轴对称图形第一课时

合集下载

轴对称的基本性质(第1课时)课件

轴对称的基本性质(第1课时)课件

点A′就是点A关于直线l的对称点;
2.类似地,作出点B关于直线l
的对称点B′; 3.连接A′B′.
B
B′
所以线段A′B′即为所求.
【规律方法】 作已知图形关于某条直线对称的图形的一般步聚:
1.找点 (确定图形中的一些特殊点). 2.画点 (画出特殊点关于已知直线的对称点). 3.连线 (连接对称点).
【跟踪训练】
1.两个图形关于某直线对称,对称点一定在 ( D )
A.直线的两旁
B.直线的同旁
C.直线上
D.直线两旁或这直线上
2.轴对称图形沿对称轴对折后,对称轴两旁的
部分( A )
A.完全重合
B.不完全重合
C.两者都有
D. 没有关系
3.如果两个图形关于某条直线对称,那么对应点所连的线 段被__对__称__轴__垂直平分. 4.下图是轴对称图形,相等的线段是_A_B_=_C_D_,__B_E_=_C_E__, 相等的角__∠__B_=_∠__C___.
A
ED
B
C
共同探究
l
已知对称轴 l 和一个点A,如何
画出点A关于 l 的对称点A′?
A
O
A′
作法: 过点A作直线l的垂线,在垂线上
截取OA′=OA,垂足为点O,点A′就是 点A关于直线l 的对称点.
【例 题】
例2 如图,已知△ABC和直线l,怎样作出与△ABC关于直
线l对称的图形呢?
【解析】△ABC可以由三
(2)对应线段相等,对应角相等. 2.按要求作出一图形关于某条直线成轴对称的图形.
1.下面说法中,正确的是( C ) A.设A,B关于直线MN对称,则AB垂直平分MN. B.如果△ABC≌△DEF,则一定存在一条直线MN,使 △ABC与△DEF关于MN对称. C.如果一个三角形是轴对称图形,且对称轴不止一条, 则它是等边三角形. D.两个图形关于MN对称,则这两个图形分别在MN的两 侧.

《简单的轴对称图形》第一课时教案 (公开课)2022年

《简单的轴对称图形》第一课时教案 (公开课)2022年

第五章生活中的轴对称3 简单的轴对称图形〔第1课时〕学生起点分析学生的知识技能根底:学生在生活中已经对轴对称现象不陌生了,在本章前面两节课中,认识了轴对称的现象,加强了对图形的理解和认识,初步探索并了解了概念,为接下来的学习奠定了根底。

学生活动经验根底:在相关知识的学习过程中,学生通过想象,再动手操作验证自己的想象,解决了一些简单的现实问题,感受到了充分观察、操作的必要性和作用,获得了一些数学活动经验的根底;同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。

一、教学任务分析教科书基于学生对轴对称图形的认识,提出了本课的具体学习任务,认识等腰三角形和等边三角形的轴对称性及其有关性质。

本节课的教学目标是:1. 经历探索简单图形轴对称的过程,进一步体验轴对称的特征,开展空间观念。

2. 探索并掌握等腰三角形的轴对称性及其相关性质。

3. 通过学生的操作与思考,使学生掌握等腰三角形和等边三角形的轴对称性及其有关性质,从而开展空间观念。

二、教学设计分析按照学生的认识规律,遵循教师为主导,学生为主体,训练为主线的指导思想,采用以实验发现法为主,直观演示法为辅。

教学中,精心设计了一个又一个带有启发性和思考性的问题,创设问题情境,诱导学生思考、操作,教师适时地演示,并用电教媒体化静为动,激发学生探求知识的欲望,逐步推导归纳得出结论,使学生始终处于自主探索、合作交流的积极状态,从而培养学生的思维能力。

本节课设计了如下教学环节:第一环节知识回忆内容:观察以下各种图形,判断是不是轴对称图形, 能找出对称轴吗?活动目的:通过问题,希望学生能回忆起前两节所学内容,培养学生善于观察图形、乐于探索研究的学习品质及全面思考的能力。

实际教学效果:学生大局部能够准确而全面的找出对称轴,并能说出局部图标的标志名称。

以生活中的事例入题,大大提高了学生的学习兴趣,也由此告知学生数学来源于生活的道理。

1、 轴对称

1、 轴对称

第十三章轴对称13.1 轴对称(第一课时)一、知识要点1、轴对称图形的概念:如果一个平面图形沿着一条直线折叠,直线两旁的部分能够完全重合,这个图形就叫做轴对称图形,这条直线叫做对称轴.2、两个图形成轴对称:把一个图形沿着某条直线折叠,如果它能够与另一个图形完全重合,那么就说这两个图形关于这条直线成轴对称.3、轴对称图形和两个图形成轴对称的区别和联系:轴对称图形和两个图形成轴对称的本质是一致的,但同时两者也是有区别的,轴对称图形指的是一个图形沿对称轴折叠后这个图形的两部分能完全重合,而两个图形成轴对称是指两个图形之间的位置关系,这两个图形沿对称轴折叠后能够重合.4、线段的垂直平分线(中垂线)概念:。

