九年级下册数学(人教版) 反比例函数
新人教版九年数学下第二十六章-反比例函数知识点总结
新人教版九年数学下第二十六章 反比例函数知识点总结26.1知识点1 反比例函数的定义 一般地,形如xky =(k 为常数,0k ≠)的函数称为反比例函数,它可以从以下几个方面来理解:⑴x 是自变量,y 是x 的反比例函数;⑵自变量x 的取值范围是0x ≠的一切实数,函数值的取值范围是0y ≠; ⑶比例系数0k ≠是反比例函数定义的一个重要组成部分; ⑷反比例函数有三种表达式: ①xky =(0k ≠), ②1kx y -=(0k ≠), ③k y x =⋅(定值)(0k ≠); ⑸函数xky =(0k ≠)与y k x =(0k ≠)是等价的,所以当y 是x 的反比例函数时,x 也是y 的反比例函数。
(k 为常数,0k ≠)是反比例函数的一部分,当k=0时,xky =,就不是反比例函数了,由于反比例函数xky =(0k ≠)中,只有一个待定系数,因此,只要一组对应值,就可以求出k 的值,从而确定反比例函数的表达式。
26.2知识点2用待定系数法求反比例函数的解析式由于反比例函数xky =(0k ≠)中,只有一个待定系数,因此,只要一组对应值,就可以求出k 的值,从而确定反比例函数的表达式。
26.3知识点3反比例函数的图像及画法反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、第三象限或第二、第四象限,它们与原点对称,由于反比例函数中自变量函数中自变量0x ≠,函数值0y ≠,所以它的图像与x 轴、y 轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。
反比例的画法分三个步骤:⑴列表;⑵描点;⑶连线。
再作反比例函数的图像时应注意以下几点: ①列表时选取的数值宜对称选取;②列表时选取的数值越多,画的图像越精确;③连线时,必须根据自变量大小从左至右(或从右至左)用光滑的曲线连接,切忌画成折线;④画图像时,它的两个分支应全部画出,但切忌将图像与坐标轴相交。
26.4知识点4反比例函数的性质☆关于反比例函数的性质,主要研究它的图像的位置及函数值的增减情况,如下表:反比例函数xky =(0k ≠) k 的符号0k > 0k <图像性质①x 的取值范围是0x ≠,y 的取值范围是0y ≠②当0k >时,函数图像的两个分支分别在第一、第三象限,在每个象限内,y 随x 的增大而减小。
26.1.2 反比例函数的图象和性质 第1课时 课件
注意: 两个
分支合起来 才是反比例 函数的图象.
y
6 5 4 3 2
1
-6-5-4-3-2-1O -1 -2 -3 -4 -5 -6
y 减y
12
小x
yx增6 大 x
1 2 3 4 5 6x
观察这两个函数图象, 回答问题:
(1) 每个函数图象分 别位于哪些象限? (2) 在每一个象限内, 随着x的增大,y 如何 变化?你能由它们的 解析式说明理由吗?
k 图象
反比例函数 y k (k≠0) x
k>0
k<0
图象位于第一、三象限 图象位于第二、四象限
性质 在每一个象限内,y 随 x 在每一个象限内,y 随x
的增大而减小
的增大而增大
1. 在同一直角坐标系中,函数 y = 2x 与 y 1 的图象大致是 ( D ) x
y
y
y
y
O
x
O
x
O
Ox
x
A
函数图象画法:描点法
列 表
描 点
连 线
例1:画出反比例函数
y6与 x
y
12 x
的图象.
画函数的图象步骤一般分为:列表→描点→连线. 需要注 意的是在反比例函数中自变量 x 不能为 0.
温馨提示:学友主讲,师傅补充和纠正,其他师友进行答疑或点评
解:列表如下:
步骤一:列表
x … -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 …
3
2 y6
1
x
y 12 x
步骤二:描点
描点:以表中各组对 应值作为点的坐标, 在直角坐标系内描绘 出相应的点.
