2018年高中数学人教A版必修5第3章不等式 3.1.2习题含解析
人教版高中数学必修五 第三章3.1第2课时不等式的性质与应用
第三章 不等式 3.1 不等关系与不等式 第2课时不等式的性质与应用A 级 基础巩固一、选择题1.若a >0,b >0,则不等式-b <1x <a 等价于( )A .-1b <x <0或0<x <1aB .-1a <x <1bC .x <-1a 或x >1bD .x <-1b 或x >1a解析:由题意知a >0,b >0,x ≠0, (1)当x >0时,-b <1x <a ⇔x >1a ;(2)当x <0时,-b <1x <a ⇔x <-1b.综上所述,不等式-b <1x <a ⇔x <-1b 或x >1a .答案:D2.设0<b <a <1,则下列不等式成立的是( ) A .ab <b 2<1 B .log 12b <log 12a <0C .2b <2a <2D .a 2<ab <1答案:C3.已知实数x,y,满足-4≤x-y≤-1,-1≤4x-y≤5,则9x-y 的取值范围是()A.[-7,26] B.[-1,20]C.[4,15] D.[1,15]答案:B4.已知a<b<0,那么下列不等式成立的是()A.a3<b3B.a2<b2C.(-a)3<(-b)3D.(-a)2<(-b)2解析:取a=-2.b=-1.验证知B,C,D均错,故选A.答案:A5.如下图所示,y=f(x)反映了某公司的销售收入y与销量x之间的函数关系,y=g(x)反映了该公司产品的销售成本与销售量之间的函数关系,当销量x满足下列哪个条件时,该公司盈利()A.x>a B.x<aC.x≥a D.0≤x≤a解析:当x<a时,f(x)<g(x);当x=a时,f(x)=g(x);当x>a 时,f(x)>g(x),故选A.答案:A二、填空题6.若x>y,a>b,则在①a-x>b-y,②a+x>b+y,③ax>by,④x-b>y-a这四个式子中,恒成立的序号是________. 答案:②④7.若角α,β满足-π2<α<β<π3,则α-β的取值范围是________.答案:(-56π,0)8.设x >1,-1<y <0,试将x ,y ,-y 按从小到大的顺序排列如下________.答案:y <-y <x 三、解答题9.已知a >b >0,c <d <0,判断b a -c 与ab -d 的大小.解:因为a >b >0,c <d <0,所以-c >-d >0,所以a -c >b -d >0, 所以0<1a -c <1b -d,又因为a >b >0,所以b a -c <ab -d.10.已知0<x <1,0<a <1,试比较|log a (1-x )|和 |log a (1+x )|的大小.解:法一:|log a (1-x )|2-|log a (1+x )|2=[log a (1-x )+log a (1+x )]·[log a (1-x )-log a (1+x )]=log a (1-x )2log a 1-x 1+x.因为0<1-x 2<1,0<1-x1+x<1,所以log a (1-x 2)log a 1-x1+x>0.所以|log a (1-x )|>|log a (1+x )|.法二:⎪⎪⎪⎪⎪⎪log a (1-x )log a (1+x )=|log 1+x (1-x )|= -log 1+x (1-x )=log 1+x 11-x =log 1+x 1+x 1-x 2=1-log 1+x (1-x 2). 因为0<1-x 2<1,1+x >1, 所以log 1+x (1-x 2)<0. 所以1-log 1+x (1-x 2)>1. 所以|log a (1-x )|>|log a (1+x )|. 法三:因为0<x <1,所以0<1-x <1,1<1+x <2, 所以log a (1-x )>0,log a (1+x )<0. 所以|log a (1-x )|-|log a (1+x )|= log a (1-x )+log a (1+x )=log a (1-x 2). 因为0<1-x 2<1,且0<a <1, 所以log a (1-x 2)>0.所以|log a (1-x )|>|log a (1+x )|.B 级 能力提升1.对下列不等式的推论中: ①a >b ⇒c -a >c -b ; ②a >b +c ⇒(a -c )2>b 2; ③a >b ⇒ac >bc ;④a >b >c >0⇒(a -c )b >(b -c )b ;⑤a >b ,1a >1b ⇒a >0,b <0.其中正确的个数是( ) A .2 B .3 C .4 D .5 答案:A2.若-2<c <-1<a <b <1,则(c -a )(a -b )的取值范围为________.答案:(0,6)3.若二次函数f (x )的图象关于y 轴对称,且1≤f (1)≤2;3≤f (2)≤4,求f (3)的取值范围.解:由题意设f (x )=ax 2+c (a ≠0),则⎩⎪⎨⎪⎧f (1)=a +c ,f (2)=4a +c ,所以⎩⎨⎧a =f (2)-f (1)3,c =4f (1)-f (2)3,而f (3)=9a +c =3f (2)-3f (1)+4f (1)-f (2)3=8f (2)-5f (1)3,因为1≤f (1)≤2,3≤f (2)≤4, 所以5≤5f (1)≤10,24≤8f (2)≤32, 所以-10≤-5f (1)≤-5, 所以14≤8f (2)-5f (1)≤27, 所以143≤8f (2)-5f (1)3≤9,即143≤f (3)≤9.。
高中数学必修5(人教A版)第三章不等式3.3知识点总结含同步练习及答案
描述:例题:高中数学必修5(人教A版)知识点总结含同步练习题及答案第三章 不等式 3.3 二元一次不等式(组)与简单的线性规划问题一、学习任务1. 能从实际情景中抽象出二元一次不等式组;了解二元一次不等式组的集合意义,能用平面区域表示二元一次不等式组.2. 能从实际情景中抽象出一些简单的二元线性规划问题,并能加以解决.二、知识清单平面区域的表示 线性规划 非线性规划三、知识讲解1.平面区域的表示二元一次不等式表示的平面区域已知直线 :,它把坐标平面分为两部分,每个部分叫做开半平面,开半平面与 的并集叫做闭半平面.以不等式解 为坐标的所有点构成的集合,叫做不等式表示的区域或不等式的图象.对于直线 : 同一侧的所有点 ,代数式 的符号相同,所以只需在直线某一侧任取一点 代入 ,由 符号即可判断出 (或)表示的是直线哪一侧的点集.直线 叫做这两个区域的边界(boundary).二元一次不等式组表示的平面区域二元一次不等式组所表示区域的确定方法:①直线定界②由几个不等式组成的不等式组所表示的平面区域,是各个不等式所表示的平面区域的公共部分.l Ax +By +C =0l (x ,y )l Ax +By +C =0(x ,y )Ax +By +C (,)x 0y 0Ax +By +C A +B +C x 0y 0A +B +C >0x 0y 0<0Ax +By +C =0画出下列二元一次不等式表示的平面区域.(1) ;(2).解:(1)① 画出直线 ,因为这条直线上的点不满足 ,所以画成虚线.② 取原点 ,代入 ,所以原点在不等式 所表示的平面区域内,不等式表示的区域如图.3x +2y +6>0y ⩾3x 3x +2y +6=03x +2y +6>0(0,0)3x +2y+6=6>03x +2y +6>0描述:2.线性规划线性规划的有关概念若约束条件是关于变量的一次不等式(方程),则称为线性约束条件(objective function).一般地,满足线性约束条件的解 叫做可行解(feasible solution),由所有可行解组成的集合叫做可行域(feasible region).要求最大(小)值所涉及的关于变量 , 的一次解析式叫做线性目标函数(linearobjectives).使目标函数取得最大值或最小值的可行解叫做最优解.在线性约束条件下,求线性目标函数的最大值或最小值问题叫做线性规划问题(linearprogram).(2)① 画出直线 ,画成实线.② 取点 ,代入 ,所以 不在不等式 表示的平面区域内,不等式表示的区域如图.y =3x (1,0)y −3x =−3<0(1,0)y ⩾3x 画出不等式组 表示的平面区域.解:不等式 表示直线 及右下方的平面区域; 表示直线及右上方的平面区域; 表示直线 及左方的平面区域;所以不等式组表示的平面区域如图中阴影部分.⎧⎩⎨x −y +5⩾0x +y ⩾0x ⩽3x −y +5⩾0x −y +5=0x +y ⩾0x +y =0x ⩽3x =3(x ,y )xy⎩⎨4x+y+10⩾0作出可行域如图中阴影部分所示:可知,图可知,答案:解析:1. 下列各点中,不在 表示的平面区域的是 A .B .C .D .C将 代入得 ,故 不在 表示的平面区域内.x +y −1⩽0()(0,0)(−1,1)(−1,3)(2,−3)x =−1,y =3x +y −1−1+3−1=1>0(−1,3)x +y −1⩽02. 在平面直角坐标系 中,满足不等式组 ,点 的集合用阴影表示为下列图中的 A.B .C .xOy {|x |⩽|y ||x |<1(x ,y )()高考不提分,赔付1万元,关注快乐学了解详情。
2018秋新版高中数学人教A版必修5习题:第三章不等式 3.3.1.1 Word版含解析
3.3 二元一次不等式(组)与简单的线性规划问题3.3.1 二元一次不等式(组)与平面区域 第1课时 二元一次不等式(组)与平面区域课时过关·能力提升基础巩固1不在3x+2y<6表示的平面区域内的点是( ).A.(0,0)B.(1,1)C.(0,2)D.(2,0)答案:D2不等式x+3y-6<0表示的平面区域在直线x+3y-6=0的( ).A.右上方B.左上方C.右下方D.左下方答案:D3下列二元一次不等式组中,能表示图中阴影部分的是( ).A .{y ≥-1,2x -y +2≥0B .{y ≥-1,2x -y +2≤0C .{y ≥-1,x ≤0,2x -y +2≥0D .{x ≤0,y ≥-1,2x -y +2≤0答案:C4在平面直角坐标系中,若点A (-2,t )在直线x-2y+4=0的上方,则t 的取值范围是().A.(-∞,1)B.(1,+∞)C.(-1,+∞)D.(0,1)解析:在直线方程x-2y+4=0中,令x=-2,则y=1,则点P (-2,1)在直线x-2y+4=0上.又点A (-2,t )在直线x-2y+4=0的上方,故t 的取值范围是t>1.故选B .答案:B5直线2x+y-10=0与不等式组{x ≥0,y ≥0,x -y ≥-2,4x +3y ≤20表示的平面区域的公共点有( ). A.0个B.1个C.2个D.无数个 解析:直线2x+y-10=0与不等式组表示的平面区域的位置关系如图所示,故直线与此区域的公共点有1个点M (5,0).答案:B6已知点(-1,2)和点(3,-3)在直线3x+y-a=0的同侧,则a的取值范围是.解析:因为点(-1,2)和点(3,-3)在直线3x+y-a=0的同侧,所以代入3x+y-a 所得值同号,即(-3+2-a )(9-3-a )>0,解得a<-1或a>6,所以a 的取值范围是(-∞,-1)∪(6,+∞).答案:(-∞,-1)∪(6,+∞)7若关于x ,y 的不等式组{x ≥0,y ≥x ,kx -y +1≥0(k 是常数)所表示的平面区域的边界是一个直角三角形,则k = .解析:先画出不等式组{x ≥0,y ≥x对应的区域,如图所示的阴影部分.因为直线kx-y+1=0过定点A (0,1),且不等式kx-y+1≥0表示的区域在直线kx-y+1=0的下方, 所以要使所表示的平面区域是直角三角形.所以有直线kx-y+1=0与y 轴垂直或与直线y=x 垂直.所以k=-1或k=0.答案:-1或0。
高中数学第三章不等式3.2.2一元二次不等式的解法(第1课时)练习(含解析)新人教A版必修5
高中数学第三章不等式3.2.2一元二次不等式的解法(第1课时)练习(含解析)新人教A 版必修5一、选择题:1.不等式-x 2-x +2≥0的解集为( )A .{x |x ≤2或x ≥1}B .{x |-2<x <1}C .{x |-2≤x ≤1}D .∅【答案】C【解析】:由-x 2-x +2≥0,得x 2+x -2≤0,即(x +2)(x -1)≤0,所以-2≤x ≤1,所以原不等式解集为{x |-2≤x ≤1}.2.在R 上定义运算⊙:a ⊙b =ab +2a +b ,则满足x ⊙(x -2)<0的实数x 的取值范围为( )A .(0,2)B .(-2,1)C .(-∞,-2)∪(1,+∞)D .(-1,2)【答案】B【解析】由a ⊙b =ab +2a +b ,得x ⊙(x -2)=x (x -2)+2x +x -2=x 2+x -2<0,所以-2<x <1. 3.二次不等式ax 2+bx +c <0的解集是全体实数的条件是( )A.⎩⎪⎨⎪⎧a >0Δ>0B.⎩⎪⎨⎪⎧a >0Δ<0C.⎩⎪⎨⎪⎧a <0Δ>0D.⎩⎪⎨⎪⎧a <0Δ<0 【答案】D【解析】结合二次函数的图象,可知若ax2+bx +c <0,则⎩⎪⎨⎪⎧a <0Δ<0.4.若不等式ax 2+bx +2>0的解集是⎩⎨⎧⎭⎬⎫x ⎪⎪⎪-12<x <13,则a +b 的值为( )A .14B .-10C .10D .-14 【答案】D【解析】由已知得,ax 2+bx +2=0的解为-12,13.所以⎩⎪⎨⎪⎧-b a =-12+13,2a =⎝ ⎛⎭⎪⎫-12×13,解得⎩⎪⎨⎪⎧a =-12,b =-2,所以a +b =-14.5.已知不等式ax 2+3x -2>0的解集为{x |1<x <b }.则a ,b 的值等于( )A .a =1,b =-2B .a =2,b =-1C .a =-1,b =2D .a =-2,b =1【答案】C【解析】 因为不等式ax 2+3x -2>0的解集为{x |1<x <b },所以方程ax 2+3x -2=0的两个根分别为1和b ,根据根与系数的关系,得1+b =-3a ,b =-2a,所以a =-1,b =2.6.设函数g (x )=x 2-2(x ∈R),f (x )=⎩⎪⎨⎪⎧g (x )+x +4,x <g (x ),g (x )-x ,x ≥g (x ),则f (x )的值域是( )A.⎣⎢⎡⎦⎥⎤-94,0∪(1,+∞)B .[0,+∞)C.⎣⎢⎡⎭⎪⎫-94,+∞ D.⎣⎢⎡⎦⎥⎤-94,0∪(2,+∞)【答案】D【解析】由x <g (x ),得x <x 2-2,则x <-1或x >2;由x ≥g (x ),得x ≥x 2-2,则-1≤x ≤2.因此f (x )=⎩⎪⎨⎪⎧x 2+x +2,x <-1或x >2,x 2-x -2,-1≤x ≤2,即f (x )=⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫x +122+74,x <-1或x >2,⎝ ⎛⎭⎪⎫x -122-94,-1≤x ≤2. 因为当x <-1时,y >2;当x >2时,y >8.所以 当x ∈(-∞,-1)∪(2,+∞)时,函数f (x )的值域为(2,+∞).当-1≤x ≤2时, -94≤y ≤0. 所以当x ∈[-1,2] 时,函数f (x )的值域为⎣⎢⎡⎦⎥⎤-94,0.综上可知,函数f (x )的值域为⎣⎢⎡⎦⎥⎤-94,0∪(2,+∞).二、填空题:7.设0<b <1+a .若关于x 的不等式(x -b )2>(ax )2的解集中的整数解恰有3个,则a 的取值范围为________. 【答案】(1,3)【解析】 原不等式转化为[(1-a )x -b ][(1+a )x -b ]>0,①当a ≤1时,结合不等式解集形式知不符合题意;②当a >1时,b 1-a <x <b a +1,由题意知0<ba +1<1,所以要使原不等式解集中的整数解恰有3个,则需-3≤b1-a<-2.整理,得2a -2<b ≤3a -3.结合题意b <1+a ,有2a -2<1+a .所以a <3,从而有1<a <3.综上可得a ∈(1,3).8.若0<t <1,则不等式(x -t )⎝⎛⎭⎪⎫x -1t <0的解集为________.【答案】⎩⎨⎧⎭⎬⎫x ⎪⎪⎪t <x <1t【解析】因为0<t <1,所以1t>1,所以(x -t )⎝ ⎛⎭⎪⎫x -1t <0的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |t <x <1t . 9.关于x 的不等式ax 2+bx +2>0的解集为{x |-1<x <2},则关于x 的不等式bx 2-ax -2>0的解集为________.【答案】{x |x >1或x <-2}【解析】 因为ax 2+bx +2>0的解集为{x |-1<x <2},所以⎩⎪⎨⎪⎧2a =-2,-b a =1,解得⎩⎪⎨⎪⎧a =-1,b =1.所以bx 2-ax -2>0,即x 2+x -2>0,解得x >1或x <-2.10.已知集合A ={x |3x -2-x 2<0},B ={x |x -a <0},且B ⊆A ,则a 的取值范围为________. 【答案】(-∞,1]【解析】 A ={x |3x -2-x 2<0}={x |x 2-3x +2>0}={x |x <1或x >2},B ={x |x <a }.若B ⊆A ,如图,则a ≤1.三、解答题 11.解下列不等式:(1)2+3x -2x 2>0; (2)x (3-x )≤x (x +2)-1; (3)x 2-2x +3>0. 【答案】见解析【解析】 (1)原不等式可化为2x 2-3x -2<0,所以(2x +1)(x -2)<0,故原不等式的解集是⎩⎨⎧⎭⎬⎫x ⎪⎪⎪-12<x <2. (2)原不等式可化为2x 2-x -1≥0,所以(2x +1)(x -1)≥0,故原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≤-12或x ≥1.(3)因为Δ=(-2)2-4×3=-8<0, 故原不等式的解集是R. 12.解不等式组:-1<x 2+2x -1≤2. 【答案】见解析【解析】 原不等式组等价于⎩⎪⎨⎪⎧x 2+2x -1>-1,x 2+2x -1≤2, 即⎩⎪⎨⎪⎧x 2+2x >0, ①x 2+2x -3≤0. ② 由①得x (x +2)>0,所以x <-2或x >0;由②得(x +3)(x -1)≤0, 所以-3≤x ≤1.所以原不等式组的解集为{x |-3≤x <-2或0<x ≤1}, 13.设f (x )=(m +1)x 2-mx +m -1.(1)当m =1时,求不等式f (x )>0的解集;(2)若不等式f (x )+1>0的解集为⎝ ⎛⎭⎪⎫32,3,求m 的值. 【答案】见解析【解析】 (1)当m =1时,不等式f (x )>0为2x 2-x >0,因此所求解集为(-∞,0)∪⎝ ⎛⎭⎪⎫12,+∞.(2)不等式f (x )+1>0,即(m +1)x 2-mx +m >0,由题意知32,3是方程(m +1)x 2-mx +m =0的两根.因此⎩⎪⎨⎪⎧32+3=mm +132×3=mm +1⇒m =-97.。
2018学年高中数学必修5课件:第三章 不等式 3.2.1 含答案 精品
“三个二次”间对应关系的应用
若不等式 ax2+5x-2>0 的解集是x12<x<2
,求不等式 ax2-5x+a2
-1>0 的解集.
