2017-2018年湘教版八年级数学下册 第3章 图形与坐标 3.3 轴对称和平移的坐标表示(第1课时)教案 (精品)
2020最新湘教版八年级数学下册电子课本课件【全册】
第1章 直角三角形
2020最新湘教版八年级数学下册电 子课本课件【全册】
1.1 直角三角形的性质和判定 (Ⅰ)
2020最新湘教版八年级数学下册电 子课本课件【全册】
2020最新湘教版八年级数学下册 电子课本课件【页 0088页 0119页 0150页 0191页 0222页 0224页 0250页 0296页 0334页 0356页 0371页 0387页
第1章 直角三角形 1.2 直角三角形的性质和判定(Ⅱ) 1.4 角平分线的性质 第2章 四边形 2.2 平行四边形 2.4 三角形的中位线 2.6 菱形 IT教室 利用几何画板验证成中心对称的两个图形的性质 第3章 图形与坐标 3.3 轴对称和平移的坐标表示 第4章 一次函数 4.2 一次函数 4.4 用待定系数法确定一次函数表达式 IT教室 用几何画板绘制一次函数的图像 5.1 频数与频率
初中数学八年级下册第3章图形与坐标3.1平面直角坐标系教学
我思 我进步
通过本节课,你有什么收获? 你还存在哪些疑问,和同伴交流.
练习
3.如图是某动物园的部分平面示意图,试建立适当的 平面直角坐标系, 用坐标表示大门、百鸟园、大象馆、 狮子馆和猴山的位置.
解:如图,以大门所在点为原点O,在网格中以过点O
的水平直线和垂直直线分别作为x 轴,y 轴建立平面直
角坐标系.
y
由图可知大门、百鸟园、大象
馆、狮子馆和猴山的位置为:
大门(0,0),百鸟园(5,
2 O1 学校
-5-4-3-2-1 1 2 3 4 5 x -1
B电影院-2 -3
有时还可借助方向和距离(或称方 位) 来刻画两物体的相对位置.
-4 -5 C汽车站
思考
(1)如图,李亮家距学校1000 m,如何用方向和距离来
描述李亮家相对于学校的位置?(2)反过来,学校相对
于李亮家的位置怎样描述呢?
如图,以学校所在位置为原点,分别以正东、正北方向为x
轴, y 轴的正方向,建立平面直角坐标系, 规定1 个单位长
度代表100 m长. 根据题目条件,点A(5,4.5) 是书
北
y 5
A书店
4
店的位置,点B(-2.5,-3)是电影
3
院的位置, 点C(4,-6) 是汽车站 的位置. 在日常生活中, 除了用平面直角 坐标系刻画物体之间的位置关系外,
分析:如图,设H 岛所在的位置 为C,△ABC 是直角三角形, ∠CAB = 90°,利用勾股定理可 以求出BC间的距离.
解:在Rt△ABC 中, ∵ AC = 30海里, AB = 40海里,∠CAB = 90°,
BC AC2 AB2 302 402 50海里.
由于在点B处测得H岛在北偏西 53°6′的方向上, 则∠BCA = 53°6′. 故此时,渔政船在H岛南偏东53°6′ 的方向, 距H岛50海里的位置.
2017-2018学年北师大版八年级数学上册教师用书(pdf版):3.3轴对称与坐标变化
位置如图所示ꎬ线段 M1N1 与 MN 关 于 y 轴 对 称ꎬ 则 点 M
(2) (2n ꎬ3) 、(2n+1 ꎬ0) .
归纳: 先观察给出的点的特点ꎬ再分析各数据之间的关系ꎬ 如和、倍、分等数量关系ꎻ再将对比得出的结论用文字或 数学式子表示出来.
1.如图ꎬ在方格纸中ꎬ有一平行四边形 ABCDꎬ则它关于 x 轴对称的图形的顶点坐标是( 2ꎬ- 1) 、( 4ꎬ- 1) 、( 6ꎬ- 3)
图形变换的运用
【 例 3】 如图所示ꎬ在直角坐标 系中ꎬ第一次将△OAB 变换成 △OA1B1ꎬ 第 二 次 将 △OA1B1 变 换 成 △OA2B2ꎬ 第 三 次 将 △OA2B2 变换成△OA3B3ꎬ已 知 A ( 1ꎬ3)、A1 ( 2ꎬ3)、A2 ( 4ꎬ 3) 、A3( 8ꎬ3) ꎬB( 2ꎬ0) 、B1( 4ꎬ0) 、B2( 8ꎬ0) 、B3( 16ꎬ0) . (1)观察每次变换前后的三角形有何变化ꎬ找出规律ꎬ 按此变换规律再次将△OA3 B3 变换成△OA4 B4 ꎬ则 A4 的 坐标是 ꎬB4 的坐标是 . (2) 若按(1) 找到的规律ꎬ将△OAB 进行了 n 次变换ꎬ 得到△OAn Bn ꎬ推测 An 的坐标是 ꎬBn 的坐标是 . 分析:观察图形分析、对比各点的横坐标和纵坐标ꎬ可 知 An 的横坐标是按 2n 变化的ꎬ 而 Bn 的横坐标是按 2n+1 变化的. 解:(1)(16ꎬ3)、(32ꎬ0)ꎻ
������������
第 3 章 位置与坐标
第 4 课 轴对称与坐标变化
知识目标 重、难点 思维目标
掌握点关于两轴对称的点的坐标特点ꎬ学 习图形的变化与点的坐标变化. 图形坐标变化与图形轴对称之间关系的 探索. 数形结合思想ꎬ发展形象思维能力.