-6-5-4-3-2-1O 1 2 3 4 5 6 x
人教版九年级数学下册第26章反比例函数PPT
知识点 1 反比例函数的定义
知1-导
问题
下列问题中,变量间具有函数关系吗?如果有,它 们的解析式有什么共同特点? (1)京沪线铁路全程为1 463 km,某次列车的平均速度
v(单位: km/h)随此次列车的全程运行时间t (单位:h) 的变化而变化;
知1-导
(2) 某住宅小区要种植一块面积为1 000 m2的矩形草坪, 草坪的长y (单位:m)随宽x (单位:m)的变化而变化;
(4)还原:写出反比例函数的解析式.
知2-讲
2.由于反比例函数的解析式中只有一个待定系数k, 因此求反比例函数的解析式只需一组对应值或一 个条件即可.
知2-讲
例2 已知y是x的反比例函数,并且当x=2时,y=6.
(1)写出y关于x的函数解析式;
(2)当x=4时,求y的值.
分析:因为y是x的反比例函数,所以设 y k .
5
①y=2x-1;②y=- ;③y=x2+8x-2;
3
1x
a
④y= x2 ; ⑤y= 2x ; ⑥y= x .
导引:根据反比例函数的定义进行判断,看它是否满足反比例函数的三种
表现形式.①y=2x-1是一次函数;②y=- 5 是反比例函数;③y
3
x
=反=比xa2+例,8函x当-数a2≠关是0系时二;是次⑤反函y比数=例;2函1④x数y是=,反没x比2有例,此函y条与数件x,2成则可反不以比一写例定成,是y但反=y比与12x例x;不函⑥是y
(k≠0)的图象上,则k的值是( D )
A.10 B.5 C.-5 D.-10
3 若y与x-2成反比例,且当x=-1时,y=3,则y
与x之间的关系是( D )
A.正比例函数
人教版数学九年级下册第26章《反比例函数》复习课件
ab x
真题专练
(2015安徽21题12分)如图,已知反比例函数y
k1 与
x
一次函数y=k2x+b的图象交于A(1,8),B(-4,m).源自(1)求k1、k2、b的值;
(2)求△AOB的面积;
y= k
K>0
K<0
x
图 象
当k>0时,函数图象的两 当k<0时,函数图象的两
性 质
个分支分别在第一、三象 个分支分别在第二、四象
限,在每个象限内,y随x 限,在每个象限内,y随x
的增大而减小.
的增大而增大.
反比例函数的图象既是轴对称图形又是中心对称图形。
有两条对称轴:直线y=x和 y=-x。对称中心是:原点
(1)求p与S之间的函数关系式;
用 (2)求当S=0.5m2时物体承受的压强p ;
(3)求当p=2500Pa时物体的受力面积S.
p(Pa)
4000 3000 2000
A(0.25,1000)
1000
O 0.1 0.2 0.3 0.4 S(m2)
【及时归纳】 求反比例函数解析式的步骤
(1)设出反比例函数解析式 y = k ; x
反比例函数的图象及性质(常考)
函数的图象经过点
A(1,-2),则k的值为
()
A. 1
2
B. 1 C. 2
2
D. -2
反比例函数解析式的确定(常考)
点P(1,a)在反比例函数的图象上,它关于y 轴的对称点在一次函数y=2x+4的图象上,求
此反比例函数的解析式.