【导学号:91730053】
【精彩点拨】 利用不等式解集的端点值为对应方程的根,求出 a 的值,再 解不等式即可.
【自主解答】 由已知条件可知 a<0,且12,2 是相应方程 ax2+5x-2=0 的两 个根,由根与系数关系得,
又∵a<0,
∴2x2+5x-3<0,
所求不等式的解集为x-3<x<12
.
[探究共研型] 分式不等式的解法 探究 1 “23xx- +11≥0”与“(2x-1)(3x+1)≥0”是同解不等式吗?为什么? 【提示】 不是.因为前者 3x+1≠0,而后者 3x+1 可以为 0. 探究 2 不等式“xx+ -15>1”与不等式“x+1>x-5”是同解不等式吗?为什 么? 【提示】 不是.因为“x-5”的符号不定,故xx+ -15>1 不等价于 x+1>x-5.
-5a=52, -2a=1,
解得 a=-2.
∴ax2-5x+a2-1>0 化为 2x2+5x-3<0,
化为(2x-1)(x+3)<0,
解得-3<x<12.
所以不等式的解集为x-3<x<12
.
“三个二次”之间的内在联系
[再练一题]
2.若不等式 ax2+bx+c≥0 的解集是x-13≤x≤2
,求不等式 cx2+bx+a<0
2.一元二次不等式与二次函数、一元二次方程的联系
Δ=b2-4ac y=ax2+bx+c (a>0)的图象 ax2+bx+c=0
2018秋新版高中数学人教A版必修5习题:第三章不等式 3.3.2.1 Word版含解析
3.3.2 简单的线性规划问题第1课时 简单的线性规划问题课时过关·能力提升基础巩固1若x ,y 满足{2x -y ≤0,x +y ≤3,x ≥0,则2x +y 的最大值为( ).A .0B .3C .4D .5解析:由不等式组可作出如图的可行域(阴影部分),将z=2x+y 变形为y=-2x+z ,这是斜率为-2,随z 变化的一族平行直线,如图,可知当y=-2x+z 经过点P 时,z 取最大值.由{2x -y =0,x +y =3,可得P 点坐标为(1,2),故z max =2×1+2=4. 答案:C2设变量x ,y 满足约束条件{x -y +2≥0,x -5y +10≤0,x +y -8≤0,则目标函数z =3x −4y 的最大值和最小值分别为( ).A.3,-11B.-3,-11C.11,-3D.11,3解析:画出可行域,如图中阴影所示.可知当直线z=3x-4y 平移到过点A (5,3)时,目标函数z=3x-4y 取得最大值3;当直线平移到过点B (3,5)时,目标函数z=3x-4y 取得最小值-11.答案:A3已知x ,y 满足不等式组{2x -y +1≥0,x -2y -1≤0,x +y ≤1,z =x −y 取得最大值的可行解为( ). A.(0,1) B.(-1,-1) C.(1,0) D .(12,12)解析:画出可行域如图所示的阴影部分.由图可知,当直线z=x-y 平移到过点(1,0)时,目标函数z=x-y 取得最大值. 答案:C4设x ,y 满足{2x +y ≥4,x -y ≥-1,x -2y ≤2,则z =x +y( ).A.有最小值2,最大值3B.有最小值2,无最大值C.有最大值3,无最小值D.既无最大值,也无最小值解析:画出可行域,如图中的阴影部分所示.作直线l 0:x+y=0,平移l 0,当l 0过点A (2,0)时,z 有最小值2,无最大值. 答案:B5已知x ,y 满足约束条件{x -y ≥0,x +y ≤2,y ≥0.若z =ax +y 的最大值为4,则a =(). A.3 B.2 C.-2 D.-3解析:由约束条件画出可行域,如图阴影部分所示.线性目标函数z=ax+y ,即y=-ax+z.设直线l 0:ax+y=0.。
高中数学第三章不等式3.2一元二次不等式及其解法第1课时一元二次不等式的解法课件新人教A版必修5
B.a=2,b=-1
C.a=-2,b=2
D.a=-2,b=1
解析:因为不等式 ax2+3x-2>0 的解集为{x|1<x<b},所以 a<0,且
方程 ax2+3x-2=0 的两个根分别为 1 和 b.根据根与系数的关系,得
1+b=-3a,b=-2a,所以 a=-1,b=2.
答案:C
[随堂训练]
1.已知不等式
ax2-5x+b>0
的解集为x
x<-13或x>12,则不等式
bx2-5x+a>0 的解集为( )
A.x
-13<x<12
C.{x|-3<x<2}
B.x
x<-13或x>12
D.{x|x<-3 或 x>2}
综上所述: 当 a<0 或 a>1 时,原不等式的解集为{x|x<a 或 x>a2}; 当 0<a<1 时,原不等式的解集为{x|x<a2 或 x>a}; 当 a=0 时,原不等式的解集为{x|x≠0}; 当 a=1 时,原不等式的解集为{x|x≠1}.
解含参数的一元二次不等式应注意事项 (1)若二次项系数含有参数,则需对二次项系数大于 0 与小于 0 进行 讨论; (2)若求对应一元二次方程的根需用公式,则应对判别式 Δ 进行讨论; (3)若求出的根中含有参数,则应对两根的大小进行讨论; (4)若 ax2+bx+c>0(a>0)可分解为 a(x-x1)(x-x2)>0.讨论时只需比 较 x1,x2 大小即可.
3.若不等式 ax2+5x-2>0 的解集是x
1
2018秋新版高中数学人教A版必修5习题:第三章不等式 3.1.2 Word版含解析
第2课时不等式的性质课时过关·能力提升基础巩固1若a>b,ac<bc,则().A.c>0B.c<0C.c=0D.以上均有可能答案:B2若a<b,则下列不等式成立的是().A.1a >1bB.a2>b2C.2-a>2-bD.2a>2b 答案:C3若a>b与1a >1b同时成立,则().A.a>b>0B.a>0>bC.1a >1b>0D.1b<1a<0解析:∵a>b,∴a-b>0.又∵1a>1b,∴1a−1b=b-aab>0,∴ab<0.又a>b,∴a>0>b.答案:B4若a>b>c,则1b-c +1c-a的值是().A.正数B.非正数C.非负数D.不确定解析:∵1b-c +1c-a=1b-c−1a-c=a-c-(b-c)(b-c)(a-c)=a-b(a-c)(b-c).又∵a-c>0,b-c>0,a-b>0,∴a-b(a-c)(b-c)>0,∴1b-c+1c-a>0.答案:A5如果a+b>0,b<0,那么a,b,-a,-b的大小关系是().A.a>b>-b>-aB.a>-b>-a>bC.a>-b>b>-aD.a>b>-a>-b解析:∵a+b>0,b<0,∴a>-b>0,-a<b<0,∴a>-b>b>-a.答案:C6在△ABC中,A,B,C分别是△ABC的三个内角,若A=π3,则B−C的取值范围是.解析:∵A+B+C=π,A=π3,∴B+C=23π,∴C=23π−B,∴B-C=B−(23π-B)=2B−23π.又0<B<23π,∴0<2B<43π,∴−23π<2B−23π<23π,即−23π<B−C<23π.答案:(-23π,23π)7若x∈R,则x1+x2与12的大小关系为.解析:∵x1+x2−12=2x-1-x22(1+x2)=-(x-1)22(1+x2)≤0,∴x1+x2≤12.答案:x1+x2≤128给出四个条件:①b>0>a;②0>a>b;③a>0>b;④a>b>0.其中能推出1a <1b成立的是.答案:①②④9已知f(x)=3x2-x+1,g(x)=2x2+x-1,x∈R,试比较f(x)与g(x)的大小.解f(x)-g(x)=(3x2-x+1)-(2x2+x-1)=3x2-x+1-2x2-x+1=x2-2x+2=(x-1)2+1.∵x∈R,∴(x-1)2≥0.∴(x-1)2+1>0.∴f(x)>g(x).10已知c>a>b>0,求证:ac-a >bc-b.证明ac-a −bc-b=a(c-b)-b(c-a)(c-a)(c-b)。
(典型题)高中数学必修五第三章《不等式》测试卷(含答案解析)(1)
一、选择题1.已知正数x ,y 满足1431x y +=+,则x y +的最小值为( ) A .53B .2C .73D .62.设实数x ,y 满足约束条件21,22,x y x y -≤⎧⎨-≥⎩则x y +的最小值是( )A .2B .-2C .1D .-13.已知a b >,不等式220ax x b ++≥对于一切实数x 恒成立,且0x R ∃∈,使得20020ax x b ++=成立,则22a b a b+-的最小值为( )A .1BC .2D.4.若x 、y 满足约束条件36022x y x y y +-≤⎧⎪+≥⎨⎪≤⎩,则22x y +的最小值为( )A .5B .4C .2D5.已知实数,x y 满足24240x y x y y -≥⎧⎪+≤⎨⎪≤⎩,则32z x y =-的最小值是 ( )A .4B .5C .6D .76.设,x y 满足约束条件321104150250x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩,则z x y =+的最小值为( )A .3B .4C .5D .107.若函数()1xy a a =>的图象与不等式组40,20,1x y y x -≤⎧⎪-≥⎨⎪≤+⎩,表示的区域有公共点,则a 的取值范围为( ) A .[]2,4B.⎤⎦C .(][)1,24,⋃+∞D.([)2,⋃+∞8.已知函数()32f x x ax bx c =+++,且()()()01233f f f <-=-=-≤,则( )A .c 3≤B .3c 6<≤C .6c 9<≤D .c 9>9.设x ,y 满足约束条件261322x y x y y -≤⎧⎪⎪+≥⎨⎪≤⎪⎩,则1z x y =-+的最小值是( )A .1-B .0C .1D .210.在ABC 中,BAC ∠的平分线交BC 于D .若3BAC π∠=,4AB AC +=,则AD 长度的最大值为( ) AB .2C .3D.11.设函数2()1f x mx mx =--,若对于任意的x ∈{x |1 ≤ x ≤ 3},()4f x m <-+恒成立,则实数m 的取值范围为( ) A .m ≤0 B .0≤m <57C .m <0或0<m <57D .m <5712.已知不等式230ax bx a --≥的解集是[]4,1-,则b a 的值为( ) A .-64B .-36C .36D .64二、填空题13.若正实数x 、y 、z ,满足3z x y +=,4z y x +=,则x y x y z++-的最小值为_______.14.已知x ,y 满足不等式组220,10,30x y x y x +-≥⎧⎪-+≥⎨⎪-≤⎩,则11x z y -=+,则z 的最大值为________.15.若关于x 的不等式250ax x b -+< 的解集为{|23}x x << ,则+a b 的值是__________.16.若不等式20++≥x mx m 在[1,2]x ∈上恒成立,则实数m 的最小值为________ 17.在下列函数中, ①1y x x=+②1123212y x x x ⎛⎫=++< ⎪-⎝⎭③()2114141x y x x x x ⎛⎫=++> ⎪+⎝⎭ ④22221πsin cos 0,sin cos 2y x x x x x ⎛⎫⎛⎫=+∈ ⎪ ⎪⎝⎭⎝⎭其中最小值为2的函数是__________.18.若关于x 的不等式()0f x <和()0g x <的解集分别为(),a b 和11,b a ⎛⎫⎪⎝⎭,则称这两个不等式为“对偶不等式”.若不等式()2220x x θ-+<和不等式()224sin 210x x θ++<为“对偶不等式”,且,2πθπ⎛⎫∈ ⎪⎝⎭,则θ=______.19.若实数x ,y 满足约束条件103030x y x y x -+≥⎧⎪+-≥⎨⎪-≤⎩,则3z x y =-的最小值为__________.20.记等差数列{}n a 的前n 项和为n S ,满足570a a ,1122S =,则7811572a a a a a 的最小值为_________.三、解答题21.2020年受疫情影响,全球经济均受到不同程度的冲击.为稳妥有序地推进复工复产,2月11日晚,郑州市相关政府部门印发了《郑州市关于应对新型冠状病毒肺炎疫情促进经济平稳健康发展的若干举措》的通知,并出台多条举措促进全市经济平稳健康发展.某工厂为拓宽市场,计划生产某种热销产品,经调查,该产品一旦投入市场就能全部售出.若不举行促销活动,该产品的年销售量为28万件,若举行促销活动,年销售量y (单位;万件)与年促销费用()0x x ≥(单位;万元)满足3010(ky k x =-+为常数).已知生产该产品的固定成本为80万元,每生产1万件该产品需要再投入生产成本160万元,厂家将每件产品的销售价格定为每件产品平均成本的1.5倍(产品成本包括固定成本和生产成本,不包括促销成本). (1)求k 的值,并写出该产品的利润L (单位:万元)与促销费用x (单位:万元)的函数关系﹔ (2)该工厂计划投入促销费用多少万元,才能获得最大利润?22.已知m R ∈,命题p :对任意[]0,1x ∈,不等式2223x m m -≥-恒成立;命题q :存在[]1,1x ∈-,使得m ax ≤成立.(1)若p 为真命题,求m 的取值范围;(2)当1a =时,若p q ∨为真,p q ∧为假,求m 的取值范围. 23.已知()f x 是偶函数,()g x 是奇函数,且2()()2f x g x x x +=+-. (1)求()f x 和()g x 的解析式;(2)设2()33h x mx mx =+-(其中m R ∈),解不等式()()h x g x <.24.已知函数2221,()?23,x ax x af x x ax x a ⎧-+<⎪⎪=⎨⎪+-≥⎪⎩,其中 0a >. (1)若()()01ff =,求a 的值.(2)若函数()f x 的图象在x 轴的上方,求a 的取值范围. 25.已知函数()()21,4f x ax bx a b R =++∈,且()10f -=,对任意实数x ,()0f x ≥成立.(1)求函数()f x 的解析式;(2)若0c ≥,解关于x 的不等式()2131424f x c x x c ⎛⎫⎛⎫>+-++ ⎪ ⎪⎝⎭⎝⎭. 26.某单位计划建造一间背面靠墙的小屋,其地面面积为12m 2,墙面的高度为3m ,经测算,屋顶的造价为5800元,房屋正面每平方米的造价为1200元,房屋侧面每平方米的造价为800元,设房屋正面地面长方形的边长为x m ,房屋背面和地面的费用不计. (1)用含x 的表达式表示出房屋的总造价; (2)当x 为多少时,总造价最低?最低造价是多少?【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】化简114[(1)]()131x y x y x y +=++⨯+-+,再利用基本不等式求解. 【详解】由题得1114(1)1[(1)]31[(1)]()1331x y x y x y x y x y +=++-=++⨯-=++⨯+-+ 1141(5)1(5)123131y x x y y +=++-≥+-=++ 当且仅当1x y ==时取等. 所以x y +的最小值为2. 