高一数学综合练习测试题试卷(九)

合集下载

高一数学必修一综合测试题(含答案)

高一数学必修一综合测试题(含答案)

高一数学必修一综合测试题(含答案)一、选择题(每题5分,共50分)1、已知集合M={0,1,2},N={xx=2a,a∈M},则集合MN=A、{ }B、{0,1}C、{1,2}D、{0,2}答案:B解析:将M中的元素代入N中得到:N={2,4,8},与M 的交集为{0,1},故MN={0,1}。

2、若f(lgx)=x,则f(3)=()A、lg3B、3C、10D、310答案:C解析:将x=3代入f(lgx)=x中得到f(lg3)=3,又因为lg3=0.477,所以f(0.477)=3,即f(3)=10^0.477=3.03.3、函数f(x)=x−1x−2的定义域为()A、[1,2)∪(2,+∞)B、(1,+∞)C、[1,2)D、[1,+∞)答案:A解析:由于分母不能为0,所以x-2≠0,即x≠2.又因为对于x<1,分母小于分子,所以x-1<0,即x<1.所以定义域为[1,2)∪(2,+∞)。

4、设a=log13,b=23,则().A、a<b<cB、c<b<aC、c<a<bD、b<a<c答案:A解析:a=log13=log33-log32=1/2-log32,b=23=8,c=2^3=8,所以a<b=c。

5、若102x=25,则10−x等于()A、−15B、51C、150D、0.2答案:B解析:由102x=25可得x=log10(25)/log10(102)=1.3979,所以10^-x=1/10^1.3979=0.1995≈0.2.6、要使g(x)=3x+1+t的图象不经过第二象限,则t的取值范围为A.t≤−1B.t<−1C.t≤−3D.t≥−3答案:B解析:当x=0时,y=1+t,要使图像不经过第二象限,则1+t>0,即t>-1.又因为g(x)的斜率为正数,所以对于任意的x,g(x)的值都大于1+t,所以t< -1.7、函数y=2x,x≥1x,x<1的图像为()答案:见下图。

集合综合练习题及答案

集合综合练习题及答案

集合综合练习题及答案一、选择题1、下列哪个选项不是集合?A. {1,2,3,4,5}B. {x|x是正方形}C. {x|0<x<10}D. {x|x是中国的城市}答案:D. {x|x是中国的城市}。

因为D中的元素是不确定的,而集合中的元素必须是确定的。

2、下列哪个选项是集合?A. {1,2,3,4,5}的元素都是整数。

B. {x|x是正方形}的元素都是四边形。

C. {x|0<x<10}的元素都是正数。

D. {x|x是中国的城市}的元素都是城市。

答案:A. {1,2,3,4,5}的元素都是整数。

因为选项A中的元素都是确定的,符合集合的定义。

3、下列哪个选项不是集合?A. {1,2,3,4,5}的元素个数为5。

B. {x|x是正方形}中的元素为四边形。

C. {x|0<x<10}中的元素为正数。

D. {x|x是中国的城市}中的元素为城市。

答案:B. {x|x是正方形}中的元素为四边形。

因为B中的元素不是确定的,不符合集合的定义。

二、填空题1、写出集合{1,2,3,4,5}的所有子集:______。

2、写出集合{x|x是正方形}的所有子集:______。

3、写出集合{x|0<x<10}的所有子集:______。

4、写出集合{x|x是中国的城市}的所有子集:______。

答案:1、{∅,{1},{2},{3},{4},{5},{1,2},{1,3},{1,4},{1,5},{2,3},{2,4},{2,5},{3,4},{3,5},{4,5}}。

2、{∅,{正方形}}。

3、{∅,{正数}}。

4、{∅,{城市}}。

2 集合综合练习题合作经营可行性分析报告一、引言随着全球化的深入发展,企业间的合作已经成为一种趋势。

通过合作经营,企业可以共享资源、降低风险、提高效率,进而实现更大的商业价值。

本报告旨在分析合作经营的可行性,为企业决策提供参考。

二、合作经营的定义与优势合作经营是指两个或多个企业在一定领域内共同出资、共同经营、共担风险、共享收益的一种经营模式。

高一数学综合练习题集

高一数学综合练习题集

高一数学综合练习题集1. 选择题:下列哪个图形是中心对称图形?A. 正方形B. 圆形C. 三角形D. 长方形2. 填空题:已知a=2,b=3,求a^2+b^2的值。

3. 判断题:等边三角形的所有内角都是60度。

4. 解答题:已知函数f(x)=2x^2-5x+3,求f(x)的导数。

5. 选择题:下列哪个函数是奇函数?A. f(x)=x^2B. f(x)=x^3C. f(x)=x^4D. f(x)=x^56. 填空题:已知a=1,b=2,求a^3+b^3的值。