湘教版2018八年级(下册)数学第三章图形与坐标 全章课件
3.判断下列说法是否正确: (1)(2,3)和(3,2)表示同一点;(×) (3)(3,0)是第一象限的点。(×) (4)如图点A为(-2,3)。(×)
Y 0
-2 •A 3
(2)坐标轴上的点的横坐标和纵坐标至少有一个为0;(√ )
X
本节课你收获了什么知识?
第 3章
1. 坐标轴上的点的坐标有何特点?
的A处,渔政船以每小时40海里的速度向东航行,13时 到达B处,并测得H岛的方向是北偏西53°6’,那么此 时渔政船相对于H岛的位置怎样描述呢?
C
H岛
53°6’
A渔政船
B 渔政船
1、根据以下条件画出示意图,标出学校和
小刚家、小强家、小敏家的位置。 小刚家:出校门向东走150米,再向北走200米。 小强家:出校门向西走200米,再向北走350米, 最后向东走50米 小敏家:出校门向南走100米,再向东走300米, 最后向南走75米。
5
4
3 2 1 -4 -3 -2 -1 0 -1 -2 -3 -4 1 2 3 4 5 x
1、点(-1,2)在( ) B
A、第一象限; B、第二象限;
C、第三象限;
D、第四象限
2、若点(X,Y)在第四象限内,则( C ) A、X,Y同是正数 C、X是正数,Y是负数 B、X,Y同是负数 D、X是负数,Y是正数
3.1 平面直角坐标系(2
课时)
3.2 简单图形的坐标表示( 1 课时) 3.3 轴对称和平移的坐标表示( 2 课时)
第3章 图形与坐标 小结与复习(1 课时)
第 3章
1、规定了原点、正方向、单位长度的直线叫数轴。
2.数轴上的点与
实数 之间存在着一一对应关系。
对于下面这个根据教室平面图,你能找到坐在第2 排第5号的李亮同学在教室里的座位吗?
八年级数学下册(湘教版)第3章 图形与坐标 小结与复习3
为
。
-1
y 4
3
●
A(x1,y) 2
A′
1
● -4 -3 -2 -1 0
-1
-2
●
B(x2,y)
A B′
B
●●
●
12345x
-3
1、如图,点A(1,0),B(4,0)则-4AB= 4-1=3
2、如图,点A′(-4,0),B ′ (2,0)-5 则A ′ B ′ =
2-(-4)=6
x轴上两点间距离:点A(x1,0),B( x2 ,0)
用坐标表示平移
知识框架
平
纵轴 y
y轴
面
3
(● 2,3)
直
2
角 坐
原点 1
x轴
标
-4 -3 -2 -1 0 1 2 3 x 横轴
系
-1
-2
1、横坐标刻画了点到原点(或y轴)的水平距离,横坐标 绝对值越大,则说明该点到原点-3(或y轴)越远。
2、纵坐标刻画了点到原点(或x-4轴)的竖直距离,纵坐标
绝对值越大,则说明该点到原点(或x轴)越远。即:纵坐 标越在大平,面说内有明公该共点原点位而置且越互相高垂,直纵的坐两条标数越轴小,构,成说了明平面该直点角位坐标置系.简 称越坐低标。系。
y
3
第二象限
2
(-,1 0 -1
第三象限
-2
(-, -)
-3
-4
12 3 x
第四象限 (+, -)
坐标系中的图形变换
坐标的变化
图象的变化
(x,y) (-x, y) (x,y) (x, -y) (x,y) (-x, -y) (x,y) (x+a,y+b)
《轴对称与坐标变化》教案
《轴对称与坐标变化》教案《《轴对称与坐标变化》教案》这是优秀的教学设计文章,希望可以对您的学习工作中带来帮助!作业内容2017——2018八年级数学教学设计课题名称:轴对称与坐标变化姓名:吕欢工作单位:水城县比德中学学科年级:八年级教材版本:北师大版一、教学难点内容分析七年级上册同学们已经掌握了轴对称图形,那么再平面执教坐标系中关于两条“轴”对称的图形它们的顶点坐标有怎样的关系呢?同学们经过了前几节课的学习,已经学习了怎样确定物体的位置,系统的学习了平面直角坐标系的基本概念,并且能再直角坐标系中表示物体的位置,认识了点与左边之间的对应关系,同时能根据坐标描点,进而连线形成图形。
