2019高考数学二轮复习课时跟踪检测二十七坐标系与参数方程理

合集下载

坐标系与参数方程典型例题含高考题----答案详细)

坐标系与参数方程典型例题含高考题----答案详细)

选修4-4《坐标系与参数方程》复习讲义一、选考内容《坐标系与参数方程》高考考试大纲要求:1.坐标系:①理解坐标系的作用.②了解在平面直角坐标系伸缩变换作用下平面图形的变化情况.③能在极坐标系中用极坐标表示点的位置,理解在极坐标系和平面直角坐标系中表示点的位置的区别,能进行极坐标和直角坐标的互化.④能在极坐标系中给出简单图形(如过极点的直线、过极点或圆心在极点的圆)的方程.通过比较这些图形在极坐标系和平面直角坐标系中的方程,理解用方程表示平面图形时选择适当坐标系的意义. 2.参数方程:①了解参数方程,了解参数的意义. ②能选择适当的参数写出直线、圆和圆锥曲线的参数方程.二、基础知识归纳总结:1.伸缩变换:设点P(x,y)是平面直角坐标系中的任意一点,在变换⎩⎨⎧>⋅='>⋅=').0(,y y 0),(x,x :μμλλϕ的作用下, 点P(x,y)对应到点)y ,x (P ''',称ϕ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换。

2.极坐标系的概念:在平面内取一个定点O,叫做极点;自极点O引一条射线Ox叫做极轴;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系。

3.点M 的极坐标:设M 是平面内一点,极点O与点M 的距离OM 叫做点M 的极径,记为ρ;以极轴Ox为始边,射线OM 为终边的∠XOM 叫做点M 的极角,记为θ。

有序数对),(θρ叫做点M 的极坐标,记为M ),(θρ.极坐标),(θρ与)Z k )(2k ,(∈+πθρ表示同一个点。

极点O 的坐标为)R )(,0(∈θθ. 4.若0<ρ,则0>-ρ,规定点),(θρ-与点),(θρ关于极点对称,即),(θρ-与),(θπρ+表示同一点。

如果规定πθρ20,0≤≤>,那么除极点外,平面内的点可用唯一的极坐标),(θρ表示;同时,极坐标),(θρ表示的点也是唯一确定的。

四川省成都市2019届高三毕业班第二次诊断性检测数学(理)试题含解析

四川省成都市2019届高三毕业班第二次诊断性检测数学(理)试题含解析

四川省成都市2019届高三毕业班第二次诊断性检测数学(理)试题一、选择题(本大题共12小题,共60.0分)1.设全集U=R,集合A={x|-1<x<3},B={x|x≤-2或x≥1},则A∩(∁U B)=()A. B.C. D. 或2.已知双曲线C:>的焦距为4,则双曲线C的渐近线方程为()A. B. C. D.3.已知向量=(,),=(-3,),则向量在向量方向上的投影为()A. B. C. D. 14.条件甲:a>b>0,条件乙:<,则甲是乙成立的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件5.为比较甲、以两名篮球运动员的近期竞技状态,选取这两名球员最近五场比赛的得分制成如图所示的茎叶图,有以下结论:①甲最近五场比赛得分的中位数高于乙最近五场比赛得分的中位数;②甲最近五场比赛得分平均数低于乙最近五场比赛得分的平均数;③从最近五场比赛的得分看,乙比甲更稳定;④从最近五场比赛的得分看,甲比乙更稳定.其中所有正确结论的编号为()A. B. C. D.6.若,,,且,,则sinβ=()A. B. C. D.7.已知a,b是两条异面直线,直线c与a,b都垂直,则下列说法正确的是()A. 若平面,则B. 若平面,则,C. 存在平面,使得,,D. 存在平面,使得,,8.将函数f(x)的图象上的所有点向右平移个单位长度,得到函数g(x)的图象,若函数g(x)=A sin(ωx+φ)(A>0,ω>0,|φ|<)的部分图象如图所示,则函数f(x)的解析式为()A. B.C. D.9.已知定义域R的奇函数f(x)的图象关于直线x=1对称,且当0≤x≤1时,f(x)=x3,则f()=()A. B. C. D.10.已知a R且为常数,圆C:x2+2x+y2-2ay=0,过圆C内一点(1,2)的直线l与圆C相切交于A,B两点,当弦AB最短时,直线l的方程为2x-y=0,则a的值为()A. 2B. 3C. 4D. 511.用数字0,2,4,7,8,9组成没有重复数字的六位数,其中大于420789的正整数个数为()A. 479B. 480C. 455D. 45612.某小区打算将如图的一直三角形ABC区域进行改建,在三边上各选一点连成等边三角形DEF,在其内建造文化景观.已知AB=20m,AC=10m,则△DEF区域内面积(单位:m2)的最小值为()A. B. C. D.二、填空题(本大题共4小题,共20.0分)13.已知复数z=,a R,若z为纯虚数,则|z|=______.14.已知三棱锥A-BCD的四个顶点都在球O的表面上,若AB=AC=AD=1,BC=CD=BD=,则球O的表面积为______.15.在平面直角坐标系xOy中,定义两点A(x1,y1),B(x2,y2)间的折线距离为d(A,B)=|x1-x2|+|y1-y2|.已知点O(0,0),C(x,y),d(O,C)=1,则的取值范围是______.16.已知F为抛物线C:x2=4y的焦点,过点F的直线l与抛物线C相交于不同的两点A,B,抛物线C在A,B两点处的切线分别是l1,l2,且l1,l2相交于点P,则|PF|+的最小值是______.三、解答题(本大题共7小题,共82.0分)17.已知等比数列{a n}的前n项和为S,公比q>1,且a2+1为a1,a3的等差中项,S3=14.(Ⅰ)求数列{a n}的通项公式(Ⅱ)记b n=a n•log2a n,求数列{b n}的前n项和T n.18.为了让税收政策更好的为社会发展服务,国家在修订《中华人民共和国个人所得税法》之后,发布了《个人所得税专项附加扣除暂行办法》,明确“专项附加扣除”就是子女教育、继续教育大病医疗、住房贷款利息、住房租金赠养老人等费用,并公布了相应的定额扣除标准,决定自2019年1月1日起施行,某机关为了调查内部职员对新个税方案的满意程度与年龄的关系,通过问卷调查,整理数据得2×2()根据列联表,能否有的把握认为满意程度与年龄有关?(2)为了帮助年龄在40岁以下的未购房的8名员工解决实际困难,该企业拟员工贡献积分x(单位:分)给予相应的住房补贴y(单位:元),现有两种补贴方案,方案甲:y=1000+700x;方案乙:,<,<.已知这8名员工的贡献积分为2分,3分,6分,7分,7分,11分,12分,,>12分,将采用方案甲比采用方案乙获得更多补贴的员工记为“A类员工”.为了解员工对补贴方案的认可度,现从这8名员工中随机抽取4名进行面谈,求恰好抽到3名“A类员工”的概率.附:,其中n=a+b+c+d.参考数据:19.如图①,在等腰梯形ABCD中,AB∥CD,E,F分别为AB,CD的中点,CD=2AB=2EF=4,M为DF中点.现将四边形BEFC沿EF折起,使平面BEFC平面AEFD,得到如图②所示的多面体.在图②中,(Ⅰ)证明:EF MC;(Ⅱ)求二面角M-AB-D的余弦值.20.已知椭圆C:(a>b>0)的短轴长为4,离心率为.(Ⅰ)求椭圆C的标准方程;(Ⅱ)设椭圆C的左,右焦点分别为F1,F2,左,右顶点分别为A,B,点M,N为椭圆C上位于x轴上方的两点,且F1M∥F2N,记直线AM,BN的斜率分别为k1,k2,若3k1+2k2=0,求直线F1M的方程.21.已知函数,a R.(Ⅰ)若f(x)≥0,求实数a取值的集合;(Ⅱ)证明:e x+≥2-ln x+x2+(e-2)x.22.在直角坐标系xOy中,直线l的参数方程为(t为参数,α倾斜角),曲线C的参数方程为(β为参数,β[0,π]),以坐标原点O为极点,x轴正半轴为极轴建立极坐标系.(Ⅰ)写出曲线C的普通方程和直线的极坐标方程;(Ⅱ)若直线与曲线C恰有一个公共点P,求点P的极坐标.23.已知函数f(x)=|x-m|-|x+2m|的最大值为3,其中m>0.(Ⅰ)求m的值;(Ⅱ)若a,b R,ab>0,a2+b2=m2,求证:.答案和解析1.【答案】A【解析】解:∁U B={x|-2<x<1};∴A∩(∁U B)={x|-1<x<1}.故选:A.进行交集、补集的运算即可.考查描述法的定义,以及交集、补集的运算.2.【答案】D【解析】解:双曲线C:的焦距为4,则2c=4,即c=2,∵1+b2=c2=4,∴b=,∴双曲线C的渐近线方程为y=x,故选:D.先求出c=2,再根据1+b2=c2=4,可得b,即可求出双曲线C的渐近线方程本题考查双曲线的方程和性质,考查双曲线的渐近线方程的运用,属于基础题3.【答案】A【解析】解:由投影的定义可知:向量在向量方向上的投影为:,又∵,∴=.故选:A.本题可根据投影的向量定义式和两个向量的数量积公式来计算.本题主要考查投影的向量定义以及根据两个向量的数量积公式来计算一个向量在另一个向量上的投影,本题属基础题.4.【答案】A【解析】解:条件乙:,即为⇔若条件甲:a>b>0成立则条件乙一定成立;反之,当条件乙成立不一定有条件甲:a>b>0成立所以甲是乙成立的充分非必要条件故选:A.先通过解分式不等式化简条件乙,再判断甲成立是否推出乙成立;条件乙成立是否推出甲成立,利用充要条件的定义判断出甲是乙成立的什么条件.判断一个条件是另一个条件的什么条件,应该先化简两个条件,再利用充要条件的定义进行判断.5.【答案】C【解析】解:甲的中位数为29,乙的中位数为30,故不正确;甲的平均数为29,乙的平均数为30,故正确;从比分来看,乙的高分集中度比甲的高分集中度高,故正确,不正确.故选:C.根据中位数,平均数,方差的概念计算比较可得.本题考查了茎叶图,属基础题.6.【答案】B【解析】解:,且,可得cosα=-=-.,可得sinαcosβ-cosαsinβ=-,可得cosβ+sinβ=-,即2cosβ+sinβ=-,sin 2β+cos 2β=1,解得sinβ=.故选:B .利用同角三角函数基本关系式求出cosα,通过两角和与差的三角函数化简已知条件,转化求解sinβ即可.本题考查两角和与差的三角函数,同角三角函数基本关系式的应用,是基本知识的考查. 7.【答案】C【解析】解:由a ,b 是两条异面直线,直线c 与a ,b 都垂直,知: 在A 中,若c 平面α,则a 与α相交、平行或a α,故A 错误;在B 中,若c 平面α,则a ,b 与平面α平行或a ,b 在平面α内,故B 错误; 在C 中,由线面垂直的性质得:存在平面α,使得c α,a α,b ∥α,故C 正确;在D 中,若存在平面α,使得c ∥α,a α,b α,则a ∥b ,与已知a ,b 是两条异面直线矛盾,故D 错误. 故选:C .在A 中,a 与α相交、平行或a α;在B 中,a ,b 与平面α平行或a ,b 在平面α内;在C 中,由线面垂直的性质得:存在平面α,使得c α,a α,b ∥α;在D 中,a ∥b ,与已知a ,b 是两条异面直线矛盾.本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题. 8.【答案】C【解析】解:由图象知A=1,=-(-)=,即函数的周期T=π,则=π,得ω=2,即g(x)=sin(2x+φ),由五点对应法得2×+φ=π,得φ=,则g(x)=sin(2x+),将g(x)图象上的所有点向左平移个单位长度得到f(x)的图象,即f(x)=sin[2(x+)+]=sin(2x+)=sin(2x++)=cos(2x+),故选:C.根据图象求出A,ω和φ的值,得到g(x)的解析式,然后将g(x)图象上的所有点向左平移个单位长度得到f(x)的图象.本题主要考查三角函数解析式的求解,结合图象求出A,ω和φ的值以及利用三角函数的图象变换关系是解决本题的关键.9.【答案】B【解析】解:∵f(x)是奇函数,且图象关于x=1对称;∴f(2-x)=f(x);又0≤x≤1时,f(x)=x3;∴.故选:B.根据f(x)的图象关于直线x=1对称,即可得出f(2-x)=f(x),从而得出,再根据f(x)是奇函数,且当0≤x≤1时,f(x)=x3,从而得出.考查奇函数的定义,函数f(x)的图象关于x=a对称时,满足f(2a-x)=f(x),以及已知函数求值的方法.10.【答案】B【解析】解:化圆C:x2+2x+y2-2ay=0为(x+1)2+(y-a)2=a2+1,圆心坐标为C(-1,a),半径为.如图,由题意可得,过圆心与点(1,2)的直线与直线2x-y=0垂直.则,即a=3.故选:B.由圆的方程求出圆心坐标与半径,结合题意,可得过圆心与点(1,2)的直线与直线2x-y=0垂直,再由斜率的关系列式求解.本题考查直线与圆位置关系的应用,考查数形结合的解题思想方法与数学转化思想方法,是中档题.11.【答案】C【解析】解:根据题意,分3种情况讨论:,六位数的首位数字为7、8、9时,有3种情况,将剩下的5个数字全排列,安排在后面的5个数位,此时有3×A55=360种情况,即有360个大于420789的正整数,,六位数的首位数字为4,其万位数字可以为7、8、9时,有3种情况,将剩下的4个数字全排列,安排在后面的4个数位,此时有3×A44=72种情况,即有72个大于420789的正整数,,六位数的首位数字为4,其万位数字为2,将剩下的4个数字全排列,安排在后面的4个数位,此时有A44=24种情况,其中有420789不符合题意,有24-1=23个大于420789的正整数,则其中大于420789的正整数个数有360+72+23=455个;故选:C.根据题意,分3种情况讨论:,六位数的首位数字为7、8、9时,,六位数的首位数字为4,其万位数字可以为7、8、9时,,六位数的首位数字为4,其万位数字为2,分别求出每种情况下的六位数的数目,由加法原理计算可得答案.本题考查排列、组合的应用,涉及分类计数原理的应用,属于基础题.12.【答案】D【解析】解:△ABC是直三角形,AB=20m,AC=10m,可得CB=,DEF是等边三角形,设∠CED=θ;DE=x,那么∠BFE=30°+θ;则CE=xcosθ,△BFE中由正弦定理,可得可得x=,其中tanα=;∴x≥;则△DEF面积S=故选:D.△ABC是直三角形,DEF是等边三角形,AB=20m,AC=10m,CB=,可得∠A=60°,∠B=30°;设∠CED=θ;DE=x,那么∠BFE=30°+θ;则CE=xcosθ,在三角形△BFE中利用正弦定理求解x的最小值,即可求解△DEF区域内面积的最小值.本题考查三角形的面积的求法,考查DEF边长的求法,角的表示求解最值问题,是中档题,解题时要注意正弦定理的合理运用.13.【答案】1【解析】解:∵z==是纯虚数,∴,即a=-1.∴z=i,则|z|=1.故答案为:1.利用复数代数形式的乘除运算化简,由实部为0且虚部不为0求得a值,得到复数z,则答案可求.本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.14.【答案】3π【解析】解:如图,取CD中点E,连接BE,可得BE=,设等边三角形BCD的中心为G,则BG=,∴AG=,设三棱锥A-BCD的外接球的半径为R,则R2=BG2+OG2,即,解得R=.∴球O的表面积为.故答案为:3π.由题意画出图形,解三角形求得三棱锥外接球的半径,代入棱锥体积公式求解.本题考查多面体外接球表面积的求法,考查数形结合的解题思想方法,是中档题.15.【答案】【解析】解:d(O,C)=|x|+|y|=1,则≥=,.故答案为:.d(O,C)=|x|+|y|=1,利用≥即可得出.本题考查了基本不等式的性质、折线距离,考查了推理能力与计算能力,属于基础题.16.【答案】6【解析】解:设直线l的方程为:y=kx+1,A(x1,y1),B(x2,y2).联立,化为:x2-4kx-4=0,可得:x1+x2=4k,x1x2=-4,|AB|=y1+y2+p=k(x1+x2)+2+2=4k2+4.对x2=4y两边求导可得:y′=,可得切线PA的方程为:y-y1=(x-x1),切线PB的方程为:y-y2=(x-x2),联立解得:x=(x1+x2)=2k,y=x1x2=-1.∴P(2k,-1).∴|PF|=.∴|PF|+=+,令=t≥2.则|PF|+=t+=f(t),f′(t)=1-=,可得t=4时,函数f(t)取得极小值即最小值f(4)=6.当且仅当k=时取等号.故答案为:6.设直线l的方程为:y=kx+1,A(x1,y1),B(x2,y2).联立化为:x2-4kx-4=0,利用根与系数的关系可得|AB|=y1+y2+p=k(x1+x2)+4.对x2=4y两边求导可得:y′=,可得切线PA的方程为:y-y1=(x-x1),切线PB的方程为:y-y2=(x-x2),联立解得P点坐标,可得代入|PF|+,利用导数研究函数的单调性极值即可得出.本题考查了抛物线的定义标准方程及其性质、利用导数研究函数的单调性极值、切线方程、一元二次方程的根与系数的关系,考查了推理能力与计算能力,属于难题.17.【答案】解:(I)∵a2+1是a1,a3的等差中项,∴2(a2+1)=a1+a3,∴a1(q2+1)=2a1q+2,=14,化为2q2-5q+2=0,q>1,解得q=2,∴a1=2.∴a n=2n.(II)b n=a n•log2a n=n•2n.∴数列{b n}的前n项和T n=2+2•22+3•23+……+n•2n.2T n=2×2+2•23+……+(n-1)•2n+n•2n+1.∴-T n=2+22+23+……+2n-n•2n+1=-n•2n+1.解得:T n=(n-1)•2n+1+2.【解析】(I)由a2+1是a1,a3的等差中项,可得2(a2+1)=a1+a3,又a1(q2+1)=2a1q+2,=14,联立解得,即可得出.(II)b n=a n•log2a n=n•2n.利用错位相减法即可得出.本题考查了等差数列与等比数列的通项公式求和公式、错位相减法,考查了推理能力与计算能力,属于中档题.18.【答案】解:(1)根据列联表可以求得K2的观测值:k==≈11.42>6.635,故有99%的把握认为满意程度与年龄有关.(2)据题意,该8名员工的贡献积分及按甲乙两种方案所获补贴情况为:设从这8名员工中随机抽取4名进行面谈,恰好抽到3名”A类员工“的概率为P,则P==.【解析】(1)根据列联表可以求得K2的观测值,结合临界值可得;(2)先得积分表可得A类员工的人数,再根据古典概型的概率公式可得.本题考查了独立性检验,属中档题.19.【答案】证明:(Ⅰ)由题意知在等腰梯形ABCD中,AB∥CD,∵E,F分别为AB,CD的中点,∴EF AB,EF CD,∴折叠后,EF DF,EF CF,∵DF∩CF=F,∴EF平面DCF,又MC平面DCF,∴EF MC.解:(Ⅱ)∵平面BEFC平面AEFD,平面BEFC∩平面AEFD=EF,且EF DF,∴DF平面BEFC,∴DF CF,∴DF,CF,EF两两垂直,以F为坐标原点,分别以FD,FC,FE所在直线为x,y,z轴,建立空间直角坐标系,∵DM=1,∴FM=1,∴M(1,0,0),D(2,0,0),A(1,0,2),B(0,1,2),∴=(0,0,2),=(-1,1,0),=(-1,0,2),设平面MAB的法向量=(x,y,z),则,取x=1,得=(1,1,0),设平面ABD的法向量=(x,y,z),则,取z=1,得=(2,2,1),∴cos<,>===,∴二面角M-AB-D的余弦值为.【解析】(Ⅰ)推导出EF AB,EF CD,折叠后,EF DF,EF CF,从而EF平面DCF,由此能证明EF MC.(Ⅱ)以F为坐标原点,分别以FD,FC,FE所在直线为x,y,z轴,建立空间直角坐标系,利用向量法能求出二面角M-AB-D的余弦值.本题考查线线垂直的证明,考查二面角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查数形结合思想,是中档题.20.【答案】解:(I)由题意可得:2b=4,=,a2=b2+c2.联立解得:b=2,c=1,a=3.∴椭圆C的标准方程为:+=1.(II)A(-3,0),B(3,0),F1(-1,0),F2(1,0),设F1M的方程为:x=my-1,M(x1,y1),(y1>0),直线F1M与椭圆的另一个交点为M′(x2,y2).∵F1M∥F2N,根据对称性可得:N(-x2,-y2).联立,化为:(8m2+9)y2-16my-64=0,∴y1+y2=,y1y2=,∵3k1+2k2=0,∴+=0,即5my1y2+6y1+4y2=0,联立解得:y1=,y2=,∵y1>0,y2<0,∴m>0.∴y1y2=•=,∴m=.∴直线F1M的方程为x=y-1,即2x-y+2=0.【解析】(I)由题意可得:2b=4,=,a2=b2+c2.联立解出即可得出椭圆C的标准方程.(II)A(-3,0),B(3,0),F1(-1,0),F2(1,0),设F1M的方程为:x=my-1,M(x1,y1),(y1>0),直线F1M与椭圆的另一个交点为M′(x2,y2).由F1M∥F2N,根据对称性可得:N(-x2,-y2).直线方程与椭圆方程联立化为:(8m2+9)y2-16my-64=0,根据根与系数的关系及其3k1+2k2=0,+=0,联立解得m.本题考查了椭圆的标准方程及其性质、直线与椭圆相交问题、一元二次方程的根与系数的关系、斜率计算公式,考查了推理能力与计算能力,属于难题.21.【答案】(I)解:f′(x)=-=.(x>0).当a≤0时,f′(x)>0,函数f(x)在(0,+∞)上单调递增,又f(1)=0.因此0<x<1时,f(x)<0.当a>0时,可得函数f(x)在(0,a)上单调递减,在(a,+∞)上单调递增,∴x=a时,函数f(x)取得极小值即最小值,则f(a)=ln a+1-a≥0.令g(a)=ln a+1-a,g(1)=0.g′(a)=-1=,可知:a=1时,函数g(a)取得极大值即最大值,而g(1)=).因此只有a=1时满足f(a)=ln a+1-a≥0.故a=1.∴实数a取值的集合是{1}.(II)证明:由(I)可知:a=1时,f(x)≥0,即ln x≥1-在x>0时恒成立.要证明:e x+≥2-ln x+x2+(e-2)x,即证明:e x≥1+x2+(e-2)x,即e x-1-x2-(e-2)x≥0.令h(x)=e x-1-x2-(e-2)x,x>0.h′(x)=e x-2x-(e-2),令u(x)=e x-2x-(e-2),u′(x)=e x-2,令u′(x)=e x-2=0,解得x=ln2.可得:x=ln2时,函数u(x)在(0,ln2)内单调递减,在(ln2,+∞)上单调递增.即函数h′(x)在(0,ln2)内单调递减,在(ln2,+∞)上单调递增.而h′(0)=1-(e-2)=3-e>0.h′(ln2)<h′(1)=0.∴存在x0(0,ln2),使得h′(x0)=0,当x(0,x0)时,h′(x)>0,h(x)单调递增;当x(x0,1)时,h′(x)<0,h(x)单调递减.当x(1,+∞)时,h′(x)>0,h(x)单调递增.又h(0)=1-1=0,h(1)=e-1-1-(e-2)=0,∴对∀x>0,h(x)≥0恒成立,即e x-1-x2-(e-2)x≥0.综上可得:e x+≥2-ln x+x2+(e-2)x,成立.【解析】(I)f′(x)=-=.(x>0).对a分类讨论即可得出单调性与极值,进而得出结论.(II)由(I)可知:a=1时,f(x)≥0,即lnx≥1-在x>0时恒成立.要证明:e x+≥2-lnx+x2+(e-2)x,即证明:e x≥1+x2+(e-2)x,即e x-1-x2-(e-2)x≥0.令h(x)=e x-1-x2-(e-2)x,x>0.利用导数研究其单调性极值与最值即可得出.本题考查了利用导数研究函数的单调性极值与最值、等价转化方法、分类讨论方法、方程与不等式的解法,考查了推理能力与计算能力,属于难题.22.【答案】解:(1)曲线C的参数方程为(β为参数,β[0,π]),转换为直角坐标方程为:(x-4)2+y2=4(y≥0).直线l的参数方程为(t为参数,α倾斜角),转换为极坐标方程为:θ=α.(2)由(1)可知:曲线C为半圆弧,若直线l与曲线C恰有一个公共点P,则直线l与半圆弧相切.设P(ρ,θ),由题意知:,故:,故:ρ2+22=42,解得:.所以:点P(,).【解析】1(1)直接利用转换关系,把参数方程直角坐标方程和极坐标方程之间进行转换.(2)利用一元二次方程根和系数的关系求出结果.本题考查的知识要点:参数方程直角坐标方程和极坐标方程之间的转换,一元二次方程根和系数关系的应用,主要考查学生的运算能力和转化能力,属于基础题型.23.【答案】解:(Ⅰ)∵m>0,∴f(x)=|x-m|-|x+2m|=,,<<,,∴当x≤-2m时,f(x)取得最大值3m.∴m=1.(Ⅱ)证明:由(Ⅰ)得,a2+b2=1,∴+===-2ab.∵a2+b2=1≥2ab,当且仅当a=b时等号成立.∴0<ab,令h(t)=-2t,0<t,则h(t)在(0,]上单调递减,∴h(t)≥h()=1,∴当0<ab时,-2ab≥1,∴+≥1.【解析】(Ⅰ)分三种情况去绝对值,求出最大值与已知最大值相等列式可解得;(Ⅱ)将所证不等式转化为-2ab≥1,再构造函数利用导数判断单调性求出最小值可证.本题考查了绝对值不等式的解法,属中档题.。

