2020最新华师大版八年级数学上册教学课件(所有课时)
2024年华师大版八年级数学上册全套精品课件
2024年华师大版八年级数学上册全套精品课件一、教学内容1. 第一章:实数第一节:无理数的概念与性质第二节:实数的分类与运算第三节:近似数与有效数字2. 第二章:一元二次方程第一节:一元二次方程的概念与解法第二节:一元二次方程的根的判别式第三节:一元二次方程的根与系数的关系3. 第三章:不等式与不等式组第一节:不等式的性质与解法第二节:不等式组的解法与应用第三节:不等式的应用二、教学目标1. 理解实数的概念,掌握实数的分类与运算。
2. 学会解一元二次方程,掌握根的判别式和根与系数的关系。
3. 掌握不等式与不等式组的性质和解法,并能解决实际问题。
三、教学难点与重点1. 教学难点:无理数的概念与运算一元二次方程的根的判别式和根与系数的关系不等式组的解法与应用2. 教学重点:实数的分类与运算一元二次方程的解法不等式与不等式组的性质和解法四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔2. 学具:教材、练习本、文具五、教学过程1. 引入:通过实际问题引入无理数的概念,激发学生学习兴趣。
通过例题讲解,引导学生探索一元二次方程的解法。
以实际情境为例,引入不等式与不等式组的学习。
2. 授课:详细讲解实数的概念、分类与运算。
通过例题讲解,让学生掌握一元二次方程的解法。
结合实际例子,讲解不等式与不等式组的性质和解法。
3. 随堂练习:设计有针对性的练习题,巩固所学知识。
及时解答学生疑问,确保学生掌握重点知识。
强调重点和难点,提高学生解决问题的能力。
六、板书设计1. 实数的分类与运算2. 一元二次方程的解法3. 不等式与不等式组的性质和解法七、作业设计1. 作业题目:课后习题1、2、3题。
拓展题目:设计一道综合性的题目,涵盖本章所学知识。
2. 答案:八、课后反思及拓展延伸1. 反思:针对学生的薄弱环节,调整教学方法,提高教学效果。
2. 拓展延伸:探索实数在生活中的应用。
研究一元二次方程的根与系数的关系在其他领域的应用。
【华师大版教材】初二八年级数学上册《13.2.1 全等三角形及其性质》课件
等三角形性质时,要先确定两个条件:①两个三角形
全等;②找对应元素;(3)全等三角形的性质是证明 线段、角相等的常用方法.
(来自《点拨》)
知2-讲
我们很容易画出△ABC 的对称图形
△DEF .若已知 ∠A = 60°, ∠B =
80°,相信你一定可以求出△DEF的 各个角的大小: ∠D = ∠E = , ∠E = • ,
(3)图形大小确定法:两个全等三角形的最大的边(角)是对
应边(角),最小的边(角)是对应边(角).
(来自《点拨》)
知1-练
1 下列说法错误的是(
)
A.全等三角形的对应边相等 B.全等三角形的角相等 C.全等三角形的周长相等 D.全等三角形的面积相等
(来自《典中点》)
知1-练
2 如图,将△AOB 绕点0 旋转180°,得到△C0D,这
(5)判断两条直线的位置关系等.
1.必做: 完成教材P61,T2-3.
写出解答的 结果,并说 明理由.
(来自教材)
知2-讲
例2 如图13.2-5,已知点A,D,B,F在同一条直线 △ABC≌△FDE,AB=8 cm,BD=6 cm.求FB的
长.
图13.2-5 导引:由全等三角形的性质知AB=FD,由等式的性质可 得AD=FB,所以要求FB的长,只需求AD的长.
(来自《点拨》)
(来自教材)
知4-讲
探
将你的发现 填入表内, 看是否与你 同伴的发现 一致.