5、如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线6、轴对称图形的对称轴是任何一对对应点所年线段的垂直平分.(1)在字母“ABCDEF”中,是轴对称图形的是_____.(2)正方形有______条对称轴.(3)成轴对称的两个图形_______(填“全等”或“不一定全等”);两个全等的图形成轴对称(填“一定”或“不一定”)(4)如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的______.注意:(1)常见的轴对称图形:线段、角、矩形、等腰三角形、圆等.(2)轴对称图形的对称轴是直线.二、例题分析1.如图所示的每个图形都是轴对称图形吗?如果是,指出它的对称轴.(1)(2)(3)(4)(5)【思路点拨】判断一个平面图形是不是轴对称图形,关键看这个图形沿着某条直线折叠后能否完全重合.2.如图所示的每幅图形中的两个图形是轴对称的吗?如果是,指出它们的对称轴.【思路点拨】判断两个图形是不是成轴对称,关键看其中一个图形沿着某条直线折叠后能否与另一个图形完全重合.此外,对称轴的确定,要先找到一对对应点,然后画这条对应点连线段的垂直平分线.3.下列图形中,轴对称图形的个数是()A.1个B.2个C.3个D.4个4.下列交通标识中,不是轴对称图形的是()A.B.C.D.5.(2016•绍兴)我国传统建筑中,窗框(如图1)的图案玲珑剔透、千变万化,窗框一部分如图2,它是一个轴对称图形,其对称轴有()A.1条B.2条C.3条D.4条6.下列图形是由我们熟悉的一些基本数学图形组成的,其中是轴对称图形的是(填序号)7.图1中的三角形4与三角形 成轴对称(填编号),整个图形 轴对称图形(填“是”或“不是”),它有 条对称轴.8. 如下书写的四个汉字,其中为轴对称图形的是( ).A .B .C .D .9.如图,直线l 是五边形ABCDE 的对称轴,∠A =130°,∠B =90°,则∠BCD = .10白球撞击后沿箭头方向运动.经桌边反弹最后进入球洞的序号是( ).A .②B .①C .⑥D .⑤11.如图,在44 的正方形网格中,已将图中的四个小正方形涂上阴影,若再从其余小正方形中任选一个也涂上阴影,使得整个阴影部分组成的图形成轴对称图形.那么符合条件的小正方形共有( )A .1个 B .2个 C .3个 D .4个4图1EDCBAl12.如图,在Rt△ABC中,∠ACB=90°,∠A=28°,D是AB上一点,将RT△ABC沿CD∠的度数.折叠,使B点落在AC边上的B'处,求ADB'三、过关检测1.下列学习用具中,不是轴对称图形的是()A. B. C. D.2.下列图形中,是轴对称图形的是()A. B. C. D.3.已知以下四个汽车标志图案:其中不是轴对称图形的图案是(只需填入图案代号).4.在图形:正方形、等边三角形、等腰三角形、线段中,对称轴最多的是.5. 如图,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处,若∠A=26°,求∠CDB的度数。

四年级下册数学课件-第1课时 轴对称(人教版)(共15张PPT)

四年级下册数学课件-第1课时  轴对称(人教版)(共15张PPT)

B 3格 3格 B'
四 课堂小结
1.把一个图形沿着某一条直线对折,如果直线两 侧的图形能完全重合,那么就说这个图形是轴对 称图形。这条直线叫它的对称轴,对折后重合的 点是对应点,对应点到对称轴的距离相等。
四 课堂小结
2.画一个图形的轴对称图形的四个步骤: ①找到关键点。 ② 数出或量出关键点到对称轴的距离。 ③ 在对称轴的另一侧找出关键点的对称点。 ④ 按照所给图形,顺次连接各点。
想一想: 1.先画什么?再画什么? 2.每条线段应该画多长?
二 探究新知
2
①找到关键点
②数出或量出关键 点到对称轴的距离
③在对称轴的另一侧 找出关键点的对称点
④按照所给图形,顺 次连接各点
三 对应练习
做一做
试一试,画出下面这个轴对称图形的另一半。
A 5格
5格 A'
第一步:找到关键点; 第二步:通过数格找到 对称点; 第三步:顺次连线。
7 图形的运动(二 )
第1课时 轴对称
一 情景导入
观察这些物体,你能发现它们都有什么共同特征?
二年级时,我们已经初步认识了生活中的轴对称 现象,今天我们继续学习轴对称图形。
二 探究新知
像这样,对折后两边能够完全重合的图形就是轴 对称图形。
中间这条直线就是对称轴。
二 探究新知
发现:有的图 形只有一条对 称轴,有的图 形有多条对称 轴。
仔细观察这些轴对称图形,你发现了什么?
二 探究新知
1 看一看,数一数,你发现了什么?
(1)这幅图是轴对称图形吗? 是
(2)中间的一条直线表示什么? 对称轴
二 探究新知
1 看一看,数一数,你发现了什么?
(3)点A和A′在这幅图中是两 个对应点, 它们到对称轴的距 离( 相等 )。

