指数函数及性质

合集下载

指数函数及其性质

指数函数及其性质
y=ax
(0<a<1)
y
y=ax
(a>1)
图 象
y=1
(0,1) 0 x
(0,1)
y=1
0 x
a>1
0<a<1
a>1
0<a<1
1.图象全在x轴上方,与x轴无限接近。
1.定义域为R,值域为(0,+). 性 2.当x=0时,y=1 3.在R上是增 函数 3.在R上是减 函数
图 象 特 征
2.图象过定点(0,1) 3.自左向右图 3.自左向右图 象逐渐上升 象逐渐下降 4.图象分布在左 下和右上两个 区域内 4.图象分布在左 上和右下两个区 域内
(1), (6), (7)是指数函数。
已知f(x)是指数函数,且其图象
过点(2, 9),求f(0),f(1),f(-3)的值.
2、指数函数的图象和性质: (1) 作出函数y 2 的图象.
x
(2)
1 作出函数y 的图象. 2
x
x
y2
x

-3
-2
-1.5
-1
-0.5
0
0.5
x
y
(2)
(1)
( 3)
( 4)
(0,1)
O
x
x
(4)y d 的图象,
x
x
比较a, b, c, d与1的大小关系 .
c d 1 a b.
y
对于多个指 数函数来说, 底数越大的图 象在 y 轴右侧 的部分越高.
(0,1)
O
x
简称:右侧 底大图高.
指数函数的图象和性质
a>1
y

指数函数的定义与性质

指数函数的定义与性质

指数函数的定义与性质指数函数是数学中常见的一类函数,它具有独特的定义和性质。

本文将围绕指数函数的定义、增减性、奇偶性以及图像特点展开论述,从而全面了解指数函数的本质。

定义:指数函数是形如f(x) = a^x的函数,其中a为正实数且不等于1,x 为实数。

指数函数的定义要求底数a必须为正实数,并且不等于1,这样才能确保指数函数有意义且满足一定的性质。

增减性:对于指数函数f(x) = a^x,当底数a大于1时,指数函数呈现出增长趋势;当底数a介于0和1之间时,指数函数呈现出下降趋势。

具体而言,当x1 < x2时,若a > 1,则有a^x1 < a^x2,即指数函数的函数值随着自变量的增加而增加;若 0 < a < 1,则有a^x1 > a^x2,即指数函数的函数值随着自变量的增加而减少。

奇偶性:指数函数可分为两种情况讨论奇偶性:1. 当底数a为正实数时,指数函数f(x) = a^x是奇函数。

这是因为对于任意x,有a^(-x) = 1/a^x,即关于y轴对称,即f(-x) = f(x)。

2. 当底数a为负实数时,指数函数f(x) = a^x是偶函数。

这是因为对于任意x,有a^(-x) = 1/a^x,即关于原点对称,即f(-x) = f(x)。

图像特点:指数函数的图像特点与底数a的大小关系密切相关。

当底数a大于1时,指数函数的图像上升非常迅速,且在x轴的右侧逐渐无限接近于x轴正半轴。

当底数a介于0和1之间时,指数函数的图像下降非常迅速,且在x轴的右侧逐渐无限接近于x轴正半轴。

综上所述,指数函数是一类具有特殊定义和性质的函数。

它具有增减性、奇偶性以及特殊的图像特点。

了解指数函数的定义与性质对于解决数学中的相关问题,如指数方程和指数不等式等,具有重要意义。

指数函数的图象与性质-高中数学知识点讲解

指数函数的图象与性质-高中数学知识点讲解

指数函数的图象与性质1.指数函数的图象与性质【知识点的认识】1、指数函数y=a x(a>0,且a≠1)的图象和性质:y=a x a>1 0<a<1图象定义域R值域(0,+∞)性质过定点(0,1)当x>0 时,y>1;当x>0 时,0<y<1;x<0 时,0<y<1 x<0 时,y>1在R 上是增函数在R 上是减函数2、底数对指数函数的影响:①在同一坐标系内分别作函数的图象,易看出:当a>l 时,底数越大,函数图象在第一象限越靠近y 轴;同样地,当 0<a<l 时,底数越小,函数图象在第一象限越靠近x 轴.②底数对函数值的影响如图.1③当a>0,且a≠l 时,函数y=a x 与函数y =(푥的图象关于y 轴对称.푎)3、利用指数函数的性质比较大小:若底数相同而指数不同,用指数函数的单调性比较:1/ 2若底数不同而指数相同,用作商法比较;若底数、指数均不同,借助中间量,同时要注意结合图象及特殊值.2.指数函数的单调性与特殊点【知识点归纳】1、指数函数单调性的讨论,一般会以复合函数的形式出现,所以要分开讨论,首先讨论a 的取值范围即a>1,0 <a<1 的情况.再讨论g(x)的增减,然后遵循同增、同减即为增,一减一增即为减的原则进行判断.2、同增同减的规律:(1)y=a x 如果a>1,则函数单调递增;(2)如果 0<a<1,则函数单调递减.3、复合函数的单调性:(1)复合函数为两个增函数复合:那么随着自变量X 的增大,Y 值也在不断的增大;(2)复合函数为两个减函数的复合:那么随着内层函数自变量X 的增大,内层函数的Y 值就在不断的减小,而内层函数的Y 值就是整个复合函数的自变量X.因此,即当内层函数自变量X 的增大时,内层函数的Y 值就在不断的减小,即整个复合函数的自变量X 不断减小,又因为外层函数也为减函数,所以整个复合函数的Y 值就在增大.因此可得“同增”若复合函数为一增一减两个函数复合:内层函数为增函数,则若随着内层函数自变量X 的增大,内层函数的Y 值也在不断的增大,即整个复合函数的自变量X 不断增大,又因为外层函数为减函数,所以整个复合函数的Y 值就在减小.反之亦然,因此可得“异减”.2/ 2。

指数函数图像及性质

指数函数图像及性质

指数函数图像及性质
指数函数图像的特征就是“J”形的曲线,它可用来表示水平和垂直运动的加速度和内能释放。

指数函数可以表示非常多种物理或生物学现象。

指数函数图像具有以下性质:
1. 指数函数图像以指数增长和指数衰减。

即曲线是从左向右张开的,以及从右向左收缩的。

2. 一般情况下,指数函数图像会通过坐标原点(0,0),如果不是,则说明指数函数图像是一条平行曲线。

3. 在每一个定义域,指数函数图像的斜率最大值为1,但是随着x的增加,它的斜率越来越小,趋近于0。

4. 在不同的定义域,指数函数图像的形状也有所不同,一般数学家会把它们分成“快速增长函数”和“减速函数”,其中前者的最大斜率大于1而后者的最大斜率小于1。

5. 对于指数函数图像,从右向左看斜率是负值,而从左向右看又会变成正值。

6. 有时候,指数函数图像会拐到右上或者右下方,这时候说明指数函数正在发挥它的作用。

7. 指数函数的绝对值有三种情况,即增加,减少和突然增加,这种情况受到外部因素的影响。

8. 指数函数图像在平行于y轴的负半轴上,其值会无限接近0,而在平行于y轴的正半轴上,其值会无限增长。

指数函数的概念图象及性质PPT课件

指数函数的概念图象及性质PPT课件
栏目 导引
第4章 指数函数、对数函数和幂函数
(4)y=(a2+2)-x=a2+1 2x,底数a2+1 2∈0,12,前面系数为 1, 指数为自变量 x,故它是指数函数. (5)y=2×3x+a(a≠0),3x 前面系数为 2≠1,故它不是指数函 数. 故(1)(3)(4)为指数函数.
栏目 导引
第4章 指数函数、对数函数和幂函数
指数式的比较大小问题 比较下列各组数的大小. (1)1.8-π,1.8-3;(2)1.7-0.3,1.9-0.3; (3)0.80.6,0.60.8.
栏目 导引
第4章 指数函数、对数函数和幂函数
【解】 (1)构造函数 f(x)=1.8x. 因为 a=1.8>1,所以 f(x)=1.8x 在 R 上是增函数. 因为-π<-3,所以 1.8-π<1.8-3. (2)因为 y=11..79x在 R 上是减函数, 所以11..79--00..33=11..79-0.3>11..790=1. 又因为 1.7-0.3 与 1.9-0.3 都大于 0, 所以 1.7-0.3>1.9-0.3.
栏目 导引
第4章 指数函数、对数函数和幂函数
(3)取中间值 0.80.8. 因为 y=0.8x 在 R 上单调递减,而 0.6<0.8, 所以 0.80.6>0.80.8. 又因为00..6800..88=00..860.8>00..680=1,且 0.60.8>0, 0.80.8>0,所以 0.80.8>0.60.8.所以 0.80.6>0.60.8.
x=0 时,__y_=__1___; 质 y值
x<0 时__0_<_y_<_1__
x>0 时,_0_<__y_<_1__; x=0 时,_y_=__1____;

指数函数的性质及应用

指数函数的性质及应用

指数函数的性质及应用指数函数是高中数学中重要的一个函数,它在各个领域都有广泛的应用。

本文将从指数函数的性质和应用两个方面进行论述。

一、指数函数的性质1. 定义:指数函数是以指数为自变量,底数为常数的函数,一般表示为y = a^x,其中a为底数,x为指数,a>0且a≠1。

2. 单调性:指数函数的底数a>1时,函数递增;底数0<a<1时,函数递减。

3. 极限性质:当x趋向于无穷大时,指数函数a^x也趋向于无穷大;当x趋向于无穷小(x→-∞)时,0<a^x<1。

4. 对称性:指数函数y = a^x关于y轴对称,即f(-x) = 1/a^x。

5. 零点:当底数a>1时,指数函数无零点;当0<a<1时,指数函数有唯一的零点x = 0。

二、指数函数的应用1. 经济学中的应用:指数函数常用于描述经济增长、货币贬值等问题。

例如,GDP增长可以用指数函数来模拟,货币贬值可以用指数函数来表示。

2. 生物学中的应用:指数函数常用于描述生物种群的增长和衰减。

例如,人口增长、细菌繁殖、动物种群数量等可以用指数函数来描述。

3. 物理学中的应用:指数函数在物理学中也有广泛的应用。

例如,放射性物质的衰变过程、电容电路的充放电过程等都可以用指数函数来描述。

4. 金融学中的应用:指数函数常用于描述股票市场的涨跌情况。

例如,股票指数的变化、收益率的计算等都可以用指数函数来分析。

5. 工程学中的应用:指数函数在工程学中也有重要的应用。

例如,电路中的指数响应、信号的衰减等问题可以用指数函数来描述。

综上所述,指数函数具有单调性、极限性质、对称性和零点等性质,并且在经济学、生物学、物理学、金融学和工程学等领域都有广泛的应用。

深入理解和应用指数函数的性质,对于数学的学习和实际应用都具有重要意义。

因此,我们应该加深对指数函数的研究和理解,并将其灵活运用于各个领域,以推动科学技术的发展和社会进步。

指数函数的性质及运算法则

指数函数的性质及运算法则

指数函数的性质及运算法则指数函数是数学中非常重要的一类函数,广泛应用于科学、工程、经济等领域。

它具有一些独特的性质和运算法则,本文将对指数函数的性质及运算法则进行探讨与总结。

一、指数函数的定义与性质指数函数的数学定义为:$$f(x) = a^x$$其中,$a$ 是一个正实数且不等于1,$x$ 是自变量,$f(x)$ 是函数值。

指数函数的性质如下:1. 当 $a>1$ 时,指数函数是递增函数;当 $0<a<1$时,指数函数是递减函数。

2. 特殊地,当 $a>0$ 且不等于1时,指数函数的图像经过点 $(0,1)$。

3. 当 $x$ 为整数时,指数函数可以简化为乘方形式:$a^x =\underbrace{a \cdot a \cdot \ldots \cdot a}_{x\text{次}}$。

4. 指数函数的定义域为全体实数,值域为正实数。

二、指数函数的运算法则1. 同底数幂的乘除法则- 乘法法则:$a^x \cdot a^y = a^{x+y}$- 除法法则:$\frac{a^x}{a^y} = a^{x-y}$例如:$2^3 \cdot 2^4 = 2^{3+4} = 2^7$,$\frac{3^4}{3^2} = 3^{4-2} = 3^2$。

2. 幂的乘方法则- 幂的乘方法则:$(a^x)^y = a^{xy}$例如:$(2^3)^2 = 2^{3\cdot2} = 2^6$。

3. 乘方的乘方法则- 乘方的乘方法则:$(a \cdot b)^x = a^x \cdot b^x$例如:$(2 \cdot 3)^4 = 2^4 \cdot 3^4$。

4. 负指数的性质- $a^{-x} = \frac{1}{a^x}$例如:$2^{-3} = \frac{1}{2^3} = \frac{1}{8}$。

5. 零指数的性质- $a^0 = 1$(其中,$a \neq 0$)例如:$2^0 = 1$。

指数函数的定义与性质

指数函数的定义与性质

指数函数的定义与性质指数函数是数学中一种重要的函数类型,它的定义和性质对于数学的学习和应用具有重要意义。

本文将介绍指数函数的定义以及其常见的性质。

一、指数函数的定义指数函数是以指数为自变量的函数,通常形式为f(x) = a^x,其中a为底数,x 为指数。

底数为正数且不等于1时,指数函数存在且连续。

指数函数可以分为两种情况:1. 当底数a大于1时,指数函数呈现增长趋势。

随着指数x的增大,函数值f(x)也相应增大,增长速度逐渐加快。

例如,函数f(x) = 2^x,当x从负无穷逐渐增大时,f(x)的值也逐渐增大。

2. 当底数a介于0和1之间时,指数函数呈现衰减趋势。

随着指数x的增大,函数值f(x)逐渐减小,衰减速度逐渐减慢。

例如,函数f(x) = (1/2)^x,当x从负无穷逐渐增大时,f(x)的值逐渐减小。

二、指数函数的性质指数函数具有以下几个常见的性质:1. 基本性质:指数函数的定义域为实数集R,值域为正实数集(0, +∞)。

当底数a大于1时,函数在整个定义域上是递增的;当底数a介于0和1之间时,函数在整个定义域上是递减的。

2. 对称性:指数函数具有对称性。

当底数a大于1时,函数f(x) = a^x关于y轴对称;当底数a介于0和1之间时,函数f(x) = a^x关于x轴对称。

3. 渐近线:指数函数在x轴的左侧有一条水平渐近线y=0。

当底数a大于1时,函数在x趋近于负无穷时,趋近于渐近线y=0;当底数a介于0和1之间时,函数在x趋近于正无穷时,趋近于渐近线y=0。

4. 运算性质:指数函数具有一些重要的运算性质。

当a和b为正数且不等于1时,有以下性质成立:(a^m) * (a^n) = a^(m+n),即相同底数的指数函数相乘,指数相加;(a^m) / (a^n) = a^(m-n),即相同底数的指数函数相除,指数相减;(a^m)^n = a^(m*n),即指数函数的指数幂运算,指数相乘。