人教版九年级下册数学知识点总结
人教版九年级下册数学知识点总结一、反比例函数的概念反比例函数是指函数y=k/x(k≠0)的形式,其中自变量x 的指数为-1.在解决有关自变量指数问题时,应特别注意系数这一限制条件。
另外,反比例函数也可以写成xy=k的形式,用它可以迅速地求出反比例函数解析式中的k,从而得到反比例函数的解析式。
反比例函数的自变量不能为0,故函数图像与x轴、y轴无交点。
二、反比例函数的图像画法反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、第三象限或第二、第四象限,它们与原点对称。
由于反比例函数中自变量x≠0,函数值y≠0,所以它的图像与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。
反比例函数的画法分三个步骤:⑴列表;⑵描点;⑶连线。
在作反比例函数的图像时,应注意以下几点:①列表时选取的数值宜对称选取;②列表时选取的数值越多,画的图像越精确;③连线时,必须根据自变量大小从左至右(或从右至左)用光滑的曲线连接,切忌画成折线;④画图像时,它的两个分支应全部画出,但切忌将图像与坐标轴相交。
三、反比例函数及其图像的性质1.函数解析式:y=k/x(k≠0)2.自变量的取值范围:x≠03.图像:1)图像的形状:双曲线,曲度越大。
2)图像的位置和性质:当k>0时,图像的两支分别位于一、三象限;在每个象限内,y随x的增大而减小;当k<0时,图像的两支分别位于二、四象限;在每个象限内,y随x的增大而增大。
3)对称性:图像关于原点对称,即若(a,b)在双曲线的一支上,则(-a,-b)在另一支上。
图像关于直线y=x和y=-x对称。
4.k的几何意义如图1,设点P(a,b)是双曲线y=k/x的一点,在双曲线的另一支上任意一点,作PA⊥x轴于A点,PB⊥y轴于B点,则矩形PBOA的面积是|k|(三角形PAO和三角形PBO的面积都是1/2|k|)。
如图2,由双曲线的对称性可知,P关于原点的对称点Q也在双曲线上,作QC⊥XXX的延长线于C,则有三角形PQC的面积为2|k|。
人教版初三数学9年级下册 第26章(反比例函数)反比例函数k的几何意义 课件(17张ppt)
(3)若点(a,y)在该函数图象上,且a>-2,求y的取值范围.
7.【例 4】如图,在平面直角坐标系中,反比例函数 y=k(k>0)的
x
图象经过点 A(2,m),过点 A 作 AB⊥x 轴于点 B,且△AOB 的面积
为 5. (1)求k和m的值; (2)当x≥8时,求函数值y的取值范围.
解:(1)∵A(2,m),
第二十六章 反比例函数 与反比例函数有关的面积问题
k 的几何意义及应用
函数
图象形状 图象位置 增减性 延伸性 对称性
y
函数图象的 在每一支
双曲线既
k>0
两支分支分 曲线上,y 双曲线向 是轴对称
O x 别位于第一、都随x的增 四边无限 图形(对称
三象限
大而减小 延伸,与 轴:y=±x),
y 函数图象的 在每一支 坐标轴没 又是中心
自主归纳
y
P(m,n) B
oA
x
K与图形面积
S矩形OAPB OA• AP
m•n
k
反比例函数图像上任意一点向x轴和y轴作垂线,
得到矩形的面积为 S矩形OAPB k
如图:连接OP,则
SOAP
1 • OA • AP 2
y
1 m•n
2
P(m,n) B
oA
x
1 k 2
反比例函数图像上任意一点向x轴或y轴作垂线,
5.若D、E、F是此反比例函数在第三象限图像上的三个点,
过D、E、F分别作x轴的垂线,垂足分别为M,N、K,连接
OD、OE、OF,设△ ODM、△OEN、 △OFK 的面积分别
为S1、S2、S3,则下列结论成立的是( D )
