江西省新余市第四中学2017年“庆元旦”八年级数学竞赛试卷含答案

合集下载

2017年全国初中数学联合竞赛(初二年级)试题参考答案及

2017年全国初中数学联合竞赛(初二年级)试题参考答案及

在 Rt △ EAD 中,有 422 (98 x)2 x2 ,解得 x 58 .
2017 年全国初中数学联合竞赛试题(初二年级)参考答案及评分标准 第 2 页(共 5 页)
二、填空题:(本题满分 28 分,每小题 7 分)
1.使得等式 1 1 a 3 a 成立的实数 a 的值为_______. 【答】 8 . 由所给等式可得 (1 1 a)3 a2 .令 x 1 a ,则 x 0 ,且 a x2 1,于是有 (1 x)3 (x2 1)2 ,
4.已知正整数 a,b, c 满足 a2 6b 3c 9 0 , 6a b2 c 0 ,则 a2 b2 c2 = ( )
A. 424. 【答】C.
B. 430.
C. 441.
D. 460.
由已知等式消去 c 整理得 (a 9)2 3(b 1)2 75 ,所以 3(b 1)2 75 ,又 b 为正整数,解得1 b 6 .
2
2
Байду номын сангаас
3
A
D
F
所以梯形的面积为 1 (1 4) 4 2 10 2 .
2
3
3
E
6.如图,梯形 ABCD 中, AD // BC , A 90 ,点 E 在 AB 上,若 AE 42 ,
BE 28, BC 70 , DCE 45 ,则 DE =
()
B
C
A. 56.
B. 58.
C.60.
D. 62.
为 A. 4. 【答】B.
B.3.
C.2.
D.1.
()
若 (a,b, c) 为好数组,则 abc 2(a b c) 6c ,所以 ab 6 .显然, a 只能为 1 或 2.

2017年全国初中数学联合竞赛(初二年级)试题参考答案和评分标准

2017年全国初中数学联合竞赛(初二年级)试题参考答案和评分标准

若 b =6,则 (a 9)2 0 ,解得 a 9 ,此时 c 18 .
因此, a 9 , b =6, c 18 ,故 a2 b2 c2 =441.
5.梯形 ABCD 中, AD // BC , AB 3 , BC 4 , CD 2 , AD 1,则梯形的面积为 ( )
B
形,底边 AE 边上的高为 32 12 2 2 .
A
D
H
E
C
所以△ ABE 的面积 S 1 AE 2 2 1 BE AH ,故可得 AH 4 2 .
2
2
3
A
D
F
所以梯形的面积为 1 (1 4) 4 2 10 2 .
2
3
3
E
6.如图,梯形 ABCD 中, AD // BC , A 90 ,点 E 在 AB 上,若 AE 42 ,
【答】 20 . 因为 表示100 C,C B, B A中的最小者,所以 100 C , C B , B A ,所以
6 3(100 C ) 2(C B ) (B A) 300 (A B C ) 120,所以 20 .
第一试
一、选择题:(本题满分 42 分,每小题 7 分)
1.已知实数 a,b, c 满足 2a 13b 3c 90, 3a 9b c 72 ,则 3b c = a 2b
A. 2.
B. 1.
C. 0.
D. 1.
【答】B.
()
已知等式可变形为 2(a 2b) 3(3b c) 90 , 3(a 2b) (3b c) 72 ,解得 a 2b 18 ,
A

八年级数学竞赛试卷及解答

八年级数学竞赛试卷及解答

一、选择题(每题5分,共20分)1. 下列各数中,是正有理数的是()A. -3B. 0C. -1/2D. 2解答:D2. 若a < b,且a、b都是正数,那么下列不等式中正确的是()A. a² < b²B. a³ < b³C. a < b²D. a² < b解答:B3. 已知方程3x - 2 = 5,则x的值为()A. 1B. 2C. 3D. 4解答:C4. 在直角坐标系中,点A(2,3)关于x轴的对称点坐标是()A.(2,-3)B.(-2,3)C.(2,-3)D.(-2,-3)解答:A5. 若等腰三角形底边长为4,腰长为6,则该三角形的周长为()A. 14B. 16C. 18D. 20解答:B二、填空题(每题5分,共25分)1. 若a、b是方程x² - 5x + 6 = 0的两个根,则a + b = __________。

解答:52. 在等差数列{an}中,a₁ = 3,公差d = 2,则第10项a₁₀ = __________。

解答:213. 若a² + b² = 25,且a - b = 3,则ab的值为 __________。

解答:164. 已知正方形的对角线长为10,则该正方形的面积是 __________。

解答:505. 若a、b、c是等比数列,且a + b + c = 6,ab = 12,则c²的值为__________。

解答:18三、解答题(共55分)1. 解方程:2(x - 3) + 3(x + 1) = 5。

解答:2x - 6 + 3x + 3 = 55x - 3 = 55x = 8x = 8/52. 已知数列{an}是等差数列,且a₁ = 3,公差d = 2,求第10项a₁₀。

解答:a₁₀ = a₁ + (10 - 1)da₁₀ = 3 + 9 2a₁₀ = 213. 已知三角形的三边长分别为3、4、5,求该三角形的面积。

八年级数学竞赛试题及参考答案

八年级数学竞赛试题及参考答案

八年级数学竞赛试题及参考答案八年级数学竞赛试题(一)一、选择题(每小题5分,共30分) 1.已知2220082008,2ca b a b c k k +=-==++=,且那么的值为( ). A .4 B .14 C .-4 D .14- 2.若方程组312433x y k x y k x y x y +=+⎧<<-⎨+=⎩的解为,,且,则的取值范围是( ). A .102x y <-<B .01x y <-<C .31x y -<-<-D .11x y -<-< 3.计算:2399100155555++++++=( ).A .10151- B .10051- C .101514- D .100514-4.如图,已知四边形ABCD 的四边都相等,等边△AEF 的顶点E 、F 分别在BC 、CD 上,且AE=AB ,则∠C=( ). A .100° B .105° C .110° D .120°5.已知5544332222335566a b c d a b c d ====,,,,则、、、的大小关系是( ). A .a b c d >>> B .a b d c >>> C .b a c d >>> D .a d b c >>> 6.如果把分数97的分子、分母分别加上正整数913a b 、,结果等于,那么a b +的最小 值是( ).A .26B .28C .30D .32 二、填空题:(每小题5分,共30分)(第4题图)DCB(第15题图)EDCBA7.方程组200820092007200720062008x y x y -=⎧⎨-=⎩的解是 .8.如图,已知AB 、CD 、EF 相交于点O ,EF ⊥AB ,OG 为∠COF 的平分线,OH 为∠DOG 的平分线,若∠AOC :∠COG=4:7,则∠GOH= .9.小张和小李分别从A 、B 两地同时出发,相向而行,第一次在距A 地5千米处相遇,继续往前走到各地(B 、A )后又立即返回,第二次在距B 地4千米处两人再次相遇,则A 、B 两地的距离是 千米.10.在△ABC 中,∠A 是最小角,∠B 是最大角,且2∠B=5∠A ,若∠B 的最大值为m °,最小值为n °,则m °+n °= .11.已知21()()()04b c b c a b c a a a+-=--≠=,且,则 . 12.设p q ,均为正整数,且7111015p q <<,当q 最小时,pq 的值为 . 以下三、四、五题要求写出解题过程. 三、(本题满分20分)13.在一次抗击雪灾而募捐的演出中,晨光中学有A 、B 、C 、D 四个班的同学参加演出,已知A 、B 两个班共16名演员,B 、C 两个班共20名演员,C 、D 两个班共34名演员,且各班演员的人数正好按A 、B 、C 、D 次序从小到大排列,求各班演员的人数. 四、(本题满分20分)14.已知2211x x y y x y =+=+≠,,且. ⑴ 求证:1x y +=. ⑵ 求55x y +的值.五、(本题满分20分)15.如图,在△ABC 中AC >BC ,E 、D 分别是AC 、BC 上的点,且∠BAD=∠ABE ,AE=BD .求证:∠BAD=12∠C .G(第8题图)HOFED CBA参考答案一、选择题1.A 2.B 3.C 4.A 5.A 6.B 二、填空题: 7、21x y =⎧⎨=⎩ 8、72.5° 9、11 10、175° 11、2 12、68213、解:依题意得:A+B=16,B+C=20,C+D=34∵A <B <C <D ,∴A <8,B >8,B <10,C >10,C <17,D >17 由8<B <10且B 只能取整数得,B=9 ∴C=11,D=23,A=7答:A 、B 、C 、D 各班演员人数分别是7人、9人、11人、23人。

八年级数学竞赛试题(含答案)-

八年级数学竞赛试题(含答案)-

C DAB八年级数学竞赛试题 一、选择题:1.方程组12,6x y x y ⎧+=⎪⎨+=⎪⎩的解的个数为( ).2.口袋中有20个球,其中白球9个,红球5个,黑球6个.现从中任取10个球,使得白球不少于2个但不多于8个,红球不少于2个,黑球不多于3个,那么上述取法的种数是( ). (A ) 14 (B ) 16 (C )18 (D )20 3.已知三个关于x 的一元二次方程02=++c bx ax ,02=++a cx bx ,02=++b ax cx恰有一个公共实数根,则222a b c bc ca ab++的值为( ).(A ) 0 (B )1 (C )2 (D )34.若3210x x x +++=,则2627--+x x + … +x x ++-11+ … +2726x x +的值是( ) (A )1 (B )0 (C )-1 (D )2 5.若a b c t b c c a a b===+++,则一次函数2y tx t =+的图象必定经过的象限是( ) (A )第一、二象限 (B )第一、二、三象限 (C )第二、三、四象限 (D )第三、四象限6.满足两条直角边长均为整数,且周长恰好等于面积的整数倍的直角三角形的个数有( ) (A)1个 (B) 2个 (C) 3个 (D)无穷多个7.如图在四边形ABCD 中,∠DAB=∠BCD=90°,AB=AD ,若这个四边形的面积是10,则BC+CD 等于( )A .54B .102C .64D .288、已知一组正数x 1,x 2,x 3,x 4,x 5的方差222222123451(20)5S x x x x x =++++-,则关于数据123452,2,2,2,2x x x x x +++++,的说法:(1)方差为2S ;(2)平均数为2;(3)平均数为4; (4)方差为42S ,其中正确的说法是( )(A )(1)与(2) (B )(1)与(3) (C )(2)与(4) (D )(3)与(4)二、填空题:9、已知对所有的实数x,12x m x +≥--恒成立, 则m 可取得的最大值为_______.10.已知方程0322=-+mx x 的方程03232=++m x 有一个公共根α,则实数m=_________;这两个方程的公共根α= _________。

2017年八年级数学竞赛试题

2017年八年级数学竞赛试题

2017年八年级数学竞赛试卷(满分:120分 完卷时间:120分钟)一、选择题(每小题4分,共40分) 1.下列四组数据中,不能..作为直角三角形的三边长的是( ) A . 7,24,25 B .6,8,10 C .9,12,15 D .3,4,62设M=(x -3)(x -7),N=(x -2)(x -8),则M 与N 的关系为( ) A.M <N B.M >N C.M=N D .不能确定3.观察下列等式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187… 解答下列问题:3+32+33+34+…+32015的末位数字是( ) A .0 B .1 C .3 D .94.若实数x 、y 、z 满足2()4()()0x z x y y z ----=.则下列式子一定成立的是【 】 A .0x y z ++= B .20x y z +-= C . 20y z x +-= D . 20z x y +-=5、如图,将等腰直角三角形沿虚线裁去顶角后,∠ 1+∠ 2=( ) A .225° B .235° C .270° D .300°第4题图第6题图第7题图6.已知△ABC 中,AB=AC ,高BD 、CE 交于点O ,连接AO ,则图中全等三角形的对数为( ) A .3 B .4 C .5 D .67、如图,在△ABC 中,∠C=90°,∠BAC=30°,AB=8,AD 平分∠BAC ,点PQ 分别是AB 、AD 边上的动点,则PQ+BQ 的最小值是( )A .4B .5C .6D .7 8、点(3,5)P -关于y 轴对称的点的坐标为( )A . (3,5)--B .(5,3)C .(3,5)-D .(3,5) 9、下列四个命题中,真命题有( )① 两条直线被第三条直线所截,内错角相等.② 如果∠1和∠2是对顶角,那么∠1=∠2. ③ 三角形的一个外角大于任何一个内角. ④ 如果02>x ,那么0>x .A .1个B .2个C .3个D .4个 10、.当x=1时,ax+b+1的值为﹣2,则(a+b ﹣1)(1﹣a ﹣b )的值为( ) A .﹣16B .﹣8C .8D . 16二、填空题(每小题6分,共36分)11.若与是同类项,则xy=.10. 如图,直线l ∥m ,将含有45°角的三角板ABC 的直角顶点C 放在直线m 上,则∠1+∠2的度数为.第10题图 第14题图 12.如果2222(2)(2)45a b a b +++-=,则a 2+b 2的值为.532+y x b a xy b a 2425-OEDC AQPCBD A B C O13.已知2(25)1000a +=,则(15)(35)a a ++的值为.14.如图,在△ABC 中,I 是三内角平分线的交点,∠B I C=130°,则∠A=. 15.如图AB=AC,则数轴上点C 所表示的数为第15题图 第16题图16、如图,钢架中,焊上等长的13根钢条来加固钢架,若AP 1=P 1P 2=P 2P 3=…=P 13P 14=P 14A ,则∠A 的度数是.二、解答题17(12分).已知:3a =2,3b =6,3c =18,试确定a 、b 、c 之间的数量关系.18.(16分)右图是5个连长为1的正方形的“L 形”图,过格点T 的直线交AB 于点E ,交BC 于点F.如果三角形BFE 的面积为“L 形”图面积的一半,求EF 的长度。

