数学人教版九年级下册反比例函数1
人教版初中数学九年级下册 26.1.2 反比例函数的图像和性质(第1课时)课件 【经典初中数学课件】
B
C B1
C1
∠A =∠A1,∠B =∠B1, ∠C =∠C1 AB = BC = AC , A1B1 = B1C1 = A1C1
对应角相等
AB : A1B1 = BC : B1C1 = CD : C1D1 对应边成比例
对应角有什么关系?
正六边形 AF
120° B
放大 B1 E
y= k
K>0
K<0
x
图 象
当k>0时,函数图象 当k<0时,函数图象
性 的两个分支分别在第 的两个分支分别在第
质
一、三象限,在每个 二、四象限,在每个 象限内,y随x的增大 象限内,y随x的增大
而减小.
而增大.
1.反比例函数y= -
5 x
的图象大致是(
D)
y
y
A.
o
x B.
o x
y
y
C.
o
x D.
y
6
6y
5 4
y
=
6 x
3
y=
6 x
5 4
3
2
2
1
1
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 x -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 x
-1
-1
-2
-2
-3
-3
-4
-4
-5
-5
-6
-6
你认为作反比例函数图象时应注意哪些问题?
1.列表时,选取的自变量的值,既要易于计算,又要便于描点, 尽量多取一些数值(取互为相反数的一对一对的数),多描一 些点,这样既可以方便连线,又可以使图象精确. 2.描点时要严格按照表中所列的对应值描点,绝对不能把 点的位置描错. 3.线连时一定要养成按自变量从小到大的顺序依次画线,连 线时必须用光滑的曲线连接各点,不能用折线连接. 4.图象是延伸的,注意不要画的有明确端点. 5.曲线的发展趋势只能靠近坐标轴,但不能和坐标轴相交.
人教版九年级数学下册第26章反比例函数PPT
知识点 1 反比例函数的定义
知1-导
问题
下列问题中,变量间具有函数关系吗?如果有,它 们的解析式有什么共同特点? (1)京沪线铁路全程为1 463 km,某次列车的平均速度
v(单位: km/h)随此次列车的全程运行时间t (单位:h) 的变化而变化;
知1-导
(2) 某住宅小区要种植一块面积为1 000 m2的矩形草坪, 草坪的长y (单位:m)随宽x (单位:m)的变化而变化;
(4)还原:写出反比例函数的解析式.
知2-讲
2.由于反比例函数的解析式中只有一个待定系数k, 因此求反比例函数的解析式只需一组对应值或一 个条件即可.
知2-讲
例2 已知y是x的反比例函数,并且当x=2时,y=6.
(1)写出y关于x的函数解析式;
(2)当x=4时,求y的值.
分析:因为y是x的反比例函数,所以设 y k .
5
①y=2x-1;②y=- ;③y=x2+8x-2;
3
1x
a
④y= x2 ; ⑤y= 2x ; ⑥y= x .
导引:根据反比例函数的定义进行判断,看它是否满足反比例函数的三种
表现形式.①y=2x-1是一次函数;②y=- 5 是反比例函数;③y
3
x
=反=比xa2+例,8函x当-数a2≠关是0系时二;是次⑤反函y比数=例;2函1④x数y是=,反没x比2有例,此函y条与数件x,2成则可反不以比一写例定成,是y但反=y比与12x例x;不函⑥是y
(k≠0)的图象上,则k的值是( D )
A.10 B.5 C.-5 D.-10
3 若y与x-2成反比例,且当x=-1时,y=3,则y
与x之间的关系是( D )
A.正比例函数
人教版九年级下册数学全册精优教学课件
y 12 3. 4
你可以从中归纳出用待定系数法求反比例函数
解析式的一般步骤吗?
比例函数解析式的一般
步骤是:(1)设,即设所求的反比例函数解析 式为 y k(k≠0).(2)代,即将已知条件中对应的
x x、y值代入 y k 中得到关于k的方程.(3)解,即解
x 方程,求出k的值.(4)定,即将k值代入 y k 中,
x 确定函数解析式.
第四部分 知识小结
知识小结
概念 反 比 例 函 数
解析式
一般地,形如 y kx(k 为常数, k ≠ 0)的函数,叫做反比例函数, 其中 x 是自变量,y 是函数.
求解析式时, ①设 y k ,
x ②由已知条件求出 k .
1
九年级数学下册(RJ)教学课件
第二十六章 反比例函数
第一节 反比例函数 第一课时 反比例函数的意义
1 1. 情景导学
2 2. 新课目标
Contents
目录
3. 新课进行时 4. 知识小结 5. 随堂演练
6. 课后作业
第一部分 情景导学
情景导学
刘翔在2004年雅典奥运会110 m 栏比赛中以12.91s的成 绩夺得金牌,被称为中国“飞人” .如果刘翔在比赛中 跑完全程所用的时间为t s,平均速度为v m/s .你能写出v 与t之间的关系式吗?
第三部分 新课进行时
新课进行时
核心知识点一 反比例函数的定义
问题1 京沪线铁路全 程为 1 463 km,某次列车 的平均速度 v(单位:km/h )随此次列车的全程运行 时间 t(单位:h)的变化 而变化.
(1)平均速度 v,运行时间 t 存在什么数量关系? (2)这两个变量间有函数关系吗?试说明理由 (3)你能写出 v 关于 t 的解析式吗?
《反比例函数》PPT优质课堂课件1人教版
九年级下册 人教版
第二十六章 反比例函数
26.1.1 反比例函数
反比例函数的定义
1.(4分)下列关系式中,y是x的反比例函数的是( C )
A.y=2x B.y=x2
C.y=2x
D.y=
2 x
2.(4分)若函数y=m-x 3 是关于x的反比例函数,则m必须满足( B ) A.m≠0 B.m≠3 C.m≠-3 D.m为一切实数
解:设y1=3kx1 ,y2=k2(-x2),则y=3kx1 +k2(-x2),将x=1,y=5与x =-1,y=-2代入,可得k1=221 ,k2=-32 ,则y=27x +32 x2,当x =3时,y=434
((11))当 求mI关为于何R6值的.时函,数(3y解是分析x的式)正设;比每例函个数?工人一天能做某种型号的工艺品 A3..(正4分方)下形列的x关个面系积,中S与,若边两长个某a量的工之关间系艺为反品比厂例函每数关天系生的是产( 这)种工艺品60个, 155..(6(9分分)在)已下需知列y要=函(数m工解2+析人2式my)中x名m,2+x,均m为-则自1.变y量关,于哪些x是的反函比例数函数解?析每一式个反为比(例函C数)中相应的比例系数是多少?