以上是指数函数的定义和常见性质的简要介绍。

高一数学指数函数的概念、图象与性质(解析版)

高一数学指数函数的概念、图象与性质(解析版)

专题32 指数函数的概念、图象与性质1.指数函数的定义一般地,函数y =a x (a >0,且a ≠1)叫做指数函数,其中x 是自变量,函数的定义域为R. 温馨提示:指数函数解析式的3个特征: (1)底数a 为大于0且不等于1的常数. (2)自变量x 的位置在指数上,且x 的系数是1. (3)a x 的系数是1.2.指数函数的图象和性质a 的范围a >10<a <1图象性质定义域 R 值域(0,+∞)过定点 (0,1),即当x =0时,y =1单调性 在R 上是增函数在R 上是减函数奇偶性 非奇非偶函数对称性函数y =a x 与y =a -x 的图象关于y 轴对称(1)底数的大小决定了图象相对位置的高低:不论是a >1,还是0<a <1,在第一象限内底数越大,函数图象越靠近y 轴.当a >b >1时,①若x >0,则a x >b x >1;②若x <0,则1>b x >a x >0. 当1>a >b >0时,①若x >0,则1>a x >b x >0;②若x <0,则b x >a x >1. (2)指数函数的图象都经过点(0,1),且图象都在x 轴上方.(3)当a >1时,x →-∞,y →0;当0<a <1时,x →+∞,y →0.(其中“x →+∞”的意义是“x 趋近于正无穷大”)题型一 指数函数的概念1.下列各函数中,是指数函数的是( )A .y =(-3)xB .y =-3xC . y =3x -1 D .y =⎝⎛⎭⎫13x [解析]由指数函数的定义知a >0且a ≠1,故选D. 2.下列函数一定是指数函数的是( )A .y =2x +1 B .y =x 3 C .y =3·2xD .y =3-x[解析]由指数函数的定义可知D 正确. 3.下列函数中,指数函数的个数为( )①y =⎝⎛⎭⎫12x -1;②y =a x (a >0,且a ≠1);③y =1x;④y =⎝⎛⎭⎫122x -1. A .0个 B .1个 C .3个D .4个[解析]由指数函数的定义可判定,只有②正确.[答案] B 4.下列函数:①y =2·3x ;②y =3x +1;③y =3x ;④y =x 3. 其中,指数函数的个数是( ) A .0 B .1 C .2D .3[解析]形如“y =a x (a >0,且a ≠1)”的函数为指数函数,只有③符合,选B. 5.下列函数中,是指数函数的个数是( )①y =(-8)x;②y =2x 2-1;③y =a x ;④y =2·3x .A .1B .2C .3D .0[解析] (1)①中底数-8<0,所以不是指数函数;②中指数不是自变量x ,而是x 的函数,所以不是指数函数; ③中底数a ,只有规定a >0且a ≠1时,才是指数函数; ④中3x 前的系数是2,而不是1,所以不是指数函数,故选D. 6.指出下列哪些是指数函数.(1)y =4x ;(2)y =x 4;(3)y =-4x ;(4)y =(-4)x ;(5)y =πx ;(6)y =4x 2;(7)y =x x ;(8)y =(2a -1)x ⎝⎛⎭⎫a >12,且a ≠1. [解析] (2)是四次函数;(3)是-1与4x 的乘积;(4)中底数-4<0;(6)是二次函数;(7)中底数x 不是常数. 它们都不符合指数函数的定义,故不是指数函数.综上可知,(1)(5)(8)是指数函数. 7.已知函数f (x )=(2a -1)x 是指数函数,则实数a 的取值范围是________.[解析]由题意可知⎩⎪⎨⎪⎧2a -1>0,2a -1≠1,解得a >12,且a ≠1,所以实数a 的取值范围是⎝⎛⎭⎫12,1∪(1,+∞). 8.函数y =(a -2)2a x 是指数函数,则( )A .a =1或a =3B .a =1C .a =3D .a >0且a ≠1[解析]由指数函数的概念可知,⎩⎪⎨⎪⎧(a -2)2=1,a >0,a ≠1,得a =3.9.函数f (x )=(m 2-m +1)a x (a >0,且a ≠1)是指数函数,则m =________. [解析]∵函数f (x )=(m 2-m +1)a x 是指数函数,∴m 2-m +1=1,解得m =0或1. 10.若函数y =(a 2-4a +4)a x 是指数函数,则a 的值是( )A .4B .1或3C .3D .1[解析]由题意得⎩⎪⎨⎪⎧a >0,a ≠1,a 2-4a +4=1,解得a =3,故选C.11.若函数f (x )=(a 2-2a +2)(a +1)x 是指数函数,则a =________. [解析]由指数函数的定义得⎩⎪⎨⎪⎧a 2-2a +2=1,a +1>0,a +1≠1,解得a =1.12.指数函数f (x )=a x 的图象经过点(2,4),则f (-3)的值是________. [解析]由题意知4=a 2,所以a =2,因此f (x )=2x ,故f (-3)=2-3=18.13.已知函数f (x )=a x +b (a >0,且a ≠1),经过点(-1,5),(0,4),则f (-2)的值为________.[解析]由已知得⎩⎪⎨⎪⎧a -1+b =5,a 0+b =4,解得⎩⎪⎨⎪⎧a =12,b =3,所以f (x )=⎝⎛⎭⎫12x+3,所以f (-2)=⎝⎛⎭⎫12-2+3=4+3=7. 14.已知函数f (x )为指数函数,且f ⎝⎛⎭⎫-32=39,则f (-2)=________. [解析]设f (x )=a x (a >0且a ≠1),由f ⎝⎛⎭⎫-32=39得a -32=39,所以a =3,又f (-2)=a -2, 所以f (-2)=3-2=19.15.若函数f (x )是指数函数,且f (2)=9,则f (-2)=________,f (1)=________. [解析]设f (x )=a x (a >0,且a ≠1),∵f (2)=9,∴a 2=9,a =3,即f (x )=3x . ∴f (-2)=3-2=19,f (1)=3.16.若点(a,27)在函数y =(3)x 的图象上,则a 的值为( )A. 6 B .1 C .2 2D .0[解析]选A 点(a,27)在函数y =(3)x 的图象上,∴27=(3)a , 即33=3a 2,∴a2=3,解得a =6,∴a = 6.故选A.17.已知函数f (x )=⎝⎛⎭⎫12ax ,a 为常数,且函数的图象过点(-1,2),则a =________,若g (x )=4-x-2, 且g (x )=f (x ),则x =________.[解析]因为函数的图象过点(-1,2),所以⎝⎛⎭⎫12-a=2,所以a =1,所以f (x )=⎝⎛⎭⎫12x , g (x )=f (x )可变形为4-x -2-x -2=0,解得2-x =2,所以x =-1. 18.已知f (x )=2x +12x ,若f (a )=5,则f (2a )=________.[解析]因为f (x )=2x +12x ,f (a )=5,则f (a )=2a +12a =5.所以f (2a )=22a +122a =(2a )2+⎝⎛⎭⎫12a 2=⎝⎛⎭⎫2a +12a 2-2=23. 19.若f (x )满足对任意的实数a ,b 都有f (a +b )=f (a )·f (b )且f (1)=2,则f (2)f (1)+f (4)f (3)+f (6)f (5)+…+f (2020)f (2019)=( )A .1010B .2020C .2019D .1009[解析]不妨设f (x )=2x ,则f (2)f (1)=f (4)f (3)=…=f (2020)f (2019)=2,所以原式=1010×2=2020.题型二 指数函数的图象及其应用1.y =⎝⎛⎭⎫34x的图象可能是( )[解析]0<34<1且过点(0,1),故选C.2.函数y =3-x 的图象是( )A B C D[解析]∵y =3-x=⎝⎛⎭⎫13x,∴B 选项正确.3.函数y =2-|x |的大致图象是( )[解析]y =2-|x |=⎩⎪⎨⎪⎧2-x ,x ≥0.2x ,x <0,画出图象,可知选C. 4.函数y =a -|x |(0<a <1)的图象是( )A B C D[解析]y =a-|x |=⎝⎛⎭⎫1a |x|,易知函数为偶函数,∵0<a <1,∴1a>1,故当x >0时,函数为增函数,当x <0时,函数为减函数,当x =0时,函数有最小值,最小值为1,且指数函数为凹函数,故选A. 5.函数y =-2-x 的图象一定过第________象限.[解析]y =-2-x =-⎝⎛⎭⎫12x 与y =⎝⎛⎭⎫12x 关于x 轴对称,一定过第三、四象限. 6.函数f (x )=a x-b 的图象如图所示,其中a ,b 为常数,则下列结论正确的是( )A .a >1,b <0B .a >1,b >0C .0<a <1,b >0D .0<a <1,b <0[解析]从曲线的变化趋势,可以得到函数f (x )为减函数,从而有0<a <1;从曲线位置看, 是由函数y =a x (0<a <1)的图象向左平移|-b |个单位长度得到,所以-b >0,即b <0. 7.已知0<m <n <1,则指数函数①y =m x ,②y =n x 的图象为( )[解析]由于0<m <n <1,所以y =m x 与y =n x 都是减函数,故排除A 、B ,作直线x =1与两个曲线相交, 交点在下面的是函数y =m x 的图象,故选C.8.若a >1,-1<b <0,则函数y =a x +b 的图象一定在( )A .第一、二、三象限B .第一、三、四象限C .第二、三、四象限D .第一、二、四象限[解析]A,∵a >1,且-1<b <0,故其图象如图所示.]9.若函数y =a x +b -1(a >0,且a ≠1)的图象经过第二、三、四象限,则一定有( )A .0<a <1,且b >0B .a >1,且b >0C .0<a <1,且b <0D .a >1,且b <0[解析]函数y =a x +b -1(a >0,且a ≠1)的图象是由函数y =a x 的图象经过向上或向下平移而得到的,因其图象不经过第一象限,所以a ∈(0,1).若经过第二、三、四象限,则需将函数y =a x (0<a <1)的图象向下平移至少大于1个单位长度,即b -1<-1⇒b <0.故选C.10.若函数y =a x +m -1(a >0)的图象经过第一、第三和第四象限,则( )A .a >1B .a >1,且m <0C .0<a <1,且m >0D .0<a <1[解析]选B,y =a x (a >0)的图象在第一、二象限内,欲使y =a x +m -1的图象经过第一、三、四象限,必须将y =a x 向下移动.当0<a <1时,图象向下移动,只能经过第一、二、四象限或第二、三、四象限,故只有当a >1时,图象向下移动才可能经过第一、三、四象限.当a >1时,图象向下移动不超过一个单位时,图象经过第一、二、三象限,向下移动一个单位时,图象恰好经过原点和第一、三象限,欲使图象经过第一、三、四象限,则必须向下平移超过一个单位,故m -1<-1,所以m <0,故选B. 11.函数f (x )=a x 与g (x )=-x +a 的图象大致是( )[解析]当a >1时,函数f (x )=a x 单调递增,当x =0时,g (0)=a >1,此时两函数的图象大致为选项A. 12.二次函数y =ax 2+bx 与指数函数y =⎝⎛⎭⎫b a x的图象可能是( )[解析]二次函数y =a ⎝⎛⎭⎫x +b 2a 2-b 24a ,其图象的顶点坐标为⎝⎛⎭⎫-b 2a ,-b 24a ,由指数函数的图象知0<ba<1, 所以-12<-b 2a <0,再观察四个选项,只有A 中的抛物线的顶点的横坐标在-12和0之间.13.已知函数f(x)=(x-a)(x-b)(其中a>b)的图象如图所示,则函数g(x)=a x+b的图象是()[解析]由函数f(x)=(x-a)(x-b)(其中a>b)的图象可知0<a<1,b<-1,所以函数g(x)=a x+b是减函数,排除选项C、D;又因为函数图象过点(0,1+b)(1+b<0),故选A.14.如图是指数函数①y=a x,②y=b x,③y=c x,④y=d x的图象,则a,b,c,d与1的大小关系为()A.a<b<1<c<d B.b<a<1<d<c C.1<a<b<c<d D.a<b<1<d<c[解析](1)解法一:由图象可知③④的底数必大于1,①②的底数必小于1.作直线x=1,在第一象限内直线x=1与各曲线的交点的纵坐标即各指数函数的底数,则1<d<c,b<a<1,从而可知a,b,c,d与1的大小关系为b<a<1<d<c.解法二:根据图象可以先分两类:③④的底数大于1,①②的底数小于1,再由③④比较c,d的大小,由①②比较a,b的大小.当指数函数的底数大于1时,图象上升,且底数越大时图象向上越靠近y轴;当底数大于0小于1时,图象下降,底数越小,图象向右越靠近x轴.15.方程|2x-1|=a有唯一实数解,则a的取值范围是________.[解析]作出y=|2x-1|的图象,如图,要使直线y=a与图象的交点只有一个,∴a≥1或a=0.16.函数y=a x-3+3(a>0,且a≠1)的图象过定点________.[解析]因为指数函数y=a x(a>0,且a≠1)的图象过定点(0,1),所以在函数y=a x-3+3中,令x-3=0,得x=3,此时y=1+3=4,即函数y=a x-3+3的图象过定点(3,4).17.函数y=2a x+3+2(a>0,且a≠1)的图象过定点________.[解析]令x+3=0得x=-3,此时y=2a0+2=2+2=4.即函数y=2a x+3+2(a>0,且a≠1)的图象过定点(-3,4).18.当a>0,且a≠1时,函数f(x)=a x+1-1的图象一定过点()A.(0,1) B.(0,-1)C .(-1,0)D .(1,0)[解析] 当x =-1时,显然f (x )=0,因此图象必过点(-1,0).19.已知函数y =2a x -1+1(a >0且a ≠1)恒过定点A (m ,n ),则m +n =( )A .1B .3C .4D .2[解析]选C,由题意知,当x =1时,y =3,故A (1,3),m +n =4. 20.函数y =a 2x +1+1(a >0,且a ≠1)的图象过定点________. [解析]令2x +1=0得x =-12,y =2,所以函数图象恒过点⎝⎛⎭⎫-12,2. 21.若函数y =2-|x |-m 的图象与x 轴有交点,则( )A .-1≤m <0B .0≤m ≤1C .0<m ≤1D .m ≥0[解析]易知y =2-|x |-m =⎝⎛⎭⎫12|x |-m .若函数y =2-|x |-m 的图象与x 轴有交点,则方程⎝⎛⎭⎫12|x |-m =0有解, 即m =⎝⎛⎭⎫12|x |有解.∵0<⎝⎛⎭⎫12|x |≤1,∴0<m ≤1. 22.已知f (x )=2x 的图象,指出下列函数的图象是由y =f (x )的图象通过怎样的变化得到:(1)y =2x +1;(2)y =2x -1;(3)y =2x +1;(4)y =2-x ;(5)y =2|x |. [解析] (1)y =2x +1的图象是由y =2x 的图象向左平移1个单位得到.(2)y =2x-1的图象是由y =2x 的图象向右平移1个单位得到.(3)y =2x +1的图象是由y =2x 的图象向上平移1个单位得到.(4)∵y =2-x 与y =2x 的图象关于y 轴对称,∴作y =2x 的图象关于y 轴的对称图形便可得到y =2-x的图象.(5)∵y =2|x |为偶函数,故其图象关于y 轴对称,故先作出当x ≥0时,y =2x 的图象,再作关于y 轴的对称图形,即可得到y =2|x |的图象.23.已知函数f (x )=a x +b (a >0,且a ≠1).(1)若f (x )的图象如图①所示,求a ,b 的值; (2)若f (x )的图象如图②所示,求a ,b 的取值范围;(3)在(1)中,若|f (x )|=m 有且仅有一个实数根,求m 的取值范围.[解析] (1)f (x )的图象过点(2,0),(0,-2),所以⎩⎪⎨⎪⎧a 2+b =0,a 0+b =-2,又因为a >0,且a ≠1,所以a =3,b =-3.(2)f (x )单调递减,所以0<a <1,又f (0)<0.即a 0+b <0,所以b <-1. 故a 的取值范围为(0,1),b 的取值范围为(-∞,-1).(3)画出|f (x )|=|(3)x -3|的图象如图所示,要使|f (x )|=m 有且仅有一个实数根, 则m =0或m ≥3.故m 的取值范围为[3,+∞)∪{0}.题型三 指数函数的定义域与值域1.求下列函数的定义域和值域:(1)y =1-3x ;(2)y =21x -4 ; (3)y =⎝⎛⎭⎫23-|x | ; (4)y =⎝⎛⎭⎫12x 2-2x -3;(5)y =4x +2x +1+2. [解析] (1)要使函数式有意义,则1-3x ≥0,即3x ≤1=30,因为函数y =3x 在R 上是增函数,所以x ≤0, 故函数y =1-3x 的定义域为(-∞,0].因为x ≤0,所以0<3x ≤1,所以0≤1-3x <1, 所以1-3x ∈[0,1),即函数y =1-3x 的值域为[0,1). (2)要使函数式有意义,则x -4≠0,解得x ≠4. 所以函数y =21x -4的定义域为{x |x ≠4}.因为1x -4≠0,所以21x -4 ≠1,即函数y =21x -4 的值域为{y |y >0,且y ≠1}.(3)要使函数式有意义,则-|x |≥0,解得x =0.所以函数y =⎝⎛⎭⎫23-|x |的定义域为{x |x =0}.因为x =0,所以⎝⎛⎭⎫23-|x | =⎝⎛⎭⎫230=1,即函数y =⎝⎛⎭⎫23-|x |的值域为{y |y =1}. (4)定义域为R.∵x 2-2x -3=(x -1)2-4≥-4,∴⎝⎛⎭⎫12x 2-2x -3≤⎝⎛⎭⎫12-4=16. 又∵⎝⎛⎭⎫12x 2-2x -3>0,∴函数y =⎝⎛⎭⎫12x 2-2x -3的值域为(0,16]. (5)因为对于任意的x ∈R ,函数y =4x +2x +1+2都有意义,所以函数y =4x +2x +1+2的定义域为R. 因为2x >0,所以4x +2x +1+2=(2x )2+2×2x +2=(2x +1)2+1>1+1=2, 即函数y =4x +2x +1+2的值域为(2,+∞). 2.(1)求函数y =⎝⎛⎭⎫132x -的定义域与值域;(2)求函数y =⎝⎛⎭⎫14x -1-4·⎝⎛⎭⎫12x +2,x ∈[0,2]的最大值和最小值及相应的x 的值. [解析] (1)由x -2≥0,得x ≥2,所以定义域为{x |x ≥2}.当x ≥2时,x -2≥0, 又因为0<13<1,所以y =⎝⎛⎭⎫13x -2的值域为{y |0<y ≤1}.(2)∵y =⎝⎛⎭⎫14x -1-4·⎝⎛⎭⎫12x +2,∴y =4·⎝⎛⎭⎫14x -4·⎝⎛⎭⎫12x +2.令m =⎝⎛⎭⎫12x ,则⎝⎛⎭⎫14x =m 2. 由0≤x ≤2,知14≤m ≤1.∴f (m )=4m 2-4m +2=4⎝⎛⎭⎫m -122+1. ∴当m =12,即当x =1时,f (m )有最小值1;当m =1,即x =0时,f (m )有最大值2.故函数的最大值是2,此时x =0,函数的最小值为1,此时x =1. 3.函数y =2x -1的定义域是( )A .(-∞,0)B .(-∞,0]C .[0,+∞)D .(0,+∞)[解析]由2x -1≥0,得2x ≥20,∴x ≥0.[答案] C 4.函数y =1-⎝⎛⎭⎫12x的定义域是________.[解析]由1-⎝⎛⎭⎫12x≥0得⎝⎛⎭⎫12x ≤1=⎝⎛⎭⎫120,∴x ≥0,∴函数y =1-⎝⎛⎭⎫12x的定义域为[0,+∞).5.若函数y =a x -1的定义域是(-∞,0],则a 的取值范围为( )A .a >0B .a <1C .0<a <1D .a ≠1[解析]由a x -1≥0,得a x ≥a 0.∵函数的定义域为(-∞,0],∴0<a <1.6.若函数f (x )=a x -a 的定义域是[1,+∞),则a 的取值范围是( ) A .[0,1)∪(1,+∞) B .(1,+∞) C .(0,1)D .(2,+∞)[解析]∵a x -a ≥0,∴a x ≥a ,∴当a >1时,x ≥1.故函数定义域为[1,+∞)时,a >1. 7.y =2x ,x ∈[1,+∞)的值域是( )A .[1,+∞)B .[2,+∞)C .[0,+∞)D .(0,+∞)[解析]y =2x 在R 上是增函数,且21=2,故选B. 8.函数y =16-4x 的值域是( )A .[0,+∞)B .[0,4]C .[0,4)D .(0,4)[解析]要使函数有意义,须满足16-4x ≥0.又因为4x >0,所以0≤16-4x <16, 即函数y =16-4x 的值域为[0,4).9.函数y =⎝⎛⎭⎫12x(x ≥8)的值域是( )A .R B.⎝⎛⎦⎤0,1256 C.⎝⎛⎦⎤-∞,1256 D.⎣⎡⎭⎫1256,+∞[解析]因为y =⎝⎛⎭⎫12x 在[8,+∞)上单调递减,所以0<⎝⎛⎭⎫12x≤⎝⎛⎭⎫128=1256. 10.函数y =1-2x ,x ∈[0,1]的值域是( )A .[0,1]B .[-1,0] C.⎣⎡⎦⎤0,12 D.⎣⎡⎦⎤-12,0 [解析]∵0≤x ≤1,∴1≤2x ≤2,∴-1≤1-2x ≤0,选B.11.已知函数y =⎝⎛⎭⎫13x 在[-2,-1]上的最小值是m ,最大值是n ,则m +n 的值为________.[解析]∵y =⎝⎛⎭⎫13x 在R 上为减函数,∴m =⎝⎛⎭⎫13-1=3,n =⎝⎛⎭⎫13-2=9,故m +n =12. 12.函数y =⎝⎛⎭⎫1222x x -+的值域是________. [解析]设t =-x 2+2x =-(x 2-2x )=-(x -1)2+1≤1,∴t ≤1.∵⎝⎛⎭⎫12t ≥⎝⎛⎭⎫121=12,∴函数值域为⎣⎡⎭⎫12,+∞. 13.函数y =⎝⎛⎭⎫12x 2-1的值域是________.[解析]∵x 2-1≥-1,∴y =⎝⎛⎭⎫12x 2-1≤⎝⎛⎭⎫12-1=2,又y >0,∴函数值域为(0,2].14.若函数f (x )=⎩⎪⎨⎪⎧2x ,x <0,-2-x ,x >0,则函数f (x )的值域是________. [解析]由x <0,得0<2x <1;由x >0,∴-x <0,0<2-x <1,∴-1<-2-x <0,∴函数f (x )的值域为(-1,0)∪(0,1).15.已知函数f (x )=a x -1(x ≥0)的图象经过点⎝⎛⎭⎫2,12,其中a >0且a ≠1. (1)求a 的值;(2)求函数y =f (x )(x ≥0)的值域.[解析](1)∵f (x )的图象过点⎝⎛⎭⎫2,12,∴a 2-1=12,则a =12. (2)由(1)知,f (x )=⎝⎛⎭⎫12x -1,x ≥0.由x ≥0,得x -1≥-1,于是0<⎝⎛⎭⎫12x -1≤⎝⎛⎭⎫12-1=2, 所以函数y =f (x )(x ≥0)的值域为(0,2].16.若定义运算a ⊙b =⎩⎪⎨⎪⎧a ,a <b ,b ,a ≥b ,则函数f (x )=3x ⊙3-x 的值域是________. [解析]当x >0时,3x >3-x, f (x )=3-x ,f (x )∈(0,1);当x =0时,f (x )=3x =3-x =1; 当x <0时,3x <3-x ,f (x )=3x ,f (x )∈(0,1).综上, f (x )的值域是(0,1].17.函数f (x )=3x 3x +1的值域是________.[解析]数y =f (x )=3x 3x +1,即有3x =-y y -1,由于3x >0,则-y y -1>0,解得0<y <1,值域为(0,1). 18.若函数f (x )=a x -1(a >0,且a ≠1)的定义域和值域都是[0,2],求实数a 的值.[解析]当0<a <1时,函数f (x )=a x -1(a >0,且a ≠1)为减函数,所以⎩⎪⎨⎪⎧ a 0-1=2,a 2-1=0无解. 当a >1时,函数f (x )=a x -1(a >0,且a ≠1)为增函数,所以⎩⎪⎨⎪⎧a 0-1=0,a 2-1=2,解得a = 3. 综上,a 的值为 3.19.已知f (x )=9x -2×3x +4,x ∈[-1,2].(1)设t =3x ,x ∈[-1,2],求t 的最大值与最小值;(2)求f (x )的最大值与最小值.[解析](1)设t =3x ,∵x ∈[-1,2],函数t =3x 在[-1,2]上是增函数,故有13≤t ≤9, 故t 的最大值为9,t 的最小值为13. (2)由f (x )=9x -2×3x +4=t 2-2t +4=(t -1)2+3,可得此二次函数的对称轴为t =1,且13≤t ≤9, 故当t =1时,函数f (x )有最小值为3,当t =9时,函数f (x )有最大值为67.。