索
如果两个三角形只有一组对应相等
的元素,那么会 出现几种情况?这两 个三角形会全等吗? 我们发现: 对应相等的元素 三角形是否全等
(来自教材)
知4-讲
探
索
如果两个三角形有两组对应相等的元素,那么
华师大版八年级数学上册全套精品课件
华师大版八年级数学上册全套精品课件一、教学内容1. 函数及其性质2. 一次函数图像与性质3. 二次函数图像与性质4. 比例函数与反比例函数5. 函数的运用二、教学目标1. 理解函数的定义,掌握各类函数的性质。
2. 学会使用图像法研究函数的性质,提高几何直观能力。
3. 能够运用所学函数知识解决实际问题。
三、教学难点与重点重点:函数的定义、性质、图像及其应用。
难点:二次函数图像的绘制与性质分析,函数在实际问题中的应用。
四、教具与学具准备1. 教具:多媒体教学设备,PPT课件,黑板,粉笔。
2. 学具:直尺,圆规,计算器,练习本。
五、教学过程1. 引入:通过展示生活中的实际例子,让学生感受函数在生活中的运用,激发学习兴趣。
示例:某商品的价格与购买数量之间的关系。
2. 知识讲解:(1) 函数的定义及表示方法。
(2) 一次函数、二次函数、比例函数、反比例函数的图像与性质。
(3) 函数在实际问题中的应用。
3. 例题讲解:(1) 求解一次函数的解析式。
(2) 分析二次函数的图像与性质。
(3) 利用函数解决实际问题。
4. 随堂练习:(1) 画出给定函数的图像。
(2) 分析给定函数的性质。
六、板书设计1. 函数的定义及表示方法。
2. 各类函数的图像与性质。
3. 函数在实际问题中的应用。
七、作业设计1. 作业题目:(1) 求解一次函数y=2x+3与y=3x1的交点坐标。
(2) 画出二次函数y=x^22x3的图像,并分析其性质。
(3) 某商店举行促销活动,购买数量x(x为正整数)与单价y (元)之间的关系为y=100.2x,求购买数量为5、10、15时的单价。
2. 答案:(1) 交点坐标为(2, 7)。
(2) 图像为开口向上的抛物线,顶点坐标为(1, 4),对称轴为x=1。
(3) 购买数量为5、10、15时的单价分别为8元、7元、6元。
八、课后反思及拓展延伸1. 反思:对本节课的教学过程进行反思,查找不足之处,为今后的教学提供改进方向。
2024年华师大版八年级数学上册全套精品课件
2024年华师大版八年级数学上册全套精品课件一、教学内容本节课我们将学习2024年华师大版八年级数学上册教材第3章《整式的乘除》以及第4章《因式分解》。
详细内容包括整式的乘法法则、整式的除法法则、多项式乘以多项式、因式分解的定义及方法。
二、教学目标1. 理解并掌握整式的乘除法则,能够熟练地进行整式乘除运算。
2. 学会多项式乘以多项式的运算方法,并能应用于解决实际问题。
3. 掌握因式分解的定义及常用方法,能够对简单的多项式进行因式分解。
三、教学难点与重点教学难点:整式的除法法则、因式分解的方法。
教学重点:整式的乘法法则、多项式乘以多项式、因式分解的应用。
四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔。
2. 学具:练习本、笔、计算器。
五、教学过程1. 导入:通过一个实际情景引入整式的乘除,让学生感受到数学与生活的紧密联系。
2. 新课:讲解整式的乘法法则,通过例题进行讲解,然后让学生进行随堂练习。
3. 练习:针对整式的除法法则,设计一些练习题,让学生独立完成,然后进行讲解。
5. 新课:引入多项式乘以多项式,通过例题讲解,让学生学会运算方法。
6. 练习:设计一些多项式乘以多项式的练习题,让学生巩固所学知识。
7. 新课:讲解因式分解的定义及方法,通过例题进行讲解,让学生理解并掌握。
8. 练习:设计一些因式分解的练习题,让学生独立完成,然后进行讲解。
10. 互动:鼓励学生提问,解答学生在学习过程中遇到的问题。
