过程中,体验并掌握探索、归纳图形性质的推理方法,进一步说理和进行简单推理的能力.情感、态度与价值观1.体会数学与现实生活的联系,增强克服困难的勇气和信心.2.会应用数学知识解决一些简单的实际问题,增强应用意识.3.使学生进一步形成数学来源于实践,反过来又服务于实践的辩证唯物主义观点.【教学重难点】重点:理解轴对称的概念.难点:能够识别轴对称图形并找出它的对称轴.【教学过程】一、创设情境,引入新课1.举实例说明对称的重要性和生活中充满着对称.2.对称给我们带来多少美的感受!初步掌握对称的奥秒,不仅可以帮助我们发现一些图形的特征,还可以使我们感受到自然界的美与和谐.3.轴对称是对称中重要的一种,让我们一起走进轴对称世界,探索它的秘密吧!二、导入新课1.观察:几幅图片(出示图片),观察它们都有些什么共同特征.强调:对称现象无处不在,从自然景观到分子结构,从建筑物到艺术作品,甚至日常生活用品,人们都可以找到对称的例子.练习:从学生生活周围的事物中来找一些具有对称特征的例子.2.观察:课本图13.1-2,把一X纸对折,剪出一个图案(折痕处不要完全剪断),再打开这X对折的纸,就剪出了美丽的窗花.你能发现它们有什么共同的特点吗?3.如果一个图形沿一直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴.我们也说这个图形关于这条直线(成轴)对称.4.动手操作:取一X质地较硬的纸,将纸对折,并用小刀在纸的中央随意刻出一个图案,将纸打开后铺平,你得到两个成轴对称的图案了吗?归纳小结:由此我们进一步了解了轴对称图形的特征:一个图形沿一条直线折叠后,折痕两侧的图形完全重合.5.练习:你能找出它们的对称轴吗?分小组讨论.思考:大家想一想,你发现了什么?小结:像这样,把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.三、课时小结这节课我们主要认识了轴对称图形,了解轴对称图形及其有关概念,进一步探讨了轴对称的特点,区分了轴对称图形和两个图形成轴对称.13.1 轴对称(第2课时)【教学目标】知识与技能1.了解两个图形成轴对称的性质,了解轴对称图形的性质.2.探究线段垂直平分线的性质.过程与方法1.在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力,逐步养成数学推理的习惯.2.在灵活运用知识解决有关问题的过程中,体验并掌握探索、归纳图形性质的推理方法,进一步说理和进行简单推理的能力.情感、态度与价值观1.体会数学与现实生活的联系,增强克服困难的勇气和信心.2.会应用数学知识解决一些简单的实际问题,增强应用意识.【教学重难点】重点:轴对称的性质,线段垂直平分线的性质.难点:1.轴对称的性质.2.线段垂直平分线的性质.3.体验轴对称的特征.【教学过程】一、创设情境,引入新课1.什么样的图形是轴对称图形呢?2.轴对称图形有哪些性质,从图形中能得到结论?二、导入新课1.如图,△ABC和△A'B'C'关于直线MN对称,点A'、B'、C'分别是点A、B、C的对称点,线段AA'、BB'、CC'与直线MN有什么关系?为什么?(学生思考并做小X围讨论)对称轴所在直线经过对称点所连线段的中点,并且垂直于这条线段.我们把经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线.2.画一个轴对称图形,并找出一组对称点,看一下对称轴和对称点连线的关系.3.对称轴所在直线经过对称点所连线段的中点,并且垂直于这条线段.归纳图形轴对称的性质:如果两个图形关于某条直线对称,那么对称轴是任何一对对称点所连线段的垂直平分线.类似地,轴对称图形的对称轴是任何一对对称点所连线段的垂直平分线.下面我们来探究线段垂直平分线的性质.[探究1]如图,木条l与AB钉在一起,l垂直平分AB,P1,P2,P3,…是l上的点,分别量一量点P1,P2,P3,…到A与B的距离,你有什么发现?证法一:利用判定两个三角形全等.如图,在△APC和△BPC中,AC=BC,∠ACP=∠BCP,CP=CP⇒△APC≌△BPC⇒PA=PB.证法二:利用轴对称的性质.由于点C是线段AB的中点,将线段AB沿直线l对折,线段PA与PB是重合的,因此它们也是相等的.带着探究1的结论我们来看下面的问题.[探究2]如图,用一根木棒和一根弹性均匀的橡皮筋,做一个简易的“弓”,“箭”通过木棒中央的孔射出去,怎么才能保持出箭的方向与木棒垂直呢?为什么?探究结论:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上.上述两个探究问题的结果就给出了线段垂直平分线的性质,即:线段垂直平分线上的点到这条线段两个端点的距离相等;反过来,到这条线段两个端点距离相等的点都在它的垂直平分线上.所以线段的垂直平分线可以看成是到线段两端点距离相等的所有点的集合.三、随堂练习如图,AB=AC,MB=MC.直线AM是线段BC的垂直平分线吗?四、课时小结这节课通过探索轴对称图形对称性的过程,了解了线段的垂直平分线的有关性质,同学们应灵活运用这些性质来解决问题.13.1 轴对称(第3课时)【教学目标】知识与技能1.探索作出轴对称图形的对称轴的方法,掌握轴对称图形对称轴的作法.2.在探索的过程中,培养学生分析、归纳的能力.过程与方法1.在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力,逐步养成数学推理的习惯.2.在灵活运用知识解决有关问题的过程中,体验并掌握探索、归纳图形性质的推理方法,进一步说理和进行简单推理的能力.情感、态度与价值观1.体会数学与现实生活的联系,增强克服困难的勇气和信心.2.会应用数学知识解决一些简单的实际问题,增强应用意识.【教学重难点】重点:轴对称图形对称轴的作法.难点:探索轴对称图形对称轴的作法.【教学过程】一、提出问题,引入新课1.有时我们感觉两个图形是轴对称的,如何验证呢?不折叠图形,你能比较准确地作出轴对称图形的对称轴吗?2.轴对称图形的性质.如果两个图形关于某条直线对称,那么对称轴是任何一对对称点所连线段的垂直平分线.轴对称图形的对称轴,是任何一对对称点所连线段的垂直平分线.3.找到一对对应点,作出连结它们的线段的垂直平分线,就可以得到这两个图形的对称轴了.4.问题:如何作出线段的垂直平分线?二、导入新课要作出线段的垂直平分线,根据垂直平分线的判定定理,到线段两端点的距离相等的点在这条线段的垂直平分线上,又由两点确定一条直线这个公理,那么必须找到两个到线段两端点距离相等的点,这样才能确定已知线段的垂直平分线.例1:如图(1),点A 和点B 关于某条直线成轴对称,你能作出这条直线吗?已知:线段AB[如图(1)].求作:线段AB 的垂直平分线.作法:如图(2).(1)分别以点A 、B 为圆心,以大于21AB 的长为半径作弧,两弧相交于C,D 两点; (2)作直线CD.直线CD 就是线段AB 的垂直平分线.例2:图中的五角星有几条对称轴?作出这些对称轴.作法:1.找出五角星的一对对应点A 和A',连接AA'.2.作出线段AA'的垂直平分线L .则L 就是这个五角星的一条对称轴.用同样的方法,可以找出五条对称轴,所以五角星有五条对称轴.三、课时小结本节课我们探讨了尺规作图,作出线段的垂直平分线.并据此得到作出一个轴对称图形的一条对称轴的方法:找出轴对称图形的任意一对对应点,连接这对对应点,作出线段的垂直平分线,该垂直平分线就是这个轴对称图形的一条对称轴.。