高考数学真题之坐标系与参数方程

高考数学真题之坐标系与参数方程

坐标系与参数方程2019年1.(2019全国1文22)在直角坐标系xOy 中,曲线C 的参数方程为2221141t x tt y t ⎧-=⎪⎪+⎨⎪=⎪+⎩,(t 为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为2cos 3sin 110ρθρθ++=.(1)求C 和l 的直角坐标方程; (2)求C 上的点到l 距离的最小值.2.(2019全国II 文22)在极坐标系中,O 为极点,点000(,)(0)M ρθρ>在曲线:4sin C ρθ=上,直线l 过点(4,0)A 且与OM 垂直,垂足为P . (1)当0=3θπ时,求0ρ及l 的极坐标方程; (2)当M 在C 上运动且P 在线段OM 上时,求P 点轨迹的极坐标方程. 3.(2019全国III 文22)如图,在极坐标系Ox 中,(2,0)A ,(2,)4B π,(2,)4C 3π,(2,)D π,弧»AB ,»BC ,»CD 所在圆的圆心分别是(1,0),(1,)2π,(1,)π,曲线1M 是弧»AB ,曲线2M 是弧»BC,曲线3M 是弧»CD . (1)分别写出1M ,2M ,3M 的极坐标方程;(2)曲线M 由1M ,2M ,3M 构成,若点P 在M 上,且||3OP =,求P 的极坐标.2010-2018年1.(2018北京)在极坐标系中,直线cos sin (0)a a ρθρθ+=>与圆=2cos ρθ相切,则a =___.2.(2017北京)在极坐标系中,点A 在圆22cos 4sin 40ρρθρθ--+=上,点P 的坐标为(1,0)),则||AP 的最小值为___________.3.(2017天津)在极坐标系中,直线4cos()106ρθπ-+=与圆2sin ρθ=的公共点的个数为_____.4.(2016北京)在极坐标系中,直线cos sin 10ρθθ-=与圆2cos ρθ=交于,A B两点,则||AB =____.5.(2015广东)已知直线l的极坐标方程为2sin()4πρθ-=Α的极坐标为7)4πA (,则点Α到直线l 的距离为 . 6.(2015安徽)在极坐标系中,圆8sin ρθ=上的点到直线()3R πθρ=∈距离的最大值是7.(2018全国卷Ⅰ) [选修4–4:坐标系与参数方程](10分)在直角坐标系xOy 中,曲线1C 的方程为||2y k x =+.以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为22cos 30ρρθ+-=. (1)求2C 的直角坐标方程;(2)若1C 与2C 有且仅有三个公共点,求1C 的方程. 8.(2018全国卷Ⅱ)[选修4-4:坐标系与参数方程](10分)在直角坐标系xOy 中,曲线C 的参数方程为2cos ,4sin ,=⎧⎨=⎩x θy θ(θ为参数),直线l 的参数方程为1cos 2sin =+⎧⎨=+⎩x t αy t α(t 为参数).(1)求C 和l 的直角坐标方程;(2)若曲线C 截直线l 所得线段的中点坐标为(1,2),求l 的斜率. 9.(2018全国卷Ⅲ)[选修4—4:坐标系与参数方程](10分)在平面直角坐标系xOy 中,O e 的参数方程为cos sin x y θθ=⎧⎨=⎩,(θ为参数),过点(0,且倾斜角为α的直线l 与O e 交于A ,B 两点. (1)求α的取值范围;(2)求AB 中点P 的轨迹的参数方程.10.(2018江苏)C .[选修4—4:坐标系与参数方程](本小题满分10分)在极坐标系中,直线l 的方程为πsin()26ρθ-=,曲线C 的方程为4cos ρθ=,求直线l被曲线C 截得的弦长.11.(2017新课标Ⅰ)在直角坐标系xOy 中,曲线C 的参数方程为3cos sin x y θθ=⎧⎨=⎩,(θ为参数),直线l 的参数方程为41x a ty t=+⎧⎨=-⎩(t 为参数).(1)若1a =-,求C 与l 的交点坐标;(2)若C 上的点到l,求a .12.(2017新课标Ⅱ)在直角坐标系xOy 中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为cos 4ρθ=.(1)M 为曲线1C 上的动点,点P 在线段OM 上,且满足||||16OM OP ⋅=,求点P 的轨迹2C 的直角坐标方程; (2)设点A 的极坐标为(2,)3π,点B 在曲线2C 上,求OAB ∆面积的最大值.13.(2017新课标Ⅲ)在直角坐标系xOy 中,直线1l 的参数方程为2x t y kt =+⎧⎨=⎩(t 为参数),直线2l 的参数方程为2x mm y k =-+⎧⎪⎨=⎪⎩(m 为参数).设1l 与2l 的交点为P ,当k 变化时,P 的轨迹为曲线C . (1)写出C 的普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设3l :(cos sin )ρθθ+-0=,M 为3l 与C 的交点,求M 的极径.14.(2017江苏)在平面坐标系中xOy 中,已知直线l 的参考方程为82x t ty =-+⎧⎪⎨=⎪⎩(t 为参数),曲线C的参数方程为22x sy ⎧=⎪⎨=⎪⎩(s 为参数).设P 为曲线C 上的动点,求点P 到直线l 的距离的最小值.15.(2016年全国I )在直角坐标系xOy 中,曲线1C 的参数方程为cos 1sin x a ty a t =⎧⎨=+⎩(t 为参数,a >0).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线2C :4cos ρθ=.(I )说明1C 是哪种曲线,并将1C 的方程化为极坐标方程;(II )直线3C 的极坐标方程为0=a θ,其中0a 满足0tan =2a ,若曲线1C 与2C 的公共点都在3C 上,求a .16.(2016年全国II )在直角坐标系xOy 中,圆C 的方程为()22625x y ++=.(I )以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程; (II )直线l 的参数方程是cos sin x t y t αα=⎧⎨=⎩(t 为参数),l 与C 交于A 、B两点,AB ,求l 的斜率.17.(2016年全国III )在直角坐标系xOy 中,曲线1C的参数方程为sin x y αα⎧=⎪⎨=⎪⎩(α为参数),以坐标原点为极点,以x 轴的正半轴为极轴,建立极坐标系,曲线2C 的极坐标方程为sin()4ρθπ+=(Ⅰ)写出1C 的普通方程和2C 的直角坐标方程;(Ⅱ)设点P 在1C 上,点Q 在2C 上,求||PQ 的最小值及此时P 的直角坐标.18.(2016江苏)在平面直角坐标系xOy 中,已知直线l的参数方程为()11,2,x t t y ⎧=+⎪⎪⎨⎪=⎪⎩为参数,椭圆C 的参数方程为()cos ,2sin ,x y θθθ=⎧⎨=⎩为参数,设直线l 与椭圆C 相交于,A B 两点,求线段AB 的长.19.(2015新课标Ⅰ)在直角坐标系xOy 中,直线1C :2x =-,圆2C :22(1)(2)1x y -+-=,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系. (Ⅰ)求1C ,2C 的极坐标方程; (Ⅱ)若直线3C 的极坐标方程为()4R πθρ=∈,设2C 与3C 的交点为M ,N,求2C MN ∆的面积.20.(2015新课标Ⅱ)在直角坐标系xOy 中,曲线1C :cos ,sin ,x t y t αα=⎧⎨=⎩(t 为参数,t ≠0)其中0απ<≤,在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线2C :2sin ρθ=,3C:ρθ=.(Ⅰ)求2C 与3C 交点的直角坐标;(Ⅱ)若1C 与2C 相交于点A ,1C 与3C 相交于点B ,求||AB 的最大值. 21.(2015江苏)已知圆C的极坐标方程为2sin()404πρθ+--=,求圆C 的半径.22.(2015陕西)在直角坐标系xOy 中,直线l的参数方程为132x t y ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数).以原点为极点,x 轴正半轴为极轴建立极坐标系,⊙C的极坐标方程为ρθ=. (Ⅰ)写出⊙C 的直角坐标方程;(Ⅱ)P 为直线l 上一动点,当P 到圆心C 的距离最小时,求P 的直角坐标.23.(2014新课标Ⅰ)已知曲线C :22149x y +=,直线l :222x t y t=+⎧⎨=-⎩(t 为参数). (Ⅰ) 写出曲线C 的参数方程,直线l 的普通方程;(Ⅱ)过曲线C 上任一点P 作与l 夹角为o30的直线,交l 于点A ,求||PA 的最大值与最小值.24.(2014新课标Ⅱ)在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为2cos ρθ=,0,2πθ⎡⎤∈⎢⎥⎣⎦.(Ⅰ)求C 的参数方程;(Ⅱ)设点D 在C 上,C 在D 处的切线与直线:2l y =+垂直,根据(Ⅰ)中你得到的参数方程,确定D 的坐标.25.(2013新课标Ⅰ)已知曲线1C 的参数方程为45cos 55sin x ty t =+⎧⎨=+⎩(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为2sin ρθ=。

2019高考数学二轮复习课时跟踪检测二十七坐标系与参数方程理

2019高考数学二轮复习课时跟踪检测二十七坐标系与参数方程理

课时跟踪检测(二十七)坐标系与参数方程1.(2018·石家庄模拟)在平面直角坐标系中,直线l 的参数方程是⎩⎨⎧x =t ,y =2t (t 为参数),以坐标原点为极点,轴的正半轴为极轴,建立极坐标系,曲线C 的极坐标方程为ρ2+2ρsin θ-3=0.(1)求直线l 的极坐标方程;(2)若直线l 与曲线C 相交于A ,B 两点,求|AB |.解:(1)由⎩⎨⎧x =t ,y =2t 消去t 得,y =2,把⎩⎨⎧x =ρcos θ,y =ρsin θ代入y =2,得ρsin θ=2ρcos θ,所以直线l 的极坐标方程为sin θ=2cos θ. (2)因为ρ2=2+y 2,y =ρsin θ,所以曲线C 的直角坐标方程为2+y 2+2y -3=0,即2+(y +1)2=4. 圆C 的圆心C (0,-1)到直线l 的距离d =55, 所以|AB |=24-d 2=2955.2.(2018·益阳、湘潭模拟)在平面直角坐标系中,曲线C 的参数方程为⎩⎨⎧x =2cos α,y =sin α(α为参数).以直角坐标系的原点O 为极点,轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为ρcos ⎝ ⎛⎭⎪⎫θ+π3=12.直线l 与曲线C 交于A ,B 两点.(1)求直线l 的直角坐标方程; (2)设点P (1,0),求|PA |·|PB |的值.解:(1)由ρcos ⎝ ⎛⎭⎪⎫θ+π3=12得ρcos θcos π3-ρsin θsin π3=12,即12ρcos θ-32ρsin θ=12, 又ρcos θ=,ρsin θ=y ,∴直线l 的直角坐标方程为-3y -1=0.(2)由⎩⎨⎧x =2cos α,y =sin α(α为参数)得曲线C 的普通方程为2+4y 2=4,∵P (1,0)在直线l 上,故可设直线l 的参数方程为⎩⎪⎨⎪⎧x =32t +1,y =12t (t 为参数),将其代入2+4y 2=4得7t 2+43t -12=0, ∴t 1·t 2=-127,故|PA |·|PB |=|t 1|·|t 2|=|t 1·t 2|=127.3.(2018·南昌模拟)在平面直角坐标系Oy 中,曲线C 1的参数方程为⎩⎨⎧x =3+2cos α,y =2+2sin α(α为参数),直线C 2的方程为y =33,以O 为极点,以轴的非负半轴为极轴建立极坐标系.(1)求曲线C 1和直线C 2的极坐标方程;(2)若直线C 2与曲线C 1交于P ,Q 两点,求|OP |·|OQ |的值. 解:(1)曲线C 1的普通方程为(-3)2+(y -2)2=4,即2+y 2-23-4y +3=0,则曲线C 1的极坐标方程为ρ2-23ρcos θ-4ρsin θ+3=0. ∵直线C 2的方程为y =33,∴直线C 2的极坐标方程为θ=π6(ρ∈R). (2)设P (ρ1,θ1),Q (ρ2,θ2),将θ=π6(ρ∈R)代入ρ2-23ρcos θ-4ρsin θ+3=0得,ρ2-5ρ+3=0,∴ρ1ρ2=3,∴|OP |·|OQ |=ρ1ρ2=3.4.(2018·福州模拟)在平面直角坐标系Oy 中,曲线C :⎩⎨⎧x =t cos α,y =sin α(α为参数,t >0).在以O 为极点,轴的正半轴为极轴的极坐标系中,直线l :ρcos ⎝ ⎛⎭⎪⎫θ-π4= 2.(1)若l 与曲线C 没有公共点,求t 的取值范围; (2)若曲线C 上存在点到l 的距离的最大值为62+2,求t 的值.解:(1)因为直线l 的极坐标方程为ρcos ⎝ ⎛⎭⎪⎫θ-π4=2,即ρcos θ+ρsin θ=2,所以直线l 的直角坐标方程为+y -2=0.因为⎩⎨⎧x =t cos α,y =sin α(α为参数,t >0),所以曲线C 的普通方程为x 2t2+y 2=1(t >0),由⎩⎨⎧x +y =2,x2t 2+y 2=1,消去得,(1+t 2)y 2-4y +4-t 2=0,所以Δ=16-4(1+t 2)(4-t 2)<0,又t >0, 解得0<t <3,故t 的取值范围为(0,3). (2)由(1)知直线l 的方程为+y -2=0,故曲线C 上的点(t cos α,sin α)到l 的距离d =|t cos α+sin α-2|2,故d ma =t 2+1+22=62+2,解得t =± 2. 又t >0,∴t = 2.5.(2018·重庆模拟)在直角坐标系Oy 中,曲线C 1的参数方程为⎩⎨⎧x =3cos α,y =3sin α(α为参数),以坐标原点O 为极点,轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρcos ⎝ ⎛⎭⎪⎫θ+π4=3 2.(1)求曲线C 1的普通方程和曲线C 2的直角坐标方程;(2)若点M 在曲线C 1上,点N 在曲线C 2上,求|MN |的最小值及此时点M 的直角坐标.解:(1)由曲线C 1的参数方程可得曲线C 1的普通方程为x 29+y 23=1,由ρcos ⎝ ⎛⎭⎪⎫θ+π4=32,得ρcos θ-ρsin θ=6,∴曲线C 2的直角坐标方程为-y -6=0.(2)设点M 的坐标为(3cos β,3sin β),点M 到直线-y -6=0的距离d =|3cos β-3sin β-6|2=⎪⎪⎪⎪⎪⎪23sin ⎝ ⎛⎭⎪⎫β-π3+62=6+23sin ⎝ ⎛⎭⎪⎫β-π32,当sin ⎝ ⎛⎭⎪⎫β-π3=-1时,|MN |有最小值,最小值为32-6,此时点M 的直角坐标为⎝ ⎛⎭⎪⎫332,-32.6.(2018·昆明模拟)在直角坐标系Oy 中,已知倾斜角为α的直线l 过点A (2,1).以坐标原点为极点,轴的正半轴为极轴建立极坐标系.曲线C 的极坐标方程为ρ=2sin θ,直线l 与曲线C 分别交于P ,Q 两点.(1)写出直线l 的参数方程和曲线C 的直角坐标方程; (2)若|PQ |2=|AP |·|AQ |,求直线l 的斜率.解:(1)由题意知直线l 的参数方程为⎩⎨⎧x =2+t cos α,y =1+t sin α(t 为参数),因为ρ=2sin θ,所以ρ2=2ρsin θ, 把y =ρsin θ,2+y 2=ρ2代入得2+y 2=2y , 所以曲线C 的直角坐标方程为2+y 2=2y .(2)将直线l 的参数方程代入曲线C 的方程,得t 2+(4cos α)t +3=0, 由Δ=(4cos α)2-4×3>0,得cos 2α>34,由根与系数的关系,得t 1+t 2=-4cos α,t 1t 2=3. 不妨令|AP |=|t 1|,|AQ |=|t 2|,所以|PQ |=|t 1-t 2|, 因为|PQ |2=|AP |·|AQ |,所以(t 1-t 2)2=|t 1|·|t 2|, 则(t 1+t 2)2=5t 1t 2,得(-4cos α)2=5×3, 解得cos 2α=1516,满足cos 2α>34,所以sin 2α=116,tan 2α=115,所以=tan α=±1515. 7.(2019届高三·湘东五校联考)平面直角坐标系Oy 中,倾斜角为α的直线l 过点M (-2,-4),以原点O 为极点,轴的正半轴为极轴,建立极坐标系,曲线C 的极坐标方程为ρsin 2θ=2cosθ.(1)写出直线l 的参数方程(α为常数)和曲线C 的直角坐标方程;(2)若直线l 与C 交于A ,B 两点,且|MA |·|MB |=40,求倾斜角α的值.解:(1)直线l 的参数方程为⎩⎨⎧x =-2+t cos α,y =-4+t sin α(t 为参数),ρsin 2θ=2cos θ,即ρ2sin 2θ=2ρcos θ,将=ρcos θ,y =ρsin θ代入得曲线C 的直角坐标方程为y 2=2.(2)把直线l 的参数方程代入y 2=2, 得t 2sin 2α-(2cos α+8sin α)t +20=0, 设A ,B 对应的参数分别为t 1,t 2,由一元二次方程根与系数的关系得,t 1+t 2=2cos α+8sin αsin 2α,t 1t 2=20sin 2α,根据直线的参数方程中参数的几何意义,得|MA |·|MB |=|t 1t 2|=20sin 2α=40,得α=π4或α=3π4. 又Δ=(2cos α+8sin α)2-80sin 2α>0,所以α=π4.8.(2018·全国卷Ⅲ)在平面直角坐标系Oy 中,⊙O 的参数方程为⎩⎨⎧x =cos θ,y =sin θ(θ为参数),过点(0,-2)且倾斜角为α的直线l 与⊙O 交于A ,B 两点.(1)求α的取值范围;(2)求AB 中点P 的轨迹的参数方程. 解:(1)⊙O 的直角坐标方程为2+y 2=1. 当α=π2时,l 与⊙O 交于两点.当α≠π2时,记tan α=,则l 的方程为y =- 2.l 与⊙O 交于两点需满足21+k 2<1, 解得<-1或>1,即α∈⎝ ⎛⎭⎪⎫π2,3π4或α∈⎝ ⎛⎭⎪⎫π4,π2.综上,α的取值范围是⎝ ⎛⎭⎪⎫π4,3π4.(2)l 的参数方程为⎩⎨⎧x =t cos α,y =-2+t sin α⎝ ⎛⎭⎪⎫t 为参数,π4<α<3π4.设A ,B ,P 对应的参数分别为t A ,t B ,t P ,则t P =t A +t B2,且t A ,t B 满足t 2-22t sin α+1=0.于是t A +t B =22sin α,t P =2sin α.又点P 的坐标(,y )满足⎩⎨⎧x =t P cos α,y =-2+t Psin α,所以点P 的轨迹的参数方程是⎩⎪⎨⎪⎧x =22sin 2α,y =-22-22cos 2α⎝⎛⎭⎪⎫α为参数,π4<α<3π4.。