对于将相应的图顶点坐标按照一定的规律来变化后得到的图形与原图形的位置关系,从而学生自行的探索和发现图形的对称性与坐标变化的情况,本节课中“中心对称图形”作为本节课的拓展知识点与难点,因为同学们还没有认识“中心对称图形”,所以该拓展内容作为了本节课探索的难点。
同时,使用动态PPT演示关于“中心对称图形”成为了我设计的一个难点。
二、教学目标【知识目标】:1、在同一直角坐标系中,感受图形上点的坐标变化与图形的轴对称变换之间的关系.2、经历图形坐标变化与图形轴对称之间关系的探索过程,发展形象思维能力和数形结合意识。
【能力目标】:1.经历探究物体与图形的形状、大小、位置关系和变换的过程,掌握空间与图形的基础知识和基本技能,培养学生的探索能力。
【情感目标】1.丰富对现实空间及图形的认识,建立初步的空间观念,发展形象思维。
2.通过有趣的图形的研究,激发学生对数学学习的好奇心与求知欲,能积极参与数学学习活动。
3.通过“坐标与轴对称”,让学生体验数学活动充满着探索与创造。
教学重点:经历图形坐标变化与图形轴对称之间关系的探索过程,明确图形坐标变化与图形轴对称之间关系。
教学难点:由坐标的变化探索新旧图形之间的变化探索过程,发展形象思维能力和数形结合意识。
八年级数学北师大版上册 第3章《3.3 轴对称与坐标变化》教学设计 教案
课题轴对称与坐标变化课型新课课时数 1 主备教师执教教师教学目标1、在同一直角坐标系中,感受图形上点的坐标变化与图形的轴对称变换之间的关系.2、经历图形坐标变化与图形轴对称之间关系的探索过程,发展形象思维能力和数形结合意识。
教学重点难点教学重点:经历图形坐标变化与图形轴对称之间关系的探索过程,明确图形坐标变化与图形轴对称之间关系。
教学难点:由坐标的变化探索新旧图形之间的变化探索过程,发展形象思维能力和数形结合意识。
教学准备三角板、课件教学过程个性化修改一、引入新课1.什么叫轴对称图形?沿着某一直线对折,直线两旁的部分能够完全重合的图形就是轴对称图形;这条直线称为对称轴2.如何在平面直角坐标系中确定点P的位置?二、自学导航8分钟,完成教材68----69页的内容,并回答以下问题。
1、认真阅读例题,你可以做出怎样的总结?2、关于坐标轴对称的点的坐标有什么特点?3、完成课本P69页第2题。
三、精讲1、△ABC与△A1B1C1在如图所示的直角坐标系中,仔细观察,完成下列各题:①△ABC与△A1B1C1有怎样的位置关系?△ABC 与△A 1B 1C 1关于x 轴对称②关于x 轴对称的两点,它们的横坐标 ,纵坐标 ;2.如右图所示的平面直角坐标系中,第一、二象限内各有一面小旗.① 两面小旗之间有怎样的位置关系?关于y 轴成轴对称。
② 关于y 轴对称的两点,它们的横坐标 ,纵坐标 。
反过来,坐标具有这种关系的点有怎样的位置关系?四、课堂检测1.平面直角坐标系中,点P (2,3)关于x 轴对称的点的坐标为( ).2. 已知点A (a ,1)与点A 1(5,b )关于y 轴对称,则a= ,b= . 讨论:点P (2,-3)到x 轴、y 轴和坐标原点的距离分别多少? 点M (-3,4)到x 轴、y 轴和坐标原点的距离分别多少? 点P(a,b)与坐标原点的距离22b a3. 已知点M (m ,-5). ①点M 到x 轴的距离是____;②若点M 到y 轴的距离是4;那么 m 为____.4. 点P 到x 轴的距离是2.5;到y 轴的距离是4.5. 求点P 的坐标.五、拓展提升在x 轴上有一条河,现准备在河流边上建一个抽水站P ,使得抽。
湘教版初中数学八年级下册课程目录与教学计划表
湘教版初中数学八年级下册课程目录与教学计划表
教材课本目录是一本书的纲领,是教与学的路线图。
不管是做教学计划、实施教学活动,还是做复习安排、工作总结,都离不开目录。
目录是一本书的知识框架,要做到心中有书、胸有成竹,就从目录开始吧!