轴对称(第一课时)(课件)人教版数学八年级上册

轴对称(第一课时)(课件)人教版数学八年级上册

课堂小结
定义
1、轴对称图形 2、两个图形成轴对称
轴对称图形
区别和联

轴对称图形和两个图形成轴对称
应用
利用轴对称图形和两个图形成轴 对称的定义进行判断
课后作业
1.把一圆形纸片两次对折后,得到右图,然后 沿虚线剪开,得到两部分,其中一部分展开后 的平面图形是( B )
A
B
C
D
课后作业
2.如图,在3×3的正方形网格中,已有两个小正方形被 涂黑,再将图中其余小正方形任意涂黑一个,使整个图案 (包括网格)构成一个轴对称图形,则涂色的方法有( D )
追问: 你能再举出一些两个图形成轴对称的例子吗?
互动新授
A
B C
小试牛刀
1、分别观察以下每组图形,判断它们是否关于某条直线成轴对称?
E
E
E
EE
E
不是
不是

E
E
E E E
E

不是

互动新授 仔细观察,下列两个图形有什么区别?
它们之间有什么联 系和区别呢?
轴对称图形
两个图形成轴对称
总结归纳 轴对称图形和轴对称的区别与联系
A.2种 C.4种
B.3种 D.5种
1条
2条
4条
无数条
互动新授
观察下面每对图形(如图),你能类比前面的内容概括出 它们的共同特征吗?
互动新授 共同特征:每一对图形沿着虚线折叠,左边的图形都能与右
边的图形重合.
结论:把一个图形沿着某一条直线折叠,如果它能够与另一个图形 重合,那么就说这两个图形关于这条直线(成轴)对称,这 条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.

沪科版八年级上册1.1轴对称课件

沪科版八年级上册1.1轴对称课件

感悟新知
解法提醒 利用轴对称的性质求线段的长度或角的度数的方法:
先根据成轴对称的特征确定两个图形的对应边、对 应角,再运用轴对称的性质(对应边相等,对应角相 等),把要求的边或角与已知的对应边或对应角建立联 系,从而求出待求的线段的长度或角的度数.
感悟新知
解:∵四边形BEFD 是以DE 为对称轴的轴对称图形,四
感悟新知
知识点 4 轴对称的性质
1. 轴对称的性质 如果两个图形关于某直线对 称,那么对称轴是任何一对对应点所连线 段的垂直平分线,如图15.1-4.
特别地:成轴对称的两个图形的对应 线段所在直线平行或者重合或者相交于某 一点,且该点一定在对称轴上. 2. 反之 成轴对称的两个图形中,对应点的连线被对称轴垂直平分.
边形CFDE 是以FE 为对称轴的轴对称图形,
∴∠
BED=

DEF=

CEF=
180。 3

∠ EDF= ∠ C=40°,
∴∠ DFE=180°- ∠ DEF- ∠ EDF=80°.
答案:D
轴对称图形
轴对称和轴对称图形的区分: (1)定义不同; (2)轴对称图形指的是一个图形,而两个图形成轴
对称指的是两个图形; (3)一个轴对称图形的对称轴可能有多条,而两个
1 1
3
感悟新知
名称
长方形 正方形
圆 正n 边

图形
对称轴
经过对边中点的直线 (1)经过对边中点的直线
(2)对角线所在的直线 经过圆心的任意一条直线 n 为奇数:过顶点与对边 中点的直线;n 为偶数: 过两条对边中点的直线或
过相对顶点的直线
对称轴 条数 2 1
1
3