5.(6分)在下列函数解析式中,x均为自变量,哪些是反比例函数?每 一个反比例函数中相应的比例系数是多少?
(1)y=5x ;(2)y=x5 ;(3)y=53x ; (4)xy=5;(5)y=5x-1;(6)y=5x -1. 解:(1)(3)(4)是反比例函数,其比例系数分别是5,35 ,5
根据实际问题列反比例函数解析式
解:(1)m=1 (2)m=-1+2 13 或-1-2 13 (3)m=-1
(2)当m为1何6值.时(,1y0是分x的)二(渗次函透数?学科知识)在物理学中,由欧姆定律知,电压U不变时,
人教版九年级下册数学知识点总结
人教版九年级下册数学知识点总结一、反比例函数的概念反比例函数是指函数y=k/x(k≠0)的形式,其中自变量x 的指数为-1.在解决有关自变量指数问题时,应特别注意系数这一限制条件。
另外,反比例函数也可以写成xy=k的形式,用它可以迅速地求出反比例函数解析式中的k,从而得到反比例函数的解析式。
反比例函数的自变量不能为0,故函数图像与x轴、y轴无交点。
二、反比例函数的图像画法反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、第三象限或第二、第四象限,它们与原点对称。
由于反比例函数中自变量x≠0,函数值y≠0,所以它的图像与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。
反比例函数的画法分三个步骤:⑴列表;⑵描点;⑶连线。
在作反比例函数的图像时,应注意以下几点:①列表时选取的数值宜对称选取;②列表时选取的数值越多,画的图像越精确;③连线时,必须根据自变量大小从左至右(或从右至左)用光滑的曲线连接,切忌画成折线;④画图像时,它的两个分支应全部画出,但切忌将图像与坐标轴相交。
三、反比例函数及其图像的性质1.函数解析式:y=k/x(k≠0)2.自变量的取值范围:x≠03.图像:1)图像的形状:双曲线,曲度越大。
2)图像的位置和性质:当k>0时,图像的两支分别位于一、三象限;在每个象限内,y随x的增大而减小;当k<0时,图像的两支分别位于二、四象限;在每个象限内,y随x的增大而增大。
3)对称性:图像关于原点对称,即若(a,b)在双曲线的一支上,则(-a,-b)在另一支上。
图像关于直线y=x和y=-x对称。
4.k的几何意义如图1,设点P(a,b)是双曲线y=k/x的一点,在双曲线的另一支上任意一点,作PA⊥x轴于A点,PB⊥y轴于B点,则矩形PBOA的面积是|k|(三角形PAO和三角形PBO的面积都是1/2|k|)。
如图2,由双曲线的对称性可知,P关于原点的对称点Q也在双曲线上,作QC⊥XXX的延长线于C,则有三角形PQC的面积为2|k|。
人教版数学九年级下册教学课件26-1-1反比例函数
为 80 度,如果视野 f (度) 是车速 v (km/h) 的反比例函数,求 f 关于 v 的
函数解析式,并计算当车速为100km/h 时视野的度数.
解:设 f k . 由题意知,当 v =50时,f =80,
v
所以 80 k . 解得 k =4000. 50
因此
f 4000 . v
当 v=100 时,f =40.
答:他星期三上学时的平均速度比星期二快 85 m/min.
(2) 当 x=4 时,求 y 的值.
3. 能根据实际问题中的条件确定反比例函数 2m2 + m-1≠0
当 x =1 时,y = -1,求: 因为当 x=2时,y=6,所以有
① y =3x-1 ② y =2x2
③
④
的解析式,体会函数的模型思想. 64×104 km2 ,人均占有面积 S (单位:km2/人) 随全市总人口 n (单位:人) 的变化而变化.
(2)代,即将已知条件中对应的 x、y 值代入
于k的方程.
y k 中得到关 x
(3)解,即解方程,求出 k 的值.
(4)定,即将
k 值代入 y
k x
中,确定函数解析式.
巩固练习
已知 y 与 x+1 成反比例,并且当 x = 3 时,y = 4.
(1) 写出 y 关于 x 的函数解析式;
(2) 当 x = 7 时,求 y 的值.
2.在实际问题中自变量x的取值范围是什么?
要根据具体情况来确定.
例如,在前面得到的第二个解析式 y 1000
x
,x的
取值范围是 x>0,且当 x 取每一个确定的值时,y 都
有唯一确定的值与其对应.
探究新知
人教版数学九年级下册第二十六章《反比例函数》知识总结及考点分析
第26章 反比例函数一、教学内容:反比例函数 教学目标:1. 理解反比例函数、图像及其主要性质,能根据所给信息确定反比例函数表达式,画出反比例函数的图像,并利用它们解决简单的实际问题。
2. 初步了解数学在实际生活中的应用,增强应用意识,体会数学的重要性。
二、重点、难点: 重点:1.能根据所给信息确定反比例函数表达式,画出反比例函数的图像,并利用它们解决简单的实际问题。
2、反比例函数的图像特点及性质的探究3、通过观察图像,归纳总结反比例函数图像 难点:1、理解反比例函数的概念2、画反比例函数的图像,并从图像中获取信息3、从反比例函数的图像中归纳总结反比例函数的主要性质 4.反比例函数的应用。
三、知识要点1、经历抽象反比例函数概念的过程,并能类推归纳出反比例函数的表达式2、一般地,如果两个变量x ,y 之间的关系可以表示成y=xk 〔k 为常数,k 不等于0〕的形式,那么称y 是x 的反比例函数.从y=xk中可知,x 作为分母,所以不能为零3、画反比例函数图像时要注意以下几点a 列表时自变量的取值应取绝对值相等而符号相反的一对数值,这样既可以简化计算,又便于标点b 列表、描点时,要尽量多取一些数值,多描一些点,这样方便连线c 在连线时要用“光滑的曲线〞,不能用折线 4、反比例函数的性质反比例函数 ()0≠=k xky k 的取值范围0>k 0<k图像性质①x 的取值范围是0≠x ,y 的取值范围是0≠y②函数图像的两个分支分别在第一、三象限,在每一个象限内y 随x 的增大而减小①x 的取值范围是0≠x ,y 的取值范围是0≠y②函数图像的两个分支分别在第二、四象限,在每一个象限内y 随x 的增大而增大注意:1〕反比例函数是轴对称图形和中心对称图形;2〕双曲线的两个分支都与x 轴、y 轴无限接近,但永远不能与坐标轴相交; 3〕在利用图像性质比拟函数值的大小时,前提应是“在同一象限〞内。
26.1 第1课时 反比例函数的图象 课件(共21张PPT)数学人教版九年级下册
(1) 当 k > 0 时,双曲线的两支分别位于第一、三 象限,在每一象限内,y 随 x 的增大而减小;
(2) 当 k < 0 时,双曲线的两支分别位于第二、四 象限,在每一象限内,y 随 x 的增大而增大.
k 的正负决定反比例函 数图象的位置和增减性
当堂练习
1.已知反比例函数 y m 2 的图象在第一、三
y
4 x
的图象.