六、板书设计1. 整式的乘法法则2. 整式的除法法则3. 多项式乘以多项式4. 因式分解的定义及方法七、作业设计1. 作业题目:(1)计算:3x(x+2) 2(x1)(x+2)(2)计算:(x+3)(x3) ÷ (x2)(3)因式分解:x^2 5x + 6(4)因式分解:2x^2 8x2. 答案:(1)3x^2 + 4x 2(2)x + 5(3)(x2)(x3)(4)2x(x4)八、课后反思及拓展延伸1. 反思:本节课学生对整式的乘除及因式分解掌握程度如何,有哪些需要改进的地方。
华师大版八年级数学上册全套课件
华师大版八年级数学上册全套课件一、教学内容本节课的教学内容选自华师大版八年级数学上册,主要包括第四章《二次根式》的第一节《平方根与算术平方根》和第二节《立方根》。
本节课将引导学生掌握平方根和立方根的定义,能够熟练运用平方根和立方根进行计算,并解决实际问题。
二、教学目标1. 理解平方根和立方根的概念,掌握求一个数的平方根和立方根的方法。
2. 能够运用平方根和立方根解决实际问题,提高学生的应用能力。
3. 培养学生的逻辑思维能力和团队合作能力。
三、教学难点与重点重点:平方根和立方根的概念及求法。
难点:平方根和立方根在实际问题中的应用。
四、教具与学具准备教具:PPT、黑板、粉笔。
学具:笔记本、尺子、圆规。
五、教学过程1. 实践情景引入:提问:同学们,你们知道我们生活中有哪些地方会用到平方根和立方根吗?引导学生思考,并举例说明。
2. 知识讲解:(1)平方根:引导学生通过PPT演示,了解平方根的定义,讲解平方根的求法。
(2)立方根:同样通过PPT演示,讲解立方根的定义和求法。
3. 例题讲解:(1)求下列数的平方根:4、9、16。
(2)求下列数的立方根:27、64。
4. 随堂练习:(1)求下列数的平方根:16、25、36。
(2)求下列数的立方根:8、125。
5. 学生自主学习:让学生分组讨论,运用平方根和立方根解决实际问题。
6. 成果展示:邀请几组学生分享他们解决的实际问题,并讲解解题过程。
六、板书设计板书内容:平方根:一个非负数a的平方根是另一个数b,使得b²=a。
立方根:一个数a的立方根是另一个数b,使得b³=a。
七、作业设计1. 求下列数的平方根:16、25、36。
答案:16的平方根是4,25的平方根是5,36的平方根是6。
2. 求下列数的立方根:8、125。
答案:8的立方根是2,125的立方根是5。
3. 运用平方根和立方根解决实际问题:一个长方体的长、宽、高分别是2m、3m和4m,求它的体积和表面积。
最全华师大版初中数学八年级上册全册课件
实数在实际生活中的应用
长度测量
在现实生活中,很多物体的长度 、距离等都是以实数的形式表示 的,例如身高、体重、路程等。
比例计算
在商业、农业等领域中,常常需要 进行比例计算,如利息计算、成本 与售价的比例等。
数据分析
在统计学中,数据通常以实数的形 式表示和分析,如平均数、中位数 、众数等。
04
第三章:一次函数
Chapter
轴对称图形的概念和性质
轴对称图形的定义
如果一个平面图形沿着一条直线折叠后,直线两旁的部分 能够互相重合,那么这个图形叫做轴对称图形,这条直线 叫做对称轴。
轴对称图形的性质
轴对称图形具有对称性,即图形关于对称轴对称,其对称 轴两侧的图形完全相同。
轴对称图形的特点
轴对称图形具有稳定性,可以用于建筑设计、艺术创作等 领域。
许多建筑物都采用了轴对称的设计,如故宫、天坛等,这种设计可以增加建筑的稳定性和 美感。
商标设计
许多商标采用了轴对称的设计,如中国联通的标志等,这种设计可以增加商标的辨识度和 美感。
艺术创作
轴对称图形在艺术创作中也有广泛应用,如绘画、雕塑等,这种创作方式可以增加艺术作 品的表现力和美感。
THANKS
情感态度与价值观
培养学生对数学的兴趣和 爱好,树立正确的数学观 念,形成良好的学习习惯 和科学态度。
02
第一章:有理数
Chapter
有理数的概念
有理数的定义
有理数是可以表示为两个 整数之比的数,包括整数 、分数和十进制数。
有理数的分类
正有理数、负有理数和零 。
有理数的数轴表示