八年级数学竞赛试题及参考答案

八年级数学竞赛试题及参考答案

八年级数学竞赛试题及参考答案八年级数学竞赛试题(一)一、选择题(每小题5分,共30分) 1.已知2220082008,2ca b a b c k k +=-==++=,且那么的值为( ). A .4 B .14 C .-4 D .14- 2.若方程组312433x y k x y k x y x y +=+⎧<<-⎨+=⎩的解为,,且,则的取值范围是( ).A .102x y <-<B .01x y <-<C .31x y -<-<-D .11x y -<-<3.计算:2399100155555++++++=( ). A .10151- B .10051- C .101514- D .100514-4.如图,已知四边形ABCD 的四边都相等,等边△AEF 的顶点E 、F 分别在BC 、CD 上,且AE=AB ,则∠C=( ). A .100° B .105° C .110° D .120°5.已知5544332222335566a b c d a b c d ====,,,,则、、、的大小关系是( ). A .a b c d >>> B .a b d c >>>C .b a c d >>>D .a d b c >>>6.如果把分数97的分子、分母分别加上正整数913a b 、,结果等于,那么a b +的最小 值是( ).A .26B .28C .30D .32 二、填空题:(每小题5分,共30分)(第4题图)DCB(第15题图)EDCBA7.方程组200820092007200720062008x y x y -=⎧⎨-=⎩的解是 .8.如图,已知AB 、CD 、EF 相交于点O ,EF ⊥AB ,OG 为∠COF 的平分线,OH 为∠DOG 的平分线,若∠AOC :∠COG=4:7,则∠GOH= .9.小张和小李分别从A 、B 两地同时出发,相向而行,第一次在距A 地5千米处相遇,继续往前走到各地(B 、A )后又立即返回,第二次在距B 地4千米处两人再次相遇,则A 、B 两地的距离是 千米.10.在△ABC 中,∠A 是最小角,∠B 是最大角,且2∠B=5∠A ,若∠B 的最大值为m °,最小值为n °,则m °+n °= .11.已知21()()()04b c b c a b c a a a+-=--≠=,且,则 . 12.设p q ,均为正整数,且7111015p q <<,当q 最小时,pq 的值为 . 以下三、四、五题要求写出解题过程. 三、(本题满分20分)13.在一次抗击雪灾而募捐的演出中,晨光中学有A 、B 、C 、D 四个班的同学参加演出,已知A 、B 两个班共16名演员,B 、C 两个班共20名演员,C 、D 两个班共34名演员,且各班演员的人数正好按A 、B 、C 、D 次序从小到大排列,求各班演员的人数. 四、(本题满分20分)14.已知2211x x y y x y =+=+≠,,且. ⑴ 求证:1x y +=.⑵ 求55x y +的值. 五、(本题满分20分)15.如图,在△ABC 中AC >BC ,E 、D 分别是AC 、BC 上的点,且∠BAD=∠ABE ,AE=BD .求证:∠BAD=12∠C .参考答案一、选择题1.A 2.B 3.C 4.A 5.A 6.BG (第8题图)HOFED CBA二、填空题: 7、21x y =⎧⎨=⎩8、72.5° 9、11 10、175° 11、2 12、68213、解:依题意得:A+B=16,B+C=20,C+D=34∵A <B <C <D ,∴A <8,B >8,B <10,C >10,C <17,D >17 由8<B <10且B 只能取整数得,B=9 ∴C=11,D=23,A=7答:A 、B 、C 、D 各班演员人数分别是7人、9人、11人、23人。

2017年全国初中数学联合竞赛(初二决赛)试题参考答案及评分标准

2017年全国初中数学联合竞赛(初二决赛)试题参考答案及评分标准

2017年全国初中数学联合竞赛(初二决赛)试题参考答案及评分标准说明:评阅试卷时,请依据本评分标准.选择题和填空题只设7分和0分两档;解答题,请严格按照本评分标准规定的评分档次给分,不要再增加其他中间档次.如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时请参照本评分标准划分的档次,给予相应的分数.一、选择题(本题满分42分,每小题7分)1、C2、D3、A4、B5、C6、B二、填空题(本题满分28分,每小题7分)7、23 8、75° 9、13(0.5225或填) 10、16 三、(本题共三小题,第11题20分,第12、13题各25分,满分70分)11.已知关于x 的方程a x =--12有且仅有两个解,求实数a 的取值范围.解:由已知必有0≥a ,由原方程得:21x a -=± (1);……………………5分 若1>a ,则21x a -=+,此时方程(1)有两解,对应原方程也有两解;……10分 若10≤≤a ,此时方程(1)的解为:a x +=3,a x -=3,a x +=1,a x -=1,要使原方程只有两解,则四个解中必有两个解相等.若a a x -=+=33,得0=a ,此时a a x -=+=11,故原方程有两解;若a a x -=+=13,得1-=a (舍去),若a a x +=-=13,得1=a ,此时方程有三个解,不符合要求;显然a a +≠+13,a a -≠-13。

故此时0=a 原方程有两解.综上,0=a 或1>a 时原方程有两解.………………………………………………20分12.如图,已知等腰直角三角形ABC 中,90B ∠=︒,D 为BC 的中点,E 为线段AC 上一点,且EDC ADB ∠=∠.求BE EDBD+的值.解:过点C 作BC 的垂线交DE 的延长线于点F ,连结AF.易证△ABD ≌△FCD. ∴AD=FD. ……………………5分易证四边形ABCF 是正方形,∴AB=AF. ……………10分易证△ABE ≌△AFE ,∴FE=BE. ……………………15分∴AD=FD=DE+EF= BE +ED. …………………………20分∴BE ED AD BD BD+==25分 13. 从连续的自然数1,2,…,2017中可以取出n 个不同的数,使所取出的这n 个不同的数中任意三个数之和都能被21整除.求n 的最大值.解:设a 、b 、c 、d 是所取出的任意四个数.由题意有m c b a 21=++,n d b a 21=++,其中,m 、n 为正整数.所以,)(21n m d c -=-.上式表明,所取出的数中任意两数之差是21的倍数,即所取的每个数除以21所得的余数相同.……………………………………………………………………………………5分设这个余数为k ,于是,k a a +=121,k b b +=121,k c c +=121,其中,1a 、1b 、1c 是整数,210<≤k .……………………………………………………………… 10分则k c b a c b a 3)(21111+++=++.因为c b a ++能被21整除,所以,k 3能被21整除,即k 能被7整除.因此,k =0,7或14.………………………………………15分当0=k 时,可取21,42,63,…,2016共96个数,符合题意;当7=k 时,可取7,28,49,…,2002共96个数,符合题意;当14=k 时,可取14,35,56,…,2009共96个数,符合题意……………20分 综上所述,n 的最大值是96.………………………………………………………25分。