人教版数学八年级上册13 轴对称(第一课时)课件

人教版数学八年级上册13 轴对称(第一课时)课件

►为你理想的人,否则,爱的只是你在他身上找到的你的影子。 ►有时候,我们愿意原谅一个人,并不是我们真的愿意原谅他,而是我们 不愿意失去他。不想失去他,惟有假装原谅他。不管你爱过多少人,不管 你爱得多么痛苦或快乐。最后,你不是学会了怎样恋爱,而是学会了,怎 样去爱自己。
11
是轴对称图形且有两条对称轴的是 A.①② C.②④
B.②③ D.③④
第十三章 轴对称
(A)
上一页 返回导航 下一页
数学·八年级 (上)·配人教
12
8.【易错题】观察下列图形,其中所有轴对称图形的对称轴条数之和为 (B)
A.13 C.10
B.11 D.8
第十三章 轴对称
上一页 返回导航 下一页
数学·八年级 (上)·配人教
第十三章 轴对称
小房子
上一页 返回导航 下一页
数学·八年级 (上)·配人教
18
思维训练
14.【核心素养题】舞蹈教室的东西墙壁有平面镜AC、BD,如图.小华在平 面镜AC、BD之间练习舞蹈,她在每个平面镜中都能看到自己的一列身形,且越来 越小.若AC、BD都垂直于地面,AB=6 m.试问:
(1)小华在每个平面镜中看到的第二个身形之间的距离是多少? (2)猜想小华在每个平面镜中的第10个身形之间的距离是多少?并说明理由.
解:(1)点A对应点A,点B对应点D,点C对应点E. (2)AB=AD,AC=AE,BC=DE,∠BAC=∠DAE,∠B=∠D,∠C=∠E.
(3)△AFC与△AFE,△ABF与△ADF,四边形ABFE和四边形ADFC.
第十三章 轴对称
上一页 返回导航 下一页
能力提升
7.【山东泰安中考】下列图形:
数学·八年级 (上)·配人教

第1课时 认识轴对称图形(1)ppt课件

第1课时  认识轴对称图形(1)ppt课件

精心整理
夯实基础
1.哪些图形是轴对称图形?在下面画“√”。
( ) ( ) ( ) ( )( ) ( )
精心整理
2.下面的数字、字母、汉字哪些是轴对称图形?把它 们圈出来。
0265ACDF木同山平
精心整理
3.下面图形的对称轴有几种画法?
2条
4条
无数条
精心整理
易错辨析
4.下面的图形分别是从哪张纸上剪下来的?连一连。
精心整理
归纳总结:
认识对称现象及轴对称现象: 把一个图形沿一条直线对折,对折后直线两边
的部分能够完全重合,这样的图形就是轴对称图 形,折痕所在的直线就是图形的对称轴。
精心整理
小试牛刀
1.下面这些图形中,哪些是轴对称图形?
第1幅和第3幅图是轴对称图形。
精心整理
2. 哪些是轴对称图形,在是的下面的( )里画“对称现象
这些图形有什么特点? 说一说生活 中还有这样 的图形吗。
图形两边一样。 剪纸

两边也一样。
精心整理
剪一剪。
利把和用剪老这好像师种的这一方图样起法形画动我打一手们开画剪能。,一剪看再剪,。 出中先很间把多有沿一漂一画张亮道的纸的折线对图痕剪折形。一。。剪。
精心整理
两边一样,中 间都有折痕。
轴对称图形
请 形 它像 都 是你 ,们这 是 轴仔 它有样 对 对细 们什剪 称 称观 形么出 的 图我 痕察 状共来 , 形叫们这不同的 它 。作把些同点图 们对这对,呀形都称条称但?轴折图是。
对称轴
对称轴 对称轴 对称轴
提示:有的图形不止一条对称轴,而且有的
图形 是左右对称,有的是上下对称。
精心整理
辨析:剪纸时,不能根据对称图形的特点想象出 剪下的图形。

小学五年级数学第一课时轴对称图形的特征

小学五年级数学第一课时轴对称图形的特征

第一课时轴对称图形的特征五年级数学教案教学内容:《义务教育课程标准实验教科书数学五年级下册》第2--3页,主题图以及例1教学目标:1、通过观察、实验操作,认识轴对称图形的特点,掌握轴对称图形及对称轴的概念。

2、引导学生观察轴对称图形及成轴对称的两个图形的对应点与对称轴之间的关系,使学生探索、发现图形成轴对称的特征和性质。

3、通过实践探究,培养学生的抽象思维和空间想象能力,培养学生的动手操作能力和创新精神。

4、联系生活实际,让学生进一步感受对称在生活中的应用,体会数学的价值。

教学重点难点:认识图形的轴对称,探索形成轴对称的特征和性质。

教学方法:探究法、发现法、讲解法教学用具:有关轴对称的图形的图片。

教学流程:●一、复习铺垫让学生独立画出例1上面图形的对称轴,帮助学生回忆轴对称图形的知识,以便在此基础上教学例1。

●二、自学尝试(1)进一步认识图形的轴对称。

先让学生观察图中的“松树”和“小草”图案有什么特征,然后同桌交流。

根据已有的知识,学生很容易判断出“松树”图案是轴对称图形,图中的虚线是它的对称轴,学生进一步还会发现,如果沿虚线折叠,两个“小草”图案,也将完全重合。

(2)探索图形成轴对称的基本性质。

让学生分别观察“小树”这个轴对称图形和成轴对称的两个“小草”图案的各对应点(a 与a′、b 与b′、c与c′)与对称轴之间有什么关系,在交流的基础上,使学生探索、发现图形成轴对称的基本性质。