人教版数学八年级上册13 轴对称(第一课时)课件

人教版数学八年级上册13 轴对称(第一课时)课件

►为你理想的人,否则,爱的只是你在他身上找到的你的影子。 ►有时候,我们愿意原谅一个人,并不是我们真的愿意原谅他,而是我们 不愿意失去他。不想失去他,惟有假装原谅他。不管你爱过多少人,不管 你爱得多么痛苦或快乐。最后,你不是学会了怎样恋爱,而是学会了,怎 样去爱自己。
11
是轴对称图形且有两条对称轴的是 A.①② C.②④
B.②③ D.③④
第十三章 轴对称
(A)
上一页 返回导航 下一页
数学·八年级 (上)·配人教
12
8.【易错题】观察下列图形,其中所有轴对称图形的对称轴条数之和为 (B)
A.13 C.10
B.11 D.8
第十三章 轴对称
上一页 返回导航 下一页
数学·八年级 (上)·配人教
第十三章 轴对称
小房子
上一页 返回导航 下一页
数学·八年级 (上)·配人教
18
思维训练
14.【核心素养题】舞蹈教室的东西墙壁有平面镜AC、BD,如图.小华在平 面镜AC、BD之间练习舞蹈,她在每个平面镜中都能看到自己的一列身形,且越来 越小.若AC、BD都垂直于地面,AB=6 m.试问:
(1)小华在每个平面镜中看到的第二个身形之间的距离是多少? (2)猜想小华在每个平面镜中的第10个身形之间的距离是多少?并说明理由.
解:(1)点A对应点A,点B对应点D,点C对应点E. (2)AB=AD,AC=AE,BC=DE,∠BAC=∠DAE,∠B=∠D,∠C=∠E.
(3)△AFC与△AFE,△ABF与△ADF,四边形ABFE和四边形ADFC.
第十三章 轴对称
上一页 返回导航 下一页
能力提升
7.【山东泰安中考】下列图形:
数学·八年级 (上)·配人教