指数函数及其性质

指数函数及其性质

指数函数及其性质
指数函数是数学中的一种常见函数形式,可以表示为f(x) = a^x,其中a是一个正实数且不为1,x是任意实数。

指数函数的性质如下:
1. 定义域:指数函数的定义域是全部实数集。

2. 值域:当a>1时,指数函数的值域是(0, +∞),即正数集;当0<a<1时,指数函数的值域是(0, 1),即(0,1)开区间。

3. 增减性:当a>1时,指数函数是递增的;当0<a<1时,指数函数是递减的。

4. 对称轴:指数函数没有对称轴。

5. 对称性:指数函数不具有对称性。

6. 极限性质:当x趋于正无穷大时,指数函数的极限是正无穷大;当x趋于负无穷大时,指数函数的极限是0。

7. 交叉性:当a>1时,指数函数与x轴交于点(0,1);当0<a<1时,指数函数与y轴交于点(0,1)。

8. 垂直渐近线:指数函数没有垂直渐近线。

9. 水平渐近线:指数函数没有水平渐近线。

10. 切线性质:指数函数在任意一点的切线都与该点对应的指数函数图像相切。

总结起来,指数函数具有增减性、无对称性、极限性质和交叉性等基本性质。

指数函数在实际问题中经常用于描述增长或衰减的规律,具有重要的应用价值。

指数函数知识点归纳总结

指数函数知识点归纳总结

指数函数知识点归纳总结指数函数是高中数学的重要内容之一,它与幂函数密切相关,具有广泛的应用。

本文将对指数函数进行归纳总结,包括定义、性质、图像、相关公式和常见的应用等方面。

一、定义:指数函数是指以一个常数为底数,自变量为指数的函数,通常表示为f(x)=a^x,其中a是一个正实数且不等于1、指数函数的定义域为整个实数集,值域为正实数集。

二、性质:1.底数为a的指数函数在定义域内是递增函数,即当x1<x2时,有a^x1<a^x22.当x取0时,a^0=1、这是由于任何数的零次方均为1,不论底数是多少。