解析:通过刚刚的学习可知画图象的三个步骤为
列表
描点
连线
需要注意的是在反比例函数中自变量 x 不能为 0.
解:列表如下
x … -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 …
y
…2 3
0.8 1
4 3
2
4 -4 -2 - 4 -1
3
-0.8 - 2 …
3
y
y=
4 x
6
5 4 3
为(-1,3),则它们的另一个交点坐标是
( C)
A. (1,3)
y
B. (3,1) C. (1,-3)
x O
D. (-1,3)
4.已知反比例函数y k 的图象经过点 A (2,3). x
(1) 求这个函数的表达式;
解:∵ 反比例函数 y k 的图象经过点 A(2,3), x
∴ 把点 A 的坐标代入表达式,得 3 k , 2
例3 已知反比例函数的图象经过点 A (2,6). (1) 这个函数的图象位于哪些象限?y 随 x 的增大如
何变化?
解:因为点 A (2,6) 在第一象限,所以这个函数的 图象位于第一、三象限; 在每一个象限内,y 随 x 的增大而减小.
(2) 点B(3,4),C( 2 1 , 4 4),D(2,5)是否在这个
九年级下册数学知识点汇总(人教版)
九年级下册(人教版数学)知识点汇总目录反比例函数 (1)26.1反比例函数 (1)● 反比例函数的定义 (1)● 反比例函数的图像 (1)● 反比例函数图像的对称性 (1)● 反比例函数的性质 (2)● 反比例函数系数k的几何意义 (2)● 反比例函数图像上点的坐标特征 (2)● 待定系数法求反比例函数解析式 (2)● 反比例函数与一次函数的交点问题 (3)26.2实际问题与反比例函数 (3)● 根据实际问题列反比例函数关系式 (3)● 反比例函数的应用 (4)相似 (5)27.1图形的相似 (5)● 相似图形 (5)27.2相似三角形 (5)● 相似三角形的判定 (5)● 相似三角形的应用 (5)● 相似多边形的性质 (5)● 相似三角形的性质 (6)● 相似三角形的判定与性质 (6)● 作图--相似变换 (6)● 射影定理 (6)27.3位似 (7)● 位似变换 (7)● 作图-位似变换 (7)锐角三角函数 (8)28.1锐角三角函数 (8)● 锐角三角函数的定义 (8)● 锐角三角函数的增减性 (8)● 同角三角函数的关系 (8)● 互余两角三角函数的关系 (9)● 特殊角的三角函数值 (9)28.2解直角三角形及其应用 (9)● 解直角三角形 (9)● 解直角三角形的应用 (10)● 解直角三角形的应用--坡度坡角问题 (10)● 解直角三角形的应用--仰角俯角问题 (10)● 解直角三角形的应用--方向角问题 (10)投影与视图 (11)29.1投影 (11)● 平行投影 (11)● 中心投影 (11)● 视点、视角和盲区 (11)29.2三视图 (11)● 简单几何体的三视图 (11)● 简单组合体的三视图 (12)● 由三视图判定几何体 (12)● 作图--三视图 (12)29.3课题学习、制作立体模型 (12)● 课题学习制作立体模型 (12)反比例函数26.1反比例函数●反比例函数的定义【反比例函数的概念】形如的函数称为反比例函数.其中是自变量,是函数,自变量的取值范围是不等于的一切实数.【反比例函数的判断】判断一个函数是否是反比例函数,首先看看两个变量是否具有反比例关系,然后根据反比例函数的意义去判断,其形式为或.●反比例函数的图像【反比例函数的图象】反比例函数的图象是由两条曲线组成的,这两条曲线通常称为双曲线当k>0时,两个分支分别位于第一、三象限内;当k<0时,两个分支分别位于第二、四象限①k>0②K<0●反比例函数图像的对称性【反比例函数图象的对称性】1、反比例函数图象本身既是轴对称图形又是中心对称图形,对称轴分别是:①二、四象限的角平分线y=-x ;一、三象限的角平分线y=x ;对称中心是:坐标原点.2、若经过原点的直线与反比例函数交于两点,则这两点关于原点对称;3、反比例函数与的图象关于x轴,y轴对称.●反比例函数的性质●反比例函数系数k的几何意义【反比例系数的几何意义】1.在反比例函数图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值.2.在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是,且保持不变.●反比例函数图像上点的坐标特征【反比例函数图象上的点的坐标特征】1. 若点在反比例函数图象上,则点的横纵坐标满足反比例函数解析式2. 若点在反比例函数图象上,则也一定在反比例函数图象上3. 若点A(x,y)在反比例函数的图像上,则xy=k●待定系数法求反比例函数解析式【待定系数求反比例函数解析式的一般步骤】(1)设出含有待定系数的反比例函数解析式;(2)把已知条件(自变量与函数的对应值)带入解析式,得到待定系数的方程;(3)解方程,求出待定系数;(4)写出解析式.●反比例函数与一次函数的交点问题【反比例函数与一次函数的交点】1.(1)求反比例函数与一次函数的交点坐标时,先把两个函数关系式联立成方程组求解,若方程组有解,则两者有交点,方程组无解,则两者无交点;(2)已知反比例函数与一次函数的交点坐标,把点的坐标带入函数解析式可求得函数关系式或系数间的等量关系.2.判断正比例函数和反比例函数在同一直角坐标系中的交点个数可总结为:(1)当k1与k2同号时,正比例函数和反比例函数在同一直角坐标系中有2个交点;(2)当k1与k2异号时,正比例函数和反比例函数在同一直角坐标系中有0个交点.26.2实际问题与反比例函数●根据实际问题列反比例函数关系式【列反比例函数关系式的一般解题思路】根据实际问题列反比例函数关系式,注意分析问题中变量之间的联系,建立反比例函数的数学模型,在实际问题中,往往要结合题目的实际意义去分析.首先弄清题意,找出等量关系,再进行等式变形即可得到反比例函数关系式.根据图象去求反比例函数的解析式,或是知道一组自变量与函数值去求解析式,都是利用待定系数法去完成的.注意:要根据实际意义确定自变量的取值范围.【根据实际问题列反比例函数的步骤】步骤1:审:审清题意,找出题目中的常量、变量,并理清常量与变量之间的关系。
九年级数学人教版下册教学课件实际问题与反比例函数第一课时 利用反比例函数解决实际生活中的问题
解: (1)根据圆柱体的体积公式,我们有 S×d=1 0 4
所以S关于d 的函数解析式为
S 104 d
(2)把S=500代入
S
104
d
,得
500 1 0 4 d
解得 d=20(m).