新人教版八年级数学上册12.1轴对称(第1课时)教案

新人教版八年级数学上册12.1轴对称(第1课时)教案
教学背景:
1前准备,课前预习了解.
新人教版八年级数学上册 12.1 轴对称教案
(1 课时) 山东省滨州市滨城区滨北街道办事处北城中学 耿新华 邮 编:256651 联系电话:15865403584 一、教材分析: 本节教材是新人教版, 初中数学八年级上册第十二章第一节第一课时的内容, 它是在学 习了有关“全等三角形”的知识基础上,进一步学习有关图形性质的第一节课,它是初中数 学的重要内容之一.一方面,本节课为学习轴对称的性质、变换,等腰三角形的直观认识打 下坚实基础.另一方面,涉及到“空间与图形”领域中的图形与变换内容,能培养学生的观 察能力,归纳类比能力,合作交流能力,让学生经历数学现象的探究过程,感受数学美,从而激 发数学学习的乐趣,体会数学与生活的密切联系。所以,我认为本节课不仅是本章节的重要 开局,而且起着承前启后的桥梁作用. 教学目标 (一)教学知识点 1.在生活实例中认识轴对称图形. 2.分析轴对称图形,理解轴对称的概念. (二)能力训练要求 1.通过丰富的生活实例认识轴对称,能够识别简单的轴对称图形及其对称轴. 2.经历观察、分析的过程,训练学生观察、分析的能力. (三)情感与价值观要求 通过对丰富的轴对称现象的认识, 进一步培养学生积极的情感、 态度, 促进观察、 分析、 归纳、概括等一般能力和审美能力的提高. 教学重点 轴对称图形、轴对称的有关概念. 教学难点 能够识别轴对称图形并找出它的对称轴. 二、教学方法 启发诱导法. 三、教学过程 Ⅰ.创设情境,引入新课 [师]我们生活在一个充满对称的世界中, 许多建筑物都设计成对称形, 艺术作品的创作 往往也从对称角度考虑, 自然界的许多动植物也按对称形生长, 中国的方块字中些也具有对 称性„„
Ⅲ.实践和应用 1、 下列图片是生活中的一些建筑物,它们是轴对称图形吗? /i?ct=201326592&cl=&word= %BD%A8%D6%FE%CE%EF%CD%BC%C6%AC&istype=2&z=0&fm=rs3#pn=24 2、 下列图形是部分汽车的标志,那些是轴对称图形? /i?ct=201326592&cl=&word= %CA%C0%BD%E7%C3%FB%B3%B5%B1%EA%D6%BE%CD%BC%C6%AC&istype=2&z=0&fm=rs6 3、下图中的两个图形是否成轴对称?如果是,请找出它的对称轴. /i?ct=5033=%B3%C9%D6% E1%B6%D4%B3%C6%B5%C4%C1%BD%B8%F6%CD%BC%D0%CE&in=23156&cl=2&lm=-1&st=&pn=30&r n=1&di=7045485450&ln=1983&fr=&fm=&fmq=1332071370375_R&ic=&s=&se=&sme=0&tab=& width=&height=&face=&is=&istype=#pn30&-1&di7045485450&objURLhttp%3A%2F%2Ftec %2Fwzym%2F0129%2Fc20129%2Fc2sxq901.files%2Fimage015.jpg&fromURLhttp %3A%2F%%2Fwzym%2F0129%2Fc20129%2Fc2sxq901.htm&W368&H157&T10265 &S8&TPjpg