7. 判断题:等腰三角形的底角相等。

8. 解答题:已知函数f(x)=x^2+2x+1,求f(x)的极值点。

9. 选择题:下列哪个数是偶数?A. 5B. 8C. 11D. 1410. 填空题:已知a=4,b=6,求a^2-b^2的值。

11. 判断题:等腰梯形的上底和下底长度相等。

12. 解答题:已知函数f(x)=x^3-3x^2+3x,求f(x)的单调递增区间。

13. 选择题:下列哪个数是质数?A. 17B. 18C. 19D. 2014. 填空题:已知a=7,b=10,求a^3-b^3的值。

15. 判断题:等边三角形的所有外角都是60度。

16. 解答题:已知函数f(x)=x^4-4x^3+6x^2,求f(x)的导数。

17. 选择题:下列哪个数是合数?A. 23B. 24C. 25D. 2618. 填空题:已知a=5,b=8,求a^2+b^2的值。

19. 判断题:等腰梯形的对角线互相平分。

20. 解答题:已知函数f(x)=x^3+3x^2-3x,求f(x)的极值点。

21. 选择题:下列哪个数是平方数?A. 25B. 26C. 27D. 2822. 填空题:已知a=3,b=6,求a^2-b^2的值。

23. 判断题:等边三角形的所有角都是60度。

24. 解答题:已知函数f(x)=x^3-3x^2+3x,求f(x)的单调递增区间。

25. 选择题:下列哪个数是素数?A. 29B. 30C. 31D. 3226. 填空题:已知a=4,b=8,求a^2+b^2的值。

2022-2023学年重庆市涪陵高级中学数学高一上期末综合测试试题含解析

2022-2023学年重庆市涪陵高级中学数学高一上期末综合测试试题含解析
2
所以 2 log2 a 0 ,可得: a 1,
当 a 0 时, a 0 ,
由 f (a) f (a) 得 log1 a log2 a ,
2
所以 2log2 a 0 ,即 0 a 1,即 1 a 0 ,
综上可知: 1 a 0 或 a 1.
故选:C 【点睛】本题主要考查了分段函数,解不等式的关键是对 a 的范围讨论,分情况解,属于中档题. 8、B 【解析】根据各个函数的奇偶性、函数值的符号,判断函数的图象特征,即可得到
A. 3 3 m2 8
B. 2m2
C. 9 2 m2 8
D. 9 3 m2 8
4. 2021 始边是 x 轴正半轴,则其终边位于第()象限
A.一
B.二
的 C.三
D.四
5.手机屏幕面积与手机前面板面积的比值叫手机的“屏占比”,它是手机外观设计中一个重要参数,其值通常在 0~1
之间.若设计师将某款手机的屏幕面积和手机前面板面积同时增加相同的数量,升级为一款新手机,则该款手机的“屏
2022-2023 学年高一上数学期末模拟试卷
考生请注意: 1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。 2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的 位置上。 3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
行比较大小,另一方面注意特殊值 0,1 的应用,有时候要借助其“桥梁”作用,来比较大小
10、B
【解析】由题意得:
a b
1 b 1 c
1 1

易得点
Q
1 c
,
b
满足

云南省昭通市巧家县一中2023届高一上数学期末综合测试试题含解析

云南省昭通市巧家县一中2023届高一上数学期末综合测试试题含解析
所以边 所在直线 点斜式方程为 ;
当点 在直线 下方时,由题得直线 的斜率为 ,
所以边 所在直线的点斜式方程为 .
综合得直线 的方程为 或 .
22、(1) ;(2)0.
【解析】 进行分数指数幂和根式的运算即可;
进行对数的运算即可
【详解】 原式 ;
原式
【点睛】本题考查分数指数幂、根式和对数的运算,以及对数的换底公式,属于基础题
(1)当 时,判断函数 在 上是否“友好”;
(2)若关于x的方程 的解集中有且只有一个元素,求实数a的取值范围
20.已知 ,函数 .
(1)若关于 的不等式 对任意 恒成立,求实数 的取值范围;
(2)若关于 的方程 有两个不同实数根,求 的取值范围.
21.已知 在第一象限,若 , , ,求:
(1)边 所在直线的方程;
12、D
【解析】由正弦函数的性质即可求得 的最小值和最小正周期
【详解】解:∵ ,
∴当 =﹣1时,f(x)取得最小值,
即f(x)min ;
又其最小正周期T π,
∴f(x) 的最小值和最小正周期分别是: ,π
故选D
【点睛】本题考查正弦函数的周期性与最值,熟练掌握正弦函数的图象与性质是解题关键,属于中档题
16.命题“ , ”的否定是_________.
三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)
17. (1)试证明差角的余弦公式 : ;
(2)利用公式 推导:
①和角的余弦公式 ,正弦公式 ,正切公式 ;
②倍角公式 , , .
18.已知函数 ,
(1)求 的单调递增区间;
又 ,则 ,D正确
故选:A

四川省乐山市2024届数学高一下期末综合测试试题含解析

四川省乐山市2024届数学高一下期末综合测试试题含解析

四川省乐山市2024届数学高一下期末综合测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。

用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。

将条形码粘贴在答题卡右上角"条形码粘贴处"。

2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。

答案不能答在试题卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

4.考生必须保证答题卡的整洁。

考试结束后,请将本试卷和答题卡一并交回。

一、选择题:本大题共10小题,每小题5分,共50分。

在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知()3,3a =,()1,0b =,则()2a b b -=( ) A .1B .2C .3D .32.若[0,]x π∈,则函数()cos 3sin f x x x =-的单调递增区间为( )A .5,6ππ⎡⎤⎢⎥⎣⎦B .2π,π3C .50,6π⎡⎤⎢⎥⎣⎦D .20,3π⎡⎤⎢⎥⎣⎦3.若2a =,2b =,且()-⊥a b a ,则a 与b 的夹角是( ) A .6πB .4π C .3π D .2π 4.一个几何体的三视图分别是一个正方形,一个矩形,一个半圆,尺寸大小如图所示,则该几何体的体积是( )A .2π B .23π C .πD .2π5.已知()f x 为定义在R 上的函数,其图象关于y 轴对称,当0x ≥时,有(1)()f x f x +=-,且当[0,1)x ∈时,2()log (1)=+f x x ,若方程()0f x kx -=(0k >)恰有5个不同的实数解,则k 的取值范围是( )A .11[,)74B .11[,)64C .11[,)65D .11[,)756.若{}n a 是等差数列,首项10a >,201620190a a +>,201720180a a ⋅<,则使前n 项和0n S >成立的最大正整数n =( ) A .2017B .2018C .4035D .40347.把函数sin2)6y x π=+(的图象沿x 轴向右平移4π个单位,再把所得图象上各点的纵坐标不变,横坐标变为原来的12,可得函数()y g x = 的图象,则()g x 的解析式为( )A .()sin(4)12g x x π=-B .()sin(4)6g x x π=-C .()sin(4)3g x x π=-D .2()sin(4)3g x x π=- 8.使函数()()()3sin 2cos 2f x x x θθ=+++是偶函数,且在04π⎡⎤⎢⎥⎣⎦,上是减函数的θ的一个值是( )A .6π B .3π C .23π-D .56π-9.直线()()21210a x ay a R +-+=∈的倾斜角不可能为( )A .4π B .3π C .2π D .56π 10.在中,内角,,的对边分别为,,.若,则A .B .C .D .二、填空题:本大题共6小题,每小题5分,共30分。

山东省日照实验高级中学2023届高一数学第一学期期末综合测试试题含解析

山东省日照实验高级中学2023届高一数学第一学期期末综合测试试题含解析
2022-2023学年高一上数学期末模拟试卷
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
【详解】根据题意,当侧面AA1B1B水平放置时,水的形状为四棱柱形,底面是梯形,
设△ABC的面积为S,则S梯形= S,水的体积V水= S×AA1=6S,
当底面ABC水平放置时,水的形状为三棱柱形,设水面高为h,
则有V水=Sh=6S,故h=6
故选A
【点睛】本题考点是棱柱的体积计算,考查用体积公式来求高,考查转化思想以及计算能力,属于基础题
(1)求该噪声声波曲线的解析式 以及降噪芯片生成的降噪声波曲线的解析式 ;
(2)将函数 图象上各点的横坐标变为原来的 倍,纵坐标不变得到函数 的图象.若锐角 满足 ,求 的值.
21.已知函数
(Ⅰ)求 在区间 上的单调递增区间;
(Ⅱ)若 , ,求 值
参考答案
一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)
8、D
【解析】由否定的定义写出即可.
【详解】p的否定是 , .
故选:D
9、D
【解析】利用函数 的图象变换规律即可得解.
【详解】解: ,
只需将函数 图象向右平移 个单位长度即可
故选 .
【点睛】本题主要考查函数 图象变换规律,属于基础题
10、D
【解析】根据分段函数的定义,分 与 两种情况讨论即可求解.