有理数可以在数轴上表示 ,其中正数位于原点右侧 ,负数位于原点左侧,零 位于原点。
新华师大版数学八年级上册教学课件
一次函数图像
一次函数的图像是一条直线,其 斜率为 a,截距为 b。
一次函数性质
一次函数的单调性取决于系数 a 的正负,当 a > 0 时,函数为增 函数;当 a < 0 时,函数为减函
数。
04
第三章:三角形与全等
三角形的基本性质
三角形的基本定义
三角形是由三条边和三个角构成的闭合二维图形 。
将两个分式相减,即 $frac{P(x)}{Q(x)} frac{R(x)}{Q(x)} = frac{P(x) - R(x)}{Q(x)}$ 。
将一个分式乘以另一个 分式,即 $frac{P(x)}{Q(x)} times frac{R(x)}{S(x)} = frac{P(x) times R(x)}{Q(x) times S(x)}$ 。
函数的图像表示
函数图像
函数的图像表示了输入值 与输出值之间的关系,通 常在平面坐标系中绘制。
图像绘制
通过描点法或解析法绘制 函数的图像,可以直观地 了解函数的性质和变化规 律。
图像变换
通过平移、伸缩、对称等 变换,可以研究函数的变 化规律和性质。
一次函数
一次函数定义
形如 y = ax + b (a ≠ 0) 的函数 称为一次函数,其中 x 是自变量
教学目的与目标
目的:通过本课程的学习,学生能够掌握数学基础知识 ,提高数学思维能力,培养解决实际问题的能力,为后 续学习打下坚实的基础。 掌握数学基础知识,包括整数、有理数、实数、代数式 、方程等。
提高解决实际问题的能力,能够运用所学数学知识解决 生活中的实际问题。
目标
培养数学思维能力,包括逻辑思维、抽象思维、创新思 维等。
华师大版八年级上册数学课件(第11章 数的开方)
2 下列说法错误的是( A. B. C. 表示 3 3的平方根
3 3的算术平方根 表示
表示 3 3的正平方根
D.±
表示 3 3的平方根
知2-讲
知识点
2
求算术平方根
【例2】 求下列各数的算术平方根: 1 (1)64; (2)2 ; (3)0.36; 4
(4) 412 -402 .
导引:根据算术平方根的定义要求一个非负数的算术平 方根,只要找到一个非负数的平方等于这个非负 数即可.
知1-导
知识点
1
算数平方根的定义
定义:正数a的正的平方根,叫做a的算术平方根. 规定:0的算术平方根是0. 表示方法:正数a的算术平方根记作 a,读作“根号 a”;正数a的平方根可以记作± a ,其中a称为
被开方数.
知1-讲
【例1】
下列说法正确的是( A )
A.3是9的算术平方根 B.-2是4的算术平方根 C. ( - 2)² 的算术平方根是-2 D.-9的算术平方根是3 导引:要正确把握算术平方根的定义.因为 3的平方等于9, 所以3是9的算术平方根;因为-2不是正数,所以
知2-讲
总 结
本题 (1)运用平方根的定义列方程;
(2)运用平方根性质中两个平方根的关系列方程;通
过列方程运用方程思想求相关待定字母的值是数学 中常用的方法.
知2-练
1 下列说法正确的是( A.0的平方根是0 B.1的平方根是1 C.-1的平方根是±1 D.4的平方根是-2
)
2 若a是b(b>0)的一个平方根,则b的平方根是(
第十一章
数的开方
11.1
平方根与立方根
第1课时
平方根
1
课堂讲解
新华师大版数学八年级上册教学课件(全册)
例题讲解 正实数的大小比较和运算, 通常可取它们的近似值来进行
例3.(1)试估计 3 2与的大小关系
(2)比较2 3和3 2, 7 6和 6 5的大小
(3)计算: 2 3 3 2 .(结果精确到0.01)
22 , 7 ,0.2022022202222... 中 72
整数有:
有理数有:
无理数有:
例题讲解
以前学过的有关有理数的相反数和绝对值等概念、大 小比较、运算法则以及运算律,对于实数也适用.
实数的相反数、绝对值意义和有理数是一样的.
如: 2 的相反数是 2, 的相反数是 ,
0的相反数是0.