八年级数学竞赛题及答案解析

八年级数学竞赛题及答案解析

八年级数学竞赛题及答案解析Prepared on 24 November 2020八年级数学竞赛题(本检测题满分:120分,时间:120分钟) 班级: 姓名: 得分: 一、选择题(每小题3分,共30分)1.下列四个实数中,绝对值最小的数是( )A .-5B .-2C .1D .4 2.下列各式中计算正确的是( )A .9)9(2-=- B .525±= C .3311()-=- D .2)2(2-=-3.若901k k <<+ (k 是整数),则k =( ) A. 6 B. 7 D. 94.下列计算正确的是( ) ·ab =2ab-=3(a ≥0) D.·=(a ≥0,b ≥0)5.满足下列条件的三角形中,不是直角三角形的是( )A.三内角之比为1∶2∶3B.三边长的平方之比为1∶2∶3C.三边长之比为3∶4∶5D.三内角之比为3∶4∶56.已知直角三角形两边的长分别为3和4,则此三角形的周长为( ) A .12 B .7+7 C .12或7+7 D .以上都不对7.将一根24 cm 的筷子置于底面直径为15 cm ,高为8 cm 的圆柱形水杯中,设筷子露在杯子外面的长度为h cm ,则h 的取值范围是( ) A .h ≤17 B .h ≥8 C .15≤h ≤16D .7≤h ≤168.在直角坐标系中,将点(-2,3)关于原点的对称点向左平移2个单位长度得到的点的坐标是( )A .(4, -3)B .(-4, 3)C .(0, -3)D .(0, 3)9.在平面直角坐标系中,△ABC 的三个顶点坐标分别为A (4,5),B (1,2),C (4,2),将△ABC 向左平移5个单位长度后,A 的对应点A 1的坐标是( )A .(0,5)B .(-1,5)C .(9,5) D .(-1,0)10.平面直角坐标系中,过点(-2,3)的直线l 经过第一、二、三象限,若点(0,a ),(-1,b ),(c ,-1)都在直线l 上,则下列判断正确的是( ) A. b a <B. 3<aC. 3<bD. 2-<c二、填空题(每小题3分,共24分) 11.函数y =的自变量x 的取值范围是________.12.点 P (a ,a -3)在第四象限,则a 的取值范围是 .13.已知点P (3,-1)关于y 轴的对称点Q 的坐标是(a +b ,1-b ),则a b 的值为__________.14.某水库的水位在5小时内持续上涨,初始的水位高度为6米,水位以每小时米的速度匀速上升,则水库的水位高度y 米与时间x 小时(0≤x ≤5)的函数关系式为__________.15.在△ABC 中,a ,b ,c 为其三边长,,,,则△ABC 是_________.16.在等腰△ABC 中,AB =AC =10 cm ,BC =12 cm ,则BC 边上的高是_________cm .17.若),(b a A 在第二、四象限的角平分线上,a 与b 的关系是_________.18已知:m 、n 为两个连续的整数,且m <<n ,则m +n =_________. 三、解答题(共66分) 19.(8分)如图,已知等腰△的周长是,底边上的高的长是, 求这个三角形各边的长.20.(8分)计算:(1)44.1-21.1; (2)0)31(33122-++;(3)2)75)(75(++-; (4)2224145-.ABC第19题图21.(8分)在平面直角坐标系中,顺次连接A (-2,1),B (-2,-1),C (2,-2),D (2,3)各点,你会得到一个什么图形试求出该图形的面积.22.(8分)已知a 31-和︱8b -3︱互为相反数,求()2-ab -27 的值.23.(8分)设一次函数y =kx +b (k ≠0)的图象经过A (1,3), B (0,-2)两点,试求k ,b 的值.24.(8分)一架云梯长25 m ,如图所示斜靠在一面墙上,梯子底端C 离墙7 m. (1)这个梯子的顶端A 距地面有多高(2)如果梯子的顶端下滑了4 m ,那么梯子的底部在水平方向也是滑动了4 m 吗第24题图 第25题图25.(8分)甲、乙两人匀速从同一地点到1 500米处的图书馆看书,甲出发5分钟后,乙以50米/分的速度沿同一路线行走.设甲、乙两人相距s (米),甲行走的时间为t (分),s 关于t 的函数图象的一部分如图所示. (1)求甲行走的速度; (2)在坐标系中,补画s 关于t 的函数图象的其余部分;(3)问甲、乙两人何时相距360米26.(10分)某服装公司招工广告承诺:熟练工人每月工资至少3 000元,每天工作8小时,一个月工作25天,月工资底薪800元,另加计件工资.加工1件A 型服装计酬16元,加工1件B 型服装计酬12元.在工作中发现一名熟练工加工1件A 型服装和2件B 型服装需4小时,加工3件A 型服装和1件B 型服装需7小时.(工人月工资=底薪+计件工资)(1)一名熟练工加工1件A 型服装和1件B 型服装各需要多少小时 (2)一段时间后,公司规定:“每名工人每月必须加工A ,B 两种型号的服装,且加工A 型服装数量不少于B 型服装的一半”.设一名熟练工人每月加工A 型服装a 件,工资总额为W 元,请你运用所学知识判断该公司在执行规定后是否违背了广告承诺年级数学竞赛答题卡题目 1 2 3 4 5 答案 题目 6 7 8 9 10 答案二、填空题(每小题3分,共24分) 11. 12. 13. 14. 15. 16. 17. 18. 三、解答题(共66分) 19. (8分)如图,已知等腰△的周长是,底边上的高的长是,求这个三角形各边的长.20.(8分)计算:(1)44.1-21.1; (2)0)31(33122-++;(3)2)75)(75(++-; (4)2224145-. 21.(8分)在平面直角坐标系中,顺次连接A (-2,1),B (-2,-1),C (2,-2),D (2,3)各点,你会得到一个什么图形试求出该图形的面积.22.(8分)已知a 31-和︱8b -3︱互为相反数,求()2-ab -27 的值.23.(8分)设一次函数y =kx +b (k ≠0)的图象经过A (1,3),B (0,-2)两点,试求k ,b 的值.24.(8分)一架云梯长25 m ,如图所示斜靠在一面墙上,梯子底端C 离墙7 m.ABC第19题图(1)这个梯子的顶端A距地面有多高(2)如果梯子的顶端下滑了4 m,那么梯子的底部在水平方向也是滑动了4 m吗25.(8分)甲、乙两人匀速从同一地点到1 500米处的图书馆看书,甲出发5分钟后,乙以50米/分的速度沿同一路线行走.设甲、乙两人相距s(米),甲行走的时间为t(分),s关于t的函数图象的一部分如图所示.(1)求甲行走的速度;(2)在坐标系中,补画s关于t的函数图象的其余部分;(3)问甲、乙两人何时相距360米26.(10分)某服装公司招工广告承诺:熟练工人每月工资至少3 000元,每天工作8小时,一个月工作25天,月工资底薪800元,另加计件工资.加工1件A型服装计酬16元,加工1件B型服装计酬12元.在工作中发现一名熟练工加工1件A型服装和2件B型服装需4小时,加工3件A型服装和1件B型服装需7小时.(工人月工资=底薪+计件工资)(1)一名熟练工加工1件A型服装和1件B型服装各需要多少小时(2)一段时间后,公司规定:“每名工人每月必须加工A,B两种型号的服装,且加工A型服装数量不少于B型服装的一半”.设一名熟练工人每月加工A型服装a件,工资总额为W元,请你运用所学知识判断该公司在执行规定后是否违背了广告承诺期中检测题参考答案一、选择题解析:|-5|=5;|-2|=2,|1|=1,|4|=4,所以绝对值最小的数是1,故选C .解析:选项A 中299()-=,选项B 中255=,选项D 中222()-=,所以只有选项C 中3311()-=-正确.解析:∵ 81<90<100,∴,即910,∴ k =9.解析:因为22ab ab a b ⋅=,所以A 项错误;因为33(2)8a a =,所以B 项错误;因为32(0)a a a a =≥,所以C 项错误;因为0,0)a b ab a b =≥≥,所以D 项正确.解析:判断一个三角形是不是直角三角形有以下方法: ①有一个角是直角或两锐角互余; ②两边的平方和等于第三边的平方;③一边的中线等于这条边的一半.由A 得有一个角是直角. B 、C 满足勾股定理的逆定理,故选D.解析:因直角三角形的斜边不明确,结合勾股定理可求得第三边的长为5或73+4+5=12或3+4777 C.解析:筷子在杯中的最大长度为22815+=17(cm ),最短长度为8 cm ,则筷子露在杯子外面的长度h 的取值范围是24-17≤h ≤24-8,即7≤h ≤16,故选D .解析:关于原点对称的点的坐标的特点是横、纵坐标均互为相反数,所以点(-2,3)关于原点的对称点为(2,-3).根据平移的性质,结合直角坐标系,(2,-3)点向左平移2个单位长度,即横坐标减2,纵坐标不变.故选C .解析:∵ △ABC 向左平移5个单位长度,A (4,5),4-5=-1, ∴ 点A 1的坐标为(-1,5),故选B .解析:设直线l 的表达式为()0y kx b k =+≠, 直线l 经过第一、二、三象限,∴ 0k >,函数值y 随x 的增大而增大.01>-,∴ a b >,故A项错误;02>-,∴ 3a >,故B项错误; 12->-,∴ 3b >,故C 项错误; 13-<,∴ 2c <-,故D 项正确. 二、填空题≥2 解析:因为使二次根式有意义的条件是被开方数≥0,所以x -2≥0,所以x ≥2.<a <3 解析:本题考查了各象限内点的坐标的符号特征以及不等式的解法. ∵ 点P (a ,a -3)在第四象限,∴ a >0,a -3<0,解得0<a <3. 解析:本题考查了关于y 轴对称的点的坐标特点,关于y 轴对称的点的横坐标互为相反数,纵坐标相同,可得a +b =-3,1-b =-1,解得b =2,a =-5,∴ a b =25.=+6 解析:因为水库的初始水位高度是6米,每小时上升米,所以y 与x 的函数关系式为y =+6(0≤x ≤5). 15.直角三角形 解析:因为所以△是直角三 角形.解析:如图,AD 是BC 边上的高线.∵ AB =AC =10 cm ,BC =12 cm , ∴ BD =CD =6 cm ,∴ 在Rt △ABD 中,由勾股定理,得 AD 22AB BD -22106-=8(cm ).AC第16题答图17.互为相反数 解析:第二、四象限的角平分线上的点的横、纵坐标的绝对值相等,•符号 相反.解析:∵ 9<11<16,∴ 3<<4.又∵ m 、n 为两个连续的整数,∴ m =3,n =4,∴ m +n =3+4=7. 三、解答题 19. 解:设,由等腰三角形的性质,知. 由勾股定理,得,即,解得,所以,.20.解:(1). (2).(3)1332827933393 3.3333+⨯=+⨯=+= (4).61513334)31(331220=+=++=-++ (5)(6).21.解:梯形.因为AB ∥CD ,AB 的长为2,CD 的长为5,AB 与CD 之间的距离为4,所以S 梯形ABCD =(25)42+⨯=14. 22.解: 因为a 31-≥0,︱8b -3︱≥0,且a 31-和︱8b -3︱互为相反数,所以a 31-,0=︱8b -3︱,0=所以,83,31==b a 所以()2-ab -27=64-27=37.23.分析:直接把A 点和B 点的坐标分别代入y =kx +b ,得到关于k 和b 的方程组,然后解方程组即可.解:把(1,3)、(0,-2)分别代入y =kx +b ,得+32k b b =⎧⎨=-⎩,, 解得52k b =⎧⎨=-⎩,,即k ,b 的值分别为5,-2.24.分析:(1)可设这个梯子的顶端A 距地面有x m 高,因为云梯长、梯子底端离墙距离、梯子的顶端距地面高度是直角三角形的三边长,所以x 2+72=252,解出x 即可.(2)如果梯子的顶端下滑了4 m ,那么梯子的底部在水平方向不一定滑动了4 m ,应计算才能确定.解:( 1)设这个梯子的顶端A 距地面有x m 高, 根据题意,得AB 2+BC 2=AC 2,即x 2+72=252,解得x =24, 即这个梯子的顶端A 距地面有24 m 高. (2)不是.理由如下:如果梯子的顶端下滑了4 m ,即AD =4 m,BD =20 m. 设梯子底端E 离墙距离为y m ,根据题意,得BD 2+BE 2=DE 2,即202+y 2=252,解得y =15. 此时CE =15-7=8(m ).所以梯子的底部在水平方向滑动了8 m.25.解:(1)甲行走的速度:150530÷=(米/分). (2)补画的图象如图所示(横轴上对应的时间为50). (3)由函数图象可知,当t =时,s =0; 当≤t ≤35时,s =20t -250; 当35<t ≤50时,s =-30t +1 500.当甲、乙两人相距360米时,即s =360, 360=20t -250,解得30.5=t ,360 =-30t +1 500. 解得 38=t∴当甲行走分钟或38分钟时,甲、乙两人相距360米.第25题答图26.解:(1)设一名熟练工加工1件A型服装需要x小时,加工1件B型服装需要y小时,由题意,得解得答:一名熟练工加工1件A型服装需要2小时,加工1件B型服装需要1小时.(2)当一名熟练工一个月加工A型服装a件时,则还可以加工B型服装(25×8-2a)件.∴W=16a+12(25×8-2a)+800,∴W=-8a+3 200.又a≥(200-2a),解得a≥50.∵-8<0,∴W随着a的增大而减小.∴当a=50时,W有最大值2800.∵ 2 800<3 000,∴该服装公司执行规定后违背了广告承诺.。