y A(1,4)A S1﹤S2 Nhomakorabea﹤ S3
人教版数学九年级下册第二十六章《反比例函数》知识总结及考点分析
第26章 反比例函数一、教学内容:反比例函数 教学目标:1. 理解反比例函数、图像及其主要性质,能根据所给信息确定反比例函数表达式,画出反比例函数的图像,并利用它们解决简单的实际问题。
2. 初步了解数学在实际生活中的应用,增强应用意识,体会数学的重要性。
二、重点、难点: 重点:1.能根据所给信息确定反比例函数表达式,画出反比例函数的图像,并利用它们解决简单的实际问题。
2、反比例函数的图像特点及性质的探究3、通过观察图像,归纳总结反比例函数图像 难点:1、理解反比例函数的概念2、画反比例函数的图像,并从图像中获取信息3、从反比例函数的图像中归纳总结反比例函数的主要性质 4.反比例函数的应用。
三、知识要点1、经历抽象反比例函数概念的过程,并能类推归纳出反比例函数的表达式2、一般地,如果两个变量x ,y 之间的关系可以表示成y=xk 〔k 为常数,k 不等于0〕的形式,那么称y 是x 的反比例函数.从y=xk中可知,x 作为分母,所以不能为零3、画反比例函数图像时要注意以下几点a 列表时自变量的取值应取绝对值相等而符号相反的一对数值,这样既可以简化计算,又便于标点b 列表、描点时,要尽量多取一些数值,多描一些点,这样方便连线c 在连线时要用“光滑的曲线〞,不能用折线 4、反比例函数的性质反比例函数 ()0≠=k xky k 的取值范围0>k 0<k图像性质①x 的取值范围是0≠x ,y 的取值范围是0≠y②函数图像的两个分支分别在第一、三象限,在每一个象限内y 随x 的增大而减小①x 的取值范围是0≠x ,y 的取值范围是0≠y②函数图像的两个分支分别在第二、四象限,在每一个象限内y 随x 的增大而增大注意:1〕反比例函数是轴对称图形和中心对称图形;2〕双曲线的两个分支都与x 轴、y 轴无限接近,但永远不能与坐标轴相交; 3〕在利用图像性质比拟函数值的大小时,前提应是“在同一象限〞内。
26.1 第1课时 反比例函数的图象 课件(共21张PPT)数学人教版九年级下册
(1) 当 k > 0 时,双曲线的两支分别位于第一、三 象限,在每一象限内,y 随 x 的增大而减小;
(2) 当 k < 0 时,双曲线的两支分别位于第二、四 象限,在每一象限内,y 随 x 的增大而增大.
k 的正负决定反比例函 数图象的位置和增减性
当堂练习
1.已知反比例函数 y m 2 的图象在第一、三
y
4 x
的图象.
解析:通过刚刚的学习可知画图象的三个步骤为
列表
描点
连线
需要注意的是在反比例函数中自变量 x 不能为 0.
解:列表如下
x … -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 …
y
…2 3
0.8 1
4 3
2
4 -4 -2 - 4 -1
3
-0.8 - 2 …
3
y
y=
4 x
6
5 4 3
为(-1,3),则它们的另一个交点坐标是
( C)
A. (1,3)
y
B. (3,1) C. (1,-3)
x O
D. (-1,3)
4.已知反比例函数y k 的图象经过点 A (2,3). x
(1) 求这个函数的表达式;
解:∵ 反比例函数 y k 的图象经过点 A(2,3), x
∴ 把点 A 的坐标代入表达式,得 3 k , 2
例3 已知反比例函数的图象经过点 A (2,6). (1) 这个函数的图象位于哪些象限?y 随 x 的增大如
何变化?
解:因为点 A (2,6) 在第一象限,所以这个函数的 图象位于第一、三象限; 在每一个象限内,y 随 x 的增大而减小.