课程目录教学计划、进度、课时安排
第1章直角三角形
1.1 直角三角形的性质和判定(Ⅰ)
1.2 直角三角形的性质和判定(Ⅱ)
1.3 直角三角形全等的判定
1.4 角平分线的性质
小结与复习
第2章四边形
2.1 多边形
2.2 平行四边形
2.2.1 平行四边形的性质
2.2.2 平行四边形的判定
2.3 中心对称和中心对称图形
2.4 三角形的中位线
2.5 矩形
2.5.1 矩形的性质
2.5.2 矩形的判定
2.6 菱形
2.6.1 菱形的性质
2.6.2 菱形的判定
2.7 正方形
小结与复习
第3章图形与坐标
3.1 平面直角坐标系
3.2 简单图形的坐标表示
3.3 轴对称和平移的坐标表示
小结与复习
第4章一次函数
4.1 函数和它的表示法
4.2 一次函数
4.3 一次函数的图象
4.4 用待定系数法确定一次函数表达式4.5 一次函数的应用
小结与复习
第5章数据的频数分布
5.1 频数与频率
5.2 频数直方图
小结与复习
总复习。
湘教版八年级下册数学知识点总结+讲义
1湘教版八年级下册数学知识点一、直角三角形1、角平分线: 角平分线上的点到这个角的两边的距离相等 如图,∵AD 是∠BAC 的平分线(或∠DAB=∠DAC ),PE ⊥AC ,PF ⊥AB ∴PE=PF角平分线的逆定理; 角内部的点到角两边的距离相等,那么这一点到角的角平分线上。
∵PE ⊥AC ,PF ⊥AB PE=PF ∴点P 在∠BAC 的平分线AD 上2、线段垂直平分线:线段垂直平分线上的点到这条线段两个端点的距离相等 。
∵CD 是线段AB 的垂直平分线,(或E 为AB 的中点,CD ⊥AB 于点E )∴PA=PB3、勾股定理及其逆定理①勾股定理:直角三角形两直角边a 、b 的平方和等于斜边c 的平方,即:求斜边,则22b a c +=;求直角边,则22b c a -=或22a c b -=②逆定理 如果三角形的三边长a 、b 、c 有关系222c b a=+,那么这个三角形是直角三角形 。
分别计算“22b a +”和“2c ”,相等就是Rt △,不相等就不是Rt △。
4、直角三角形全等方法:SAS 、ASA 、SSS 、AAS 、HL 。
HL: 斜边和一条直角边分别对应相等的两个直角三角形全等。
PEDCB Acb aC B A222a b c +=25、直角三角形的其它性质①直角三角形两锐角互余②直角三角形斜边上的中线等于斜边上的一半 如图,在Rt △ABC 中,∵CD 是斜边AB 的中线, ∴CD=AB 21。
②在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半 如图,在Rt △ABC 中,∵∠A=30°, ∴BC=AB 21。
③在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于30° 如图,在Rt △ABC 中,∵BC=AB 21, ∴∠A=30°。
6、直角三角形的判定1、有一个角是直角的三角形是直角三角形。
湘教版初中八年级下册数学 第3章 图形与坐标 知识归纳
三、图形与坐标1.点的对称性:关于x轴对称的点,横坐标相反,纵坐标相等;关于y轴对称的点,横坐标相等,纵坐标相反;关于原点对称的点,横、纵坐标都相反。
若直角坐标系内一点P(a,b),则P关于x轴对称的点为P1(a,-b),P关于y轴对称的点为P2(-a,b),关于原点对称的点为P3(-a,-b)。
解题方法:相等时用“=”连结,相反时两式相加=0。
·已知A、B两点的坐标分别是(-2,3)和(2,3),则下面四个结论:① A、B关于x轴对称;② A、B关于y轴对称;③ A、B关于原点对称;④A、B之间的距离为4。
其中正确的有个。
·已知点A(m-1,3)与点B(2,n-1)关于x轴对称,则m= ,n= 。
·已知点P(3,-1)关于y轴对称点Q的坐标是(a+b,1-b),则b a的值是。
2.坐标平移:左右平移:横坐标右加左减,纵坐标不变;上下平移:横坐标不变,纵坐标上加下减。
例如:若直角坐标系内一点P(a,b)向左平移h个单位,坐标变为P(a-h,b),向右平移h个单位,坐标变为P(a+h,b);向上平移h 个单位,坐标变为P(a,b+h),向下平移h个单位,坐标变为P(a,b -h).如:点A(2,-1)向上平移2个单位,再向右平移5个单位,则坐标变为A(7,1).·将四边形ABCD先向左平移3个单位,再想上平移2个单位,那么点A(3,-2)的对应点A 的坐标是_____.·已知点A(m,n),把它向左平移3个单位后与点B(4,-3)关于y轴对称,则m=__,n=__.·在平面直角坐标系中,点M的坐标为(b,-2b),将点M向左平移2个单位,再向上平移1个单位后得到点N,当点N在第三象限时,则b的取值范围是___.3.在平面直角坐标系中会画轴对称、平移后的图形,并写出图形顶点的坐标。