●三、点拨探索(一)复习图形的轴对称。

同学们带着问题预习了《轴对称图形》,那谁先来展示自己画的的轴对称图形的对称轴。

学生展示自己的作品。

提问:1、什么轴对称图形?(共同特点)2、对称轴指什么?3、如何判断一个图形是不是对称图形?学生讨论交流。

将一个图形沿着一条直线对折,如果两侧的图形能完全重合,这个图形就是轴对称图形。

师:下面请你们拿出手中的轴对称图形,对照着跟同桌说一说什么叫轴对称图形。

1311轴对称(第一课时)教案

1311轴对称(第一课时)教案

§13.1 轴对称§13.1.1 轴对称(第一课时)教学目标(一)教学知识点1.在生活实例中认识轴对称图.2.分析轴对称图形,理解轴对称的概念.(二)能力训练要求1.通过丰富的生活实例认识轴对称,能够识别简单的轴对称图形及其对称轴.2.经历观察、分析的过程,训练学生观察、分析的能力.(三)情感与价值观要求通过对丰富的轴对称现象的认识,进一步培养学生积极的情感、态度,促进观察、分析、归纳、概括等一般能力和审美能力的提高.教学重点轴对称图形的概念.教学难点能够识别轴对称图形并找出它的对称轴.教学方法启发诱导法.教具准备:剪刀、小刀、硬纸板.教学过程Ⅰ.创设情境,引入新课我们生活在一个充满对称的世界中,许多建筑物都设计成对称形,艺术作品的创作往往也从对称角度考虑,自然界的许多动植物也按对称形生长,中国的方块字中些也具有对称性……对称给我们带来多少美的感受!初步掌握对称的奥秒,不仅可以帮助我们发现一些图形的特征,还可以使我们感受到自然界的美与和谐.轴对称是对称中重要的一种,让我们一起走进轴对称世界,探索它的秘密吧!Ⅱ.导入新课[师]我们先来看几幅图片(出示图片),观察它们都有些什么共同特征..对称现象无处不在,从自然景观到分子结构,从建筑物到艺术作品,•甚至日常生活用品,人们都可以找到对称的例子.现在同学们就从我们生活周围的事物中来找一些具有对称特征的例子.如图13.1-2,把一张纸对折,剪出一个图案(折痕处不要完全剪断),•再打开这张对折的纸,就剪出了美丽的窗花.观察得到的窗花和图13.1.1中的图形,你能发现它们有什么共同的特点吗?(学生讨论、探究)[生]窗花可以沿折痕对折,使折痕两旁的部分完全重合.[生]不仅窗花可以沿一条直线对折,使直线两旁重合,上面图13.1.1中的图形也可以沿一条直线对折,使直线两旁的部分重合.[生]这些图形沿一条直线折叠,直线两旁的部分能够互相重合.如果一个图形沿一直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴.这时,我们也说这个图形关于这条直线(成轴)•对称.取一张质地较硬的纸,将纸对折,并用小刀在纸的中央随意刻出一个图案,•将纸打开后铺平,你得到两个成轴对称的图案了吗?与同伴进行交流.(学生操作、讨论,教师指导)[生]:位于折痕两侧的图案是对称的,它们可以互相重合.[师]由此我们进一步了解了轴对称图形的特征:一个图形沿一条直线折叠后,折痕两侧的图形完全重合..有些轴对称图形的对称轴只有一条,但有的轴对称图形的对称轴却不止一条,有的轴对称图形的对称轴甚至有无数条,•你能找出它们的对称轴吗?分小组讨论.学生讨论得出结果:图(1)有四条对称轴;图(2)有四条对称轴;图(3)有无数条对称轴;图(4)有两条对称轴;图(5)有七条对称轴.(1) (2) (3) (4) (5)想一想,你发现了什么?[生]这些图形都是轴对称图形.[生]可是轴对称图形指的是一个图形,而这些图形每组都是两个图形,能不能说两个图形成轴对称呢?[师]像这样,•把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,•这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点..Ⅲ.随堂练习(一)课本P601.2练习Ⅳ.课时小结Ⅴ.课后作业课本p64 2题..。

轴对称的认识(第一课时)PPT优选课件

轴对称的认识(第一课时)PPT优选课件

M·D

· · · MA=(MB),CA=( CB ). A
CB
2020/10/18
8
(3)角是轴对称图形.对称轴 是它的角平分线所在的直线.
射线OM平分∠AOB.
O
(4)角的平分线上的点到这 个角两边的距离相等.
如果射线OM平分∠AOB, 那么MC=MD.