北师版小学二年级数学下册《图形的运动》第1课时 轴对称(一)

北师版小学二年级数学下册《图形的运动》第1课时 轴对称(一)
生:我发现对折后中间的折痕把图形分成了一样的两部分。
生:我发现这几个图形折痕两边的图形可以完全重合。
师:你们真是善于思考的孩子,能说一说对折后,哪两边完全重合吗?
心形是左右两边完全重合,小鱼是上下两边完全重合,双喜字是左右两边完全重合,房子是左右两边完全重合,字母也是是左右两边完全重合。
师:对折后两边能完全重合的图形,叫做轴对称图形,这条折痕所在的直线,就是轴对称图形的对称轴。
师:同学请完成练习册本课时的习题哦!
五、教学板书
轴对称一
六、教学反思
优点:本节课是集欣赏美与动手操作为一体的综合实践课,为了更有效的突出重点 ,突破难点,按照学生的认知规律,遵循教师为主导,学生为主体、训练为主线的指导思想,教学过程中力求提醒数学问题生活会,注重学生观察,交流,操作,探究能力的培养,让学生葱粉经历知识的形成过程。
教学重点
认识轴对称图形并体会其特征。
教学难点
能正确辨认轴对称图形。
教学准备
多媒体课件
课时安排
1课时
教学环节
导学案
一、创设情境
复习导入
同学们好!欢迎来到状元成才路慕课堂今天我们来学习第二单元图形的运动中的第1课时轴对称(一)。
同学们你们喜欢剪纸吗?老师很喜欢剪纸,今天老师就给大家剪一个图形(爱心)。
二、探究体验
生:认识,分别是心形,小鱼,双喜字,房子和字母。
师:再认真看一看,这些图形有什么共同的特点?
生1:这些图形从中间分开,两边一样。
生:怎么知道两边一样?
师:让我们利用附页1中图1折一折,看一看。自己动手试一试吧!折完后,你又有什么发现?
师:同学们都已经折好了,把你的发现和其他同学分享一下吧。
生:这些图形对折后,两边都是一样的,他们是对称的。

2.2轴对称的基本性质(第1课时)

2.2轴对称的基本性质(第1课时)

2.2轴对称的基本性质(第1课时)学习目标:1.探索轴对称的基本性质,掌握作成轴对称的图形的方法及成轴对称的图形的性质2.能够画出与已知图形关于某条直线成轴对称的图形3.让学生研讨活动中,进一步发展学生合作交流的能力和数学表达能力重点:成轴对称图形的性质难点:画与已知图形关于某条直线成轴对称的图形教学过程:【温故知新】1.把一个图形沿某条直线折叠后,得到一个与它全等的图形,图形的这种变化叫做。

这条直线叫做2.用笔尖扎重叠的纸可以得到成轴对称的两个图案。

(1)说出它的两对对应点、对称轴(2)用测量的方法验证你找到的对应点所连线段分别被对称轴垂直平分。

3.成轴对称的两个图形中,对应点的连线被对称轴【创设情境】1.观察下面两只小脚丫,你发现它们之间存在什么关系?线段PP´与直线l之间存在什么位置关系?本节课我们就来学习——轴对称的基本性质。

【探索新知】【自主探究】知识点一:探索成轴对称图形的性质实验1把一张纸对折后扎一个小孔(如下面左图),然后展平(如下面中图),连接得到的两个小孔A与A',记AA'与折痕MN的交点为O.A'与直线MN具有怎样的位置关系?你发现了哪些等量关系?再扎几个线段A小孔试试.C B N M A NM A l BA 实验2.如右图,小莹扎了三个孔,把纸展平后连接各点.思考下面的问题:(1)与ABC ∆C B A '''∆有什么关系?(2)连接C C B B A A ''',,,它们各自与直线MN 具有怎样的位置关系?【归纳总结】轴对称的基本性质: 。

交流与发现如下图,在纸上画一条直线MN ,再在直线MN 的一侧扎一个小孔A ,⑴不用折纸的方法你能找到小孔A 关于直线MN 的对称点的位置吗?与同学交流.⑵你能说明你的理论依据吗?⑶如图,你能画出与直线AB 关于直线l 成对称的线段吗?知识点二:利用轴对称的性质作图例1如下图,作出ABC ∆关于直线MN 的对称图形讨论交流上述各图形作法要领、注意点,并归纳画法基本步骤:【巩固提升】1.下列说法正确的是()A.一个图形的轴对称图形只能作一个B.一个图形的轴对称图形有有限个C.因为选取的对称轴不同,所以作一个图形的对称图形可以有无数个D.不规则的、复杂的图形不存在对称图形2.下面给出了一个图案的一半,其中虚线l是这个图的对称轴,请你画出这个图案的另一半。