江苏省姜堰中学2022-2023学年高一上数学期末综合测试试题含解析

江苏省姜堰中学2022-2023学年高一上数学期末综合测试试题含解析
13.已知函数 ,则函数f(x)的值域为______.
14.函数 的单调递减区间为__
15.已知函数 ,其所有的零点依次记为 ,则 _________.
16.定义:关于 的两个不等式 和 的解集分别为 和 ,则称这两个不等式为相连不等式.如果不等式 与不等式 为相连不等式,且 ,则 _________
2022-2023学年高一上数学期末模拟试卷
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
C.第60百分位数=众数<平均数D.平均数=第60百分位数=众数
5.已知 , 是不共线的向量, , , ,若 , , 三点共线,则实数 的值为()
A. B.10
C. D.5
6.函数 在区间 上的最大值为
A.1B.4
C.-1D.不存在
7.若函数 ,则 的单调递增区间为()
A. B.
C. D.
8.定义在 上的函数 满足 ,且当 时, .若关于 的方程 在 上至少有两个实数解,则实数 的取值范围为
【小问1详解】
解析:(1) ,
∴当 时 取得最小值
【小问2详解】
(2)由(1)得, ,
令 ,
得函数 的单调递增区间为
20、(1)4(2) 在区间 上单调递减,证明见解析
【解析】(1)直接根据 即可得出答案;
(2)对任意 ,且 ,利用作差法比较 的大小关系,即可得出结论.
【小问1详解】

2022-2023学年福建省漳州市重点初中高一数学第一学期期末综合测试试题含解析

2022-2023学年福建省漳州市重点初中高一数学第一学期期末综合测试试题含解析
因为三棱柱 中,侧棱 ⊥底面 ,
故三棱柱 为直棱柱,故 ⊥底面 ,
因为 底面 ,故 ,而 ,
故 平面 ,
而 ,
故 .
【点睛】思路点睛:线线垂直的判定可由线面垂直得到,也可以由两条线所成的角为 得到,而线面垂直又可以由面面垂直得到,解题中注意三种垂直关系的转化.又三棱锥的体积的计算需选择合适的顶点和底面,此时顶点到底面的距离容易计算.
A. B.
C. D.
5.若 , ,则sin =
A. B.
C. D.
6.下列说法不正确的是
A.方程 有实根 函数 有零点
B. 有两个不同的实根
C.函数 在 上满足 ,则 在 内有零点
D.单调函数若有零点,至多有一个
7.为了得到函数 的图象,可以将函数 的图象()
A.向左平移 个单位长度得到B.向右平移 个单位长度得到
1、B
【解析】先由题意设点 的坐标为 ,根据空间中的两点间距离公式,列出等式,求出 ,即可得出结果.
【详解】因为点 在 轴上,所以可设点 的坐标为 ,
依题意,得 ,
解得 ,则点 的坐标为
故选:B.
2、B
【解析】依题意,圆 的圆坐标为 ,半径为交,故选B.
故 的值域为
【小问2详解】

令 ,则
①当 时, ,因为 ,所以 ,解得
因为 ,所以 ,解得 或 (舍去)
②当 时, ,因为 ,所以 ,解得
,解得 或 (舍去)
综上,a的值为 或
19、(1)18元;(2) ,此时每瓶饮料的售价为16元.
【解析】(1)先求售价为 元时的销售收入,再列不等式求解;(2)由题意 有解,参变分离后求 的最小值.
又图象过点 ,则 ,

高一数学学科素养能力竞赛集合部分综合测试题(解析版)

高一数学学科素养能力竞赛集合部分综合测试题(解析版)