4. 指数函数的导数:指数函数f(x) = a^x的导数等于f'(x) =a^x*ln(a),其中ln(a)是以e为底数的对数。

三、图像:1.当底数a大于1时,指数函数的图像是上升的曲线。

当x增大时,a^x的值也随之增大。

2.当底数a介于0和1之间时,指数函数的图像是下降的曲线。

当x 增大时,a^x的值逐渐减小。

3.底数a等于1时,指数函数的图像是一条水平直线,即y=1四、相关公式:1.指数函数的乘法公式:a^m*a^n=a^(m+n)。

即底数相同的指数相乘,底数不变,指数相加。

2.指数函数的除法公式:a^m/a^n=a^(m-n)。

即底数相同的指数相除,底数不变,指数相减。

3.指数函数的幂函数公式:(a^m)^n=a^(m*n)。

即指数的指数等于底数的幂,底数不变,指数相乘。

4. 指数函数的对数公式:loga(b) = x等价于 a^x = b。

即对数是指数函数的逆运算。

五、常见应用:指数函数有广泛的应用,尤其在科学、工程、经济和金融等领域。

1.天文学中的指数增长:天体的数量、质量、光亮度等往往呈指数增长。

2.化学反应速率:化学反应速率与反应物的浓度之间通常存在指数关系。

3. 人口增长模型:指数函数可以用来描述人口增长的趋势,如Malthus人口增长模型。

4.账户复利计算:复利计算是指利息按照一定的周期复利加入本金,可以用指数函数来表示利息的增长。

指数函数与对数函数的性质

指数函数与对数函数的性质

指数函数与对数函数的性质指数函数和对数函数是数学中重要的函数之一,它们在各个领域有广泛的应用。

这篇文章将讨论指数函数和对数函数的性质,并探讨它们之间的关系。

一、指数函数的性质指数函数的一般形式是f(x) = a^x,其中a是一个正实数且不等于1。

指数函数具有以下性质:1. 指数函数的定义域是实数集R,值域是正数集(0, +∞)。

2. 当a>1时,指数函数是递增函数;当0<a<1时,指数函数是递减函数。

3. 当a>1时,指数函数的图像在y轴的正半轴上逐渐增大;当0<a<1时,指数函数的图像在y轴的正半轴上逐渐减小。

4. 当x趋于正无穷时,指数函数趋于正无穷;当x趋于负无穷时,指数函数趋于0。

5. 指数函数的反函数是对数函数,即y=a^x和y=logₐ(x)互为反函数。

二、对数函数的性质对数函数的一般形式是f(x) = logₐ(x),其中a是一个大于0且不等于1的实数。

对数函数具有以下性质:1. 对数函数的定义域是正数集(0, +∞),值域是实数集R。

2. 当0<a<1时,对数函数是递增函数;当a>1时,对数函数是递减函数。

3. 对数函数的图像经过点(1, 0),并且随着x的增大(或减小),函数值趋于正负无穷。

4. 对数函数的反函数是指数函数,即y=logₐ(x)和y=a^x互为反函数。

三、指数函数和对数函数的关系指数函数和对数函数是互为反函数的关系,它们之间具有以下性质:1. 对于任意实数x,有logₐ(a^x) = x和a^(logₐx) = x。

这表明指数函数和对数函数是互为反函数。

2. 指数函数和对数函数可以相互转换。

例如,对于指数函数y=a^x,可以通过取对数来转换为对数函数,即logₐy = x;对于对数函数y=logₐx,可以通过求幂来转换为指数函数,即a^y = x。

3. 指数函数和对数函数可以互相用来解决指数和对数方程。

例如,通过对数函数可以解决指数方程a^x = b,通过指数函数可以解决对数方程logₐx = b。

指数函数与对数函数的性质

指数函数与对数函数的性质

指数函数与对数函数的性质指数函数与对数函数是数学中常见的两类特殊函数,它们在数学理论以及实际问题中都具有重要的作用。

本文将从指数函数与对数函数的定义、性质、图像和应用等方面进行详细探讨。

1. 指数函数的定义与性质首先,我们来看指数函数的定义。

指数函数是以自然常数e为底数的指数幂函数,通常表示为y = e^x,其中e≈2.71828是数学中一个重要的常数。

指数函数具有以下性质:(1)定义域和值域:指数函数的定义域为整个实数集R,值域为正实数集(0,+∞)。

(2)增减性:指数函数在整个定义域上是严格增函数,即当x1<x2时,e^x1 < e^x2。

(3)特殊的性质:指数函数具有e^0 = 1、e^1 = e、e^(-x) = 1/e^x 等重要性质。

2. 对数函数的定义与性质接下来,我们来介绍对数函数。

对数函数是指数函数的反函数,通常表示为y = logₐx,其中a为对数的底数,x为函数的自变量。

对数函数的性质主要包括:(1)定义域和值域:对数函数的定义域为正实数集(0,+∞),值域为实数集R。

(2)增减性:对数函数在定义域内是严格增函数,即当x₁<x₂时,logₐx₁<logₐx₂。

(3)特殊的性质:对数函数具有logₐ1 = 0、logₐa = 1等重要性质。

3. 指数函数与对数函数的图像指数函数和对数函数的图像在坐标系中具有一些特殊的形态。

指数函数y = e^x的图像是一条通过点(0,1)、斜率恒为e的递增曲线;对数函数y = logₐx的图像是一条通过点(1,0)、渐近于y轴且向右无界的递增曲线。

4. 指数函数与对数函数的应用指数函数和对数函数在科学、工程、经济等领域有着广泛的应用。

指数函数可以描述生长速度、无限增长等现象;对数函数则可以表示复利、变化率等问题。

例如在财务学中的复利计算、生物学中的人口增长模型、物理学中的辐射衰减等都可以通过指数函数与对数函数来进行描述和解决。

综上所述,指数函数与对数函数是数学中重要的函数类型,它们具有独特的性质、图像和应用。

指数函数及其性质知识点总结超详细版(共66页)

指数函数及其性质知识点总结超详细版(共66页)