如果把储存室的底面积定为500m²,施工时应向地下掘进20m深.
ቤተ መጻሕፍቲ ባይዱ
(3)根据题意,把d=15代入 S
104
d
,得
s
一、教学目标 (2)若行驶速度不得超过60 km/h,则汽车通过该路段最少需要多少时间?
(3)当施工队按(2)中的计划掘进到地下15m时,公司临时改变计划,把储存室的深度改为15m,相应地,储存室的底面积应改为多少 (结
果保留小数点后两位)?
所(2)以由S题关1意于.,d得运的(函x-用数1解2反0析)y比式=为3例000函, 数的知识解决实际问题.
v 1)和B(m,0.5).
(1)求k和m的值; (2)若行驶速度不得超过60 km/h,则汽车通过该路段最少需要多少时间?
k 解:(1)∵点A(40,1)在反比例函数t= v
∴k=40,∴t=
40 v
.
又∵点B在函数的图象上,
上,
∴m=80; (2)由(1)得 t=4v0. 令v=60,
则 t=4v0=4600=23, 结合图象可知汽车通过该路段最少需要23 h.
如何建立反比例函数如模型何解建决实立际问反题比. 例函数模型解决实际问题.
则y与x的函数图象大致是( )
(1)轮船到达目的地后开始卸货,卸货速度v(单位:吨/天)与卸货时间t(单位:天)之间有怎样的函数关系?
运用反比例函数的意义与性质解决实际问题.
人教版九年级数学下册:第1课时 反比例函数的图象和性质
1.教材P6练习第1,2题.
2.已知一次函数
y=x-b与反比例函数
y=
2 x
标是2,则b的值为__-__1__.
的图象有一个交点的纵坐
3.已知反比例函数 y=x31k3--9k2 的图象在其所在的象限内,y随x的增大而
减小,求k的值. 解:由题意,得31k3--9k>2=0,1,①②
由①,得k>3,由②,得k=± 2 3 ,综合①②得k= 2 3 .
(1)我们知道,正比例函数y=kx的图象是一条直线,那么反比例函数
y=
k x
的图象是什么形状呢?你能用“描点”的方法画出反比例函数
y=
6 x
和y=
1x2的图象吗?
(2)观察y= 6 与y= 12的图象,图象在向下、向上延伸时,会与x轴、y
x
x
轴相交吗?为什么?
(3)教材P5思考.
2.教材P5探究 提出问题:
26.1.2 反比例函数的图象和性质 第1课时 反比例函数的图象和性质
一、教学目标
1.进一步熟悉作函数图像的步骤,能够作出反比例函数的图象. 2.通过对反比例函数的图象的分析,探索并掌握反比例函数的图象和性质.
二、教学重难点
重点 反比例函数的图象及其性质.
难点 反比例函数图象与性质的灵活应用.
三、教学设计
活动1 新课导入 1.正比例函数y=kx的图象是_一__条__直__线__,当 k>0时,图象在_第__一__、__第__三_ 象限;当k<0时,图象在_第__二__、__第__四_象限. 2.请分别画出 y=2x与 y=-2x的图象. 3.如何用描点法画一个函数的图象.
活动2 探究新知 1.教材P4例2. 提出问题:
人教版九年级数学下册26.1.2第1课时反比例函数的图象和性质课件
y k(k>0)的图象上, x
若y1<y2,求a的取值范围.
解:由题意知,在图象的每一支上,y随x的增大而减小.
①当这两点在图象的同一支上时,
∵y1<y2,∴a-1>a+1, 无解; ②当这两点分别位于图象的两支上时,
∵y1<y2,∴必有y1<0<y2. ∴a-1<0,a+1>0, 解得:-1<a<1.
,4
4 5
),D(2,5)是否在这个函数的图象上?
解:设这个反比例函数的解析式为 y k ,因为点A(2,6)在其图象上,所
x
以有 6 k ,解得k=12.
2
所以反比例函数的解析式为 y 12 .
x
因为点B,C的坐标都满足该解析式,而点 D的坐标不满足,所以点B,C在
这个函数的图象上,点D不在这个函数的图象上.
结论吗?
一般地,当k>0时,对于反比例函数
y
k x
,由函数图象,并结合解析式,
我们可以发现:
(1)函数图象分别位于第一、第三象限; (2)在每一个象限内,y随x的增大而减小.
归纳: 反比例函数 y k (k>0) 的图象和性质:
x
●由两条曲线组成,且分别位于第一、三象限 它们与 x 轴、y 轴都不相交;
例1 画出反比例函数y 6 与 y 12 的图象.
x
x
提示:画函数的图象步骤一般分为:列表 →描点→连线. 需要注意的是在反比例函 数中自变量 x 不能为 0.