A C
〃 ·M 〃
DB
2020/10/18
汇报人:XXX 日期:20XX年XX月XX日
3. AM = BM
4. M
画出∠AOB的平分 线交MN于一点,这 点就是所求的点P.
O 点P为所求的点.
2020/10/18
B
P· N
A
7
(回忆)
(1)线段是轴对称图形,对称轴是 它的垂直平分线(或中垂线).
线段AB的对称轴是直线CD,CD垂直平分AB
(2)线段的垂直平分线上的点到这 条线段两个端点的距离相等.
③∠ABB′ =∠A′B′B.
④∠A′BB′ =∠AB′B.
⑤∠ACB=∠A′C′B′,
2020/10/18
⑥∠ACA′=∠BC′B′. 18
谢谢您的聆听与观看
THANK YOU FOR YOUR GUIDANCE.
感谢阅读!为了方便学习和使用,本文档的内容可以在下载后随意修改,调整和打印。欢迎下载!

2020/10/18
14
做一 做
(2)如图,已知线段AB和直线l,试画出线 段AB关于直线l的对称线段A1B1.
l


·A1

·
·
B
B1
20线20/1段0/18A1B1就是线段AB关于直线l的对称线段.15

人教版数学八年级上册 13 2画轴对称图形(第一课时) 教案

人教版数学八年级上册 13 2画轴对称图形(第一课时) 教案

13.2 画轴对称图形(第一课时)教学目标1.通过实际操作,了解什么叫做轴对称变换.2.如何作出一个图形关于一条直线的轴对称图形.3. 经历实际操作、认真体验的过程,发展学生的思维空间,并从实践中体会轴对称变换在实际生活中的应用.4.鼓励学生积极参与数学活动,培养学生的数学兴趣.5.初步认识数学和人类生活的密切联系,体验数学活动充满着探索与创造,感受数学的应用意识.教学重点1.轴对称变换的定义.2.能够按要求作出简单平面图形经过轴对称后的图形.教学难点1.作出简单平面图形关于直线的轴对称图形.2.利用轴对称进行一些图案设计.教学过程设计一、知识回顾1.如何验证两个平面图形是轴对称的?师生活动:教师结合所展示的图形进行提问,学生思考并回答:作出其中几对对应点的垂直平分线,看它们是否为同一条直线.2.作轴对称图形的对称轴的方法师生活动:教师结合所展示的图形进行提问,学生思考并回答:只要找到任意一组对应点,作出对应点所连线段的垂直平分线,就得到此图形的对称轴.设计意图:让学生通过观察、思考,复习关于做轴对称图形的对称轴知识,为本节课的内容做铺垫.追问:如果有一个图形和一条直线,我们能画出与这个图形关于这条直线对称的图形吗?师生活动:学生思考并说出自己的想法,当学生感到迷惑时,教师结合图形引出本节课内容二、新课讲授问题1在一张半透明的纸的左边画一只左脚印.把这张纸对折后描图,打开对折的纸,就能得到相应的右脚印.1.左脚印和右脚印有什么关系?2.对称轴是哪条直线?3.图中的对应点连线段PP ′与对称轴有什么关系?师生活动:教师提出问题,学生思考可以利用所学过的哪些知识点来解决问题教师提示,归纳:(1)由一个平面图形可以得到它关于一条直线l对称的图形,这个图形与原图形的形状、大小完全相同(2)新图形上的每一点,都是原图形上的某一点关于直线l的对称点(3)连接任意一对对应点的线段被对称轴垂直平分设计意图:通过提出问题、解决问题,让学生学会用所学知识点解决实际操作问题,提高动手操作能力.问题2已知点A和直线l,如何画出与点A关于直线l对称的图形?师生活动:通过教师提出问题,学生观察思考,根据垂直平分线性质并归纳作法:1.过点A画直线l的垂线,垂足为点O2.在垂线上截取OA′=OA.问题3已知线段AB和直线l,如何画出与线段AB关于直线l对称的图形?师生活动:通过教师提出问题,学生观察思考,在问题2的基础上发现图形特点,归纳作法:1、过点A作直线l的垂线,垂足为点O,在垂线上截OA’=OA,点A’就是点A关于直线l的对称点;2、类似地,作出点B关于直线l的对称点B’;3、连接A’B’.问题3例1 如图,已知△ABC和直线l,作出与△ABC关于直线l对称的图形.师生活动:通过教师提出问题,学生观察思考,在问题1和问题2的基础上类比发现图形特点,归纳作法:1、过点A作直线l的垂线,垂足为点O,在垂线上截取OA’=OA,点A’就是点A关于直线l的对称点2、类似地,分别作出点B、C关于直线l的对称点B’、C’;3、连接A’B’、B’C’、C’A’.师生共同小结画轴对称图形的方法:几何图形都可以看作由点组成.对于某些图形,只要画出图形中的一些特殊点(如线段端点)的对称点,连接这些对称点,就可以得到原图形的轴对称图形.师生共同归纳画轴对称图形的步骤:1、找点(确定图形中的一些特殊点);2、画点(画出特殊点关于已知直线的对称点);3、连线(连接对称点)三、课堂练习1.下面是四位同学作△ABC关于直线MN的轴对称图形,其中正确的是()2.如图,把下列图形补成关于直线l的对称图形。