故选:B 【点睛】方法点睛:利用基本不等式求最值时,常用到常量代换,即把所求代数式中的某一常量换成已知中的代数式,再利用基本不等式求解.2.C解析:C 【分析】先作出约束条件对应的可行域,然后分析目标函数的几何意义,结合图形即可求解. 【详解】作出约束条件2122x y x y -≤⎧⎨-≥⎩所表示的平面区域如图所示:移动直线x y z +=,可知当其过点A 时取得最小值, 解方程组2122x y x y -≤⎧⎨-≥⎩,求得10x y =⎧⎨=⎩,即(1,0)A ,代入求得101=+=z ,所以x y +的最小值是1, 故选:C. 【点睛】方法点睛:该题考查的是有关线性规划的问题,解题方法如下: (1)根据题中所给的约束条件画出可行域; (2)根据目标函数的意义找到最优解; (3)解方程组求得最优解的坐标; (4)代入求得最小值,得到结果.3.D解析:D 【分析】根据条件对于一切实数x 不等式恒成立和0x R ∃∈使得方程成立结合二次不等式、二次方程、二次函数,可得1ab =,将22a b a b+-化成2a b a b -+-,再结合基本不等式求解即可.【详解】解:因为不等式220ax x b ++≥对于一切实数x 恒成立,所以0440a ab >⎧⎨-≤⎩,又因为0x R ∃∈,使得20020ax x b ++=成立,所以440ab -≥,所以440ab -=, 即0,0,1a b ab >>=,所以222()2222a b a b ab a b a b a b a b+-+==-+≥---,当且仅当2a b a b-=-时取得最小值. 故选:D. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.4.C解析:C 【分析】由不等式组作出可行域,如图,目标函数22xy +可视为可行域中的点与原点距离的平方,故其最小值应为原点到直线2x y +=的距离平方,根据点到直线的距离公式可得选项. 【详解】由不等式组做出可行域如图,目标函数22xy +可视为可行域内的点与原点距离的平方,故其最小值为原点到直线2x y +=的距离的平方,由点到直线的距离公式可知,原点到直线2x y +=的距离为22d ==,所以所求最小值为2. 故选:C.【点睛】本题主要考查线性规划问题,首先由不等式组作出相应的可行域,作图时,可将不等式0Ax By C ++≥转化为y kx b ≤+(或y kx b ≥+),明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数最值取法、值域范围.5.C解析:C【分析】由约束条件画出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组得到最优解的坐标,代入目标函数得到答案.【详解】由实数x,y满足2424x yx yy-≥⎧⎪+≤⎨⎪≤⎩得到可行域如图:z=3x﹣2y变形为y=32x﹣2z,由24yx y=⎧⎨-=⎩,解得B(2,0)当此直线经过图中B时,在y轴的截距最大,z最小,所以z的最小值为3×2﹣2×0=6;故选C.【点睛】本题主要考查线性规划中利用可行域求目标函数的最值,求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.6.B解析:B【分析】结合题意画出可行域,然后运用线性规划知识来求解【详解】如图由题意得到可行域,改写目标函数得y x z =-+,当取到点(3,1)A 时得到最小值,即314z =+=故选B 【点睛】本题考查了运用线性规划求解最值问题,一般步骤:画出可行域,改写目标函数,求出最值,需要掌握解题方法7.B解析:B 【分析】由约束条件作出可行域,再由指数函数的图象经过A ,B 两点求得a 值,则答案可求. 【详解】解:由约束条件40,20,1x y y x -⎧⎪-⎨⎪+⎩作出可行域如图:当1x =时,2y a =≤;当4x =时,42y a =≥,则42a ≥故a 的取值范围为42,2⎡⎤⎣⎦.故选:B . 【点睛】本题考查简单的线性规划,考查数形结合的解题思想方法,属于中档题.8.C解析:C 【分析】由()()()123f f f -=-=-可求得a b ,的值,代回不等关系得出c 的取值范围 【详解】由()()()123f f f -=-=-可得184********a b c a b ca b c a b c -+-+=-+-+⎧⎨-+-+=-+-+⎩解得611a b =⎧⎨=⎩则()32611f x x x x c =+++ 所以()16f c -=-,()013f <-≤所以0c 63-≤<,解得6c 9≤<, 故选C . 【点睛】本题主要考查了函数的性质,运用待定系数法求出参量的值,然后结合题意求出取值范围,较为基础.9.C解析:C 【分析】作出约束条件所表示的平面区域,结合图象确定目标函数的最优解,代入求解,即可得到答案. 【详解】作出x ,y 满足约束条件261322x y x y y -≤⎧⎪⎪+≥⎨⎪≤⎪⎩,所对应的可行域,如图所示,目标函数1z x y =-+可化为1y x z =+-,当直线1y x z =+-过点A 时, 此时直线在y 轴上的截距最大值,此时目标函数取得最小值,又由2132y x y =⎧⎪⎨+=⎪⎩,解得(2,2)A , 所以目标函数的最小值为min 2211z =-+=. 故选:C.【点睛】本题主要考查简单线性规划求解目标函数的最值问题.其中解答中正确画出不等式组表示的可行域,利用“一画、二移、三求”,确定目标函数的最优解是解答的关键,着重考查了数形结合思想,及推理与计算能力,属于基础题.10.A解析:A 【分析】根据题意,设,,,AD t AB c AC b ===由三角形面积公式1sin 2S a b θ=⋅⋅可表示出,,ACD ABD ABC ∆∆∆三者之间的关系,进而得边长关系为3,t bc =最后通过基本不等式求得AD 的最大值。
人教A版高中数学必修5第三章 不等式3.2 一元二次不等式及其解法课件
(1)直接考查一元二次不等式的解法; (2)与函数的奇偶性等相结合,考查一元二次不等式 的解法; (3)已知一元二次不等式的解集求参数.
[例 1] 为( )
(1)(2014·全国高考)不等式组xx+2>0, 的解集 |x|<1
ax2+bx+c<0 对一切 x∈R 都成立的条件为a<0, Δ<0.
2.可用(x-a)(x-b)>0 的解集代替xx- -ab>0 的解集,你认为 如何求不等式xx- -ab<0,xx- -ab≥0 及xx- -ab≤0 的解集?
提示:xx--ab<0⇔(x-a)(x-b)<0; xx--ab≥0⇔xx--ba≠0x-;b≥0, xx--ab≤0⇔xx--ba≠0x-. b≤0,
考点二
一元二次不等式的恒成立问题
[例 2] 设函数 f(x)=mx2-mx-1. (1)若对于一切实数 x,f(x)<0 恒成立,求 m 的取值范 围; (2)若对于 x∈[1,3],f(x)<-m+5 恒成立,求 m 的取 值范围.
[自主解答] (1)要使 mx2-mx-1<0 恒成立,
若 m=0,显然-1<0;
xx≠-2ba
R
判别式 Δ=b2-4ac
Δ>0
ax2+bx+c<0
(a>0)的解集 {x|x<x1<x2}
Δ=0
∅
续表 Δ<0
∅
1.ax2+bx+c>0,ax2+bx+c<0(a≠0)对一切 x∈R 都成立 的条件是什么?
提示:ax2+bx+c>0 对一切 x∈R 都成立的条件为a>0, Δ<0.
【人教A版】高中数学必修5第三章课后习题解答
新课程标准数学必修5第三章课后习题解答第三章 不等式3.1不等关系与不等式 练习(P74)1、(1)0a b +≥; (2)4h ≤; (3)(10)(10)3504L W L W ++=⎧⎨>⎩.2、这给两位数是57.3、(1)>; (2)<; (3)>; (4)<;习题3.1 A 组(P75)1、略.2、(1)24<; (2>.3、证明:因为20,04x x >>,所以21104x x x ++>+>因为22(1)02x +>>,所以12x+>4、设A 型号帐篷有x 个,则B 型号帐篷有(5)x +个,050448054853(5)484(4)48x x x x x x >⎧⎪+>⎪⎪<⎪⎨<-<⎪⎪+<⎪+⎪⎩≥5、设方案的期限为n 年时,方案B 的投入不少于方案A 的投入.所以,(1)5105002n n n -+⨯≥ 即,2100n ≥.习题3.1 B 组(P75)1、(1)因为222259(56)30x x x x x ++-++=+>,所以2225956x x x x ++>++ (2)因为222(3)(2)(4)(69)(68)10x x x x x x x ----=-+--+=>所以2(3)(2)(4)x x x ->--(3)因为322(1)(1)(1)0x x x x x --+=-+>,所以321x x x >-+(4)因为22222212(1)1222(1)(1)10x y x y x y x y x y ++-+-=++-+-=-+-+> 所以2212(1)x y x y ++>+-2、证明:因为0,0a b c d >>>>,所以0ac bd >>又因为0cd >,所以10cd >于是0a bd c>>>3、设安排甲种货箱x 节,乙种货箱y 节,总运费为z .所以 352515301535115050x y x y x y +⎧⎪+⎨⎪+=⎩≥≥ 所以28x ≥,且30x ≤所以 2822x y =⎧⎨=⎩,或2921x y =⎧⎨=⎩,或3020x y =⎧⎨=⎩所以共有三种方案,方案一安排甲种货箱28节,乙种货箱22节;方案二安排甲种货箱29节,乙种货箱21节;方案三安排甲种货箱30节,乙种货箱20节. 当3020x y =⎧⎨=⎩时,总运费0.5300.82031z =⨯+⨯=(万元),此时运费较少. 3.2一元二次不等式及其解法 练习(P80) 1、(1)1013x x ⎧⎫-⎨⎬⎩⎭≤≤; (2)R ; (3){}2x x ≠; (4)12x x ⎧⎫≠⎨⎬⎩⎭; (5)31,2x x x ⎧⎫<->⎨⎬⎩⎭或; (6)54,43x x x ⎧⎫<>⎨⎬⎩⎭或; (7)503x x ⎧⎫-<<⎨⎬⎩⎭.2、(1)使2362y x x =-+的值等于0的x的集合是1⎧⎪⎨⎪⎪⎩⎭;使2362y x x =-+的值大于0的x的集合为11x x x ⎧⎪<>⎨⎪⎪⎩⎭或;使2362y x x =-+的值小于0的x的集合是11x x ⎧⎪<<+⎨⎪⎪⎩⎭.(2)使225y x =-的值等于0的x 的集合{}5,5-; 使225y x =-的值大于0的x 的集合为{}55x x -<<; 使225y x =-的值小于0的x 的集合是{}5,5x x x <->或. (3)因为抛物线2+610y x x =+的开口方向向上,且与x 轴无交点 所以使2+610y x x =+的等于0的集合为∅; 使2+610y x x =+的小于0的集合为∅; 使2+610y x x =+的大于0的集合为R. (4)使231212y x x =-+-的值等于0的x 的集合为{}2; 使231212y x x =-+-的值大于0的x 的集合为∅;使231212y x x =-+-的值小于0的x 的集合为{}2x x ≠. 习题3.2 A 组(P80)1、(1)35,22x x x ⎧⎫<->⎨⎬⎩⎭或; (2)x x ⎧⎪<<⎨⎪⎪⎩⎭;(3){}2,5x x x <->或; (4){}09x x <<.2、(1)解2490x x -+≥,因为200∆=-<,方程2490x x -+=无实数根所以不等式的解集是R ,所以y R. (2)解2212180x x -+-≥,即2(3)0x -≤,所以3x =所以y {}3x x =3、{33m m m <-->-+或;4、R.5、设能够在抛出点2 m 以上的位置最多停留t 秒. 依题意,20122v t gt ->,即212 4.92t t ->. 这里0t >. 所以t 最大为2(精确到秒)答:能够在抛出点2 m 以上的位置最多停留2秒. 6、设每盏台灯售价x 元,则15[302(15)]400x x x ⎧⎨-->⎩≥. 即1520x <≤.所以售价{}1520x x x ∈<≤习题3.2 B 组(P81)1、(1)52x ⎧+⎪<<⎨⎪⎪⎩⎭; (2){}37x x <<; (3)∅; (4)113x x ⎧⎫<<⎨⎬⎩⎭. 2、由22(1)40m m ∆=--<,整理,得23210m m +->,因为方程23210m m +-=有两个实数根1-和13,所以11m <-,或213m >,m 的取值范围是11,3m m m ⎧⎫<->⎨⎬⎩⎭或.3、使函数213()324f x x x =--的值大于0的解集为3322x x x ⎧⎪<-<+⎨⎪⎪⎩⎭或.4、设风暴中心坐标为(,)a b ,则a =22450b +<,即150150b -<<151)13.72=≈(h ),3001520=.所以,经过约13.7小时码头将受到风暴的影响,影响时间为15小时.3.3二元一次不等式(组)与简单的线性规划问题 练习(P86) 1、B . 2、D . 3、B .4解:设家具厂每天生产A 类桌子x 张,B 类桌子y 张.对于A 类桌子,x 张桌子需要打磨10x min ,着色6x min ,上漆6x min 对于B 类桌子,y 张桌子需要打磨5y min ,着色12y min ,上漆9y min 而打磨工人每天最长工作时间是450min ,所以有105450x y +≤. 类似地,612480x y +≤,69450x y +≤ 在实际问题中,0,0x y ≥≥;所以,题目中包含的限制条件为 1054506124806945000x y x y x y x y +⎧⎪+⎪⎪+⎨⎪⎪⎪⎩≤≤≤≥≥练习(P91)1、(1)目标函数为2z x y =+,可行域如图所示,作出直线2y x z =-+,可知z 要取最大值,即直线经过点C 时,解方程组11x y y +=⎧⎨=-⎩得(2,1)C -,所以,max 222(1)3z x y =+=⨯+-=.(2)目标函数为35z x y =+,可行域如图所示,作出直线35z x y =+ 可知,直线经过点B 时,Z 取得最大值. 直线经过点A 时,Z 取得最小值. 解方程组 153y x x y =+⎧⎨-=⎩,和15315y x x y =+⎧⎨+=⎩(第1题)可得点(2,1)A --和点(1.5,2.5)B .所以max 3 1.55 2.517z =⨯+⨯=,min 3(2)5(1)11z =⨯-+⨯-=-2、设每月生产甲产品x 件,生产乙产品y 件,每月收入为z 元,目标函数为30002000z x y =+,需要满足的条件是 2400250000x y x y x y +⎧⎪+⎪⎨⎪⎪⎩≤≤≥≥,作直线30002000z x y =+当直线经过点A 时,z 取得最大值. 解方程组 24002500x y x y +=⎧⎨+=⎩可得点(200,100)A ,z 的最大值为800000元. 习题3.3 A 组(P93)1、画图求解二元一次不等式:(1)2x y +≤; (2)22x y ->; (3)2y -≤; (4)3x ≥2、3(第2题)解:设每周播放连续剧甲x 次,播放连续剧乙y目标函数为6020z x y =+,所以,题目中包含的限制条件为8040320600x y x y x y +⎧⎪+⎪⎨⎪⎪⎩≤≥≥≥可行域如图. 