2
练习 1.判断下列说法是否正确: (1)两个无理数相加或相减结果 一定是一个无理数 (2)任意一个无理数的绝对值是 正数. 2 6 3 7
2.计算: 位小数2)2和3 2
.(结果保留两
7 和
2
3
4.
1
,0,3
1
.
,0.15,
3,
,
2
5,
27
33
16,3 3,3.1415926 ,0.010010001 • • •
0.62
能力提升:
平方根
立方根
正数 0
两个平方根,它们 一个正的立方根 互为相反数
0
0
负数
没有
一个负的立方根
立方根的特征 任何一个数 a 都只有一个立方根
一个正数有一个正的立方根; 一个负数有一个负的立方根, 零的立方根是零。
课后作业:见学生用书 课后思考:
3 a 3 a吗?
华东师大版八年级上册
华东师大版八年级上册数学整册教学课件(1)
华东师大版八年级上册数学整册教学课件一、教学内容1. 第1章:实数1.1 有理数的平方1.2 无理数的平方1.3 实数的性质1.4 实数的运算2. 第2章:一元二次方程2.1 一元二次方程的定义与标准形式2.2 解一元二次方程2.3 一元二次方程的根与系数的关系2.4 一元二次方程的应用3. 第3章:平面几何3.1 两点间距离公式3.2 直线的斜率3.3 一次函数的图像与性质3.4 一次函数的应用二、教学目标1. 掌握实数的概念、性质和运算方法,能够解决实际问题。
2. 学会解一元二次方程,理解根与系数的关系,并能应用于实际问题的解决。
3. 掌握平面几何中两点间距离公式、直线的斜率等基本概念,了解一次函数的图像与性质,并能解决相关实际问题。
三、教学难点与重点1. 教学难点:实数的运算、一元二次方程的解法、一次函数的图像与性质。
2. 教学重点:实数的概念、一元二次方程的应用、平面几何的基本概念。
四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔。
2. 学具:直尺、圆规、三角板、计算器。
五、教学过程1. 导入:通过实际情景引入实数的概念,激发学生兴趣。
2. 基本概念与性质:讲解实数的定义、性质,举例说明实数的运算方法。
3. 例题讲解:选取典型例题,讲解实数的运算、一元二次方程的解法、一次函数的图像与性质。
4. 随堂练习:设计针对性练习题,让学生巩固所学知识。
6. 应用:讲解实际应用问题,让学生运用所学知识解决问题。
六、板书设计1. 实数的概念与性质2. 实数的运算方法3. 一元二次方程的解法4. 一次函数的图像与性质5. 实际应用问题七、作业设计1. 作业题目:(1)计算:(3)²、√9、(2+√3)(2√3)。
(2)解一元二次方程:x²5x+6=0。
(3)已知直线y=2x+1,求点A(3,7)到该直线的距离。
2. 答案:(1)9、3、1。
(2)x1=2,x2=3。
(3)距离为3。
华师大版八年级上册数学全册课件
例3 将下列各数开平方.
(1) 49;
(2) 4 .
25
解:(1)因为7²=49,所以 49 =7,
所以49的平方根为± 49 =±7.Fra bibliotek(2)
.
知3-讲
总结
知3-讲
我们是通过观察,利用开平方与平方的关系来 求平方根的. 通常可用计算器直接求出一个正数的 算术平方根(有时得到的是近似值).
(此讲解来源于《教材》)
5 ②a2的平方根是a;
6 ③2是4的平方根;
7 ④4的平方根是2.
8 A.1个 B.2个 C.3个 D.4个
知1-练
知识点 2 平方根的性质
知2-导
试一试
1. 144的平方根是什么? 2. 0的平方根是什么? 3. -4有没有平方根?为什么?
请你自己也编三道求平方根的题目,并给出解答.
知2-讲
知2-讲
解:(1)由平方根的定义得3+a=52.所以a=22. (2)因为正数x有两个平方根,分别是-a+2与2a-1,
所以(-a+2)+(2a-1)=0,解得a=-1. 所以x=(-a+2)2=(1+2)2=9.
总结
知2-讲
本题 (1)运用平方根的定义列方程; (2)运用平方根性质中两个平方根的关系列方程;通
华师大版八年级上册数学 全册课件
2021/9/24
第十一章 数的开方
11.1 平方根与立方根
第1课时 平方根
要剪出一张面积为25cm²的正方形纸片,正方形的 边长是多少?