2017全国初中数学联赛初二卷及详解

2017全国初中数学联赛初二卷及详解

2017年全国初中数学联合竞赛试题 初二卷第一试一、选择题:(本题满分 42 分,每小题 7 分) 1.已知实数a,b,c 满足2a+13b+3c=90,3a+9b+c=72,则32b ca b++的值为( ). A.2 B.1 C.0 D.-1 2.已知实数a,b,c 满足a+b+c=1,1110135a b c ++=+++,则(a+1)2+(b+3)2+(c+5)2的值为( ). A.125 B.120 C.100 D.813.若正整数a,b,c 满足a ≤b ≤c 且abc=2(a+b+c),则称(a,b,c)为好数组.那么好数组的个数为( ). A.4 B.3 C.2 D.14.已知正整数a,b,c 满足a 2-6b-3c+9=0,-6a+b 2+c=0,则a 2+b 2+c 2的值为( ). A.424 B.430 C.441 D.4605.梯形ABCD 中,AD ∥BC ,AB=3,BC=4,CD=2,AD=1,则梯形的面积为( ). A.102 B.103C.32D.33 6.如图,梯形ABCD 中,AD ∥BC ,∠A=90°,点E 在AB 上,若AE=42,BE=28,BC=70,∠DCE=45°,则DE 的值为( ).A.56B.58C.60D.62二、填空题:(本题满分 28 分,每小题 7 分)7.311a a ++=a 的值为________.8.已知△ABC 的三个内角满足A <B <C <100°.用θ表示100°-C,C-B,B-A 中的最小者,则θ的最大值为________.9.设a,b 是两个互质的正整数,且38ab p a b=+为质数.则p 的值为________.10.20个都不等于7的正整数排成一行,若其中任意连续若干个数之和都不等于7,则这20个数之和的最小值为________.第二试一、(本题满分20分)设A,B是两个不同的两位数,且B是由A交换个位数字和十位数字所得,如果A2-B2是完全平方数,求A的值.二、(本题满分25分)如图,△ABC中,D为BC的中点,DE平分∠ADB,DF平分∠ADC,BE⊥DE,CF⊥DF,P为AD与EF的交点.证明:EF=2PD.三、(本题满分25分)已知a,b,c 55a bb c++为有理数,求222a b ca b c++++的最小值.2017年全国初中数学联合竞赛试题初二卷参考答案第一试一、选择题:(本题满分42 分,每小题7 分)1.已知实数a,b,c满足2a+13b+3c=90,3a+9b+c=72,则32b ca b++的值为().A.2B.1C.0D.-1答案:B对应讲次:所属知识点:方程思路:因为所求分式的特点可以想到把a+2b,3b+c看成一个整体变量求解方程.解析:已知等式可变形为2(a+2b)+3(3b+c)=90,3(a+2b)+(3b+c)=72,解得a+2b=18,3b+c=18,所以312b ca b+=+.2.已知实数a,b,c满足a+b+c=1,111135a b c++=+++,则(a+1)2+(b+3)2+(c+5)2的值为().A.125B.120C.100D.81答案:C对应讲次:所属知识点:方程思路:可以想到换元法.解析:设x=a+1,y=b+3,z=c+5,则x+y+z=10,111x y z++=,∴xy+xz+yz=0,由x2+y2+z2=(x+y+z)2-2(xy+xz+yz)=100.则(a+1)2+(b+3)2+(c+5)2 =100.3. 若正整数a,b,c满足a≤b≤c且abc=2(a+b+c),则称(a,b,c)为好数组.那么好数组的个数为().A.4B.3C.2D.1答案:B对应讲次:所属知识点:数论思路:先通过a≤b≤c且abc=2(a+b+c)的限定关系确定可能的种类,再通过枚举法一一验证. 解析:若(a,b,c)为好数组,则abc=2(a+b+c)≤6c,即ab≤6,显然a=1或2.若a=1,则bc=2(1+b+c),即(b-2)(c-2)=6,可得(a,b,c)=(1,3,8)或(1,4,5),共2个好数组.若a=2,则b=2或3,可得b=2,c=4;b=3,c=52,不是整数舍去,共1个好数组.共3个好数组(a,b,c)=(1,3,8) (1,4,5) (2,2,4).4. 已知正整数a,b,c满足a2-6b-3c+9=0,-6a+b2+c=0,则a2+b2+c2的值为().A.424B.430C.441D.460答案:C对应讲次:所属知识点:方程思路:由已知等式消去c整理后,通过a,b是正整数的限制,枚举出所有可能,并一一代入原方程验证,最终确定结果.解析:联立方程可得(a-9)2+3(b-1)2=75,则3(b-1)2≤75,即1≤b≤6.当b=1,2,3,4,5时,均无与之对应的正整数a;当b=6时,a=9,符合要求,此时c=18,代入验证满足原方程.因此,a=9,b=6,c=18,则a2+b2+c2=441.5. 梯形ABCD中,AD∥BC,AB=3,BC=4,CD=2,AD=1,则梯形的面积为().A.102B.103C.32D.33答案:A对应讲次:所属知识点:平面几何思路:通过作平行四边形把边长关系转化到一个三角形中来.解析:作AE∥DC,AH⊥BC,则ADCE是平行四边形,则BE=BC-CE=BC-AD=3=AB,则△ABE 是等腰三角形,BE=AB=3,AE=2,经计算可得42AH =. 所以梯形ABCD 的面积为()142102142⨯+⨯=.6. 如图,梯形ABCD 中,AD ∥BC ,∠A=90°,点E 在AB 上,若AE=42,BE=28,BC=70,∠DCE=45°,则DE 的值为( ).A.56B.58C.60D.62 答案:B 对应讲次:所属知识点:平面几何思路:补形法,把直角梯形先补成正方形,再利用旋转把边长关系转化到同一个三角形Rt △EAD 中去,利用勾股定理求解.解析:作CF ⊥AD ,交AD 的延长线于点F ,将△CDF 绕点C 逆时针旋转90°至△CGB ,则ABCF 为正方形,可得△ECG ≌△ECD ,∴EG=ED. 设DE=x ,则DF=BG=x-28,AD=98-x.在Rt △EAD 中,有422+(98-x)2=x 2,解得x=58.二、填空题:(本题满分 28 分,每小题 7 分)7.311a a ++=a 的值为________.答案:8 对应讲次: 所属知识点:方程思路:通过等式两边都6次方可以去掉最外面根式,再用换元法化简等式,最后要验证结果是否满足最初的等式.解析:易得(321a =.令x ,则x ≥0,代入整理可得x(x-3)(x+1)2=0,解得x 1=0, x 2=3, x 3=-1,舍负,即a=-1或8,验证可得a=8.8. 已知△ABC 的三个内角满足A <B <C <100°.用θ表示100°-C,C-B,B-A 中的最小者,则θ的最大值为________. 答案:20° 对应讲次: 所属知识点:代数思路:一般来说,求几个中最小者的最大值时,就是考虑这几个都相等的情况. 解析:∵θ≤100°-C ,θ≤C-B ,θ≤B-A ∴θ≤16[3(100°-C )+2(C-B)+(B-A)]=20°又当A=40°,B=60°,C=80°时,θ=20°可以取到. 则θ的最大值为20°.9. 设a,b 是两个互质的正整数,且38ab p a b=+为质数.则p 的值为________.答案:7 对应讲次: 所属知识点:数论思路:因为p 是质数,只能拆成1和p ,另一方面通过a+b 、a 、b 两两互质来拆分38ab a b+的可能种类,最后分类讨论,要么与条件矛盾,要么得出结果.解析:因为a,b 互质,所以a+b 、a 、b 两两互质,因为38ab a b +质数,所以318ab p a b⎧=⎪⎨=⎪+⎩可得a=b=1,p=4,不是质数舍;381ab p a b⎧=⎪⎨=⎪+⎩可得a=7,b=1,p=7,符合题意.则p=7.10.20个都不等于7的正整数排成一行,若其中任意连续若干个数之和都不等于7,则这20个数之和的最小值为________. 答案:34 对应讲次: 所属知识点:数论思路:考虑1,1,1,1,1,1,8,1,1,1,1,1,1,8,1,1,1,1,1,1满足题设要求,其和为34,接下来只需要考虑该数列是否为和最小的数列.解析:设该正整数列为()20,*n a n n N ≤∈,考虑()16,,,14,*k k k i i i ki ka a a k k N ++==≤∈∑∑L ,依抽屉原理必然有两项模7的余数相同,则该两项的差是7的倍数,于是任意连续7项之中必有连续子列之和为7的倍数,又不能为7,则最小为14.于是20个数中至少有2组这样的子列其总和不小于28,剩下6个数之和不小于6,于是该数列之和不小于34.由1,1,1,1,1,1,8,1,1,1,1,1,1,8,1,1,1,1,1,1可知,存在数列和为34的情况.第二试一、(本题满分 20 分)设A,B 是两个不同的两位数,且B 是由A 交换个位数字和十位数字所得,如果A 2-B 2是完全平方数,求A 的值. 答案:65 对应讲次: 所属知识点:数论思路:对于需要考虑不同位数上数字的情况,可以把一个两位数ab 设为10a+b ,转为为代数问题,再利用完全平方数的质因数分解式也是以完全平方数对的形式出现,综合分析所有限定下可能性,最终确定结果. 解析:设A=10a+b(1≤a,b ≤9,a,b ∈N),则B=10b+a ,由A,B 不同得a ≠b ,A 2-B 2=(10a+b )2-(10b+a)2=9×11×(a+b )(a-b).………5分由A 2-B 2是完全平方数,则a >b ,()()11|a b a b +-,可得a+b=11, ………10分 a-b 也是完全平方数,所以a-b=1或4.………15分若a-b=1,则a=6,b=5; 若a-b=4,则没有正整数解. 因此a=6,b=5,A=65.………20分二、(本题满分 25 分)如图,△ABC 中,D 为BC 的中点,DE 平分∠ADB ,DF 平分∠ADC ,BE ⊥DE ,CF ⊥DF ,P 为AD 与EF 的交点.证明:EF=2PD.对应讲次:所属知识点:平面几何思路:因为EF 、PD 都在△DEF 中,所以想办法推出其性质,比较容易得出∠EDF=90°,此时若能得出EF=PD ,则自然可以得到结论.解析:由DE 平分∠ADB ,DF 平分∠ADC ,可得∠EDF=90°.………5分由BE ⊥DE 得BE ∥DF ,则∠EBD=∠FDC. ………10分又BD=DC ,∠BED=∠DFC=90°,则△BED ≌△DFC ,BE=DF . ………15分 得四边形BDFE 是平行四边形,∠PED=∠EDB=∠EDP ,EP=PD. ………20分 又△EDF 是直角三角形,∴EF=2PD.………25分三、(本题满分 25 分)已知a,b,c 为有理数,求222a b c a b c ++++的最小值.答案:3 对应讲次: 所属知识点:数论思路:通过a,b,c 是正整数,可以把有理部分和无理部分分离考虑.0c -≠,可以通过分母有理化来实现分离,再利用a,b,c 互不相等,从最小正整数开始讨论即可得出最小值.0c -≠)()22222555bcab bc bac b cb c +--+-==--b 2=ac. …10分()()22222a c ba b c a c b a b c a c b +-++==+-++++.………15分不妨设a <c ,若a=1,c=b 2,因为a ≠b ,则a+c-b=1+b(b-1)≥3,取等号当且仅当b=2时. ………20分 若a ≥2,因为c ≠b ≠1,则a+c-b=a+b(b-1)≥a+2≥4>3.所以222a b c a b c++++的最小值为3,当a=1,b=2,c=4时.………25分。

2017全国初中数学联赛初二卷及详解

2017全国初中数学联赛初二卷及详解

2017年全国初中数学联合竞赛试题 初二卷第一试一、选择题:(本题满分 42 分,每小题 7 分) 1.已知实数a,b,c 满足2a+13b+3c=90,3a+9b+c=72,则32b ca b++的值为( ). A.2 B.1 C.0 D.-1 2.已知实数a,b,c 满足a+b+c=1,1110135a b c ++=+++,则(a+1)2+(b+3)2+(c+5)2的值为( ). A.125 B.120 C.100 D.813.若正整数a,b,c 满足a ≤b ≤c 且abc=2(a+b+c),则称(a,b,c)为好数组.那么好数组的个数为( ). A.4 B.3 C.2 D.14.已知正整数a,b,c 满足a 2-6b-3c+9=0,-6a+b 2+c=0,则a 2+b 2+c 2的值为( ). A.424 B.430 C.441 D.4605.梯形ABCD 中,AD ∥BC ,AB=3,BC=4,CD=2,AD=1,则梯形的面积为( ). A.1023 B.1033C.32D.33 6.如图,梯形ABCD 中,AD ∥BC ,∠A=90°,点E 在AB 上,若AE=42,BE=28,BC=70,∠DCE=45°,则DE 的值为( ).A.56B.58C.60D.62二、填空题:(本题满分 28 分,每小题 7 分)7.311a a ++=a 的值为________.8.已知△ABC 的三个内角满足A <B <C <100°.用θ表示100°-C,C-B,B-A 中的最小者,则θ的最大值为________.9.设a,b 是两个互质的正整数,且38ab p a b=+为质数.则p 的值为________.10.20个都不等于7的正整数排成一行,若其中任意连续若干个数之和都不等于7,则这20个数之和的最小值为________.第二试一、(本题满分20分)设A,B是两个不同的两位数,且B是由A交换个位数字和十位数字所得,如果A2-B2是完全平方数,求A的值.二、(本题满分25分)如图,△ABC中,D为BC的中点,DE平分∠ADB,DF平分∠ADC,BE⊥DE,CF⊥DF,P为AD与EF的交点.证明:EF=2PD.三、(本题满分25分)已知a,b,c 55a bb c++为有理数,求222a b ca b c++++的最小值.2017年全国初中数学联合竞赛试题初二卷参考答案第一试一、选择题:(本题满分42 分,每小题7 分)1.已知实数a,b,c满足2a+13b+3c=90,3a+9b+c=72,则32b ca b++的值为().A.2B.1C.0D.-1答案:B对应讲次:所属知识点:方程思路:因为所求分式的特点可以想到把a+2b,3b+c看成一个整体变量求解方程.解析:已知等式可变形为2(a+2b)+3(3b+c)=90,3(a+2b)+(3b+c)=72,解得a+2b=18,3b+c=18,所以312b ca b+=+.2.已知实数a,b,c满足a+b+c=1,111135a b c++=+++,则(a+1)2+(b+3)2+(c+5)2的值为().A.125B.120C.100D.81答案:C对应讲次:所属知识点:方程思路:可以想到换元法.解析:设x=a+1,y=b+3,z=c+5,则x+y+z=10,111x y z++=,∴xy+xz+yz=0,由x2+y2+z2=(x+y+z)2-2(xy+xz+yz)=100.则(a+1)2+(b+3)2+(c+5)2 =100.3. 若正整数a,b,c满足a≤b≤c且abc=2(a+b+c),则称(a,b,c)为好数组.那么好数组的个数为().A.4B.3C.2D.1答案:B对应讲次:所属知识点:数论思路:先通过a≤b≤c且abc=2(a+b+c)的限定关系确定可能的种类,再通过枚举法一一验证. 解析:若(a,b,c)为好数组,则abc=2(a+b+c)≤6c,即ab≤6,显然a=1或2.若a=1,则bc=2(1+b+c),即(b-2)(c-2)=6,可得(a,b,c)=(1,3,8)或(1,4,5),共2个好数组.若a=2,则b=2或3,可得b=2,c=4;b=3,c=52,不是整数舍去,共1个好数组.共3个好数组(a,b,c)=(1,3,8) (1,4,5) (2,2,4).4. 已知正整数a,b,c满足a2-6b-3c+9=0,-6a+b2+c=0,则a2+b2+c2的值为().A.424B.430C.441D.460答案:C对应讲次:所属知识点:方程思路:由已知等式消去c整理后,通过a,b是正整数的限制,枚举出所有可能,并一一代入原方程验证,最终确定结果.解析:联立方程可得(a-9)2+3(b-1)2=75,则3(b-1)2≤75,即1≤b≤6.当b=1,2,3,4,5时,均无与之对应的正整数a;当b=6时,a=9,符合要求,此时c=18,代入验证满足原方程.因此,a=9,b=6,c=18,则a2+b2+c2=441.5. 梯形ABCD中,AD∥BC,AB=3,BC=4,CD=2,AD=1,则梯形的面积为().A.1023B.1033C.32D.33答案:A对应讲次:所属知识点:平面几何思路:通过作平行四边形把边长关系转化到一个三角形中来.解析:作AE∥DC,AH⊥BC,则ADCE是平行四边形,则BE=BC-CE=BC-AD=3=AB,则△ABE 是等腰三角形,BE=AB=3,AE=2,经计算可得423AH =. 所以梯形ABCD 的面积为()14210214233⨯+⨯=.6. 如图,梯形ABCD 中,AD ∥BC ,∠A=90°,点E 在AB 上,若AE=42,BE=28,BC=70,∠DCE=45°,则DE 的值为( ).A.56B.58C.60D.62 答案:B 对应讲次:所属知识点:平面几何思路:补形法,把直角梯形先补成正方形,再利用旋转把边长关系转化到同一个三角形Rt △EAD 中去,利用勾股定理求解.解析:作CF ⊥AD ,交AD 的延长线于点F ,将△CDF 绕点C 逆时针旋转90°至△CGB ,则ABCF 为正方形,可得△ECG ≌△ECD ,∴EG=ED. 设DE=x ,则DF=BG=x-28,AD=98-x.在Rt △EAD 中,有422+(98-x)2=x 2,解得x=58.二、填空题:(本题满分 28 分,每小题 7 分)7.311a a ++=a 的值为________.答案:8 对应讲次: 所属知识点:方程思路:通过等式两边都6次方可以去掉最外面根式,再用换元法化简等式,最后要验证结果是否满足最初的等式.解析:易得(321a =.令x ,则x ≥0,代入整理可得x(x-3)(x+1)2=0,解得x 1=0, x 2=3, x 3=-1,舍负,即a=-1或8,验证可得a=8.8. 已知△ABC 的三个内角满足A <B <C <100°.用θ表示100°-C,C-B,B-A 中的最小者,则θ的最大值为________. 答案:20° 对应讲次: 所属知识点:代数思路:一般来说,求几个中最小者的最大值时,就是考虑这几个都相等的情况. 解析:∵θ≤100°-C ,θ≤C-B ,θ≤B-A ∴θ≤16[3(100°-C )+2(C-B)+(B-A)]=20°又当A=40°,B=60°,C=80°时,θ=20°可以取到. 则θ的最大值为20°.9. 设a,b 是两个互质的正整数,且38ab p a b=+为质数.则p 的值为________.答案:7 对应讲次: 所属知识点:数论思路:因为p 是质数,只能拆成1和p ,另一方面通过a+b 、a 、b 两两互质来拆分38ab a b+的可能种类,最后分类讨论,要么与条件矛盾,要么得出结果.解析:因为a,b 互质,所以a+b 、a 、b 两两互质,因为38ab a b +质数,所以318ab p a b⎧=⎪⎨=⎪+⎩可得a=b=1,p=4,不是质数舍;381ab p a b⎧=⎪⎨=⎪+⎩可得a=7,b=1,p=7,符合题意.则p=7.10.20个都不等于7的正整数排成一行,若其中任意连续若干个数之和都不等于7,则这20个数之和的最小值为________. 答案:34 对应讲次: 所属知识点:数论思路:考虑1,1,1,1,1,1,8,1,1,1,1,1,1,8,1,1,1,1,1,1满足题设要求,其和为34,接下来只需要考虑该数列是否为和最小的数列.解析:设该正整数列为()20,*n a n n N ≤∈,考虑()16,,,14,*k k k i i i k i ka a a k k N ++==≤∈∑∑,依抽屉原理必然有两项模7的余数相同,则该两项的差是7的倍数,于是任意连续7项之中必有连续子列之和为7的倍数,又不能为7,则最小为14.于是20个数中至少有2组这样的子列其总和不小于28,剩下6个数之和不小于6,于是该数列之和不小于34.由1,1,1,1,1,1,8,1,1,1,1,1,1,8,1,1,1,1,1,1可知,存在数列和为34的情况.第二试一、(本题满分 20 分)设A,B 是两个不同的两位数,且B 是由A 交换个位数字和十位数字所得,如果A 2-B 2是完全平方数,求A 的值. 答案:65 对应讲次: 所属知识点:数论思路:对于需要考虑不同位数上数字的情况,可以把一个两位数ab 设为10a+b ,转为为代数问题,再利用完全平方数的质因数分解式也是以完全平方数对的形式出现,综合分析所有限定下可能性,最终确定结果. 解析:设A=10a+b(1≤a,b ≤9,a,b ∈N),则B=10b+a ,由A,B 不同得a ≠b ,A 2-B 2=(10a+b )2-(10b+a)2=9×11×(a+b )(a-b).………5分由A 2-B 2是完全平方数,则a >b ,()()11|a b a b +-,可得a+b=11, ………10分 a-b 也是完全平方数,所以a-b=1或4.………15分若a-b=1,则a=6,b=5; 若a-b=4,则没有正整数解. 因此a=6,b=5,A=65.………20分二、(本题满分 25 分)如图,△ABC 中,D 为BC 的中点,DE 平分∠ADB ,DF 平分∠ADC ,BE ⊥DE ,CF ⊥DF ,P 为AD 与EF 的交点.证明:EF=2PD.对应讲次:所属知识点:平面几何思路:因为EF 、PD 都在△DEF 中,所以想办法推出其性质,比较容易得出∠EDF=90°,此时若能得出EF=PD ,则自然可以得到结论.解析:由DE 平分∠ADB ,DF 平分∠ADC ,可得∠EDF=90°.………5分由BE ⊥DE 得BE ∥DF ,则∠EBD=∠FDC. ………10分又BD=DC ,∠BED=∠DFC=90°,则△BED ≌△DFC ,BE=DF . ………15分 得四边形BDFE 是平行四边形,∠PED=∠EDB=∠EDP ,EP=PD. ………20分 又△EDF 是直角三角形,∴EF=2PD.………25分三、(本题满分 25 分)已知a,b,c 为有理数,求222a b c a b c ++++的最小值.答案:3 对应讲次: 所属知识点:数论思路:通过a,b,c 是正整数,可以把有理部分和无理部分分离考虑.0c -≠,可以通过分母有理化来实现分离,再利用a,b,c 互不相等,从最小正整数开始讨论即可得出最小值.0c -≠)()22222555bcab bc bac b cb c +--+-==--b 2=ac. …10分()()22222a c ba b c a c b a b c a c b +-++==+-++++.………15分不妨设a <c ,若a=1,c=b 2,因为a ≠b ,则a+c-b=1+b(b-1)≥3,取等号当且仅当b=2时. ………20分 若a ≥2,因为c ≠b ≠1,则a+c-b=a+b(b-1)≥a+2≥4>3.所以222a b c a b c++++的最小值为3,当a=1,b=2,c=4时.………25分。