(2) 点B(3,4),C( 2 1 , 4 4),D(2,5)是否在这个
九年级下册数学知识点汇总(人教版)
九年级下册(人教版数学)知识点汇总目录反比例函数 (1)26.1反比例函数 (1)● 反比例函数的定义 (1)● 反比例函数的图像 (1)● 反比例函数图像的对称性 (1)● 反比例函数的性质 (2)● 反比例函数系数k的几何意义 (2)● 反比例函数图像上点的坐标特征 (2)● 待定系数法求反比例函数解析式 (2)● 反比例函数与一次函数的交点问题 (3)26.2实际问题与反比例函数 (3)● 根据实际问题列反比例函数关系式 (3)● 反比例函数的应用 (4)相似 (5)27.1图形的相似 (5)● 相似图形 (5)27.2相似三角形 (5)● 相似三角形的判定 (5)● 相似三角形的应用 (5)● 相似多边形的性质 (5)● 相似三角形的性质 (6)● 相似三角形的判定与性质 (6)● 作图--相似变换 (6)● 射影定理 (6)27.3位似 (7)● 位似变换 (7)● 作图-位似变换 (7)锐角三角函数 (8)28.1锐角三角函数 (8)● 锐角三角函数的定义 (8)● 锐角三角函数的增减性 (8)● 同角三角函数的关系 (8)● 互余两角三角函数的关系 (9)● 特殊角的三角函数值 (9)28.2解直角三角形及其应用 (9)● 解直角三角形 (9)● 解直角三角形的应用 (10)● 解直角三角形的应用--坡度坡角问题 (10)● 解直角三角形的应用--仰角俯角问题 (10)● 解直角三角形的应用--方向角问题 (10)投影与视图 (11)29.1投影 (11)● 平行投影 (11)● 中心投影 (11)● 视点、视角和盲区 (11)29.2三视图 (11)● 简单几何体的三视图 (11)● 简单组合体的三视图 (12)● 由三视图判定几何体 (12)● 作图--三视图 (12)29.3课题学习、制作立体模型 (12)● 课题学习制作立体模型 (12)反比例函数26.1反比例函数●反比例函数的定义【反比例函数的概念】形如的函数称为反比例函数.其中是自变量,是函数,自变量的取值范围是不等于的一切实数.【反比例函数的判断】判断一个函数是否是反比例函数,首先看看两个变量是否具有反比例关系,然后根据反比例函数的意义去判断,其形式为或.●反比例函数的图像【反比例函数的图象】反比例函数的图象是由两条曲线组成的,这两条曲线通常称为双曲线当k>0时,两个分支分别位于第一、三象限内;当k<0时,两个分支分别位于第二、四象限①k>0②K<0●反比例函数图像的对称性【反比例函数图象的对称性】1、反比例函数图象本身既是轴对称图形又是中心对称图形,对称轴分别是:①二、四象限的角平分线y=-x ;一、三象限的角平分线y=x ;对称中心是:坐标原点.2、若经过原点的直线与反比例函数交于两点,则这两点关于原点对称;3、反比例函数与的图象关于x轴,y轴对称.●反比例函数的性质●反比例函数系数k的几何意义【反比例系数的几何意义】1.在反比例函数图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值.2.在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是,且保持不变.●反比例函数图像上点的坐标特征【反比例函数图象上的点的坐标特征】1. 若点在反比例函数图象上,则点的横纵坐标满足反比例函数解析式2. 若点在反比例函数图象上,则也一定在反比例函数图象上3. 若点A(x,y)在反比例函数的图像上,则xy=k●待定系数法求反比例函数解析式【待定系数求反比例函数解析式的一般步骤】(1)设出含有待定系数的反比例函数解析式;(2)把已知条件(自变量与函数的对应值)带入解析式,得到待定系数的方程;(3)解方程,求出待定系数;(4)写出解析式.●反比例函数与一次函数的交点问题【反比例函数与一次函数的交点】1.(1)求反比例函数与一次函数的交点坐标时,先把两个函数关系式联立成方程组求解,若方程组有解,则两者有交点,方程组无解,则两者无交点;(2)已知反比例函数与一次函数的交点坐标,把点的坐标带入函数解析式可求得函数关系式或系数间的等量关系.2.判断正比例函数和反比例函数在同一直角坐标系中的交点个数可总结为:(1)当k1与k2同号时,正比例函数和反比例函数在同一直角坐标系中有2个交点;(2)当k1与k2异号时,正比例函数和反比例函数在同一直角坐标系中有0个交点.26.2实际问题与反比例函数●根据实际问题列反比例函数关系式【列反比例函数关系式的一般解题思路】根据实际问题列反比例函数关系式,注意分析问题中变量之间的联系,建立反比例函数的数学模型,在实际问题中,往往要结合题目的实际意义去分析.首先弄清题意,找出等量关系,再进行等式变形即可得到反比例函数关系式.根据图象去求反比例函数的解析式,或是知道一组自变量与函数值去求解析式,都是利用待定系数法去完成的.注意:要根据实际意义确定自变量的取值范围.【根据实际问题列反比例函数的步骤】步骤1:审:审清题意,找出题目中的常量、变量,并理清常量与变量之间的关系。
人教版九年级数学下册:第1课时 反比例函数的图象和性质
1.教材P6练习第1,2题.