2019年秋浙教版八年级上册数学课件:2.1 第1课时

2019年秋浙教版八年级上册数学课件:2.1 第1课时

4
• 解答:连结MP,PN.∵点M是点P关于AO的对称点,∴AO垂直平分MP, ∴EP=EM.同理PF=FN.∵MN=ME+EF+FN,∴MN=EP+EF+ PF.∵△PEF的周长为30 cm,∴MN=EP+EF+PF=30 cm.
5
基础过关
• 1.在下列“禁毒”“和平”“志愿者”“节水”这四个标志中,属于 轴对称图形的是( )
10.如图,∠AOB=41°,点 P 为∠AOB 内的一点,分别作出 P 点关于 OA、OB 的对称点 P1、P2,连结 P1P2 交 OA 于 M,交 OB 于 N,P1P2=15,则△PMN 的周长 为___1_5____,∠MPN=__9_8_____°.
12
11.在四边形 ABCD 中,AC⊥BD 于点 E,BE=DE,已知 AC=10 cm,BD= 8 cm.求阴影部分的面积.
B
6
• 2.如图,△ABC与△ADC关于AC所在的直线对称,∠BCA=35°,∠D =80°,则∠BAD的度数为( )
C
• A.170° B.150° • C.130° D.110°
7
• 3.角的对称轴是____角__平__分__线__所__在__的__直___线____.
• 4.正方形是轴对称图形,它的对称轴有4________条. • 5.已知线段AB,如果在直角坐标系中,y轴是线段AB的对称轴,点B
第2章 特殊三角形
2.1 图形的轴对称
第一课时 轴对称图形
2名师Βιβλιοθήκη 睛• 知识点1 轴对称图形 • 如果把一个图形沿着一条直线折叠后,直线两侧的部分能够互相重合,
那么这个图形叫做轴对称图形,这条直线叫做对称轴. • 【典例1】下列图形中,是轴对称图形的是( )