·在平面直角坐标系中描出点A(3,5)、B(1,1)、C(5,3)的位置,连成△ABC.①作出△ABC关于x轴对称的ΔA B C,111并写出三个顶点的坐标;图3相帅炮②作出△ABC 关于原点O 成中心对称 的222ΔA B C ,并写出三个顶点的坐标; ③将△ABC 向左平移6个单位长度,画出平 移后的333ΔA B C ,并写出三个顶点的坐标; ④求出四边形123BB B B 的面积。
新湘教版八年级数学下册第3章图形与坐标教案
第3章 图形与坐标3.1 平面直角坐标系(1)(第1课时)教学目标:1、知识目标:认识平面直角坐标系,知道点的坐标及象限的含义。
2、能力目标:能够在给定的直角坐标系中,根据点的坐标指出点的位置,会由点的位置写出点的坐标。
3、情感目标:经历画坐标系,由点找坐标等过程,让学生进一步感受“数形结合”的数学思想,感受“类比”和“坐标”的思想,体验将实际问题数学化的过程与方法。
教学重点:平面直角坐标系 教学难点:确定点的坐标 教学过程: 一、复习1、什么是数轴?2、数轴上的点与_______实数一一对应。
3、写出数轴上A 、B 、C 各点的坐标。
二、探究活动1、想一想:在教室里怎样确定李亮同学的位置?AC B-2-12、上电影院看电影,电影票上至少要有几个数字才能确定你的位置?想一想:1、小亮是怎样描述他的位置的?2、小亮可以省去“第组”和“第排”这几个字吗?三、接受新知平面上有公共原点且互相垂直的两条数轴构成平面直角坐标系,简称直角坐标系。
水平方向的数轴称为x轴或横轴,竖直方向的数轴称为y轴或纵轴,它们统称坐标轴。
公共原点O称为坐标原点。
四、确定点的位置1、若平面内有一点P(如图),我们应该如何确定它的位置?(过点P分别作x、y轴的垂线,将垂足对应的数组合起来形成一对有序实数,即为点P的坐标,可表示为P(a,b))2、若已知点Q的坐标为(m,n),该如何确定点P的位置?(分别过x、y轴上表示m、n的点作x、y轴的垂线,两线的交点即为点Q)例:分别在平面内确定点M(-4,5)、P(4,2)的位置,并确定点A、B、C、D、O的坐标。
在建立了平面直角坐标系后,平面上的点与有序实数对一一对应在平面直角坐标系中,两条坐标轴(即横轴和纵轴)把平面分成如图所示的Ⅰ,Ⅱ,Ⅲ,Ⅳ四个区域,我们把这四个区域分别称为第一,二,三,四象限,坐标轴上的点不属于任何一个象限.想一想,原点O 的坐标是什么?x 轴和y 轴上的点的坐标有什么特征?五、例题讲解P85 例题1P85 例题2试说出平面直角坐标系中四个象限的点的坐标有什么特征,并填写下表:点的位置横坐标符号纵坐标符号在第一象限在第二象限在第三象限在第四象限六、练习:(判断:)1、对于坐标平面内的任一点,都有唯一的一对有序实数与它对应.()2、在直角坐标系内,原点的坐标是0.()七、课堂小结:今天我们学到了什么?1、怎样建立坐标系?2、怎样确定点的位置?3、不同位置的点的坐标的特征。
初中数学_3.3中心对称教学设计学情分析教材分析课后反思
八年级下册3.3《中心对称》教学设计一、教学目标:☆知识与技能:了解中心对称、中心对称图形的概念,探索它的基本性质.☆过程与方法经历有关中心对称的观察、操作、欣赏和设计的过程,进一步积累数学活动经验,增强动手实践能力,发展空间观念.☆情感态度价值观发现生活中的数学美,欣赏自然界的中心对称图形;二、教学重点:了解中心对称、中心对称图形的概念,探索它的基本性质教学难点:在参与活动中发展学生观察问题、分析问题、解决问题的科学探究能力;三、教学时间:( 1学时)四、教学过程一、【复习引入】:[活动过程]:1.通过几何画板的动画演示,带领学生回顾旋转的定义以及性质;2.提出问题:当旋转哪些特殊角度会使旋转前后图形有特殊的位置关系?师生互动引出课题;[活动目的]:利用几何画板的演示,教师的提问、追问让学生体会中心对称与旋转之间的从属关系,为后续学习做铺垫;二、【探究新知】☞知识点1:两成中心对称★两图形成中心对称定义:关于这个点对称或中心对称[活动过程]:教师提问:图中两组图形通过怎样的图形变换能够重合?师生互动后利用几何画板演示总结定义,引导学生找出定义中的关键词;[活动目的]:引入定义以后,通过学生找关键词,体会成中心对称是旋转的一种特殊情况;☞知识点2:探索成中心对称两图形的性质★动手画图,探究中心对称的性质请自己画一个图形,选取一个旋转中心,把所画的图形绕旋转中心旋转180°,连接旋转前后一组对应点,你发现了什么?再选几组对应点试一试,并与同伴交流。