2.已知一次函数
y=x-b与反比例函数
y=
2 x
标是2,则b的值为__-__1__.
的图象有一个交点的纵坐
3.已知反比例函数 y=x31k3--9k2 的图象在其所在的象限内,y随x的增大而
减小,求k的值. 解:由题意,得31k3--9k>2=0,1,①②
由①,得k>3,由②,得k=± 2 3 ,综合①②得k= 2 3 .
(1)我们知道,正比例函数y=kx的图象是一条直线,那么反比例函数
y=
k x
的图象是什么形状呢?你能用“描点”的方法画出反比例函数
y=
6 x
和y=
1x2的图象吗?
(2)观察y= 6 与y= 12的图象,图象在向下、向上延伸时,会与x轴、y
x
x
轴相交吗?为什么?
(3)教材P5思考.
2.教材P5探究 提出问题:
26.1.2 反比例函数的图象和性质 第1课时 反比例函数的图象和性质
一、教学目标
1.进一步熟悉作函数图像的步骤,能够作出反比例函数的图象. 2.通过对反比例函数的图象的分析,探索并掌握反比例函数的图象和性质.
二、教学重难点
重点 反比例函数的图象及其性质.
难点 反比例函数图象与性质的灵活应用.
三、教学设计
活动1 新课导入 1.正比例函数y=kx的图象是_一__条__直__线__,当 k>0时,图象在_第__一__、__第__三_ 象限;当k<0时,图象在_第__二__、__第__四_象限. 2.请分别画出 y=2x与 y=-2x的图象. 3.如何用描点法画一个函数的图象.
活动2 探究新知 1.教材P4例2. 提出问题:
人教版数学九年级下册26.1.2反比例函数图象和性质课件
在反比例函数中,自变量 $x$ 和因变量 $y$ 之间存在一种倒数关系。 当 $x$ 增大时,$y$ 减小;当 $x$ 减小时,$y$ 增大。这种关系反映 了反比例函数的基本特性。
函数值域及变化规律
函数值域:反比例函 数的值域为所有非零 实数。当 $k > 0$ 时 ,函数图象位于第一 、三象限;当 $k < 0$ 时,函数图象位于 第二、四象限。
变化规律
1. 当 $k > 0$ 时,随 着 $x$ 从正无穷大逐 渐减小到零(或从负 无穷大逐渐增大到零 ),函数值 $y$ 从零 逐渐增大到正无穷大 (或从负无穷大逐渐 减小到零)。
2. 当 $k < 0$ 时,随 着 $x$ 从正无穷大逐 渐减小到零(或从负 无穷大逐渐增大到零 ),函数值 $y$ 从零 逐渐减小到负无穷大 (或从正无穷大逐渐 增大到零)。
不具备单调性。
与一次函数比较
关系
一次函数 $y = ax + b$ (a ≠ 0) 和反比例函数无直接关联。
图象
一次函数的图象是一条直线,而反比例函数的图象是两条曲线。
性质
一次函数在其定义域内是单调的,而反比例函数在其定义域内不具备单调性。此外,一次 函数的值域为全体实数,而反比例函数的值域为除去使分母为零的点外的全体实数。
3. 在每个象限内,随 着 $x$ 的绝对值增大 ,函数值 $y$ 的绝对 值逐渐减小。
02
反比例函数图象绘制方法
列表法绘制步骤
确定自变量的取值范围,并在此范围 内选取若干个自变量的值。
列出表格,将自变量和对应的函数值 分别填入表格中。
根据反比例函数的解析式,求出与每 个自变量值对应的函数值。
根据表格中的数据,在坐标系中描出 各点,并用平滑的曲线连接各点,即 可得到反比例函数的图象。
人教版初三数学下册反比例函数图像性质及应用
给予反馈和评价,帮助学生巩固所学知识。
感谢您的观看
THANKS
课堂互动环节:小组讨论、提问答疑
小组讨论
01
组织学生进行小组讨论,围绕反比例函数的图像性质及应用展
开讨论,鼓励学生互相交流、分享观点和解题思路。
提问答疑
02
鼓励学生提出在学习过程中遇到的问题和困惑,教师或其他学