人教版八年级数学上册《轴对称(第1课时)》示范教学设计

人教版八年级数学上册《轴对称(第1课时)》示范教学设计

轴对称(第1课时)教学目标1.了解轴对称图形与两个图形成轴对称的概念,知道轴对称图形和两个图形成轴对称的区别与联系.2.探索成轴对称的两个图形的性质和轴对称图形的性质,体会由具体到抽象认识问题的过程,感悟类比方法在研究数学问题中的作用.教学重点轴对称图形与两个图形成轴对称的概念,轴对称图形和两个图形成轴对称的区别与联系.教学难点成轴对称的两个图形的性质和轴对称图形的性质.教学过程新课导入对称现象无处不在,从自然景观到艺术作品,从建筑物到交通标志,甚至日常生活用品中,人们都可以找到对称的例子(如图).【师生活动】教师出示图片,学生观看.【设计意图】通过观看生活中常见的对称现象,引出本节课的新知,让学生感受数学和生活的紧密联系.新知探究一、探究学习【问题】1.如图,把一张纸对折,剪出一个图案(折痕处不要完全剪断),再打开这张对折的纸,就得到了美丽的窗花.观察得到的窗花,你能发现它们有什么共同的特点吗?【师生活动】学生按照要求动手操作,教师提示“折痕处不要完全剪断”.【答案】这些窗花沿一条直线折叠,直线两旁的部分能够互相重合.【问题】2.结合下面动图,总结你的发现.【新知】像窗花一样,如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴.这时,我们也说这个图形关于这条直线(成轴)对称.【问题】你能举出一些轴对称图形的例子吗?【师生活动】学生独立思考,然后教师展示图片给出参考答案.【答案】【设计意图】让学生亲自动手制作日常生活中熟悉的窗花剪纸,教师提出问题,学生分小组合作交流,激发学生的学习兴趣,培养学生的动手能力和观察归纳能力.二、典例精讲【例1】如图的每个图形都是轴对称图形吗?如果是,请画出它的对称轴.【师生活动】学生独立思考,教师给出答案并讲解.【答案】解:第1个图形上的字母不同,对折之后,直线两旁的部分不能互相重合,所以不是轴对称图形;第2个图形是轴对称图形,对称轴如图.【设计意图】通过例题1的练习与讲解,巩固学生对已学知识的理解及应用.三、探究学习【思考】下面的每对图形有什么共同特点?【师生活动】教师提出问题,学生独立思考并尝试作答.【答案】每一对图形沿着虚线折叠,左边的图形能与右边的图形重合.【新知】像这样,把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线(成轴)对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.【设计意图】通过问题思考,引出轴对称知识.【问题】请你标出图中点A,B,C的对称点A',B',C'.【师生活动】教师提出问题,学生独立作答.【答案】解:【设计意图】检验学生对轴对称知识的理解及应用.四、典例精讲【例2】下列给出的每幅图形中的两个图案是成轴对称吗?如果是,试着画出它们的对称轴.【师生活动】教师提出问题,学生独立作答.【答案】解:第1幅图形中的两个图案不成轴对称,第2幅图形中的两个图案成轴对称,对称轴如图.【归纳】成轴对称的两个图形一定全等,全等的两个图形不一定成轴对称.【设计意图】通过例题2的练习与讲解,让学生初步理解成轴对称的两个图形与全等的两个图形之间的关系.五、探究学习【思考】1.观察动图,试着说一说轴对称图形与轴对称有什么区别与联系?【师生活动】教师展示动图,学生观察并尝试归纳总结.【归纳】轴对称图形与轴对称的区别与联系【设计意图】通过对比讲解,加深学生对知识的理解与掌握.【思考】2.如图,△ABC 和△A ′B ′C ′关于直线MN 对称,点A ′,B ′,C ′分别是点A ,B ,C 的对称点,线段AA ′,BB ′,CC ′与直线MN 有什么关系?【分析】图中,点A,A′是对称点,设AA′交对称轴MN于点P,将△ABC或△A′B′C′沿MN折叠后,点A与A′重合.于是有AP=P A′,∠MP A=∠MP A′=90°.对于其他的对应点,如点B与B′,点C与C′也有类似的情况.因此,对称轴所在直线经过对称点所连线段的中点,并且垂直于这条线段.经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线.【新知】轴对称的性质:如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.轴对称图形的性质:轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线.例如下图中,l垂直平分线段AA′,l垂直平分线段BB′.课堂小结板书设计一、轴对称图形二、轴对称三、轴对称及轴对称图形的性质课后任务完成教材第60页练习1~2题.。

第七单元 第1课时 轴对称(教学课件)-四年级数学下册人教版

第七单元 第1课时 轴对称(教学课件)-四年级数学下册人教版
3.“连”,按照原图形的形状顺次 连接这些对称点,得到轴对称图 形的另一半。
探究新知
presentation
轴对称图形画法并不难,找准关键点是关键。 点轴距离要按格算,才能找得准对称点。 依次连接各对称点,轴对称图形准确现。
学习任务四
达标练习,巩固成果
达标练习
practice
1. 说一说,轴对称图形有哪些特点? 答:轴对称图形沿着对称轴对折,两侧的图形能够完全重合;
课前导入
Lead
in
知识链接
knowledge link
观察这些物体,你能发现它们都有什么共同特征?
它们都是一类特殊的 图形——轴对称图形。
这些图案中蕴含着哪些 数学知识,今天我们来 了解更多轴对称的知识!
学习任务一
进一步认识轴对称图形及其 对称轴
探究新知
presentation
看一看、想一想:你发现了什么?
力,发展空间观念。
3 让学生在活动中欣赏图形的变换美,进一步感受 轴对称在生活中的应用,体会学习数学的价值。
02. 重点难点 Leaning points 学习重点 掌握轴对称图形的特征和性质。 学习难点 能在方格纸上画出轴对称图形的另一半。 核心素养 让学生经历“做”数学的过程,在操作中理解规 律,感受知识间的联系。
达标练习
practice
8.你能画出下面图形的另一半吗?试一试。
A′ A
B C
(1)找出图形中每条线段的端点,分 别命名为A、B、C、D。
其中A、D两个端点在对称轴上,分别 与其对称点位置重合。
D′ D
教材第82页“练习二十”第7题
达标练习
practice
8.你能画出下面图形的另一半吗?试一试。