高一数学学科素养能力竞赛集合部分综合测试题第I 卷(选择题)一、单选题: 本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}1,1A =-,{}1B x ax ==,若A B B =,则a 的取值集合为( ) A .{}1B .{}1-C .{}1,1-D .{}1,0,1-【答案】D【分析】由题意知B A ⊆,分别讨论B =∅和B ≠∅两种情况,即可得出结果.【详解】由A B B =,知B A ⊆,因为{}1,1A =-,{|1}B x ax ==,若B =∅,则方程1ax =无解,所以0a =满足题意; 若B ≠∅,则1{|1}B x ax x x a ⎧⎫====⎨⎬⎩⎭, 因为B A ⊆,所以11a=±,则满足题意1a =±; 故实数a 取值的集合为{}1,0,1-.故选:D.2.设a ,b 是实数,集合{}1,A x x a x R =-<∈,{}|||3,B x x b x R =->∈,且A B ⊆,则a b -的取值范围为( )A . []0,2B .[]0,4C .[)2,+∞D .[)4,+∞ 【答案】D【分析】解绝对值不等式得到集合,A B ,再利用集合的包含关系得到不等式,解不等式即可得解. 【详解】集合{}{}1,|11A x x a x R x a x a =-<∈=-<<+,{}{3,|3B x x b x R x x b =-∈=<-或}3x b >+ 又A B ⊆,所以13a b +≤-或13a b -≥+即4a b -≤-或4a b -≥,即4a b -≥ 所以a b -的取值范围为[)4,+∞故选:D3.若1|12A x x ⎧⎫=-<⎨⎬⎩⎭,1|1B x x ⎧⎫=≥⎨⎬⎩⎭,定义{|A B x x A B ⨯=∈⋃且}x A B ∉⋂,则A B ⨯=( )A .13,01,22⎛⎤⎡⎫-⋃ ⎪⎥⎢⎝⎦⎣⎭B .13,01,22⎛⎤⎛⎫-⋃ ⎪⎥⎝⎦⎝⎭C .13,22⎡⎤-⎢⎥⎣⎦D .(0,1]【答案】B【分析】本题抓住新定义{|A B x x A B ⨯=∈⋃且}x A B ∉⋂中x 满足的条件,解不等式得到集合,A B ,进而求得A B ,A B ,最后求出()()A B A B ⋃即为所求. 【详解】1113|111|2222A x x x x x ⎧⎫⎧⎫⎧⎫=-<=-<-<=-<<⎨⎬⎨⎬⎨⎬⎩⎭⎩⎭⎩⎭ {}11|1|0|01x B x x x x x x -⎧⎫⎧⎫=≥=≥=<≤⎨⎬⎨⎬⎩⎭⎩⎭{}|01A B x x ∴⋂=<≤,13|22A B x x ⎧⎫⋃=-<<⎨⎬⎩⎭ 1|02A B x x ⎧∴⨯=-<≤⎨⎩或312x ⎫<<⎬⎭13,01,22⎛⎤⎛⎫=-⋃ ⎪⎥⎝⎦⎝⎭故选:B【点睛】关键点点睛:本题考查集合的新定义,解绝对值不等式和分式不等式,理解题目中{|A B x x A B ⨯=∈⋃且}x A B ∉⋂中x 满足的条件是解题的关键,考查学生的分析试题能力与转化与化归能力,属于较难题.4.设A 是集合{}12345678910,,,,,,,,,的子集,只含有3个元素,且不含相邻的整数,则这种子集A 的个数为( )A .32B .56C .72D .84【答案】B【分析】分类列举出每一种可能性即可得到答案.【详解】若1,3在集合A 内,则还有一个元素为5,6,7,8,9,10中的一个;若1,4在集合A 内,则还有一个元素为6,7,8,9,10中的一个;若1,8在集合A 内,则还有一个元素为10;共有6+5+4+3+2+1=21个.若2,4在集合A 内,则还有一个元素为6,7,8,9,10中的一个;若2,5在集合A 内,则还有一个元素为7,8,9,10中的一个;若2,8在集合A 内,则还有一个元素为10;共有5+4+3+2+1=15个.若3,5在集合A 内,则还有一个元素为7,8,9,10中的一个;若3,6在集合A 内,则还有一个元素为8,9,10中的一个;若3,8在集合A 内,则还有一个元素为10;共有4+3+2+1=10个.若4,6在集合A 内,则还有一个元素为8,9,10中的一个;若4,7在集合A 内,则还有一个元素为9,10中的一个;若4,8在集合A 内,则还有一个元素为10;共有3+2+1=6个.若5,7在集合A 内,则还有一个元素为9,10中的一个;若5,8在集合A 内,则还有一个元素为10;共有2+1=3个.若6,8,10在在集合A 内,只有1个.总共有21+15+10+6+3+1=56个故选:B.5.设{}1,2,3,4,I =,A 与B 是I 的子集,若{}1,3A B =,则称(,)A B 为一个“理想配集”.那么符合此条件的“理想配集”(规定(,)A B 与(,)B A 是两个不同的“理想配集”)的个数是( )A .16B .9C .8D .4【答案】B【分析】根据题意,子集A 和B 不可以互换,从子集A 分类讨论,结合计数原理,即可求解.【详解】由题意,对子集A 分类讨论:当集合{}1,3A =,集合B 可以是{1,2,3,4},{1,3,4},{1,2,3},{1,3},共4种结果;当集合{}1,2,3A =,集合B 可以是{1,3,4},{1,3},共2种结果;当集合{}1,3,4A =,集合B 可以是{1,2,3},{1,3},共2种结果;当集合{}1,2,3,4A =,集合B 可以是{1,3},共1种结果,根据计数原理,可得共有42219+++=种结果.故选:B.【点睛】本题主要考查了集合新定义及其应用,其中解答正确理解题意,结合集合子集的概念和计数原理进行解答值解答额关键,着重考查分析问题和解答问题的能力.6.定义{|,}A B x x A x B -=∈∉,设A 、B 、C 是某集合的三个子集,且满足()()A B B A C -⋃-⊆,则()()A C B B C ⊆-⋃-是AB C =∅的( ) A .充要条件B .充分非必要条件C .必要非充分条件D .既非充分也非必要条件【答案】A【分析】作出示意图,由()()A B B A C -⋃-⊆可知两个阴影部分均为∅,根据新定义结合集合并集的运算以及充分条件与必要条件的定义判断即可.【详解】如图,由于()()A B B A C -⋃-⊆,故两个阴影部分均为∅,于是,,A I IV V B III IV V C I II III V =⋃⋃=⋃⋃=⋃⋃⋃,(1)若A B C =∅,则V =∅,A I IV ∴=⋃,而()()C B B C I II IV -⋃-=⋃⋃,()()A C B B C ∴⊆-⋃-成立;(2)反之,若()()A C B B C ⊆-⋃-,则由于()()()C B B II I C I V =⋃-⋃-⋃,()A I IV V =⋃⋃,()()I IV V I II IV ∴⋃⋃⊆⋃⋃,V ∴=∅,A B C ∴⋂⋂=∅,故选:A【点睛】本题主要考查集合并集的运算以及充分条件与必要条件的定义,考查了分类讨论、数形结合思想的应用,属于较难题.7.