解方程组80403206x y x y +⎧⎨+⎩==得点M 的坐标为(2,4),所以max 6020200z x y =+= 答:电视台每周应播放连续剧甲2次,播放连续剧乙4次,才能获得最高的收视率. 4、设每周生产空调器x 台,彩电y 台,则生产冰箱120x y--台,产值为z . 则,目标函数为432(120)2240z x y x y x y =++--=++ 所以,题目中包含的限制条件为111(120)402341202000x y x y x y x y ⎧++--⎪⎪⎪--⎨⎪⎪⎪⎩≤≥≥≥即,312010000x y x y x y +⎧⎪+⎪⎨⎪⎪⎩≤≤≥≥ 可行域如图,解方程组3120100x y x y +⎧⎨+⎩==得点M 的坐标为(10,90),所以max 2240350z x y =++=(千元)答:每周应生产空调器10台,彩电90台,冰箱20台,才能使产值最高,最高产值是350千元.习题3.3 B 组(P93)1、画出二元一次不等式组 231223600x y x y x y +⎧⎪+>-⎪⎨⎪⎪⎩≤≥≥,所表示的区域如右图2、画出(21)(3)0x y x y +--+>表示的区域.3、设甲粮库要向A 镇运送大米x 吨、向B 镇运送大米y 吨,总运费为z . 则乙粮库要向A 镇运送大米(70)x -吨、向B 镇运送大米(110)y -吨,目标函数(总运费)为122025101512(70)208(110)60z x y x y x y =⨯⨯+⨯⨯+⨯⨯-+⨯⨯-=++. 所以,题目中包含的限制条件为 100(70)(110)800700x y x y x y +⎧⎪-+-⎪⎨⎪⎪⎩≤≤≤≤≥.所以当70,30x y ==时,总运费最省 min 37100z =(元) 所以当0,100x y ==时,总运费最不合理 max 39200z =(元)使国家造成不该有的损失2100元.答:甲粮库要向A 镇运送大米70吨,向B 镇运送大米30吨,乙粮库要向A 镇运送大米0吨,向B 镇运送大米80吨,此时总运费最省,为37100元. 最不合理的调运方案是要向A 镇运送大米0吨,向B 镇运送大米100吨,乙粮库要向A 镇运送大米70吨,向B 镇运送大米10吨,此时总运费为39200元,使国家造成损失2100元.3.42a b+练习(P100)1、因为0x >,所以12x x +≥当且仅当1x x =时,即1x =时取等号,所以当1x =时,即1x x+的值最小,最小值是2. 2、设两条直角边的长分别为,a b ,0,a >且0b >,因为直角三角形的面积等于50.即 1502ab =,所以20a b +==≥,当且仅当10a b ==时取等号.答:当两条直角边的长均为10时,两条直角边的和最小,最小值是20.(第2题)3、设矩形的长与宽分别为a cm ,b cm. 0a >,0b > 因为周长等于20,所以10a b +=所以 2210()()2522a b S ab +===≤,当且仅当5a b ==时取等号.答:当矩形的长与宽均为5时,面积最大.4、设底面的长与宽分别为a m ,b m. 0a >,0b >因为体积等于323m ,高2m ,所以底面积为162m ,即16ab =所以用纸面积是 222324()32323264S ab bc ac a b =++=+++=+=≥ 当且仅当4a b ==时取等号答:当底面的长与宽均为4米时,用纸最少. 习题3.4 A 组(P100) 1、(1)设两个正数为,a b ,则0,0a b >>,且36ab =所以 12a b +==≥,当且仅当6a b ==时取等号. 答:当这两个正数均为6时,它们的和最小.(2)设两个正数为,a b ,依题意0,0a b >>,且18a b +=所以2218()()8122a b ab +==≤,当且仅当9a b ==时取等号.答:当这两个正数均为9时,它们的积最大. 2、设矩形的长为x m ,宽为y m ,菜园的面积为S 2m . 则230x y +=,S x y =⨯由基本不等式与不等式的性质,可得211219002252()222242x y S x y +=⨯⨯=⨯=≤. 当2x y =,即1515,2x y ==时,菜园的面积最大,最大面积是22522m . 3、设矩形的长和宽分别为x 和y ,圆柱的侧面积为z ,因为2()36x y +=,即18x y +=. 所以222()1622x y z x y πππ+=⨯⨯⨯=≤, 当x y =时,即长和宽均为9时,圆柱的侧面积最大.4、设房屋底面长为x m ,宽为y m ,总造价为z 元,则12xy =,12y x=123600312006800580048000012480058000z y x x x⨯=⨯+⨯+=+++=≥ 当且仅当1236004800x x⨯=时,即3x =时,z 有最小值,最低总造价为34600元. 习题3.4 B 组(P101)1、设矩形的长AB 为x ,由矩形()ABCD AB AD >的周长为24,可知,宽12AB x =-. 设PC a =,则DP x a =-所以 222(12)()x x a a -+-=,可得21272x x a x -+=,1272x DP x a x-=-=.所以ADP ∆的面积 211272187272(12)66[()18]2x x x S x x x x x--+-=-=⨯=⨯-++ 由基本不等式与不等式的性质6[18]6(18108S ⨯-=⨯-=-≤ 当72x x=,即x =m 时,ADP ∆的面积最大,最大面积是(108-2m . 2、过点C 作CD AB ⊥,交AB 延长线于点D .设BCD α∠=,ACB β∠=,CD x =.在BCD ∆中,tan b c x α-=. 在ACD ∆中,tan()a cxαβ-+= 则tan()tan tan tan[()]1tan()tan αβαβαβααβα+-=+-=++⋅()()1a c b ca b x x a c b c a c b c x x x x----==----+⋅+))c =当且仅当()()a cbc x x--=,即x =tan β取得最大,从而视角也最大.第三章 复习参考题A 组(P103)1<2、化简得{}23A x x =-<<,{}4,2B x x x =<->或,所以{}23A B x x =<<3、当0k <时,一元二次不等式23208kx kx +-<对一切实数x 都成立,即二次函数2328y kx kx =+-在x 轴下方,234(2)()08k k ∆=--<,解之得:30k -<<.当0k >时,二次函数2328y kx kx =+-开口朝上一元二次不等式23208kx kx +-<不可能对一切实数x 都成立,所以,30k -<<. 4、不等式组438000x y x y ++>⎧⎪<⎨⎪<⎩表示的平面区域的整点坐标是(1,1)--.5、设每天派出A 型车x 辆,B 型车y 辆,成本为z .所以 070494860360x y x y x y ⎧⎪⎪⎨+⎪⎪+⎩≤≤≤≤≤≥,目标函数为160252z x y =+把160252z x y =+变形为40163252y x z =-+,得到斜率为4063-,在y 轴上的截距为1252z ,随z 变化的一族平行直线. 在可行域的整点中,点(5,2)M 使得z 取得最小值. 所以每天派出A 型车5辆,B 型车2辆,成本最小,最低成本为1304元.6、设扇形的半径是x ,扇形的弧长为y ,因为 12S xy =扇形的周长为2Z x y =+≥ 当2x y =,即x =y =Z可以取得最小值,最小值为. 7、设扇形的半径是x ,扇形的弧长为y ,因为2P x y =+扇形的面积为221112(2)()244216x y P Z xy x y +===≤当2x y =,即4P x =,2P y =时,Z 可以取得最大值,半径为4P时扇形面积最大值为216P .8、设汽车的运输成本为y , 2()s say bv a sbv v v=+⨯=+当sasbv v=时,即v =c 时,y 有最小值.2sa y sbv v =+=≥2c 时,由函数sa y sbv v =+的单调性可知,v c =时y 有最小值,最小值为sa sbc c+. 第三章 复习参考题B 组(P103)1、D2、(1)32264x x x x ⎧⎫<--<<>⎨⎬⎩⎭或或 (2)⎧⎨⎩3、1m =4、设生产裤子x 条,裙子y 条,收益为z .则目标函数为2040z x y =+,所以约束条件为 10210600x y x y x y x y +⎧⎪+⎪⎪+⎨⎪⎪⎪⎩≤≤≤≥≥人教A 版高中数学课后习题解答答案11 5、因为22x y +是区域内的点到原点的距离的平方所以,当240330x y x y -+=⎧⎨--=⎩ 即2,3A A x y ==时,22x y +的最大值为13. 当4525x y ⎧=⎪⎪⎨⎪=⎪⎩时,22x y +最小,最小值是45. 6、按第一种策略购物,设第一次购物时的价格为1p ,购n kg ,第二次购物时的价格为2p ,仍购n kg ,按这种策略购物时两次购物的平均价格为121222p n p n p p n ++=. 若按第二种策略购物,第一次花m 元钱,能购1m p kg 物品,第二次仍花m 元钱,能购2m p kg 物品,两次购物的平均价格为12122211m m m p p p p =++ 比较两次购物的平均价格:221212121212121212121222()4()011222()2()p p p p p p p p p p p p p p p p p p p p +++---=-==++++≥ 所以,第一种策略的平均价格高于第二种策略的平均价格,因而,用第二种策略比较经济. 一般地,如果是n 次购买同一种物品,用第二种策略购买比较经济.。
高中数学 第三章 不等式 3.1 不等关系与不等式(第1课时)练习(含解析)新人教A版必修5-新人教
3.1《不等关系与不等式》(第1课时)一、选择题:1.设M =x 2,N =-x -1,则M 与N 的大小关系是( )A .M >NB .M =NC .M <ND .与x 有关 【答案】A【解析】 M -N =x 2+x +1=(x +12)2+34>0,∴M >N .2.若a <b <0,则下列不等式不能成立的是( )A .1a >1bB .2a >2bC .|a |>|b |D .(12)a >(12)b 【答案】B【解析】 ∵a <b ,y =2x 单调递增,∴2a <2b,故选B . 3.已知a <0,-1<b <0,则下列各式正确的是( )A .a >ab >ab 2B .ab >a >ab 2C .ab 2>ab >a D .ab >ab 2>a 【答案】D【解析】 ∵-1<b <0,∴1>b 2>0>b >-1,即b <b 2<1,两边同乘以a 得,∴ab >ab 2>a .故选D .4.如果a 、b 、c 满足c <b <a ,且ac <0,那么下列选项中不一定...成立的是( ) A .ab >ac B .bc >ac C .cb 2<ab 2D .ac (a -c )<0 【答案】C【解析】 ∵c <b <a ,且ac <0,∴a >0,c <0.∴ab -ac =a (b -c )>0,bc -ac =(b -a )c >0,ac (a -c )<0,∴A、B 、D 均正确.∵b 可能等于0,也可能不等于0. ∴cb 2<ab 2不一定成立.5.已知:a ,b ,c ,d ∈R ,则下列命题中必成立的是( )A .若a >b ,c >b ,则a >cB .若a >-b ,则c -a <c +bC .若a >b ,c <d ,则a c >bdD .若a 2>b 2,则-a <-b【答案】B【解析】 选项A ,若a =4,b =2,c =5,显然不成立;选项C 不满足倒数不等式的条件,如a >b >0,c <0<d时,不成立;选项D 只有a >b >0时才可以.否则如a =-1,b =0时不等成立,故选B .6.下列各式中,对任何实数x 都成立的一个式子是( )A .lg(x 2+1)≥lg(2x ) B .x 2+1>2x C .1x 2+1≤1 D.x +1x≥2 【答案】C【解析】 A 中x >0;B 中x =1时,x 2+1=2x ;C 中任意x ,x 2+1≥1,故1x 2+1≤1;D 中当x <0时,x +1x≤0.7.若a >b >0,c <d <0,则一定有( )A .a c >b dB .a c <b dC .a d >b cD .a d <b c【答案】D【解析】本题考查不等式的性质,a c -b d =ad -bccd,cd >0,而ad -bc 的符号不能确定,所以选项A 、B 不一定成立.a d -b c =ac -bddc,dc >0,由不等式的性质可知ac <bd ,所以选项D 成立.本题也可以对实数a 、b 、c 、d 进行适当的赋值逐一排查.8.设a =sin15°+cos15°,b =sin16°+cos16°,则下列各式正确的是( )A .a <a 2+b 22<b B .a <b <a 2+b 22C .b <a <a 2+b 22D .b <a 2+b 22<a【答案】B【解析】a =sin15°+cos15°=2sin60°,b =sin16°+cos16°=2sin61°,∴a <b ,排除C 、D 两项.又∵a ≠b ,∴a 2+b 22-ab =a -b22>0,∴a 2+b 22>ab =2sin60°×2sin61°=3sin61°>2sin61°=b ,故a <b <a 2+b 22成立.9.已知-1<a <0,A =1+a 2,B =1-a 2,C =11+a ,比较A 、B 、C 的大小结果为( ) A .A <B <C B .B <A <C C .A <C <B D .B <C <A【答案】B【解析】 不妨设a =-12,则A =54,B =34,C =2,由此得B <A <C ,排除A 、C 、D ,选B .具体比较过程如下:由-1<a <0得1+a >0,A -B =(1+a 2)-(1-a 2)=2a 2>0得A >B , C -A =11+a-(1+a 2)=-a a 2+a +11+a=-a ⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫a +122+341+a>0,得C >A ,∴B <A <C .二、填空题:10.若x =(a +3)(a -5),y =(a +2)(a -4),则x 与y 的大小关系是________. 【答案】x <y【解析】x -y =(a +3)(a -5)-(a +2)(a -4)=(a 2-2a -15)-(a 2-2a -8)=-7<0,∴x <y . 11.给出四个条件:①b >0>a ,②0>a >b ,③a >0>b ,④a >b >0,能推得1a <1b成立的是________.【答案】①、②、④【解析】 1a <1b ⇔b -aab<0,∴①、②、④能使它成立.12.a ≠2、b ≠-1、M =a 2+b 2、N =4a -2b -5,比较M 与N 大小的结果为________. 【答案】M >N【解析】 ∵a ≠2,b ≠-1,∴M -N =a 2+b 2-4a +2b +5=(a -2)2+(b +1)2>0,∴M >N . 三、解答题13.某矿山车队有4辆载重为10 t 的甲型卡车和7辆载重为6 t 的乙型卡车,有9名驾驶员.此车队每天至少要运360 t 矿石至冶炼厂.已知甲型卡车每辆每天可往返6次,乙型卡车每辆每天可往返8次,写出满足上述所有不等关系的不等式. 【答案】见解析【解析】 设每天派出甲型卡车x 辆,乙型卡车y 辆.根据题意,应有如下的不等关系:(1)甲型卡车和乙型卡车的总和不能超过驾驶员人数. (2)车队每天至少要运360 t 矿石.(3)甲型车不能超过4辆,乙型车不能超过7辆.要同时满足上述三个不等关系,可以用下面的不等式组来表示:⎩⎪⎨⎪⎧x +y ≤910×6x +6×8y ≥3600≤x ≤40≤y ≤7,即⎩⎪⎨⎪⎧x +y ≤95x +4y ≥300≤x ≤40≤y ≤7.14.有粮食和石油两种物质,可用轮船与飞机两种方式运输,每天每艘轮船和每架飞机的运输效果如下表:关系的不等式. 【答案】见解析【解析】设需安排x 艘轮船和y 架飞机,则⎩⎪⎨⎪⎧300x +150y ≥2 000250 x +100 y ≥1 500x ≥0y ≥0,∴⎩⎪⎨⎪⎧6x +3y ≥405x +2y ≥30x ≥0y ≥0.15.设a >0,b >0且a ≠b ,试比较a a b b与a b b a的大小. 【答案】见解析【解析】 根据同底数幂的运算法则.a a b b a b b a =a a -b ·b b -a =(a b)a -b,当a >b >0时,ab >1,a -b >0,则(a b)a -b>1,于是a a b b>a b b a . 当b >a >0时,0<a b <1,a -b <0,则(a b)a -b>1,于是a a b b>a b b a.综上所述,对于不相等的正数a 、b ,都有a a b b>a b b a.。