2017年全国初中数学联赛初二试题及参考答案(详解版)

2017年全国初中数学联赛初二试题及参考答案(详解版)

2017年全国初中数学联合竞赛试题(初二)第一试一、选择题(本题满分 42 分,每小题 7 分)1.已知实数,,a b c 满足213390a b c ++=,3972a b c ++=,则32b ca b++的值为( ) A .2 B . 1 C . 0 D .1- 2.已知实数,,a b c 满足1a b c ++=,1110135a b c ++=+++,则()()()222135a b c +++++的值为( )A . 125B . 120C . 100D . 813.若正整数,,a b c 满足a b c ≤≤且()2abc a b c =++,则称(),,a b c 为好数组.那么好数组的个数为( )A . 4B . 3C . 2D . 14.已知正整数,,a b c 满足26390a b c --+=,260a b c -++=,则222a b c ++的值为( ) A .424 B . 430 C . 441 D . 4605.梯形ABCD 中,AD ∥BC ,3AB =,4BC =,2CD =,1AD =,则梯形的面积为( ) ABC. D.6.如图,梯形ABCD 中,AD ∥BC ,90A ∠=︒,点E 在AB 上,若42AE =,28BE =,70BC =,45DCE ∠=︒,则DE 的值为( )A . 56B . 58C . 60D . 62二、填空题:(本题满分 28 分,每小题 7 分)7.=a 的值为________.8.已知ABC 的三个内角满足100A B C <<<︒.用θ表示100,,C C B B A ︒---中的最小者,则θ的最大值为________.9.设,a b 是两个互质的正整数,且38ab p a b=+为质数.则p 的值为________.10.20个都不等于7的正整数排成一行,若其中任意连续若干个数之和都不等于7,则这20个数之和的最小值为________.第二试一、(本题满分 20 分)设,A B 是两个不同的两位数,且B 是由A 交换个位数字和十位数字所得,如果22A B -是完全平方数,求A 的值.二、(本题满分 25 分)如图,△ABC 中,D 为BC 的中点,DE 平分ADB ∠,DF 平分ADC ∠,BE DE ⊥,CF DF ⊥,P 为AD 与EF 的交点.证明:2EF PD =.三、(本题满分 25 分)已知,,a b c 是不全相等的正整数,求222a b c a b c ++++的最小值.2017年全国初中数学联合竞赛试题 初二卷参考答案第一试一、选择题(本题满分 42 分,每小题 7 分)1.已知实数,,a b c 满足213390a b c ++=,3972a b c ++=,则32b ca b++的值为( ) A .2 B . 1 C . 0 D .1- 【答案】B【思路】因为所求分式的特点可以想到把2a b +,3b c +看成一个整体变量求解方程. 【解析】已知等式可变形为()()223390a b b c +++=,()()32372a b b c +++=,解得218a b +=,318b c +=,所以312b ca b+=+. 2.已知实数,,a b c 满足1a b c ++=,1110135a b c ++=+++,则()()()222135a b c +++++的值为( )A . 125B . 120C . 100D . 81 【答案】C 【思路】换元法【解析】设1x a =+,3y b =+,5z c =+,则10x y z ++=,1110x y z++=, 0xy xz yz ∴++=,由()()22222100x y z x y z xy xz yz ++=++-++=.则()()()222135100a b c +++++=.3.若正整数,,a b c 满足a b c ≤≤且()2abc a b c =++,则称(),,a b c 为好数组.那么好数组的个数为( )A . 4B . 3C . 2D . 1 【答案】B【思路】先通过a b c ≤≤且()2abc a b c =++的限定关系确定可能的种类,再通过枚举法一一验证.【解析】若(),,a b c 为好数组,则()26abc a b c c =++≤,即6ab ≤,显然1a =或2. 若1a =,则()21bc b c =++,即()()226b c --=,可得()(),,1,3,8a b c =或()1,4,5,共2个好数组.若2a =,则2b =或3,可得2,4b c ==;53,2b c ==,不是整数舍去,共1个好数组. 共3个好数组()()()(),,1,3,8,1,4,5,2,2,4a b c =.4.已知正整数,,a b c 满足26390a b c --+=,260a b c -++=,则222a b c ++的值为( ) A .424 B . 430 C . 441 D . 460 【答案】C【思路】由已知等式消去c 整理后,通过,a b 是正整数的限制,枚举出所有可能,并一一代入原方程验证,最终确定结果.【解析】联立方程可得()()2293175a b -+-=,则()23175b -≤,即16b ≤≤. 当1,2,3,4,5b =时,均无与之对应的正整数a ;当6b =时,9a =,符合要求,此时18c =,代入验证满足原方程. 因此,9a =,6b =,18c =,则222441a b c ++=.5.梯形ABCD 中,AD ∥BC ,3AB =,4BC =,2CD =,1AD =,则梯形的面积为( ) ABC. D.【答案】A【思路】通过作平行四边形把边长关系转化到一个三角形中来.【解析】作AE ∥DC ,AH ⊥BC ,则ADCE 是平行四边形,则3BE BC CE BC AD AB =-=-==, 则ABE 是等腰三角形,3BE AB ==,2AE =,经计算可得AH =. 所以梯形ABCD 的面积为()1142⨯+. 6.如图,梯形ABCD 中,AD ∥BC ,90A ∠=︒,点E 在AB 上,若42AE =,28BE =,70BC =,45DCE ∠=︒,则DE 的值为( )A . 56B . 58C . 60D . 62【答案】B【思路】补形法,把直角梯形先补成正方形,再利用旋转把边长关系转化到同一个三角形Rt △EAD 中去,利用勾股定理求解.【解析】作CF △AD ,交AD 的延长线于点F ,将CDF 绕点C 逆时针旋转90︒至CGB ,则ABCF 为正方形,可得ECG △ECD ,EG ED ∴=. 设DE x =,则28DF BG x ==-,98AD x =-. 在RtEAD 中,有()2224298x x +-=,解得58x =.二、填空题:(本题满分 28 分,每小题 7 分) 7.=a 的值为________. 【答案】8【思路】通过等式两边都6次方可以去掉最外面根式,再用换元法化简等式,最后要验证结果是否满足最初的等式.【解析】易得(321a =.令x ,则0x ≥,代入整理可得()()2310x x x -+=,解得1230,3,1x x x ===-,舍负,即1a =-或8,验证可得8a =.8.已知△ABC 的三个内角满足100A B C <<<︒.用θ表示100,,C C B B A ︒---中的最小者,则θ的最大值为________. 【答案】20︒【思路】一般来说,求几个中最小者的最大值时,就是考虑这几个都相等的情况.【解析】100C θ≤︒-,C B θ≤-,B A θ≤-()()()131002206C C B B A θ∴≤︒-+-+-=︒⎡⎤⎣⎦ 又当40,60,80A B C =︒=︒=︒时,20θ=︒可以取到. 则θ的最大值为20︒.9.设,a b 是两个互质的正整数,且38ab p a b=+为质数.则p 的值为________.【答案】7【思路】因为p 是质数,只能拆成1和p ,另一方面通过a b +、a 、b 两两互质来拆分38ab a b+的可能种类,最后分类讨论,要么与条件矛盾,要么得出结果.【解析】因为,a b 互质,所以a b +、a 、b 两两互质,因为38ab a b +质数,所以318ab p a b⎧=⎪⎨=⎪+⎩可得1a b ==,4p =,不是质数舍; 381ab p a b⎧=⎪⎨=⎪+⎩可得7a =,1b =,7p =,符合题意. 则7p =.10.20个都不等于7的正整数排成一行,若其中任意连续若干个数之和都不等于7,则这20个数之和的最小值为________. 【答案】34【思路】考虑1,1,1,1,1,1,8,1,1,1,1,1,1,8,1,1,1,1,1,1满足题设要求,其和为34,接下来只需要考虑该数列是否为和最小的数列.【解析】设该正整数列为()20,*n a n n N ≤∈,考虑()16,,,14,*k k k i i i k i ka a a k k N ++==≤∈∑∑,依抽屉原理必然有两项模7的余数相同,则该两项的差是7的倍数,于是任意连续7项之中必有连续子列之和为7的倍数,又不能为7,则最小为14.于是20个数中至少有2组这样的子列其总和不小于28,剩下6个数之和不小于6,于是该数列之和不小于34. 由1,1,1,1,1,1,8,1,1,1,1,1,1,8,1,1,1,1,1,1可知,存在数列和为34的情况.第二试一、(本题满分 20 分)设,A B 是两个不同的两位数,且B 是由A 交换个位数字和十位数字所得,如果22A B -是完全平方数,求A 的值.【思路】对于需要考虑不同位数上数字的情况,可以把一个两位数ab 设为10a b +,转为为代数问题,再利用完全平方数的质因数分解式也是以完全平方数对的形式出现,综合分析所有限定下可能性,最终确定结果.【解析】设()101,9,,A a b a b a b N =+≤≤∈,则10B b a =+,由,A B 不同得a b ≠,()()()()22221010911A B a b b a a b a b -=+-+=⨯⨯+-.由22A B -是完全平方数,则a b >,()()11|a b a b +-,可得11a b +=,a b -也是完全平方数,所以1a b -=或4.若1a b -=,则6a =,5b =; 若4a b -=,则没有正整数解. 因此6a =,5b =,65A =.二、(本题满分 25 分)如图,△ABC 中,D 为BC 的中点,DE 平分ADB ∠,DF 平分ADC ∠,BE DE ⊥,CF DF ⊥,P 为AD 与EF 的交点.证明:2EF PD =.【思路】因为EF 、PD 都在DEF 中,所以想办法推出其性质,比较容易得出90EDF ∠=︒,此时若能得出EP PD =,则自然可以得到结论.【解析】由DE 平分ADB ∠,DF 平分ADC ∠,可得90EDF ∠=︒. 由BE DE ⊥得BE △DF ,则EBD FDC ∠=∠.又BD DC =,90BED DFC ∠=∠=︒,则BED △DFC ,BE DF =. 得四边形BDFE 是平行四边形,PED EDB EDP ∠=∠=∠,EP PD =. 又△EDF 是直角三角形,2EF PD ∴=.三、(本题满分 25 分)已知,,a b c 是不全相等的正整数,求222a b c a b c ++++的最小值.【思路】通过,,a b c 是正整数,可以把有理部分和无理部分分离考虑.0c -≠,可以通过分母有理化来实现分离,再利用,,a b c 互不相等,从最小正整数开始讨论即可得出最小值.0c -≠)()22222555bcab bc bac b c b c +--+-==--可得2b ac =.()()22222a c ba b c a c b a b c a c b+-++==+-++++.不妨设a c <,若1a =,2c b =,因为a b ≠,则()113a c b b b +-=+-≥,取等号当且仅当2b =时.若2a ≥,因为1c b ≠≠,则()1243a c b a b b a +-=+-≥+≥>.所以222a b c a b c++++的最小值为3,当1a =,2b =,4c =时.。