★中心对称的性质:[活动过程]:教师提出问题,引导学生通过小组合作画出旋转以后的图形,通过小组作品的展示,总结两图形成中心对称的性质,教师通过几何画板演示,以及学生说理进一步验证,最后学生动手画图;[活动目的]:通过学生的动手操作,经历探索性质的过程,通过几何画板直观演示,加深对性质的认识,最后通过推理证明,让学生感受数学的严谨性,在学生小组合作过程中,培养学生的团队意识.☞知识点3:中心对称图形先独立观察,再小组交流归纳:中心对称图形:[设计过程]:教师提出问题:通过怎样的变换图形能与原图形重合?师生互动总结定义,通过两组练习题进行训练,加深学生对中心对称图形的认识,并进一步举例我们所学过的平面图形中的中心对称图形.[活动目的]:通过几何画板直观演示认识定义,在总结定义关键词时,教师引导学生对比其与两图形成中心对称的区别与联系,发展学生类比学习的意识,通过练习、举例进一步加深学生对知识的理解.☞知识点4:旋转对称图形观看微视频,学习旋转对称图形定义[设计过程]:1.学生自主学习微课,了解旋转对称图形定义;2.举例说明旋转对称图形与中心对称图形之间的联系;[活动目的]:学习新知识的过程中,对比其与中心对称图形的联系,了解二者之间的从属关系,加深对中心对称图形的认识,发展类比学习的意识;三、【效果检测】1.下列图形中,中心对称图形有A. 个B. 个C. 个D. 个2.下列四个图形中,既是轴对称图形又是中心对称图形的是 ( )A. B. C. D.3.如图,与关于成中心对称,下列结论中不成立的是A. B. C. D.4.如图所示是一个中心对称图形,为对称中心,若,,,则的长为.5如图,在平面直角坐标系中,点,,,的坐标分别为,,,.Ⅰ请在图中画出,使得与关于点成中心对称;Ⅱ直接写出(1)中的三个顶点坐标.第3题第4题知者加速;我们把图(1)称作正六边形的基本图,将此基本图不断复制并平移,使得相邻两个基本图的一边重合,这样得到图(2),图(3),,如此进行下去,直至得图(n).(1)将图(n)放在直角坐标系中,设其中第一个基本图的对称中心的坐标为,则;(2)图(n)的对称中心的横坐标为.[活动过程]:学生学习完主要知识后是否达成了本节课的学习目标呢?教师通过效果检测来掌握.同时效果检测完成后教师应及时公布答案,组织学生通过“小组互帮进行对组内学习有困难的同学进行个别帮扶”,及时解决组内个别同学存在的问题.[活动目的]:通过学生自学、小组互帮、教师个别点拨等方式使学生养成独立思考、合作交流、反思质疑的学习习惯,再此过程中教师应对小组讨论给予适当的指导,包括知识的启发引导、学生交流合作中注意的问题及对困难学生的帮助等,使小组合作学习更具实效性.四、【自主建网】★1.通过本节课的学习:你有哪些收获与感悟?2.展示两图形成轴对称实例,体会二者之间联系;[活动过程]:学生回答,教师引导,串联本节课所学知识点;类比轴对称,体会二者之间的联系与区别,发展学生类比学习的意识;【因人作业】必做题:课本84页----1,2,3选做题:课本84页-----4[设计说明]:通过因人作业的设置,让不同层次的学生都能学有所获,能享受到成功的喜悦.《中心对称》学情分析《中心对称》是八下年级数学第三章《图形的平移与旋转》的第三节;学生的知识与技能基础:学生在小学阶段已经学习过平移、旋转.按照课标要求,小学阶段学习平移、旋转应该达到的水平是:通过实例,在方格纸上认识图形的平移,能在方格纸上按水平或垂直方向将简单图形平移;通过实例,在方格纸上认识图形的旋转,能在方格纸上将简单图形旋转90°,升入初中之后,学生在七年级下学期已经学习了轴对称,积累了一定的图形变换的数学活动经验.本章在此基础上,让学生进行观察、分析、画图等活动丰富学生对图形变换的认识;在本节课学习之前,学生已经学习了图形的旋转,掌握了旋转的定义与基本性质,立足于小学的基础和已经有的生活经验,本节课将探索中心对称的相关性质因为学生的基础和学力是有差异的,所以在上课的过程中应该遵循“为了每个学生”的教育教学理念。
湘教版数学八年级下册第三章《图形与坐标》教学设计
湘教版数学八年级下册第三章《图形与坐标》教学设计一. 教材分析湘教版数学八年级下册第三章《图形与坐标》主要内容包括坐标系的建立、坐标轴上的点的坐标、坐标平面内的点的坐标、用坐标表示直线上的点、用坐标表示多边形等。
本章内容是学生进一步理解数学与现实生活的联系,培养学生的空间观念和几何思维的重要章节。
二. 学情分析学生在学习本章内容之前,已经学习了平面几何的基本概念和性质,对几何图形的认知有了一定的基础。