高中数学 第三章 不等式 3.2.1 一元二次不等式的解法课时作业(含解析)新人教A版必修5-新人教
课时作业20 一元二次不等式的解法时间:45分钟——基础巩固类——一、选择题1.下列不等式中是一元二次不等式的是(C)A.a2x2+2≥0 B.1x2+x<3 C.-x2+x-m≤0 D.x3-2x+1>0 解析:选项A中,a2=0时不符合;选项B是分式不等式;选项D中,最高次数为三次;只有选项C符合.故选C.2.不等式6-x-2x2<0的解集是(D)解析:不等式变形为2x2+x-6>0,又方程2x2+x-6=0的两根为x1=32,x2=-2,所以不等式的解集为.故选D.3.设关于x的不等式(ax-1)(x+1)<0(a∈R)的解集为{x|-1<x<1},则a的值是(D) A.-2 B.-1C.0 D.1解析:根据题意可得,-1,1是方程(ax-1)(x+1)=0的两根,代入解得a=1.4.在R 上定义运算⊙:a ⊙b =ab +2a +b ,则满足:x ⊙(x -2)<0的实数x 的取值X 围为( B )A .(0,2)B .(-2,1)C .(-∞,-2)∪(1,+∞)D .(-1,2)解析:x ⊙(x -2)=x (x -2)+2x +x -2<0⇒x 2+x -2<0⇒-2<x <1. 5.不等式x 2-|x |-2<0的解集是( A ) A .{x |-2<x <2} B .{x |x <-2或x >2} C .{x |-1<x <1} D .{x |x <-1或x >1}解析:令t =|x |,则原不等式可化为t 2-t -2<0,即(t -2)(t +1)<0.∵t =|x |≥0.∴t -2<0.∴t <2. ∴|x |<2,得-2<x <2.6.已知方程2x 2-(m +1)x +m =0有两个不等正实根,则实数m 的取值X 围是( C ) A .{m |0<m ≤3-22或m ≥3+22} B .{m |m <3-22或m >3+22} C .{m |0<m <3-22或m >3+22} D .{m |m ≤3-22或m ≥3+22}解析:∵方程2x 2-(m +1)x +m =0有两个不等正实根,∴Δ=(-m -1)2-8m >0,即m 2-6m +1>0,解得m <3-22或m >3+2 2.再根据两根之和为m +12>0,且两根之积为m 2>0,解得m >0.综上可得,0<m <3-22或m >3+2 2.二、填空题7.函数f (x )=log 2(-x 2+x +12)的定义域为(-3,4).解析:由-x 2+x +12>0,得x 2-x -12<0,解得-3<x <4,所以定义域为(-3,4).8.不等式组⎩⎪⎨⎪⎧3x 2+x -2≥0,4x 2-15x +9>0的解集是{x |x >3或x ≤-1}.解析:由⎩⎪⎨⎪⎧3x 2+x -2≥0,4x 2-15x +9>0,得⎩⎨⎧x ≥23或x ≤-1,x >3或x <34,即x >3或x ≤-1,故不等式组的解集为{x |x >3或x ≤-1}.9.若关于x 的不等式组⎩⎪⎨⎪⎧x -1>a 2,x -4<2a 解集不是空集,则实数a 的取值X 围是-1<a <3.解析:依题意有⎩⎪⎨⎪⎧x >1+a 2,x <4+2a ,要使不等式组的解集不是空集,应有a 2+1<4+2a ,即a 2-2a -3<0,解得-1<a <3.三、解答题10.求下列不等式的解集. (1)-2x 2+x +12<0;(2)3x 2+5≤3x ; (3)9x 2-6x +1>0.解:(1)原不等式可以化为2x 2-x -12>0.∵方程2x 2-x -12=0的解是:x 1=1-54,x 2=1+54,∴原不等式的解集是{x |x <1-54或x >1+54}.(2)原不等式变形为3x 2-3x +5≤0. ∵Δ<0,∴方程3x 2-3x +5=0无解. ∴不等式3x 2-3x +5≤0的解集是∅.∴原不等式的解集是∅.(3)∵Δ=0,∴方程9x 2-6x +1=0有两个相等实根x 1=x 2=13,∴不等式9x 2-6x +1>0的解集为{x |x ≠13}.11.已知f (x )=x 2-⎝⎛⎭⎫a +1a x +1,(1)当a =12时,解不等式f (x )≤0;(2)若a >0,解关于x 的不等式f (x )≤0.解:(1)当a =12时,不等式为f (x )=x 2-52x +1≤0,∴⎝⎛⎭⎫x -12(x -2)≤0, ∴不等式的解集为(2)∵f (x )=⎝⎛⎭⎫x -1a (x -a )≤0, 当0<a <1时,有1a>a ,∴不等式的解集为当a >1时,有1a<a ,∴不等式的解集为当a =1时,不等式的解集为{x |x =1}.——能力提升类——12.已知函数f (x )=⎩⎪⎨⎪⎧x 2-4x +3,x ≤0,-x 2-2x +3,x >0,则不等式f (a 2-4)>f (3a )的解集为( B )A .(2,6)B .(-1,4)C .(1,4)D .(-3,5)解析:作出函数f (x )的图象,如右图所示,则函数f (x )在R 上是单调递减的.由f (a 2-4)>f (3a ),可得a 2-4<3a ,整理得a 2-3a -4<0,即(a +1)(a -4)<0,解得-1<a <4.所以不等式的解集为(-1,4).13.关于x 的不等式x 2-2ax -8a 2<0(a >0)的解集为(x 1,x 2),且x 2-x 1=15,则a =( A ) A .52B .72C .154D .152解析:由条件知x 1,x 2为方程x 2-2ax -8a 2=0的两根,则x 1+x 2=2a ,x 1x 2=-8a 2. 由(x 2-x 1)2=(x 1+x 2)2-4x 1x 2=(2a )2-4×(-8a 2)=36a 2=152,解得a =52.14.设函数f (x )=⎩⎪⎨⎪⎧x 2-4x +6,x ≥0,x +6,x <0,则不等式f (x )>f (1)的解集是(-3,1)∪(3,+∞).解析:f (1)=12-4×1+6=3,不等式即为f (x )>3.①当x ≥0时,不等式即为⎩⎪⎨⎪⎧x 2-4x +6>3,x ≥0,解得⎩⎪⎨⎪⎧x >3或x <1,x ≥0,即x >3或0≤x <1;②当x <0时,不等式即为⎩⎪⎨⎪⎧x +6>3,x <0,解得-3<x <0.综上,原不等式的解集为(-3,1)∪(3,+∞). 15.已知函数y =ax 2+2ax +1的定义域为R . (1)求a 的取值X 围. (2)若函数的最小值为22,解关于x 的不等式x 2-x -a 2-a <0. 解:(1)因为函数y =ax 2+2ax +1的定义域为R ,所以ax 2+2ax +1≥0恒成立. 当a =0时,1≥0,不等式恒成立;当a ≠0时,则⎩⎪⎨⎪⎧a >0,Δ=4a 2-4a ≤0,解得0<a ≤1. 综上,0≤a ≤1. (2)因为函数的最小值为22, 所以y =ax 2+2ax +1的最小值为12,因此4a -4a 24a =12(a ≠0),解得a =12.于是不等式可化为x 2-x -34<0,即4x 2-4x -3<0,解得-12<x <32.故不等式x 2-x -a 2-a <0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪-12<x <32.。
高中数学 第三章 不等式章末复习课练习(含解析)新人教A版必修5-新人教A版高二必修5数学试题
第三章章末复习课[整合·网络构建][警示·易错提醒]1.不等式的基本性质不等式的性质是不等式这一章内容的理论基础,是不等式的证明和解不等式的主要依据.因此,要熟练掌握和运用不等式的八条性质.2.一元二次不等式的求解方法(1)图象法:由一元二次方程、一元二次不等式及二次函数的关系,共同确定出解集.(2)代数法:将所给不等式化为一般式后借助分解因式或配方求解.当m<n时,若(x-m)(x-n)>0,则可得x>n或x<m;若(x-m)(x-n)<0,则可得m <x<n.有口诀如下:大于取两边,小于取中间.3.二元一次不等式(组)表示的平面区域(1)二元一次不等式(组)的几何意义:二元一次不等式(组)表示的平面区域.(2)二元一次不等式表示的平面区域的判定:对于任意的二元一次不等式Ax+By+C>0(或<0),无论B 为正值还是负值,我们都可以把y 项的系数变形为正数,当B >0时,①Ax +By +C >0表示直线Ax +By +C =0上方的区域;②Ax +By +C <0表示直线Ax +By +C =0下方的区域.4.求目标函数最优解的两种方法(1)平移直线法.平移法是一种最基本的方法,其基本原理是两平行直线中的一条上任意一点到另一条直线的距离相等;(2)代入检验法.通过平移法可以发现,取得最优解对应的点往往是可行域的顶点,其实这具有必然性.于是在选择题中关于线性规划的最值问题,可采用求解方程组代入检验的方法求解.5.运用基本不等式求最值,把握三个条件(易错点) (1)“一正”——各项为正数;(2)“二定”——“和”或“积”为定值; (3)“三相等”——等号一定能取到.专题一 不等关系与不等式的基本性质1.同向不等式可以相加,异向不等式可以相减;但异向不等式不可以相加,同向不等式不可以相减.(1)若a >b ,c >d ,则a +c >b +d ; (2)若a >b ,c <d ,则a -c >b -a .2.左右同正不等式:同向的不等式可以相乘,但不能相除;异向不等式可以相除,但不能相乘.(1)若a >b >0,c >d >0,则ac >bd ; (2)若a >b >0,0<c <d ,则a c >bd.3.左右同正不等式,两边可以同时乘方或开方:若a >b >0,则a n >b n或n a >nb . 4.若ab >0,a >b ,则1a <1b ;若ab <0,a >b ,则1a >1b.[例1] 已知a >0,b >0,且a ≠b ,比较a 2b +b 2a 与a +b 的大小.解:因为⎝ ⎛⎭⎪⎫a 2b +b 2a -(a +b )=a 2b -b +b 2a -a = a 2-b 2b +b 2-a 2a =(a 2-b 2)⎝ ⎛⎭⎪⎫1b -1a =(a 2-b 2)a -b ab =(a -b )2(a +b )ab,因为a >0,b >0,且a ≠b , 所以(a -b )2>0,a +b >0,ab >0,所以⎝ ⎛⎭⎪⎫a 2b +b 2a -(a +b )>0,即a 2b +b 2a >a +b .归纳升华不等式比较大小的常用方法(1)作差比较法:作差后通过分解因式、配方等手段判断差的符号得出结果. (2)作商比较法:常用于分数指数幂的代数式. (3)乘方转化的方法:常用于根式比较大小. (4)分子分母有理化. (5)利用中间量.[变式训练] (1)已知0<x <2,求函数y =x (8-3x )的最大值; (2)设函数f (x )=x +2x +1,x ∈[0,+∞),求函数f (x )的最小值. 解:(1)因为0<x <2,所以0<3x <6,8-3x >0, 所以y =x (8-3x )=13×3x ·(8-3x )≤13⎝ ⎛⎭⎪⎫3x +8-3x 22=163,当且仅当3x =8-3x ,即x =43时,取等号,所以当x =43时,y =x (8-3x )有最大值为163.(2)f (x )=x +2x +1=(x +1)+2x +1-1,因为x ∈[0,+∞),所以x +1>0,2x +1>0, 所以x +1+2x +1≥2 2. 当且仅当x +1=2x +1, 即x =2-1时,f (x )取最小值. 此时f (x )min =22-1.专题二 一元二次不等式的解法 一元二次不等式的求解流程如下: 一化——化二次项系数为正数.二判——判断对应方程的根. 三求——求对应方程的根. 四画——画出对应函数的图象. 五解集——根据图象写出不等式的解集. [例2] (1)解不等式:-1<x 2+2x -1≤2; (2)解不等式a (x -1)x -2>1(a ≠1).解:(1)原不等式等价于⎩⎪⎨⎪⎧x 2+2x -1>-1,x 2+2x -1≤2,即⎩⎪⎨⎪⎧x 2+2x >0, ①x 2+2x -3≤0. ② 由①得x (x +2)>0,所以x <-2或x >0; 由②得(x +3)(x -1)≤0, 所以-3≤x ≤1.将①②的解集在数轴上表示出来,如图所示.求其交集得原不等式的解集为{x |-3≤x <-2或0<x ≤1}.(2)原不等式可化为a (x -1)x -2-1>0,即(a -1)⎝⎛⎭⎪⎫x -a -2a -1(x -2)>0(*), ①当a >1时,(*)式即为⎝⎛⎭⎪⎫x -a -2a -1(x -2)>0,而a -2a -1-2=-a a -1<0,所以a -2a -1<2,此时x >2或x <a -2a -1. ②当a <1时,(*)式即为⎝⎛⎭⎪⎫x -a -2a -1(x -2)<0, 而2-a -2a -1=aa -1, 若0<a <1,则a -2a -1>2,此时2<x <a -2a -1; 若a =0,则(x -2)2<0,此时无解; 若a <0,则a -2a -1<2,此时a -2a -1<x <2. 