知识点 1 平方根的定义
知1-导
本章导图中提出的问题,就是已知正方形的面 积为 25 cm²,求这个正方形的边长.
容易知道,这个正方形的边长是5 cm. 上述问题实质上就是要求一个数,这个数的平方 等于25.
华师大版八年级数学上册全套优质课件
华师大版八年级数学上册全套优质课件一、教学内容详细内容包括:1. 实数的概念、性质及运算;2. 平方根与立方根的定义、性质及运用;3. 一元二次方程的解法、根与系数的关系;4. 向量的概念、向量加减法、向量坐标表示;5. 平行四边形的性质、判定及运用;6. 数据描述的方法、频数分布直方图等。
二、教学目标1. 理解并掌握实数、平方根与立方根、一元二次方程、向量、平行四边形等基本概念和性质;2. 学会运用实数、平方根与立方根、一元二次方程解决实际问题;3. 掌握向量加减法、向量坐标表示,并能应用于几何问题;4. 能够运用数据描述方法,对数据进行整理和分析。
三、教学难点与重点1. 教学难点:平方根与立方根的性质、一元二次方程的解法、向量的运用;2. 教学重点:实数的概念与性质、平行四边形的性质与判定、数据描述方法。
四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔、尺子、圆规等;2. 学具:教材、练习本、铅笔、直尺、圆规等。
五、教学过程1. 引入:通过实际情景,引导学生发现数学问题,激发学习兴趣;2. 讲解:对每个知识点进行详细讲解,结合例题,使学生理解并掌握;3. 练习:设计随堂练习,巩固所学知识,及时发现问题,进行针对性讲解;5. 互动:鼓励学生提问、发表观点,增进师生互动,提高课堂氛围;6. 作业布置:布置适量作业,巩固所学知识。
六、板书设计1. 华师大版八年级数学上册优质课件;2. 知识点:按照章节顺序,列出每个知识点的;3. 例题:精选具有代表性的例题,展示解题过程;4. 随堂练习:设计针对性强、难度适中的练习题;七、作业设计1. 作业题目:(1)实数的性质与运算;(2)平方根与立方根的应用;(3)一元二次方程的解法;(4)向量的加减法及坐标表示;(5)平行四边形的性质与判定;(6)数据描述方法。
2. 答案:提供详细解答,帮助学生自我检测。
八、课后反思及拓展延伸2. 拓展延伸:针对学有余力的学生,提供拓展性练习,提高学生思维能力。
华师大版八年级数学上册全套精品课件
华师大版八年级数学上册全套精品课件一、教学内容1. 函数的概念及其性质函数的定义与表示方法函数的性质:单调性、奇偶性、周期性2. 一次函数一次函数的图像与性质一次函数的应用3. 二次函数二次函数的图像与性质二次函数的应用4. 比例函数与反比例函数比例函数的性质与图像反比例函数的性质与图像二、教学目标1. 让学生理解函数的概念,掌握函数的表示方法。
2. 使学生掌握一次函数、二次函数、比例函数与反比例函数的性质及其图像特点。
3. 培养学生运用函数知识解决实际问题的能力。
三、教学难点与重点1. 教学难点:函数的性质及其应用、一次函数与二次函数的图像与性质。
2. 教学重点:函数的定义、表示方法、性质及其在实际问题中的应用。
四、教具与学具准备1. 教具:多媒体教学设备、PPT课件、函数图像模型。
2. 学具:直尺、圆规、函数图像纸、计算器。
五、教学过程1. 实践情景引入通过展示实际生活中的函数关系,激发学生学习兴趣。
2. 例题讲解讲解函数的定义、表示方法,举例说明。
分析一次函数、二次函数、比例函数与反比例函数的性质,结合图像进行讲解。
3. 随堂练习根据讲解内容,设计不同难度的练习题,让学生及时巩固所学知识。
对学生进行个别辅导,解答学生的疑问。
4. 小组讨论将学生分为小组,讨论函数在实际问题中的应用。
各小组汇报讨论成果,进行交流分享。
六、板书设计1. 板书内容:函数的定义、表示方法、性质、图像特点。
2. 板书结构:采用总分结构,条理清晰,重点突出。