已知集合{}1,2,3,4,5P =,若A ,B 是P 的两个非空子集,则所有满足A 中的最大数小于B 中的最小数的集合对(A ,B )的个数为( )A .49B .48C .47D .46【答案】A【分析】利用分类计数法,当A 中的最大数分别为1、2、3、4时确定A 的集合数量,并得到对应B 的集合个数,它们在各情况下个数之积,最后加总即为总数量.【详解】集合{}1,2,3,4,5P =知:1、若A 中的最大数为1时,B 中只要不含1即可:A 的集合为{1},而B 有 42115-=种集合,集合对(A ,B )的个数为15;2、若A 中的最大数为2时,B 中只要不含1、2即可:A 的集合为{2},{1,2},而B 有3217-=种,集合对(A ,B )的个数为2714⨯=;3、若A 中的最大数为3时,B 中只要不含1、2、3即可:A 的集合为{3},{1,3},{2,3},{1,2,3},而B 有2213-=种,集合对(A ,B )的个数为4312⨯=;4、若A 中的最大数为4时,B 中只要不含1、2、3、4即可:A 的集合为{4},{1,4},{2,4},{3,4},{1,2,4},{1,3,4},{2,3,4},{1,2,3,4},而B 有1211-=种,集合对(A ,B )的个数为818⨯=;∴一共有151412849+++=个,故选:A【点睛】本题考查了分类计数原理,按集合最大数分类求出各类下集合对的数量,应用加法原理加总,属于难题.8.设a ,b ,c 为实数,记集合2{|()()0S x x a x bx c =+++=,}x R ∈,2{|(1)(1)0T x ax cx bx =+++=,}x R ∈.若||S ,||T 分别为集合S ,T 的元素个数,则下列结论不可能的是( )A .||1S =且||0T =B .||1S =且||1T =C .||2S =且||2T =D .||2S =且||3T = 【答案】D【分析】要发现0x a +=与10ax +=、20x bx c ++=与210cx bx ++=的解的关系,同时考虑0a =,0c 以及判别式对方程的根的个数的影响,通过假设最高次含参数的方程10ax +=有一个解,210cx bx ++=有两个解,逆推集合S 的解的情况即可.【详解】令()2()0x a x bx c +++=,则方程至少有1个实数根x a =-,当240b c -=时,方程还有一个根2b x =-, 只要2b a ≠,方程就有2个实数根,2b a =,方程只有1个实数根,当240b c -<时,方程只有1个实数根,当240b c ->时,方程有2个或3个实数根,当0a b c ===时,||1S =且||0T =,当0,0,0a b c >=>时,||1S =且||1T =,当1,2a c b ===-时,||2S =且||2T =,若||3T =时,10ax +=有一个解,210cx bx ++=有两个解,且10ax +=的解1x a=-不是210cx bx ++=的解, ∴211()()0c b c a a-+-+≠,即20a ab c -+≠, 0x a ∴+=的解不是20x bx c ++=的解,又210cx bx ++=有两个解,故240b c ∆=->,20x bx c ++=有两个不等的根,2()()0x a x bx c ∴+++=有3个解,即3S =,故D 不可能成立,故选:D .【点睛】本题考查集合的元素个数,一元一次方程与一元二次方程的解的关系,还要考虑一元一次方程的解是否为一元二次方程的解,通过判别式判断一元二次方程方程的根的个数,属于难题.二、多选题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得2分.)9.(多选)若非空实数集M 满足任意,x y M ∈,都有x y M +∈, x y M -∈,则称M 为“优集”.已知,A B 是优集,则下列命题中正确的是( )A .AB 是优集B .A B 是优集C .若A B 是优集,则A B ⊆或B A ⊆D .若A B 是优集,则A B 是优集【答案】ACD【解析】结合集合的运算,紧扣集合的新定义,逐项推理或举出反例,即可求解.【详解】对于A 中,任取,x A B y A B ∈∈,因为集合,A B 是优集,则,x y A x y B +∈+∈,则 x y A B +∈, ,x y A x y B -∈-∈,则x y A B -∈,所以A 正确;对于B 中,取{|2,},{|3,}A x x k k Z B x x m m Z ==∈==∈,则{|2A B x x k ⋃==或3,}x k k Z =∈,令3,2x y ==,则5x y A B +=∉⋃,所以B 不正确;对于C 中,任取,x A y B ∈∈,可得,x y A B ∈,因为A B 是优集,则,x y A B x y A B +∈-∈,若x y B +∈,则()x x y y B =+-∈,此时 A B ⊆;若x y A +∈,则()x x y y A =+-∈,此时 B A ⊆,所以C 正确;对于D 中,A B 是优集,可得A B ⊆,则A B A =为优集;或B A ⊆,则A B B =为优集,所以A B 是优集,所以D 正确.故选:ACD.【点睛】解决以集合为背景的新定义问题要抓住两点:1、紧扣新定义,首先分析新定义的特点,把心定义所叙述的问题的本质弄清楚,应用到具体的解题过程中;2、用好集合的性质,解题时要善于从试题中发现可以使用的集合的性质的一些因素.10.用()C A 表示非空集合A 中的元素个数,定义()()*A B C A C B =-.已知集合2|10A x x ,{}22(3)(2)0B x ax x x ax =+++=,若*1A B =,则实数a 的取值可能是( )A.-B .0 C .1 D .【答案】ABD【解析】先分析()2C A =,又由*1A B =,分析易得()1C B =或3,即方程22(3)(2)0ax x x ax +++=有1个根或3个根,分析方程22(3)(2)0ax x x ax +++=的根的情况,可得a 可取的值,即可得答案.【详解】根据题意,已知{1A =,2},则()2C A =,又由*1A B =,则()1C B =或3,即方程22(3)(2)0ax x x ax +++=有1个根或3个根;若22(3)(2)0ax x x ax +++=,则必有230ax x +=或220x ax ++=,若230ax x +=,则0x =或30ax +=,当0a =时,{0}B =,()1C B =,符合题意;当0a ≠时,230ax x +=对应的根为0和3a -;故∴需220x ax ++=有两等根且根不为0和3a -,当∴0=时,a =±a ={0B =,-,,()3C B =,符合题意;a =-{0B =,,()3C B =,符合题意; ∴当3a -是220x ax ++=的根时,解得3a =±;3a =,此时{0B =,1-,2}-,()3C B =,符合题意;3a =-,此时{0B =,1,2},()3C B =,符合题意;综合可得:a 可取的值为0,3±,故选:ABD【点睛】本题考查集合的表示方法,关键是依据()C A 的意义,分析集合B 中元素的个数,进而分析方程22(3)(2)0ax x x ax +++=的根的情况.11.