轴对称图形(第一课时)教学设计及点评

轴对称图形(第一课时)教学设计及点评

轴对称图形(第一课时)教学目标:一、知识技能目标:1.通过欣赏现实生活中的轴对称图形,抽象、概括轴对称图形的概念,能找出轴对称图形的对称轴;2.能够利用轴对称图形的特点,进行简单图案的设计.二、过程方法目标:经历欣赏生活中的轴对称图形的美,探索、发现它们的共同特征,发展学生的形象思维和空间观念,积累数学活动的经验,培养学生的动手能力、总结归纳能力、想象力和创造力。

三、情感态度目标:欣赏现实生活中的轴对称图形,体会轴对称图形在现实生活中的广泛应用和它的丰富的文化价值,培养学生审美情趣和动手能力,增强鉴赏美的能力和分享美的情怀。

重点难点:重点:轴对称图形的概念难点:轴对称图形概念的获得过程学情分析:这节课的教学对象是八年级的学生,他们虽然在小学已学过简单的轴对称图形,但对什么是轴对称图形还停留在直观的表象认识上,对轴对称图形概念缺乏理性的认识,八年级学生的思维已开始由形象思维向抽象思维过渡,这为本节课教学提供了条件。

教学准备:剪刀、纸张、剪好的一些几何图形、多媒体课件教学流程:教学过程:一、欣赏图片,引入新课欣赏一组图片:建筑之美、文化之美、自然之美二、观察发现,探索概念(一)发现:活动1:多媒体展示图案时,演示对折重合的过程。

活动2:折一折把一张纸对折,然后从折叠处剪出一个图形,想一想,展开后会是一个什么样的图形?位于折痕两侧图案有什么关系?让学生思考、讨论。

引导学生得出:轴对称图形的定义(二)探究:活动3:说一说下面这些图形是不是轴对称图形?活动4:找一找看看下面的轴对称图形,各有几条对称轴?三、动手创造、体验成功活动5:看一看活动6:猜一猜活动7:试一试你能用纸剪一个双喜图吗?看谁剪得快?四、小组交流、整理归纳活动8:理一理:本节课你有哪些体会呢?师生共同总结活动9:晒一晒五、分享美丽分享快乐活动10:亲爱的同学,2014年即将过去了,新的一年就要来到,请大家一起行动起来,用你灵巧的双手,运用剪纸艺术,手工制作一张贺年卡,把最美的祝福分享给你的亲人、朋友、老师、同学!《轴对称图形》教学设想与反思马鞍山外国语学校杨庆九本节课的内容是沪科版版八年级数学(上)第十五章第一节《轴对称图形》第一课时。

《轴对称》第一课时PPT课件人教版数学八年级上册

《轴对称》第一课时PPT课件人教版数学八年级上册

平面几何中常见的轴对称图形及它们的对称轴
课堂导入
对称现象无处不在,从自然景观到艺术作品,从建筑 物到交通标志,甚至日常生活用品,都可以找到对称 的例子,对称给我们带来美的感受!
你还能举出生活中见到的对称现象吗?
新知探究 知识点1 轴对称图形
仔细观察,你能从这些图片中发现什么共同特点吗?
以上图形沿着一条直线翻折后,直线两旁的部分能 够完全重合.
轴对称图形 定义: 如果一个平面图形沿一 条直线折叠,直线两旁的部分 能够互相重合,这个图形就叫 做轴对称图形,这条直线就是 它的对称轴.这时,我们也说这 个图形关于这条直线(成轴) 对称.
轴对称图形
(1)轴对称图形是对一个图形而言的,它是一个 图形自身的对称特征,它被对称轴分成的两部分 能够互相重合. (2)一个轴对称图形的对称轴可以有一条,也可 以有多条.
1.(2020·重庆中考)下列图形是轴对称图形的是( A ) 轴是_____________________
轴分成两个图形,这两个图形关于这条轴对称.
(2)一个轴对称图形的对称轴可以有一条,也可以有多条.
(1)轴对称图形是对一个图形而言的,它是一个图形自身的对称特征,它被对称轴分成的两部分能够互相重合.
2.完成下列填空: (1)成轴对称的两个图形的对应角_相__等_,对应边相__等__. (2)在“线段、钝角、长方形、等边三角形”这四个图 形中,是轴对称图形的有_4__个,其中对称轴最多的是 _等__边__三__角__形_,线段的对称轴是_经__过__线__段__中__点__且__垂__直__于__ _线_段__的__直__线___. (3)成轴对称的两个图形_是__全等形;把一个轴对称 图形沿着对称轴分成两个图形,这两个图形_是__全等形. (填“是”或“否”)