轴对称图形(第一课时)教学设计及点评

轴对称图形(第一课时)教学设计及点评

轴对称图形(第一课时)教学目标:一、知识技能目标:1.通过欣赏现实生活中的轴对称图形,抽象、概括轴对称图形的概念,能找出轴对称图形的对称轴;2.能够利用轴对称图形的特点,进行简单图案的设计.二、过程方法目标:经历欣赏生活中的轴对称图形的美,探索、发现它们的共同特征,发展学生的形象思维和空间观念,积累数学活动的经验,培养学生的动手能力、总结归纳能力、想象力和创造力。

三、情感态度目标:欣赏现实生活中的轴对称图形,体会轴对称图形在现实生活中的广泛应用和它的丰富的文化价值,培养学生审美情趣和动手能力,增强鉴赏美的能力和分享美的情怀。

重点难点:重点:轴对称图形的概念难点:轴对称图形概念的获得过程学情分析:这节课的教学对象是八年级的学生,他们虽然在小学已学过简单的轴对称图形,但对什么是轴对称图形还停留在直观的表象认识上,对轴对称图形概念缺乏理性的认识,八年级学生的思维已开始由形象思维向抽象思维过渡,这为本节课教学提供了条件。

教学准备:剪刀、纸张、剪好的一些几何图形、多媒体课件教学流程:教学过程:一、欣赏图片,引入新课欣赏一组图片:建筑之美、文化之美、自然之美二、观察发现,探索概念(一)发现:活动1:多媒体展示图案时,演示对折重合的过程。

活动2:折一折把一张纸对折,然后从折叠处剪出一个图形,想一想,展开后会是一个什么样的图形?位于折痕两侧图案有什么关系?让学生思考、讨论。

引导学生得出:轴对称图形的定义(二)探究:活动3:说一说下面这些图形是不是轴对称图形?活动4:找一找看看下面的轴对称图形,各有几条对称轴?三、动手创造、体验成功活动5:看一看活动6:猜一猜活动7:试一试你能用纸剪一个双喜图吗?看谁剪得快?四、小组交流、整理归纳活动8:理一理:本节课你有哪些体会呢?师生共同总结活动9:晒一晒五、分享美丽分享快乐活动10:亲爱的同学,2014年即将过去了,新的一年就要来到,请大家一起行动起来,用你灵巧的双手,运用剪纸艺术,手工制作一张贺年卡,把最美的祝福分享给你的亲人、朋友、老师、同学!《轴对称图形》教学设想与反思马鞍山外国语学校杨庆九本节课的内容是沪科版版八年级数学(上)第十五章第一节《轴对称图形》第一课时。