设集合{}Z y x y x a a M ∈-==,,22,则对任意的整数n ,形如4,41,42,43n n n n 的数中,是集合M 中的元素的有A .4nB .41n +C .42n +D .43n + 【答案】ABD【分析】将4,41,43n n n ++分别表示成两个数的平方差,故都是集合M 中的元素,再用反证法证明42n M . 【详解】∴224(1)(1)nn n ,∴4n M . ∴2241(21)(2)n n n ,∴41n M . ∴2243(22)(21)nn n ,∴43n M . 若42n M ,则存在,Z x y 使得2242x y n , 则42()(),n x y x y x y 和x y -的奇偶性相同.若x y +和x y -都是奇数,则()()x y x y +-为奇数,而42n +是偶数,不成立;若x y +和x y -都是偶数,则()()x y x y +-能被4整除,而42n +不能被4整除,不成立,∴42n M .故选ABD.【点睛】本题考查集合描述法的特点、代表元元素特征具有的性质P ,考查平方差公式及反证法的灵活运用,对逻辑思维能力要求较高.12.设集合X 是实数集R 的子集,如果实数0x 满足:对任意0r >,都存在x X ∈,使得00x x r <-<成立,那么称0x 为集合X 的聚点.则下列集合中,0为该集合的聚点的有( )A .1,0,x x n n Z n ⎧⎫=≠∈⎨⎬⎩⎭B .,1n x x n N n *⎧⎫=∈⎨⎬+⎩⎭C .{},0x x Q x ∈≠D .整数集Z【答案】AC【分析】利用集合聚点的新定义,集合集合的表示及元素的性质逐项判断. 【详解】A.因为集合1,0,x x n n Z n ⎧⎫=≠∈⎨⎬⎩⎭中的元素是极限为0的数列,所以对于任意0r >,都存在1n r >,使得10x r n <=<成立,所以0为集合1,0,x x n n Z n ⎧⎫=≠∈⎨⎬⎩⎭的聚点,故正确; B. 因为集合11,11n x x n N n n *⎧⎫==-∈⎨⎬++⎩⎭中的元素是极限为1的数列,除第一项外,其余项都至少比0大12,所以对于12r <时,不存在满足0x r <<的x ,所以0不为集合11,11n x x n N n n *⎧⎫==-∈⎨⎬++⎩⎭的聚点,故错误; C. 对任意0r >,都存在2=r x ,使得02x r r <=<成立,那所以0为集合{},0x x Q x ∈≠的聚点,故正确;D. 对任意0r >,如0.5r =,对任意的整数,都有00x x -=或01x x -≥成立,不可能有000.5x x <-<成立,所以0不是集合整数集Z 的聚点,故错误;故选:AC第II 卷(非选择题)三、填空题: 本题共4个小题,每小题5分,共20分.13.已知集合{}2280,R A x x x x =--≤∈ ,(){}2550,R B x x m x m x =-++≤∈ ,设全集为R ,若R B A ⊆,则实数m 的取值范围为______.【答案】()4,+∞【分析】解不等式求得R A ,根据R B A ⊆,分类讨论m 的取值,确定集合B ,从而求得m 的取值范围.【详解】解不等式2280x x --≤,得24x -≤≤,所以R {2A x x =<-或4}x > , (){}()(){}2550,R 50B x x m x m x x x x m =-++≤∈=--≤ , 因为R B A ⊆,当5m =时,{}5B =,满足题意;当5m >时,[]5,B m =,满足题意.当5m <时,[],5B m =, 由R B A ⊆,得4m >,所以45m <<.综上,m 的取值范围为()4,+∞.故答案为:()4,+∞ 14.{}{}(){}220,10,,2,R A x x px q B x qx px A B A B ϕ=++==++=⋂≠⋂=-则p q += _____.【答案】-1或5 【分析】由题意可得m A ∈,一点有1∈B m,再由A B φ⋂≠,可得1m =±,进而可得结果.【详解】设2,0∈∴++=m A m pm q两边同除2m ,可得210++=p q m m ,所以 1∈B m由A B φ⋂≠,一定有m A ∈,1∈A m ,即 1,1=∴=±m m m (){2}R A B =-,则 2,{2,1}-∈=-A A 或{2,-1}=-A代入可得4201102p q p p q q -+==⎧⎧⇒⎨⎨++==-⎩⎩或 4203102p q p p q q -+==⎧⎧⇒⎨⎨-+==⎩⎩所以1p q +=-或5故答案为:-1或5 【点睛】关键点点睛:通过两个方程的关系可得m A ∈,一点有1∈B m,是解题的关键.本题考查了逻辑推理能力和计算能力,属于中档题. 15.集合{}66,11,23,10,911,1,18,100,0,πM =---有10个元素,设M 的所有非空子集为i M ()1,2,,1023i =每一个i M 中所有元素乘积为i m ()1,2,,1023i =,则1231023m m m m ++++=___________. 【答案】-1【分析】分析可得M 的所有非空子集为i M 可分为4类,分别分析4类子集中,所有元素乘积i m ,综合即可得答案.【详解】集合M 的所有非空子集为i M ()1,2,,1023i =可以分成以下几种情况 ∴含元素0的子集共有92512=个,这些子集中所有元素乘积0i m =;∴不含元素0,含元素-1且含有其他元素的子集有821255-=个∴不含元素0,不含元素-1,但含其他元素的子集有821255-=个其中∴∴中元素是一一对应的,且为相反数,则i m 的和为0,∴只含元素-1的子集1个,满足1i m =-,综上:所有子集中元素乘积12310231m m m m ++++=-. 故答案为:-116.若集合()()()(){}10*,122022,Z,N M x y x x x y x y =++++⋅⋅⋅++=∈∈,则集合M 中元素有______个.【答案】242【分析】由题可得111010(21)23337y x y ++=⋅⋅,然后可得21y x y ++与必为一奇一偶,偶数必是1123337m n ⋅⋅,进而即得.【详解】由题可得(21)(1)(2)()2y x y x x x y ++++++⋅⋅⋅++=, ∴111010(21)23337y x y ++=⋅⋅,又21y x y ++与必为一奇一偶, 而偶数必是1123337m n ⋅⋅,*,N ,010,010m n m n ∈≤≤≤≤,共有121种情况,又21y x y ++与奇偶未定,故集合M 中元素只有242个.故答案为:242.四、解答题: 本大题共5小题,17题共10分,其余各题每题12分,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知集合{}13A x x =-≤ ,{}22240B x x mx m =-+-≤.(1)命题p :x ∴A ,命题q : x ∴B ,且p 是q 的必要非充分条件,求实数m 的取值范围:(2)若A ∩B ≠,∅求实数m 的取值范围.