解:列表如下:
x … -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 …
y
6 x
… -1
-1.2
-1.5
-2
-3
-6
6
人教版数学九年级下册26.1.2反比例函数图象和性质课件
在反比例函数中,自变量 $x$ 和因变量 $y$ 之间存在一种倒数关系。 当 $x$ 增大时,$y$ 减小;当 $x$ 减小时,$y$ 增大。这种关系反映 了反比例函数的基本特性。
函数值域及变化规律
函数值域:反比例函 数的值域为所有非零 实数。当 $k > 0$ 时 ,函数图象位于第一 、三象限;当 $k < 0$ 时,函数图象位于 第二、四象限。
变化规律
1. 当 $k > 0$ 时,随 着 $x$ 从正无穷大逐 渐减小到零(或从负 无穷大逐渐增大到零 ),函数值 $y$ 从零 逐渐增大到正无穷大 (或从负无穷大逐渐 减小到零)。
2. 当 $k < 0$ 时,随 着 $x$ 从正无穷大逐 渐减小到零(或从负 无穷大逐渐增大到零 ),函数值 $y$ 从零 逐渐减小到负无穷大 (或从正无穷大逐渐 增大到零)。
不具备单调性。
与一次函数比较
关系
一次函数 $y = ax + b$ (a ≠ 0) 和反比例函数无直接关联。
图象
一次函数的图象是一条直线,而反比例函数的图象是两条曲线。
性质
一次函数在其定义域内是单调的,而反比例函数在其定义域内不具备单调性。此外,一次 函数的值域为全体实数,而反比例函数的值域为除去使分母为零的点外的全体实数。
3. 在每个象限内,随 着 $x$ 的绝对值增大 ,函数值 $y$ 的绝对 值逐渐减小。
02
反比例函数图象绘制方法
列表法绘制步骤
确定自变量的取值范围,并在此范围 内选取若干个自变量的值。
列出表格,将自变量和对应的函数值 分别填入表格中。
根据反比例函数的解析式,求出与每 个自变量值对应的函数值。
根据表格中的数据,在坐标系中描出 各点,并用平滑的曲线连接各点,即 可得到反比例函数的图象。
人教版九年级数学下册知识点总结:第二十六章反比例函数
人教版九年级数学下册知识点总结第二十六章、反比例函数知识点一:反比例函数的概念及其图象、性质1.反比例函数的概念(1)定义:形如y=kx(k≠0)的函数称为反比例函数,k叫做比例系数,自变量的取值范围是非零的一切实数.(2)形式:反比例函数有以下2种基本形式:①y=kx;②y=kx-1; ③xy=k.(其中k为常数,且k≠0)例:函数y=3x m+1,当m=-2时,则该函数是反比例函数.2.反比例函数的图象和性质k的符号图象经过象限y随x变化的情况k>0 图象经过第一、三象限(x、y同号)每个象限内,函数y的值随x的增大而减小.k<0 图象经过第二、四象限(x、y异号)每个象限内,函数y的值随x的增大而增大.3.反比例函数的图象特征(1)由两条曲线组成,叫做双曲线;(2)图象的两个分支都无限接近x轴和y轴,但都不会与x轴和y轴相交;(3)图象是中心对称图形,原点为对称中心;也是轴对称图形,2条对称轴分别是平面直角坐标系一、三象限和二、四象限的角平分线.4.待定系数法只需要知道双曲线上任意一点坐标,设函数解析式,代入求出反比例函数系数k即可.例:已知反比例函数图象过点(-3,-1),则它的解析式是y=3/x知识点二:反比例系数的几何意义及与一次函数的综合5.系数k的几何意义(1)意义:从反比例函数y=kx(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|,以该点、一个垂足和原点为顶点的三角形的面积为1/2|k|.(2)常见的面积类型:失分点警示已知相关面积,求反比例函数的表达式,注意若函数图象在第二、四象限,则k<0.例:已知反比例函数图象上任一点作坐标轴的垂线所围成矩形为3,则该反比例函数解析式为:3yx=或3yx=-6.与一次函数的综合(1)确定交点坐标:【方法一】已知一个交点坐标为(a,b),则根据中心对称性,可得另一个交点坐标为(-a,-b).【方法二】联立两个函数解析式,利用方程思想求解.(2)确定函数解析式:利用待定系数法,先确定交点坐标,再分别代入两个函数解析式中求解(3)在同一坐标系中判断函数图象:充分利用函数图象与各字母系数的关系,可采用假设法,分k>0和k<0两种情况讨论,看哪个选项符合要求即可.也可逐一选项判断、排除.(4)比较函数值的大小:主要通过观察图象,图象在上方的值大,图象在下方的值小,结合交点坐标,确定出解集的范围.涉及与面积有关的问题时,①要善于把点的横、纵坐标转化为图形的边长,对于不好直接求的面积往往可分割转化为较好求的三角形面积;②也要注意系数k的几何意义.例:如图所示,三个阴影部分的面积按从小到大的顺序排列为:S△AOC=S△OPE>S△BOD知识点三:反比例函数的实际应用7.一般步骤(1题意找出自变量与因变量之间的乘积关系;(2设出函数表达式;(3)依题意求解函数表达式;(4)根据反比例函数的表达式或性质解决相关问题.。
人教版九年级数学下册:26.1.1《反比例函数》说课稿
人教版九年级数学下册:26.1.1《反比例函数》说课稿一. 教材分析《反比例函数》是人教版九年级数学下册第26章第一节的内容,本节课主要介绍了反比例函数的定义、性质及图象。
这部分内容是在学生已经掌握了函数的概念、正比例函数的知识基础上进行学习的,为后续学习二次函数打下基础。
反比例函数是实际应用中经常遇到的一种函数形式,对于学生来说,理解和掌握反比例函数的知识,能够提高他们解决实际问题的能力。
二. 学情分析九年级的学生已经具备了一定的函数知识,对于正比例函数的概念和图象已经有了一定的了解。
但是,反比例函数的概念和性质相对复杂,学生可能难以理解和接受。
因此,在教学过程中,需要关注学生的认知水平,通过合适的教学方法,帮助学生理解和掌握反比例函数的知识。
三. 说教学目标1.知识与技能目标:让学生理解反比例函数的定义,掌握反比例函数的性质,能够绘制反比例函数的图象。
2.过程与方法目标:通过观察、分析、归纳等方法,让学生学会如何从实际问题中抽象出反比例函数模型。
3.情感态度与价值观目标:培养学生对数学的兴趣,提高学生解决实际问题的能力。
四. 说教学重难点1.教学重点:反比例函数的定义,反比例函数的性质,反比例函数图象的特点。
2.教学难点:反比例函数概念的理解,反比例函数性质的证明,反比例函数图象的绘制。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例分析法、小组合作学习法等,引导学生主动探究,培养学生的动手操作能力和思维能力。
2.教学手段:利用多媒体课件、实物模型、反比例函数图象软件等,帮助学生直观地理解反比例函数的知识。
六. 说教学过程1.导入:通过展示实际问题,引导学生思考如何用数学模型来解决这些问题,从而引出反比例函数的概念。
2.新课讲解:讲解反比例函数的定义,通过示例让学生理解反比例函数的概念。
然后,引导学生通过观察、分析、归纳等方法,总结出反比例函数的性质。
3.实践操作:让学生利用反比例函数图象软件,绘制反比例函数的图象,观察图象的特点,进一步理解反比例函数的性质。
人教版数学九年级下册《 反比例函数的图象和性质》PPT课件
,
则 a___b(填>、=或<).