但部分学生对坐标系的理解和运用可能还存在困难,因此,在教学过程中,需要关注学生的学习差异,针对性地进行教学。
三. 教学目标1.理解坐标系的建立和坐标轴上的点的坐标、坐标平面内的点的坐标的概念。
2.学会用坐标表示直线上的点和多边形,培养学生的空间观念和几何思维。
3.培养学生运用坐标解决实际问题的能力。
四. 教学重难点1.坐标系的建立和坐标轴上的点的坐标、坐标平面内的点的坐标的理解。
2.用坐标表示直线上的点和多边形的运用。
五. 教学方法采用问题驱动法、案例教学法、合作学习法等多种教学方法,引导学生通过观察、思考、实践等方式掌握坐标系的相关知识和运用。
六. 教学准备1.教学PPT、教学案例、练习题等教学资源。
2.坐标系模型、几何图形等教具。
七. 教学过程1.导入(5分钟)通过一个实际问题引入坐标系的概念,如:“如何在平面直角坐标系中表示两个城市A和B的位置?”引发学生对坐标系的思考。
2.呈现(10分钟)呈现坐标系的建立过程,引导学生观察坐标轴上的点的坐标、坐标平面内的点的坐标,让学生通过观察、思考,理解坐标系的含义。
3.操练(10分钟)让学生分组讨论,用坐标表示直线上的点和多边形,并选取部分学生进行解答展示,教师点评并指导。
4.巩固(10分钟)针对本节课的重点知识,设计一些练习题,让学生独立完成,教师及时批改并讲解。
5.拓展(10分钟)让学生运用坐标解决实际问题,如:“某商品的原价为100元,现在进行打折促销,打折后的价格是多少?”教师引导学生思考,并给予解答指导。
八年级数学下册 第三章 图形与坐标 轴对称教案 (新版)湘教版 教案
第三章 图形与坐标 轴对称
课题
预设
目标
1、在平面直角坐标系中,探索关于x轴和y轴对称的坐标的规律,能作出关于x轴和y轴对称的图形
教学
重难点
重点:写出关于轴对称的坐标,作出关于轴对称的图形。
难点:掌握图形关于轴对称的坐标变化。
教具准备
直尺坐标系图
知识
图形的坐标表示
教法
学法
合作,探究
教
学
过
程
坐标变化
横坐标
纵坐标
X轴对称
不变
互为相反数
Y轴对称
互为相反数
不变
三、合作探究
图形的轴对称
出示坐标图:
教学P96例题1
四、巩固提高
课堂练习:课本P 97练习1
五、课时小结
轴对称不改变图形的形状和大小,是图形的平移现象。
板
书
设
计
轴对称
坐标变化
横坐标
纵坐标
X轴对称
不变
互为相反数
Y轴称
互为相反数
不变
作业
2、课堂作业:P97习题第2、3题
湘教版初中数学知识点归纳
湘教版初中数学知识点归纳湘教版初中数学知识点归纳七年级上册第一章有理数1.1 具有相反意义的量1.2 数轴、相反数与绝对值1.3 有理数大小的比较1.4 有理数的加法和减法1.5 有理数的乘法和除法1.6 有理数的乘方1.7 有理数的混合运算第二章代数式2.1 用字母表示数2.2 列代数式2.3 代数式的值2.4 整式2.5 整式的加法和减法第三章一元一次方程3.1 建立一元一次方程模型3.2 等式的性质3.3 一元一次方程的解法3.4 一元一次方程模型的应用第四章图形的认识4.1 几何图形4.2 线段、射线、直线4.3 角第五章数据的收集与统计5.1 数据的收集与抽样5.2 统计图七年级下册第一章二元一次方程组1.1 建立二元一次方程组 1.2 二元一次方程组的解法 1.3 二元一次方程组的应用 1.4 三元一次方程组第二章整式的乘法2.1 整式的乘法2.2 乘法公式第三章因式分解3.1 多项式的因式分解3.2 提公因式法3.3 公式法第四章相交线与平行线4.1 平面上两条直线的位置4.2 平移4.3 平行线的性质4.4平行线的判定4.5垂线4.6 两条平行线间的距离第五章轴对称与旋转5.1 轴对称5.2 旋转5.3 图形变换的简单应用八年级上册第一章分式1.1 分式1.2 分式的乘法和除法1.3 整数指数幂1.4 分式的加法和减法1.5 可化为一元一次方程的分式方程第二章三角形2.1 三角形2.2 命题与证明2.3 等腰三角形2.4 线段的垂直平分线2.5 全等三角形2.6 用尺规作图第三章实数3.1 平方根3.2 立方根3.3 实数第四章一元一次不等式(组)4.1 不等式4.2 不等式的基本性质4.3 一元一次不等式的解法4.4 一元一次不等式的应用4.5 一元一次不等式组第五章二次根式5.1 二次根式5.2 二次根式的乘法和除法5.3 二次根式的加法和减法八年级下册第一章直角三角形1.1 直角三角形的性质与判定(1)1.2 直角三角形的性质与判定(2)1.3 直角三角形全等的判定1.4 角平分线的性质第二章四边形2.1 