新余市八年级数学竞赛试卷

新余市八年级数学竞赛试卷

新余市八年级数学竞赛试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2019·越秀模拟) 方程的解是()A .B .C .D .2. (2分)下列说法正确的是()A . 3的平方根是B . 对角线相等的四边形是矩形C . 近似数0.2050有4个有效数字D . 两个底角相等的梯形一定是等腰梯形3. (2分) (2011八下·新昌竞赛) 等边三角形、平行四边形、矩形、菱形、正方形、正五边形中,既是轴对称图形,又是中心对称图形的有()A . 1个B . 2个C . 3个D . 4个4. (2分) (2011八下·新昌竞赛) 已知下列命题:①若a﹥b则a+b﹥0;②若a≠b则a2≠b2;③角的平分线上的点到角两边的距离相等;④平行四边形的对角线互相平分。

其中原命题和逆命题都正确的个数是()A . 1个B . 2个C . 3个D . 4个5. (2分) (2011八下·新昌竞赛) 如图,在 ABCD中,BC=7厘米,CD=5厘米,∠D=50°,BE平分∠ABC,下列结论中错误的是()A . ∠C=130°B . ∠BED=130°C . AE=5厘米D . ED=2厘米6. (2分) (2017八下·丽水期末) 某超市一月份的营业额为200万元,三月份的营业额为288万元,如果每月比上月增长的百分数相同,则平均每月的增长()A . 10%B . 15%C . 20%D . 25%7. (2分)(2011八下·新昌竞赛) 如果一个三角形的三边长分别为1,k,3,则化简的结果是()A . -5B . 1C . 13D . 19-4k8. (2分) (2011八下·新昌竞赛) 如果关于的方程没有实数根,那么的最大整数值是()A . -3B . -2C . -1D . 09. (2分) (2011八下·新昌竞赛) 如图.已知在正方形网格中,每个小方格都是边长为1的正方形,A、B 两点在小方格的顶点上,位置如图所示,点C也在小方格的顶点上,且以A、B、C为顶点的三角形面积为1,则点C的个数为()A . 3个B . 4个C . 5个D . 6个10. (2分) (2011八下·新昌竞赛) 如图,△ABC中,AB=AC=2,BC边上有10个不同的点,,……, 记(i = 1,2,……,10),那么的值为()A . 4B . 14C . 40D . 不能确定二、填空题 (共10题;共10分)11. (1分) (2018八上·靖远期末) 是二元一次方程,那么a﹣b=________.12. (1分) (2011八下·新昌竞赛) 已知,那么代数式的值为________.13. (1分) (2011八下·新昌竞赛) 如图,在△ABC 中,∠1=∠2= ∠B=20°,则∠ADE=________.14. (1分) (2011八下·新昌竞赛) 如图,矩形OABC中,O是原点,OA=8,AB=6,则对角线AC和BO的交点H的坐标为________.15. (1分) (2011八下·新昌竞赛) 如图,矩形ABCD两邻边分别为3、4,点P是矩形一边上任意一点,则点P到两条对角线AC、BD的距离之和PE+PF为________.16. (1分) (2011八下·新昌竞赛) 已知,则 ________.17. (1分) (2011八下·新昌竞赛) 如图,在Rt△ABC中,∠ACB=90°,,CM是斜边AB的中线,将△ACM沿直线CM折叠,点A落在点D处,如果CD恰好与AB垂直,那么∠A=________.18. (1分) (2011八下·新昌竞赛) ________.19. (1分) (2011八下·新昌竞赛) 已知,则一元二次方程的根的情况是________.20. (1分) (2011八下·新昌竞赛) 如图,菱形的边长为1,;作于点,以为一边,做第二个菱形,使;作于点,以为一边做第三个菱形,使;……依此类推,这样做的第n个菱形的边的长是________.三、解答题 (共7题;共45分)21. (15分)解方程:(1) x2=4(2) x2﹣2x﹣2=0(3) x2﹣3x+1=0.22. (5分) (2016九上·宜昌期中) 解方程:x2﹣6x=1.23. (5分) (2011八下·新昌竞赛) 如图,已知四边形ABCD是矩形,对角线AC,BD相交于点O,CE∥DB,交AB的延长线于E.求证:AC=CE.24. (5分) (2011八下·新昌竞赛) 如图,四边形A1OC1B1、A2C1C2B2、A3C2C3B3均为正方形,点A1、A2、A3和点C1、C2、C3分别在直线y= x+1和x轴上,求点C1和点B3的坐标.25. (5分) (2011八下·新昌竞赛) 某单位通过旅行社组织职工去上海世博会.下面是领队与旅行社导游收费标准的一段话:领队:每人的收费标准是多少?导游:如果人数不超过30人,人均旅游费用为120元.领队:超过30人怎样优惠呢?导游:如果超过30人,每增加1人,人均旅游费用就降低2元,但人均旅游费用不得低于90元.该单位按旅行社的收费标准组团参观世博会后,共支付给旅行社4000元.请你根据上述信息,求该单位这次参观世博会的共有几人?26. (5分) (2011八下·新昌竞赛) 判断四边形ABCE是怎样的四边形,说明理由;27. (5分) (2011八下·新昌竞赛) 如图(1),在∆ABC中,AB=BC=5,AC=6,∆ABC沿BC方向平移得到△ECD,连接AE、AC和BE相交于点O。

八年级数学竞赛试题及参考答案

八年级数学竞赛试题及参考答案

八年级数学竞赛试题及参考答案八年级数学竞赛试题(一)一、选择题(每小题5分,共30分) 1.已知2220082008,2ca b a b c k k +=-==++=,且那么的值为( ). A .4 B .14 C .-4 D .14- 2.若方程组312433x y k x y k x y x y +=+⎧<<-⎨+=⎩的解为,,且,则的取值范围是( ). A .102x y <-<B .01x y <-<C .31x y -<-<-D .11x y -<-<3.计算:2399100155555++++++=( ).A .10151- B .10051- C .101514- D .100514-4.如图,已知四边形ABCD 的四边都相等,等边△AEF 的顶点E 、F 分别在BC 、CD 上,且AE=AB ,则∠C=( ). A .100° B .105° C .110° D .120°5.已知5544332222335566a b c d a b c d ====,,,,则、、、的大小关系是( ). A .a b c d >>> B .a b d c >>> C .b a c d >>> D .a d b c >>> 6.如果把分数97的分子、分母分别加上正整数913a b 、,结果等于,那么a b +的最小 值是( ).A .26B .28C .30D .32(第4题图)DCB(第15题图)EDCBA二、填空题:(每小题5分,共30分)7.方程组200820092007200720062008x y x y -=⎧⎨-=⎩的解是 .8.如图,已知AB 、CD 、EF 相交于点O ,EF ⊥AB ,OG 为∠COF 的平分线,OH 为∠DOG 的平分线,若∠AOC :∠COG=4:7,则∠GOH= .9.小张和小李分别从A 、B 两地同时出发,相向而行,第一次在距A 地5千米处相遇,继续往前走到各地(B 、A )后又立即返回,第二次在距B 地4千米处两人再次相遇,则A 、B 两地的距离是 千米.10.在△ABC 中,∠A 是最小角,∠B 是最大角,且2∠B=5∠A ,若∠B 的最大值为m °,最小值为n °,则m °+n °= .11.已知21()()()04b c b c a b c a a a+-=--≠=,且,则 . 12.设p q ,均为正整数,且7111015p q <<,当q 最小时,pq 的值为 . 以下三、四、五题要求写出解题过程. 三、(本题满分20分)13.在一次抗击雪灾而募捐的演出中,晨光中学有A 、B 、C 、D 四个班的同学参加演出,已知A 、B 两个班共16名演员,B 、C 两个班共20名演员,C 、D 两个班共34名演员,且各班演员的人数正好按A 、B 、C 、D 次序从小到大排列,求各班演员的人数. 四、(本题满分20分) 14.已知2211x x y y x y =+=+≠,,且. ⑴ 求证:1x y +=. ⑵ 求55x y +的值.五、(本题满分20分)15.如图,在△ABC 中AC >BC ,E 、D 分别是AC 、BC 上的点,且∠BAD=∠ABE ,AE=BD .求证:∠BAD=12∠C .G(第8题图)HOFED CBA参考答案一、选择题1.A 2.B 3.C 4.A 5.A 6.B 二、填空题: 7、21x y =⎧⎨=⎩ 8、72.5° 9、11 10、175° 11、2 12、68213、解:依题意得:A+B=16,B+C=20,C+D=34∵A <B <C <D ,∴A <8,B >8,B <10,C >10,C <17,D >17 由8<B <10且B 只能取整数得,B=9 ∴C=11,D=23,A=7答:A 、B 、C 、D 各班演员人数分别是7人、9人、11人、23人。