生可以给予解答和帮助,共同解决学习难题。
课堂练习与反馈
03
安排适当的课堂练习,让学生运用所学知识解决问题,并及时
一般形式为 $y = frac{k_1}{x} + frac{k_2}{x}$ 或 $y = k_1 cdot frac{1}{x} + k_2 cdot frac{1}{x}$,其中 $k_1, k_2$ 为常数且 $k_1 neq 0, k_2 neq 0$。
图像特点与性质分析
01
图像特点:复合反比例函数的图像通常不是单一的反比例 函数图像,而是由多个反比例函数图像叠加或相减得到。
通过建立数学模型,将实际问题转化为反比例函数问题,进而计算相关图形的面积 。
反比例函数在几何图形面积计算中的应用,需要学生具备扎实的数学基础和较强的 思维能力。
案例分析:最值问题等
最值问题是数学中的常见问题之一,反比例函数在其中有着广泛的应用 。通过案例分析,可以让学生更好地理解反比例函数在最值问题中的应 用。
人教版初三数学下册反比 例函数图像性质及应用
汇报人:XXX 2024-01-22
目录
• 反比例函数基本概念 • 反比例函数图像性质 • 反比例函数在生活中的应用 • 反比例函数在数学中的应用 • 拓展内容:复合反比例函数 • 总结回顾与课堂互动环节
人教版九年级数学下册知识点总结:第二十六章反比例函数
人教版九年级数学下册知识点总结第二十六章、反比例函数知识点一:反比例函数的概念及其图象、性质1.反比例函数的概念(1)定义:形如y=kx(k≠0)的函数称为反比例函数,k叫做比例系数,自变量的取值范围是非零的一切实数.(2)形式:反比例函数有以下2种基本形式:①y=kx;②y=kx-1; ③xy=k.(其中k为常数,且k≠0)例:函数y=3x m+1,当m=-2时,则该函数是反比例函数.2.反比例函数的图象和性质k的符号图象经过象限y随x变化的情况k>0 图象经过第一、三象限(x、y同号)每个象限内,函数y的值随x的增大而减小.k<0 图象经过第二、四象限(x、y异号)每个象限内,函数y的值随x的增大而增大.3.反比例函数的图象特征(1)由两条曲线组成,叫做双曲线;(2)图象的两个分支都无限接近x轴和y轴,但都不会与x轴和y轴相交;(3)图象是中心对称图形,原点为对称中心;也是轴对称图形,2条对称轴分别是平面直角坐标系一、三象限和二、四象限的角平分线.4.待定系数法只需要知道双曲线上任意一点坐标,设函数解析式,代入求出反比例函数系数k即可.例:已知反比例函数图象过点(-3,-1),则它的解析式是y=3/x知识点二:反比例系数的几何意义及与一次函数的综合5.系数k的几何意义(1)意义:从反比例函数y=kx(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|,以该点、一个垂足和原点为顶点的三角形的面积为1/2|k|.(2)常见的面积类型:失分点警示已知相关面积,求反比例函数的表达式,注意若函数图象在第二、四象限,则k<0.例:已知反比例函数图象上任一点作坐标轴的垂线所围成矩形为3,则该反比例函数解析式为:3yx=或3yx=-6.与一次函数的综合(1)确定交点坐标:【方法一】已知一个交点坐标为(a,b),则根据中心对称性,可得另一个交点坐标为(-a,-b).【方法二】联立两个函数解析式,利用方程思想求解.(2)确定函数解析式:利用待定系数法,先确定交点坐标,再分别代入两个函数解析式中求解(3)在同一坐标系中判断函数图象:充分利用函数图象与各字母系数的关系,可采用假设法,分k>0和k<0两种情况讨论,看哪个选项符合要求即可.也可逐一选项判断、排除.(4)比较函数值的大小:主要通过观察图象,图象在上方的值大,图象在下方的值小,结合交点坐标,确定出解集的范围.涉及与面积有关的问题时,①要善于把点的横、纵坐标转化为图形的边长,对于不好直接求的面积往往可分割转化为较好求的三角形面积;②也要注意系数k的几何意义.例:如图所示,三个阴影部分的面积按从小到大的顺序排列为:S△AOC=S△OPE>S△BOD知识点三:反比例函数的实际应用7.一般步骤(1题意找出自变量与因变量之间的乘积关系;(2设出函数表达式;(3)依题意求解函数表达式;(4)根据反比例函数的表达式或性质解决相关问题.。