(全国通用版)2019版高考数学一轮复习选考部分坐标系与参数方程学案理

(全国通用版)2019版高考数学一轮复习选考部分坐标系与参数方程学案理

坐标系与参数方程第1课坐标系[过双基]1.平面直角坐标系中的坐标伸缩变换设点P (x ,y )是平面直角坐标系中的任意一点,在变换 φ:⎩⎪⎨⎪⎧x ′=λ·x λ>,y ′=μ·yμ>的作用下,点P (x ,y )对应到点P ′(x ′,y ′),称φ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换.2.极坐标系的概念 (1)极坐标系如图所示,在平面内取一个定点O ,叫做极点;自极点O 引一条射线Ox ,叫做极轴;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.(2)极坐标①极径:设M 是平面内一点,极点O 与点M 的距离|OM |叫做点M 的极径,记为ρ. ②极角:以极轴Ox 为始边,射线OM 为终边的角xOM 叫做点M 的极角,记为θ. ③极坐标:有序数对(ρ,θ)叫做点M 的极坐标,记作M (ρ,θ). 3.极坐标与直角坐标的互化设M 是平面内任意一点,它的直角坐标是(x ,y ),极坐标是(ρ,θ),则它们之间的关系为:⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ;⎩⎪⎨⎪⎧ρ2=x 2+y 2,tan θ=y x x4.常见曲线的极坐标方程1.点P 的直角坐标为(1,-3),则点P 的极坐标为________.解析:因为点P (1,-3)在第四象限,与原点的距离为2,且OP 与x 轴所成的角为-π3,所以点P 的极坐标为⎝⎛⎭⎪⎫2,-π3.答案:⎝⎛⎭⎪⎫2,-π32.在极坐标系中,圆ρ=2cos θ的垂直于极轴的两条切线方程分别为________. 解析:把圆ρ=2cos θ的方程化为(x -1)2+y 2=1知,圆的垂直于极轴的两条切线方程分别为x =0和x =2,从而得这两条切线的极坐标方程为θ=π2(ρ∈R)和ρcos θ=2.答案:θ=π2(ρ∈R)和ρcos θ=23.(2017·北京高考)在极坐标系中,点A 在圆ρ2-2ρcos θ-4ρsin θ+4=0上,点P 的坐标为(1,0),则|AP |的最小值为________.解析:将圆的极坐标方程化为直角坐标方程为x 2+y 2-2x -4y +4=0,即(x -1)2+(y -2)2=1,圆心为(1,2),半径r =1.因为点P (1,0)到圆心的距离d =-2+-2=2>1,所以点P 在圆外,所以|AP |的最小值为d -r =2-1=1.答案:14.(2017·天津高考)在极坐标系中,直线4ρcos ⎝ ⎛⎭⎪⎫θ-π6+1=0与圆ρ=2sin θ 的公共点的个数为________.解析:依题意,得4ρ⎝⎛⎭⎪⎫32cos θ+12sin θ+1=0,即23ρcos θ+2ρsin θ+1=0, 所以直线的直角坐标方程为23x +2y +1=0. 由ρ=2sin θ,得ρ2=2ρsin θ, 所以圆的直角坐标方程为x 2+y 2=2y , 即x 2+(y -1)2=1,其圆心(0,1)到直线23x +2y +1=0的距离d =|2×1+1|32+22=34<1,则直线与圆相交,故直线与圆的公共点的个数是2. 答案:25.在极坐标系中,过点A ⎝ ⎛⎭⎪⎫1,-π2引圆ρ=8sin θ的一条切线,则切线长为________.解析:点A ⎝ ⎛⎭⎪⎫1,-π2的极坐标化为直角坐标为A (0,-1),圆ρ=8sin θ的直角坐标方程为x 2+y 2-8y =0, 圆的标准方程为x 2+(y -4)2=16, 点A 与圆心C (0,4)的距离为|AC |=5, 所以切线长为|AC |2-r 2=3. 答案:3[清易错]1.极坐标方程与直角坐标方程的互化易错用互化公式.在解决此类问题时考生要注意两个方面:一是准确应用公式,二是注意方程中的限制条件.2.在极坐标系下,点的极坐标不唯一性易忽视.注意极坐标(ρ,θ)(ρ,θ+2k π)(k ∈Z),(-ρ,π+θ+2k π)(k ∈Z)表示同一点的坐标.1.若圆C 的极坐标方程为ρ2-4ρcos ⎝ ⎛⎭⎪⎫θ-π3-1=0,若以极点为原点,以极轴为x轴的正半轴建立相应的平面直角坐标系xOy ,则在直角坐标系中,圆心C 的直角坐标是________.解析:因为ρ2-4ρcos ⎝ ⎛⎭⎪⎫θ-π3-1=0,所以ρ2-2ρcos θ-23ρsin θ-1=0,即x 2+y 2-2x -23y -1=0,因此圆心坐标为(1,3).答案:(1,3)2.圆ρ=5cos θ-53sin θ的圆心的极坐标为________. 解析:将方程 ρ=5cos θ-53sin θ两边都乘以ρ得: ρ2=5ρcos θ-53ρsin θ,化成直角坐标方程为x 2+y 2-5x +53y =0. 圆心的坐标为⎝ ⎛⎭⎪⎫52,-532,化成极坐标为⎝⎛⎭⎪⎫5,5π3.答案:⎝⎛⎭⎪⎫5,5π3(答案不唯一)平面直角坐标系下图形的伸缩变换[典例] (1)在同一平面直角坐标系中,已知伸缩变换φ:⎩⎪⎨⎪⎧x ′=3x ,2y ′=y .求点A ⎝ ⎛⎭⎪⎫13,-2经过φ变换所得的点A ′的坐标.(2)求直线l :y =6x 经过φ:⎩⎪⎨⎪⎧x ′=3x ,2y ′=y ,变换后所得到的直线l ′的方程.[解] (1)设A ′(x ′,y ′),由伸缩变换φ:⎩⎪⎨⎪⎧x ′=3x ,2y ′=y ,得到⎩⎪⎨⎪⎧x ′=3x ,y ′=12y ,由于点A 的坐标为⎝ ⎛⎭⎪⎫13,-2,于是x ′=3×13=1,y ′=12×(-2)=-1,∴A ′(1,-1)为所求.(2)设直线l ′上任意一点P ′(x ′,y ′), 由上述可知,将⎩⎪⎨⎪⎧x =13x ′,y =2y ′代入y =6x 得2y ′=6×⎝ ⎛⎭⎪⎫13x ′,∴y ′=x ′,即y =x 为所求. [方法技巧]伸缩变换的解题方法平面上的曲线y =f (x )在变换φ:⎩⎪⎨⎪⎧x ′=λx λ,y ′=μy μ的作用下得到的方程的求法是将⎩⎪⎨⎪⎧x =x ′λ,y =y ′μ代入y =f (x ),得y ′μ=f ⎝⎛⎭⎪⎫x ′λ,整理之后得到y ′=h (x ′),即为所求变换之后的方程.[即时演练]1.求椭圆x 24+y 2=1,经过伸缩变换⎩⎪⎨⎪⎧x ′=12x ,y ′=y后的曲线方程.解:由⎩⎪⎨⎪⎧x ′=12x ,y ′=y得⎩⎪⎨⎪⎧x =2x ′,y =y ′.①将①代入x 24+y 2=1,得4x ′24+y ′2=1,即x ′2+y ′2=1.因此椭圆x 24+y 2=1经伸缩变换后得到的曲线方程是x 2+y 2=1. 2.若函数y =f (x )的图象在伸缩变换φ:⎩⎪⎨⎪⎧x ′=2x ,y ′=3y 的作用下得到曲线的方程为y ′=3sin ⎝⎛⎭⎪⎫x ′+π6,求函数y =f (x )的最小正周期.解:由题意,把变换公式代入曲线y ′=3sin ⎝⎛⎭⎪⎫x ′+π6得3y =3sin ⎝⎛⎭⎪⎫2x +π6,整理得y =sin ⎝ ⎛⎭⎪⎫2x +π6,故f (x )=sin ⎝ ⎛⎭⎪⎫2x +π6. 所以y =f (x )的最小正周期为2π2=π.极坐标与直角坐标的互化[典例] 系.直线l 的极坐标方程为ρsin ⎝ ⎛⎭⎪⎫π4-θ=22,直线与曲线C :ρsin 2θ=8cos θ相交于不同的两点A ,B ,求|AB |的值.[解] l :ρsin ⎝⎛⎭⎪⎫π4-θ=22⇒22ρcos θ-22ρsin θ=22⇒x -y -1=0,C 的直角坐标方程是y 2=8x .由⎩⎪⎨⎪⎧y 2=8x ,x -y -1=0,可得x 2-10x +1=0,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=10,x 1x 2=1, 所以AB 的长为1+1·102-4=8 3. [方法技巧]1.极坐标与直角坐标互化公式的3个前提条件(1)取直角坐标系的原点为极点. (2)以x 轴的非负半轴为极轴. (3)两种坐标系规定相同的长度单位. 2.直角坐标化为极坐标的注意点(1)根据终边相同的角的意义,角θ的表示方法具有周期性,故点M 的极坐标(ρ,θ)的形式不唯一,即一个点的极坐标有无穷多个.当限定ρ≥0,θ∈[0,2π)时,除极点外,点M 的极坐标是唯一的.(2)当把点的直角坐标化为极坐标时,求极角θ应注意判断点M 所在的象限(即角θ的终边的位置),以便正确地求出角θ∈[0,2π)的值.[即时演练]在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系.曲线C 的极坐标方程为ρcos ⎝⎛⎭⎪⎫θ-π3=1(0≤θ<2π),M ,N 分别为C 与x 轴,y 轴的交点. (1)写出C 的直角坐标方程,并求M ,N 的极坐标; (2)设MN 的中点为P ,求直线OP 的极坐标方程. 解:(1)由ρcos ⎝⎛⎭⎪⎫θ-π3=1,得ρ⎝ ⎛⎭⎪⎫12cos θ+32sin θ=1.从而C 的直角坐标方程为12x +32y =1,即x +3y -2=0.当θ=0时,ρ=2,所以M (2,0). 当θ=π2时,ρ=233,所以N ⎝ ⎛⎭⎪⎫233,π2.(2)M 点的直角坐标为(2,0).N 点的直角坐标为⎝ ⎛⎭⎪⎫0,233. 所以P 点的直角坐标为⎝ ⎛⎭⎪⎫1,33, 则P 点的极坐标为⎝⎛⎭⎪⎫233,π6. 所以直线OP 的极坐标方程为θ=π6(ρ∈R).极坐标方程的应用[典例] 已知曲线C 1:x +3y =3和C 2:⎩⎨⎧x =6cos φ,y =2sin φ(φ为参数).以原点O为极点,x 轴的正半轴为极轴建立极坐标系,且两种坐标系中取相同的长度单位.(1)把曲线C 1和C 2的方程化为极坐标方程;(2)设C 1与x ,y 轴交于M ,N 两点,且线段MN 的中点为P .若射线OP 与C 1,C 2交于P ,Q 两点,求P ,Q 两点间的距离.[解] (1)C 1:ρsin ⎝ ⎛⎭⎪⎫θ+π6=32,C 2:ρ2=61+2sin 2θ. (2)∵M (3,0),N (0,1), ∴P ⎝⎛⎭⎪⎫32,12, ∴OP 的极坐标方程为θ=π6,把θ=π6代入ρsin ⎝ ⎛⎭⎪⎫θ+π6=32得ρ1=1,P ⎝ ⎛⎭⎪⎫1,π6. 把θ=π6代入ρ2=61+2sin 2θ得ρ2=2,Q ⎝ ⎛⎭⎪⎫2,π6. ∴|PQ |=|ρ2-ρ1|=1,即P ,Q 两点间的距离为1. [方法技巧]曲线的极坐标方程的求解策略在已知极坐标方程求曲线交点、距离、线段长等几何问题时,如果不能直接用极坐标解决,或用极坐标解决较麻烦,可将极坐标方程转化为直角坐标方程解决.[即时演练]在直角坐标系xOy 中,圆C 的普通方程为(x -1)2+y 2=1.以O 为极点,x 轴的非负半轴为极轴建立极坐标系.(1)求圆C 的极坐标方程;(2)直线l 的极坐标方程是ρ(sin θ+3cos θ)=33,射线OM :θ=π3与圆C 的交点为O ,P ,与直线l 的交点为Q ,求线段PQ 的长.解:(1)因为圆C 的普通方程为(x -1)2+y 2=1, 又x =ρcos θ,y =ρsin θ, 所以圆C 的极坐标方程是ρ=2cos θ. (2)设(ρ1,θ1)为点P 的极坐标, 则有⎩⎪⎨⎪⎧ρ1=2cos θ1,θ1=π3,解得⎩⎪⎨⎪⎧ρ1=1,θ1=π3.设(ρ2,θ2)为点Q 的极坐标,则有⎩⎪⎨⎪⎧ρ2θ2+3cos θ2=33,θ2=π3,解得⎩⎪⎨⎪⎧ρ2=3,θ2=π3.由于θ1=θ2,所以|PQ |=|ρ1-ρ2|=2,即线段PQ 的长为2.1.(2017·全国卷Ⅱ)在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 1的极坐标方程为ρcos θ=4.(1)M 为曲线C 1上的动点,点P 在线段OM 上,且满足|OM |·|OP |=16,求点P 的轨迹C 2的直角坐标方程;(2)设点A 的极坐标为⎝⎛⎭⎪⎫2,π3,点B 在曲线C 2上,求△OAB 面积的最大值.解:(1)设P 的极坐标为(ρ,θ)(ρ>0),M 的极坐标为(ρ1,θ)(ρ1>0). 由题设知|OP |=ρ,|OM |=ρ1=4cos θ.由|OM |·|OP |=16,得C 2的极坐标方程ρ=4cos θ(ρ>0). 因此C 2的直角坐标方程为(x -2)2+y 2=4(x ≠0). (2)设点B 的极坐标为(ρB ,α)(ρB >0),由题设知|OA |=2,ρB =4cos α,于是△OAB 的面积 S =12|OA |·ρB ·sin∠AOB =4cos α·⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫α-π3 =2⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫2α-π3-32≤2+ 3.当α=-π12时,S 取得最大值2+ 3.所以△OAB 面积的最大值为2+ 3.2.(2015·全国卷Ⅰ)在直角坐标系xOy 中,直线C 1:x =-2,圆C 2:(x -1)2+(y -2)2=1,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.(1)求C 1,C 2的极坐标方程;(2)若直线C 3的极坐标方程为θ=π4(ρ∈R),设C 2与C 3的交点为M ,N ,求△C 2MN 的面积.解:(1)因为x =ρcos θ,y =ρsin θ, 所以C 1的极坐标方程为ρcos θ=-2,C 2的极坐标方程为ρ2-2ρcos θ-4ρsin θ+4=0.(2)将θ=π4代入ρ2-2ρcos θ-4ρsin θ+4=0,得ρ2-32ρ+4=0,解得ρ1=22,ρ2= 2. 故ρ1-ρ2=2,即|MN |= 2.由于C 2的半径为1,所以△C 2MN 的面积为12.3.(2016·北京高考改编)在极坐标系中,直线ρcos θ-3ρsin θ-1=0与圆ρ=2cos θ交于A ,B 两点,求|AB |.解:∵x =ρcos θ,y =ρsin θ, ∴直线的直角坐标方程为x -3y -1=0. ∵ρ=2cos θ,∴ρ2(sin 2θ+cos 2θ)=2ρcos θ, ∴x 2+y 2=2x .∴圆的直角坐标方程为(x -1)2+y 2=1. ∵圆心(1,0)在直线x -3y -1=0上, ∴AB 为圆的直径,∴|AB |=2.4.(2015·安徽高考改编)在极坐标系中,求圆ρ=8sin θ上的点到直线θ=π3(ρ∈R)距离的最大值.解:圆ρ=8sin θ即ρ2=8ρsin θ, 化为直角坐标方程为x 2+(y -4)2=16, 直线 θ=π3即tan θ=3,化为直角坐标方程为3x -y =0, 圆心(0,4)到直线的距离为|-4|4=2,所以圆上的点到直线距离的最大值为2+4=6.5.(2015·北京高考改编)在极坐标系中,求点⎝⎛⎭⎪⎫2,π3到直线ρ(cos θ+3sin θ)=6的距离.解:点⎝⎛⎭⎪⎫2,π3的直角坐标为()1,3,直线ρ(cos θ+3sin θ)=6的直角坐标方程为x +3y -6=0. 所以点(1,3)到直线的距离d =|1+3×3-6|12+32=22=1.1.在极坐标系中,直线ρ(sin θ-cos θ)=a 与曲线ρ=2cos θ-4sin θ相交于A ,B 两点,若|AB |=23,求实数a 的值.解:直线的极坐标方程化为直角坐标方程为x -y +a =0, 曲线的极坐标方程化为直角坐标方程为(x -1)2+(y +2)2=5, 所以圆心C 的坐标为(1,-2),半径r =5, 所以圆心C 到直线的距离为 |1+2+a |2= r 2-⎝⎛⎭⎪⎫|AB |22=2,解得a =-5或a =-1. 故实数a 的值为-5或-1.2.在极坐标系中,求直线ρcos ⎝ ⎛⎭⎪⎫θ+π6=1与圆ρ=4sin θ的交点的极坐标. 解:ρcos ⎝ ⎛⎭⎪⎫θ+π6=1化为直角坐标方程为3x -y =2,即y =3x -2.ρ=4sin θ可化为x 2+y 2=4y , 把y =3x -2代入x 2+y 2=4y , 得4x 2-83x +12=0, 即x 2-23x +3=0, 所以x =3,y =1.所以直线与圆的交点坐标为(3,1),化为极坐标为⎝⎛⎭⎪⎫2,π6. 3.(2018·长春模拟)已知圆O 1和圆O 2的极坐标方程分别为ρ=2,ρ2-22ρcos ⎝⎛⎭⎪⎫θ-π4=2.(1)把圆O 1和圆O 2的极坐标方程化为直角坐标方程; (2)求经过两圆交点的直线的极坐标方程. 解:(1)由ρ=2知ρ2=4,所以x 2+y 2=4; 因为ρ2-22ρcos ⎝⎛⎭⎪⎫θ-π4=2,所以ρ2-22ρ⎝⎛⎭⎪⎫cos θcos π4+sin θsin π4=2,所以x 2+y 2-2x -2y -2=0.(2)将两圆的直角坐标方程相减,得经过两圆交点的直线方程为x +y =1. 化为极坐标方程为ρcos θ+ρsin θ=1, 即ρsin ⎝ ⎛⎭⎪⎫θ+π4=22. 4.已知曲线C 的参数方程为⎩⎨⎧x =2+5cos α,y =1+5sin α(α为参数),以原点O 为极点,x 轴正半轴为极轴建立极坐标系.(1)求曲线C 的极坐标方程;(2)设l 1:θ=π6,l 2:θ=π3,若l 1,l 2与曲线C 相交于异于原点的两点 A ,B ,求△AOB 的面积.解:(1)∵曲线C 的参数方程为⎩⎨⎧x =2+5cos α,y =1+5sin α(α为参数),∴曲线C 的普通方程为(x -2)2+(y -1)2=5,将⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ,代入并化简得ρ=4cos θ+2sin θ,即曲线C 的极坐标方程为ρ=4cos θ+2sin θ. (2)在极坐标系中,C :ρ=4cos θ+2sin θ, ∴由⎩⎪⎨⎪⎧θ=π6,ρ=4cos θ+2sin θ,得|OA |=23+1,同理:|OB |=2+ 3. 又∵∠AOB =π6,∴S △AOB =12|OA |·|OB |sin ∠AOB =8+534,即△AOB 的面积为8+534.5.在坐标系中,曲线C :ρ=2a cos θ(a >0),直线l :ρcos θ-π3=32,C 与l 有且只有一个公共点.(1)求a 的值;(2)若原点O 为极点,A ,B 为曲线C 上两点,且∠AOB =π3,求|OA |+|OB |的最大值.解:(1)由已知在直角坐标系中,C :x 2+y 2-2ax =0⇒(x -a )2+y 2=a 2(a >0); l :x +3y -3=0.因为C 与l 只有一个公共点,所以l 与C 相切, 即|a -3|2=a ,则a =1. (2)设A (ρ1,θ),则B ⎝⎛⎭⎪⎫ρ2,θ+π3, ∴|OA |+|OB |=ρ1+ρ2=2cos θ+2cos ⎝ ⎛⎭⎪⎫θ+π3=3cos θ-3sin θ=23cos ⎝⎛⎭⎪⎫θ+π6.所以,当θ=-π6时,(|OA |+|OB |)max =2 3.6.在平面直角坐标系xOy 中,直线C 1:3x +y -4=0,曲线C 2:x 2+(y -1)2=1,以原点O 为极点,x 轴正半轴为极轴建立极坐标系.(1)求C 1,C 2的极坐标方程;(2)若曲线C 3的极坐标方程为θ=α⎝⎛⎭⎪⎫ρ>0,0<α<π2,且曲线C 3分别交C 1,C 2于点A ,B ,求|OB ||OA |的最大值. 解:(1)∵x =ρcos θ,y =ρsin θ,∴C 1:3ρcos θ+ρsin θ-4=0,C 2:ρ=2sin θ. (2)曲线C 3为θ=α⎝ ⎛⎭⎪⎫ρ>0,0<α<π2, 设A (ρ1,α),B (ρ2,α),ρ1=43cos α+sin α,ρ2=2sin α,则|OB ||OA |=ρ2ρ1=14×2sin α(3cos α+sin α) =142sin2α-π6+1, ∴当α=π3时,⎝ ⎛⎭⎪⎫|OB | |OA |max =34. 7.平面直角坐标系xOy 中,曲线C 1的方程为x 23+y 2=1,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ=4sin ⎝ ⎛⎭⎪⎫θ+π3,射线OM 的极坐标方程为θ=α0(ρ≥0).(1)写出曲线C 1的极坐标方程和曲线C 2的直角坐标方程;(2)若射线OM 平分曲线C 2,且与曲线C 1交于点A ,曲线C 1上的点满足∠AOB =π2,求|AB |.解:(1)曲线C 1的极坐标方程为ρ2=31+2sin 2θ, 曲线C 2的直角坐标方程为(x -3)2+(y -1)2=4. (2)曲线C 2是圆心为(3,1),半径为2的圆, ∴射线OM 的极坐标方程为θ=π6(ρ≥0),代入ρ2=31+2sin 2θ,可得ρ2A =2. 又∠AOB =π2,∴ρ2B =65,∴|AB |=|OA |2+|OB |2=ρ2A +ρ2B =455.8.已知在一个极坐标系中点C 的极坐标为⎝⎛⎭⎪⎫2,π3.(1)求出以C 为圆心,半径长为2的圆的极坐标方程(写出解题过程)并画出图形; (2)在直角坐标系中,以圆C 所在极坐标系的极点为原点,极轴为x 轴的正半轴建立直角坐标系,点P 是圆C 上任意一点,Q (5,-3),M 是线段PQ 的中点,当点P 在圆C 上运动时,求点M 的轨迹的普通方程.解:(1)作出图形如图所示,设圆C 上任意一点A (ρ,θ),则∠AOC =θ-π3或π3-θ.由余弦定理得,4+ρ2-4ρcos θ-π3=4,∴圆C 的极坐标方程为ρ=4cos ⎝⎛⎭⎪⎫θ-π3. (2)在直角坐标系中,点C 的坐标为(1,3),可设圆C 上任意一点P (1+2cos α,3+2sin α),设M (x ,y ),由Q (5,-3),M 是线段PQ 的中点,得点M的轨迹的参数方程为⎩⎪⎨⎪⎧x =6+2cos α2,y =2sin α2(α为参数),即⎩⎪⎨⎪⎧x =3+cos α,y =sin α(α为参数),∴点M 的轨迹的普通方程为(x -3)2+y 2=1.第2课参数方程[过双基]1.参数方程的概念一般地,在平面直角坐标系中,如果曲线C 上任意一点P 的坐标x ,y 是某个变数t 的函数:⎩⎪⎨⎪⎧x =f t ,y =g t ,并且对于t 的每一个允许值,由函数式⎩⎪⎨⎪⎧x =ft ,y =g t所确定的点P (x ,y )都在曲线C 上,那么方程⎩⎪⎨⎪⎧x =ft ,y =g t叫做这条曲线的参数方程,变数t 叫做参变数,简称参数.相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程.2.直线、圆、椭圆的参数方程(1)过点M (x 0,y 0),倾斜角为α的直线l 的参数方程为⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数).(2)圆心在点M 0(x 0,y 0),半径为r 的圆的参数方程为⎩⎪⎨⎪⎧x =x 0+r cos θ,y =y 0+r sin θ(θ为参数).(3)椭圆x 2a 2+y 2b 2=1(a >b >0)的参数方程为⎩⎪⎨⎪⎧x =a cos φ,y =b sin φ(φ为参数).[小题速通] 1.参数方程⎩⎪⎨⎪⎧x =2-t ,y =-1-2t(t 为参数)与极坐标方程ρ=sin θ所表示的图形分别是________.解析:将参数方程⎩⎪⎨⎪⎧x =2-t ,y =-1-2t 消去参数t ,得2x -y -5=0,对应图形为直线.由ρ=sin θ,得ρ2=ρsin θ,即x 2+y 2=y ,即x 2+⎝ ⎛⎭⎪⎫y -122=14,对应图形为圆.答案:直线、圆2.曲线⎩⎪⎨⎪⎧x =sin θ,y =sin 2θ(θ为参数)与直线y =x +2的交点坐标为________.解析:曲线的直角坐标方程为y =x 2.将其与直线方程联立得⎩⎪⎨⎪⎧y =x 2,y =x +2,∴x 2-x -2=0,∴x =-1或x =2.由x =sin θ知,x =2不合题意.∴x =-1,y =1,∴交点坐标为(-1,1).答案:(-1,1)3.设曲线C 的参数方程为⎩⎪⎨⎪⎧x =2+3cos θ,y =-1+3sin θ(θ为参数),直线l 的方程为x -3y +2=0,则曲线C 上到直线l 距离为71010的点的个数为________.解析:∵曲线C 的参数方程为⎩⎪⎨⎪⎧x =2+3cos θ,y =-1+3sin θ(θ为参数),∴(x -2)2+(y +1)2=9, ∴圆心(2,-1)到直线l 的距离d =|2+3+2|1+9=710=71010.又∵71010<3,141010>3,∴有2个点.答案:24.参数方程⎩⎪⎨⎪⎧x =2t 21+t2,y =4-2t21+t2(t 为参数)化为普通方程为________.解析:∵x =2t21+t 2,y =4-2t 21+t 2=+t 2-6t 21+t 2=4-3×2t21+t 2=4-3x .又x =2t21+t 2=+t 2-21+t 2=2-21+t2∈[0,2),∴x ∈[0,2),∴所求的普通方程为3x +y -4=0(x ∈[0,2)). 答案:3x +y -4=0(x ∈[0,2))[清易错]1.在参数方程与普通方程的互化中,必须使x ,y 的取值范围保持一致,否则不等价.2.直线的参数方程中,参数t 的系数的平方和为1时,t 才有几何意义且其几何意义为:|t |是直线上任一点M (x ,y )到M 0(x 0,y 0)的距离,即|M 0M |=|t |.1.直线y =x -1上的点到曲线⎩⎪⎨⎪⎧x =-2+cos θ,y =1+sin θ上的点的最近距离是________.解析:由⎩⎪⎨⎪⎧x =-2+cos θ,y =1+sin θ得⎩⎪⎨⎪⎧cos θ=x +2,sin θ=y -1,∴(x +2)2+(y -1)2=1,∴圆心坐标为(-2,1), 故圆心到直线x -y -1=0的距离d =42=22,∴直线上的点到圆上的点的最近距离是d -r =22-1. 答案:22-12.直线⎩⎪⎨⎪⎧x =4+at ,y =bt(t 为参数)与圆⎩⎨⎧x =2+3cos θ,y =3sin θ(θ为参数)相切,则切线的倾斜角为________.解析:直线的普通方程为bx -ay -4b =0,圆的普通方程为(x -2)2+y 2=3,因为直线与圆相切,则圆心(2,0)到直线的距离为3,从而有 3=|2b -a ·0-4b |a 2+b2,即3a 2+3b 2=4b 2,所以b =±3a ,而直线的倾斜角α的正切值tan α=ba,所以tan α=±3,因此切线的倾斜角π3或2π3.答案:π3或2π3参数方程与普通方程的互化[典例] 已知椭圆C :x 24+y 23=1,直线l :⎩⎨⎧x =-3+3t ,y =23+t ,(t 为参数).(1)写出椭圆C 的参数方程及直线l 的普通方程;(2)设A (1,0),若椭圆C 上的点P 满足到点A 的距离与其到直线l 的距离相等,求点P 的坐标.[解] (1)椭圆C :⎩⎨⎧x =2cos θ,y =3sin θ(θ为参数),直线l :x -3y +9=0.(2)设P (2cos θ,3sin θ),则|AP |= θ-2+3sin θ2=2-cos θ,点P 到直线l 的距离d =|2cos θ-3sin θ+9|2=2cos θ-3sin θ+92.由|AP |=d ,得3sin θ-4cos θ=5,又sin 2θ+cos 2θ=1,得sin θ=35,cos θ=-45.故P ⎝ ⎛⎭⎪⎫-85,335.[方法技巧]将参数方程化为普通方程的方法(1)将参数方程化为普通方程,需要根据参数方程的结构特征,选取适当的消参方法.常见的消参方法有:代入消参法、加减消参法、平方消参法等,对于含三角函数的参数方程,常利用同角三角函数关系式消参,如sin 2θ+cos 2θ=1等.(2)将参数方程化为普通方程时,要注意两种方程的等价性,不要增解. [即时演练]将下列参数方程化为普通方程. (1)⎩⎪⎨⎪⎧x =3k 1+k 2,y =6k21+k2(k 为参数);(2)⎩⎪⎨⎪⎧x =1-sin 2θ,y =sin θ+cos θ(θ为参数).解:(1)两式相除,得k =y2x ,将其代入x =3k1+k 2,得x =3·y2x1+⎝ ⎛⎭⎪⎫y 2x 2, 化简得所求的普通方程是4x 2+y 2-6y =0(y ≠6).(2)由(sin θ+cos θ)2=1+sin 2θ=2-(1-sin 2θ), 得y 2=2-x .又x =1-sin 2θ∈[0,2], 故所求的普通方程为y 2=2-x ,x ∈[0,2].参数方程[典例] 种坐标系取相同的单位长度.已知曲线C :ρsin 2θ=2a cos θ(a >0),过点P (-2,-4)的直线l 的参数方程为⎩⎨⎧x =-2+2t ,y =-4+2t(t 为参数),直线l 与曲线C 分别交于M ,N ,若|PM |,|MN |,|PN |成等比数列,求实数a 的值.[解] 曲线C 的直角坐标方程为y 2=2ax (a >0), 将直线l 的参数方程化为⎩⎪⎨⎪⎧x =-2+22t ′,y =-4+22t ′(t ′为参数),代入曲线C 的方程得:12t ′2-(42+2a )t ′+16+4a =0, 则Δ>0,即a >0或a <-4.设交点M ,N 对应的参数分别为t 1′,t 2′,则t 1′+t 2′=2(42+2a ),t 1′t 2′=2(16+4a ), 若|PM |,|MN |,|PN |成等比数列, 则|t 1′-t 2′|2=|t 1′t 2′|, 解得a =1或a =-4(舍去), 所以满足条件的a =1. [方法技巧](1)解决直线与圆的参数方程的应用问题时,一般是先化为普通方程,再根据直线与圆的位置关系来解决问题.(2)对于形如⎩⎪⎨⎪⎧x =x 0+at ,y =y 0+bt (t 为参数).当a 2+b 2≠1时,应先化为标准形式后才能利用t 的几何意义解题. [即时演练]已知直线l :x +y -1=0与抛物线y =x 2相交于A ,B 两点,求线段AB 的长度和点M (-1,2)到A ,B 两点的距离之积.解:因为直线l 过定点M ,且l 的倾斜角为3π4,所以它的参数方程为⎩⎪⎨⎪⎧x =-1+t cos 3π4,y =2+t sin 3π4(t 为参数),即⎩⎪⎨⎪⎧x =-1-22t ,y =2+22t (t 为参数),把它代入抛物线的方程,得t 2+2t -2=0, 由根与系数的关系得t 1+t 2=-2,t 1·t 2=-2, 由参数t 的几何意义可知|AB |=|t 1-t 2|=10, |MA |·|MB |=|t 1t 2|=2.[典例] (2017·全国卷Ⅲ)在直角坐标系xOy 中,直线l 1的参数方程为⎩⎪⎨⎪⎧x =2+t ,y =kt (t为参数),直线l 2的参数方程为⎩⎪⎨⎪⎧x =-2+m ,y =mk(m 为参数).设l 1与l 2的交点为P ,当k变化时,P 的轨迹为曲线C .(1)写出C 的普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设l 3:ρ(cos θ+sin θ)-2=0,M 为l 3与C 的交点,求M 的极径.[解] (1)消去参数t 得l 1的普通方程l 1:y =k (x -2); 消去参数m 得l 2的普通方程l 2:y =1k(x +2).设P (x ,y ),由题设得⎩⎪⎨⎪⎧y =k x -,y =1kx +消去k 得x 2-y 2=4(y ≠0).所以C 的普通方程为x 2-y 2=4(y ≠0).(2)C 的极坐标方程为ρ2(cos 2θ-sin 2θ)=4(0<θ<2π,θ≠π).联立⎩⎨⎧ρ22θ-sin 2θ=4,ρθ+sin θ-2=0得cos θ-sin θ=2(cos θ+sin θ). 故tan θ=-13,从而cos 2θ=910,sin 2θ=110.代入ρ2(cos 2θ-sin 2θ)=4得ρ2=5, 所以交点M 的极径为 5.[方法技巧]处理极坐标、参数方程综合问题的方法(1)涉及参数方程和极坐标方程的综合题,求解的一般方法是分别化为普通方程和直角坐标方程后求解.当然,还要结合题目本身特点,确定选择何种方程.(2)数形结合的应用,即充分利用参数方程中参数的几何意义,或者利用ρ和θ的几何意义,直接求解,能达到化繁为简的解题目的.[即时演练]在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,已知曲线C 的极坐标方程为:ρ=4cos θ1-cos 2θ,直线的参数方程是⎩⎪⎨⎪⎧x =2+t cos α,y =2+t sin α.(α为参数,0≤α<π).(1)求曲线C 的直角坐标方程;(2)设直线与曲线C 交于两点A ,B ,且线段AB 的中点为M (2,2),求α.解:(1)曲线C :ρ=4cos θ1-cos 2θ,即ρsin 2θ=4cos θ,于是有ρ2sin 2θ=4ρcos θ,化为直角坐标方程为y 2=4x .(2)法一: 把x =2+t cos α,y =2+t sin α代入y 2=4x , 得(2+t sin α)2=4(2+t cos α), 即t 2sin 2α+(4sin α-4cos α)t -4=0.由AB 的中点为M (2,2)得t 1+t 2=0,有4sin α-4cos α=0,所以k =tan α=1. 由0≤α<π,得α=π4.法二:设A (x 1,y 1),B (x 2,y 2),则⎩⎪⎨⎪⎧y 21=4x 1,y 22=4x 2⇒(y 1+y 2)(y 1-y 2)=4(x 1-x 2).∵y 1+y 2=4,∴k 1=tan α=y 1-y 2x 1-x 2=1, 由0≤α<π,得α=π4.1.(2017·全国卷Ⅰ)在直角坐标系xOy 中,曲线C的参数方程为⎩⎪⎨⎪⎧x =3cos θ,y =sin θ(θ为参数),直线l 的参数方程为⎩⎪⎨⎪⎧x =a +4t ,y =1-t (t 为参数).(1)若a =-1,求C 与l 的交点坐标; (2)若C 上的点到l 距离的最大值为17,求a . 解:(1)曲线C 的普通方程为x 29+y 2=1.当a =-1时,直线l 的普通方程为x +4y -3=0,由⎩⎪⎨⎪⎧x +4y -3=0,x 29+y 2=1解得⎩⎪⎨⎪⎧x =3,y =0或⎩⎪⎨⎪⎧x =-2125,y =2425.从而C 与l 的交点坐标为(3,0),⎝ ⎛⎭⎪⎫-2125,2425.(2)直线l 的普通方程为x +4y -a -4=0, 故C 上的点(3cos θ,sin θ)到l 的距离为d =|3cos θ+4sin θ-a -4|17. 当a ≥-4时,d 的最大值为a +917.由题设得a +917=17,解得a =8;当a <-4时,d 的最大值为-a +117. 由题设得-a +117=17,解得a =-16.综上,a =8或a =-16.2.(2016·全国卷Ⅱ)在直角坐标系xOy 中,圆C 的方程为(x +6)2+y 2=25. (1)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程;(2)直线l 的参数方程是⎩⎪⎨⎪⎧x =t cos α,y =t sin α(t 为参数),l 与C 交于A ,B 两点,|AB |=10,求l 的斜率.解:(1)由x =ρcos θ,y =ρsin θ可得圆C 的极坐标方程为 ρ2+12ρcos θ+11=0.(2)法一:在(1)中建立的极坐标系中,直线l 的极坐标方程为θ=α(ρ∈R). 设A ,B 所对应的极径分别为ρ1,ρ2, 将l 的极坐标方程代入C 的极坐标方程得 ρ2+12ρcos α+11=0,于是ρ1+ρ2=-12cos α,ρ1ρ2=11.|AB |=|ρ1-ρ2|=ρ1+ρ22-4ρ1ρ2=144cos 2α-44.由|AB |=10得cos 2α=38,tan α=±153.所以直线l 的斜率为153或-153. 法二:由直线l 的参数方程⎩⎪⎨⎪⎧x =t cos α,y =t sin α(t 为参数),消去参数得y =x ·tan α.设直线l 的斜率为k , 则直线l 的方程为kx -y =0. 由圆C 的方程(x +6)2+y 2=25知, 圆心坐标为(-6,0),半径为5.又|AB |=10,由垂径定理及点到直线的距离公式得 |-6k |1+k2=25-⎝ ⎛⎭⎪⎫1022,即36k 21+k 2=904,整理得k 2=53,解得k =±153,即直线l 的斜率为±153. 3.(2015·全国卷Ⅱ)在直角坐标系xOy 中,曲线C 1:⎩⎪⎨⎪⎧x =t cos α,y =t sin α(t 为参数,t ≠0),其中0≤α<π.在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=2sin θ,C 3:ρ=23cos θ.(1)求C 2与C 3交点的直角坐标;(2)若C 1与C 2相交于点A ,C 1与C 3相交于点B ,求|AB |的最大值. 解:(1)曲线C 2的直角坐标方程为x 2+y 2-2y =0, 曲线C 3的直角坐标方程为x 2+y 2-23x =0.联立⎩⎨⎧x 2+y 2-2y =0,x 2+y 2-23x =0,解得⎩⎪⎨⎪⎧x =0,y =0或⎩⎪⎨⎪⎧x =32,y =32.所以C 2与C 3交点的直角坐标为(0,0)和⎝⎛⎭⎪⎫32,32. (2)曲线C 1的极坐标方程为θ=α(ρ∈R ,ρ≠0), 其中0≤α<π.因此A 的极坐标为(2sin α,α),B 的极坐标为(23cos α,α). 所以|AB |=|2sin α-23cos α|=4⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫α-π3. 当α=5π6时,|AB |取得最大值,最大值为4.4.(2014·全国卷Ⅱ)在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为ρ=2cos θ,θ∈⎣⎢⎡⎦⎥⎤0,π2.(1)求C 的参数方程;(2)设点D 在C 上,C 在D 处的切线与直线l :y =3x +2垂直,根据(1)中你得到的参数方程,确定D 的坐标.解:(1)C 的普通方程为(x -1)2+y 2=1(0≤y ≤1).可得C 的参数方程为⎩⎪⎨⎪⎧x =1+cos t ,y =sin t (t 为参数,0≤t ≤π).(2)设D (1+cos t ,sin t ).由(1)知C 是以G (1,0)为圆心,1为半径的上半圆. 因为G 在点D 处的切线与l 垂直,所以直线GD 与l 的斜率相同,tan t =3,t =π3.故D 的直角坐标为⎝ ⎛⎭⎪⎫1+cos π3,sin π3,即⎝ ⎛⎭⎪⎫32,32.1.(2017·江苏高考)在平面直角坐标系xOy 中,已知直线l 的参数方程为⎩⎪⎨⎪⎧x =-8+t ,y =t 2(t 为参数),曲线C 的参数方程为⎩⎨⎧x =2s 2,y =22s(s 为参数).设P 为曲线C上的动点,求点P 到直线l 的距离的最小值.解:直线l 的普通方程为x -2y +8=0. 因为点P 在曲线C 上,设P (2s 2,22s ), 从而点P 到直线l 的距离d =|2s 2-42s +8|12+-2=s -22+45.当s =2时,d min =455.因此当点P 的坐标为(4,4)时,曲线C 上点P 到直线l 的距离取到最小值455.2.已知曲线C 1:⎩⎪⎨⎪⎧x =-4+cos t ,y =3+sin t (t 为参数),曲线C 2:⎩⎪⎨⎪⎧x =8cos θ,y =3sin θ(θ为参数).(1)化C 1,C 2的方程为普通方程,并说明它们分别表示什么曲线;(2)若C 1上的点P 对应的参数为t =π2,Q 为C 2上的动点,求PQ 中点M 到直线C 3:⎩⎪⎨⎪⎧x =3+2t ,y =-2+t(t 为参数)的距离的最小值.解:(1)曲线C 1:(x +4)2+(y -3)2=1,曲线C 2:x 264+y 29=1,曲线C 1是以(-4,3)为圆心,1为半径的圆;曲线C 2是以坐标原点为中心,焦点在x 轴上,长半轴长是8,短半轴长是3的椭圆. (2)当t =π2时,P (-4,4),Q (8cos θ,3sin θ),故M -2+4cos θ,2+32sin θ.曲线C 3为直线x -2y -7=0,M 到C 3的距离d =55|4cos θ-3sin θ-13|,从而当cos θ=45,sin θ=-35时,d 取最小值855.3.在平面直角坐标系xOy 中,C 1的参数方程为⎩⎪⎨⎪⎧x =1-22t ,y =1+22t (t 为参数),在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,C 2的极坐标方程ρ2-2ρcos θ-3=0.(1)说明C 2是哪种曲线,并将C 2的方程化为普通方程;(2)C 1与C 2有两个公共点A ,B ,点P 的极坐标⎝⎛⎭⎪⎫2,π4,求线段AB 的长及定点P 到A ,B 两点的距离之积.解:(1)C 2是圆,C 2的极坐标方程ρ2-2ρcos θ-3=0, 化为普通方程为x 2+y 2-2x -3=0,即(x -1)2+y 2=4. (2)点P 的直角坐标为(1,1),且在直线C 1上, 将C 1的参数方程⎩⎪⎨⎪⎧x =1-22t ,y =1+22t (t 为参数)代入x 2+y 2-2x -3=0,得⎝ ⎛⎭⎪⎫1-22t 2+⎝ ⎛⎭⎪⎫1+22t 2-2⎝⎛⎭⎪⎫1-22t -3=0,化简得t 2+2t -3=0. 设A ,B 对应的参数分别为t 1,t 2, 则t 1+t 2=-2,t 1·t 2=-3, 所以|AB |=|t 1-t 2|=t 1+t 22-4t 1t 2=2+12=14,定点P 到A ,B 两点的距离之积|PA |·|PB |=|t 1t 2|=3.4.在平面直角坐标系xOy 中,已知圆C 的参数方程为⎩⎪⎨⎪⎧x =1+2cos θ,y =2sin θ(θ为参数),直线l 的参数方程为⎩⎪⎨⎪⎧x =5-2t ,y =3-t (t 为参数),定点P (1,1).(1)以原点O 为极点,x 轴的非负半轴为极轴,单位长度与平面直角坐标系下的单位长度相同建立极坐标系,求圆C 的极坐标方程;(2)已知直线l 与圆C 相交于A ,B 两点,求||PA |-|PB ||的值. 解:(1)依题意得圆C 的一般方程为(x -1)2+y 2=4,将x =ρcos θ,y =ρsin θ代入上式得ρ2-2ρcos θ-3=0, 所以圆C 的极坐标方程为ρ2-2ρcos θ-3=0.(2)因为定点P (1,1)在直线l 上,所以直线l 的参数方程可表示为⎩⎪⎨⎪⎧x =1-255t ,y =1-55t (t 为参数).代入(x -1)2+y 2=4,得t 2-255t -3=0. 设点A ,B 分别对应的参数为t 1,t 2, 则t 1+t 2=255,t 1t 2=-3.所以t 1,t 2异号,不妨设t 1>0,t 2<0, 所以|PA |=t 1,|PB |=-t 2, 所以||PA |-|PB ||=|t 1+t 2|=255.5.已知直线l :⎩⎪⎨⎪⎧x =1+12t ,y =32t(t 为参数),曲线C 1:⎩⎪⎨⎪⎧x =cos θ,y =sin θ(θ为参数).(1)设l 与C 1相交于A ,B 两点,求|AB |;(2)若把曲线C 1上各点的横坐标压缩为原来的12倍,纵坐标压缩为原来的32倍,得到曲线C 2,设点P 是曲线C 2上的一个动点,求它到直线l 距离的最小值.解:(1)由已知得l 的普通方程为y =3(x -1),C 1的普通方程为x 2+y 2=1, 联立方程⎩⎨⎧y =3x -,x 2+y 2=1解得l 与C 1的交点为A (1,0),B ⎝ ⎛⎭⎪⎫12,-32,则|AB |=1.(2)由题意,得C 2的参数方程为⎩⎪⎨⎪⎧x =12cos θ,y =32sin θ(θ为参数),故点P 的坐标为⎝ ⎛⎭⎪⎫12cos θ,32sin θ,从而点P 到直线l 的距离是 d =⎪⎪⎪⎪⎪⎪32cos θ-32sin θ-32=342sin ⎝⎛⎭⎪⎫θ-π4+2,当sin ⎝ ⎛⎭⎪⎫θ-π4=-1时,d 取得最小值,且最小值为23-64.6.在直角坐标系xOy 中,直线l的参数方程为⎩⎪⎨⎪⎧x =t -1,y =t +2(t 为参数).在以原点O为极点,x 轴的正半轴为极轴的极坐标系中,曲线C 的极坐标方程为ρ=31+2cos 2θ.(1)直接写出直线l 的普通方程、曲线C 的直角坐标方程; (2)设曲线C 上的点到直线l 的距离为d ,求d 的取值范围. 解:(1)直线l 的普通方程为x -y +3=0,曲线C 的直角坐标方程为3x 2+y 2=3. (2)∵曲线C 的直角坐标方程为3x 2+y 2=3, 即x 2+y 23=1,∴曲线C 上的点的坐标可表示为(cos α,3sin α), ∴d =|cos α-3sin α+3|2=⎪⎪⎪⎪⎪⎪2sin ⎝ ⎛⎭⎪⎫π6-α+32=2sin ⎝ ⎛⎭⎪⎫π6-α+32.∴d 的最小值为12=22,d 的最大值为52=522.∴22≤d ≤522,即d 的取值范围为⎣⎢⎡⎦⎥⎤22,522. 7.平面直角坐标系xOy 中,曲线C :(x -1)2+y 2=1.直线l 经过点P (m,0),且倾斜角为π6,以O 为极点,x 轴正半轴为极轴,建立极坐标系. (1)写出曲线C 的极坐标方程与直线l 的参数方程;(2)若直线l 与曲线C 相交于A ,B 两点,且|PA |·|PB |=1,求实数m 的值.解:(1)曲线C 的直角坐标方程为:(x -1)2+y 2=1,即x 2+y 2=2x ,即ρ2=2ρcos θ, 所以曲线C 的极坐标方程为ρ=2cos θ. 直线l 的参数方程为⎩⎪⎨⎪⎧x =m +32t ,y =12t (t 为参数).(2)设A ,B 两点对应的参数分别为t 1,t 2,将直线l 的参数方程代入x 2+y 2=2x 中, 得t 2+(3m -3)t +m 2-2m =0, 所以t 1t 2=m 2-2m , 由题意得|m 2-2m |=1,解得m =1或m =1+2或m =1- 2. 8.已知直线的参数方程是⎩⎪⎨⎪⎧x =22t ,y =22t +42(t 是参数),圆C 的极坐标方程为ρ=4cos ⎝⎛⎭⎪⎫θ+π4.(1)求圆心C 的直角坐标;(2)由直线l 上的点向圆C 引切线,求切线长的最小值. 解:(1)∵ρ=4cos ⎝ ⎛⎭⎪⎫θ+π4=22cos θ-22sin θ, ∴ρ2=22ρcos θ-22ρsin θ,∴圆C 的直角坐标方程为x 2+y 2-22x +22y =0, 即(x -2)2+(y +2)2=4, ∴圆心的直角坐标为(2,-2). (2)直线l 上的点向圆C 引切线,则切线长为⎝ ⎛⎭⎪⎫22t -22+⎝ ⎛⎭⎪⎫22t +42+22-4 =t 2+8t +48=t +2+32≥42,∴直线l 上的点向圆C 引的切线长的最小值为4 2.。