指数函数及其性质知识点总结本节知识点(1)指数函数的概念 (2)指数函数的图象和性质 (3)指数函数的定义域和值域 (4)指数函数的单调性及其应用 (5)指数函数的图象变换 知识点一 指数函数的概念一般地,函数xa y =(0>a 且1≠a )叫做指数函数,其中x 是自变量,函数的定义域是R . 1.为什么规定“0>a 且1≠a ”?答:若0=a ,则当0>x 时,0=x a ,当x ≤0时,xa 无意义;若0<a ,则对于x 的某些值,xa 无意义,如函数()xy 2-=,当 41,21=x 时,函数无意义;若1=a ,则对任意的∈x R ,都有1=x a ,没有研究的必要.基于上面的原因,在指数函数的定义中,规定0>a 且1≠a .上面的定义,是形式定义. 2.为什么指数函数的定义域是R ?答:对于指数幂来说,当底数大于0时,指数已经由整数指数推广到了实数指数,所以在指数函数的定义里面,自变量的取值范围是全体实数,即函数的定义域为R . 3.指数函数的结构特征指数函数的定义是形式上的定义,其函数解析式的结构具有非常明显的特征,如下: (1)指数中只有一个自变量x ,而不是含自变量的多项式; (2)xa 的系数必须为1,不能是其它的数字,也不能含有自变量; (3)底数a 必须满足0>a 且1≠a 的一个常数.根据上面的三个特征,可以判断一个函数是否为指数函数,也可以在已知指数函数的前提下,求参数的值或参数的取值范围.例1. 已知函数()()x a a x f ⋅-=32是指数函数,求a 的值. 分析:本题考查指数函数的定义,指数函数的定义有三个特征: (1)指数的位置只有一个自变量,但不是含自变量的多项式; (2)底数是一个大于0且不等于1的常数;(3)x a 的系数必须为1.解:∵函数()()x a a x f ⋅-=32是指数函数∴⎪⎩⎪⎨⎧≠>=-10132a a a ,解之得:2=a . 例2. 已知指数函数()()32--+=a a a y x 的图象过点()4,2,则=a _________.解:由题意可得:()()⎪⎩⎪⎨⎧≠>=--10032a a a a ,解之得:2=a 或3=a .∵函数的图象经过点()4,2 ∴2=a .例3. 若指数函数()x f 的图象经过点()9,2,求()x f 的解析式及()1-f 的值. 解:设函数()x a x f =.∵其图象经过点()9,2,∴2239==a ,∴3=a . ∴()x f 的解析式为()x x f 3=. ∴()31311==--f . 例4. 函数()x a a a y 442+-=是指数函数,则a 的值是【 】 (A )4 (B )1或3 (C )3 (D )1解:由题意可得:⎪⎩⎪⎨⎧≠>=+-101442a a a a ,解之得:3=a .∴x y 3=.选择【 C 】.例5. 若函数()xa y 12-=(x 是自变量)是指数函数,则a 的取值范围是_________.解:∵函数()xa y 12-=是指数函数∴⎩⎨⎧≠->-112012a a ,解之得:21>a 且1≠a .∴a 的取值范围是⎭⎬⎫⎩⎨⎧≠>121a a a 且.例6. 若函数()xa a y 32-=是指数函数,求实数a 的取值范围.解:∵函数()xa a y 32-=是指数函数∴⎩⎨⎧≠->-130322a a a a ,解之得:⎪⎩⎪⎨⎧±≠<>213303a a a 或. ∴实数a 的取值范围是⎭⎬⎫⎩⎨⎧±≠<>213303a a a a 且或.知识点二 指数函数的图象和性质一般地,指数函数xa y =(0>a 且1≠a )的图象和性质如下表所示:指数函数函数值的特点:(1)当10<<a 时,若0<x ,则恒有1>y ;若0>x ,则恒有10<<y ; (2)当1>a 时,若0<x ,则恒有10<<y ;若0>x ,则恒有1>y . 1. 指数函数图象的画法对于指数函数xa y =(0>a 且1≠a ),当0=x 时,1=y ;当1=x 时,a y =;当1-=x时,a y 1=.所以指数函数的图象经过三个关键点:()1,0,()a ,1和⎪⎭⎫ ⎝⎛-a 1,1.在画指数函数图象的草图时,应抓住以上三个关键点作图.(1)由于指数函数xa y =(0>a 且1≠a )的图象经过点()a ,1,所以指数函数的图象与直线1=x 的交点的纵坐标等于函数的底数.交点的位置越高,底数a 就越大. (2)由于指数函数xa y =(0>a 且1≠a )的图象经过点⎪⎭⎫⎝⎛-a 1,1,所以指数函数的图象与直线1-=x 的交点的纵坐标等于底数的倒数.交点的位置越高,a1越大,底数就越小. 2. 函数xa y =(0>a 且1≠a )与函数xa y ⎪⎭⎫ ⎝⎛=1(0>a 且1≠a )的图象的关系在同一平面直角坐标系中,函数xa y =(0>a 且1≠a )与函数xa y ⎪⎭⎫ ⎝⎛=1(0>a 且1≠a )的图象关于y 轴对称.即两个指数函数底数互为倒数,图象关于y 轴对称. 如下图所示,指数函数x y 2=与xy ⎪⎭⎫⎝⎛=21的图象关于y 轴对称.(1)指数函数xa y =(0>a 且1≠a )与函数xa y -=(0>a 且1≠a )的图象关于x 轴对称.如上右图所示,指数函数xy 2=与函数xy 2-=的图象关于x 轴对称.(2)指数函数x a y =(0>a 且1≠a )与函数xa y --=(0>a 且1≠a )(即xa y ⎪⎭⎫ ⎝⎛-=1)的图象关于原点对称(成中心对称).如下图所示,指数函数x y 2=与函数xy --=2(即xy ⎪⎭⎫ ⎝⎛-=21)的图象关于原点对称.3.与指数函数有关的恒过定点问题由于指数函数xa y =(0>a 且1≠a )的图象恒过定点()1,0,因此我们讨论与指数函数有关的函数的图象过定点的问题时,只需令指数等于0,解出相应的y x ,,即为定点坐标.例7. 函数()531-=-x a x f (1,0≠>a a 且)的图象恒过定点_________. 解:令01=-x ,则1=x ,2513-=-⨯=y .∴函数()531-=-x a x f (1,0≠>a a 且)的图象恒过定点()2,1-.例8. 函数1-=x a y (1,0≠>a a 且)的图象恒过定点P ,则点P 的坐标为【 】 (A )()1,0 (B )()1,1 (C )()1,1- (D )()0,1 解:令01=-x ,则1=x ,10==a y . ∴定点P 的坐标为()1,1.选择【 B 】.例9. 函数1+=x a y (1,0≠>a a 且)的图象恒过的定点坐标为_________. 解:令01=+x ,则1-=x ,10==a y .∴函数1+=x a y (1,0≠>a a 且)的图象恒过定点()1,1-.例10. 函数33+=-x a y (1,0≠>a a 且)的图象过定点_________.解:令03=-x ,则3=x ,43130=+=+=a y .∴函数33+=-x a y (1,0≠>a a 且)的图象过定点()4,3.例11. 如果指数函数()()xa x f 1-=是R 上的减函数,那么a 的取值范围是【 】(A )2<a (B )2>a (C )21<<a (D )10<<a分析 对于指数函数xa y =(0>a 且1≠a ),当10<<a 时,函数的图象从左到右是下降的,函数为R 上的减函数.解:∵函数()()xa x f 1-=是R 上的减函数∴110<-<a ,解之得:21<<a . ∴a 的取值范围是()2,1.选择【 C 】.例12. 已知集合{}3<=x x A ,{}42>=x x B ,则=B A __________. 分析:指数函数x y 2=为R 上的增函数. 解:42>x ,222>x∵函数x y 2=为R 上的增函数 ∴2>x ,∴{}2>=x x B ∴{}32<<=x x B A .例13. 解不等式22112>⎪⎭⎫ ⎝⎛-x .解:()22121>--x ,2221>-x∵函数x y 2=为R 上的增函数 ∴121>-x ,解之得:0<x . ∴原不等式的解集为()0,∞-. 例14. 不等式422<-xx 的解集为__________.解:2222<-xx∵函数x y 2=为R 上的增函数 ∴22<-x x ,解之得:21<<-x . ∵原不等式的解集为()2,1-.4.指数函数xa y =(0>a 且1≠a )的底数a 对函数图象的影响 底数a 与1的大小关系决定了指数函数图象的“升”与“降”:(1)当1>a 时,指数函数的图象是上升的,函数是R 上的增函数.底数越大,函数图象在y 轴右侧部分越接近于y 轴,即图象越陡,说明函数值增长得越快;(2)当10<<a 时,指数函数的图象是下降的,函数为R 上的减函数.底数越小,函数图象在y 轴左侧部分越接近于y 轴,即函数图象越陡,说明函数值减小得越快.根据上面的介绍,在上图中,各个指数函数的底数之间的大小关系为:01>>>>>>>f e d c b a .前面已经提到,因为指数函数x a y =(0>a ,且1≠a )的图象经过三个关键点:()1,0,()a ,1和⎪⎭⎫ ⎝⎛-a 1,1,所以直线1=x 与指数函数图象的交点即为点()a ,1,交点的纵坐标等于指数函数的底数,故底数越大,交点的位置越高.于是有下面的结论:结论 底数a 的大小决定了指数函数图象相对位置的高低:不论是1>a 还是10<<a ,在第一象限内底数越大,函数图象越靠上.简记为:在y 轴右侧,底大图高.另外,直线1-=x 与指数函数图象的交点为⎪⎭⎫ ⎝⎛-a 1,1(即()1,1--a ),交点的纵坐标等于底数的倒数,故底数越小,倒数越大,交点的位置越高.简记为:在y 轴左侧,底大图低.5.指数函数xa y =(0>a 且1≠a )与xb y =(0>b 且1≠b )的图象特点(1)若1>>b a ,则当0<x 时,总有10<<<xxb a ;当0=x 时,总有1==xxb a ;当0>x 时,总有1>>x x b a ;(2)若10<<<a b ,则当0<x 时,总有1>>xxa b ;当0=x 时,总有1==xxb a ;当0>x 时,总有10<<<x x a b .综上所述,当0>x ,0>>b a ,且1≠a ,1≠b 时,总有xx b a >;当0<x ,0>>b a ,且1≠a ,1≠b 时,总有xx b a <.6. 指数函数xa y =(0>a 且1≠a )的图象和性质再说明 指数函数xa y =(0>a 且1≠a )的定义域是R ,值域是()+∞,0.图象:(1)若1>a ,当-∞→x 时,0→y ,即x 的值越小,函数的图象越接近于x 轴,但不相交; (2)若10<<a ,当+∞→x 时,0→y .即x 的值越大,函数的图象越接近于x 轴,但不相交.因此,x 轴(即直线0=y )是指数函数xa y =(0>a 且1≠a )的图象的一条渐近线. 性质:(1)若1>a ,则当0>x 时,总有1>y ,即函数图象y 轴右侧的部分在直线1=y 的上方;当0<x 时,总有10<<y ,即函数图象y 轴左侧的部分在直线1=y 和x 轴之间. (2)若10<<a ,则当0>x 时,总有10<<y ,即函数图象y 轴右侧的部分在直线1=y 和x 轴之间;当0<x 时,总有1>y ,即函数图象y 轴左侧的部分在直线1=y 的上方.例15. 设0>x ,且x x a b <<1,则【 】(A )10<<<a b (B )10<<<b a (C )a b <<1 (D )b a <<1 解法一:∵0>x ,且x x a b <<1∴指数函数x a y =(0>a 且1≠a )和x b y =(0>b 且1≠b )在y 轴右侧的图象f x () =12(都在直线1=y 的上方,它们的的图象是上升的,∴1>a ,1>b∵在y 轴右侧,指数函数x a y =(0>a 且1≠a )的图象在x b y =(0>b 且1≠b )的图象的上方∴根据第一象限“底大图上”,有b a >. ∴1>>b a .选择【 C 】.解法二:∵x x a b <<1,∴x x a a b b <<00, ∵0>x ,∴1,1>>a b . ∵x x a b <,0>x a ,0>x∴1<⎪⎭⎫⎝⎛=xx x a b a b ,∴10<<a b ,∴b a >.∴1>>b a .例16. 已知实数b a ,满足ba ⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛3121,给出下面的五种关系,则其中可能成立的序号为__________.①b a <<0; ②a b <<0; ③0<<a b ; ④0<<b a ; ⑤0==a b . 分析:采用数形结合的方法解决本题:在同一平面直角坐标系中分别画出指数函数x y ⎪⎭⎫ ⎝⎛=21和xy ⎪⎭⎫⎝⎛=31的草图,在画图时要注意y 轴左侧“底小图高”和y 轴右侧“底大图高”,还有指数函数的图象都经过定点()1,0.解:如下图所示,在同一平面直角坐标系中分别画出函数x y ⎪⎭⎫ ⎝⎛=21和xy ⎪⎭⎫ ⎝⎛=31的图象.为便于观察并发现问题,设m ba=⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛3121.当0<x 时,有0<<b a ; 当0>x 时,有a b <<0;当0=x 时,有0==b a ,此时1=m . ∴可能成立的序号为②④⑤.例17. 设3132⎪⎭⎫ ⎝⎛=a ,3231⎪⎭⎫ ⎝⎛=b ,3131⎪⎭⎫ ⎝⎛=c ,则c b a ,,的大小关系是【 】 (A )b c a >> (B )c b a >> (C )b a c >> (D )a c b >>分析:(1)对于同底数幂比较大小,则可以利用指数函数的单调性比较.如本题中b 与c 的大小比较;(2)对于非同底数幂比较大小,则要借助于中间量或借助于指数函数的图象比较大小.如本题中a 与c 的大小比较.本题知识储备(1)对于指数函数xa y =(0>a 且1≠a ),当10<<a 时,函数在R 上为减函数,即y 随x 的增大而减小.(2)对于指数函数xa y =(0>a 且1≠a )与xb y =(0>b 且1≠b ),若b a >,则当0<x 时,xxb a <;当0>x 时,xxb a >.解:∵指数函数xy ⎪⎭⎫ ⎝⎛=31在R 上为减函数∴31323131⎪⎭⎫⎝⎛<⎪⎭⎫ ⎝⎛,即b c >. ∵3132>,∴31313132⎪⎭⎫⎝⎛>⎪⎭⎫ ⎝⎛,即c a >. ∴b c a >>,选择【 A 】.另外,也可以这样比较a 与c 的大小:∵12231323132031313131=>=⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=ca ,∴c a >. 例18. 设6.06.0=a ,5.16.0=b ,6.05.1=c ,则c b a ,,的大小关系是__________.解:∵指数函数xxy ⎪⎭⎫⎝⎛==536.0在R 上为减函数∴6.05.16.06.0<,即a b <. ∵16.06.006.0=<,15.15.106.0=>∴6.06.05.16.0<,即c a <. ∴c a b <<.另外,根据: 对于指数函数x a y =(0>a 且1≠a )与x b y =(0>b 且1≠b ),若b a >,则当0<x 时,x x b a <;当0>x 时,xx b a >.可直接得到c a <.例19. 设9.014=y ,61.028=y ,5.1321-⎪⎭⎫⎝⎛=y ,则【 】(A )321y y y >> (B )312y y y >> (C )231y y y >> (D )123y y y >>分析:三个幂是不同底数的幂,但每个幂根据底数与2的关系都可以化为以2为底的幂,最后借助于指数函数的单调性即可得到三者之间的大小关系. 解:∵9.014=y ,61.028=y ,5.1321-⎪⎭⎫ ⎝⎛=y∴()8.19.02122==y ,()83.161.03222==y ,()5.15.11322==--y .∵指数函数x y 2=在R 上为增函数∴83.18.15.1222<<,即61.09.05.18421<<⎪⎭⎫⎝⎛-∴312y y y >>.选择【 B 】.例20. 设1212121<⎪⎭⎫⎝⎛<⎪⎭⎫ ⎝⎛<ab ,那么【 】(A )a b a b a a << (B )b a a a b a << (C )a a b b a a << (D )a a b a b a <<解:∵1212121<⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛<a b ,∴0121212121⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛a b . ∵指数函数xy ⎪⎭⎫ ⎝⎛=21为R 上的减函数∴10<<<b a .在同一平面直角坐标系中分别画出函数x a y =与x b y =的图象如下页图所示.x x由图象可得:a a b b a a <<.选择【 C 】.知识点三 指数函数的定义域和值域 1 定义域(1)指数函数xa y =(0>a 且1≠a )的定义域为R . (2)函数()x f ay =(0>a 且1≠a )的定义域与函数()x f 的定义域相同.(3)函数()xa f y =的定义域与函数()x f 的定义域不一定相同.例如,函数()x x f =的定义域为[)+∞,0,而函数x a y =的定义域为R .注意:求指数型复合函数的定义域时,先观察函数是()xa f y =型还是()x f ay =型.例21. 函数()3121++-=x x f x 的定义域为【 】(A )(]0,3- (B )(]1,3-(C )()(]0,33,--∞- (D )()(]1,33,--∞-解:由题意可得:⎩⎨⎧>+≥-03021x x,解之得:x <-3≤0.∴函数()x f 的定义域为(]0,3-.选择【 A 】. 例22. 求下列函数的定义域:(1)xy ⎪⎭⎫⎝⎛-=211; (2)153-=x y .解:由题意可知:x⎪⎭⎫ ⎝⎛-211≥0,∴x⎪⎭⎫ ⎝⎛21≤1021⎪⎭⎫ ⎝⎛=,∴x ≥0.∴该函数的定义域为[)+∞,0;(2)由题意可知:15-x ≥0,解之得:x ≥51.∴该函数的定义域为⎪⎭⎫⎢⎣⎡+∞,51.例23. 函数()2311-⎪⎭⎫ ⎝⎛-=x x f x的定义域为__________. 解:由题意可得:⎪⎩⎪⎨⎧≠-≥⎪⎭⎫⎝⎛-020311x x,解之得:x ≥0且2≠x .∴函数()x f 的定义域为[)()+∞,22,0 . 例24. 求函数()423212-⨯-=xxx f 的定义域.解:由题意可得:042322>-⨯-x x∴()()04212>-+x x ,解之得:12-<x (舍去),42>x . ∵函数x y 2=为R 上的增函数,2242=>x ,∴2>x . ∴函数()x f 的定义域为()+∞,2.2 值域(1)指数函数xa y =(0>a 且1≠a )的值域为()+∞,0.(2)求形如()x f ay =的函数的值域时,设()x f t =,先求出()x f 的值域(即t 的范围),然后根据函数ta y =的单调性,即可求出函数()x f a y =的值域.(3)求形如()xa f y =的函数的值域时,转化为求()+∞∈=,0xat 时,函数()t f y =的值域.例25. 求函数1241--=+x x y 的值域. 解:()122212421-⨯-=--=+x x x x y .设x t 2=,则0>t ,∴()211222--=--=t t t y .∵()+∞∈,0t∴()21min -==f y ,无最大值.∴函数1241--=+x x y 的值域为[)+∞-,2. 例26. 求函数1241-+=+x x y 的值域. 解:()122212421-⨯+=-+=+x x x x y .设x t 2=,则0>t ,∴()211222-+=-+=t t t y .∴函数在()+∞∈,0t 上为增函数 ∴函数1241-+=+x x y 的值域为()+∞-,1. 注意例25和例26的区别.例27. 已知函数()1-=x a x f (x ≥0)的图象经过点⎪⎭⎫⎝⎛21,2,其中0>a ,且1≠a .(1)求a 的值;(2)求函数()x f 的值域.分析:求指数函数x a y =(0>a 且1≠a )的解析式,只需要其图象上一个点的坐标即可.解:(1)把⎪⎭⎫⎝⎛21,2代入()1-=x a x f 得:21=a ;(2)由(1)知()121-⎪⎭⎫⎝⎛=x x f ,为R 上的减函数∵x ≥0,∴1-x ≥1-,∴()x f <0≤2211=⎪⎭⎫⎝⎛-.∴函数()x f 的值域为(]2,0.注意:指数函数x a y =(0>a 且1≠a )的图象位于x 轴的上方,并且在一个方向上无限接近于x 轴,函数的值域为()+∞,0.本题易错结果为(]2,∞-.总结 求形如()x f ay =的函数的值域时,设()x f t =,先求出()x f 的值域(即t 的范围),然后根据函数t a y =的单调性,即可求出函数()x f ay =的值域.例28. 若函数()1-=x a x f (0>a 且1≠a )的定义域和值域都是[]2,0,求实数a 的值.分析:指数函数的单调性与底数和1的大小关系有关,若关系不明确,必要时要进行分类讨论. 解:由题意可知:当10<<a 时,函数()1-=x a x f 在[]2,0上为减函数∴⎩⎨⎧=-=-012120a a ,显然无解; 当1>a 时,函数()1-=x a x f 在[]2,0上为增函数∴⎩⎨⎧=-=-210120a a ,解之得:3=a (3-=a 舍去). 综上所述,实数a 的值为3. 例29. 求下列函数的定义域和值域: (1)412-=x y ; (2)32221--⎪⎭⎫⎝⎛=x x y .本题知识点储备 (1)函数()x f ay =(0>a 且1≠a )的定义域与函数()x f 的定义域相同.(2)求形如()x f ay =的函数的值域时,设()x f t =,先求出()x f 的值域(即t 的范围),然后根据函数ta y =的单调性,即可求出函数()x f ay =的值域.解:(1)由题意可得:04≠-x ,解之得:4≠x . ∴函数412-=x y 的定义域为()()+∞∞-,44, .∵041≠-x ,∴122041=≠=-x y ,且0>y . ∴函数412-=x y 的值域为{}10≠>y y y 且;(2)函数32221--⎪⎭⎫⎝⎛=x x y 的定义域为R .∵()413222--=--x x x ≥4-∴32221--⎪⎭⎫ ⎝⎛x x ≤16214=⎪⎭⎫ ⎝⎛-,且021322>⎪⎭⎫ ⎝⎛--x x .∴函数32221--⎪⎭⎫⎝⎛=x x y 的值域为(]16,0.例30. 求下列函数的定义域和值域:(1)xy -⎪⎭⎫⎝⎛=32; (2)222x x y -=.解:(1)函数xy -⎪⎭⎫⎝⎛=32的定义域为R .∵x ≥0,∴x -≤0. ∴1320min=⎪⎭⎫⎝⎛=y ∴函数xy -⎪⎭⎫⎝⎛=32的值域为[)+∞,1;(2)函数222x x y -=的定义域为R . ∵()11222+--=-x x x ≤1∴()2211max ===f y ,且0>y . ∴函数222x x y -=的值域为(]2,0.例31. 如果函数122-+=x x a a y (0>a 且1≠a )在[]1,1-上有最大值,且最大值为14,试求a 的值.分析:这是求()x a f y =型函数的定义域和值域.求形如()xaf y =的函数的值域时,转化为求()+∞∈=,0xat 时,函数()t f y =的值域.解:()121222-+=-+=x x x x a a a a y .设x a t =,则0>t ,∴()211222-+=-+=t t t y .当1>a 时,∵[]1,1-∈x ,∴⎥⎦⎤⎢⎣⎡∈a a t ,1.∵函数()212-+=t y 在⎥⎦⎤⎢⎣⎡∈a a t ,1上为增函数∴()14122max =-+==a a a f y ,解之得:3=a (5-=a 不符合题意,舍去);当10<<a 时,∵[]1,1-∈x ,∴⎥⎦⎤⎢⎣⎡∈a a t 1,∵函数()212-+=t y 在⎥⎦⎤⎢⎣⎡∈a a t 1,上为增函数∴1412112max =-+=⎪⎭⎫ ⎝⎛=a a a f y ,解之得:31=a (51-=a 不符合题意,舍去).综上所述,3=a 或31=a . 例32. 求函数12141+⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛=xxy 的值域.解:12121121412+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=xxxxy 设xt ⎪⎭⎫ ⎝⎛=21,则0>t ,∴4321122+⎪⎭⎫ ⎝⎛+=++=t t t y . ∴函数43212+⎪⎭⎫ ⎝⎛+=t y 在()+∞∈,0t 上为增函数.取0=t ,得1=y .∴函数12141+⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛=xx y 的值域为()+∞,1.例33. 已知[]3,2-∈x ,求函数()12141+-=x x x f 的最值. 解:()1212112141121412+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=+-=xxxxx x x f .设xt ⎪⎭⎫ ⎝⎛=21,∵[]3,2-∈x ,∴⎥⎦⎤⎢⎣⎡∈4,81t .∴4321122+⎪⎭⎫ ⎝⎛-=+-=t t t y∵⎥⎦⎤⎢⎣⎡∈4,81t∴()134,4321max min ===⎪⎭⎫ ⎝⎛=f y f y .例34. 若122+x ≤241-⎪⎭⎫ ⎝⎛x ,则函数x y 2=的值域是_________.解:∵122+x ≤241-⎪⎭⎫ ⎝⎛x ,∴122+x≤()x x 242222---=.∵函数x y 2=在R 上为增函数∴12+x ≤x 24-,解之得:3-≤x ≤1,即[]1,3-∈x .∴函数x y 2=在[]1,3-上的值域为⎥⎦⎤⎢⎣⎡2,81.例35. ()1331+=+x x x f 的值域是【 】(A )()+∞,3 (B )()3,0 (C )()2,0 (D )()+∞,2解法一:()13331331+⋅=+=+x xx x x f 设x t 3=,则()+∞∈,0t ,()()133131313+-+=+-+=+=t t t t t t f . ∵()+∞∈,0t ,∴0133<+-<-t ,∴31330<+-+<t .∴()30<<t f ,即函数()1331+=+x x x f 的值域为()3,0.