新余四中初二元旦杯数学竞赛试题

新余四中初二元旦杯数学竞赛试题

新余四中初二元旦杯数学竞赛试题新余四中初二元旦杯数学竞赛试题第三届 (2007、12、30)一、选择题(本大题共6小题,每小题5分,菜30分。

)以下每题的四个选项中,仅有一个是正确的,请将正确答案的英文字母写在每题后面的圆括号内。

1、ABC ?的边长分别是21a m =-,21b m =+,()20c m m =>,则ABC ?是()(A )等边三角形(B )钝角三角形(C )直角三角形(D )锐角三角形2、)(A)(B )4 (C)-(D ) -43、某公司组织员工一公园划船,报名人数不足50人,在安排乘船时发现,每只船坐6人,就剩下18人无船可乘;每只船坐10人,那么其余的船坐满后内参有一只船不空也不满,参加划船的员工共有()(A )48人(B )45人(C )44人(D )42人4、如图,长方体ABCD —A'B'C'D ’长、宽、高分别为a ,b ,c .用它表示一个蛋糕,横切两刀、纵切一切再立切两刀,可分成2×3×3=18块大小不一的小长方体蛋糕,这18块小蛋糕的表面积之和为( ).(A)6(ab+bc+ca) (B)6(a+c)b+4ca(C)4(ab+bc+ca) (D)无法计算5、在同一直角坐标系内,解析式为y kx b =+(0k ≠其中k ,b 为实数)的直线有无数条,在这些直线中不论怎样抽取,问至少要取多少条直线才能保证其中有两条直线经过完全相同的的象限()A 、4条B 、5条C 、6条D 、7条6、盒中原有8个小球,一位魔术师从中任意取几个小球,把每一个小球都变成了8个小球,将其放回盒中,他又从盒中任取一些小球,把每一个小球又都变成了8个小球后放回盒中,如此进行到某一时刻魔术师停止取变球时,盒中球的总数可能是()A .2003个B .2004个C .2005个D .2006个二、填空题(本大题共6小题,每小题5分,共30分)7、方程5665-=+x x 的解是。

2017年全国初中数学联赛初二卷和详解

2017年全国初中数学联赛初二卷和详解

2017年全国初中数学联合竞赛试题初二卷第一试一、选择题:(本题满分42 分,每小题7 分)1.已知实数a,b,c满足2a+13b+3c=90,3a+9b+c=72,则32b ca b++的值为().A.2B.1C.0D.-12.已知实数a,b,c满足a+b+c=1,111135a b c++=+++,则(a+1)2+(b+3)2+(c+5)2的值为().A.125B.120C.100D.813.若正整数a,b,c满足a≤b≤c且abc=2(a+b+c),则称(a,b,c)为好数组.那么好数组的个数为().A.4B.3C.2D.14.已知正整数a,b,c满足a2-6b-3c+9=0,-6a+b2+c=0,则a2+b2+c2的值为().A.424B.430C.441D.4605.梯形ABCD中,AD∥BC,AB=3,BC=4,CD=2,AD=1,则梯形的面积为().C. D.6.如图,梯形ABCD中,AD∥BC,∠A=90°,点E在AB上,若AE=42,BE=28,BC=70,∠DCE=45°,则DE的值为().A.56B.58C.60D.62二、填空题:(本题满分28分,每小题7分)7.=a的值为________.8.已知△ABC的三个内角满足A<B<C<100°.用θ表示100°-C,C-B,B-A中的最小者,则θ的最大值为________.9.设a,b是两个互质的正整数,且38abpa b=+为质数.则p的值为________.10.20个都不等于7的正整数排成一行,若其中任意连续若干个数之和都不等于7,则这20个数之和的最小值为________.第二试一、(本题满分20分)设A,B是两个不同的两位数,且B是由A交换个位数字和十位数字所得,如果A2-B2是完全平方数,求A的值.二、(本题满分25分)如图,△ABC中,D为BC的中点,DE平分∠ADB,DF平分∠ADC,BE⊥DE,CF⊥DF,P为AD与EF的交点.证明:EF=2PD.三、(本题满分25分)已知a,b,c为有理数,求222a b ca b c++++的最小值.2017年全国初中数学联合竞赛试题初二卷参考答案第一试一、选择题:(本题满分42 分,每小题7 分)1.已知实数a,b,c满足2a+13b+3c=90,3a+9b+c=72,则32b ca b++的值为().A.2B.1C.0D.-1答案:B对应讲次:所属知识点:方程思路:因为所求分式的特点可以想到把a+2b,3b+c看成一个整体变量求解方程.解析:已知等式可变形为2(a+2b)+3(3b+c)=90,3(a+2b)+(3b+c)=72,解得a+2b=18,3b+c=18,所以312b ca b+=+.2.已知实数a,b,c满足a+b+c=1,111135a b c++=+++,则(a+1)2+(b+3)2+(c+5)2的值为().A.125B.120C.100D.81答案:C对应讲次:所属知识点:方程思路:可以想到换元法.解析:设x=a+1,y=b+3,z=c+5,则x+y+z=10,111x y z++=,∴xy+xz+yz=0,由x2+y2+z2=(x+y+z)2-2(xy+xz+yz)=100.则(a+1)2+(b+3)2+(c+5)2 =100.3. 若正整数a,b,c满足a≤b≤c且abc=2(a+b+c),则称(a,b,c)为好数组.那么好数组的个数为().A.4B.3C.2D.1答案:B对应讲次:所属知识点:数论思路:先通过a≤b≤c且abc=2(a+b+c)的限定关系确定可能的种类,再通过枚举法一一验证. 解析:若(a,b,c)为好数组,则abc=2(a+b+c)≤6c,即ab≤6,显然a=1或2.若a=1,则bc=2(1+b+c),即(b-2)(c-2)=6,可得(a,b,c)=(1,3,8)或(1,4,5),共2个好数组.若a=2,则b=2或3,可得b=2,c=4;b=3,c=52,不是整数舍去,共1个好数组.共3个好数组(a,b,c)=(1,3,8) (1,4,5) (2,2,4).4. 已知正整数a,b,c满足a2-6b-3c+9=0,-6a+b2+c=0,则a2+b2+c2的值为().A.424B.430C.441D.460答案:C对应讲次:所属知识点:方程思路:由已知等式消去c整理后,通过a,b是正整数的限制,枚举出所有可能,并一一代入原方程验证,最终确定结果.解析:联立方程可得(a-9)2+3(b-1)2=75,则3(b-1)2≤75,即1≤b≤6.当b=1,2,3,4,5时,均无与之对应的正整数a;当b=6时,a=9,符合要求,此时c=18,代入验证满足原方程.因此,a=9,b=6,c=18,则a2+b2+c2=441.5. 梯形ABCD中,AD∥BC,AB=3,BC=4,CD=2,AD=1,则梯形的面积为().C. D.答案:A对应讲次:所属知识点:平面几何思路:通过作平行四边形把边长关系转化到一个三角形中来.解析:作AE∥DC,AH⊥BC,则ADCE是平行四边形,则BE=BC-CE=BC-AD=3=AB,则△ABE 是等腰三角形,BE=AB=3,AE=2,经计算可得AH =所以梯形ABCD 的面积为()1142⨯+=.6. 如图,梯形ABCD 中,AD ∥BC ,∠A=90°,点E 在AB 上,若AE=42,BE=28,BC=70,∠DCE=45°,则DE 的值为( ).A.56B.58C.60D.62 答案:B 对应讲次:所属知识点:平面几何思路:补形法,把直角梯形先补成正方形,再利用旋转把边长关系转化到同一个三角形Rt △EAD 中去,利用勾股定理求解.解析:作CF ⊥AD ,交AD 的延长线于点F ,将△CDF 绕点C 逆时针旋转90°至△CGB ,则ABCF 为正方形,可得△ECG ≌△ECD ,∴EG=ED. 设DE=x ,则DF=BG=x-28,AD=98-x.在Rt △EAD 中,有422+(98-x)2=x 2,解得x=58.二、填空题:(本题满分 28 分,每小题 7 分)7.=a 的值为________.答案:8 对应讲次: 所属知识点:方程思路:通过等式两边都6次方可以去掉最外面根式,再用换元法化简等式,最后要验证结果是否满足最初的等式.解析:易得(321a =.令x ,则x ≥0,代入整理可得x(x-3)(x+1)2=0,解得x 1=0, x 2=3, x 3=-1,舍负,即a=-1或8,验证可得a=8.8. 已知△ABC 的三个内角满足A <B <C <100°.用θ表示100°-C,C-B,B-A 中的最小者,则θ的最大值为________. 答案:20° 对应讲次: 所属知识点:代数思路:一般来说,求几个中最小者的最大值时,就是考虑这几个都相等的情况. 解析:∵θ≤100°-C ,θ≤C-B ,θ≤B-A ∴θ≤16[3(100°-C )+2(C-B)+(B-A)]=20°又当A=40°,B=60°,C=80°时,θ=20°可以取到. 则θ的最大值为20°.9. 设a,b 是两个互质的正整数,且38ab p a b=+为质数.则p 的值为________.答案:7 对应讲次: 所属知识点:数论思路:因为p 是质数,只能拆成1和p ,另一方面通过a+b 、a 、b 两两互质来拆分38ab a b+的可能种类,最后分类讨论,要么与条件矛盾,要么得出结果.解析:因为a,b 互质,所以a+b 、a 、b 两两互质,因为38ab a b +质数,所以318ab p a b⎧=⎪⎨=⎪+⎩可得a=b=1,p=4,不是质数舍;381ab p a b⎧=⎪⎨=⎪+⎩可得a=7,b=1,p=7,符合题意.则p=7.10.20个都不等于7的正整数排成一行,若其中任意连续若干个数之和都不等于7,则这20个数之和的最小值为________. 答案:34 对应讲次: 所属知识点:数论思路:考虑1,1,1,1,1,1,8,1,1,1,1,1,1,8,1,1,1,1,1,1满足题设要求,其和为34,接下来只需要考虑该数列是否为和最小的数列.解析:设该正整数列为()20,*n a n n N ≤∈,考虑()16,,,14,*k k k i i i k i ka a a k k N ++==≤∈∑∑,依抽屉原理必然有两项模7的余数相同,则该两项的差是7的倍数,于是任意连续7项之中必有连续子列之和为7的倍数,又不能为7,则最小为14.于是20个数中至少有2组这样的子列其总和不小于28,剩下6个数之和不小于6,于是该数列之和不小于34.由1,1,1,1,1,1,8,1,1,1,1,1,1,8,1,1,1,1,1,1可知,存在数列和为34的情况.第二试一、(本题满分 20 分)设A,B 是两个不同的两位数,且B 是由A 交换个位数字和十位数字所得,如果A 2-B 2是完全平方数,求A 的值. 答案:65 对应讲次: 所属知识点:数论思路:对于需要考虑不同位数上数字的情况,可以把一个两位数ab 设为10a+b ,转为为代数问题,再利用完全平方数的质因数分解式也是以完全平方数对的形式出现,综合分析所有限定下可能性,最终确定结果. 解析:设A=10a+b(1≤a,b ≤9,a,b ∈N),则B=10b+a ,由A,B 不同得a ≠b ,A 2-B 2=(10a+b )2-(10b+a)2=9×11×(a+b )(a-b).………5分由A 2-B 2是完全平方数,则a >b ,()()11|a b a b +-,可得a+b=11, ………10分 a-b 也是完全平方数,所以a-b=1或4.………15分若a-b=1,则a=6,b=5; 若a-b=4,则没有正整数解. 因此a=6,b=5,A=65.………20分二、(本题满分 25 分)如图,△ABC 中,D 为BC 的中点,DE 平分∠ADB ,DF 平分∠ADC ,BE ⊥DE ,CF ⊥DF ,P 为AD 与EF 的交点.证明:EF=2PD.对应讲次:所属知识点:平面几何思路:因为EF 、PD 都在△DEF 中,所以想办法推出其性质,比较容易得出∠EDF=90°,此时若能得出EF=PD ,则自然可以得到结论.解析:由DE 平分∠ADB ,DF 平分∠ADC ,可得∠EDF=90°.………5分由BE ⊥DE 得BE ∥DF ,则∠EBD=∠FDC. ………10分又BD=DC ,∠BED=∠DFC=90°,则△BED ≌△DFC ,BE=DF . ………15分 得四边形BDFE 是平行四边形,∠PED=∠EDB=∠EDP ,EP=PD. ………20分 又△EDF 是直角三角形,∴EF=2PD.………25分三、(本题满分 25 分)已知a,b,c 为有理数,求222a b c a b c ++++的最小值.答案:3 对应讲次: 所属知识点:数论思路:通过a,b,c 是正整数,可以把有理部分和无理部分分离考虑.0c -≠,可以通过分母有理化来实现分离,再利用a,b,c 互不相等,从最小正整数开始讨论即可得出最小值.0c -≠)()22222555bcab bc bac b cb c +--+-==--b 2=ac. …10分()()22222a c ba b c a c b a b c a c b +-++==+-++++.………15分不妨设a <c ,若a=1,c=b 2,因为a ≠b ,则a+c-b=1+b(b-1)≥3,取等号当且仅当b=2时. ………20分 若a ≥2,因为c ≠b ≠1,则a+c-b=a+b(b-1)≥a+2≥4>3.所以222a b c a b c++++的最小值为3,当a=1,b=2,c=4时.………25分。