新高考高三数学(文)二轮复习课时跟踪训练---选修4-4坐标系与参数方程课时跟踪训练61Word版含解析

新高考高三数学(文)二轮复习课时跟踪训练---选修4-4坐标系与参数方程课时跟踪训练61Word版含解析

新高考高三数学(文)二轮复习课时跟踪训练(六十一)[基础巩固]1.(2016·全国卷Ⅲ)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =3cos α,y =sin α,(α为参数).以坐标原点为极点,以x 轴的正半轴为极轴,建立极坐标系,曲线C 2的极坐标方程为ρsin ⎝⎛⎭⎪⎫θ+π4=2 2.(1)写出C 1的普通方程和C 2的直角坐标方程;(2)设点P 在C 1上,点Q 在C 2上,求|PQ |的最小值及此时P 的直角坐标.[解] (1)C 1的普通方程为x 23+y 2=1.C 2的直角坐标方程为x +y -4=0.(2)由题意,可设点P 的坐标为(3cos α,sin α).因为C 2是直线,所以|PQ |的最小值即为P 到C 2的距离d (α)的最小值,d (α)=|3cos α+sin α-4|2=2⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫α+π3-2. ∴当sin ⎝⎛⎭⎪⎫α+π3=1时,d 的最小值为2,此时α=π6+2k π,k ∈Z ,∴P 点坐标为⎝⎛⎭⎪⎫32,12.2.(2016·全国卷Ⅰ)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =a cos t ,y =1+a sin t(t 为参数,a >0).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=4cos θ.(1)说明C 1是哪一种曲线,并将C 1的方程化为极坐标方程; (2)直线C 3的极坐标方程为θ=α0,其中α0满足tan α0=2,若曲线C 1与C 2的公共点都在C 3上,求a .[解] (1)消去参数t 得到C 1的普通方程x 2+(y -1)2=a 2,C 1是以(0,1)为圆心,a 为半径的圆.将x =ρcos θ,y =ρsin θ代入C 1的普通方程中,得到C 1的极坐标方程为ρ2-2ρsin θ+1-a 2=0.(2)曲线C 1,C 2的公共点的极坐标满足方程组⎩⎪⎨⎪⎧ρ2-2ρsin θ+1-a 2=0,ρ=4cos θ. 若ρ≠0,由方程组得16cos 2θ-8sin θcos θ+1-a 2=0, 由已知tan θ=2,可得16cos 2θ-8sin θcos θ=0, 从而1-a 2=0,解得a =-1(舍去),a =1. a =1时,极点也为C 1,C 2的公共点,在C 3上, 所以a =1.3.(2018·湖北七市联考)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =2+t cos α,y =3+t sin α(t 是参数),以原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ=8cos ⎝⎛⎭⎪⎫θ-π3. (1)求曲线C 2的直角坐标方程,并指出其表示何种曲线; (2)若曲线C 1与曲线C 2交于A ,B 两点,求|AB |的最大值和最小值.[解] (1)对于曲线C 2有ρ=8cos ⎝ ⎛⎭⎪⎫θ-π3,即ρ2=4ρcos θ+43ρsin θ,因此曲线C 2的直角坐标方程为x 2+y 2-4x -43y =0,其表示一个圆.(2)联立曲线C 1与曲线C 2的方程可得t 2-23sin α·t -13=0,|AB |=|t 1-t 2|=(t 1+t 2)2-4t 1t 2=(23sin α)2-4×(-13)=12sin 2α+52,因此|AB |的最小值为213,最大值为8.4.(2017·东北三省四市二模)已知在平面直角坐标系xOy 中,以O 为极点,x 轴的正半轴为极轴,建立极坐标系.曲线C 1的极坐标方程为ρ=4cos θ,直线l 的参数方程是⎩⎨⎧x =1-255t ,y =1+55t(t 为参数).(1)求曲线C 1的直角坐标方程及直线l 的普通方程;(2)若曲线C 2的参数方程为⎩⎪⎨⎪⎧x =2cos α,y =sin α(α为参数),曲线C 1上的点P 的极角为π4,Q 为曲线C 2上的动点,求PQ 的中点M 到直线l 的距离的最大值.[解] (1)由ρ=4cos θ得ρ2=4ρcos θ,又x 2+y 2=ρ2,x =ρcos θ,y =ρsin θ,所以曲线C 1的直角坐标方程为x 2+y 2-4x =0,由直线l 的参数方程消去参数t 得直线l 的普通方程为x +2y -3=0.(2)因为点P 的极坐标为⎝ ⎛⎭⎪⎫22,π4,直角坐标为(2,2), 点Q 的直角坐标为(2cos α,sin α), 所以M ⎝ ⎛⎭⎪⎫1+cos α,1+12sin α,点M 到直线l 的距离d =|1+cos α+2+sin α-3|5=105⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫α+π4, 当α+π4=π2+k π(k ∈Z ),即α=π4+k π(k ∈Z )时,点M 到直线l 的距离d 的最大值为105.5.(2017·西宁统一测试)已知曲线C :x 24+y 29=1,直线l :⎩⎪⎨⎪⎧x =2+t ,y =2-2t (t 为参数). (1)写出曲线C 的参数方程,直线l 的普通方程;(2)过曲线C 上任意一点P 作与l 夹角为30°的直线,交l 于点A ,求|P A |的最大值与最小值.[解] (1)曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos θ,y =3sin θ(θ为参数).直线l 的普通方程为2x +y -6=0.(2)曲线C 上任意一点P (2cos θ,3sin θ)到l 的距离为d =55|4cos θ+3sin θ-6|,则|P A |=d sin30°=255|5sin(θ+α)-6|,其中α为锐角,且tan α=43. 当sin(θ+α)=-1时,|P A |取得最大值,最大值为2255. 当sin(θ+α)=1时,|P A |取得最小值,最小值为255.[能力提升]6.(2017·陕西西安地区高三八校联考)在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ=2sin θ,θ∈[0,2π].(1)求曲线C 的直角坐标方程;(2)在曲线C 上求一点D ,使它到直线l :⎩⎪⎨⎪⎧x =3t +3,y =-3t +2(t 为参数)的距离最短,并求出点D 的直角坐标.[解] (1)由ρ=2sin θ,θ∈[0,2π],可得ρ2=2ρsin θ. 因为ρ2=x 2+y 2,ρsin θ=y ,所以曲线C 的直角坐标方程为x 2+y 2-2y =0(或x 2+(y -1)2=1).(2)因为直线l 的参数方程为⎩⎪⎨⎪⎧x =3t +3,y =-3t +2(t 为参数),消去t 得直线l 的普通方程为y =-3x +5.因为曲线C :x 2+(y -1)2=1是以G (0,1)为圆心、1为半径的圆,(易知C 、l 相离)设点D (x 0,y 0),且点D 到直线l :y =-3x +5的距离最短, 所以曲线C 在点D 处的切线与直线l :y =-3x +5平行. 即直线GD 与l 的斜率的乘积等于-1,即y 0-1x 0×(-3)=-1,又x 20+(y 0-1)2=1,可得x 0=-32(舍去)或x 0=32,所以y 0=32,即点D 的坐标为⎝ ⎛⎭⎪⎫32,32.7.(2017·湖南五市十校高三联考)在直角坐标系xOy 中,设倾斜角为α的直线l 的参数方程为⎩⎪⎨⎪⎧x =3+t cos α,y =t sin α(t 为参数),直线l 与曲线C :⎩⎨⎧x =1cos θ,y =tan θ(θ为参数)相交于不同的两点A ,B .(1)若α=π3,求线段AB 的中点的直角坐标;(2)若直线l 的斜率为2,且过已知点P (3,0),求|P A |·|PB |的值. [解](1)由曲线C :⎩⎨⎧x =1cos θ,y =tan θ(θ为参数),可得曲线C 的普通方程是x 2-y 2=1.当α=π3时,直线l 的参数方程为⎩⎨⎧x =3+12t ,y =32t(t 为参数),代入曲线C 的普通方程,得t 2-6t -16=0,设A ,B 两点对应的参数分别为t 1,t 2,则t 1+t 2=6,所以线段AB 的中点对应的t =t 1+t 22=3,故线段AB 的中点的直角坐标为⎝ ⎛⎭⎪⎫92,332. (2)将直线l 的参数方程代入曲线C 的普通方程,化简得 (cos 2α-sin 2α)t 2+6t cos α+8=0,则|P A |·|PB |=|t 1t 2|=⎪⎪⎪⎪⎪⎪8cos 2α-sin 2α=⎪⎪⎪⎪⎪⎪8(1+tan 2α)1-tan 2α, 由已知得tan α=2,故|P A |·|PB |=403.8.在平面直角坐标系xOy 中,曲线C 1:⎩⎪⎨⎪⎧x =a cos φ,y =b sin φ(φ为参数),其中a >b >0.以O 为极点,x 轴的非负半轴为极轴的极坐标系中,曲线C 2:ρ=2cos θ,射线l :θ=α(ρ≥0).若射线l 与曲线C 1交于点P ,射线l 与曲线C 2交于点Q ,当α=0时,|PQ |=1;当α=π2时,|OP |= 3.(1)求曲线C 1的普通方程;(2)设直线l ′:⎩⎪⎨⎪⎧x =-t ,y =3t (t 为参数,t ≠0)与曲线C 2交于点R ,若α=π3,求△OPR 的面积.[解] (1)因为曲线C 1的参数方程为⎩⎪⎨⎪⎧x =a cos φ,y =b sin φ(φ为参数),且a >b >0,所以曲线C 1的普通方程为x 2a 2+y 2b 2=1,而其极坐标方程为ρ2cos 2θa 2+ρ2sin 2θb 2=1.将θ=0(ρ≥0)代入ρ2cos 2θa 2+ρ2sin 2θb 2=1,得ρ=a ,即点P 的极坐标为(a,0),将θ=0(ρ≥0)代入ρ=2cos θ,得ρ=2,即点Q 的坐标为(2,0). 因为|PQ |=1,所以|PQ |=|a -2|=1,所以a =1或a =3. 将θ=π2(ρ≥0)代入ρ2cos 2θa 2+ρ2sin 2θb 2=1,得ρ=b ,即点P 的极坐标为⎝ ⎛⎭⎪⎫b ,π2,因为|OP |=3,所以b =3,因为a >b >0,所以a =3, 所以曲线C 1的普通方程为x 29+y 23=1.(2)因为直线l ′的参数方程为⎩⎪⎨⎪⎧x =-t ,y =3t(t 为参数,t ≠0),所以直线l ′的普通方程为y =-3x (x ≠0),而其极坐标方程为θ=-π3(ρ∈R ,ρ≠0),所以将直线l ′的方程θ=-π3代入曲线C 2的方程ρ=2cos θ,得ρ=1,即|OR |=1.因为将射线l 的方程θ=π3(ρ≥0)代入曲线C 1的方程ρ2cos 2θ9+ρ2sin 2θ3=1,得ρ=3105,即|OP |=3105,所以S △OPR =12|OP ||OR |·sin ∠POR =12×3105×1×sin π3=33020.。

2021年高考数学二轮复习课时跟踪检测 21坐标系与参数方程 理数(含答案解析)

2021年高考数学二轮复习课时跟踪检测 21坐标系与参数方程 理数(含答案解析)

课时跟踪检测 坐标系与参数方程1.在平面直角坐标系中,直线l 的参数方程是Error!(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴,建立极坐标系,曲线C 的极坐标方程为ρ2+2ρsin θ-3=0.(1)求直线l 的极坐标方程;(2)若直线l 与曲线C 相交于A ,B 两点,求|AB|.2.在平面直角坐标系中,曲线C 的参数方程为Error!(α为参数).以直角坐标系的原点O为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为ρcos =.直线(θ+π3)12l 与曲线C 交于A ,B 两点.(1)求直线l 的直角坐标方程;(2)设点P(1,0),求|PA|·|PB|的值.3.在平面直角坐标系xOy 中,曲线C 1的参数方程为Error!(α为参数),直线C 2的方程为y=x ,以O 为极点,以x 轴的非负半轴为极轴建立极坐标系.33(1)求曲线C 1和直线C 2的极坐标方程;(2)若直线C 2与曲线C 1交于P ,Q 两点,求|OP|·|OQ|的值.4.在平面直角坐标系xOy 中,曲线C :Error!(α为参数,t>0).在以O 为极点,x 轴的正半轴为极轴的极坐标系中,直线l :ρcos =.(θ-π4)2(1)若l 与曲线C 没有公共点,求t 的取值范围;(2)若曲线C 上存在点到l 的距离的最大值为+,求t 的值.6225.在直角坐标系xOy 中,曲线C 1的参数方程为Error!(α为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρcos =3.(θ+π4)2(1)求曲线C 1的普通方程和曲线C 2的直角坐标方程;(2)若点M 在曲线C 1上,点N 在曲线C 2上,求|MN|的最小值及此时点M 的直角坐标.6.在直角坐标系xOy中,已知倾斜角为α的直线l过点A(2,1).以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.曲线C的极坐标方程为ρ=2sin θ,直线l与曲线C分别交于P,Q两点.(1)写出直线l的参数方程和曲线C的直角坐标方程;(2)若|PQ|2=|AP|·|AQ|,求直线l的斜率k.7.平面直角坐标系xOy中,倾斜角为α的直线l过点M(-2,-4),以原点O为极点,x 轴的正半轴为极轴,建立极坐标系,曲线C的极坐标方程为ρsin2θ=2cos θ.(1)写出直线l的参数方程(α为常数)和曲线C的直角坐标方程;(2)若直线l与C交于A,B两点,且|MA|·|MB|=40,求倾斜角α的值.8.在平面直角坐标系xOy 中,⊙O 的参数方程为Error!(θ为参数),过点(0,-)且倾斜2角为α的直线l 与⊙O 交于A ,B 两点.(1)求α的取值范围;(2)求AB 中点P 的轨迹的参数方程.答案解析1.解:(1)由Error!消去t 得,y=2x ,把Error!代入y=2x ,得ρsin θ=2ρcos θ,所以直线l 的极坐标方程为sin θ=2cos θ.(2)因为ρ2=x 2+y 2,y=ρsin θ,所以曲线C 的直角坐标方程为x 2+y 2+2y -3=0,即x 2+(y +1)2=4.圆C 的圆心C(0,-1)到直线l 的距离d=,55所以|AB|=2=.4-d229552.解:(1)由ρcos =得ρcos θcos -ρsin θsin =,即ρcos θ-ρsin(θ+π3)12π3π3121232θ=,12又ρcos θ=x ,ρsin θ=y ,∴直线l 的直角坐标方程为x -y -1=0.3(2)由Error!(α为参数)得曲线C 的普通方程为x 2+4y 2=4,∵P(1,0)在直线l 上,故可设直线l 的参数方程为Error!(t 为参数),将其代入x 2+4y 2=4得7t 2+4t -12=0,∴t 1·t 2=-,3127故|PA|·|PB|=|t 1|·|t 2|=|t 1·t 2|=.1273.解:(1)曲线C 1的普通方程为(x -)2+(y -2)2=4,3即x 2+y 2-2x -4y +3=0,则曲线C 1的极坐标方程为ρ2-2ρcos θ-4ρsin θ+3=0.33∵直线C 2的方程为y=x ,∴直线C 2的极坐标方程为θ=(ρ∈R).33π6(2)设P(ρ1,θ1),Q(ρ2,θ2),将θ=(ρ∈R)代入ρ2-2ρcos θ-4ρsin θ+3=0得,ρ2-5ρ+3=0,∴ρ1ρπ632=3,∴|OP|·|OQ|=ρ1ρ2=3.4.解:(1)因为直线l 的极坐标方程为ρcos =,(θ-π4)2即ρcos θ+ρsin θ=2,所以直线l 的直角坐标方程为x +y -2=0.因为Error!(α为参数,t>0),所以曲线C 的普通方程为+y 2=1(t>0),x2t2由Error!消去x 得,(1+t 2)y 2-4y +4-t 2=0,所以Δ=16-4(1+t 2)(4-t 2)<0,又t>0,解得0<t<,故t 的取值范围为(0,).33(2)由(1)知直线l 的方程为x +y -2=0,故曲线C 上的点(tcos α,sin α)到l 的距离d=,|tcos α+sin α-2|2故d max ==+,解得t=±.t2+1+226222又t>0,∴t=.25.解:(1)由曲线C 1的参数方程可得曲线C 1的普通方程为+=1,由ρcos =3x29y23(θ+π4),得ρcos θ-ρsin θ=6,∴曲线C 2的直角坐标方程为x -y -6=0.2(2)设点M 的坐标为(3cos β,sin β),点M 到直线x -y -6=0的距离d=3==,|3cos β-3sin β-6|2|23sin (β-π3)+6|26+23sin (β-π3)2当sin =-1时,|MN|有最小值,最小值为3-,此时点M 的直角坐标为(β-π3)26.(332,-32)6.解:(1)由题意知直线l 的参数方程为Error!(t 为参数),因为ρ=2sin θ,所以ρ2=2ρsin θ,把y=ρsin θ,x 2+y 2=ρ2代入得x 2+y 2=2y ,所以曲线C 的直角坐标方程为x 2+y 2=2y.(2)将直线l 的参数方程代入曲线C 的方程,得t 2+(4cos α)t +3=0,由Δ=(4cos α)2-4×3>0,得cos 2α>,34由根与系数的关系,得t 1+t 2=-4cos α,t 1t 2=3.不妨令|AP|=|t 1|,|AQ|=|t 2|,所以|PQ|=|t 1-t 2|,因为|PQ|2=|AP|·|AQ|,所以(t 1-t 2)2=|t 1|·|t 2|,则(t 1+t 2)2=5t 1t 2,得(-4cos α)2=5×3,解得cos 2α=,满足cos 2α>,151634所以sin 2α=,tan 2α=,116115所以k=tan α=±.15157.解:(1)直线l 的参数方程为Error!(t 为参数),ρsin 2θ=2cos θ,即ρ2sin 2θ=2ρcos θ,将x=ρcos θ,y=ρsin θ代入得曲线C 的直角坐标方程为y 2=2x.(2)把直线l 的参数方程代入y 2=2x ,得t 2sin 2α-(2cos α+8sin α)t +20=0,设A ,B 对应的参数分别为t 1,t 2,由一元二次方程根与系数的关系得,t 1+t 2=,t 1t 2=,2cos α+8sin αsin2α20sin2α根据直线的参数方程中参数的几何意义,得|MA|·|MB|=|t 1t 2|==40,得α=或α=20sin2απ4.3π4又Δ=(2cos α+8sin α)2-80sin 2α>0,所以α=.π48.解:(1)⊙O 的直角坐标方程为x 2+y 2=1.当α=时,l 与⊙O 交于两点.π2当α≠时,记tan α=k ,则l 的方程为y=kx -.π22l 与⊙O 交于两点需满足<1,21+k2解得k<-1或k>1,即α∈或α∈.(π2,3π4)(π4,π2)综上,α的取值范围是.(π4,3π4)(2)l 的参数方程为Error!.设A ,B ,P 对应的参数分别为t A ,(t 为参数,π4<α<3π4)t B ,t P ,则t P =,且t A ,t B 满足t 2-2tsin α+1=0.tA +tB22于是t A +t B =2sin α,t P =sin α.22又点P 的坐标(x ,y)满足Error!所以点P 的轨迹的参数方程是Error!.(α为参数,π4<α<3π4)。