人教版数学九年级下册26.1.2反比例函数的图象和性质(教案)
-理解反比例函数图象的双曲线形状及其与函数表达式的关系,这是学生空间想象能力的挑战。
-掌握反比例函数性质中的斜率变化规律,特别是当x > 0和x < 0时,y值变化的区别。
-在实际问题中识别反比例函数模型,并将问题转化为数学表达式进行求解。
举例:针对斜率变化规律,可以设计具体的问题情境,如“当一辆车以恒定速度行驶,行驶时间与路程之间的关系是什么?”通过实际例子帮助学生理解反比例函数斜率的意义。
在学生小组讨论环节,我发现有些学生参与度不高,可能是因为他们对讨论主题不够感兴趣或者不知道如何表达自己的观点。为了提高学生的参与度,我计划在下次讨论中,提供一些更具启发性的问题和案例,鼓励学生大胆发表自己的看法。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《反比例函数的图象和性质》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过物品的价格与数量成反比的情况?”(例如,买水果时,单价固定,总价与重量成反比。)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索反比例函数的奥秘。
人教版数学九年级下册26.1.2反比例函数的图象和性质(教案)
一、教学内容
人教版数学九年级下册26.1.2反比例函数的图象和性质。本节课我们将学习以下内容:
1.反比例函数的定义:y = k/x(k≠0)
2.反比例函数图象的特点:双曲线,两个分支分别位于第一、第三象限或第二、第四象限。
3.反比例函数的性质:
五、教学反思
在今天的教学中,我发现学生们对反比例函数的概念和图象性质的理解有一定难度。在讲解过程中,我尽量用简单易懂的语言和生动的例子来阐述,希望他们能够更好地掌握这些知识点。
人教版数学九年级下册《 反比例函数的图象和性质》PPT课件
,
则 a___b(填>、=或<).
>
已知点(-1,y1),(2,y2),(3,y3)在反比例函数
k2
y
x
的图象上,则下列结论中正确的是( B )
A.y1>y2>y3
B.y1>y3>y2
C.y3>y1>y2
D.y2>y3>y1
(k≠0)
探究新知
考点 2 利用反比例函数的图象和性质求字母的值
已知反比例函数 y a 1 x
…
…
y
描点:以表中各组对应
值作为点的坐标,在直
角坐标系内描绘出相应
的点.
6
5
4
3
2
1
-6 -5-4-3-2-1O
-1
连线:用光滑的曲线顺
-2
-3
次连接各点,即可得函
-4
6
12
-5
y
y
数
与
的图象.
-6
x
x
y
y
12
x
6
x
1 2 3 4 5 6 x
y
观察这两个函数
思考:
图象,回答问题:
(1) 每个函数图象分别
增大.
探究新知
反比例函数的图象和性质
形状
由两支曲线组成的.因此称它的图象为双曲线;
位置
当k>0时,两支双曲线分别位于第一、三象限内;
当k<0时,两支双曲线分别位于第二、四象限内;
增减性
图象的发展趋势
对称性
当k>0时,在每一象限内, y随x的增大而减小;
当k<0时,在每一象限内, y随x的增大而增大.