>
已知点(-1,y1),(2,y2),(3,y3)在反比例函数
k2
y
x
的图象上,则下列结论中正确的是( B )
A.y1>y2>y3
B.y1>y3>y2
C.y3>y1>y2
D.y2>y3>y1
(k≠0)
探究新知
考点 2 利用反比例函数的图象和性质求字母的值
已知反比例函数 y a 1 x
…
…
y
描点:以表中各组对应
值作为点的坐标,在直
角坐标系内描绘出相应
的点.
6
5
4
3
2
1
-6 -5-4-3-2-1O
-1
连线:用光滑的曲线顺
-2
-3
次连接各点,即可得函
-4
6
12
-5
y
y
数
与
的图象.
-6
x
x
y
y
12
x
6
x
1 2 3 4 5 6 x
y
观察这两个函数
思考:
图象,回答问题:
(1) 每个函数图象分别
增大.
探究新知
反比例函数的图象和性质
形状
由两支曲线组成的.因此称它的图象为双曲线;
位置
当k>0时,两支双曲线分别位于第一、三象限内;
当k<0时,两支双曲线分别位于第二、四象限内;
增减性
图象的发展趋势
对称性
当k>0时,在每一象限内, y随x的增大而减小;
当k<0时,在每一象限内, y随x的增大而增大.
新人教版九年级下册第二十六章“反比例函数”教材分析简介
新人教版九年级下册第二十六章“反比例函数”教材分析简介预览二、编写时考虑的几个问题1. 强调反比例函数是描述具有反比例关系问题的数学模型反比例函数是义务教育阶段学习的最后一类函数,函数是描述变化规律的数学模型.现实世界和数学中具有反比例关系的问题,我们可以用反比例函数描述.章引言中从路程一定的前提下,平均速度与时间的关系,引出反比例函数的内容.“26.1 反比例函数”通过“思考”中的三个具体问题,让学生发现每个问题中的两个变量,询问这两个变量具有什么关系,得出变量之间的表达式,指出它们的表达式具有相同形式,具有这类相同表达式的函数,我们称为反比例函数.“26. 2 实际问题与反比例函数”是现实世界中四个典型的实例,我们先把它们抽象为数学模型——反比例函数,它刻画了问题中的反比例关系,然后运用反比例函数的性质解决它们.在反比例函数概念的学习中,我们再次经历了概念学习的几个过程:(1)概念的引入——通过三个具体实例,反比例关系和函数的概念,引出反比例函数;(2)概念属性的归纳——对教科书中的三个实例进行分析、比较、综合,归纳三个实例的共同特征的形式;(3)概念的明确与表示——指出形如(k为常数,k≠0)的函数叫做反比例函数,并给出文字语言和数学符号语言的准确表示;(4)概念的辨析——在练习中,以实例为载体分析概念,并恰当使用反例,如“26.1.1 反比例函数”中的练习2和练习3;(5)概念的巩固应用——用概念解决简单问题,形成用概念作判断的具体步骤,如“26.1.1 反比例函数”的例1;(6)概念的“精致”——通过概念的综合应用,如“26.1.2反比例函数的图象和性质”,“26.2实际问题与反比例函数”,进一步认识反比例函数的概念,加深对反比例函数概念的理解.2. 类比正比例函数、一次函数和二次函数的研究方法,研究反比例函数预览二、编写时考虑的几个问题1. 强调反比例函数是描述具有反比例关系问题的数学模型反比例函数是义务教育阶段学习的最后一类函数,函数是描述变化规律的数学模型.现实世界和数学中具有反比例关系的问题,我们可以用反比例函数描述.章引言中从路程一定的前提下,平均速度与时间的关系,引出反比例函数的内容.“26.1 反比例函数”通过“思考”中的三个具体问题,让学生发现每个问题中的两个变量,询问这两个变量具有什么关系,得出变量之间的表达式,指出它们的表达式具有相同形式,具有这类相同表达式的函数,我们称为反比例函数.“26. 2 实际问题与反比例函数”是现实世界中四个典型的实例,我们先把它们抽象为数学模型——反比例函数,它刻画了问题中的反比例关系,然后运用反比例函数的性质解决它们.在反比例函数概念的学习中,我们再次经历了概念学习的几个过程:(1)概念的引入——通过三个具体实例,反比例关系和函数的概念,引出反比例函数;(2)概念属性的归纳——对教科书中的三个实例进行分析、比较、综合,归纳三个实例的共同特征的形式;(3)概念的明确与表示——指出形如(k为常数,k≠0)的函数叫做反比例函数,并给出文字语言和数学符号语言的准确表示;(4)概念的辨析——在练习中,以实例为载体分析概念,并恰当使用反例,如“26.1.1 反比例函数”中的练习2和练习3;(5)概念的巩固应用——用概念解决简单问题,形成用概念作判断的具体步骤,如“26.1.1 反比例函数”的例1;(6)概念的“精致”——通过概念的综合应用,如“26.1.2反比例函数的图象和性质”,“26.2实际问题与反比例函数”,进一步认识反比例函数的概念,加深对反比例函数概念的理解.2. 类比正比例函数、一次函数和二次函数的研究方法,研究反比例函数预览二、编写时考虑的几个问题1. 强调反比例函数是描述具有反比例关系问题的数学模型反比例函数是义务教育阶段学习的最后一类函数,函数是描述变化规律的数学模型.现实世界和数学中具有反比例关系的问题,我们可以用反比例函数描述.章引言中从路程一定的前提下,平均速度与时间的关系,引出反比例函数的内容.“26.1 反比例函数”通过“思考”中的三个具体问题,让学生发现每个问题中的两个变量,询问这两个变量具有什么关系,得出变量之间的表达式,指出它们的表达式具有相同形式,具有这类相同表达式的函数,我们称为反比例函数.“26. 2 实际问题与反比例函数”是现实世界中四个典型的实例,我们先把它们抽象为数学模型——反比例函数,它刻画了问题中的反比例关系,然后运用反比例函数的性质解决它们.在反比例函数概念的学习中,我们再次经历了概念学习的几个过程:(1)概念的引入——通过三个具体实例,反比例关系和函数的概念,引出反比例函数;(2)概念属性的归纳——对教科书中的三个实例进行分析、比较、综合,归纳三个实例的共同特征的形式;(3)概念的明确与表示——指出形如(k为常数,k≠0)的函数叫做反比例函数,并给出文字语言和数学符号语言的准确表示;(4)概念的辨析——在练习中,以实例为载体分析概念,并恰当使用反例,如“26.1.1 反比例函数”中的练习2和练习3;(5)概念的巩固应用——用概念解决简单问题,形成用概念作判断的具体步骤,如“26.1.1 反比例函数”的例1;(6)概念的“精致”——通过概念的综合应用,如“26.1.2反比例函数的图象和性质”,“26.2实际问题与反比例函数”,进一步认识反比例函数的概念,加深对反比例函数概念的理解.2. 类比正比例函数、一次函数和二次函数的研究方法,研究反比例函数。