2019届高考数学(理)大一轮课时跟踪检测【78】参数方程(含答案)

2019届高考数学(理)大一轮课时跟踪检测【78】参数方程(含答案)

课时跟踪检测(七十八) 参数方程1.极坐标方程ρ=cos θ和参数方程⎩⎪⎨⎪⎧x =-1-t ,y =2+3t(t 为参数)所表示的图形分别是________,________.2.若直线2x -y -3+c =0与曲线⎩⎨⎧x =5cos θ,y =5sin θ(θ为参数)相切,则实数c 等于________.3.(2018·淮南模拟)已知曲线C :⎩⎪⎨⎪⎧x =2cos θ,y =2sin θ(θ为参数)和直线l :⎩⎪⎨⎪⎧x =t ,y =t +b (t 为参数,b 为实数),若曲线C 上恰有3个点到直线l 的距离等于1,则b =________.4.(2018·西安八校联考)已知曲线C :⎩⎪⎨⎪⎧x =cos θ,y =2sin θ(参数θ∈R)经过点⎝ ⎛⎭⎪⎫m ,12,则m =________.5.(2018·广州调研)已知圆C 的参数方程为⎩⎪⎨⎪⎧x =cos θ,y =sin θ+2(θ为参数),以原点为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为ρsin θ+ρcos θ=1,则直线l 截圆C 所得的弦长是________.6.(2018·深圳调研)在直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.曲线C 1的参数方程为⎩⎨⎧x =t ,y =t +1(t 为参数),曲线C 2的极坐标方程为ρsin θ-ρcos θ=3,则C 1与C 2的交点在直角坐标系中的坐标为________.7.(2018·湖北高考)在直角坐标系xOy 中,椭圆C 的参数方程为⎩⎪⎨⎪⎧x =acos φ,y =bsin φ(φ为参数,a >b >0).在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,直线l 与圆O 的极坐标方程分别为ρsin ⎝ ⎛⎭⎪⎫θ+π4=22m(m 为非零常数)与ρ=b.若直线l 经过椭圆C 的焦点,且与圆 O 相切,则椭圆C 的离心率为________.8.以直角坐标系的原点为极点,x 轴的正半轴为极轴,并在两种坐标系中取相同的长度单位.已知直线的极坐标方程为θ=π4(ρ∈R),它与曲线⎩⎪⎨⎪⎧x =1+2cos α,y =2+2sin α(α为常数)相交于两点A 和B ,则|AB|=________.9.直线⎩⎪⎨⎪⎧x =-2+4t ,y =-1-3t(t 为参数)被圆⎩⎪⎨⎪⎧x =2+5cos θ,y =1+5sin θ(θ为参数)所截得的弦长为________.10.已知点P 是曲线⎩⎪⎨⎪⎧x =3cos θ,y =4sin θ(θ为参数,0≤θ≤π)上一点.O 为坐标原点,直线PO 的倾斜角为π4,则P 点坐标是________. 11.已知直线l 的极坐标方程为2ρcos ⎝ ⎛⎭⎪⎫θ-π3+1=0,曲线N 的参数方程为⎩⎨⎧x =1+3sin t ,y =3-3cos t(t 为参数),则直线l 被曲线N 截得的弦长为________.12.已知曲线⎩⎪⎨⎪⎧x =12-12cos 2θ,y =sin θ(θ为参数)与直线x =a 有两个不同的公共点,则实数a 的取值范围是________.13.过点P(-3,0)且倾斜角为30°的直线和曲线⎩⎪⎨⎪⎧x =t +1ty =t -1t (t 为参数)相交于A ,B 两点,则线段AB的长为________.14.已知在平面直角坐标系xOy 中,圆C 的参数方程为⎩⎨⎧x =3+3cos θy =1+3sin θ(θ为参数),以平面直角坐标系的原点作为极点,x 轴的正半轴为极轴,并在两种坐标系中取相同的单位长度建立极坐标系,直线l 的极坐标方程为ρcos ⎝⎛⎭⎪⎫θ+π6=0.则直线l 截圆C 所得的弦长为________. 15.在平面直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =t +1,y =2t (t 为参数),曲线C 的参数方程为⎩⎪⎨⎪⎧x =2tan 2θ,y =2tan θ(θ为参数).则它们的公共点的坐标为________.16.(2018·长春模拟)已知曲线C 的极坐标方程为ρ=4cos θ,以极点为原点,极轴为x 轴正半轴建立平面直角坐标系,设直线l 的参数方程为⎩⎪⎨⎪⎧x =5+32t ,y =12t(t 为参数).若曲线C 与直线l 相交于P ,Q 两点,以PQ 为一条边作曲线C 的内接矩形,则该矩形的面积为________.17.在直角坐标系xOy 中,圆C 1和C 2的参数方程分别是⎩⎪⎨⎪⎧x =2+2cos φ,y =2sin φ(φ为参数)和⎩⎪⎨⎪⎧x =cos φ,y =1+sin φ(φ为参数).以O 为极点,x 轴的正半轴为极轴建立极坐标系,射线OM :θ=α与圆C 1的交点为O ,P ,与圆C 2的交点为O ,Q ,则|OP|·|OQ|的最大值为________.答 案1.解析:由ρ=cos θ得ρ2=ρcos θ,所以x 2+y 2=x ,即⎝ ⎛⎭⎪⎫x -122+y 2=14,它表示以⎝ ⎛⎭⎪⎫12,0为圆心,以12为半径的圆.由x =-1-t 得t =-1-x ,所以y =2+3t =2+3(-1-x)=-3x -1,表示直线. 答案:圆 直线2.解析:将曲线⎩⎨⎧x =5cos θ,y =5sin θ(θ为参数)化为普通方程为x 2+y 2=5,由直线2x -y -3+c =0与圆x 2+y 2=5相切,可知|-3+c|5=5,解得c =-2或8.答案:-2或83.解析:将曲线C 和直线l 的参数方程分别化为普通方程为x 2+y 2=4和y =x +b ,依题意,若要使圆上有3个点到直线l 的距离为1,只要满足圆心到直线的距离为1即可,得到|b|2=1,解得b =± 2.答案:± 24.解析:将曲线C :⎩⎪⎨⎪⎧x =cos θ,y =2sin θ(参数θ∈R)化为普通方程为x 2+y 24=1,将点⎝ ⎛⎭⎪⎫m ,12代入该椭圆方程,得m 2+144=1,即m 2=1516,所以m =±154.答案:±1545.解析:圆C 的参数方程化为普通方程为x 2+(y -2)2=1,直线l 的极坐标方程化为直角坐标方程为x +y =1,故圆心到直线l 的距离d =|0+2-1|2=22,故直线l 截圆C 所得的弦长为212-d 2= 2. 答案: 26.解析:曲线C 1的方程可化为y =x 2+1(x≥0),曲线C 2的方程可化为y -x =3,联立⎩⎪⎨⎪⎧y =x 2+1,y -x =3(x≥0),解得x =2,y =5.答案:(2,5)7.解析:由题意知,椭圆C 的普通方程为x 2a 2+y2b 2=1,直线l 的直角坐标方程为x +y =m ,圆O 的直角坐标方程为x 2+y 2=b 2,设椭圆C 的半焦距为c ,则根据题意可知,|m|=c ,|m|2=b ,所以有c =2b ,所以椭圆C的离心率e =c a =c b 2+c2=63.答案:638.解析:直线的普通方程为y =x ,曲线的普通方程(x -1)2+(y -2)2=4, 所以|AB|=2 22-⎝ ⎛⎭⎪⎫|1-2|1+12=14.答案:149.解析:将直线化为普通方程:3x +4y +10=0;将圆化为普通方程:(x -2)2+(y -1)2=25,圆心为(2,1),半径为5,则圆心到直线3x +4y +10=0的距离d =|3×2+4×1+10|32+42=205=4,则弦长的一半为3,则弦长为6.答案:610.解析:将曲线C 化为普通方程,得x 29+y 216=1,因为直线OP 的倾斜角为π4,所以其斜率为1,则直线OP的方程为y =x ,联立方程组⎩⎪⎨⎪⎧x 29+y 216=1,y =x ,解得x =y =125,即P 点坐标为⎝ ⎛⎭⎪⎫125,125.答案:⎝ ⎛⎭⎪⎫125,12511.解析:直线l 的极坐标方程可化为 2ρcos θcosπ3+sin θ·sin π3+1=0, 即ρcos θ+3ρsin θ+1=0, 可得直线l 的方程为x +3y +1=0.曲线N 消掉参数t ,得(x -1)2+(y -3)2=9, 所以曲线N 是以(1,3)为圆心,3为半径的圆. 则圆心到直线l 的距离为 d =|1+3×3+1|12+32=52. 所以直线l 被曲线N 截得的弦长为 232-⎝ ⎛⎭⎪⎫522=11.答案:1112.解析:将曲线的参数方程⎩⎪⎨⎪⎧x =12-12cos 2θ,y =sin θ(θ为参数)转化为普通方程得y 2=x(0≤x≤1),借助图象(如图)观察,易得0<a≤1.答案:(0,1]13.解析:由题中条件可知,直线的普通方程为y =33x +3,曲线⎩⎪⎨⎪⎧x =t +1t,y =t -1t(t 为参数)可以化为x 2-y 2=4.设A(x 1,y 1),B(x 2,y 2),联立⎩⎪⎨⎪⎧y =33x +3,x 2-y 2=4可得2x 2-6x -21=0,则x 1+x 2=3,x 1x 2=-212.所以|AB|=1-x 22+1-y 22=1-x 22+131-x 22=431+x 22-4x 1x 2]=217.答案:21714.解析:圆C 的参数方程⎩⎨⎧x =3+3cos θ,y =1+3sin θ(θ为参数)可化为普通方程(x -3)2+(y -1)2=9,直线l 的极坐标方程ρcos ⎝ ⎛⎭⎪⎫θ+π6=0可化为直角坐标方程3x -y =0,弦心距d =|3×3-1×1|32+12=1,故直线l 截圆C 所得的弦长为2r 2-d 2=4 2.答案:4 215.解析:因为直线l 的参数方程为⎩⎪⎨⎪⎧x =t +1,y =2t (t 为参数),由x =t +1得t =x -1,代入y =2t ,得到直线l 的普通方程为2x -y -2=0.同理得到曲线C 的普通方程为y 2=2x.解方程组⎩⎪⎨⎪⎧y =-,y 2=2x ,得公共点的坐标为(2,2),⎝ ⎛⎭⎪⎫12,-1.答案:(2,2),⎝ ⎛⎭⎪⎫12,-116.解析:由ρ=4cos θ,得ρ2=4ρcos θ,即曲线C 的直角坐标方程为x 2+y 2=4x ; 由⎩⎪⎨⎪⎧x =5+32t ,y =12t(t 为参数),得y =13(x -5),即直线l 的普通方程为x -3y -5=0.可知C 为圆,且圆心坐标为(2,0),半径为2,则弦心距d =|2-3×0-5|1+3=32,弦长|PQ|=222-322=7,因此以PQ 为一条边的圆C 的内接矩形面积S =2d·|PQ|=37.答案:3717.解析:圆C 1和圆C 2的普通方程分别是(x -2)2+y 2=4和x 2+(y -1)2=1, 所以圆C 1和C 2的极坐标方程分别是ρ=4cos θ和ρ=2sin θ. 依题意得,点P ,Q 的极坐标分别为P(4cos α,α),Q(2sin α,α),所以|OP|=|4cos α|,|OQ|=|2sin α|.从而|OP|·|OQ|=|4sin 2α|≤4,当且仅当sin 2α=±1时,上式取“=”,即|OP|·|OQ|的最大值是4. 答案:4。

2019届二轮复习矩阵与变换、坐标系与参数方程、不等式选讲学案(全国通用)

2019届二轮复习矩阵与变换、坐标系与参数方程、不等式选讲学案(全国通用)

矩阵与变换、坐标系与参数方程、不等式选讲高考定位 高考对本内容的考查主要有:(1)常见的平面变换与矩阵的乘法运算、二阶矩阵的逆矩阵及其求法、矩阵的特征值与特征向量的求法,属B 级要求;(2)直线、曲线的极坐标方程、参数方程、参数方程与普通方程的互化、极坐标与直角坐标的互化,属B 级要求;(3)含绝对值不等式的解法、不等式证明的基本方法、利用不等式性质求最值以及几个重要不等式的应用,属B 级要求.真 题 感 悟1.(2018·江苏卷)已知矩阵A =⎣⎢⎡⎦⎥⎤2 31 2. (1)求A 的逆矩阵A -1;(2)若点P 在矩阵A 对应的变换作用下得到点P ′(3,1),求点P 的坐标. 解 (1)因为A =⎣⎢⎡⎦⎥⎤2312,det(A )=2×2-1×3=1≠0, 所以A 可逆,从而A -1=⎣⎢⎡⎦⎥⎤2 -3-1 2. (2)设P (x ,y ),则⎣⎢⎡⎦⎥⎤2312⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤31,所以⎣⎢⎡⎦⎥⎤x y =A -1⎣⎢⎡⎦⎥⎤31=⎣⎢⎡⎦⎥⎤ 3-1,因此, 点P 的坐标为(3,-1). 2.(2017·江苏卷)已知矩阵A =⎣⎢⎡⎦⎥⎤011 0,B =⎣⎢⎡⎦⎥⎤1 00 2. (1)求AB ;(2)若曲线C 1:x 28+y 22=1在矩阵AB 对应的变换作用下得到另一曲线C 2,求C 2的方程.解 (1)AB =⎣⎢⎡⎦⎥⎤0110⎣⎢⎡⎦⎥⎤1 002=⎣⎢⎡⎦⎥⎤0 210.(2)设P (x 1,y 1)是曲线C 1上任意一点,变换后对应的点为⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤021 0⎣⎢⎡⎦⎥⎤x 1y 1, 所以⎩⎨⎧x =2y 1,y =x 1,即⎩⎪⎨⎪⎧x 1=y ,y 1=12x .因为P (x 1,y 1)在曲线C 1上,所以x 218+y 212=1,从而x 2+y 2=8,即为曲线C 2的方程.3.(2018·江苏卷)在极坐标系中,直线l 的方程为ρsin ⎝ ⎛⎭⎪⎫π6-θ=2,曲线C 的方程为ρ=4cos θ,求直线l 被曲线C 截得的弦长. 解 因为曲线C 的极坐标方程为ρ=4cos θ,所以曲线C 是圆心为(2,0),直径为4的圆.因为直线l 的极坐标方程为ρsin ⎝ ⎛⎭⎪⎫π6-θ=2,则直线l 过A (4,0),倾斜角为π6, 所以A 为直线l 与圆C 的一个交点.设另一个交点为B ,则∠OAB =π6. 连接OB .因为OA 为直径,从而∠OBA =π2,所以AB =4cos π6=2 3. 因此,直线l 被曲线C 截得的弦长为2 3.4.(2017·江苏卷)在平面坐标系xOy 中,已知直线l 的参数方程为⎩⎪⎨⎪⎧x =-8+t ,y =t2(t 为参数),曲线C 的参数方程为⎩⎨⎧x =2s 2,y =22s(s 为参数).设P 为曲线C 上的动点,求点P到直线l 的距离的最小值.解 由⎩⎪⎨⎪⎧x =-8+t ,y =t2消去t .得l 的普通方程为x -2y +8=0, 因为点P 在曲线C 上,设点P (2s 2,22s ).则点P 到直线l 的距离d =|2s 2-42s +8|5=2(s -2)2+45,∴当s=2时,d有最小值45=455.5.(2018·江苏卷)若x,y,z为实数,且x+2y+2z=6,求x2+y2+z2的最小值. 解由柯西不等式,得(x2+y2+z2)(12+22+22)≥(x+2y+2z)2.因为x+2y+2z=6,所以x2+y2+z2≥4,当且仅当x1=y2=z2时,不等式取等号,此时x=23,y=43,z=43,所以x2+y2+z2的最小值为4.6.(2017·江苏卷)已知a,b,c,d为实数,且a2+b2=4,c2+d2=16,证明ac+bd≤8. 证明由柯西不等式可得(a2+b2)(c2+d2)≥(ac+bd)2,即(ac+bd)2≤4×16=64,故ac+bd≤8.考点整合1.矩阵的乘法与逆矩阵、矩阵变换2.二阶矩阵的特征值和特征向量(3)如果λ是二阶矩阵M的特征值,则λ是M的特征多项式的一个根,它满足f(λ)=0,此时将λ代入⎩⎨⎧ax +by =λx ,cx +dy =λy 可得到一组非零解⎣⎢⎡⎦⎥⎤x 0y 0),它即为M 的属于λ的一个特征向量.3.直角坐标与极坐标的互化把直角坐标系的原点作为极点,x 轴正半轴作为极轴,且在两坐标系中取相同的长度单位.设M 是平面内的任意一点,它的直角坐标、极坐标分别为(x ,y )和(ρ,θ), 则⎩⎨⎧x =ρcos θ,y =ρsin θ,⎩⎪⎨⎪⎧ρ2=x 2+y 2,tan θ=yx (x ≠0). 4.(1)直线的参数方程经过点P 0(x 0,y 0),倾斜角为α的直线的参数方程为⎩⎨⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数).设P 是直线上的任一点,则t 表示有向线段P 0P →的数量. (2)圆的参数方程圆心在点M (x 0,y 0),半径为r 的圆的参数方程为⎩⎨⎧x =x 0+r cos θ,y =y 0+r sin θ(θ为参数,0≤θ≤2π).5.含有绝对值的不等式的解法 (1)|f (x )|>a (a f (x )>a 或f (x )<-a ; (2)|f (x )|<a (a-a <f (x )<a ;(3)对形如|x -a |+|x -b |≤c ,|x -a |+|x -b |≥c 的不等式,可利用绝对值不等式的几何意义、零点分段或图象法求解. 6.柯西不等式(1)设a ,b ,c ,d 为实数,则(a 2+b 2)(c 2+d 2)≥(ac +bd )2,当且仅当ad =bc 时等号成立.(2)若a i ,b i (i ∈N *)为实数,则,当且仅当b i =0(i =1,2,…,n )或存在一个数k ,使得a i =kb i (i =1,2,…,n )时,等号成立.(3)柯西不等式的向量形式:设α,β为平面上的两个向量,则|α|·|β|≥|α·β|,当且仅当这两个向量同向或反向时等号成立.热点一 矩阵与变换【例1】 (1)(2016·江苏卷)已知矩阵A =⎣⎢⎡⎦⎥⎤1 20 -2)),矩阵B 的逆矩阵B -1=⎣⎢⎢⎡⎦⎥⎥⎤1 -120 2,求矩阵AB . 解 B =(B -1)-1=⎣⎢⎡⎦⎥⎤22 12202 12=⎣⎢⎢⎡⎦⎥⎥⎤1 140 12.∴AB =⎣⎢⎡⎦⎥⎤1 20 -2⎣⎢⎢⎡⎦⎥⎥⎤1 140 12=⎣⎢⎢⎡⎦⎥⎥⎤1 540 -1. (2)(2017·盐城模拟)已知矩阵A =⎣⎢⎡⎦⎥⎤1 00 2所对应的变换T 把曲线C 变成曲线C 1:x 24+y 22=1,求曲线C 的方程.解 设曲线C 上任一点为(x ,y ),经过变换T 变成(x 0,y 0),则⎣⎢⎡⎦⎥⎤1 00 2⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x 0y 0,即x 0=x ,y 0=2y .由x 204+y 22=1,得曲线C 的方程为x 24+y 2=1.探究提高 (1)解决这类问题一般是设变换T :⎣⎢⎡⎦⎥⎤x y →⎣⎢⎡⎦⎥⎤x ′y ′,求出原曲线在T 的变换下得到的曲线,再根据条件求相应的系数值.(2)由二阶矩阵与向量的乘法及向量相等建立方程组,常用于求二阶矩阵,要注意变换的前后顺序. (3)求矩阵M =⎣⎢⎡⎦⎥⎤ab cd 就是要求待定的字母,利用条件建立方程组,确立待定的字母的值,从而求出矩阵,待定系数法是求这类问题的通用方法.【训练1】 (1)(2018·扬州期末)已知x ,y ∈R ,若点M (1,1)在矩阵A =⎣⎢⎡⎦⎥⎤2x 3 y 对应的变换作用下得到点N (3,5),求矩阵A 的逆矩阵A -1.(2)(2017·苏、锡、常、镇调研)已知二阶矩阵M 有特征值λ=8及对应的一个特征向量e 1=⎣⎢⎡⎦⎥⎤11,并且矩阵M 对应的变换将点(-1,2)变换成(-2,4).①求矩阵M ;②求矩阵M 的另一个特征值. 解 (1)因为A ⎣⎢⎡⎦⎥⎤11=⎣⎢⎡⎦⎥⎤35,即⎣⎢⎡⎦⎥⎤2x 3 y ⎣⎢⎡⎦⎥⎤11=⎣⎢⎡⎦⎥⎤35,即⎩⎨⎧2+x =3,3+y =5,解得⎩⎨⎧x =1,y =2,所以A =⎣⎢⎡⎦⎥⎤2132.设A -1=⎣⎢⎡⎦⎥⎤a b c d ,则AA -1=⎣⎢⎡⎦⎥⎤2 13 2⎣⎢⎡⎦⎥⎤ab cd =⎣⎢⎡⎦⎥⎤1 001, 即⎩⎨⎧2a +c =1,3a +2c =0,2b +d =0,3b +2d =1,解得⎩⎨⎧a =2,b =-1,c =-3,d =2,所以A-1=⎣⎢⎡⎦⎥⎤2 -1-3 2. (2)①设M =⎣⎢⎡⎦⎥⎤ab cd ,M ⎣⎢⎡⎦⎥⎤11=8⎣⎢⎡⎦⎥⎤11=⎣⎢⎡⎦⎥⎤a +b c +d ,M ⎣⎢⎡⎦⎥⎤-12=⎣⎢⎡⎦⎥⎤-24=⎣⎢⎡⎦⎥⎤-a +2b -c +2d ,则⎩⎨⎧a +b =8,c +d =8,-a +2b =-2,-c +2d =4,解得⎩⎨⎧a =6,b =2,c =4,d =4,即M =⎣⎢⎡⎦⎥⎤6 24 4. ②令特征多项式f (λ)=⎪⎪⎪⎪⎪⎪λ-6 -2-4 λ-4=(λ-6)(λ-4)-8=0, 解得λ1=8,λ2=2,故矩阵M 的另一个特征值为2. 热点二 曲线的极坐标方程[考法1] 极坐标方程与直角坐标方程的互化【例2-1】 在极坐标系中,已知圆C 的圆心坐标为C ⎝ ⎛⎭⎪⎫2,π3,半径R =5,求圆C 的极坐标方程.解 将圆心C ⎝ ⎛⎭⎪⎫2,π3化成直角坐标为(1,3),半径R =5,故圆C 的方程为(x -1)2+(y -3)2=5.再将C 化成极坐标方程,得(ρcos θ-1)2+(ρsin θ-3)2=5, 化简得ρ2-4ρcos ⎝ ⎛⎭⎪⎫θ-π3-1=0.此即为所求的圆C 的极坐标方程.探究提高 (1)在由点的直角坐标化为极坐标时,一定要注意点所在的象限和极角的范围,否则点的极坐标将不唯一.(2)在曲线的方程进行互化时,一定要注意变量的范围.要注意转化的等价性. [考法2] 曲线的极坐标方程的应用【例2-2】 (2018·全国Ⅰ卷)在直角坐标系xOy 中,曲线C 1的方程为y =k |x |+2.以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ2+2ρcos θ-3=0.(1)求C 2的直角坐标方程;(2)若C 1与C 2有且仅有三个公共点,求C 1的方程.解 (1)由x =ρcos θ,y =ρsin θ得C 2的直角坐标方程为x 2+y 2+2x -3=0,即(x +1)2+y 2=4.(2)由(1)知C 2是圆心为A (-1,0),半径为2的圆.由题设知,C 1是过点B (0,2)且关于y 轴对称的两条射线.记y 轴右边的射线为l 1,y 轴左边的射线为l 2.由于B 在圆C 2的外面,故C 1与C 2有且仅有三个公共点等价于l 1与C 2只有一个公共点且l 2与C 2有两个公共点,或l 2与C 2只有一个公共点且l 1与C 2有两个公共点.当l 1与C 2只有一个公共点时,A 到l 1所在直线的距离为2,所以|-k +2|k 2+1=2,故k =-43或k =0.经检验,当k =0时,l 1与C 2没有公共点;当k =-43时,l 1与C 2只有一个公共点,l 2与C 2有两个公共点. 当l 2与C 2只有一个公共点时,A 到l 2所在直线的距离为2, 所以|k +2|k 2+1=2,故k =0或k =43. 经检验,当k =0时,l 1与C 2没有公共点;当k =43时,l 2与C 2没有公共点. 综上,所求C 1的方程为y =-43|x |+2.探究提高 解决这类问题一般有两种思路,一是将极坐标方程化为直角坐标方程,求出交点的直角坐标,再将其化为极坐标;二是将曲线的极坐标方程联立,根据限制条件求出极坐标.要注意题目所给的限制条件及隐含条件.【训练2】 在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =a cos t ,y =1+a sin t(t 为参数,a >0).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=4cos θ. (1)说明C 1是哪一种曲线,并将C 1的方程化为极坐标方程;(2)直线C 3的极坐标方程为θ=α0,其中α0满足tan α0=2,若曲线C 1与C 2的公共点都在C 3上,求a .解 (1)消去参数t 得到C 1的普通方程x 2+(y -1)2=a 2(a >0),C 1是以(0,1)为圆心,a 为半径的圆.将x =ρcos θ,y =ρsin θ代入C 1的普通方程中,得到C 1的极坐标方程为 ρ2-2ρsin θ+1-a 2=0.(2)曲线C 1,C 2的公共点的极坐标满足方程组⎩⎨⎧ρ2-2ρsin θ+1-a 2=0,ρ=4cos θ.若ρ≠0,由方程组得16cos 2θ-8sin θcos θ+1-a 2=0, 由已知tan θ=2,可得16cos 2θ-8sin θcos θ=0, 从而1-a 2=0,解得a =-1(舍去),a =1.a =1时,极点也为C 1,C 2的公共点,在C 3上.所以a =1. 热点三 参数方程[考法1] 参数方程与普通方程的互化【例3-1】 (2018·南通、扬州、淮安等七市调研)在平面直角坐标系xOy ,已知直线l 的参数方程为⎩⎨⎧x =3+3t ,y =1-4t (t 为参数),圆C 的参数方程为⎩⎨⎧x =r cos θ,y =r sin θ(θ为参数,r >0),若直线l 被圆C 截得的弦长为4,求r 的值.解 直线l 的普通方程为4x +3y -15=0,圆C 的普通方程为x 2+y 2=r 2. 因为圆心C (0,0)到直线l 的距离d =|-15|5=3, 又直线l 被圆C 截得的弦长为4,所以r =32+22=13.探究提高 参数方程化为普通方程:化参数方程为普通方程的基本思路是消去参数,常用的消参方法有代入消去法、加减消去法、恒等式(三角的或代数的)消去法,参数方程通过代入消元或加减消元消去参数化为普通方程,不要忘了参数的范围.[考法2] 直线的参数方程【例3-2】 在直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =3-22t ,y =5+22t (t 为参数).在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,圆C 的方程为ρ=25sin θ. (1)求圆C 的直角坐标方程;(2)设圆C 与直线l 交于点A ,B .若点P 的坐标为(3,5),求P A +PB . 解 法一 (1)由ρ=25sin θ,得x 2+y 2-25y =0,即x 2+(y -5)2=5. (2)将l 的参数方程代入圆C 的直角坐标方程,得⎝ ⎛⎭⎪⎫3-22t 2+⎝ ⎛⎭⎪⎫22t 2=5,即t 2-32t +4=0.由于Δ=(-32)2-4×4=2>0,故可设t 1,t 2是上述方程的两实根,所以⎩⎨⎧t 1+t 2=32,t 1·t 2=4.又直线l 过点P (3,5),故由上式及t 的几何意义得P A +PB =|t 1|+|t 2|=t 1+t 2=3 2. 法二 (1)同法一.(2)因为圆C 的圆心为(0,5),半径r =5,直线l 的普通方程为:y =-x +3+ 5. 由⎩⎨⎧x 2+(y -5)2=5,y =-x +3+5得x 2-3x +2=0.解得:⎩⎨⎧x =1,y =2+5 或⎩⎨⎧x =2,y =1+ 5.不妨设A (1,2+5),B (2,1+5),又点P 的坐标为(3,5). 故P A +PB =8+2=3 2.探究提高 过定点P 0(x 0,y 0),倾斜角为α的直线参数方程的标准形式为⎩⎨⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数),t 的几何意义是P 0P →的数量,即|t |表示P 0到P 的距离,t 有正负之分.使用该式时直线上任意两点P 1,P 2对应的参数分别为t 1,t 2,则P 1P 2=|t 1-t 2|,P 1P 2的中点对应的参数为12(t 1+t 2).【训练3】 (2014·江苏卷)在平面直角坐标系xOy 中,已知直线l 的参数方程为⎩⎪⎨⎪⎧x =1-22t ,y =2+22t(t 为参数),直线l 与抛物线y 2=4x 相交于A ,B 两点,求线段AB的长.解将直线l 的参数方程⎩⎪⎨⎪⎧x =1-22t ,y =2+22t代入抛物线方程y 2=4x ,得⎝ ⎛⎭⎪⎫2+22t 2=4⎝ ⎛⎭⎪⎫1-22t ,解得t 1=0,t 2=-8 2.所以AB =|t 1-t 2|=8 2.热点四 绝对值不等式【例4】 (1)(2018·全国Ⅱ卷)设函数f (x )=5-|x +a |-|x -2|. ①当a =1时,求不等式f (x )≥0的解集; ②若f (x )≤1,求a 的取值范围.(2)(2018·镇江期末)已知函数f (x )=|x -a |+|x +a |,若对任意x ∈R ,不等式f (x )>a 2-3恒成立,求实数a 的取值范围.解(1)①当a =1时,f (x )=⎩⎨⎧2x +4,x ≤-1,2,-1<x ≤2,-2x +6,x >2.可得f (x )≥0的解集为{x |-2≤x ≤3}. ②f (x )≤1等价于|x +a |+|x -2|≥4.而|x +a |+|x -2|≥|a +2|,且当x =2或x =-a 时等号成立(最小值能取到). 故f (x )≤1等价于|a +2|≥4.由|a +2|≥4可得a ≤-6或a ≥2. 所以a 的取值范围是(-∞,-6]∪[2,+∞).(2)因为对任意x ∈R ,不等式f (x )>a 2-3恒成立,所以f (x )min >a 2-3. 又|x -a |+|x +a |≥|x -a -(x +a )|=|2a |,所以|2a |>a 2-3,① 法一 (将|a |作为整体)即|a |2-2|a |-3<0,解得-1<|a |<3. 所以-3<a <3.∴a ∈(-3,3).法二 (先去绝对值符号)①式等价于2a >a 2-3,② 或2a <-a 2+3,③ 由②得-1<a <3, 由③得-3<a <1,所以,-3<a <3.∴a ∈(-3,3).探究提高 (1)用零点分段法解绝对值不等式的步骤:①求零点;②划区间、去绝对值号;③分别解去掉绝对值的不等式;④取每个结果的并集,注意在分段时不要遗漏区间的端点值.(2)用图象法、数形结合可以求解含有绝对值的不等式,使得代数问题几何化,既通俗易懂,又简洁直观,是一种较好的方法.(3)解答含有绝对值不等式的恒成立、存在性问题时,通常将其转化为分段函数,再求分段函数的最值,从而求出所求参数的值. 【训练4】 已知函数f (x )=|x +1|-|x -2|. (1)求不等式f (x )≥1的解集;(2)若不等式f (x )≥x 2-x +m 的解集非空,求m 的取值范围.解(1)f (x )=|x +1|-|x -2|=⎩⎨⎧-3,x ≤-1,2x -1,-1<x <2,3,x ≥2.由f (x )≥1可得①当x ≤-1时显然不满足题意; ②当-1<x <2时,2x -1≥1, 解得x ≥1,则1≤x <2;③当x ≥2时,f (x )=3≥1恒成立,∴x ≥2. 综上知f (x )≥1的解集为{x |x ≥1}.(2)不等式f (x )≥x 2-x +m 等价于f (x )-x 2+x ≥m , 令g (x )=f (x )-x 2+x ,则g (x )≥m 解集非空只需要[g (x )]max ≥m .由(1)知g (x )=⎩⎨⎧-x 2+x -3,x ≤-1,-x 2+3x -1,-1<x <2,-x 2+x +3,x ≥2.①当x ≤-1时,[g (x )]max =g (-1)=-3-1-1=-5; ②当-1<x <2时,[g (x )]max =g ⎝ ⎛⎭⎪⎫32=-⎝ ⎛⎭⎪⎫322+3·32-1=54; ③当x ≥2时,[g (x )]max =g (2)=-22+2+3=1.综上,[g (x )]max =54,故m ≤54.所以实数m 的取值范围是⎝ ⎛⎦⎥⎤-∞,54.热点五 不等式的证明、柯西不等式【例5】 (1)(2014·江苏卷)已知x >0,y >0,证明:(1+x +y 2)(1+x 2+y )≥9xy .(2)已知关于x 的不等式|x +a |<b 的解集为{x |2<x <4}. ①求实数a ,b 的值; ②求at +12+bt 的最大值.(1)证明 因为x >0,y >0,所以1+x +y 2≥33xy 2>0,1+x 2+y ≥33x 2y >0, 故(1+x +y 2)(1+x 2+y )≥33xy 2·33x 2y =9xy .(2)解 ①由|x +a |<b ,得-b -a <x <b -a ,则⎩⎨⎧-b -a =2,b -a =4,解得⎩⎨⎧a =-3,b =1.②-3t +12+t =34-t +t ≤[(3)2+12][(4-t )2+(t )2] =24-t +t =4,当且仅当4-t 3=t1, 即t =1时等号成立,故(-3t +12+t )max =4,即最大值为4.探究提高 (1)证明不等式常用的方法有比较法、综合法、分析法、反证法、放缩法、数学归纳法等.(2)根据柯西不等式的结构特征,利用柯西不等式对有关不等式进行证明、证明时,需要对不等式变形,使之与柯西不等式有相似的结构,从而应用柯西不等式. 【训练5】 已知实数a >0,b >0,且a 3+b 3=2. 证明:(1)(a +b )(a 5+b 5)≥4; (2)a +b ≤2.证明 (1)∵a >0,b >0且a 3+b 3=2.由柯西不等式,得(a +b )(a 5+b 5)≥(a ·a 5+b ·b 5)2=(a 3+b 3)2=4. 当且仅当ab 5=ba 5,即a =b =1时等号成立.因此(a +b )(a 5+b 5)≥4. (2)∵a 3+b 3=2,∴(a +b )(a 2-ab +b 2)=2,即(a +b )[(a +b )2-3ab ]=2. 所以(a +b )3-2=3ab (a +b ),又ab ≤⎝ ⎛⎭⎪⎫a +b 22=(a +b )24,∴(a +b )3-2≤34(a +b )3,则14(a +b )3≤2.从而a +b ≤2当且仅当a =b =1时等号成立.1.矩阵与变换主要掌握二阶矩阵与平面变换、二阶矩阵的逆矩阵及其求法以及特征值与特征向量的应用.2.(1)化参数方程为普通方程的基本思路是消去参数(代入消去法、加减消去法、恒等式消去法等);化普通方程为参数方程基本思路是引入一种关系,引入参数; (2)参数方程和极坐标方程的简单应用:求几何图形的面积、曲线的轨迹方程或研究某些函数的最值问题.3.(1)对于绝对值不等式的求解或含参问题的求解一般采用零点分段法,也可利用图象求解;(2)在运用柯西不等式进行求解或证明时,注意对条件进行“形变”,符合柯西不等式的结构,再加以运用.1.(2013·江苏卷)已知矩阵A =⎣⎢⎡⎦⎥⎤-1 0 0 2,B =⎣⎢⎡⎦⎥⎤120 6,求矩阵A -1B . 解 设矩阵A 的逆矩阵为⎣⎢⎡⎦⎥⎤ab c d ,则⎣⎢⎡⎦⎥⎤-1 0 02⎣⎢⎡⎦⎥⎤a b cd =⎣⎢⎡⎦⎥⎤1 001, 即⎣⎢⎡⎦⎥⎤-a -b 2c 2d =⎣⎢⎡⎦⎥⎤1001,故a =-1,b =0,c =0,d =12,从而A 的逆矩阵为A -1=⎣⎢⎢⎡⎦⎥⎥⎤-10 012,所以A -1B =⎣⎢⎢⎡⎦⎥⎥⎤-10 012⎣⎢⎡⎦⎥⎤1 20 6=⎣⎢⎡⎦⎥⎤-1 -2 0 3. 2.(2015·江苏卷)已知x ,y ∈R ,向量α=⎣⎢⎡⎦⎥⎤ 1-1是矩阵A =⎣⎢⎡⎦⎥⎤x1y 0的属于特征值-2的一个特征向量,求矩阵A 以及它的另一个特征值.解 由已知,得Aα=-2α,即⎣⎢⎡⎦⎥⎤x 1y 0⎣⎢⎡⎦⎥⎤ 1-1=⎣⎢⎡⎦⎥⎤x -1 y =⎣⎢⎡⎦⎥⎤-2 2, 则⎩⎨⎧x -1=-2,y =2,即⎩⎨⎧x =-1,y =2,所以矩阵A =⎣⎢⎡⎦⎥⎤-1 1 2 0. 从而矩阵A 的特征多项式f (λ)=(λ+2)(λ-1), 所以矩阵A 的另一个特征值为1.3.(2015·江苏卷)已知圆C 的极坐标方程为ρ2+22ρsin ⎝ ⎛⎭⎪⎫θ-π4-4=0,求圆C 的半径.解 以极坐标系的极点为平面直角坐标系的原点O ,以极轴为x 轴的正半轴,建立直角坐标系xOy .圆C 的极坐标方程为ρ2+22ρ⎝ ⎛⎭⎪⎫22sin θ-22cos θ-4=0,化简,得ρ2+2ρsin θ-2ρcos θ-4=0.则圆C 的直角坐标方程为x 2+y 2-2x +2y -4=0, 即(x -1)2+(y +1)2=6,所以圆C 的半径为 6.4.(2018·全国Ⅱ卷)在直角坐标系xOy 中,曲线C 的参数方程为⎩⎨⎧x =2cos θ,y =4sin θ (θ为参数),直线l 的参数方程为⎩⎨⎧x =1+t cos α,y =2+t sin α(t 为参数).(1)求C 和l 的直角坐标方程;(2)若曲线C 截直线l 所得线段的中点坐标为(1,2),求l 的斜率. 解 (1)曲线C 的直角坐标方程为x 24+y 216=1.当cos α≠0时,l 的直角坐标方程为y =tan α·x +2-tan α, 当cos α=0时,l 的直角坐标方程为x =1.(2)将l 的参数方程代入C 的直角坐标方程,整理得关于t 的方程(1+3cos 2α)t 2+4(2cos α+sin α)t -8=0.①因为曲线C 截直线l 所得线段的中点(1,2)在C 内, 所以①有两个解,设为t 1,t 2,则t 1+t 2=0. 又由①得t 1+t 2=-4(2cos α+sin α)1+3cos 2α,故2cos α+sin α=0,于是直线l 的斜率k =tan α=-2.5.(2016·江苏卷)设a >0,||x -1<a 3,|y -2|<a3,求证:|2x +y -4|<a . 证明 由a >0,|x -1|<a 3可得|2x -2|<2a 3,又|y -2|<a 3, ∴|2x +y -4|=|(2x -2)+(y -2)|≤|2x -2|+|y -2|<2a 3+a3=a . 则|2x +y -4|<a 成立.6.(2018·全国Ⅲ卷)设函数f (x )=|2x +1|+|x -1|. (1)画出y =f (x )的图象;(2)当x∈[0,+∞)时,f(x)≤ax+b,求a+b的最小值.解(1)f(x)=y=f(x)的图象如图所示.(2)由(1)知,y=f(x)的图象与y轴交点的纵坐标为2,且各部分所在直线斜率的最大值为3,故当且仅当a≥3且b≥2时,f(x)≤ax+b在[0,+∞)上成立,因此a+b的最小值为5.。