【答案】(1)[]02m ∈,(2)[]46m ∈-,【分析】(1)要使p 是q 的必要不充分条件,则 B A 即可;(2)求A B =∅时m 的取值范围,然后求其补集.(1)因为p 是q 的必要不充分条件,所以B A ,B 集合:()22444160m m ∆=--=>,所以B 不可能为空集,因为()()222422x mx m x m x m ⎡⎤⎡⎤-+-=---+⎣⎦⎣⎦, 所以{}22B x m x m =-≤≤+, 集合{}24A x x =-≤≤,所以2224m m -≥-⎧⎨+<⎩或2224m m ->-⎧⎨+≤⎩,分别解不等式组,取并集后可得[]02m ∈,. (2)由(1)知{}{}2422A x x B x m x m =-≤≤=-≤≤+,,当A B =∅时:22m +<-或24m ->,解之得:4m <-或6m >,则A B ⋂≠∅时,[]46m ∈-,. 18.设函数2()(,)f x x px q p q R =++∈,定义集合{|(()),}R f D x f f x x x ==∈,集合{|(())0,}R f E x f f x x ==∈.(1)若0p q ==,写出相应的集合f D 和f E ;(2)若集合{0}f D =,求出所有满足条件的,p q ;(3)若集合f E 只含有一个元素,求证:0,0p q ≥≥.【答案】(1){0,1}f D =,{0}f E =(2)1,0p q ==(3)证明见解析【分析】(1)由4x x =、40x =解得x ,可得f D ,f E ;(2)由(())0f f x x -=得2(1)10x p x p q +++++=或2(1)0x p x q +-+=,然后由21(1)4(1)∆=+-++p p q ,221(1)4∆=-->∆p q ,方程(())0f f x x -=只有一个实数解0,得210,0∆=∆<, 转化为2(1)0x p x q +-+=有唯一实数解0,可得答案;(3)由条件,(())0f f x =有唯一解,得()0f x =有解,分()0f x =有唯一解0x 、()0f x =有两个解1212,()x x x x <,结合()f x 的图像和实数解的个数可得答案.(1)2()f x x =,4(())=f f x x ,由4x x =解得0x =或1x =,由40x =解得0x =,所以{0,1}f D =,{0}f E =.(2)由22(())(())()()()()()f f x x f f x f x f x x f x pf x x px f x x -=-+-=+--+-=22(()1)(())((1)1)((1))0f x x p f x x x p x p q x p x q +++-=++++++-+=,得2(1)10x p x p q +++++=或2(1)0x p x q +-+=,221(1)4(1)(1)44p p q p q ∆=+-++=---,2221(1)4(1)4p q p q ∆=--=-->∆,而方程(())0f f x x -=只有一个实数解0,所以210,0∆=∆<,即只需2(1)0x p x q +-+=有唯一实数解0,所以1,0p q ==.(3)由条件,(())0f f x =有唯一解,所以()0f x =有解,∴若()0f x =有唯一解0x ,则20()()f x x x =-,且0()f x x =有唯一解,结合()f x 图像可知00x =,所以2()f x x =,所以0p q ==.∴若()0f x =有两个解1212,()x x x x <,则12()()()f x x x x x =--,且两个方程1()f x x =,2()f x x =总共只有一个解,结合()f x 图像可知2()f x x =有唯一解,所以20x <,10x <,所以120q x x =>,且()f x 的对称轴02p x =-<,所以0p >,所以0,0p q >>.综上,0,0p q ≥≥.【点睛】本题主题考查了二次函数与二次方程之间的关系的相互转换,方程根与系数的应用,考查了系数对新定义的理解能力及计算能力.19.对于正整数集合{}()*12,,,,3n A a a a n n =∈≥N ,如果去掉其中任意一个元素()1,2,,i a i n =之后,剩余的所有元素组成的集合都能分为两个交集为空集的集合,且这两个集合的所有元素之和相等,就称集合A 为“和谐集”.(1)判断集合{}1,2,3,4,5与{}1,3,5,7,9是否为“和谐集”(不必写过程);(2)求证:若集合A 是“和谐集”,则集合A 中元素个数为奇数;(3)若集合A 是“和谐集”,求集合A 中元素个数的最小值.【答案】(1){}1,2,3,4,5不是“和谐集”,{}1,3,5,7,9不是“和谐集”(2)证明见解析(3)7【分析】(1)由“和谐集”的定义判断(2)根据集合中元素总和与单个元素的奇偶性讨论后证明(3)由(2)知n 为奇数,根据n 的取值讨论后求解(1)对于{}1,2,3,4,5,去掉2后,{1,3,4,5}不满足题中条件,故{}1,2,3,4,5不是“和谐集”, 对于{}1,3,5,7,9,去掉3后,{1,5,7,9}不满足题中条件,{}1,3,5,7,9不是“和谐集” (2)设{}12,,,n A a a a =中所有元素之和为M ,由题意得i M a 均为偶数,故()1,2,,i a i n =的奇偶性相同 ∴若i a 为奇数,则M 为奇数,易得n 为奇数,∴若i a 为偶数,此时取2i i a b =,可得{}12,,,n B b b b =仍满足题中条件,集合B 也是“和谐集”, 若i b 仍是偶数,则重复以上操作,最终可得各项均为奇数的“和谐集”,由∴知n 为奇数 综上,集合A 中元素个数为奇数(3)由(2)知集合A 中元素个数为奇数,显然3n =时,集合不是“和谐集”,当5n =时,不妨设12345a a a a a <<<<,若A 为“和谐集”,去掉1a 后,得2534a a a a +=+,去掉2a 后,得1534a a a a +=+,两式矛盾,故5n =时,集合不是“和谐集”当7n =,设{1,3,5,7,9,11,13}A ,去掉1后,35791113+++=+,去掉3后,19135711++=++,去掉5后,91313711+=+++,去掉7后,19113513++=++,去掉9后,13511713+++=+,去掉11后,3791513++=++,去掉13后,1359711+++=+,故{1,3,5,7,9,11,13}A 是“和谐集”,元素个数的最小值为720.对于函数()f x ,若()f x x =,则称实数x 为()f x 的“不动点”,若()()f f x x =,则称实数x 为()f x 的“稳定点”,函数()f x 的“不动点”和“稳定点”组成的集合分别记为A 和B ,即(){}A x f x x ==,()(){}B x f f x x ==. (1)对于函数()21f x x =-,分别求出集合A 和B ;(2)对于所有的函数()f x ,集合A 与B 是什么关系?