多边形2.2 平行四边形2.3 中心对称和中心对称图形2.4 三角形的中位线2.5 矩形2.6 菱形2.7 正方形第三章图形与坐标3.1 平面直角坐标系3.2 简单图形的坐标表示3.3 轴对称和评议的坐标表示第四章一次函数4.1 函数和它的表示法4.2 一次函数4.3 一次函数的图像4.4 用待定系数法确定一次函数表达式4.5 一次函数的应用第五章频数及其分布5.1 频数与频率5.2 频数直方图九年级上册第一章反比例函数1.1 反比例函数1.2 反比例函数的图像和性质1.3 反比例函数的应用第二章一元二次方程2.1 一元二次方程2.2 一元二次方程的解法2.3 一元二次方程根的判别式2.4 一元二次方程根与系数的关系2.5 一元二次方程的应用第三章图形的相似3.1 比例函数3.2 平行线分线段成比例3.3 相似的图形3.4 相似三角形的判定与性质3.5 相似三角形的应用3.6 位似第四章锐角三角函数4.1 正弦和余弦4.2 正切4.3 解直角三角形4.4 解直角三角形的应用第五章用样本推断总体5.1 总体平均数与方差的估计5.2 统计的简单应用九年级下册第一章二次函数1.1 二次函数1.2 二次函数的图像与性质1.3 不共线三点确定二次函数的表达式1.4 二次函数与一元二次方程的连续1.5 二次函数的应用第二章圆2.1 元的对称性2.2 圆心角、圆周角2.3 垂径定理2.4 过不共线三点作圆2.5 直线与圆的位置关系2.6 弧长和扇形面积2.7 正多边形与圆第三章投影与视图3.1 投影3.2 直棱柱、圆锥的侧面展开图3.3 三视图第四章概率4.1 随机事件与可能性4.2 概率及其计算4.3 用频率估计概率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
五、作业布置
A组2
感受坐标平面内图形轴对称和平移变换时的坐标变换;了解坐标平面内图形左、右或上、下平移时的对应点之间的坐标关系;会求与已知点左、右 或 上、下平移后的像的坐标
课后反思
合作交流解决探究
如图3-18,在平面直角坐标系中,点A的坐标为(3,2).
(1)分别作出点A关于x轴,y轴的对称点A′,A″,
并写出它们的坐标;
比较:点A与A′的坐标之间有什么关系?
点A与A″呢?
坐标变化
A(3,2)关于x轴对称A′(3,-2);横坐标不变;纵坐标互为相反数
A(3,2)关于y轴对称A″(-3,2);横坐标互为相反数;纵坐标不变
2.已知矩形ABCD的顶点坐标分别为A(-7,-2),B(-7,-5),C(-3,-5)
D(-3,-2),以y轴为对称轴作轴反射,矩形ABCD的像为矩形A′B′C′D′,求矩形A′B′C′D′的顶点坐标.
3.(1)如果点A(-4,a)与点A′(-4,-2)关于x轴对称,则a的值为
(2)如果点B(-2,2b + 1)与点B′(2,3)关于y轴对称,则b的值为
一般地,在平面直角坐标系中,点(a,b)关于x轴的对称点的坐标为(a,-b),点(a,b)关于y轴的对称点的坐标为(-a,b).
做一做:
如图3-19,在平面直角坐标系中,△ABC的顶点坐标分别为A(2,4),B(1,2),C(5,2).
(1)作出△ABC关于y轴的轴对称图形,并写出其顶点坐标;
(2)作出△ABC关于x轴的轴对称图形,并写出其顶点坐标.
轴对称和平移的坐标表示
教学目标
1.知识与技能:感受坐标平面内图形轴对称和平移变换时的坐标变换;了解坐标平面内图形左、右或上、下平移时的对应点之间的坐标关系;会求与已知点左、右 或 上、下平移后的像的坐标
2.过程与方法:利用平移(左、右或上、下)后对应点之间的坐标关系,分析已知图形的平移关系
3.情感态度与价值观:进一步培养坐标意识与数形结合 的数学思想及空间想象能 力
例题1:如图3-21,求出折线OABCD各转折点的坐标以及它们关于y轴的对称点O′,A′,B′,C′,D′的坐标,并将点O′,A′,B′,C′,D′依次用线段连接起来.
想一想,如果要在平面直角坐标系中画一个轴对称图形,怎样画才较简便?
1.填空.
(1)点B(2,-3)关于x轴ห้องสมุดไป่ตู้称的点的坐标是
(2)点A(-5,3)关于y轴对称的点的坐标是
重点难点
1、重点:坐标平面内图形左、右或上、下平移时的对应点之间的坐标关系
2、难点:利用平移(左、右或上、下)后对应点之间的坐标关系,分析已知图形的平移关系
教学策略
探讨法
教学活动
课前、课中反思
创设情景激情导入
在我们生活中,对称是一种很常见的现象。若把某个成轴对称的图形放在平面直角坐标系中,其对称轴为某条坐标轴,那么,图形上对称的两个点的坐标会有什么关系?