人教版数学九年级下册26.1探究反比例函数的图象和性质教案
3.数学建模:培养学生运用反比例函数解决实际问题的能力,学会构建数学模型并运用到实际情境中。
4.数形结合:通过观察反比例函数图象,让学生体会数形结合的数学思想,理解图象与性质之间的关系。
5.数据分析:培养学生对反比例函数在不同象限内变化趋势的分析能力,提高数据处理和统计分析水平。
6.数学运算:在解决反比例函数相关问题时,加强学生对运算规则和运算方法的理解,提高运算准确性。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解反比例函数的基本概念。反比例函数是形如\( y = \frac{k}{x} \)(\( k \neq 0 \))的函数。它在生活中有着广泛的应用,如速度、密度等问题。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了反比例函数在实际中的应用,以及它如何帮助我们解决问题。
人教版数学九年级下册26.1探究反比例函数的图象和性质教案
一、教学内容
人教版数学九年级下册第26章《反比例函数》第1节“探究反比例函数的图象和性质”。本节课主要包括以下内容:
1.反比例函数的定义:形如\( y = \frac{k}{x} \)(\( k \neq 0 \))的函数称为反比例函数。
2.反比例函数的图象:通过实际案例,让学生观察反比例函数图象的特点,了解其是一条经过第二、四象限的双曲线。
在实践活动环节,学生分组讨论和实验操作进行得还不错,但我发现有些小组在讨论过程中还是过于依赖我给出的引导,缺乏独立思考的能力。我想,在以后的教学中,我应该多给予学生一些自主探究的机会,鼓励他们提出自己的观点和解决问题的方法。
人教版数学九年级下册《章前引言及反比例函数》教学设计1
人教版数学九年级下册《章前引言及反比例函数》教学设计1一. 教材分析人教版数学九年级下册的《章前引言及反比例函数》是本册书的起始章节,它主要介绍了反比例函数的定义、性质及图象。
本节课的内容对于学生来说是一个新的知识点,也是初中数学中的重要内容。
教材通过引言引导学生思考反比例函数与日常生活的联系,激发学生的学习兴趣。
二. 学情分析九年级的学生已经具备了一定的函数知识,对函数的概念和性质有一定的了解。
但反比例函数的概念和性质与正比例函数和二次函数有很大的不同,需要学生通过观察、思考、探究来理解和掌握。
此外,学生对于实际问题中反比例关系的理解和应用还不够熟练,需要通过实例分析和练习来提高。
三. 教学目标1.知识与技能:使学生理解反比例函数的定义,掌握反比例函数的性质和图象特点,能运用反比例函数解决实际问题。
2.过程与方法:通过观察、思考、探究等活动,培养学生的抽象思维能力和解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,体验成功的喜悦,培养学生的团队合作精神。
四. 教学重难点1.反比例函数的定义和性质。
2.反比例函数图象的特点。
3.反比例函数在实际问题中的应用。
五. 教学方法采用“问题驱动”的教学方法,引导学生观察、思考、探究,通过小组合作、讨论交流,培养学生的抽象思维能力和解决问题的能力。
六. 教学准备1.教学课件:制作反比例函数的定义、性质、图象等方面的课件。
2.教学素材:收集一些实际问题,用于引导学生运用反比例函数解决。
3.练习题:准备一些有关反比例函数的练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)利用课件展示一些实际问题,引导学生思考反比例关系,激发学生的学习兴趣。
2.呈现(10分钟)介绍反比例函数的定义,通过示例和讲解,让学生理解反比例函数的概念。
3.操练(10分钟)让学生通过观察、思考、探究,掌握反比例函数的性质和图象特点。
4.巩固(10分钟)让学生运用所学知识解决一些实际问题,巩固对反比例函数的理解和应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章反比例函数
本章总体设计介绍
函数是在探索具体问题中数量关系和变化规律基础上抽象出的重要数学概念,是研究现实世界变化规律的重要数学模型.在前面已学习过“变量之间的关系”和“一次函数”等内容,对函数已经有了初步的认识,在此基础上讨论反比例函数可以进一步领悟函数的概念,为后继学习产生积极影响.
本章教学建议
1.注重数学概念的形成过程和对概念意义的理解,教学中提供直观背景。
2.创设学生自主探索与合作交流的环境。
教学中,应引导学生在了解函数的三种表示方法的基础上,通过观察,分析函数的图象,自主地对反比例函数的主要性质作出直观描述。
3.经历数学知识的应用过程,关注对问题的分析过程。
教学时将实际问题置于已有知识背景中,用数学知识重新解释,让学生逐步会用数学的眼光考察实际问题。
同时,在解决问题的过程中,要充分利用函数的图象,渗透数形结合的思想。
1.反比例函数
一、学生知识状况分析
本节课通过对具体情境的分析,概括出反比例函数的表达形式,明确反比例函数的概念.通过例题和列举的实例可以丰富对反比例函数的认识,理解反比例函数的意义.