江西省新余市第四中学2017年“庆元旦”八年级数学竞赛试卷含答案

江西省新余市第四中学2017年“庆元旦”八年级数学竞赛试卷含答案

新余市第四中学2017年“元旦杯”八年级数学竞赛试卷(满分:120分钟 完卷时间:2小时)一、选择题(每小题4分,共40分) 1.下列四组数据中,不能..作为直角三角形的三边长的是【 】 A . 7,24,25 B .6,8,10 C .9,12,15 D .3,4,62设M=(x -3)(x -7),N=(x -2)(x -8),则M 与N 的关系为【 】 A.M <N B.M >N C.M=N D .不能确定3.观察下列等式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187… 解答下列问题:3+32+33+34+…+32015的末位数字是【 】 A .0 B .1 C .3 D .94.若实数x 、y 、z 满足2()4()()0x z x y y z ----=.则下列式子一定成立的是【 】 A .0x y z ++= B .20x y z +-= C . 20y z x +-= D . 20z x y +-=5.已知△ABC 中,AB=AC ,高BD 、CE 交于点O ,连接AO ,则图中全等三角形的对数为【 】A .3B .4C .5D .6第5题图 第6题图6.如图,在△ABC 中,∠C=90°,∠BAC=30°,AB=8,AD 平分∠BAC ,点PQ 分别是AB 、AD 边上的动点,则PQ+BQ 的最小值是【 】 A .4 B .5 C .6 D .7 7.点(3,5)P -关于y 轴对称的点的坐标为【 】A . (3,5)--B .(5,3)C .(3,5)-D .(3,5) 8.下列四个命题中,真命题有【 】① 两条直线被第三条直线所截,内错角相等.② 如果∠1和∠2是对顶角,那么∠1=∠2. ③ 三角形的一个外角大于任何一个内角. ④ 如果02>x ,那么0>x . A .1个 B .2个 C .3个 D .4个 9.平面直角坐标系中,已知定点A (1,0)和B (0,1),若动点C 在x 轴上运动,则使△ABC 为等腰三角形的点C 有【 】个A. 5B. 4C. 3D. 210.当x =1时,ax +b +1的值为﹣2,则(a +b ﹣1)(1﹣a ﹣b )的值为【 】A .﹣16B . ﹣8C . 8D . 16二、填空题(每小题4分,共40分)11.在△ABC 中,∠B=60°,∠C >∠A ,且222B A )C ()()(∠+∠=∠,则△ABC 的形状是 。

新余四中初二数学元旦杯竞赛试卷

新余四中初二数学元旦杯竞赛试卷

新余四中初二数学“元旦杯”竞赛试卷【满分120分 时间120分钟】一、选择题(6×4分=24分)1、台湾是我国最大的岛屿,总面积为35989.76平方千米。

用科学记数法应表示为(保留三个有效数字)( )A.3.59×106平方千米B.3.60×106平方千米C. 3.59×104平方千米D. 3.60×104平方千米2、右图是一个正方体包装盒的表面展开图,若在其中的三个正方形A 、B 、 C 内分别填上适当的数,使得将这个表面展开图沿虚线折成正方体后,相对面上的两个数互为相反数,则填在A 、B 、C 内的三个数依次是 ( ) A.0,-2,1 B. 0,1,-2C. 1,0,-2 D. -2,0, 1 3、大家知道5是一个无理数,那么5-1在哪两个整数之间( ) A .1与2 B .2与3 C .3与4 D .4 与 54、剪纸是中国的民间艺术,剪纸方法很多,下面是一种剪纸方法的图示(先将纸折叠,然后再剪,展开既得到图案):下面四个图案中,不能用上述方法剪出的是( )5、如图是一个经过改造的台球桌面示意图,图中四个角上的阴影部果一个球按图中所示的方向被击出(球可以经过多次反射),那么该( )A 、一号袋B 、二号袋C 、三号袋D 、四号袋 6.如果关于x 的不等式组⎩⎨⎧≥-<-0706m x n x 的整数解仅为1,2,3,那么适合这个不等到式组的整数对(m,n )共有( ) A .49对 B .42对 C .36对 D .13对二、填空题(7×4分=28分)7、已知222222233445522334455?, ...3388151524241010a a b b +=⨯+=⨯+=⨯+=⨯+=⨯,,,, 符合前面式子的规律, 则 a + b = ___ ____.8、按一定的规律排列的一列数依次为:111111,,,,,2310152635┅┅,按此规律排列下去,这列数中的第7个数是 . 9、已知2<x<5, 化简22)5()2(-+-x x =__ _.10、观察下列等式:2311=233321=+23336321=++23333104321=+++……想一想,等式左边各项幂的底数与右边幂的底数有何关系?猜一猜可引出什么规律?用等式将其规律表示出A B C 20 -1A B C D来: .11、如图,将边长为1的正方形OAPB 沿x 轴正方向边连续翻转2006次,点P 依次落在点1232,,P P P P 的位置,则2006P 的横坐标2006x =___ .12、将正偶数按下表排列:第1列 第2列 第3列 第4列第1行 2第2行 4 6第3行 8 10 12第4行 14 16 18 20……根据上面的规律,则2006所在行、列分别是 .13.[x]表示不超过x 的最大整数,如[3.2]=3,已知正整数n 小于2002,且263n n n =⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡,则这样的n 有___________个。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新余市第四中学2017年“元旦杯”八年级数学竞赛试卷(满分:120分钟 完卷时间:2小时)命题人:邓礼军一、选择题(每小题4分,共40分) 1.下列四组数据中,不能..作为直角三角形的三边长的是【 】 A . 7,24,25 B .6,8,10 C .9,12,15 D .3,4,6 2设M=(x -3)(x -7),N=(x -2)(x -8),则M 与N 的关系为【 】 A.M <N B.M >N C.M=N D .不能确定3.观察下列等式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187… 解答下列问题:3+32+33+34+…+32015的末位数字是【 】 A .0 B .1 C .3 D .94.若实数x 、y 、z 满足2()4()()0x z x y y z ----=.则下列式子一定成立的是【 】 A .0x y z ++= B .20x y z +-= C . 20y z x +-= D . 20z x y +-=5.已知△ABC 中,AB=AC ,高BD 、CE 交于点O ,连接AO ,则图中全等三角形的对数为【 】A .3B .4C .5D .6第5题图 第6题图 6.如图,在△ABC 中,∠C=90°,∠BAC=30°,AB=8,AD 平分∠BAC ,点PQ 分别是AB 、AD 边上的动点,则PQ+BQ 的最小值是【 】 A .4 B .5 C .6 D .7 7.点(3,5)P -关于y 轴对称的点的坐标为【 】A . (3,5)--B .(5,3)C .(3,5)-D .(3,5) 8.下列四个命题中,真命题有【 】① 两条直线被第三条直线所截,内错角相等.② 如果∠1和∠2是对顶角,那么∠1=∠2. ③ 三角形的一个外角大于任何一个内角. ④ 如果02>x ,那么0>x . A .1个 B .2个 C .3个 D .4个 9.平面直角坐标系中,已知定点A (1,0)和B (0,1),若动点C 在x 轴上运动,则使△ABC为等腰三角形的点C 有【 】个A. 5B. 4C. 3D. 210.当x =1时,ax +b +1的值为﹣2,则(a +b ﹣1)(1﹣a ﹣b )的值为【 】 A .﹣16 B . ﹣8 C . 8 D . 16 二、填空题(每小题4分,共40分)11.在△ABC 中,∠B=60°,∠C >∠A ,且222B A )C ()()(∠+∠=∠,则△ABC 的形状是 。

12.观察下列式子:181092+⨯=;198100992+⨯=;199810009992+⨯=,……,按规律写出=2999999 。

(填写具体数字) 13.若532+y x b a 与x y b a 2425-是同类项,则xy= .14.如图,直线l ∥m ,将含有45°角的三角板ABC 的直角顶点C 放在直线m 上,则 ∠1+∠2的度数为 .15.如果2222(2)(2)45a b a b +++-=,则a 2+b 2的值为 . 16.已知2(25)1000a +=,则(15)(35)a a ++的值为 .17.计算1111111111234523456⎛⎫⎛⎫----++++ ⎪⎪⎝⎭⎝⎭1111111111234562345⎛⎫⎛⎫------+++ ⎪⎪⎝⎭⎝⎭的结果是 .18.如图,在△ABC 中,I 是三内角平分线的交点,∠BIC=130°,则∠A= . 19.如图,钢架中,焊上等长的13根钢条来加固钢架,若AP 1=P 1P 2=P 2P 3=…=P 13P 14=P 14A ,则∠A 的度数是 .第14题 第18题图 第19题图20.用[]x 表示不大于数x 的最大整数.己知正整数n 的平方的十位数字是7,那么,100100n n ⎡⎤-⎢⎥⎣⎦的所有可能值的和等于 .三、解答题(21、22每小题6分,23、24每小题8分,25题12分,共40分) 21.已知:3a =2,3b =6,3c =18,试确定a 、b 、c 之间的数量关系.O E DCB A QP C BA D I C BA 姓名 学校_ 班级 学号----------------------------装------------------------订---------------------线--------------------22.已知a=2015x+2014,b=2015x+2015,c=2015x+2016. 求a 2+b 2+c 2-ab -bc -ca 的值.23、如图,在△ABC 中,AC=7,BC=4,D 为AB 中点,E 为AC 边上一点,且∠AED=90°+21∠C 求CE 的长。

24.已知△ABC 中,∠A :∠B :∠C=3:4:2,AD 、BE 是角平分线. 求证:AB+BD=AE+BE .25.直线a 平行于直线b ,a 上有5个点125,,,A A A L ,b 上有5个点125,,,B B B L ,连接线段i j A B (,1,2,3,4,5i j ).所得到的图形中,三角形最多有多少个?(说明理由)参考答案二、解答题(每小题10分,共40分)21.已知:3a=2,3b=6,3c=18,试确定a、b、c之间的数量关系.(2b=a+c)22.已知a=2015x+2014,b=2015x+2015,c=2015x+2016.求a2+b2+c2-ab-bc-ca的值=323.作BF∥DE交AC于F,作∠ACB的角平分线交AB于G,交BF于H.........................1分则∠AED=∠AFB=∠CHF+错误!未找到引用源。

∠C.........................2分因为∠AED=90°+错误!未找到引用源。

∠C,所以∠CHF=90°=∠CHB................................................................4分又∠FCH=∠BCH,CH=CH....................................................................5分所以△FCH≌△BCH............................................................6分所以CF=CB=4.........................................................................................7分所以AF=AC-CF=3.................................................................8分因为AD=DB,BF∥DE.....................................................................................9分所以AE=EF=1.5..................................................................................10分所以CE=5.5..................................................................................12分24.已知△ABC中,∠A:∠B:∠C=3:4:2,AD、BE是角平分线.求证:AB+BD=AE+BE.ED CBA证明:延长AB到F,使BF=BD,连DF,所以∠F=∠BDF因为∠ABC=80所以∠F=40°因为∠ACB=40度所以∠F=∠ACB,因为AD是平分线所以∠BAD=∠CAD又AD为公共边所以△ADF≌△ADC所以AF=AC因为AD是角平分线,所以∠CBE=∠ABC/2=40所以∠EBD=∠C所以BE=EC,所以BE+AE=EC+AE=AC=AF=AB+BF=AB+BD。

25.解:连接直线a上的点和直线b上的点,所得到的线段称为“正规线段”.分类计数所得三角形个数:第1类:三角形的三个顶点都在直线a和直线b上,其中2个顶点在直线a上,第3个顶点在直线b上,这类三角形有:()15515502⎛⎫⨯⨯-⨯=⎪⎝⎭个.类似,其中2个顶点在直线b上,第3个顶点在直线a上,这类三角形也有50个;第2类:三角形的2个顶点在直线a和直线b上,第3个顶点为两条“正规线段”的交点,显然,这类三角形与直线a和直线b上的4个点有关,且各有2个点,构成1组.题号 1 2 3 4 5 6 7 8 9 10 答案 D B D D C A A A B A 题号11 12 13 14 15 16 17 18 19 20答案锐角三角形999998000001-2 4507 900 1/680°12°20共有()()1155155122⎛⎫⎛⎫⨯⨯-⨯⨯⨯-⎪ ⎪⎝⎭⎝⎭1010100=⨯=组. 每组可构成4个三角形,且各组之间无公共三角形时(见下图), 则此类三角形最多有4100400⨯=个;第3类:三角形的1个顶点在直线a 或者直线b 上,另2个顶点为“正规线段”的交点, 此类三角形与直线a 和直线b 上的5个点有关, 且两平行直线各有3个点和2个点,构成1组,共有()()11255155122⎛⎫⎛⎫⨯⨯⨯-⨯⨯⨯- ⎪ ⎪⎝⎭⎝⎭21010200=⨯⨯=组, 每组构成2个三角形,且各组之间无公共三角形时(见图), 则此类三角形最多有2200400⨯=个三角形;第4类:三角形的3个顶点都是“正规线段”的交点, 此类三角形与直线a 和直线b 上的6个点有关. 其中三个点在a 上,另外三个点在b 上,构成1组,共有()()1155155122⎛⎫⎛⎫⨯⨯-⨯⨯⨯- ⎪ ⎪⎝⎭⎝⎭1010100=⨯=组, 每组构成1个三角形,且各组无公共三角形时,最多有100个三角形.综上,满足条件的三角形共有1004004001001000+++=个.。

相关文档
最新文档