选择【 B 】.解法二:()xxx xx x x f ⎪⎭⎫ ⎝⎛+=+=+⋅=+=+3113311313331331. ∵031>⎪⎭⎫ ⎝⎛x ,∴1311>⎪⎭⎫ ⎝⎛+x,∴331130<⎪⎭⎫ ⎝⎛+<x,∴()()3,0∈x f .例36. 已知定义在R 上的偶函数()x f 满足:当x ≥0时,()x x a x f 22+=,()251=f . (1)求实数a 的值;(2)用定义法证明()x f 在()+∞,0上是增函数; (3)求函数()x f 在[]2,1-上的值域. 解:(1)∵当x ≥0时,()x x a x f 22+=,()251=f ∴2522=+a ,解之得:1=a ; (2)证明:由(1)可知:()xx x f 212+=. 任取()+∞∈,0,21x x ,且21x x <,则()()()()()212121212122112122221212221221221x x x x x x x x x x x x x x x f x f ++--=⎪⎭⎫ ⎝⎛-+-=⎪⎭⎫ ⎝⎛+-+=-∵()+∞∈,0,21x x ,且21x x < ∴02,012,022212121>>-<-++x x x x x x ∴()()()()2121,0x f x f x f x f <<-. ∴()x f 在()+∞,0上是增函数;(3)∵函数()x f 为偶函数,且在[)+∞,0上为增函数 ∴()x f 在(]0,∞-上为减函数 ∴()()20min ==f x f .∵()252211=+=-f ,()4174142=+=f ,25417> ∴在区间[]2,1-上()()4172max ==f x f .∴函数()x f 在[]2,1-上的值域为⎥⎦⎤⎢⎣⎡417,2.利用单调性法求最值的结论(1)如果函数()x f y =在区间[]b a ,上单调递增,在区间[]c b ,上单调递减,那么函数()x f y =在区间[]c a ,上有最大值)()(max b f x f =.如下页图所示;(2)如果函数()x f y =在区间[]b a ,上单调递减,在区间[]c b ,上单调递增,那么函数()x f y =在区间[]c a ,上有最小值)()(min b f x f =.如下图所示.f x ()max = f b ()f x ()min = f b ()第(3)问另解:∵函数()x f 为定义在R 上的偶函数 ∴()x f 在区间[]0,1-和[]1,0上的值域相同 ∴()x f 在[]2,1-上的值域即在[]2,0上的值域. ∵()x f 在[)+∞,0上为增函数 ∴()x f 在[]2,0上为增函数∴()()20min ==f x f ,()()4172max ==f x f . ∴函数()x f 在[]2,1-上的值域为⎥⎦⎤⎢⎣⎡417,2.例37. 设函数()axx f -⎪⎭⎫⎝⎛=1021,a 是不为零的常数.(1)若()213=f ,求使()x f ≥4的x 的取值范围; (2)当[]2,1-∈x 时,()x f 的最大值是16,求a 的值.解:(1)∵()axx f -⎪⎭⎫⎝⎛=1021,()213=f ∴2121310=⎪⎭⎫ ⎝⎛-a,∴1310=-a ,解之得:3=a . ∴()()103310122---==x xx f .∵()x f ≥4,∴1032-x ≥22,∴103-x ≥2,解之得:x ≥4. ∴使()x f ≥4的x 的取值范围是[)+∞,4;(2)()()10101102221----==⎪⎭⎫⎝⎛=ax axaxx f .当0>a 时,()x f 在[]2,1-上为增函数∴()()4102max 21622====-a f x f ,∴4102=-a ,解之得:7=a ; 当0<a 时,()x f 在[]2,1-上为减函数∴()()410max 21621===-=--a f x f ,∴410=--a ,解之得:14-=a . 综上所述,7=a 或14-=a .例38. 已知函数()ax a x f -=3(0>a 且1≠a ). (1)当2=a 时,()4<x f ,求x 的取值范围;(2)若()x f 在[]1,0上的最小值大于1,求a 的取值范围. 解:(1)当2=a 时,()x ax a x f 2332--==.∵()4<x f ,∴223242=<-x ,∴223<-x ,解之得:21>x . ∴x 的取值范围是⎪⎭⎫⎝⎛+∞,21;(2)∵0>a 且1≠a∴函数ax y -=3在[]1,0上为减函数. 当1>a 时,()x f 在[]1,0上为减函数∴()()03min 11a a f x f a =>==-,∴03>-a ,解之得:3<a . ∴31<<a ;当10<<a 时,()x f 在[]1,0上为增函数 ∴()()103min >==a f x f ,显然不成立. 综上所述,a 的取值范围是()3,1.例39. 已知函数()1+=-a x a x f 的图象(0>a 且1≠a )过点⎪⎭⎫⎝⎛2,21.(1)求实数a 的值;(2)若函数()121-⎪⎭⎫ ⎝⎛+=x f x g ,求函数()x g 的解析式;(3)在(2)的条件下,若函数()()()12--=x mg x g x F ,求()x F 在[]0,1-∈x 上的最小值()m h .本题知识储备 求形如()xaf y =的函数的值域时,转化为求()+∞∈=,0xat 时,函数()t f y =的值域.解:(1)∵函数()1+=-a x a x f 的图象过点⎪⎭⎫⎝⎛2,21∴2121=+-a a,解之得:21=a . ∴实数a 的值为21; (2)由(1)知:()12121+⎪⎭⎫⎝⎛=-x x f∵()121-⎪⎭⎫ ⎝⎛+=x f x g∴()xx x g ⎪⎭⎫⎝⎛=-+⎪⎭⎫⎝⎛=-+2111212121;(3)∵()()()12--=x mg x g x F∴()xx x x m m x F ⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-212212121212. 设xt ⎪⎭⎫⎝⎛=21,∵[]0,1-∈x ,∴[]2,1∈t∴()()2222m m t mt t t F --=-=,[]2,1∈t .①当2>m 时,()t F 在[]2,1∈t 上为减函数∴()()()442222min +-=--==m m m F t F ,∴()44+-=m m h ;②当1≤m ≤2时,()()2min m m F t F -==,∴()2m m h -=; ③当1<m 时,()t F 在[]2,1∈t 上为增函数∴()()()121122+-=--==m m m F t F ,∴()12+-=m m h .综上所述,()⎪⎩⎪⎨⎧<+-≤≤->+-=1,1221,2,442m m m m m m m h .例40. 已知函数()x a x f =,()m a x g x +=2,其中1,0,0≠>>a a m 且.当[]1,1-∈x 时,()x f y =的最大值与最小值之和为25. (1)求a 的值;(2)若1>a ,记函数()()()x mf x g x h 2-=,求当[]1,0∈x 时,()x h 的最小值()m H . 分析:(1)指数函数()x a x f =(10≠>a a 且)在其定义域内为单调函数,所以指数函数在给定闭区间上的最值在区间的端点处取得,故本问不用进行分类讨论. 解:(1)∵函数()x a x f =(10≠>a a 且)在[]1,1-上为单调函数 ∴由题意可知:()()2511=-+f f . ∴251=+a a ,解之得:2,2121==a a . ∴a 的值为21或2;(2)∵1>a ,∴2=a ,∴()()m x g x f x x +==22,2. ∵()()()x mf x g x h 2-=∴()()m m m m x h x x x x +⋅-=⋅-+=22222222.设x t 2=,∵[]1,0∈x ,∴∈t []2,1 ∴()()m m m t m mt t t h +--=+-=2222①当2>m 时,()t h 在[]2,1上为减函数 ∴()()432min +-==m h t h ,即()43+-=m m H ;②当1≤m ≤2时,()()m m m h t h +-==2min ,即()m m m H +-=2; ③当1<m 时,()t h 在[]2,1上为增函数 ∴()()11min +-==m h t h ,即()1+-=m m H .综上所述,()⎪⎩⎪⎨⎧<+-≤≤+->+-=1,121,2,432m m m m m m m m H .例41. 已知函数()1242--⋅=x x a x f . (1)当1=a 时,解不等式()0>x f ; (2)当21=a ,∈x []2,0时,求()x f 的值域. 解:(1)当1=a 时,()()122212422--=--⋅=x x x x x f . 设x t 2=,则0>t ,()122--=t t t f .∵()0>x f ,∴0122>--t t ,解之得:1>t 或21-<t .∵0>t∴1>t ,∴0212=>x ,∴0>x . ∴不等式()0>x f 的解集为()+∞,0; (2)当21=a 时,()()1221242--=--=x x x x x f . 设xt 2=,∵∈x []2,0,∴∈t []4,1,()4521122-⎪⎭⎫ ⎝⎛-=--=t t t t f∵()t f 在[]4,1上为增函数∴()()()()114,11max min ==-==f t f f t f .∴函数()t f 的值域为[]11,1-,即函数()x f 在∈x []2,0上的值域为[]11,1-. 例42. 已知函数()x x b a x f +=(其中b a ,为常数,10,10≠>≠>b b a a 且且)的图象经过点()6,1A ,⎪⎭⎫ ⎝⎛-43,1B .(1)求函数()x f 的解析式;(2)若b a >,函数()211+⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛=xx b a x g ,求函数()x g 在[]2,1-上的值域.解:(1)把()6,1A ,⎪⎭⎫ ⎝⎛-43,1B 分别代入()x x b a x f +=得:⎪⎩⎪⎨⎧=+=+43116b a b a ,解之得:⎩⎨⎧==42b a 或⎩⎨⎧==24b a . ∴函数()x f 的解析式为()x x x f 42+=; (2)若b a >,则2,4==b a∴()22141211+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=xx x x b a x g设xt ⎪⎭⎫ ⎝⎛=21,∵∈x []2,1-,∴∈t ⎥⎦⎤⎢⎣⎡2,41,()4721222+⎪⎭⎫ ⎝⎛-=+-=t t t t g . ∴()4721min =⎪⎭⎫ ⎝⎛=g t g ,()()42max ==g t g .∴()t g 在⎥⎦⎤⎢⎣⎡2,41上的值域为⎥⎦⎤⎢⎣⎡4,47,即函数()x g 在[]2,1-上的值域为⎥⎦⎤⎢⎣⎡4,47.说明:方程组⎪⎩⎪⎨⎧=+=+43116b a b a 可以这样求解:∵⎪⎩⎪⎨⎧=+=+43116b a b a ,∴⎩⎨⎧==+86ab b a .∴b a ,是方程0862=+-x x 的两个实数根(方程思想).解之得:4,221==x x ,∴⎩⎨⎧==42b a 或⎩⎨⎧==24b a .例43. 函数221341+⎪⎭⎫ ⎝⎛⨯-⎪⎭⎫ ⎝⎛=xxy ,∈x []2,2-的值域是__________.解:设xt ⎪⎭⎫ ⎝⎛=21,∵∈x []2,2-,∴∈t ⎥⎦⎤⎢⎣⎡4,41,41232322-⎪⎭⎫ ⎝⎛-=+-=t t t y . ∴()64,4123max min ==-=⎪⎭⎫⎝⎛=f y f y∴函数41232-⎪⎭⎫ ⎝⎛-=t y 在∈t ⎥⎦⎤⎢⎣⎡4,41上的值域为⎥⎦⎤⎢⎣⎡-6,41.∴函数221341+⎪⎭⎫ ⎝⎛⨯-⎪⎭⎫ ⎝⎛=xx y ,∈x []2,2-的值域是⎥⎦⎤⎢⎣⎡-6,41. 例44. 已知函数()ax xx f ++-=223(∈a R ).(1)若()271=f ,求a 的值; (2)若()x f 有最大值9,求a 的值. 解:(1)∵()271=f∴3213273==++-a ,∴31=+a ,解之得:2=a ; (2)设()()11222++--=++-=a x a x x x g∴()()11max +==a g x g∴()()21max 3933max ====+a x g x f ,∴21=+a ,解之得:1=a .例45. 若函数()m x f x -=-3的最大值为2,则实数m 的值为【 】 (A )1- (B )2- (C )3- (D )4- 解:设()x x g -=3,则()x g <0≤130=,即函数()x g 的最大值为1. ∵函数()m x f x -=-3的最大值为2 ∴()2max =-m x g ,∴21=-m 解之得:1-=m .选择【 A 】.例46. 例45的第三种解法 以下几例为求()x a f y =型函数的值域()1331+=+x x x f 的值域是【 】(A )()+∞,3 (B )()3,0 (C )()2,0 (D )()+∞,2 解:设x t 3=,则0>t ,()13+==t t t f y . ∴03>-=yyt ,解之得:30<<y .选择【 B 】.例47. 函数x y --=328(x ≥0)的值域为__________.不等分析法和单调性法解:∵x ≥0,∴x -≤0,∴x -3≤3 ∴x -<320≤823=,∴8-≤023<--x .∴0≤8283<--x ,0≤8<y ,即函数x y --=328(x ≥0)的值域为[)8,0.注意: 不要漏掉023>-x这一范围.例48. 函数x y 416-=的值域是__________.解:由题意可知:x 40<≤16,∴16-≤04<-x ,∴0≤16416<-x . ∴0≤4416<-x ,0≤4<y . ∴函数x y 416-=的值域是[)4,0. 例49. 函数()xxx f 242-=的定义域是__________,值域是__________. 解:由题意可知:0242>-xx,∴024>-x ,解之得:2<x . ∴函数()x f 的定义域是()2,∞-.设x t 2=,则40<<t (2<x ),()tt t t g -+-=-=4414. ∵40<<t ,∴04<-<-t ,∴440<-<t ,∴144>-t(可结合图象)∴0441>-+-t ,()0>t g ,∴()0>x f∴函数()x f 的值域为()+∞,0. 例50. 函数xx y +-=112的值域为__________.解:()xxx xx y ++-+++-+-===12112111222∵012≠+x ,∴1121-≠++-x ,∴21221121=≠-++-x ,即21≠y . ∵0>y ,∴该函数的值域为⎪⎭⎫⎝⎛+∞⎪⎭⎫ ⎝⎛,2121,0 .例51. 函数()xx xx x f --+-=10101010的值域是【 】(A )(][)+∞-∞-,11, (B )()()+∞-∞-,11, (C )[]1,1- (D )()1,1-解:()11021110211011011010110101101010101022222+-=+-+=+-=+-=+-=--x x x x x xx x x x x xxx f . ∵0102>x ,∴11102>+x ,∴2110202<+<x ,∴0110222<+-<-x∴11102112<+-<-x ,即()11<<-x f .∴函数()xx xx x f --+-=10101010的值域是()1,1-.选择【 D 】. 解法二:()11011010110101101010101022+-=+-=+-=--x x xxx x x x x x x f 设t x =210,则0>t ,11+-=t t y∴011>---=y y t ,∴011<-+y y ,解之得:11<<-y . ∴函数()x f 的值域为()1,1-. 例52. 求下列函数的值域:(1)11+-=x x a a y (0>a ,且1≠a );(2)124+-=x x y .解:(1)12112111+-=+-+=+-=xx x x x a a a a a y . ∵0>x a ,∴11>+x a ,∴2120<+<x a ,∴0122<+-<-x a ∴11211<+-<-x a ,即11<<-y . ∴该函数的值域为()1,1-.解法二:设x a t =,则0>t ,11+-=t t y ∴011>---=y y t ,∴011<-+y y ,解之得:11<<-y . ∴该函数的值域为()1,1-. (2)()1221242+-=+-=x x x x y设xt 2=,则0>t ,4321122+⎪⎭⎫ ⎝⎛-=+-=t t t y∵()+∞∈,0t ,∴4321min =⎪⎭⎫ ⎝⎛=f y .∴函数124+-=x x y 的值域为⎪⎭⎫⎢⎣⎡+∞,43.例53. 已知函数()b a x f x +=(10≠>a a 且)的定义域和值域都是[]0,1-,则=+b a _________.解:当10<<a 时,函数()x f 在[]0,1-上为减函数∴()()⎩⎨⎧-==-1001f f ,即⎪⎩⎪⎨⎧-=+=+1101b b a ,解之得:⎪⎩⎪⎨⎧-==221b a .∴=+b a 23-; 当1>a 时,函数()x f 在[]0,1-上为增函数∴()()⎩⎨⎧=-=-0011f f ,即⎪⎩⎪⎨⎧=+-=+0111b b a ,显然方程组无解.综上所述,=+b a 23-. 例54. 函数124--=x y 的值域为【 】 (A )[)+∞,1 (B )()1,1- (C )()+∞-,1 (D )[)1,1-解:由题意可知:x 20<≤4,∴4-≤02<-x ,∴0≤424<-x ∴0≤224<-x ,∴1-≤1124<--x ,即1-≤1<y . ∴函数124--=x y 的值域为[)1,1-,选择【 D 】. 例55. 已知函数()13-=-x x f ,则()x f 的【 】 (A )定义域是()+∞,0,值域是R (B )定义域是R ,值域是()+∞,0 (C )定义域是R ,值域是()+∞-,1 (D )定义域、值域都是R 解:函数()13-=-x x f 的定义域为R . ∵03>-x ,∴13->-x ,即()1->x f∴函数()13-=-x x f 的值域为()+∞-,1.选择【 C 】. 例56. 下列各函数中,值域为()+∞,0的是【 】 (A )22x y -= (B )x y 21-= (C )12++=x x y (D )113+=x y解:(A )函数22x y -=的定义域为R ,值域为()+∞,0,故(A )正确; (B )∵x 20<≤1,∴1-≤02<-x ,∴0≤121<-x ,∴0≤121<-x . ∴函数x y 21-=的值域为[)1,0;(C )∵4321122+⎪⎭⎫ ⎝⎛+=++=x x x y ≥43 ∴函数12++=x x y 的值域为⎪⎭⎫⎢⎣⎡+∞,43;(D )对于函数113+=x y ,因为011≠+x ,所以130=≠y ,且0>y ,故该函数的值域为()()+∞,11,0 .例57. 关于x 的方程0131=--⎪⎭⎫⎝⎛a x有解,则a 的取值范围是__________.解:∵0131=--⎪⎭⎫ ⎝⎛a x,∴131+=⎪⎭⎫ ⎝⎛a x∵x ≥0,∴x⎪⎭⎫ ⎝⎛<310≤1∵方程0131=--⎪⎭⎫⎝⎛a x有解∴10+<a ≤1,解之得:a <-1≤0. ∴a 的取值范围是(]0,1-.例58. 关于x 的方程a a x-+=⎪⎭⎫ ⎝⎛52353有正实数根,则实数a 的取值范围是_________. 分析:该方程有正实数根指的是0>x .解:∵方程a a x-+=⎪⎭⎫ ⎝⎛52353有正实数根 ∴0>x ,∴1535300=⎪⎭⎫⎝⎛<⎪⎭⎫ ⎝⎛<x,∴15230<-+<a a . 解之得:4332<<-a ,即实数a 的取值范围是⎪⎭⎫⎝⎛-43,32. 例59. 已知方程013329=-+⋅-k x x 有两个实数解,求实数k 的取值范围. 分析:设x t 3=,则0>t ,方程可转化为关于t 的一元二次方程,且方程有两个正实数根.结论 一元二次方程()002≠=++a c bx ax 有两个正实数根的条件是⎪⎪⎪⎩⎪⎪⎪⎨⎧>=⋅>-=+≥∆0002121ac x x a b x x 解:设x t 3=,则0>t ,∵013329=-+⋅-k x x ,∴01322=-+-k t t由题意可知:方程01322=-+-k t t 有两个正实数根∴()()⎪⎩⎪⎨⎧>-=⋅>=+≥---013020134221212k t t t t k ,解之得:k <31≤32.∴实数k 的取值范围是⎥⎦⎤⎝⎛32,31.例60. 已知函数122-+=x x a a y (0>a 且1≠a ),当x ≥0时,求该函数的值域. 解:设x a t =,则0>t ,()211222-+=-+=t t t y .当1>a 时,∵x ≥0,∴t ≥1∵函数()212-+=t y 在[)+∞,1上为增函数∴()21min ==f y ,∴函数的值域为[)+∞,2; 当10<<a 时,∵x ≥0,∴t <0≤1∴()y f <0≤()1f ,∴y <-1≤2,即函数的值域为(]2,1-.综上所述,当1>a 时,函数的值域为[)+∞,2;当10<<a 时,函数的值域为(]2,1-.知识点四 指数函数的单调性及其应用 1 单调性当1>a 时,函数xa y =在R 上为增函数;当10<<a 时,函数xa y =在R 上为减函数.利用这一性质,可以判断复合函数()x f a y =的单调性,判断的依据是:同增异减.如下表:注意 讨论形如()x f ay =的函数的单调性,首先要确定函数()x f 的单调性,然后结合底数a 的范围来确定函数()x f a y =的单调性.确定的依据是:同增异减.2 单调性的应用 (1)应用于比较大小类型一 比较同底数不同指数的幂的大小,利用指数函数的单调性进行比较;类型二 比较不同底数同指数的幂的大小,借助于函数的图象比较大小,或者借助于口诀:在y 轴右侧(即0>x )底大图高(函数值大),在y 轴左侧,底小图高;类型三 比较不同底数不同指数的幂的大小,利用中间量(如0和1)并结合函数的单调性比较大小.(2)应用于解简单不等式 不等式可化为()()x g x f a a<的形式,利用指数函数的单调性,将不等式转化为()()x g x f <(当1>a 时)或()()x g x f >(当10<<a 时),然后进行求解.例61. 求函数x y -=2的单调性.解:设x t -=,则函数t 在(]0,∞-上为增函数,在[)+∞,0上为减函数 ∴函数x y -=2在(]0,∞-上为增函数,在[)+∞,0上为减函数.例62. 求函数xy -⎪⎭⎫⎝⎛=21的单调性.解:设x t -=,则函数t 在(]0,∞-上为增函数,在[)+∞,0上为减函数∴函数xy -⎪⎭⎫⎝⎛=21在(]0,∞-上为减函数,在[)+∞,0上为增函数.例63. 函数xx y 2221+-⎪⎭⎫⎝⎛=的单调递增区间是【 】(A )[)+∞-,1 (B )(]1,-∞- (C )[)+∞,1 (D )(]1,∞-解:设()11222+--=+-=x x x t ,则函数t 在(]1,∞-上为增函数,在[)+∞,1上为减函数∵指数函数ty ⎪⎭⎫⎝⎛=21在R 上为减函数∴函数xx y 2221+-⎪⎭⎫⎝⎛=的单调递增区间为[)+∞,1.选择【 C 】.例64. 求函数()2222++-=x xx f 的单调区间.解:设()312222+--=++-=x x x t ,则()t y x f 2==.∵函数t 在(]1,∞-上为增函数,在[)+∞,1上为减函数,函数t y 2=在R 上为增函数 ∴函数()x f 的单调递增区间为(]1,∞-,单调递减区间为[)+∞,1. 例65. 求函数32212+-=+x x y 的单调区间. 解:()3222322212+⋅-=+-=+x x x x y设x t 2=,则0>t ,且函数x t 2=在R 上为增函数 ∴()213222+-=+-=t t t y∴函数()212+-=t y 在∈t (]1,0上为减函数,此时(]0,∞-∈x ;在[)+∞∈,1t 上为增函数,此时[)+∞∈,0x .∴函数32212+-=+x x y 的单调递增区间为[)+∞,0,单调递减区间为(]0,∞-.例66. 求函数1121+-⎪⎭⎫⎝⎛=x x y 的单调区间.解:设12112111+-=+-+=+-=x x x x x t ,()()+∞--∞-∈,11, x ,则ty ⎪⎭⎫⎝⎛=21,且1≠t .∵函数121+-=x t 在()1,-∞-和()+∞-,1上均为增函数 函数ty ⎪⎭⎫⎝⎛=21在()()+∞∞-∈,11, t 上为减函数∴函数1121+-⎪⎭⎫⎝⎛=x x y 的单调递减区间为()1,-∞-和()+∞-,1,无单调递增区间.1例67. 函数()()32212---=x x x f 的单调增区间为__________.解:∵221<<,∴1120<-< ∴函数()()32212---=x x x f 的单调增区间即函数322--=x x t 的单调减区间.∵()413222--=--=x x x t∴函数t 的单调减区间为(]1,∞- ∴函数()()32212---=x x x f 的单调增区间为(]1,∞-.例68. 若函数axxy +-=22在()1,∞-内单调递增,则a 的取值范围是__________.解:设42222a a x ax x t +⎪⎭⎫ ⎝⎛--=+-=∵函数axxy +-=22在()1,∞-内单调递增∴函数4222a a x t +⎪⎭⎫ ⎝⎛--=在()1,∞-内单调递增∴2a≥1,解之得:a ≥2,即a 的取值范围是[)+∞,2. 例69. 若函数12-=x y 在(]m ,∞-上单调递减,则m 的取值范围是__________. 解法一:设x t 2=,则0>t ,1-=t y . ∵函数1-=t y 在(]1,0∈t 上为减函数 ∴x 20<≤021=,解之得:x ≤0.∴函数12-=x y 在(]0,∞-∈x 上为减函数. ∵函数12-=x y 在(]m ,∞-上单调递减 ∴m ≤0,即m 的取值范围是(]0,∞-. 解法二:函数12-=x y 的图象大致如图所示. 由图象可知:函数12-=x y 的单调递减区间 为(]0,∞-,所以(]0,∞-∈m .。