综上所述,当a >1时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <a -2a -1或x >2; 当0<a <1时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪2<x <a -2a -1; 当a =0时,不等式的解集为∅; 当a <0时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪a -2a -1<x <2.归纳升华含参数的一元二次不等式的分类讨论(1)对二次项系数含有参数的一元二次不等式,要注意对二次项系数是否为零进行讨论,特别当二次项系数为零时需转化为一元一次不等式问题来求解.(2)对含参数的一元二次不等式,在其解的情况不明确的情况下,需要对其判别式分Δ>0,Δ=0,Δ<0三种情况并加以讨论.(3)若含参数的一元二次不等式可以转化成用其根x 1,x 2表示的形如a (x -x 1)(x -x 2)的形式时,往往需要对其根分x 1>x 2、x 1=x 2,x 1<x 2三种情况进行讨论,或用根与系数的关系帮助求解.[变式训练] 定义在(-1,1)上的奇函数f (x )在整个定义域上是减函数,且f (1-a )+f (1-a 2)<0,某某数a 的取值X 围.解:因为f (x )的定义域为(-1,1),所以⎩⎪⎨⎪⎧-1<1-a <1,-1<1-a 2<1, 所以⎩⎨⎧0<a <2,-2<a <2且a ≠0,所以0<a <2,①原不等式变形为f (1-a )<-f (1-a 2). 由于f (x )为奇函数,有-f (1-a 2)=f (a 2-1), 所以f (1-a )<f (a 2-1). 又f (x )在(-1,1)上是减函数, 所以1-a >a 2-1,解得-2<a <1.② 由①②可得0<a <1, 所以a 的取值X 围是(0,1). 专题三 简单的线性规划问题 线性规划问题在实际中的类型主要有:(1)给定一定数量的人力、物力资源,求如何运用这些资源,使完成任务量最大,收到的效益最高;(2)给定一项任务,问怎样统筹安排,使得完成这项任务耗费的人力、物力资源最少. [例3] 某厂用甲、乙两种原料生产A ,B 两种产品,制造1 t A ,1 t B 产品需要的各种原料数、可得到利润以及工厂现有各种原料数如下表:原料 每种产品所需原料/t现有原料数/tAB甲 2 1 14 乙 1 3 18 利润/(万元/t)53____(1)在现有原料条件下,生产A ,B 两种产品各多少时,才能使利润最大?(2)每吨B 产品的利润在什么X 围变化时,原最优解不变?当超出这个X 围时,最优解有何变化?解:(1)生产A ,B 两种产品分别为x t ,y t ,则利润z =5x +3y ,x ,y 满足⎩⎪⎨⎪⎧2x +y ≤14.x +3y ≤18,x ≥0,y ≥0,作出可行域如图所示:当直线5x +3y =z 过点B ⎝ ⎛⎭⎪⎫245,225时,z 取最大值3715,即生产A 产品 245 t ,B 产品 225t 时,可得最大利润.(2)设每吨B 产品利润为m 万元,则目标函数是z =5x +my ,直线斜率k =-5m,又k AB =-2,k CB =-13,要使最优解仍为B 点,则-2≤-5m ≤-13,解得52≤m ≤15.归纳升华解答线性规划应用题的步骤(1)列:设出未知数,列出约束条件,确定目标函数. (2)画:画出线性约束条件所表示的可行域.(3)移:在线性目标函数所表示的一组平行线中,利用平移的方法找出与可行域有公共点且纵截距最大或最小的直线.(4)求:通过解方程组求出最优解. (5)答:作出答案.[变式训练] 已知x >0,y >0,x +2y +2xy =8,则x +2y 的最小值是( ) A .3B .4C.92D.112解析:法一:依题意得,x +1>1,2y +1>1,易知(x +1)·(2y +1)=9,则(x +1)+(2y +1)≥2(x +1)(2y +1)=29=6,当且仅当x +1=2y +1=3,即x =2,y =1时,等号成立,因此有x +2y ≥4,所以x +2y 的最小值为4.法二:由题意得,x =8-2y 2y +1=-(2y +1)+92y +1=-1+92y +1, 所以x +2y =-1+92y +1+2y =-1+92y +1+2y +1-1,≥292y +1·(2y +1)-2=4,当且仅当2y +1=3,即y =1时,等号成立. 答案:B专题四 成立问题(恒成立、恰成立等)[例4] 已知函数f (x )=mx 2-mx -6+m ,若对于m ∈[1,3],f (x )<0恒成立,某某数x 的取值X 围.解:因为mx 2-mx -6+m <0, 所以m (x 2-x +1)-6<0, 对于m ∈[1,3],f (x )<0恒成立⇔⎩⎪⎨⎪⎧1×(x 2-x +1)-6<0,3×(x 2-x +1)-6<0, 即为⎩⎪⎨⎪⎧1-212<x <1+212,1-52<x <1+52,计算得出:1-52<x <1+52.所以实数x 的取值X 围:1-52<x <1+52.归纳升华不等式恒成立求参数X 围问题常见解法(1)变更主元法:根据实际情况的需要确定合适的主元,一般将知道取值X 围的变量看作主元. (2)分离参数法:若f (a )<g (x )恒成立,则f (a )<g (x )min ; 若f (a )>g (x )恒成立,则f (a )>g (x )max . (3)数形结合法:利用不等式与函数的关系将恒成立问题通过函数图象直观化.[变式训练] 已知函数y =2x 2-ax +10x 2+4x +6的最小值为1,某某数a 的取值集合.解:由y ≥1即2x 2-ax +10x 2+4x +6≥1⇒x 2-(a +4)x +4≥0恒成立,所以Δ=(a +4)2-16≤0,解得-8≤a ≤0(必要条件). 再由y =1有解,即2x 2-ax +10x 2+4x +6=1有解,即x 2-(a +4)x +4=0有解,所以Δ=(a +4)2-16≥0,解得a ≤-8或a ≥0. 综上即知a =-8或a =0时,y min =1, 故所某某数a 的取值集合是{-8,0}. 专题五 利用分类讨论思想解不等式 [例5] 解关于x 的不等式x -ax -a 2<0(a ∈R). 分析:首先将不等式转化为整式不等式(x -a )(x -a 2)<0,而方程(x -a )(x -a 2)=0的两根为x 1=a ,x 2=a 2,故应就两根a 和a 2的大小进行分类讨论.解:原不等式等价于(x -a )(x -a 2)<0.(1)若a =0,则a =a 2=0,不等式为x 2<0,解集为∅; (2)若a =1,则a 2=1,不等式为(x -1)2<0,解集为∅; (3)若0<a <1,则a 2<a ,故解集为{x |a 2<x <a }; (4)若a <0或a >1,则a 2>a ,故解集为{x |a <x <a 2}. 归纳升华分类讨论思想解含有字母的不等式时,往往要对其中所含的字母进行适当的分类讨论.分类讨论大致有以下三种:(1)对不等式作等价变换时,正确运用不等式的性质而引起的讨论. (2)对不等式(组)作等价变换时,由相应方程的根的大小比较而引起的讨论. (3)对不等式作等价变换时,由相应函数单调性的可能变化而引起的讨论.[变式训练] 已知奇函数f (x )在区间(-∞,+∞)上单调递减,α,β,γ∈R 且α+β>0,β+γ>0,γ+α>0.试判断f (α)+f (β)+f (γ)的值与0的关系.解:因为f(x)为R上的减函数,且α>-β,β>-γ,γ>-α,所以f(α)<(-β),f(β)<f(-γ),f(γ)<f(-α),又f(x)为奇函数,所以f(-β)=-f(β),f(-α)=-f(α),f(-γ)=-f(γ),所以f(α)+f(β)+f(γ)<f(-β)+f(-γ)+f(-α)=-[f(β)+f(γ)+f(α)],所以f(α)+f(β)+f(γ)<0.。
2018秋新版高中数学人教A版必修5习题:第三章不等式 3.2.2 Word版含解析
第2课时一元二次不等式的应用课时过关·能力提升基础巩固1若集合M=(-1,+∞),集合N={x|x(x+2)≤0},则M∩N=().A.[0,2]B.(0,+∞)C.(-1,0]D.(-1,0)解析:N={x|-2≤x≤0},所以M∩N=(-1,0].答案:C2若关于x的不等式x2+mx+1≥0的解集为R,则实数m的取值范围是(). A.m≥2 B.m≤-2C.m≤-2或m≥2D.-2≤m≤2解析:∵不等式x2+mx+1≥0的解集为R,∴Δ=m2-4≤0,即-2≤m≤2.答案:D3若关于x的不等式x2-4x-m≥0对任意x∈(0,1]恒成立,则m的最大值为().A.1B.-1C.-3D.3解析:由x2-4x-m≥0对任意x∈(0,1]恒成立,得m≤x2-4x对任意x∈(0,1]恒成立.设f(x)=x2-4x,则m≤f(x)min,∵f(x)=x2-4x在(0,1]上是减函数,∴f(x)min=f(1)=-3.∴m≤-3.答案:C4若关于x的一元二次方程x2-(t+2)x有两个不相等的实数根则实数的取值范围是答案:(-∞,-5)∪(1,+∞)的定义域是5函数y--解析:由6-x-x2>0,得x2+x-6<0,∴-3<x<2.答案:{x|-3<x<2}6若关于x的不等式x2-2x+3≤a2-2a-1在R上的解集是⌀,则实数a的取值范围是.解析:∵x2-2x-(a2-2a-4)≤0的解集是⌀,∴Δ=4+4(a2-2a-4)<0.∴a2-2a-3<0,∴-1<a<3.答案:(-1,3)7若关于x的一元二次方程x2+(m-3)x+m+5=0的实数根均是正数,则实数m的取值范围是.解析:由题意得----解得-5<m≤-1.答案:(-5,-1]8已知关于x的函数y-的定义域为R,求k的取值范围.解函数y-的定义域为R,即kx2-6kx+(k+8)≥0恒成立.当k=0时,显然8>0恒成立;当k≠0时,则即-解得0<k≤1.综上所述,k的取值范围是[0,1].9某校园内有一块长为800 m,宽为600 m的长方形地面,现要对该地面进行绿化,规划四周种花卉(花卉带的宽度相同),中间种草坪,若要求草坪的面积不小于总面积的一半,求花卉带宽度的范围.解设花卉带的宽度为x m(0<x<300),则草坪的长为(800-2x)m,宽为(600-2x)m.所以草坪的面积为(800-2x)(600-2x).依题意有(800-2x)(600-2x)≥所以(400-x)(300-x)≥60000,整理得x2-700x+60000≥0.解得x≤100或x≥600,又因为0<x<300,所以x的取值范围是0<x≤100,答:花卉带宽度的范围应是0~100m.10你能用一根长为100 m的绳子围成一个面积大于600 m2的矩形吗?解设围成的矩形一边的长为x m,则另一边的长为(50-x)m,且0<x<50.由题意,得围成矩形的面积S=x(50-x)>600,即x2-50x+600<0,解得20<x<30.所以,当矩形一边的长在(20,30)的范围内取值时,能围成一个面积大于600m2的矩形.能力提升1设M={x|x2-x≤0},若函数f(x)=ln(1-x)的定义域为N,则M∩N=().A.[0,1)B.(0,1)C.[0,1]D.(-1,0]解析:M={x|0≤x≤1},N={x|x<1},所以M∩N={x|0≤x<1}=[0,1).答案:A2若集合A={x|ax2-ax+1<0}=⌀,则实数a的取值集合为().A.{a|0<a<4}B.{a|0≤a<4}C.{a|0<a≤4}D.{a|0≤a≤4}或a=0.解析:依题意应有或a=0,即-解得0≤a≤4.答案:D3某产品的总成本为C(单位:万元),它与产量x(单位:台)的关系是C=3 000+20x-0.1x2,其中x∈(0,240),且x为正整数,若每台售价为25万元,则生产厂家不亏本的最低产量是().A.60台B.90台C.120台D.150台解析:由题意,有25x-C≥0,即25x-3000-20x+0.1x2≥0,解此不等式,得x≥150,且x为正整数或x≤-200(舍去).答案:D4若关于x的不等式ax2+bx+c>0的解集是(-∞,-1)∪(3,+∞),则对函数f(x)=ax2+bx+c,下列不等式成立的是().A.f(4)>f(0)>f(1)B.f(4)>f(1)>f(0)C.f(0)>f(1)>f(4)D.f(0)>f(4)>f(1)解析:由题意知-1,3是方程ax2+bx+c=0的两根,且a>0,对二次函数f(x)=ax2+bx+c来说,其对称轴x=且开口向上.由于|4-1|>|1-0|,∴f(4)>f(0)>f(1).答案:A5若关于x的方程有一个正实数根和一个负实数根则实数的取值范围是解析:由题意得---解得0<m<1.答案:(0,1)6若点P(m,1)到直线3x+4y=0的距离大于1,则实数m的取值范围是.解析:点P(m,1)到直线3x+4y=0的距离d则有即|3m+4|>5,则(3m+4)2>25,解得m<-3或m答案:(-∞,-3)∪★7有纯农药液一桶,倒出8升后用水补满,然后又倒出4升后再用水补满,此时桶中的纯农药液不超过容积的28%,则桶的容积V(单位:升)的取值范围是.解析:设桶的容积为x升,那么第一次倒出8升纯农药液后,桶内还有(x-8)升纯农药液,用水补满后,桶内纯农药液占容积的-第二次又倒出4升药液,则倒出的纯农药液为-升,此时桶内有纯农药液---升.依题意,得(x-8)-≤28%x.由于x>0,因而原不等式化简为9x2-150x+400≤0,即(3x-10)(3x-40)≤0,解得≤x≤答案:升≤V≤升8某蛋糕厂生产某种蛋糕的成本为40元/个,出厂价为60元/个,日销售量为1 000个.为适应市场需求,计划提高蛋糕档次,适度增加成本.若每个蛋糕成本增加的百分率为x(0<x<1),则每个蛋糕的出厂价相应提高的百分率为0.5x,同时预计日销售量增加的百分率为0.8x,已知日利润=(出厂价-成本)×日销售量,且设增加成本后的日利润为y.(1)写出y与x的关系式;(2)为使日利润有所增加,求x的取值范围.解(1)由题意,得y=[60×(1+0.5x)-40×(1+x)]×1000×(1+0.8x)=2000(-4x2+3x+10)(0<x<1).(2)要保证日利润有所增加,则-解得0<x即所以为保证日利润有所增加,x的取值范围是★9当x∈(1,2)时,关于x的不等式x2+mx+4<0恒成立,求m的取值范围.解(方法一)设f(x)=x2+mx+4,则f(x)<0在x∈(1,2)内恒成立等价于解得m≤-5.故所求m的取值范围为(-∞,-5].(方法二)∵x∈(1,2),∴不等式x2+mx+4<0恒成立等价于m<在x∈(1,2)内恒成立.令g(x)=则g(x)在(1,2)内单调递增.故g(x)>g(1)=-5,∴m≤-5.故所求m的取值范围为(-∞,-5].。
高中数学必修5(人教A版)第三章不等式3.5知识点总结含同步练习及答案
答案: A 解析: 只需
1 2
x
)
1 ] 4 7 D.(−∞, − ) 2
B.(−∞,
f (x) min ⩾ g(x) min 即可.