1311轴对称(第一课时)教学设计

1311轴对称(第一课时)教学设计

1311轴对称(第一课时)教学设计教学目标】1.认识轴对称图形的共同特征,能识别简单的轴对称图形及对称轴,通过实践操作,理解轴对称图形和两个图形成轴对称的区别。

2.经历折叠、剪纸等活动,发展学生的形象思维和空间观念,积累数学活动的经验,在动手实践中学会与人合作、彼此交流。

3.初步获得动手的乐趣和成就感,欣赏并体会对称美,感受轴对称的价值,培养学生热爱生活的情感。

【教学重点、难点】重点:掌握轴对称图形和两图形关于直线对称的概念,识别轴对称图形和对称轴。

难点:理解轴对称图形和两个图形关于直线对称的区别。

教学准备】剪刀、已裁好的圆、矩形、等腰三角形,平行四边形等,白纸,彩纸,多媒体课件。

教学过程设计】一、设计问题,创设情境师:一次晚会上,主持人出了一道题目:“如何把你知道怎么做吗?生:XXX第第一个数中的2根火柴。

师:这不是火柴搭的,所以没法移动。

学生茫然了。

师:我相信,通过这节课的研究,大家一定能解决这个题目。

设计意图:以学生感兴趣的的题目引入,引发学生的兴趣,激起学生的思维。

二、信息交流,揭示规律1.欣赏生活中的轴对称图片。

设计意图:以生活中尽可能多的厚实实例,让学生观赏并体味轴对称图形,发展学生审美能力、鉴赏能力。

2.观察特性、形成概念问题1]:这些美丽的图形来自生活,细心观察之后,你能发现这些图形有什么共同特征么?用自己的语言描述。

师生举动:勉励学生主动用自己的语言概括图形的共同特征。

并课件演示以下两个轴对称图形的重合过程,让学生感受动态过程。

酿成一个真正的等式?”题目2]:举出几个生活中具有对称特征的物体,并与同伴交流。

师生活动:给学生一定的思考交流时间,鼓励学生从自己的生活经验出发,列举符合对称特征的物体,并进行广泛交流,进一步体会轴对称图形的特点。

)板书轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线即折痕所在直线就是它的对称轴。

人教版数学二年级下册第三单元(第一课时)《轴对称图形》教案

人教版数学二年级下册第三单元(第一课时)《轴对称图形》教案

人教版数学二年级下册第三单元(第一课时)《轴对称图形》教案一. 教材分析《轴对称图形》是小学数学人教版二年级下册第三单元的第一课时内容。

本节课主要让学生初步理解轴对称图形的概念,能够找出生活中的轴对称图形,并能够自己创造轴对称图形。

教材通过直观的图片和生动的例子,引导学生发现轴对称图形的特征,培养学生的观察能力和动手操作能力。

二. 学情分析二年级的学生已经具备了一定的观察能力和动手操作能力,他们对图形有一定的认识。

但是,对于轴对称图形的概念可能还比较陌生,需要通过具体的例子和实践活动来理解和掌握。

三. 教学目标1.让学生了解轴对称图形的概念,能够找出生活中的轴对称图形。

2.培养学生观察能力和动手操作能力,提高学生的数学思维能力。

3.培养学生合作交流的能力,提高学生的数学素养。

四. 教学重难点1.重点:让学生理解和掌握轴对称图形的概念,能够找出生活中的轴对称图形。

2.难点:让学生能够自己创造轴对称图形,并理解轴对称图形的特征。

五. 教学方法1.直观演示法:通过直观的图片和生动的例子,引导学生发现轴对称图形的特征。

2.动手操作法:让学生自己动手剪剪、折折,体验轴对称图形的特征。

3.合作交流法:让学生分组合作,互相交流,共同完成任务。

六. 教学准备1.教具:图片、卡片、剪刀、彩纸等。

2.学具:剪刀、彩纸、画纸等。

七. 教学过程1.导入(5分钟)教师通过展示一些生活中的轴对称图形,如衣服、桌子、蝴蝶等,引导学生观察并提问:“你们看看这些图形有什么特点?它们是轴对称的吗?”学生回答后,教师总结轴对称图形的概念。

2.呈现(10分钟)教师通过展示一些轴对称图形,让学生找出它们的轴对称线,并说明理由。

学生回答后,教师给予评价和指导。

3.操练(10分钟)教师让学生自己动手操作,用剪刀沿着轴对称线剪出一些简单的轴对称图形,如正方形、长方形、圆形等。

学生在操作过程中,教师给予指导和评价。

4.巩固(10分钟)教师出示一些不完整的轴对称图形,让学生找出缺失的部分,并说明理由。

简单的轴对称图形第一课时等腰三角形的性质

简单的轴对称图形第一课时等腰三角形的性质

小试牛刀:
1、若等腰三角形的一个内角为 50°,则它的另 外两个内角为_6_5_°__,_6_5_°__或__5_0_°__,__8_0__°_.
2、 若等腰三角形的一个内角为100°,则它的 另外两个内角为4_0_°__,_4_0_°___.
1. 一等腰三角形的两边长为4和9,则 该等腰三角形的周长为___2_2___.
A
归纳:
(1)能用一句话归纳出来吗?
等腰三角形是轴对称图形, B
C
D
等腰三角形的两个底角相等。
(2)、(3)能用一句话归纳出来吗?
等腰三角形的顶角平分线、底边上的高和底边 上的中线互相重合(简称“三线合一”)
1.等腰三角形是轴对称图形 2.等腰三角形的顶角平分线、底 边上的中线、底边上的高重合 (也称“三线合一”),它们所 在的直线都是等腰三角形的对称 轴。
2. 一等腰三角形的两边长为4和5,则该等
腰三角形的周长为__1_3_或___1_4__.
我能行:
D
E
M
N
C
A
B
轴对称的性质:
在轴对称图形或成轴对称的图形中,对应点所 连的线段被对称轴垂直平分、对应线段相等, 对应角相等
认识等腰三角形:
有两条边相等的三角形叫等腰三角形
顶角

腰底角 底角 底边 Nhomakorabea思考:
你会作等腰三角形吗? 你有几种方法?
思考:
1.等腰三角形是轴对称图形吗?找出对称轴。 2.顶角的平分线所在的直线是等腰三角形的 对称轴吗? 3.底边上的中线所在的直线是等腰三角形的 对称轴吗?底边上的高所在直线呢? 4.沿对称轴对折,你能发现等腰三角形的哪 些特征?说说你的理由。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档