指数函数与对数函数的基本概念与性质

指数函数与对数函数的基本概念与性质

指数函数与对数函数的基本概念与性质1. 引言指数函数和对数函数是高中数学中重要的函数概念,广泛应用于科学、工程和经济等各个领域。

本文将介绍指数函数和对数函数的基本概念及其性质。

2. 指数函数的基本概念指数函数是以底数为常数,指数为自变量的函数,通常表示为y =a^x,其中a为底数,x为指数,y为函数值。

指数函数的定义域为实数集,底数大于0且不等于1。

3. 指数函数的性质3.1 底数大于1时,指数函数呈现增长趋势;底数在(0,1)之间时,指数函数呈现衰减趋势;底数为1时,指数函数为常值函数。

3.2 指数函数的值域取决于底数的正负情况,当底数大于1时,值域为(0,正无穷);当底数在(0,1)之间时,值域为(正无穷,0)。

3.3 指数函数具有反函数,即对数函数。

4. 对数函数的基本概念对数函数是指以某个常数为底数,以该底数的幂作为自变量的函数,通常表示为y = loga x,其中a为底数,x为函数值,y为自变量。

对数函数的定义域为正实数集。

5. 对数函数的性质5.1 对数函数的底数必须大于0且不等于1,函数值大于0。

5.2 对数函数的图像呈现与指数函数相反的趋势,即底数大于1时,对数函数呈现衰减趋势;底数在(0,1)之间时,对数函数呈现增长趋势;底数为1时,对数函数为常值函数。