4. 三位同学合作学习,对问题"已知不等式 xy ⩽ ax2 + 2y 2 对于 x ∈ [1, 2] , y ∈ [2, 3] 恒成立,求 a 的 取值范围"提出了各自的解题思路. 甲说:"可视 x 为变量,y 为常量来分析". 乙说:"寻找 x 与 y 的关系,再作分析". 丙说:"把字母 a 单独放在一边,再作分析". 参考上述思路,或自已的其它解法,可求出实数 a 的取值范围是 ( A.[1, +∞)
1. 若关于 x 的方程 9 x + (4 + a) ⋅ 3 x + 4 = 0 有解,则实数 a 的取值范围是 ( A.(−∞, −8) C.[−8, +∞)
答案: B 解析:
)Hale Waihona Puke B.(−∞, −8]D.(−∞, +∞)
由 9 x + (4 + a) ⋅ 3 x + 4 = 0,得 a = −3 x −
答案: B 解析:
)
D.[−1, 6]
B.[−1, +∞)
C.[−1, 4)
y y y 2 − 2( ) ,由 x ∈ [1, 2] , y ∈ [2, 3] ,x 、 y 构成正方形区域, 表示过 x x x y y 原点直线与正方形区域相交时直线的斜率的取值范围,则有 ∈ [1, 3] ,当 = 1 时, x x y y 2 − 2( ) 有最大值为 −1,则 a 的取值范围是 [−1, +∞) x x
人教A版高中数学必修5第三章不等式3.2一元二次不等式及其解法习题
精选文档课时作业一一、选择题1.不等式- 6x2-x+ 2≤ 0 的解集是 ()A. x|-2≤ x≤1B.x|x≤-2或 x≥1 3232C. x|x≥1D.x|x≤-3 222.一元二次方程ax2+ bx+ c= 0 的根为2,- 1,则当 a<0 时,不等式ax2+ bx+c≥ 0的解集为 ()A. { x|x<-1 或 x>2}B. { x|x≤- 1 或 x≥ 2} [根源:www ]C. { x|- 1<x<2}D. { x|- 1≤x≤ 2}3.函数 y= lg(x2- 4)+x2+ 6x的定义域是 ()A. (-∞,- 2)∪ [0,+∞ ) B . (-∞,- 6]∪ (2,+∞ )C. ( -∞,- 2]∪ [0 ,+∞ ) D . (-∞,- 6)∪ [2,+∞ )4.若不等式 mx2+ 2mx- 4<2x2+ 4x 的解集为 R ,则实数 m 的取值范围是 ()A. (- 2,2) B . (- 2,2]C. ( -∞,- 2)∪ [2 ,+∞ )D.( -∞, 2)22)x+k2+3k+ 5= 0(k∈ R)的两个实数根,则225.已知 x1、x2是方程 x - (k-x1+ x2的最大值为 ()5A. 18B. 19C.59 D .不存在二、填空题6.二次函数 y=ax2+ bx+ c 的部分对应点以下表:x-3- 2- 101234y60- 4-6- 6- 406则不等式 ax2+ bx+c>0 的解集是 ______________ .7.不等式- 1<x2+2x- 1≤ 2 的解集是 ________.8.若函数f(x) = lg(ax2- x+ a)的定义域为 R ,则实数a 的取值范围是 ________.三、解答题119.已知 x2+ px+ q<0 的解集为x|-2<x<3,求不等式qx2+ px+1>0 的解集.10.解对于x 的不等式: ax2- 2x+ 1>0.课时作业二一、选择题[根源 :]1.不等式 (x- 1) x+ 2≥ 0 的解集是 ()A. { x|x>1}B. { x|x≥ 1}C. { x|x≥ 1 或 x=- 2} D .{ x|x≥- 2 或 x= 1}x2- 2x-22.不等式x2+x+1 <2 的解集为 ()A. { x|x≠- 2} B . RC. ?1D. { x|x<-2 或 x>2}3.若 a>0 , b>0,则不等式-b<x<a 等价于 ()[根源:].1111A .- b <x<0 或 0< x<aB .- a <x<bC . x<- 1或 x>1D . x<-1或 x>1a bb ax 2- 4x + 6,x ≥ 0, 则不等式 f(x)>f(1) 的解集是 ()4.设函数 f(x) =x + 6, x<0,A . (- 3,1)∪ (3,+∞ )B . (- 3,1)∪(2 ,+∞ )C . ( -1,1)∪ (3,+∞ )D . (-∞,- 3)∪ (1,3)5.对随意 a ∈ [- 1,1] ,函数 f(x) =x 2 + (a -4)x +4- 2a 的值恒大于零,则 x 的取值范围是 ()A . 1<x<3B . x<1 或 x>3C . 1< x<2D . x<1 或 x>2二、填空题6.假如 A ={ x|ax 2- ax + 1<0} = ?,则实数 a 的取值范围为 ________.7.已知 x = 1 是不等式 k 2x 2- 6kx +8≥ 0 的解,则 k 的取值范围是 ________.2x 2- 3x -5 8.不等式 3x 2- 13x + 4≥ 1 的解集为 ________________ .三、解答题x 212= 0 有两个实根为 129.已知函数 f(x)= ax + b (a ,b 为常数 ),且方程 f(x)- x +x =3, x= 4.(1)求函数 f(x)的分析式;(k + 1)x - k(2)设 k>1,解对于 x 的不等式: f(x)<.2- x10.已知函数 f(x)= lg[( a 2- 1)x 2+ (a + 1)x +1] .(1)若 f(x)的定义域为 (-∞,+∞ ),务实数 a 的取值范围; (2)若 f(x)的值域为 (-∞,+∞ ),务实数 a 的取值范围.课时作业一答案1. 答案 B2. 答案 D3. 答案 B4. 答案 B5. 答案 A二、填空题6. 答案 { x|x<- 2 或 x>3} 7. 答案 { x|- 3≤ x<- 2 或 0< x ≤ 1}1 8. 答案 a>2三、解答题9. 解 ∵ x 2+ px +q<0 的解集为1 1,x|- <x< 32∴ -1, 1是方程 x 2+ px + q =0 的两实数根,2 31113-2=- pp = 6由根与系数的关系得, ∴, 1× - 1= q132q =- 621 2 1∴ 不等式 qx+ px +1>0 可化为-6 x + x + 1>0,6即 x 2- x -6<0 , ∴ -2<x<3, ∴不等式 qx 2+px + 1>0 的解集为 { x|- 2<x<3} . 10. 解 ① 当 a = 0 时,不等式即-2x + 1>0, ∴ 解集 为 x|x<1;2② 当 a<0 时, = 4- 4a>0 ,此时不等式为 x 2-2x + 1<0,因为方程 x 2- 2x + 1= 0 的两a aa a 1- 1- a 1+ 1- a 1- 1- a 1+ 1- a根分别为a 、 ,且a > a,a.1+ 1- a1- 1- a; ∴ 不等式的解集为 x|a<x<a2 1③ 当 a>0 时,若 0<a<1,则>0,此时不等式即>0.x 2- x +aa∵ 1- 1- a 1+ 1- aa <a,∴ 当 0<a<1 时,不等式解集为x|x<1- 1-a或 x>1+ 1- a.若 a =1,则不等式为 (x - 1)2>0, aa∴ 当 a = 1 时,不等式解集为 { x|x ∈ R 且 x ≠ 1} ;若 a>1 时,则 <0,不等式解集为 R .综上所述,当a<0 时,不等式的解集为1+ 1- a1- 1- a ;xa<x<a当 a =0 时,不等式的解集为x x< 1;2当 0<a<1 时,不等式的解集为x x< 1- 1- a1+ 1- a或 x> a;a当 a =1 时,不等式的解集为 { x |x ∈R 且 x ≠ 1 } ;当 a>1 时,不等式的解集为R.课时作业二答案一、选择题1. 答案 C 分析 当 x =- 2 时, 0≥0 建立.当 x>- 2 时,原不等式变成 x - 1≥ 0,即 x ≥ 1.∴ 不等式的解集为 { x|x ≥1 或 x =- 2} .2. 答案 A分析 原不等式 ? x 2- 2x - 2<2x 2+ 2x + 2? x 2+ 4x + 4>0? (x + 2)2>0 ,∴ x ≠ - 2. ∴ 不等式的解集为 { x|x ≠- 2} . 3. 答案Dx>0x<0x>0x<0分析 - b<1<a? 11?? x>1或 x<- 1.或 1 或xx <ax >- bx>abx<- 1ab4. 答案 A 分析 f(1) = 12- 4× 1+ 6=3, 当 x ≥0 时, x 2- 4x +6>3 ,解得 x>3 或 0≤ x<1 ; 当 x<0 时, x + 6>3,解得- 3< x<0.因此 f(x)>f(1)的解集是 x ∈ (- 3,1)∪(3,+ ∞ ).5. 答案B 分析 设 g(a)= (x - 2)a + (x 2- 4x +4)g(a)>0 恒建立且 a ∈ [-1,1] ? g(1)= x 2- 3x + 2>0 x<1或x>2? x<1 或 x>3.? x<2或x>3g(- 1)= x 2- 5x + 6>0 二、填空题 6. 答案0≤ a ≤ 4分析 a = 0 时, A = ?;当 a ≠ 0 时, A = ?? ax2- ax + 1≥ 0 恒建立 ?a>0 ? 0<a ≤ 4,Δ≤ 0综上所述,实数 a 的取值范围为 0≤ a ≤ 4. 7.答案k ≤ 2 或 k ≥ 4分析 x = 1 是不等式 k 2x 2- 6kx + 8≥ 0 的解,把 x = 1 代入不等 式得 k 2- 6k + 8≥0,解得 k ≥ 4 或 k ≤2..8. 答案1,1 ∪ (4,9] [根源:]3x 2- 10x + 9分析原不等式化为3x 2-13x +4≤0即 (x 2- 10x + 9)(3x 2- 13x + 4)<0 或 x 2- 10x + 9= 0. 即 (x - 1)(x - 9)(3x - 1)(x - 4)<0 或 (x - 1)(x - 9)= 0, 由下列图可知,原不等式的解为1 3<x ≤1 或 4<x ≤ 9.三、解答题 x 29. 解1 2-x + 12= 0(1)将 x = 3, x = 4 分别代入方程 ax + b9 =- 9,a =- 13a + b 2得解得 ,因此 f( x)= x16 =- 8, b = 22- x (x ≠ 2). 4a + bx 2 (k + 1)x - k x 2-( k +1) x + k(2)不等式即为 2- x < 2-x ,可转变成 2- x <0.即 (x - 2)(x - 1)(x - k)>0.① 当 1< k<2 时,原不等式的解集为 { x|1<x<k 或 x>2} ;② 当 k = 2 时,不等式为 (x - 2) 2(x - 1)>0 ,原不等式的解集为 { x|1<x<2 或 x>2} ; ③ 当 k>2 时,原不等式的解集为 { x|1<x<2 或 x>k} . 综上知, 当 1<k<2 时,不等式的解集为 { x|1<x<k 或 x>2} ; 当 k =2 时,不等式的解集为 { x|1<x<2 或 x>2} ;当 k>2 时,不等式的解集为{ x|1<x<2 或 x>k} .a 2- 1>0, 得 a<- 1 或 a>5.[根源 :]10. 解 (1)当 a 2- 1≠ 0 时,由= (a + 1)2- 4(a 2- 1)<0 ,3 又 a 2- 1= 0 时,得 a = ±=- 1 时,知足题意. a =1 时,不合题意.∴ 实数 a 的取值范围为 5a ≤ - 1 或 a> .(2)只需 t = (a 2- 1)x 2+ ( a + 1)x + 1 3能取到 (0,+ ∞)上的任何值,则 f(x)的值域为 R ,故当 a 2- 1≠ 0 时,有 a 2- 1>0, 得 1<a ≤5.Δ≥ 0,3又当 a 2- 1= 0,即 a = 1 时, t = 2x + 1 切合题意. a =- 1 时不合题意.5全品最新精选资料..。
高中数学必修5(人教A版)第三章不等式3.2知识点总结含同步练习及答案
(2)因为
为整式不等式
解得 x <
3 或 x > 4,所以原不等式的解集为 2 3 ∣ {x ∣ x < 或x > 4} . ∣ 2
4.高次不等式的解法 描述: 高次不等式的解法 解一元高次不等式一般利用数轴穿根法(或称根轴法)求解,其步骤是: (1)将 f (x) 最高次项系数化为正数; (2)将 f (x) 分解为若干个一次因式的乘积或二次不可分因式的乘积; (3)求出各因式的零点,并在数轴上依次标出; (4)从最右端上方起,自右至左依次通过各根画曲线,遇到奇次重根要一次穿过,遇到偶次重根 要穿而不过; (5)记数轴上方为正,下方为负,根据曲线显现出的 f (x) 的值的符号变化规律,写出不等式 的解集. 例题: 解不等式 (x + 2)(x + 1)2 (x − 1)3 (x − 2) < 0 . 解:不等式中各因式的实数根为 −2,−1,1 ,2 . 利用根轴法,如图所示.