2019-2020年高考数学二轮复习课时跟踪检测二十七理

2019-2020年高考数学二轮复习课时跟踪检测二十七理

2019-2020年高考数学二轮复习课时跟踪检测二十七理1.(xx·石家庄质检)在平面直角坐标系xOy 中,直线l 的参数方程是⎩⎪⎨⎪⎧x =2+t cos α,y =t sin α(t 为参数),以O 为极点,x 轴的正半轴为极轴,建立极坐标系,曲线C 的极坐标方程为ρ2cos 2θ+2ρ2sin 2θ=12,且直线l 与曲线C 交于P ,Q 两点.(1)求曲线C 的直角坐标方程及直线l 恒过的定点A 的坐标; (2)在(1)的条件下,若|AP |·|AQ |=6,求直线l 的普通方程.解:(1)∵x =ρcos θ,y =ρsin θ,∴C 的直角坐标方程为x 2+2y 2=12. 直线l 恒过的定点为A (2,0).(2)把直线l 的方程代入曲线C 的直角坐标方程中得, (sin 2α+1)t 2+4(cos α)t -8=0. 由t 的几何意义知|AP |=|t 1|,|AQ |=|t 2|. ∵点A 在椭圆内,这个方程必有两个实根, ∴t 1t 2=-8sin 2α+1,∵|AP |·|AQ |=|t 1t 2|=6, ∴81+sin 2α=6,即sin 2α=13, ∵α∈(0,π), ∴sin α=33,cos α=±63, ∴直线l 的斜率k =±22, 因此,直线l 的方程为y =22(x -2)或y =-22(x -2). 2.(xx·郑州质检)在平面直角坐标系xOy中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =2cos φ,y =sin φ(φ为参数),在以O 为极点,x 轴的正半轴为极轴的极坐标系中,曲线C 2是圆心为⎝⎛⎭⎪⎫3,π2,半径为1的圆.(1)求曲线C 1的普通方程,C 2的直角坐标方程;(2)设M 为曲线C 1上的点,N 为曲线C 2上的点,求|MN |的取值范围. 解:(1)消去参数φ可得C 1的普通方程为x 24+y 2=1.由题可知,曲线C 2的圆心的直角坐标为(0,3), ∴C 2的直角坐标方程为x 2+(y -3)2=1.(2)设M (2cos φ,sin φ),曲线C 2的圆心为C 2, 则|MC 2|=φ2+φ-2=4cos 2φ+sin 2φ-6sin φ+9=-3sin 2φ-6sin φ+13 =-φ+2+16.∵-1≤sin φ≤1,∴|MC 2|min =2,|MC 2|max =4. 根据题意可得|MN |min =2-1=1,|MN |max =4+1=5, 即|MN |的取值范围是[1,5].3.(xx·合肥模拟)在平面直角坐标系xOy 中,圆C 的参数方程为⎩⎨⎧x =-5+2cos t ,y =3+2sin t(t 为参数),在以原点O 为极点,x 轴的非负半轴为极轴建立的极坐标系中,直线l 的极坐标方程为ρcos ⎝⎛⎭⎪⎫θ+π4=- 2. (1)求圆C 的普通方程和直线l 的直角坐标方程;(2)设直线l 与x 轴,y 轴分别交于A ,B 两点,点P 是圆C 上任意一点,求A ,B 两点的极坐标和△PAB 面积的最小值.解:(1)由⎩⎨⎧x =-5+2cos t ,y =3+2sin t ,消去参数t ,得圆C 的普通方程为(x +5)2+(y -3)2=2. 由ρcos ⎝ ⎛⎭⎪⎫θ+π4=-2,得ρcos θ-ρsin θ=-2,所以直线l 的直角坐标方程为x -y +2=0.(2)直线l 与x 轴,y 轴的交点分别为A (-2,0),B (0,2),化为极坐标为A (2,π),B ⎝⎛⎭⎪⎫2,π2.设点P 的坐标为(-5+2cos t,3+2sin t ),则点P 到直线l 的距离为d =|-5+2cos t -3-2sin t +2|2=⎪⎪⎪⎪⎪⎪-6+2cos ⎝ ⎛⎭⎪⎫t +π42,所以d min =42=2 2.又|AB |=22,所以△PAB 面积的最小值是S min =12×22×22=4.4.(xx 届高三·西安八校联考)在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ=2sin θ,θ∈[)0,2π.(1)求曲线C 的直角坐标方程;(2)在曲线C 上求一点D ,使它到直线l :⎩⎨⎧x =3t +3,y =-3t +2(t 为参数)的距离最短,并求出点D 的直角坐标.解:(1)由ρ=2sin θ,θ∈[0,2π),可得ρ2=2ρsin θ. 因为ρ2=x 2+y 2,ρsin θ=y ,所以曲线C 的直角坐标方程为x 2+(y -1)2=1. (2)由直线l 的参数方程⎩⎨⎧x =3t +3,y =-3t +2(t 为参数),消去t 得直线l 的普通方程为y =-3x +5.因为曲线C :x 2+(y -1)2=1是以G (0,1)为圆心、1为半径的圆,(易知C ,l 相离) 设点D (x 0,y 0),且点D 到直线l :y =-3x +5的距离最短, 所以曲线C 在点D 处的切线与直线l :y =-3x +5平行. 即直线GD 与l 的斜率的乘积等于-1,即y 0-1x 0×(-3)=-1, 又x 20+(y 0-1)2=1, 可得x 0=-32(舍去)或x 0=32,所以y 0=32, 即点D 的直角坐标为⎝⎛⎭⎪⎫32,32. 5.(xx 届高三·广东五校联考)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =2cos α,y =sin α(α为参数),以原点O 为极点,x 轴正半轴为极轴,建立极坐标系,曲线C 2的极坐标方程为ρsin ⎝⎛⎭⎪⎫θ+π4=4 2. (1)求曲线C 1的普通方程与曲线C 2的直角坐标方程;(2)设P 为曲线C 1上的动点,求点P 到曲线C 2上点的距离的最小值.解:(1)由曲线C 1:⎩⎨⎧x =2cos α,y =sin α得曲线C 1的普通方程为x 22+y 2=1.由曲线C 2:ρsin ⎝ ⎛⎭⎪⎫θ+π4=42得,22ρ(sin θ+cos θ)=42, 即曲线C 2的直角坐标方程为x +y -8=0. (2)易知椭圆C 1与直线C 2无公共点,椭圆上的点P (2cos α,sin α)到直线x +y -8=0的距离为d =|2cos α+sin α-8|2=|3α+φ-8|2,其中φ是锐角且tan φ= 2.所以当sin(α+φ)=1时,d 取得最小值82-62.6.(xx·成都模拟)在平面直角坐标系xOy 中,倾斜角为α⎝⎛⎭⎪⎫α≠π2的直线l 的参数方程为⎩⎪⎨⎪⎧x =1+t cos α,y =t sin α(t 为参数).以坐标原点为极点,x 轴的正半轴为极轴,建立极坐标系,曲线C 的极坐标方程是ρcos 2θ-4sin θ=0.(1)写出直线l 的普通方程和曲线C 的直角坐标方程;(2)已知点P (1,0).若点M 的极坐标为⎝⎛⎭⎪⎫1,π2,直线l 经过点M 且与曲线C 相交于A ,B 两点,设线段AB 的中点为Q ,求|PQ |的值.解:(1)∵直线l 的参数方程为⎩⎪⎨⎪⎧x =1+t cos α,y =t sin α(t 为参数),∴直线l 的普通方程为y =tan α·(x -1).由ρcos 2θ-4sin θ=0得ρ2cos 2θ-4ρsin θ=0,即x 2-4y =0. ∴曲线C 的直角坐标方程为x 2=4y .(2)∵点M 的极坐标为⎝⎛⎭⎪⎫1,π2,∴点M 的直角坐标为(0,1). 又直线l 经过点M ,∴1=tan α·(0-1), ∴tan α=-1,即直线l 的倾斜角α=3π4.∴直线l 的参数方程为⎩⎪⎨⎪⎧x =1-22t ,y =22t (t 为参数).代入x 2=4y ,得t 2-62t +2=0. 设A ,B 两点对应的参数分别为t 1,t 2. ∵Q 为线段AB 的中点, ∴点Q 对应的参数值为t 1+t 22=622=3 2.又点P (1,0)是直线l 上对应t =0的点,则|PQ |=⎪⎪⎪⎪⎪⎪t 1+t 22=3 2.7.(xx·南昌模拟)在平面直角坐标系xOy 中,曲线C 1过点P (a,1),其参数方程为⎩⎨⎧x =a +2t ,y =1+2t(t 为参数,a ∈R).以O 为极点,x 轴非负半轴为极轴,建立极坐标系,曲线C 2的极坐标方程为ρcos 2θ+4cos θ-ρ=0.(1)求曲线C 1的普通方程和曲线C 2的直角坐标方程;(2)已知曲线C 1与曲线C 2交于A ,B 两点,且|PA |=2|PB |,求实数a 的值. 解:(1)∵曲线C 1的参数方程为⎩⎨⎧x =a +2t ,y =1+2t ,∴其普通方程为x -y -a +1=0.∵曲线C 2的极坐标方程为ρcos 2θ+4cos θ-ρ=0, ∴ρ2cos 2θ+4ρcos θ-ρ2=0,∴x 2+4x -x 2-y 2=0,即曲线C 2的直角坐标方程为y 2=4x .(2)设A ,B 两点所对应的参数分别为t 1,t 2,由⎩⎨⎧y 2=4x ,x =a +2t ,y =1+2t ,得2t 2-22t +1-4a =0.Δ=(22)2-4×2(1-4a )>0,即a >0,由根与系数的关系得⎩⎪⎨⎪⎧t 1+t 2=2,t 1·t 2=1-4a2,根据参数方程的几何意义可知|PA |=2|t 1|,|PB |=2|t 2|, 又|PA |=2|PB |,∴2|t 1|=2×2|t 2|,即t 1=2t 2或t 1=-2t 2.当t 1=2t 2时,有⎩⎪⎨⎪⎧ t 1+t 2=3t 2=2,t 1·t 2=2t 22=1-4a 2,解得a =136>0,符合题意.当t 1=-2t 2时,有⎩⎪⎨⎪⎧t 1+t 2=-t 2=2,t 1·t 2=-2t 22=1-4a 2,解得a =94>0,符合题意.综上所述,实数a 的值为136或94.8.(xx·贵阳检测)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =4+3cos t ,y =5+3sin t (其中t 为参数),以坐标原点O 为极点,x 轴的非负半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ=2sin θ.(1)求曲线C 1的普通方程和C 2的直角坐标方程;(2)若A ,B 分别为曲线C 1,C 2上的动点,求当AB 取最小值时△AOB 的面积. 解:(1)由⎩⎪⎨⎪⎧x =4+3cos t ,y =5+3sin t得C 1的普通方程为(x -4)2+(y -5)2=9.由ρ=2sin θ得ρ2=2ρsin θ,将x 2+y 2=ρ2,y =ρsin θ代入上式,得C 2的直角坐标方程为x 2+(y -1)2=1. (2)如图,当A ,B ,C 1,C 2四点共线,且A ,B 在线段C 1C 2上时,|AB |取得最小值,由(1)得C 1(4,5),C 2(0,1),∴kC 1C 2=5-14-0=1,则直线C 1C 2的方程为x -y +1=0,∴点O 到直线C 1C 2的距离d =12=22,又|AB |=|C 1C 2|-1-3=-2+-2-4=42-4,∴S △AOB =12d |AB |=12×22×(42-4)=2- 2.2019-2020年高考数学二轮复习课时跟踪检测二十三文一、选择题1.设f (x )=x ln x ,f ′(x 0)=2,则x 0=( ) A .e 2B .e C.ln 22D .ln 2解析:选B ∵f ′(x )=1+ln x ,∴f ′(x 0)=1+ln x 0=2,∴x 0=e ,故选B. 2.函数f (x )=e xcos x 的图象在点(0,f (0))处的切线方程是( ) A .x +y +1=0 B .x +y -1=0 C .x -y +1=0D .x -y -1=0解析:选C 依题意,f (0)=e 0cos 0=1,因为f ′(x )=e xcos x -e xsin x ,所以f ′(0)=1,所以切线方程为y -1=x -0,即x -y +1=0,故选C.3.已知直线y =kx +1与曲线y =x 3+mx +n 相切于点A (1,3),则n =( ) A .-1 B .1 C .3 D .4解析:选C 对于y =x 3+mx +n ,y ′=3x 2+m ,而直线y =kx +1与曲线y =x 3+mx +n 相切于点A (1,3),则有⎩⎪⎨⎪⎧3+m =k ,k +1=3,1+m +n =3,可解得n =3.4.若下列图象中,有一个是函数f (x )=13x 3+ax 2+(a 2-1)x +1(a ∈R ,a ≠0)的导函数f ′(x )的图象,则f (1)=( )A.13 B .-13 C.73 D .-53解析:选A 由题意知,f ′(x )=x 2+2ax +a 2-1,∵a ≠0,∴其图象为最右侧的一个.由f ′(0)=a 2-1=0,得a =±1.由导函数f ′(x )的图象可知,a <0,故a =-1,∴f (x )=13x 3-x 2+1,f (1)=13-1+1=13.5.已知函数f (x )=x 2-5x +2ln x ,则函数f (x )的单调递增区间是( )A.⎝ ⎛⎭⎪⎫0,12和(1,+∞) B .(0,1)和(2,+∞)C.⎝ ⎛⎭⎪⎫0,12和(2,+∞) D .(1,2)解析:选C 函数f (x )=x 2-5x +2ln x 的定义域是(0,+∞),令f ′(x )=2x -5+2x=2x 2-5x +2x=x -x -x>0,解得0<x <12或x >2,故函数f (x )的单调递增区间是⎝ ⎛⎭⎪⎫0,12和(2,+∞).6.已知函数f (x )=x 3+bx 2+cx +d 的图象如图所示,则函数y =log 2⎝⎛⎭⎪⎫x 2+23bx +c 3的单调递减区间为( )A.⎣⎢⎡⎭⎪⎫12,+∞ B .[3,+∞) C .[-2,3]D .(-∞,-2)解析:选D 因为f (x )=x 3+bx 2+cx +d ,所以f ′(x )=3x 2+2bx +c ,由图可知f ′(-2)=f ′(3)=0,所以⎩⎪⎨⎪⎧12-4b +c =0,27+6b +c =0,解得⎩⎪⎨⎪⎧b =-32,c =-18.令g (x )=x 2+23bx +c 3,则g (x )=x 2-x -6,g ′(x )=2x -1,由g (x )=x 2-x -6>0,解得x <-2或x >3.当x <12时,g ′(x )<0,所以g (x )=x 2-x -6在(-∞,-2)上为减函数,所以函数y =log 2⎝⎛⎭⎪⎫x 2+23bx +c 3的单调递减区间为(-∞,-2).7.已知函数f (x )=x 3-px 2-qx 的图象与x 轴切于点(1,0),则f (x )的极大值、极小值分别为( )A .-427,0B .0,-427C.427,0 D .0,427解析:选C 由题意知,f ′(x )=3x 2-2px -q ,由f ′(1)=0,f (1)=0,得⎩⎪⎨⎪⎧3-2p -q =0,1-p -q =0,解得⎩⎪⎨⎪⎧p =2,q =-1,∴f (x )=x 3-2x 2+x ,由f ′(x )=3x 2-4x +1=0,得x=13或x =1,易得当x =13时,f (x )取极大值427,当x =1时,f (x )取极小值0. 8.已知f (x )的定义域为(0,+∞),f ′(x )为f (x )的导函数,且满足f (x )<-xf ′(x ),则不等式f (x +1)>(x -1)·f (x 2-1)的解集是( )A .(0,1)B .(1,+∞)C .(1,2)D .(2,+∞)解析:选D 因为f (x )+xf ′(x )<0,所以[xf (x )]′<0,故xf (x )在(0,+∞)上为单调递减函数,又(x +1)f (x +1)>(x 2-1)·f (x 2-1),所以0<x +1<x 2-1,解得x >2.9.已知函数f (x )的定义域为R ,f ′(x )为其导函数,函数y =f ′(x )的图象如图所示,且f (-2)=1,f (3)=1,则不等式f (x 2-6)>1的解集为( )A .(-3,-2)∪(2,3)B .(-2,2)C .(2,3)D .(-∞,-2)∪(2,+∞)解析:选A 由y =f ′(x )的图象知,f (x )在(-∞,0]上单调递增,在(0,+∞)上单调递减,又f (-2)=1,f (3)=1,∴f (x 2-6)>1可化为-2<x 2-6<3,解得2<x <3或-3<x <-2.10.设函数f (x )=13x -ln x (x >0),则f (x )( )A .在区间⎝ ⎛⎭⎪⎫1e ,1,(1,e)上均有零点B .在区间⎝ ⎛⎭⎪⎫1e ,1,(1,e)上均无零点 C .在区间⎝ ⎛⎭⎪⎫1e ,1上有零点,在区间(1,e)上无零点 D .在区间⎝ ⎛⎭⎪⎫1e ,1上无零点,在区间(1,e)上有零点 解析:选D 因为f ′(x )=13-1x ,所以当x ∈(0,3)时,f ′(x )<0,f (x )单调递减,而0<1e <1<e<3,又f ⎝ ⎛⎭⎪⎫1e =13e +1>0,f (1)=13>0,f (e)=e 3-1<0,所以f (x )在区间⎝ ⎛⎭⎪⎫1e ,1上无零点,在区间(1,e)上有零点.11.(xx·成都模拟)已知曲线C 1:y 2=tx (y >0,t >0)在点M ⎝ ⎛⎭⎪⎫4t,2处的切线与曲线C 2:y=ex +1-1也相切,则t ln 4e2t的值为( )A .4e 2B .8eC .2D .8解析:选D 由y =tx ,得y ′=12t ·x -12,则曲线C 1在x =4t 时的切线斜率为k =t4,所以切线方程为y -2=t 4⎝ ⎛⎭⎪⎫x -4t ,即y =t 4x +1.设切线与曲线y =e x +1-1的切点为(x 0,y 0).由y =e x +1-1,得y ′=e x +1,则由e x 0+1=t 4,得切点⎝ ⎛⎭⎪⎫ln t4-1,t 4-1,故切线方程又可表示为y-t 4+1=t 4x -ln t 4+1,即y =t 4x +t 4ln 4t +t 2-1,所以由题意,得t 4ln 4t +t 2-1=1,即t ln 4t+2=8,整理得t ln 4e2t=8,故选D.12.(xx 届高三·湘中名校联考)已知函数g (x )=a -x 21e≤x ≤e,e 为自然对数的底数与h (x )=2ln x 的图象上存在关于x 轴对称的点,则实数a 的取值范围是( )A .[1,e 2-2]B.⎣⎢⎡⎦⎥⎤1,1e 2+2C.⎣⎢⎡⎦⎥⎤1e 2+2,e 2-2D.[)e 2-2,+∞解析:选A 由题意,知方程x 2-a =2ln x ,即-a =2ln x -x 2在⎣⎢⎡⎦⎥⎤1e ,e 上有解.设f (x )=2ln x -x 2,则f ′(x )=2x-2x =-x +x -x.易知x ∈⎣⎢⎡⎭⎪⎫1e ,1时f ′(x )>0,x ∈[1,e]时f ′(x )<0,所以函数f (x )在⎣⎢⎡⎭⎪⎫1e ,1上单调递增,在[1,e]上单调递减,所以f (x )极大值=f (1)=-1,又f (e)=2-e 2,f ⎝ ⎛⎭⎪⎫1e =-2-1e2,f (e)<f ⎝ ⎛⎭⎪⎫1e ,所以方程-a =2ln x -x 2在⎣⎢⎡⎦⎥⎤1e,e 上有解等价于2-e 2≤-a ≤-1,所以a 的取值范围为[1,e 2-2],故选A.二、填空题13.(xx·张掖模拟)若函数f (x )=x 33-a 2x 2+x +1在区间⎝ ⎛⎭⎪⎫12,3上单调递减,则实数a 的取值范围是________.解析:f ′(x )=x 2-ax +1,∵函数f (x )在区间⎝ ⎛⎭⎪⎫12,3上单调递减,∴f ′(x )≤0在区间⎝ ⎛⎭⎪⎫12,3上恒成立,∴⎩⎪⎨⎪⎧f ′⎝ ⎛⎭⎪⎫12≤0,f,即⎩⎪⎨⎪⎧14-12a +1≤0,9-3a +1≤0,解得a ≥103,∴实数a 的取值范围为⎣⎢⎡⎭⎪⎫103,+∞.答案:⎣⎢⎡⎭⎪⎫103,+∞ 14.(xx·山东高考)若函数e xf (x )(e =2.718 28…是自然对数的底数)在f (x )的定义域上单调递增,则称函数f (x )具有M 性质.下列函数中所有具有M 性质的函数的序号为________.①f (x )=2-x;②f (x )=3-x; ③f (x )=x 3;④f (x )=x 2+2.解析:设g (x )=e x f (x ),对于①,g (x )=e x ·2-x, 则g ′(x )=(e x ·2-x )′=e x ·2-x(1-ln 2)>0,所以函数g (x )在(-∞,+∞)上为增函数,故①符合要求; 对于②,g (x )=e x ·3-x,则g ′(x )=(e x ·3-x )′=e x ·3-x(1-ln 3)<0,所以函数g (x )在(-∞,+∞)上为减函数,故②不符合要求; 对于③,g (x )=e x ·x 3,则g ′(x )=(e x ·x 3)′=e x ·(x 3+3x 2),显然函数g (x )在(-∞,+∞)上不单调,故③不符合要求; 对于④,g (x )=e x ·(x 2+2),则g ′(x )=[e x·(x 2+2)]′=e x ·(x 2+2x +2)=e x ·[(x +1)2+1]>0, 所以函数g (x )在(-∞,+∞)上为增函数,故④符合要求.综上,具有M 性质的函数的序号为①④. 答案:①④15.已知函数f (x )=e x-mx +1的图象为曲线C ,若曲线C 存在与直线y =e x 垂直的切线,则实数m 的取值范围是________.解析:函数f (x )的导数f ′(x )=e x-m ,即切线斜率k =e x-m ,若曲线C 存在与直线y =e x 垂直的切线,则满足(e x -m )e =-1,即e x -m =-1e 有解,即m =e x +1e 有解,∵e x+1e >1e ,∴m >1e.答案:⎝ ⎛⎭⎪⎫1e ,+∞ 16.(xx·兰州模拟)已知函数f (x )=e x+m ln x (m ∈R ,e 为自然对数的底数),若对任意正数x 1,x 2,当x 1>x 2时都有f (x 1)-f (x 2)>x 1-x 2成立,则实数m 的取值范围是________.解析:函数f (x )的定义域为(0,+∞).依题意得,对于任意的正数x 1,x 2,当x 1>x 2时,都有f (x 1)-x 1>f (x 2)-x 2,因此函数g (x )=f (x )-x 在区间(0,+∞)上是增函数,于是当x >0时,g ′(x )=f ′(x )-1=e x+mx-1≥0,即x (e x -1)≥-m 恒成立.记h (x )=x (e x-1),x >0,则有h ′(x )=(x +1)e x -1>(0+1)e 0-1=0(x >0),h (x )在区间(0,+∞)上是增函数,h (x )的值域是(0,+∞),因此-m ≤0,m ≥0.故所求实数m 的取值范围是[0,+∞).答案:[0,+∞)B 组——能力小题保分练1.(xx·陕西质检)设函数f (x )=x sin x 在x =x 0处取得极值,则(1+x 20)(1+cos 2x 0)的值为( )A .1B .-1C .-2D .2解析:选D f ′(x )=sin x +x cos x ,令f ′(x )=0得tan x =-x ,所以tan 2x 0=x 20,故(1+x 20)(1+cos 2x 0)=(1+tan 2x 0)·2cos 2x 0=2cos 2x 0+2sin 2x 0=2,故选D.2.(xx·开封模拟)过点A (2,1)作曲线f (x )=x 3-3x 的切线最多有( ) A .3条 B .2条 C .1条D .0条解析:选A 由题意得,f ′(x )=3x 2-3,设切点为(x 0,x 30-3x 0),那么切线的斜率为k =3x 20-3,则切线方程为y -(x 30-3x 0)=(3x 20-3)(x -x 0),将点A (2,1)代入可得关于x 0的一元三次方程2x 30-6x 20+7=0.令y =2x 30-6x 20+7,则y ′=6x 20-12x 0.由y ′=0得x 0=0或x 0=2.当x 0=0时,y =7>0;x 0=2时,y =-1<0.所以方程2x 30-6x 20+7=0有3个解.故过点A (2,1)作曲线f (x )=x 3-3x 的切线最多有3条,故选A.3.(xx·惠州调研)已知函数f (x )=x sin x +cos x +x 2,则不等式f (ln x )+f ⎝ ⎛⎭⎪⎫ln 1x <2f (1)的解集为( )A .(e ,+∞)B .(0,e)C.⎝ ⎛⎭⎪⎫0,1e ∪(1,e)D.⎝ ⎛⎭⎪⎫1e ,e 解析:选D f (x )=x sin x +cos x +x 2,因为f (-x )=f (x ),所以f (x )是偶函数,所以f ⎝ ⎛⎭⎪⎫ln 1x =f (-ln x )=f (ln x ),所以f (ln x )+f ⎝ ⎛⎭⎪⎫ln 1x <2f (1)可变形为f (ln x )<f (1).f ′(x )=x cos x +2x =x (2+cos x ),因为2+cos x >0,所以f (x )在(0,+∞)上单调递增,在(-∞,0)上单调递减,所以f (ln x )<f (1)等价于|ln x |<1,即-1<ln x <1,所以1e<x <e.故选D.4.设函数f (x )=3sin πx m.若存在f (x )的极值点x 0满足x 20+[f (x 0)]2<m 2,则m 的取值范围是( )A .(-∞,-6)∪(6,+∞)B .(-∞,-4)∪(4,+∞)C .(-∞,-2)∪(2,+∞)D .(-∞,-1)∪(1,+∞)解析:选C 由正弦型函数的图象可知:f (x )的极值点x 0满足f (x 0)=±3,则πx 0m =π2+k π(k ∈Z),从而得x 0=⎝⎛⎭⎪⎫k +12m (k ∈Z).所以不等式x 20+[f (x 0)]2<m 2即为⎝⎛⎭⎪⎫k +122m 2+3<m 2,变形得m 2⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫k +122>3,其中k ∈Z.由题意,存在整数k 使得不等式m 2⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫k +122>3成立.当k ≠-1且k ≠0时,必有⎝⎛⎭⎪⎫k +122>1,此时不等式显然不能成立,故k =-1或k =0,此时,不等式即为34m 2>3,解得m <-2或m >2.5.若对任意的a ∈⎣⎢⎡⎭⎪⎫12,+∞,函数f (x )=12x 2-ax -2b 与g (x )=2a ln(x -2)的图象均有交点,则实数b 的取值范围是( )A.⎣⎢⎡⎭⎪⎫1516+12ln 2,+∞B.⎣⎢⎡⎭⎪⎫158+ln 2,+∞C.⎝ ⎛⎭⎪⎫12,1516+12ln 2D.⎝ ⎛⎭⎪⎫1516+12ln 2,+∞ 解析:选A 依题意,原问题等价于对任意的a ∈⎣⎢⎡⎭⎪⎫12,+∞,关于x 的方程12x 2-ax -2a ln(x -2)=2b 有解.设h (x )=12x 2-ax -2a ln(x -2),则h ′(x )=x -a -2a x -2=xx -a -x -2,所以h (x )在(2,a +2)上单调递减,在(a +2,+∞)上单调递增,当x →2时h (x )→+∞,当x →+∞时,h (x )→+∞,h (a +2)=-12a 2-2a ln a +2,记p (a )=-12a 2-2a ln a +2,则h (x )的值域为[p (a ),+∞),故2b ∈[p (a ),+∞)对任意的a ∈⎣⎢⎡⎭⎪⎫12,+∞恒成立,即2b ≥p (a )max ,而p ′(a )=-a -2ln a -2≤-12+2ln 2-2<0,故p (a )单调递减,所以p (a )≤p ⎝ ⎛⎭⎪⎫12=158+ln2,所以b ≥1516+12ln 2,故选A.6.(xx·张掖模拟)定义在R 上的可导函数f (x )满足f (1)=1,且2f ′(x )>1,当x ∈⎣⎢⎡⎦⎥⎤-π2,3π2时,不等式f (2cos x )>32-2sin 2x 2的解集为( ) A.⎝ ⎛⎭⎪⎫π3,4π3B.⎝ ⎛⎭⎪⎫-π3,4π3C.⎝⎛⎭⎪⎫0,π3 D.⎝ ⎛⎭⎪⎫-π3,π3解析:选D 令g (x )=f (x )-x 2-12,则g ′(x )=f ′(x )-12>0,∴g (x )在R 上单调递增,且g (1)=f (1)-12-12=0,∵f (2cos x )-32+2sin 2x 2=f (2cos x )-2cos x 2-12=g (2cos x ),∴f (2cos x )>32-2sin 2x 2,即g (2cos x )>0,∴2cos x >1,又x ∈⎣⎢⎡⎦⎥⎤-π2,3π2,∴x ∈⎝ ⎛⎭⎪⎫-π3,π3.。