5.3 对数函数的值域取决于底数的正负情况,当底数大于1时,函数值在负无穷到正无穷之间;当底数在(0,1)之间时,函数值在正无穷到负无穷之间。

6. 指数函数与对数函数的关系指数函数与对数函数是互为反函数的关系,即a^loga x = x,loga(a^x) = x。

指数和对数函数的性质可以相互推导,其中指数函数的性质1对应于对数函数的性质5。

指数函数和对数函数在实际应用中常常相互转化使用。

7. 应用举例7.1 金融领域:指数函数可以用来计算复利,对数函数可以用来计算年化收益率。

7.2 化学领域:指数函数可以用来描述元素的放射性衰变过程,对数函数可以用来描述溶液的酸碱性。

指数函数的定义和性质

指数函数的定义和性质

指数函数的定义和性质在数学中,指数函数是一种基本的函数之一。

它的应用非常广泛,包括在金融、科学、工程和计算机科学等领域。

指数函数的定义和性质是数学学科中非常重要的一部分,本文将着重介绍指数函数的定义和性质,以帮助读者更好地理解这一重要概念。

一、指数函数的定义指数函数的定义非常简单,它是以自然常数e为底数的幂函数。

即:f(x) = e^x其中,e是自然常数,它的值约为2.71828。

根据这个定义,我们可以得到一些指数函数的基本性质。

二、指数函数的性质1. 增长速度指数函数是一个无限增长的函数。

随着x的增大,e的x次方也会越来越大。

这意味着,指数函数的增长速度非常快,远远快于其他函数,比如多项式函数和三角函数。

2. 渐近线指数函数的图像会与y = 0轴有一个渐近线。

这条线是指数函数的图像在x轴右侧逼近y = 0而趋近于它时所形成的。

3. 对称轴指数函数的对称轴为y = 0轴。

这是因为当x为正数时,e的x 次方和e的-x次方是关于y = 0轴对称的,即f(x) = f(-x)。

4. 交点指数函数和y = 1直线有一个交点,这个交点的坐标为(0,1)。

这个交点是由于e的0次方为1引起的。

5. 常函数关系指数函数和指数函数之间还存在常函数的关系。

换句话说,如果f(x) = e^x,那么g(x) = ln(x)就是f(x)的反函数。

这意味着,指数函数和对数函数是相互关联的。

6. 求导指数函数的求导结果还是自身。

换句话说,如果f(x) = e^x,那么f'(x) = e^x。

这个性质在微积分中是非常有用的。

三、应用指数函数有很多应用,包括用于描述人口增长率、财务计算、化学反应速率等方面。

这些应用需要对指数函数的性质有深入的理解,并能够使用指数函数进行数学建模。

例如,在人口学中,指数函数可以描述人口的增长率。

假设某个国家的人口现在为P0,每年的增长率为r,那么在t年后,该国的人口大小为:P(t) = P0 * e^(rt)这个方程式体现了指数函数的性质,即随着时间的增加,该国的人口会迅速增加。

指数与对数函数的性质

指数与对数函数的性质

指数与对数函数的性质指数与对数函数是高中数学中的重要内容,它们具有许多独特的性质。

本文将探讨指数函数和对数函数的性质,包括定义、图像、增减性、极限以及应用等方面。

一、指数函数的性质指数函数是形如f(x) = a^x的函数,其中a是常数且大于0且不等于1。

指数函数具有以下性质:1. 定义域和值域:指数函数的定义域为全体实数,值域为(0, +∞)。

2. 图像特点:当a>1时,指数函数的图像呈现递增趋势,且通过点(0,1);当0 时,指数函数在x轴右侧取值,但永远不会触及x轴。

3. 增减性:当a>1时,指数函数是增函数;当0 时,指数函数是减函数。

4. 极限:当x趋近于无穷大时,指数函数的极限为正无穷;当x趋近于负无穷大时,指数函数的极限为0。

5. 应用:指数函数在各个科学领域中有广泛的应用,如经济学中的指数增长、医药学中的药物代谢等。

二、对数函数的性质对数函数是指以某个正数b(且不等于1)为底,x为真数,y为底为b的对数的幂等于x的函数,可表示为f(x) = log_b(x)。

对数函数有如下性质:1. 定义域和值域:对数函数的定义域为(0, +∞),值域为全体实数。

2. 图像特点:对数函数的图像关于直线y=x对称;当x>1时,对数函数递增;当0 时,对数函数递减。

3. 增减性:当x>1时,对数函数是增函数;当0 我们可以利用指数函数和对数函数的性质求解各种实际问题,从而拓宽我们的数学思维。

总结起来,指数函数和对数函数是数学中的基础工具,它们具有独特的性质和广泛的应用。

通过对指数函数和对数函数的理解和掌握,我们可以更好地解决实际问题,并在学习其他数学分支时更加得心应手。

指数函数性质

指数函数性质

指数函数的性质指数函数的性质是:指数函数的定义域为R,这里的前提是a大于0且不等于1。

对于a不大于0的情况,则必然使得函数的定义域不连续,因此我们不予考虑,同时a等于0函数无意义一般也不考虑。

基本性质如图1所示为a的不同大小影响函数图形的情况在函数中可以看到y=a x。

图1指数函数图像(1)指数函数的定义域为R,这里的前提是a大于0且不等于1。

对于a不大于0的情况,则必然使得函数的定义域不连续,因此我们不予考虑,同时a等于0函数无意义一般也不考虑。

(2)指数函数的值域为(0,+∞)。

(3)函数图形都是上凹的。

(4)a>1时,则指数函数单调递增;若0<a<1,则为单调递减的(图2)。

(5)可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(不等于0)函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。

其中水平直线y=1是从递减到递增的一个过渡位置。

图2指数函数增减性(6)函数总是在某一个方向上无限趋向于X轴,并且永不相交。

(7)函数总是通过(0,1)这点,(若y=a x+b,则函数定过点(0,1+b))(8)指数函数无界。

(9)指数函数是非奇非偶函数(10)指数函数具有反函数,其反函数是对数函数,它是一个多值函数。

求解复杂指数类代数式的值时,需要注意以下几个方面(1)当指数为负数时,一般先倒底,即先将底数变为倒数并将指数超威其相反数;(2)当底数为小数时,一般将小数变为分数;(3)对于根式,一般化为分数指数幂的形式;(4)化简的最终结果要是最简形式,即不能既有根式又有分数指数幂的形式,也不能既有指数幂又有分母的形式,并且如果是二次根式,必须华为最简二次根式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5、 求方程 2 x2 的实根的个数。
x
由图像可知实根的个数2个
6、已知 x∈[0,2],求函数
y = 4x – 2x+1 +5 的最值。 换元法:最小值4;最大值13
a 1 例5、 已知函数 f ( x ) x ( a 1) a 1 (1) 判断函数 f ( x ) 的奇偶性
x
(2) 求函数 f ( x ) 的值域 (3) 证明函数 f ( x ) 是 R 上的增函数
-2x
1 1 得3x+1>-2x x>- 当x> 时 y y 5 5 1 2
当0<a 1时 由a
3x+1
a
-2x
1 1 得3x+1<-2x x<- 当x 时 y 1 5 5
y
2
(3)当a 1时 由a
3x+1
a
-2x
1 1 得3x+1<-2x x<- 当x 时 y y 5 5 1 2 1 1 得3x+1>-2x x>- 当x 时 y y 5 5 1 2
1 5730 y ( ) 2
x
y2
x
1 x y( ) 2
1 y( ) 2
x 5730
( 5730
1 x ) 2
问题一:上面三个关系式是之前我 们已经学过的某一个函数吗? 问题二:那它们是函数吗? 问题三:它们有什么共同特征呢?
指数函数的定义
一般地,函数
ya
x
(a>0且a≠1)
叫做指数函数,其中x是自变量,函数的定 义域是 R
同底的
单调法:构造 函数,利用函 数的单调性
1 .7
3 .1
异底的
中间值法:在这 两个数中间找特 殊值,分别比较
问题十:观察这三组数有什么区别? 问题十一:对于同底的两个数比大小,应用指数 函数的哪个性质去解决? 问题十二:对于异底的两个数,能构造出这样的 函数吗?
例3、截止到1999年底, 我国人口约13亿. 如果今后能将人口年平均增长率控制在 1%, 那么经过20年后, 我国人口数最多为 多少(精确到亿) ?
思考1:为什么要规定a>0且a≠1呢?
(1)若a=0 x 则当x > 0 时, x 当x≤0时, 无意义. (2)若a<0 x 则对x的某些值,可使 无意义,如
a 0
a1
a
y ( 2) ,,这对x=
x
等无意义 (3)若a=1
2
1 ,x= 4
则对于任何x∈R, y =1是一个常数,
没有研究的必要
当生物死亡了5730年后,它体内的碳14的含量y为
1 2 1 4 1 8
1 5730
当生物死亡了2X5730年后,它体内的碳14的含量y为 当生物死亡了3X5730年后,它体内的碳14的含量y为 当生物死亡了1年后,它体内的碳14的含量y为 当生物死亡了x年后,它体内的碳14的含量y为
1 ( ) 2
a 1
y
图 象
0a 1
y
y ax
y=1 (0,1)
y ax
(0,1) y=1 o x
R
o
定义域: 性 质 R
x
定义域: 值域:
值域: 单调性:
(0, )
在R上递增
(0, )
若x 0,则 y 1 若x 0,则 y 1即过定点(0,1) 若x 0,则 0 y 1
1 、复合函
例 1 、求以下
( )y3 x2; 1
( )y 1 3. 2
x
练 1 、求以下 1 1 1 x x (1) y ( ) ; (2)y 2 . 2 2
2010年10月2日星期六
2 、复合函
例 2 、求以下
( )y4 ; 1
2 x 1
( y1 , ]. 2 2 [4 ) x1 ,
当0<a 1时 由a
3x+1
a
-2x
练习:
1、如果 a
15 x
a
x7
( a>0,a≠1),
求x的取值范围。
2、 求不等式 1 3 3、求 y =
x 8
3
2x
的解集
的定义域
1 2
x
﹙-∞,0]
4、 已知函数 y=2x+3+2 (1) 画出函数的图象; (2) 指出已知函数与函数 y = 2x 的关系。
探究三个实例
1、一张纸对折一次得两层,对折两次得 4 层, 对折三次得 层,若对折x次所得层数为y, 8 x 则y与x的关系是: y 2 2、一根1米长的绳子从中间剪一次剩下 米, 再从中间剪一次剩下 1 米,若这条绳子剪x次 4 1 x 剩下y米,则y与x的关系是: y=( ) 2

人们发现,当生物死亡后,它机体内原有的碳14 会按确定的规律衰减,大约每经过5730年衰减为 原来的一半,这个时间称为“半衰期”。
思考2:定义域为什么是R呢?
练一练
1、下列函数是指数函数的是( D )
A ) .y ( 3 x 1 Cy3 .
解: 由
x
By . 3 1 x Dy (3) .
x
2、函数y=(a2-3a+3)ax是指数函数,求a的值 a2-3a+3=1

a=1或a=2 a>0且a≠1
a>0且a≠1 ∴a=2
b<a<1<d<c
2、指数函数 y=ax (a>0,a≠1) 在[0,1]上的 最大值与最小值的和是3,则 a =___ . 2 3、函数 y = a|x| (a>1) 的图象是( B )
y 1 0 x 0 x y 1 y 1 x 0 x
y
0
A
B
C
D
例1 设
y1 a
3 x 1
, y2 a
2 x
其中
a 0 a 1确定 x 为何值时,有 , (1) y1 y2 ; (2) y1 y2 (3); y1 y2 .
1 1 解(1)由a =a 得3x+1=-2x x=- 当x 时 y y 1 2 5 5 (2)当a 1时
3x+1 -2x
由a a
3x+1
同底的
单调法:构造 函数,利用函 数的单调性
1 .7
3 .1
异底的
中间值法:在这 两个数中间找特 殊值,分别比较
思考下列问题:
1. 指数函数y=ax,y=bx,y=cx,y=dx的图象 如下图,试判断a、b、c、d、1之间的大小关 系。 x x
y=ax y=b y=c y=dx
c d
1பைடு நூலகம்
a b X=1
3 、复合函
f (x ) g ( x)
f g)] [ ()] [( 或 x x g f
同增异减
2010年10月2日星期六
1x 例 3 、求函数 . y() 的单调递 1 2
2 x43 x
例 4 、求函数 y 10 的单调区 , 并 求 y 的最小值 .
2 1xx 2 练 3 、求函数 的单调区间 f( ) ) x ( , 3 并求其值域 .
2010年10月2日星期六
例1:函数 (a>0且a≠1)的图象经 过点(3, ),求f(0),f(1),f(-3)
ya
x
思考:确定指数函数解析式的重要要素是什么?
问题四:指数函数是我们在学习了函数基本概 念和性质之后的接触到的第一个具体函数,而 且我们已经得到了它的解析式,那还应该去探 索它的哪些性质呢? 问题五:用什么方法去研究它的这些性 质呢? 问题六:怎样才能得到指数函数的 图象? 列表,描点,连线
2010年9月29日星期三
补充练习:
1、如图所示,当0<a<1时,函数y=ax和 y=(a-1)x2的图象只可能是( D )
y
y
y
y
x
x
x
x
A
B
C
D
2、若有y=(a-4)x是指数函数,求a 的范围.
解:
由 a 41得:a>4且a 5 {
a 40
3、若函数y=(2a+1)x是一个减函数,求a的范围
单调性: 在R上递减 若x 0,则 0 y 1
若x 0,则 y 1即过定点(0,1) 若x 0,则 y 1
2010年9月29日星期三
例2 、比较下列各组中两个值的大小: ① ② ③
1.7
2.5
1 .7 1.7
3
3
0.8
0.1
0 .3
0.8 0.8
0 .9
0.2 0.2
解决简单问题
a 1
y
图 象
0a 1
y
y ax
y=1 (0,1)
y ax
(0,1) y=1 o x
R
o
定义域: 性 质 R
x
定义域: 值域:
值域: 单调性:
(0, )
在R上递增
(0, )
若x 0,则 y 1 若x 0,则 y 1即过定点(0,1) 若x 0,则 0 y 1
解:
4、判断函数 y = a + 3 的图象是否恒过一定 点?如果是,求出定点坐标,如果不是,说明理 由。
1 由0<2a+1<1得:- a 0 2 x -2
当x=2时y=3 恒过定点(2,4)
解:
学习函数的一般模式(方法): 给出函数解析式 作出函数图象
数形结合
相关文档
最新文档