2 )(x − a) ⩽ 0 . a 2 2 ① 当 < a ,即 a > √2 时,原不等式的解集为 {x| ⩽ x ⩽ a}. a a 2 2 ② 当 > a ,即 0 < a < √2 时,原不等式的解集为 {x|a ⩽ x ⩽ }. a a 2 ③ 当 = a ,即 a = √2 时,原不等式的解集为 {x|x = √2 } . a 2 (3)当 a < 0 时,原不等式化为 (x − )(x − a) ⩾ 0 . a 2 2 ① 当 < a ,即 −√2 < a < 0 时,原不等式的解集为 {x|x ⩽ 或x ⩾ a} . a a 2 2 ② 当 > a ,即 a < −√2 时,原不等式的解集为 {x|x ⩽ a或x ⩾ }. a a 2 ③ 当 = a ,即 a = −√2 时,原不等式的解集为 R. a
高中数学第三章不等式3.2.1一元二次不等式及其解法练习(含解析)新人教A版必修5
高中数学第三章不等式3.2.1一元二次不等式及其解法练习(含解析)新人教A 版必修5知识点一 解一元二次不等式1.不等式4x 2-11x +6≤0的解集是( )A .⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪34≤x ≤2 B .⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪34≤x <2C .⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≤34或x >2 D .{}x |x <2答案 A解析 原不等式可化为(4x -3)(x -2)≤0, 解得34≤x ≤2.故选A .2.不等式3x 2-x +2<0的解集为( ) A .∅ B .RC .⎩⎪⎨⎪⎧x ⎪⎪⎪ -13<x <12 D .x ∈R ⎪⎪⎪x ≠16答案 A解析 ∵Δ=-23<0,且二次函数y =3x 2-x +2的图象开口向上,∴3x 2-x +2<0的解集为∅.3.不等式x 2-2x -5>2x 的解集是( ) A .{x |x ≥5或x ≤-1} B .{x |x >5或x <-1} C .{x |-1<x <5} D .{x |-1≤x ≤5} 答案 B解析 不等式x 2-2x -5>2x 可化为x 2-4x -5>0,解得x >5或x <-1. 4.不等式0≤x 2-2x -3<5的解集为________. 答案 {x |-2<x ≤-1或3≤x <4} 解析 由x 2-2x -3≥0得x ≤-1或x ≥3; 由x 2-2x -3<5得-2<x <4, ∴-2<x ≤-1或3≤x <4.∴原不等式的解集为{x |-2<x ≤-1或3≤x <4}.知识点二 根与系数关系的应用5.若一元二次方程ax 2+bx +c =0的根为2,-1,则当a <0时,不等式ax 2+bx +c ≥0的解集为( )A .{x |x <-1或x >2}B .{x |x ≤-1或x ≥2}C .{x |-1<x <2}D .{x |-1≤x ≤2} 答案 D解析 由题意知,-ba =1,c a=-2, ∴b =-a ,c =-2a ,又∵a <0,∴x 2-x -2≤0,∴-1≤x ≤2.6.若不等式2x 2+mx +n >0的解集是{x |x >3或x <-2},则m ,n 的值分别是( ) A .2,12 B .2,-2 C .2,-12 D .-2,-12 答案 D解析 由题意知-2,3是方程2x 2+mx +n =0的两个根,所以-2+3=-m 2,-2×3=n2,∴m =-2,n =-12.知识点三 一元二次不等式的应用7.若不等式mx 2+2mx -4<2x 2+4x 的解集为R ,则实数m 的取值范围是( ) A .(-2,2) B .(-2,2]C .(-∞,-2)∪[2,+∞) D.(-∞,2) 答案 B解析 ∵mx 2+2mx -4<2x 2+4x , ∴(2-m )x 2+(4-2m )x +4>0. 当m =2时,4>0,x ∈R ;当m <2时,Δ=(4-2m )2-16(2-m )<0, 解得-2<m <2.此时,x ∈R . 综上所述,-2<m ≤2.8.不等式lg x 2<(lg x )2的解集是________. 答案 {x |x >100或0<x <1}解析 不等式lg x 2<(lg x )2, 可化为(lg x )2-2lg x >0,解得lg x >2或lg x <0,即x >100或0<x <1.易错点一 忽略二次项系数的正负9.求一元二次不等式-x 2+5x -4>0的解集.易错分析 本题易不注意二次项系数为负数错解为x <1或x >4. 解 原不等式等价于x 2-5x +4<0,因为方程x 2-5x +4=0的根为x 1=1,x 2=4, 所以原不等式的解集为{x |1<x <4}.易错点二 忽略不等式对应方程根的大小10.解关于x 的不等式21x 2+4ax -a 2<0.易错分析 当一元二次不等式解集的端点值(即对应方程的根)无法比较大小时,要注意分类讨论.本题易错解为-a 3<x <a7.解 原不等式等价于⎝ ⎛⎭⎪⎫x +a 3⎝ ⎛⎭⎪⎫x -a 7<0. ①当a >0时,a 7>-a3,原不等式的解集为⎩⎪⎨⎪⎧ x ⎪⎪⎪ -a3<⎭⎪⎬⎪⎫x <a7; ②当a <0时,a 7<-a3,原不等式的解集为⎩⎪⎨⎪⎧ x ⎪⎪⎪ a 7<x ⎭⎪⎬⎪⎫<-a3; ③当a =0时,原不等式的解集为∅.一、选择题1.不等式4x 2-12x +9≤0的解集是( ) A .∅ B .RC .⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠32 D .⎩⎨⎧⎭⎬⎫32答案 D解析 原不等式可化为(2x -3)2≤0,故x =32.故选D .2.下列不等式:①x 2>0;②-x 2-x ≤5;③ax 2>2;④x 3+5x -6>0;⑤mx 2-5y <0;⑥ax 2+bx +c >0.其中是一元二次不等式的有( )A .5个B .4个C .3个D .2个 答案 D解析 根据一元二次不等式的定义知①②正确.3.已知函数f (x )=⎩⎪⎨⎪⎧x +2,x ≤0,-x +2,x >0,则不等式f (x )≥x 2的解集是( )A .{x |-1≤x ≤1} B.{x |-2≤x ≤2} C .{x |-2≤x ≤1} D.{x |-1≤x ≤2} 答案 A解析 原不等式可化为⎩⎪⎨⎪⎧x ≤0,x +2≥x 2或⎩⎪⎨⎪⎧x >0,-x +2≥x 2,解得-1≤x ≤0或0<x ≤1,即-1≤x ≤1.故选A .4.设集合M ={x |x 2-2x -3<0,x ∈Z },则集合M 的真子集个数为( ) A .8 B .7 C .4 D .3 答案 B解析 由x 2-2x -3<0得-1<x <3,∴M ={0,1,2}.故选B . 5.不等式x 2-|x |-2<0的解集是( ) A .{x |-2<x <2} B .{x |x <-2或x >2} C .{x |-1<x <1} D .{x |x <-1或x >1} 答案 A解析 令t =|x |,则原不等式可化为t 2-t -2<0, 即(t -2)(t +1)<0.∵t =|x |≥0.∴t -2<0.∴t <2. ∴|x |<2,解得-2<x <2. 二、填空题6.已知全集U =R ,A ={x |x 2-1≥0},则∁U A =________.答案 {x |-1<x <1}解析 ∁U A ={x |x 2-1<0}={x |-1<x <1}. 7.不等式-1<x 2+2x -1≤2的解集是________. 答案 {x |-3≤x <-2或0<x ≤1}解析 ∵⎩⎪⎨⎪⎧x 2+2x -3≤0,x 2+2x >0,∴-3≤x <-2或0<x ≤1.8.已知关于x 的不等式ax 2-bx +c >0的解集是⎝ ⎛⎭⎪⎫-12,2,对于系数a ,b ,c 有下列说法:(1)a >0;(2)b >0;(3)c >0;(4)a +b +c >0; (5)a -b +c >0.其中正确的序号是________. 答案 (3)(5)解析 依题意有a <0且b a =2-12=32>0,c a =2×⎝ ⎛⎭⎪⎫-12=-1<0,故b <0,c >0,a =-c ,b =-32c .令f (x )=ax 2-bx +c ,则f (1)=a -b +c =32c ,f (-1)=a +b +c =-32c ,所以f (1)>0,f (-1)<0,所以a -b +c >0,a +b +c <0.故(3)(5)正确. 三、解答题 9.解下列不等式: (1)2+3x -2x 2>0; (2)x (3-x )≤x (x +2)-1.解 (1)原不等式可化为2x 2-3x -2<0, ∴(2x +1)(x -2)<0.故原不等式的解集是⎩⎨⎧x ⎪⎪⎪⎭⎬⎫-12<x <2.(2)原不等式可化为2x 2-x -1≥0, ∴(2x +1)(x -1)≥0,故原不等式的解集是⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x ≤-12或x ≥1.10.已知关于x 的不等式ax 2+2x +c >0的解集为-13,12,求-cx 2+2x -a >0的解集.解 由ax 2+2x +c >0的解集为-13,12,知a <0,且-13和12是方程ax 2+2x +c =0的两个根.由根与系数的关系,得⎩⎪⎨⎪⎧-13×12=c a,-13+12=-2a ,解得⎩⎪⎨⎪⎧a =-12,c =2.所以-cx 2+2x -a >0,即x 2-x -6<0,解得-2<x <3.所以-cx 2+2x -a >0的解集为{x |-2<x <3}.。
2018秋新版高中数学人教A版必修5习题:第三章不等式 3.2.1 Word版含解析
3.2 一元二次不等式及其解法 第1课时 一元二次不等式及其解法课时过关·能力提升基础巩固1不等式x 2>1的解集是( ).A.{x|x>1}B.{x|x<1}C.{x|-1<x<1}D.{x|x>1,或x<-1} 解析:原不等式即为x 2-1>0,其对应方程x 2-1=0的两根为-1,1,故原不等式的解集为{x|x>1,或x<-1}. 答案:D2已知集合A={x|x 2-2x-3≥0},B={x|-2≤x<2},则A ∩B=( ).A .[-2,-1]B .[-1,2)C .[-1,1]D .[1,2) 解析:由已知,可得A={x|x ≥3或x ≤-1},则A ∩B={x|-2≤x ≤-1}=[-2,-1].故选A .答案:A3函数y =√x (x -1)+√x 的定义域为( ).A.{x|x ≥0}B.{x|x ≥1}C.{x|x ≥1}∪{0}D.{x|0≤x ≤1}解析:要使函数有意义,自变量x 的取值需满足{x (x -1)≥0,x ≥0,解得x ≥1或x=0. 答案:C4若关于x 的不等式m (x-1)>x 2-x 的解集为{x|1<x<2},则实数m 的值为 . 解析:原不等式即为x 2-(m+1)x+m<0,其解集为{x|1<x<2},故m=2.答案:25当a>-1时,关于x 的不等式x 2+(a-1)x-a>0的解集是 .解析:原不等式可化为(x+a )(x-1)>0.∴方程(x+a )(x-1)=0的两根为-a ,1.∵a>-1,∴-a<1,∴原不等式的解集为{x|x<-a ,或x>1}.答案:{x|x<-a ,或x>1}6不等式2x 2-x <4的解集为 .答案:{x|-1<x<2}7若x=1是关于x 的不等式k 2x 2-6kx+8≥0的解,则k 的取值范围是 .解析:由x=1是关于x 的不等式k 2x 2-6kx+8≥0的解,把x=1代入不等式得k 2-6k+8≥0,解得k ≥4或k ≤2.答案:(-∞,2]∪[4,+∞)8解不等式:0≤x 2-x-2≤4.解原不等式等价于{x 2-x -2≥0,x 2-x -2≤4.①②解①,得x ≤-1或x ≥2;解②,得-2≤x ≤3.所以原不等式的解集为{x|x ≤-1,或x ≥2}∩{x|-2≤x ≤3}={x|-2≤x ≤-1,或2≤x ≤3}.9已知二次函数y=x 2+px+q ,当y<0时,有−12<x <13,解不等式qx2+px +1>0.解∵不等式x 2+px+q<0的解集为{x |-12<x <13}, ∴方程x 2+px+q=0的两根为−12和13.∴p=−(-12+13)=16,q =−12×13=−16.∴不等式qx 2+px+1>0即为16x2−16x −1<0.∴所求不等式的解集为{x|-2<x<3}. 能力提升1不等式x 2+6x+10<0的解集是( ).A.⌀B.RC.{x|x>5}D.{x|x<2} 解析:原不等式对应方程的判别式Δ=62-4×10<0,故原不等式的解集为⌀.答案:A2若集合A={x|3x-2-x 2<0},B={x|x-a<0},且B ⊆A ,则a 的取值范围是( ).A.a ≤1B.1<a ≤2C.a>2D.a ≤2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2课时不等式的性质
课时过关·能力提升
基础巩固
1若a>b,ac<bc,则().
A.c>0
B.c<0
C.c=0
D.以上均有可能
答案:B
2若a<b,则下列不等式成立的是().
A
C.2-a>2-b
D.2a>2b
答案:C
3若a>b与同时成立则
A.a>b>0
B.a>0>b
C
解析:∵a>b,∴a-b>0.
又
又a>b,∴a>0>b.
答案:B
4若a>b>c,则
--
的值是
A.正数
B.非正数
C.非负数
D.不确定
解析:
-------
--
-
--
又∵a-c>0,b-c>0,a-b>0,
答案:A
5如果a+b>0,b<0,那么a,b,-a,-b的大小关系是().
A.a>b>-b>-a
B.a>-b>-a>b
C.a>-b>b>-a
D.a>b>-a>-b
解析:∵a+b>0,b<0,∴a>-b>0,
-a<b<0,∴a>-b>b>-a.
答案:C
6在△ABC中,A,B,C分别是△ABC的三个内角,若A则的取值范围是
解析:∵A+B+C=π,A
∴B+C
∴B-C=B-
又0<B
∴即
答案:-
7若x∈R,则与的大小关系为
解析:----≤0,
答案:
8给出四个条件:①b>0>a;②0>a>b;③a>0>b;④a>b>0.其中能推出成立的是答案:①②④
9已知f(x)=3x2-x+1,g(x)=2x2+x-1,x∈R,试比较f(x)与g(x)的大小.
解f(x)-g(x)=(3x2-x+1)-(2x2+x-1)=3x2-x+1-2x2-x+1=x2-2x+2=(x-1)2+1.
∵x∈R,∴(x-1)2≥0.
∴(x-1)2+1>0.∴f(x)>g(x).
10已知c>a>b>0,求证
--
证明
-------
∵c>a>b>0,∴c-a>0,c-b>0,a-b>0.
能力提升
1设a,b是非零实数,若a<b,则下列不等式成立的是().
A.a2<b2
B.ab2<a2b
C
解析:A显然不成立;B中,ab2-a2b=ab(b-a),无法确定该差的正负,所以B不成立;C中-∵a<b,∴a-b<0.又a≠0,b≠0,∴a2b2>0.
即故C成立;D中-也无法判断该差的正负,故D不成立.
答案:C
2已知a,b>0,且a≠1,b≠1.若log a b>1,则().
A.(a-1)(b-1)<0
B.(a-1)(a-b)>0
C.(b-1)(b-a)<0
D.(b-1)(b-a)>0
解析:当0<a<1时,由log a b>1得b<a.
∵a<1,∴b<a<1,∴b-a<0,b-1<0,a-1<0.
∴(a-1)(b-1)>0,(a-1)(a-b)<0,(b-a)(b-1)>0.
∴排除A,B,C.
当a>1时,由log a b>1得b>a>1.
∴b-a>0,b-1>0.∴(b-1)(b-a)>0.故选D.
答案:D
★3已知三个不等式:ab>0,bc-
ad>0
其中均为实数用其中两个不等式作为条件余下的一个不等式作为结论组成一个命题可组成的正确命题A.0 B.1 C.2 D.3
解析:设ab>0为①,bc-ad>0为②为③,
若①②成立,则
即即③成立;
若①③成立,则a-
即bc-ad>0,即②成立;
若②③成立,则由③得-
由②bc-ad>0得ab>0,
即①成立.故正确结论的个数为3,选D.
答案:D
4已知a,b,c为不全相等的实数,如果P=a2+b2+c2+3,Q=2(a+b+c),那么P与Q的大小关系是.
解析:P-Q=a2+b2+c2+3-2(a+b+c)
=(a2-2a+1)+(b2-2b+1)+(c2-2c+1)
=(a-1)2+(b-1)2+(c-1)2.
由于a,b,c为不全相等的实数,则a=b=c=1不成立,
则(a-1)2≥0,(b-1)2≥0,(c-1)2≥0中的等号不同时成立,则(a-1)2+(b-1)2+(c-1)2>0,故P>Q.答案:P>Q
★5(1)已知角α,β,若则的取值范围是
(2)若6<a<12,15<b<36,则的取值范围是
解析:(1)∵α<β,∴α-β<0.∵β
又α>
∴-π<α-β<0.
(2)∵15<b<36,
又6<a<12,即
答案:(1)(-π,0)(2
6已知a>0,且a≠1,M=log a(a3+1),N=log a(a2+1),试比较M与N的大小.
解当a>1时,a3+1>a2+1,此时y=log a x在(0,+∞)内为增函数,∴log a(a3+1)>log a(a2+1),即M>N;
当0<a<1时,a3+1<a2+1,此时y=log a x在(0,+∞)内为减函数,
∴log a(a3+1)>log a(a2+1),即M>N.
综上,当a>0,且a≠1时,总有M>N.
7已知a>b>0,m>0,求证
-
证明
∵a>b>0,m>0,∴b-a<0,a+m>0,
★8甲、乙两家饭馆的老板同去超市购买两次大米,这两次大米的价格不同,两家饭馆老板购买的方式也不同,其中甲每次购进100 kg大米,而乙每次用去100元钱.问:谁的购买方式更合算?
解设两次大米的价格分别为a元/千克,b元/千克(a,b>0,a≠b),则甲两次购买大米的平均价格
是元/千克);乙两次购买大米的平均价格是元/千克).
∴乙饭馆的老板购买大米的方式更合算.。