七、作业设计1. 作业题目:画出一次函数y=2x+3的图像,并说明其性质。
已知二次函数y=x^24x+4的图像,求其顶点坐标和开口方向。
2. 答案:一次函数y=2x+3的图像是一条斜率为2,截距为3的直线,性质为单调递增。
二次函数y=x^24x+4的顶点坐标为(2,0),开口方向向上。
八、课后反思及拓展延伸2. 拓展延伸:引导学生进一步研究函数的性质,如极值、最值等。
华东师大版八年级上册数学《实数》教学课件(1)
华东师大版八年级上册数学《实数》教学课件一、教学内容本节课选自华东师范大学出版社八年级上册数学教材,《实数》章节。
详细内容包括实数的定义、分类、性质及其在数轴上的表示,特别是无理数的概念和性质,着重介绍开平方根、π等无理数的理解,并探讨实数的运算规则。
二、教学目标1. 理解实数的概念,掌握实数的分类,能够区分有理数和无理数。
2. 能够在数轴上正确表示实数,理解实数与数轴之间的对应关系。
3. 掌握实数的运算规则,并能够应用于解决实际问题。
三、教学难点与重点教学难点:无理数的理解和运算,特别是开平方根和π的处理。
教学重点:实数的定义和性质,实数在数轴上的表示,以及实数的运算规则。
四、教具与学具准备1. 教具:多媒体教学课件、黑板、实数教学挂图。
2. 学具:直尺、圆规、计算器(仅用于探索无理数时使用)。
五、教学过程1. 导入新课:通过展示日常生活中的测量问题,如圆形花坛的面积计算,引出无理数的概念。
2. 新知探究:a. 通过数轴介绍实数的定义,对比有理数和无理数。
b. 例题讲解:求解2的平方根,解释无理数的性质。
c. 小组讨论:探讨π的值及其在数学中的应用。
3. 知识巩固:a. 随堂练习:在数轴上表示给定的实数。
b. 例题讲解:实数的加减乘除运算,特别是无理数的运算。
4. 应用拓展:a. 解决导入中提出的问题,应用实数进行计算。
b. 探讨实数在实际问题中的应用,如黄金分割比例。
六、板书设计1. 实数的定义与分类。
2. 数轴上的实数表示。
3. 实数的运算规则。
4. 无理数的性质与运算。
七、作业设计1. 作业题目:a. 列出五个有理数和五个无理数,并在数轴上表示它们。
b. 计算:(1)√2 + √3;(2)π × (3 + √5)。
2. 答案:a. 略。
b. (1)结果是无理数,只需保留根号形式;(2)结果为π乘以一个无理数,可以简化为无理数表达式。
八、课后反思及拓展延伸1. 反思:学生对实数概念的理解程度,以及他们在实数运算中的困难。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 立方根
2020最新华师大版八年级数学上册 教学课件(所有课时)
11.2 实数
2020最新华师大版八年级数学上册 教学课件(所有课时)
阅读材料 为什么√2不是有理数
2020ห้องสมุดไป่ตู้新华师大版八年级数学上册 教学课件(所有课时)
第11章 数的开方
2020最新华师大版八年级数学上册 教学课件(所有课时)
11.1 平方根与立方根
2020最新华师大版八年级数学上册 教学课件(所有课时)
1 平方根/算术平方根
2020最新华师大版八年级数学上册 教学课件(所有课时)
2020最新华师大版八年级数学上 册教学课件(所有课时)目录
0002页 0035页 0064页 0081页 0109页 0164页 0173页 0184页 0186页 0234页 0248页 0263页 0351页 0366页 0368页 0370页 0417页
第11章 数的开方 1 平方根/算术平方根 11.2 实数 第12章 整式的乘除 1 同底数幂的乘法 3 积的乘方 12.2 整式的乘法 2 单项式与多项式相乘 12.3 乘法公式 2 两数和(差)的平方 12.4 整式的除法 2 多项式除以单项式 综合与实践 面积与代数恒等式 13.1 命题、定理与证明 2 定理与证明 1 全等三角形 3 边角边