2019届高考数学一轮复习 课时跟踪检测(六十九)参数方程 理(普通高中、重点高中共用)

2019届高考数学一轮复习 课时跟踪检测(六十九)参数方程 理(普通高中、重点高中共用)

课时跟踪检测(六十九) 参数方程1.已知P为半圆C :⎩⎪⎨⎪⎧x =cos θ,y =sin θ(θ为参数,0≤θ≤π)上的点,点A 的坐标为(1,0),O 为坐标原点,点M 在射线OP 上,线段OM 与C 的弧AP 的长度均为π3.(1)以O 为极点,x 轴的正半轴为极轴,建立极坐标系,求点M 的极坐标; (2)求直线AM 的参数方程. 解:(1)由已知,点M 的极角为π3,且点M 的极径等于π3,故点M 的极坐标为⎝ ⎛⎭⎪⎫π3,π3. (2)由(1)知点M 的直角坐标为⎝⎛⎭⎪⎫π6,3π6,A (1,0).故直线AM 的参数方程为⎩⎪⎨⎪⎧x y (t 为参数).2.在平面直角坐标系xOy 中,曲线C 1过点P (a,1),其参数方程为⎩⎨⎧x =a +2t ,y =1+2t(t为参数,a ∈R).以O 为极点,x 轴非负半轴为极轴,建立极坐标系,曲线C 2的极坐标方程为ρcos 2θ+4cos θ-ρ=0.(1)求曲线C 1的普通方程和曲线C 2的直角坐标方程;(2)已知曲线C 1与曲线C 2交于A ,B 两点,且|PA |=2|PB |,求实数a 的值.解:(1)∵曲线C 1的参数方程为⎩⎨⎧x =a +2t ,y =1+2t ,∴其普通方程为x -y -a +1=0.∵曲线C 2的极坐标方程为ρcos 2θ+4cos θ-ρ=0, ∴ρ2cos 2θ+4ρcos θ-ρ2=0, ∴x 2+4x -x 2-y 2=0,即曲线C 2的直角坐标方程为y 2=4x .(2)设A ,B 两点所对应的参数分别为t 1,t 2,将曲线C 1的参数方程代入曲线C 2的直角坐标方程,化简得2t 2-22t +1-4a =0.∴Δ=(-22)2-4×2(1-4a )>0,即a >0,t 1+t 2=2,t 1·t 2=1-4a2. 根据参数方程的几何意义可知|PA |=2|t 1|,|PB |=2|t 2|, 又|PA |=2|PB |可得2|t 1|=2×2|t 2|, 即t 1=2t 2或t 1=-2t 2.∴当t 1=2t 2时,有⎩⎪⎨⎪⎧t 1+t 2=3t 2=2,t 1·t 2=2t 22=1-4a2,解得a =136,符合题意.当t 1=-2t 2时,有⎩⎪⎨⎪⎧t 1+t 2=-t 2=2,t 1·t 2=-2t 22=1-4a 2,解得a =94,符合题意.综上,实数a =136或a =94.3.(2018·贵阳模拟)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =4+3cos t ,y =5+3sin t (t为参数),以坐标原点O 为极点,x 轴的非负半轴为极轴,建立极坐标系,曲线C 2的极坐标方程为ρ=2sin θ.(1)求曲线C 1的普通方程和C 2的直角坐标方程;(2)若A ,B 分别为曲线C 1,C 2上的动点,求当AB 取最小值时△AOB 的面积. 解:(1)由⎩⎪⎨⎪⎧x =4+3cos t ,y =5+3sin t(t 为参数)得C 1的普通方程为(x -4)2+(y -5)2=9,由ρ=2sin θ,得ρ2=2ρsin θ, 将x 2+y 2=ρ2,y =ρsin θ代入上式, 得C 2的直角坐标方程为x 2+(y -1)2=1.(2)如图,当A ,B ,C 1,C 2四点共线,且A ,B 在线段C 1C 2上时,|AB |取得最小值,由(1)得C 1(4,5),C 2(0,1),则kC 1C 2=5-14-0=1,∴直线C 1C 2的方程为x -y +1=0, ∴点O 到直线C 1C 2的距离d =12=22, 又|AB |=|C 1C 2|-1-3=-2+-2-4=42-4,∴S △AOB =12d |AB |=12×22×(42-4)=2- 2.4.(2018·广州综合测试)在直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =3-t ,y =1+t (t为参数).在以坐标原点O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C :ρ=22cos ⎝⎛⎭⎪⎫θ-π4. (1)求直线l 的普通方程和曲线C 的直角坐标方程; (2)求曲线C 上的点到直线l 的距离的最大值. 解:(1)由⎩⎪⎨⎪⎧x =3-t ,y =1+t(t 为参数)消去t 得x +y -4=0,所以直线l 的普通方程为x +y -4=0.由ρ=22cos ⎝ ⎛⎭⎪⎫θ-π4=22⎝ ⎛⎭⎪⎫cos θcos π4+sin θsin π4=2cos θ+2sin θ,得ρ2=2ρcos θ+2ρsin θ.将ρ2=x 2+y 2,ρcos θ=x ,ρsin θ=y 代入上式, 得x 2+y 2=2x +2y ,即(x -1)2+(y -1)2=2. 所以曲线C 的直角坐标方程为(x -1)2+(y -1)2=2.(2)法一:设曲线C 上的点P (1+2cos α,1+2sin α), 则点P 到直线l 的距离d =|1+2cos α+1+2sin α-4|2=|2α+cos α-2|2=⎪⎪⎪⎪⎪⎪2sin ⎝ ⎛⎭⎪⎫α+π4-22.当sin ⎝⎛⎭⎪⎫α+π4=-1时,d max =2 2.所以曲线C 上的点到直线l 的距离的最大值为2 2. 法二:设与直线l 平行的直线l ′:x +y +b =0, 当直线l ′与圆C 相切时,|1+1+b |2=2,解得b =0或b =-4(舍去), 所以直线l ′的方程为x +y =0.因为直线l 与直线l ′的距离d =|0+4|2=2 2.所以曲线C 上的点到直线l 的距离的最大值为2 2. 5.在直角坐标系xOy 中,曲线C 1:⎩⎪⎨⎪⎧x =t cos α,y =t sin α(t 为参数,t ≠0),其中0≤α<π.在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=θ.(1)求C 2与C 3交点的直角坐标;(2)若C 1与C 2相交于点A ,C 1与C 3相交于点B ,求|AB |的最大值. 解:(1)曲线C 2的直角坐标方程为x 2+y 2-2y =0, 曲线C 3的直角坐标方程为x 2+y 2-23x =0.联立⎩⎨⎧x 2+y 2-2y =0,x 2+y 2-23x =0,解得⎩⎪⎨⎪⎧x =0,y =0或⎨⎪⎧x =32,=3.和⎝⎛⎭⎪⎫32,32. (ρ∈R ,ρ≠0),其中0≤α<π. ,B 的极坐标为(23cos α,α). |=4⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫α-π3. 4.6.已知直线L的参数方程为⎩⎪⎨⎪⎧x =2+t ,y =2-2t (t 为参数),以原点O 为极点,x 轴的正半轴为极轴,建立极坐标系,曲线C 的极坐标方程为ρ=21+3cos 2θ.(1)求直线L 的极坐标方程和曲线C 的直角坐标方程;(2)过曲线C 上任意一点P 作与直线L 夹角为π3的直线l ,设直线l 与直线L 的交点为A ,求|PA |的最大值.解:(1)由⎩⎪⎨⎪⎧x =2+t ,y =2-2t (t 为参数),得L 的普通方程为2x +y -6=0,令x =ρcos θ,y =ρsin θ,得直线L 的极坐标方程为2ρcos θ+ρsin θ-6=0, 由曲线C 的极坐标方程,知ρ2+3ρ2cos 2θ=4, 所以曲线C 的直角坐标方程为x 2+y 24=1.(2)由(1),知直线L 的普通方程为2x +y -6=0, 设曲线C 上任意一点P (cos α,2sin α), 则点P 到直线L 的距离d =|2cos α+2sin α-6|5.由题意得|PA |=d sinπ3=415⎪⎪⎪⎪⎪⎪2sin ⎝⎛⎭⎪⎫α+π4-315,所以当sin ⎝ ⎛⎭⎪⎫α+π4=-1时,|PA |取得最大值,最大值为415+215. 7.(2018·石家庄一模)在平面直角坐标系中,将曲线C 1上的每一个点的横坐标保持不变,纵坐标缩短为原来的12,得到曲线C 2.以坐标原点O 为极点,x 轴的正半轴为极轴,建立极坐标系,已知曲线C 1的极坐标方程为ρ=2.(1)求曲线C 2的参数方程;(2)过坐标原点O 且关于y 轴对称的两条直线l 1与l 2分别交曲线C 2于A ,C 和B ,D ,且点A 在第一象限,当四边形ABCD 的周长最大时,求直线l 1的普通方程.解:(1)由ρ=2,得ρ2=4,所以曲线C 1的直角坐标方程为x 2+y 2=4. 故由题意可得曲线C 2的直角坐标方程为x 24+y 2=1.所以曲线C 2的参数方程为⎩⎪⎨⎪⎧x =2cos θ,y =sin θ(θ为参数).(2)设四边形ABCD 的周长为l ,点A (2cos θ,sin θ),则l =8cos θ+4sin θ=45sin(θ+φ),⎝⎛⎭⎪⎫其中sin φ=25,cos φ=15 所以当θ+φ=2k π+π2(k ∈Z)时,l 取得最大值,最大值为45,此时θ=2k π+π2-φ(k ∈Z),所以2cos θ=2sin φ=45,sin θ=cos φ=15, 此时A ⎝ ⎛⎭⎪⎫45,15.所以直线l 1的普通方程为x -4y =0.8.(2018·成都诊断)在直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos α,y =2+2sin α(α为参数),直线l 的参数方程为⎩⎪⎨⎪⎧x =3-32t ,y =3+12t (t 为参数).在以坐标原点O 为极点,x 轴的正半轴为极轴的极坐标系中,过极点O 的射线与曲线C 相交于不同于极点的点A ,且点A 的极坐标为(23,θ),其中θ∈⎝ ⎛⎭⎪⎫π2,π.(1)求θ的值;(2)若射线OA 与直线l 相交于点B ,求|AB |的值. 解:(1)由题意知,曲线C 的普通方程为x 2+(y -2)2=4, ∵x =ρcos θ,y =ρsin θ,∴曲线C 的极坐标方程为(ρcos θ)2+(ρsin θ-2)2=4, -43=0,+3ρsin θ-43=0. ρ≥0),联立⎩⎪⎨⎪⎧θ=2π3ρ,ρcos θ+3ρsin θ-43=0,解得ρ=4 3.∴点B 的极坐标为⎝ ⎛⎭⎪⎫43,2π3,∴|AB |=|ρB -ρA |=43-23=2 3.。

苏教版2019高考数学(文科)二轮复习解答题通关练7坐标系与参数方程含答案

苏教版2019高考数学(文科)二轮复习解答题通关练7坐标系与参数方程含答案

7.坐标系与参数方程1.在平面直角坐标系xOy 中,已知曲线C :⎩⎨⎧x =3cos α,y =sin α(α为参数),在以原点O 为极点,x 轴的正半轴为极轴建立的极坐标系中,直线l 的极坐标方程为22ρcos ⎝⎛⎭⎪⎫θ+π4=-1. (1)求曲线C 的普通方程和直线l 的直角坐标方程;(2)过点M (-1,0)且与直线l 平行的直线l 1交C 于A ,B 两点,求点M 到A ,B 两点的距离之积. 解 (1)曲线C 化为普通方程为x 23+y 2=1,由22ρcos ⎝⎛⎭⎪⎫θ+π4=-1,得ρcos θ-ρsin θ=-2, 所以直线l 的直角坐标方程为x -y +2=0. (2)直线l 1的参数方程为⎩⎪⎨⎪⎧x =-1+22t ,y =22t (t 为参数),代入x 23+y 2=1化简得,2t 2-2t -2=0,设A ,B 两点所对应的参数分别为t 1,t 2,则t 1t 2=-1, 所以|MA |·|MB |=|t 1t 2|=1. 2.在平面直角坐标系xOy中,已知直线C 1:⎩⎪⎨⎪⎧x =4-t ,y =t -1(t 是参数),以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,则曲线C 2:ρ=8sin θ. (1)求C 1的普通方程和C 2的直角坐标方程;(2)判断直线C 1与曲线C 2的位置关系,若相交,求出弦长.解 (1)由C 1:⎩⎪⎨⎪⎧x =4-t ,y =t -1(t 是参数)消去t 得x +y -3=0,所以直线C 1的普通方程为x +y -3=0. 把ρ=8sin θ的两边同时乘ρ, 得ρ2=8ρsin θ,因为x 2+y 2=ρ2,y =ρsin θ, 所以x 2+y 2=8y , 即x 2+(y -4)2=16,所以曲线C 2的直角坐标方程为x 2+(y -4)2=16.(2)由(1)知,曲线C 2:x 2+(y -4)2=16是圆心坐标为(0,4),半径为4的圆,所以圆心(0,4)到直线x +y -3=0的距离d =|0+4-3|2=22<4,所以直线C 1与曲线C 2相交,其弦长为242-⎝⎛⎭⎪⎫222=62. 3.(2018·河北省武邑中学期中)在平面直角坐标系xOy中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =2+2cos t ,y =2sin t(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,并使得它与直角坐标系有相同的长度单位,曲线C 2的极坐标方程为ρ=2sin θ,曲线C 3的极坐标方程为θ=π6(ρ>0).(1)求曲线C 1的极坐标方程和C 3的直角坐标方程; (2)设C 3分别交C 1,C 2于点P ,Q ,求△C 1PQ 的面积.解 (1)曲线C 1的普通方程为(x -2)2+y 2=4,即x 2+y 2-4x =0, 所以C 1的极坐标方程为ρ2-4ρcos θ=0, 即ρ=4cos θ.曲线C 3的直角坐标方程为y =33x (x >0). (2)依题意,设点P ,Q 的坐标分别为⎝ ⎛⎭⎪⎫ρ1,π6,⎝ ⎛⎭⎪⎫ρ2,π6, 将θ=π6代入ρ=4cos θ,得ρ1=23,将θ=π6代入ρ=2sin θ,得ρ2=1,所以||PQ =||ρ1-ρ2=23-1,依题意得,点C 1到曲线θ=π6的距离为d =||OC 1sin π6=1,所以S △C 1PQ =12||PQ ·d =12()23-1=3-12.4.已知曲线C 1的参数方程是⎩⎪⎨⎪⎧x =-2+2cos θ,y =2sin θ(θ为参数),以坐标原点为极点,x 轴的正半轴为极轴,建立极坐标系,曲线C 2的极坐标方程是ρ=4sin θ. (1)求曲线C 1与C 2交点的平面直角坐标;(2)A ,B 两点分别在曲线C 1与C 2上,当|AB |最大时,求△AOB 的面积(O 为坐标原点).解 (1)由⎩⎪⎨⎪⎧x =-2+2cos θ,y =2sin θ,得⎩⎪⎨⎪⎧x +2=2cos θ,y =2sin θ,所以(x +2)2+y 2=4, 又由ρ=4sin θ, 得ρ2=4ρsin θ,得x 2+y 2=4y ,把两式作差得,y =-x , 代入x 2+y 2=4y 得交点坐标为(0,0),(-2,2). (2)如图,由平面几何知识可知,当A ,C 1,C 2,B 依次排列且共线时,|AB |最大, 此时|AB |=22+4,O 到AB 的距离为2, ∴△OAB 的面积为S =12(22+4)·2=2+2 2.。