由于本节课比较抽象,学生理解起来比较困难,因此,在学习反比例函数概
念的过程中,充分利用学生已有的生活经验和背景知识,创设丰富的现实情境,引导学生关注问题中变量的相依关系及变化规律,并逐步加深理解.教学中要提供直观背景展现反比例函数的经验来源,在获得反比例函数概念之后,经验背景将成为概念的某种直观解释或实际意义,在活动中,教师应注意提供思考或研究问题的方向.
二、教学任务分析
教学目标
(一)教学知识点
1.从现实情境和已有的知识经验出发,讨论两个变量之间的相似关系,加深对函数概念的理解.
2.经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念.
(二)能力训练要求
结合具体情境体会反比例函数的意义,能根据已知条件确定反比例函数表达式.
(三)情感与价值观要求
结合实例引导学生了解所讨论的函数的表达形式,形成反比例函数概念的具体形象,是从感性认识到理性认识的转化过程,发展学生的思维;同时体验数学活动与人类生活的密切联系及对人类历史发展的作用.
教学重点
经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念.
教学难点
领会反比例函数的意义,理解反比例函数的概念.
三、教学过程分析
本节课设计了五个教学环节:第一环节:创设问题情境,引入新课;第二环节:新课讲解;第三环节:课堂练习;第四环节:课时小结;第五环节:课后作
业。
第一环节:创设问题情境,引入新课
活动过程
我们在前面学过一次函数和正比例函数,知道一次函数的表达式为y=kx+b 其中k,b为常数且k≠0,正比例函数的表达式为y=kx,其中k为不为零的常数,但是在现实生活中,并不是只有这两种类型的表达式,如从A地到B地的路程为1200 km,某人开车要从A地到B地,汽车的速度v(km/h)和时间t(h)之
1200中,t和v之间的关系式肯定不是正比例函间的关系式为vt=1200,则t=
v
数和一次函数的关系式,那么它们之间的关系式究竟是什么关系式呢?这就是本节课我们要揭开的奥秘.
第二环节:新课讲解
活动过程
引入我们今天要学习的是反比例函数,它是函数中的一种,首先我们先来回忆一下什么叫函数?
1.复习函数的定义
在某变化过程中有两个变量x,y.若给定其中一个变量x的值,y都有唯一确定的值与它对应,则称y是x的函数.
能举出实例吗? (要求学生完成)
例如,购买单价是0.4元的铅笔,总金额y(元)与铅笔数n(个)的关系是y =0.4n,这是一个正比例函数.
又如,等腰三角形的顶角的度数y与底角的度数x的关系为y=180-2x,y 是x的一次函数.等
2.经历抽象反比例函数概念的过程,并能类推归纳出反比例函数的表达式. 复习了函数的定义以及正比例函数和一次函数的表达式以后,再来看下面实际问题中的变量之间是否存在函数关系,若是函数关系,那么是否为正比例或一次函数关系式.
问题1:电流I,电阻R,电压U之间满足关系式U=IR,当U=220 V时.
(1)你能用含有R的代数式表示I吗?
(2)利用写出的关系式完成下表:
当R越来越大时,I怎样变化?当R越来越小呢?
(3)变量I是R的函数吗?为什么?
请学生大家交流后回答.
220.
答案为(1)能用含有R的代数式表示I. 由IR=220,得I=
R
(2)利用上面的关系式可知,从左到右依次填11,5.5,3.67,2.75,2.2.
从表格中的数据可知,当电阻R越来越大时,电流I越来越小;当R越来越小时,I越来越大.
(3)变量I是R的函数.
220.当给定一个R的值时,相应地就确定了一个I值,因由IR=220得I=
R
此I是R的函数.
舞台灯光为什么在很短的时间内将阳光灿烂的晴日变成浓云密布的阴天,或由黑夜变成白昼的?
请学生互相交流后回答.
220,当R变大时,I变小,灯光较暗;当R变小时,I变答案为:根据I=
R
大,灯光较亮.所以通过改变电阻R的大小来控制电流I的变化,就可以在很短的时间内将阳光灿烂的晴日变成浓云密布的阴天,或由黑夜变成白昼.
问题2:投影片:(§ 5.1 A)
京沪高速公路全长约为1262 km,汽车沿京沪高速公路从上海驶往北京,汽车行完全程所需的时间t(h)与行驶的平均速度v(km/h)之间有怎样的关系?变量t是v的函数吗?为什么?
经过刚才的例题讲解,学生可以独立完成此题.如有困难再进行交流.
1262.当给定一个v 答案:由路程等于速度乘以时间可知1262=vt,则有t=
v
的值时,相应地就确定了一个t值,根据函数的定义可知t是v的函数.
从上面的两个例题得出关系式
I=R
220和t=v
1262.它们是函数吗?它们是正比例函数吗?是一次函数吗?能否根
据两个例题归纳出这一类函数的表达式呢?
一般地,如果两个变量x 、y 之间的关系可以表示成y =x
k (k 为常数,
k ≠0)的形式,那么称y 是x 的反比例函数.
从y =x
k 中可知x 作为分母,所以x 不能为零.
活动效果及注意事项 在教学中,引导学生体会,定义中非零常数K 及变量x ,y 已经不在局限于只取正值而允许取任意非零数值。
这里不宜使用“定义域”和“值域”等名词。
3.做一做
活动内容 投影片(§ 5.1 B)
1.一个矩形的面积为20 cm 2,相邻的两条边长分别为x cm 和y cm ,那么变量y 是变量x 的函数吗?是反比例函数吗?为什么?
2.某村有耕地346.2公顷,人口数量n 逐年发生变化,那么该村人均占有耕地面积m(公顷/人)是全村人口数n 的函数吗?是反比例函数吗?为什么?
3. y 是x 的反比例函数,下表给出了x 与y 的一些值:
(1)写出这个反比例函数的表达式; (2)根据函数表达式完成上表.
活动效果及注意事项 学生加强了对概念的理解,并初步体会函数表达式与函数表格的相互转化。
第三环节:课堂练习
活动过程 学生自主完成练习1
第四环节:课时小结
本节课我们学习了反比例函数的定义,并归纳总结出反比例函数的表达式k (k为常数.k≠0),自变量x不能为零.还能根据定义和表达式判断某两为y=
x
个变最之间的关系是否是函数,是什么函数.
活动效果及注意事项在获得反比例函数概念之后,经验背景将成为概念的某种直观解释或实际意义,通过举例,说理,讨论等活动,使学生体验如何用数学眼光来审视某些实际问题
第五环节:课后作业
习题5.1。