人教版八年级数学上册第十三章《轴对称13.2画轴对称图形第1课时》说课稿

人教版八年级数学上册第十三章《轴对称13.2画轴对称图形第1课时》说课稿

人教版八年级数学上册第十三章《轴对称13.2画轴对称图形第1课时》说课稿一. 教材分析《轴对称》是人教版八年级数学上册第十三章的一部分,主要让学生了解轴对称图形的概念,学会如何画出轴对称图形。

本节课的内容是第十三章的第二节,主要让学生通过实际操作,掌握画轴对称图形的方法。

二. 学情分析学生在学习本节课之前,已经学习了平面几何的基本概念,对图形的变换有一定的了解。

但是,对于轴对称图形的概念和画法还比较陌生,需要通过实际的操作来理解和掌握。

三. 说教学目标1.知识与技能目标:让学生了解轴对称图形的概念,学会如何画出轴对称图形。

2.过程与方法目标:通过学生的实际操作,培养学生的动手能力和观察能力。

3.情感态度与价值观目标:让学生在学习的过程中,体验到数学的乐趣,增强对数学的学习兴趣。

四. 说教学重难点1.教学重点:让学生掌握轴对称图形的概念,学会如何画出轴对称图形。

2.教学难点:如何让学生理解轴对称图形的概念,并能够运用到实际的操作中。

五. 说教学方法与手段本节课采用讲授法和实践法相结合的教学方法。

在讲解轴对称图形的概念时,采用讲授法,通过语言的描述,让学生理解和掌握。

在实际操作画轴对称图形时,采用实践法,让学生亲自动手,培养学生的动手能力。

六. 说教学过程1.导入:通过一些生活中的实例,如衣服的折叠,让学生初步了解轴对称图形的概念。

2.讲解:详细讲解轴对称图形的概念,并通过图形的实际操作,让学生进一步理解和掌握。

3.练习:让学生动手画出一些简单的轴对称图形,加深对概念的理解。

4.总结:对本节课的内容进行总结,强调轴对称图形的概念和画法。

七. 说板书设计板书设计主要包括轴对称图形的定义和画法两个部分。

定义部分包括轴对称图形的定义和特点,画法部分包括画轴对称图形的方法和步骤。

八. 说教学评价教学评价主要通过学生的课堂表现和作业完成情况进行评价。

对于能够正确理解和掌握轴对称图形概念的学生,给予表扬和鼓励。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题
自学导航
板演板演板演
课后记
轴对称图形的性质学生总结的比较到位,运用数学语言表达不熟练。
窗体底端
第4周课时教案
11年9月28日第5节总第18课时
窗体顶端
课题
1.5轴对称图形的性质
课型
新授
课时
1




1、经历探索轴对称图形的性质的过程,理解连接对应点的线段被对称轴平分,对应线段相等、对应角相等的性质。
2、通过动手操作、合作交流,养成勤于动手、勤于思考的好习惯。
重点
目标1
难点
目标1
教法
自主探究合作交流
思考
试答
一生口述目标,其余生静听、领会
快速高效阅读
思考
探究
举例
试解答
标出困惑之处
组内交流自学中的困惑问题,全组达成一致意见。
有困惑的组由科代表提出本组困惑问题,寻求其他组帮助。代表举例数学语言表达。
师生互动
1题学生练习本上完成
各组总结规律
2题5号生口述完成
1、2号生点评、互改
生回顾浅谈收获
当堂完成
微型板书设计
教具
尺规
教学程序
教师活动
学生活动

















课题。
出示学习目标
出示自学导航
请同学们快速高效的阅读课本P17~P.18的内容,独立思考,尝试解决下列问题:
1、线段AB与线段A'B'?
2、△ABC与△A'B'C'的三个内角有什么关系?
3、△ABC与△A'B'C'的三条边有什么关系?
4、△ABC与△A'B'C'有什么关系?
5、试总结轴对称图形的性质。
6、例1中应用了轴对称图形的什么性质?
指导生互动交流,解决生自学中的困惑问题
点评:1轴对称图形的性质。
2数学语言的表示
1课本P18练习1、2题
A组1题
小结:指导生小结
课堂作业A组2题
动手操作
相关文档
最新文档