高中数学理二轮课时跟踪检测极坐标与参数方程配套精选

高中数学理二轮课时跟踪检测极坐标与参数方程配套精选

课时跟踪检测十八极坐标与参数方程1.2021·河南息县第一高级中学段测曲线C的参数方程是错误!α为参数,直线的参数方程为错误!t为参数.1求曲线C与直线的普通方程;2假设直线与曲线C相交于的值.解:1由错误!α为参数得曲线C的普通方程为2+-m2=1由=1+错误!t,得错误!t=-1,代入=4+错误!t,得=4+2-1,所以直线的普通方程为2-+2=02圆心0,m到直线的距离为d=错误!,由勾股定理得错误!2+错误!2=1,解得m=3或m=12.2021·石家庄模拟在平面直角坐标系中,直线的参数方程是错误!t为参数,以坐标原点为极点,轴的正半轴为极轴,建立极坐标系,曲线C的极坐标方程为ρ2+2ρin θ-3=01求直线的极坐标方程;2假设直线与曲线C相交于A,B两点,求|AB|解:1由错误!消去t得,=2,把错误!代入=2,得ρin θ=2ρco θ,所以直线的极坐标方程为in θ=2co θ2因为ρ2=2+2,=ρin θ,所以曲线C的直角坐标方程为2+2+2-3=0,即2++12=4圆C的圆心C0,-1到直线的距离d=错误!,所以|AB|=2错误!=错误!3.2021·全国卷Ⅲ如图,在极坐标系O中,A2,0,B错误!,C错误!,D2,π,弧错误!错误!错误!错误!1是弧错误!2是弧错误!3是弧错误!1,M2,M3的极坐标方程;2曲线M由M1,M2,M3构成,假设点上,且|O1的极坐标方程为ρ=2co θ错误!,M2的极坐标方程为ρ=2in θ错误!,M3的极坐标方程为ρ=-2co θ错误!2设Pρ,θ,由题设及1知假设0≤θ≤错误!,那么2co θ=错误!,解得θ=错误!;假设错误!≤θ≤错误!,那么2in θ=错误!,解得θ=错误!或θ=错误!;假设错误!≤θ≤π,那么-2co θ=错误!,解得θ=错误!综上,P的极坐标为错误!或错误!或错误!或错误!4.2021·安徽示范高中高三测试在直角坐标系O中,直线1:=0和圆C:-12+-1-错误!2=1,以坐标原点O为极点,轴的正半轴为极轴建立极坐标系.1求直线1和圆C的极坐标方程;2假设直线2的极坐标方程为θ=错误!ρ∈R,设直线1,2与圆C的公共点分别为A,B,求△OAB的面积.解:1∵=ρco θ,=ρin θ,∴直线1的极坐标方程为ρco θ=0,即θ=错误!ρ∈R,圆C的极坐标方程为ρ2-2ρco θ-21+错误!ρin θ+3+2错误!=02设A错误!,B错误!,将θ=错误!代入1中圆C的极坐标方程,得ρ2-21+错误!·ρ+3+2错误!=0,解得ρ1=1+错误!将θ=错误!代入1中圆C的极坐标方程,得ρ2-21+错误!·ρ+3+2错误!=0,解得ρ2=1+错误!故△OAB的面积为错误!×1+错误!2×in 错误!=1+错误!5.在平面直角坐标系O中,曲线C1的参数方程为错误!t为参数,曲线C2的直角坐标方程为2+-22=为极点,轴的正半轴为极轴建立极坐标系,射线的极坐标方程为θ=α,0<α<π1求曲线C1,C2的极坐标方程;2设A,B分别为射线与曲线C1,C2除原点之外的交点,求|AB|的最大值.解:1由曲线C1的参数方程错误!t为参数,消去参数t得2+-12=1,即2+2-2=0,∴曲线C1的极坐标方程为ρ=2in θ由曲线C2的直角坐标方程2+-22=4,得2+2-4=0,∴曲线C2的极坐标方程为ρ=4in θ2联立错误!得A2in α,α,∴|OA|=2in α,联立错误!得B4in α,α,∴|OB|=4in α,∴|AB|=|OB|-|OA|=2in α,∵0<α<π,∴当α=错误!时,|AB|有最大值,最大值为26.2021·唐山市高三摸底在极坐标系中,曲线C的方程为ρ2-2错误!ρin错误!-4=0,以极点O为原点,极轴为轴正半轴建立平面直角坐标系O,直线:错误!t 为参数,0≤α<π.1求曲线C的直角坐标方程;2设直线与曲线C相交于A,B两点,求||OA|-|OB||的取值范围.解:1由ρ2-2错误!ρin错误!-4=0得,ρ2-2ρco θ-2ρin θ-4=0,所以2+2-2-2-4=0,即曲线C的直角坐标方程为-12+-12=62将直线的参数方程代入2+2-2-2-4=0并整理得,t2-2in α+co αt-4=0,设A,B两点对应的参数分别为t1,t2,那么t1+t2=2in α+co α,t1t2=-4<0所以||OA|-|OB||=||t1|-|t2||=|t1+t2|=|2in α+co α|=错误!,因为0≤α<π,所以错误!≤α+错误!<错误!,从而有-2<2错误!in错误!≤2错误!所以||OA|-|OB||的取值范围是[0,2错误!].。

2020版高考理科数学二轮课时作业27 坐标系与参数方程

2020版高考理科数学二轮课时作业27 坐标系与参数方程

课时作业27 坐标系与参数方程1.(2019年高考·北京卷)已知直线l 的参数方程为⎩⎪⎨⎪⎧x =1+3t ,y =2+4t (t 为参数),则点(1,0)到直线l 的距离是( )A .15B .25C .45D .65解析:由题意,可将直线化为普通方程x -13=y -24,即4(x -1)-3(y -2)=0,即4x -3y +2=0,所以点(1,0)到直线l 的距离d =|4-0+2|42+(-3)2=65,故选D . 答案:D2.(2019年河南省郑州市第一中学高三入学摸底测试数学)以直角坐标系的原点O 为极点,x 轴的正半轴为极轴,已知点P 的直角坐标为(1,-5),点M 的极坐标为⎝⎛⎭⎪⎫4,π2.若直线l 过点P ,且倾斜角为π3,圆C 以M 为圆心、4为半径.(1)求直线l 的参数方程和圆C 的极坐标方程; (2)试判定直线l 和圆C 的位置关系.解:(1)直线l 的参数方程为⎩⎨⎧x =1+t cos π3,y =-5+t sin π3⇒⎩⎨⎧x =1+12t ,y =-5+32t(t 为参数),∵M 点的直角坐标为(0,4),圆C 的半径为4, ∴圆C 的方程为x 2+(y -4)2=16,将⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ代入, 得圆C 的极坐标方程为ρ2cos 2θ+(ρsin θ-4)2=16, 即ρ=8sin θ.(2)直线l 的普通方程为3x -y -5-3=0, 圆心M 到l 的距离为d =|-4-5-3|2=9+32>4, ∴直线l 与圆C 相离.3.(2019学年度河南省周口市高三调研)在直角坐标系xOy 中,直线l 的参数方程为⎩⎨⎧x =4+22t ,y =3+22t(t 为参数),以坐标原点O 为极点,x轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ2(3+sin 2θ)=12.(1)求直线l 的普通方程与曲线C 的直角坐标方程;(2)若直线l 与曲线C 交于A ,B 两点,且设定点P(2,1),求|PB||PA|+|PA||PB|的值.解:(1)由直线l 的参数方程消去t ,得普通方程为x -y -1=0. ρ2(3+sin 2θ)=12等价于3ρ2+ρ2sin 2θ=12,将ρ2=x 2+y 2,ρsin θ=y 代入上式,得曲线C 的直角坐标方程为3(x 2+y 2)+y 2=12,即x 24+y 23=1.(2)点P(2,1)在直线x -y -1=0上,所以直线l 的参数方程可以写为⎩⎨⎧x =2+22t ,y =1+22t(t 为参数),将上式代入x 24+y 23=1,得7t 2+202t +8=0. 设A ,B 对应的参数分别为t 1,t 2, 则t 1+t 2=-2027,t 1t 2=87,所以|PB||PA|+|PA||PB|=|PA|2+|PB|2|PA||PB|=(|PA|+|PB|)2-2|PA||PB||PA||PB| =(|t 1|+|t 2|)2-2|t 1||t 2||t 1||t 2|=|t 1+t 2|2-2|t 1·t 2||t 1·t 2|=⎝⎛⎭⎪⎫-20272-2×8787=867.4.(2019年山东省郓城一中等学校高三第三次模拟)在平面直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =3cos α,y =sin α(α为参数),在以坐标原点O 为极点,x 轴的正半轴为极轴的极坐标系中,点M 的极坐标为⎝⎛⎭⎪⎫22,3π4,直线l 的极坐标方程为ρsin ⎝⎛⎭⎪⎫θ-π4+22=0.(1)求直线l 的直角坐标方程与曲线C 的普通方程;(2)若N 是曲线C 上的动点,P 为线段MN 的中点,求点P 到直线l 的距离的最大值.解:(1)直线l 的极坐标方程为ρsin ⎝⎛⎭⎪⎫θ-π4+22=0,即ρsin θ-ρcos θ+4=0.由x =ρcos θ,y =ρsin θ,可得直线l 的直角坐标方程为x -y -4=0.将曲线C 的参数方程⎩⎪⎨⎪⎧x =3cos α,y =sin α,消去参数a ,得曲线C 的普通方程为x 23+y 2=1. (2)设N(3cos α,sin α),α∈[0,2π).点M 的极坐标⎝ ⎛⎭⎪⎫22,3π4化为直角坐标为(-2,2),则P ⎝ ⎛⎭⎪⎫32cos α-1,12sin α+1. 所以点P 到直线l 的距离d =⎪⎪⎪⎪⎪⎪32cos α-12sin α-62=⎪⎪⎪⎪⎪⎪sin ⎝⎛⎭⎪⎫α-π3+62≤722,所以当α=5π6时,点M 到直线l 的距离的最大值为722. 5.(2019年河北衡水金卷高三第三次联合质量测评数学)在直角坐标系中,直线l 的参数方程为⎩⎪⎨⎪⎧x =-1+t cos α,y =1+t sin α(t 为参数,0<α<π),以坐标原点O 为极点,x 轴正半轴为极轴,取相同的长度单位建立极坐标系,曲线C 的极坐标方程为ρ2=41+sin 2θ.(1)当α=π6时,写出直线l 的普通方程及曲线C 的直角坐标方程; (2)已知点P(-1,1),设直线l 与曲线C 交于A ,B 两点,试确定|PA|·|PB|的取值范围.解:(1)当α=π6时,直线l 的参数方程为⎩⎨⎧x =-1+t cos π6,y =1+t sin π6⇒⎩⎨⎧x =-1+32t ,y =1+12t ,消去参数t ,得x -3y +1+3=0. 由曲线C 的极坐标方程为ρ2=41+sin 2θ,得ρ2+(ρsin θ)2=4,将x 2+y 2=ρ2,及y =ρsin θ代入,得x 2+2y 2=4, 即x 24+y 22=1.(2)由直线l 的参数方程为⎩⎪⎨⎪⎧x =-1+t cos α,y =1+t sin α(t 为参数,0<α<π),可知直线l 是过点P(-1,1)且倾斜角为α的直线, 又由(1)知曲线C 为椭圆x 24+y 22=1, 所以易知点P(-1,1)在椭圆C 内,将⎩⎪⎨⎪⎧x =-1+t cos α,y =1+t sin α代入x 24+y 22=1中,整理得 (1+sin 2α)t 2+2(2sin α-cos α)t -1=0, 设A ,B 两点对应的参数分别为t 1,t 2,则t 1·t 2=-11+sin 2α,所以|PA|·|PB|=|t 1||t 2|=11+sin 2α,因为0<α<π,所以sin 2α∈(0,1], 所以|PA|·|PB|=|t 1||t 2|=11+sin 2α∈⎣⎢⎡⎭⎪⎫12,1, 所以|PA|·|PB|的取值范围为⎣⎢⎡⎭⎪⎫12,1.6.(2019年河南省开封市高三第一次模拟考试数学)在直角坐标系中,直线l 的参数方程是⎩⎪⎨⎪⎧x =t ,y =t +1(t 为参数),曲线C 的参数方程是⎩⎪⎨⎪⎧x =2+2cos φ,y =2sin φ(φ为参数),以O 为极点,x 轴的非负半轴为极轴建立极坐标系.(1)求直线l 和曲线C 的极坐标方程;(2)已知射线OP :θ1=α⎝⎛⎭⎪⎫其中0<α<π2与曲线C 交于O ,P 两点,射线OQ :θ2=α+π2与直线l 交于Q 点,若△OPQ 的面积为1,求α的值和弦长|OP|.解:(1)直线l 的普通方程为x -y +1=0,极坐标方程为ρcos θ-ρsin θ+1=0;曲线C 的普通方程为(x -2)2+y 2=4,极坐标方程为ρ=4cos θ.(2)依题意,∵α∈⎝⎛⎭⎪⎫0,π2,∴|OP|=4cos α,|OQ|=1⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫α+π2-cos ⎝⎛⎭⎪⎫α+π2=1sin α+cos α,∵S △OPQ =12|OP||OQ|=2cos αcos α+sin α=1,∴tan α=1,α∈⎝⎛⎭⎪⎫0,π2,∴α=π4,|OP|=2 2.7.(2019年四川省成都市第七中学高三一诊模拟考试数学)在平面直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =e t+e -t ,y =e t-e-t (其中t 为参数),在以O 为极点、x 轴的非负半轴为极轴的极坐标系(两种坐标系的单位长度相同)中,直线的极坐标方程为ρsin ⎝ ⎛⎭⎪⎫π3-θ= 2. (1)求曲线C 的极坐标方程;(2)求直线l 与曲线C 的公共点P 的极坐标. 解:(1)消去参数t ,得曲线C 的直角坐标方程为 x 2-y 2=4(x ≥2).将x =ρcos θ,y =ρsin θ代入x 2-y 2=4, 得ρ2(cos 2θ-sin 2θ)=4. 所以曲线C 的极坐标方程为ρ2cos 2θ=4⎝ ⎛⎭⎪⎫-π4<θ<π4.(2)将l 与C 的极坐标方程联立,消去ρ,得4sin 2⎝ ⎛⎭⎪⎫π3-θ=2cos 2θ, 展开得3cos 2θ-23sin θcos θ+sin 2θ=2(cos 2θ-sin 2θ), 因为cos θ≠0,所以3tan 2θ-23tan θ+1=0,于是方程的解为tan θ=33,即θ=π6,代入ρsin ⎝ ⎛⎭⎪⎫π3-θ=2,可得ρ=22,所以点P 的极坐标为⎝⎛⎭⎪⎫22,π6.8.(2019年黑龙江省大庆市第一中学高三月考)在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴正半轴为极轴,建立极坐标系,已知直线l 的参数方程为⎩⎪⎨⎪⎧x =2t ,y =2+t(t 为参数),曲线C 的极坐标方程为ρcos 2θ=8sin θ.(1)求曲线C 的直角坐标方程,并指出该曲线是什么曲线; (2)若直线l 与曲线C 的交点分别为M ,N ,求|MN|. 解:(1)因为ρcos 2θ=8sin θ,所以ρ2cos 2θ=8ρsin θ, 即x 2=8y ,所以曲线C 表示焦点坐标为(0,2),对称轴为y 轴的抛物线. (2)设点M(x 1,y 1),点N(x 2,y 2),直线l 过抛物线的焦点(0,2),则直线的参数方程为⎩⎪⎨⎪⎧x =2t ,y =2+t ,化为一般方程为y =12x +2,代入曲线C 的直角坐标方程,得x 2-4x -16=0,所以x 1+x 2=4,x 1x 2=-16, 所以|MN|=(x 1-x 2)2+(y 1-y 2)2 =1+k 2(x 1-x 2)2 =1+k 2(x 1+x 2)2-4x 1x 2 =1+⎝ ⎛⎭⎪⎫122×42-4×(-16)=10.。

2019高考数学二轮突破性专题训练坐标系与参数方程Word版含答案-6页word资料

2019高考数学二轮突破性专题训练坐标系与参数方程Word版含答案-6页word资料

坐标系与参数方程一、选择题1. 在极坐标中,由三条曲线0,,cos sin 13πθθρθθ===围成的图形的面积是A B C D2. 设),(y x P 是曲线C :θθθ(sin cos 2⎩⎨⎧=+-=y x 为参数,πθ20<≤)上任意一点,则x y的取值范围是 ( ) A .]3,3[- B .),3[]3,(+∞--∞YC .]33,33[-D .),33[]33,(+∞--∞Y 3. 直线0323=-+y x 与圆θθsin 23cos 21+=+=y x (θ为参数)的位置关系是 ( ) A . 相离 B .相切C . 相交但不过圆心D . 相交且过圆心4. 在极坐标系中与圆4sin ρθ=相切的一条直线的方程为( )A .cos 2ρθ=B .sin 2ρθ=C .4sin()3πρθ=+D .4sin()3πρθ=-5. 极坐标方程cos 20ρθ=表示的曲线为( )A .极点B .极轴C .一条直线D .两条相交直线6. 直线12()2x tt y t=+⎧⎨=+⎩为参数被圆229x y +=截得的弦长为( )A .125 BC D 7. 曲线25()12x tt y t =-+⎧⎨=-⎩为参数与坐标轴的交点是( ) A .21(0,)(,0)52、 B .11(0,)(,0)52、C .(0,4)(8,0)-、D .5(0,)(8,0)9、8. 把方程1xy =化为以参数的参数方程是( )A .1212x t y t -⎧=⎪⎨⎪=⎩B .sin 1sin x t y t =⎧⎪⎨=⎪⎩C .cos 1cos x t y t =⎧⎪⎨=⎪⎩D .tan 1tan x t y t =⎧⎪⎨=⎪⎩ 9. 极坐标方程cos 2sin 2ρθθ=表示的曲线为( )A .一条射线和一个圆B .两条直线C .一条直线和一个圆D .一个圆10. 化极坐标方程2cos 0ρθρ-=为直角坐标方程为( )A .201y y +==2x 或 B .1x = C .201y +==2x 或x D .1y =二、填空题11.若直线sin()4πρθ+=31x ky +=垂直,则常数k = .12. 若直线340x y m ++=与圆1cos 2sin x y θθ=+⎧⎨=-+⎩(θ为参数)没有公共点,则实数m 的取值范围是 ;13. 已知直线:40l x y -+=与圆{12cos 12sin :x y C θθ=+=+,则C 上各点到的距离的最小值为_______.14. 极坐标方程分别为cos ρθ=与sin ρθ=的两个圆的圆心距为_____________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课时跟踪检测(二十七)坐标系与参数方程1.(2018·石家庄模拟)在平面直角坐标系中,直线l 的参数方程是⎩⎪⎨⎪⎧x =t ,y =2t(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴,建立极坐标系,曲线C 的极坐标方程为ρ2+2ρsin θ-3=0.(1)求直线l 的极坐标方程;(2)若直线l 与曲线C 相交于A ,B 两点,求|AB |.解:(1)由⎩⎪⎨⎪⎧x =t ,y =2t消去t 得,y =2x ,把⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ代入y =2x ,得ρsin θ=2ρcos θ,所以直线l 的极坐标方程为sin θ=2cos θ.(2)因为ρ2=x 2+y 2,y =ρsin θ,所以曲线C 的直角坐标方程为x 2+y 2+2y -3=0,即x 2+(y +1)2=4.圆C 的圆心C (0,-1)到直线l 的距离d =55,所以|AB |=24-d2=2955.2.(2018·益阳、湘潭模拟)在平面直角坐标系中,曲线C的参数方程为⎩⎪⎨⎪⎧x =2cos α,y =sin α(α为参数).以直角坐标系的原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为ρcos ⎝⎛⎭⎪⎫θ+π3=12.直线l 与曲线C 交于A ,B 两点.(1)求直线l 的直角坐标方程;(2)设点P (1,0),求|PA |·|PB |的值.解:(1)由ρcos ⎝⎛⎭⎪⎫θ+π3=12得ρcos θcos π3-ρsin θsin π3=12,即12ρcos θ-32ρsin θ=12,又ρcos θ=x ,ρsin θ=y ,∴直线l 的直角坐标方程为x -3y -1=0.(2)由⎩⎪⎨⎪⎧x =2cos α,y =sin α(α为参数)得曲线C 的普通方程为x 2+4y 2=4,∵P (1,0)在直线l 上,故可设直线l 的参数方程为⎩⎪⎨⎪⎧x =32t +1,y =12t(t 为参数),将其代入x 2+4y 2=4得7t 2+43t -12=0,∴t 1·t 2=-127,故|PA |·|PB |=|t 1|·|t 2|=|t 1·t 2|=127.3.(2018·南昌模拟)在平面直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =3+2cos α,y =2+2sin α(α为参数),直线C 2的方程为y =33x ,以O 为极点,以x 轴的非负半轴为极轴建立极坐标系.(1)求曲线C 1和直线C 2的极坐标方程;(2)若直线C 2与曲线C 1交于P ,Q 两点,求|OP |·|OQ |的值. 解:(1)曲线C 1的普通方程为(x -3)2+(y -2)2=4,即x 2+y 2-23x -4y +3=0,则曲线C 1的极坐标方程为ρ2-23ρcos θ-4ρsin θ+3=0.∵直线C 2的方程为y =33x ,∴直线C 2的极坐标方程为θ=π6(ρ∈R).(2)设P (ρ1,θ1),Q (ρ2,θ2),将θ=π6(ρ∈R)代入ρ2-23ρcos θ-4ρsin θ+3=0得,ρ2-5ρ+3=0,∴ρ1ρ2=3,∴|OP |·|OQ |=ρ1ρ2=3.4.(2018·福州模拟)在平面直角坐标系xOy 中,曲线C :⎩⎪⎨⎪⎧x =tcos α,y =sin α(α为参数,t >0).在以O 为极点,x 轴的正半轴为极轴的极坐标系中,直线l :ρcos ⎝ ⎛⎭⎪⎫θ-π4= 2.(1)若l 与曲线C 没有公共点,求t 的取值范围;(2)若曲线C 上存在点到l 的距离的最大值为62+2,求t 的值.解:(1)因为直线l 的极坐标方程为ρcos ⎝⎛⎭⎪⎫θ-π4=2,即ρcos θ+ρsin θ=2,所以直线l 的直角坐标方程为x +y -2=0.因为⎩⎪⎨⎪⎧x =tcos α,y =sin α(α为参数,t >0),所以曲线C 的普通方程为x2t2+y 2=1(t >0),由⎩⎪⎨⎪⎧x +y =2,x2t2+y2=1,消去x 得,(1+t 2)y 2-4y +4-t 2=0,所以Δ=16-4(1+t 2)(4-t 2)<0,又t >0,解得0<t <3,故t 的取值范围为(0,3). (2)由(1)知直线l 的方程为x +y -2=0,故曲线C 上的点(t cos α,sin α)到l 的距离d =|tcos α+sin α-2|2,故d max =t2+1+22=62+2,解得t =± 2.又t >0,∴t = 2.5.(2018·重庆模拟)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =3cos α,y =3sin α(α为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρcos ⎝⎛⎭⎪⎫θ+π4=3 2.(1)求曲线C 1的普通方程和曲线C 2的直角坐标方程;(2)若点M 在曲线C 1上,点N 在曲线C 2上,求|MN |的最小值及此时点M 的直角坐标.解:(1)由曲线C 1的参数方程可得曲线C 1的普通方程为x29+y23=1,由ρcos ⎝⎛⎭⎪⎫θ+π4=32,得ρcosθ-ρsin θ=6,∴曲线C 2的直角坐标方程为x -y -6=0.(2)设点M 的坐标为(3cos β,3sin β),点M 到直线x -y -6=0的距离d =|3cos β-3sin β-6|2=⎪⎪⎪⎪⎪⎪23sin ⎝ ⎛⎭⎪⎫β-π3+62=6+23sin ⎝ ⎛⎭⎪⎫β-π32,当sin ⎝ ⎛⎭⎪⎫β-π3=-1时,|MN |有最小值,最小值为32-6,此时点M 的直角坐标为⎝ ⎛⎭⎪⎫332,-32.6.(2018·昆明模拟)在直角坐标系xOy 中,已知倾斜角为α的直线l 过点A (2,1).以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.曲线C 的极坐标方程为ρ=2sin θ,直线l 与曲线C 分别交于P ,Q 两点.(1)写出直线l 的参数方程和曲线C 的直角坐标方程;(2)若|PQ |2=|AP |·|AQ |,求直线l 的斜率k .解:(1)由题意知直线l 的参数方程为⎩⎪⎨⎪⎧x =2+tcos α,y =1+tsin α(t 为参数),因为ρ=2sin θ,所以ρ2=2ρsin θ,把y =ρsin θ,x 2+y 2=ρ2代入得x 2+y 2=2y ,所以曲线C 的直角坐标方程为x 2+y 2=2y .(2)将直线l 的参数方程代入曲线C 的方程,得t 2+(4cos α)t +3=0,由Δ=(4cos α)2-4×3>0,得cos 2α>34,由根与系数的关系,得t 1+t 2=-4cos α,t 1t 2=3.不妨令|AP |=|t 1|,|AQ |=|t 2|,所以|PQ |=|t 1-t 2|, 因为|PQ |2=|AP |·|AQ |,所以(t 1-t 2)2=|t 1|·|t 2|,则(t 1+t 2)2=5t 1t 2,得(-4cos α)2=5×3,解得cos 2α=1516,满足cos 2α>34,所以sin 2α=116,tan 2α=115,所以k =tan α=±1515.7.(2019届高三·湘东五校联考)平面直角坐标系xOy 中,倾斜角为α的直线l 过点M (-2,-4),以原点O 为极点,x 轴的正半轴为极轴,建立极坐标系,曲线C 的极坐标方程为ρsin 2θ=2cos θ.(1)写出直线l 的参数方程(α为常数)和曲线C 的直角坐标方程;(2)若直线l 与C 交于A ,B 两点,且|MA |·|MB |=40,求倾斜角α的值.解:(1)直线l 的参数方程为⎩⎪⎨⎪⎧x =-2+tcos α,y =-4+tsin α(t 为参数),ρsin 2θ=2cos θ,即ρ2sin 2θ=2ρcos θ,将x =ρcos θ,y =ρsin θ代入得曲线C 的直角坐标方程为y 2=2x .(2)把直线l 的参数方程代入y 2=2x ,得t 2sin 2α-(2cos α+8sin α)t +20=0,设A ,B 对应的参数分别为t 1,t 2,由一元二次方程根与系数的关系得,t 1+t 2=2cos α+8sin αsin2α,t 1t 2=20sin2α,根据直线的参数方程中参数的几何意义,得|MA |·|MB |=|t 1t 2|=20sin2α=40,得α=π4或α=3π4.又Δ=(2cos α+8sin α)2-80sin 2α>0,所以α=π4.8.(2018·全国卷Ⅲ)在平面直角坐标系xOy 中,⊙O 的参数方程为⎩⎪⎨⎪⎧x =cos θ,y =sin θ(θ为参数),过点(0,-2)且倾斜角为α的直线l 与⊙O 交于A ,B 两点.(1)求α的取值范围;(2)求AB 中点P 的轨迹的参数方程.解:(1)⊙O 的直角坐标方程为x 2+y 2=1.当α=π2时,l 与⊙O 交于两点.当α≠π2时,记tan α=k ,则l 的方程为y =kx - 2.l 与⊙O 交于两点需满足21+k2<1,解得k <-1或k >1,即α∈⎝ ⎛⎭⎪⎫π2,3π4或α∈⎝ ⎛⎭⎪⎫π4,π2.综上,α的取值范围是⎝ ⎛⎭⎪⎫π4,3π4.(2)l 的参数方程为⎩⎨⎧x =tcos α,y =-2+tsin α⎝ ⎛⎭⎪⎫t 为参数,π4<α<3π4.设A ,B ,P 对应的参数分别为t A,t B ,t P ,则t P =tA +tB 2,且t A ,t B 满足t 2-22t sin α+1=0.于是t A +t B =22sin α,t P =2sin α.又点P 的坐标(x ,y )满足⎩⎨⎧x =tPcos α,y =-2+tPsin α,所以点P 的轨迹的参数方程是⎩⎪⎨⎪⎧x =22sin 2α,y =-22-22cos 2α⎝ ⎛⎭⎪⎫α为参数,π4<α<3π4.。

相关文档
最新文档