并证明你的结论;(3)设()2f x x ax b =++,若{}1,3A =-,求集合B .【答案】(1){1}A =,{1}B =(2)证明见解析;(3){B =-【分析】(1)由f (x )=x ,解出x 的值即集合A 的元素,由()f f x x ⎡⎤⎣⎦=,解出x 的值即集合B的元素; (2)分别讨论A =∅与A ≠∅的情况,当A ≠∅时,设t A ∈,则()f t t =,即[()]=()f f t f t t =,进而得证;(3)由{1,3}A =-可得(1)1(3)3f f -=-⎧⎨=⎩,则13a b =-⎧⎨=-⎩,进而求解()f f x x ⎡⎤⎣⎦=即可. (1)由f (x )=x ,得21x x -=,解得1x =; 由()f f x x ⎡⎤⎣⎦=,得221)1(x x --=,解得1x =, ∴集合A ={1},B ={1}.(2)若A =∅,则A B ⊆显然成立;若A ≠∅,设t 为A 中任意一个元素,由[()]=()f f t f t t B =∈,可得A B ⊆.(3)解:∴{1,3}A =-,∴(1)1(3)3f f -=-⎧⎨=⎩,即2211333a b a b ⎧--+=-⎨++=⎩(),∴13a b =-⎧⎨=-⎩, ∴2()3f x x x =--,∴2222[()](3)(3)(3)3f f x f x x x x x x x =--=------=,∴222(3)0x x x ---=,∴22(3)23)0x x x ---=(,∴(1)(3)0x x x x +-=,∴x =1x =-或3x =,∴{B =-.21.设集合A 为非空数集,定义{|A x x a b +==+,a 、}b A ∈,{|||A x x a b -==-,a 、}b A ∈.(1)若{1A =-,1},写出集合A +、A -;(2)若1{A x =,2x ,3x ,4}x ,1234x x x x <<<,且A A -=,求证:1423x x x x +=+;(3)若{|02021A x x ⊆,}x N ∈且A A +-=∅,求集合A 元素个数的最大值.【答案】(1){}{}2,0,20,2A A +-=-=,;(2)证明见解析;(3)1348.【分析】(1)根据新定义,直接得出集合A A +-、;(2)根据两集合相等即可得出1234x x x x 、、、的关系;(3)通过假设A 集合{124042}m m m ++,,,,(2021)m m N ≤∈,, 求出相应的A A +-、,根据=A A +-∅列出不等式即可求出结果.(1) 由题意知,{11}A =-,, 得{202}{02}A A +-=-=,,,,; (2)由于集合12341234{}A x x x x x x x x =<<<,,,,,且A A -=,所以集合A -中有且仅有4个元素,即213141{0}A x x x x x x -=---,,,剩下的元素满足213243x x x x x x -=-=-,即1423x x x x +=+;(3)设12{}k A a a a =,,,满足题意,其中12k a a a <<<, 则11213123122k k k k k k a a a a a a a a a a a a a a -<+<+<<+<+<+<<+<, 所以21A k +≥-,1121311k a a a a a a a a -<-<-<<-,所以A k -≥,因为=A A +-∅,由容斥原理,31A A A A k +-+-=+≥-, A A +-最小的元素为0,最大的元素为2k a ,所以21k A A a +-≤+,所以*31214043()k k a k N -≤+≤∈,解得1348k ≤,实际上当{6746752021}A =,,,时满足题意,证明如下: 设{122021}A m m m =++,,,,()m N ∈, 则{221224042}A m m m +=++,,,,,{0122021}A m -=-,,,,, 依题意,有20212m m -<,即26733m >,所以m 的最小值为674, 于是当674m =时,集合A 中的元素最多,即{6746752021}A =,,,时满足题意. 综上所述,集合A 中元素的个数的最大值为1348.【点睛】“新定义”主要是指即时定义新概念、新公式、新定理、新法则、新运算五种,然后根据此新定义去解决问题,有时还需要用类比的方法去理解新的定义,这样有助于对新定义的透彻理解.对于此题中的新概念,对阅读理解能力有一定的要求.但是,透过现象看本质,它们考查的还是基础数学知识,所以说“新题”不一定是“难题”,掌握好三基,以不变应万变才是制胜法宝.22.含有有限个元素的数集,定义“元素和”如下:把集合中的各数相加;定义“交替和”如下:把集合中的数按从大到小的顺序排列,然后从最大的数开始交替地加减各数.例如{4,6,9}的元素和是4+6+9=19;交替和是9-6+4=7;而{5}的元素和与交替和都是5.(1)写出集合{1,2,3}的所有非空子集的交替和的总和;(2)已知集合{}1,2,3,4,5,6M =,根据提示解决问题.∴求集合M 所有非空子集的元素和的总和;提示:方法1:x M ∀∈,先求出x 在集合M 的非空子集中一共出现多少次,进而可求出集合M 所有非空子集的元素和的总和;方法2:如果我们知道了集合{1,2,3,4,5}的所有非空子集的元素和的总和为k ,可以用k 表示出M 的非空子集的元素和的总和,递推可求出集合M 所有非空子集的元素和的总和.∴求集合M 所有非空子集的交替和的总和.【答案】(1)12;(2)∴672,∴192【分析】(1)写出集合{1,2,3}的非空子集,根据交替和的概念,求得各个交替和,综合即可得答案.(2)∴求得集合{1,2,3}所有非空子集中,数字1、2、3各出现的次数,集合{1,2,3,4}所有非空子集中,数字1、2、3、4各出现的次数,根据规律,推测出集合M 中各数字出现的次数,即可得答案.∴分别求得集合{1}{12}{1,2,3}{1,2,3,4}、,、、的交替和总和,根据规律,总结出n 个元素的交替和总和公式,代入数据,即可得答案.【详解】(1)集合{1,2,3}的非空子集为{1},{2},{3},{2,1},{3,1},{3,2},{3,2,1},集合{1},{2},{3}的交替和分别为1,2,3,集合{2,1}的交替和为2-1=1,集合{3,1}的交替和为3-1=2,集合{3,2}的交替和为3-2=1,集合{3,2,1}的交替和为3-2+1=2,所以集合{1,2,3}的所有非空子集的交替和的总和为1+2+3+1+2+1+2=12.(2)∴集合{1,2,3}所有非空子集中,数字1、2、3各出现242=次,集合{1,2,3,4}所有非空子集为:{1},{2},{3},{4},{2,1},{3,1},{4,1},{3,2},{2,4},{3,4},{3,2,1},{4,2,1},{4,3,1},{4,3,2},{4,3,2,1}, 其中数字1、2、3、4各出现382=次,在集合{1,2,3,4,5}所有非空子集中,含1的子集的个数为42=16,故数字1在16个子集中出现即数字1在所有的非空子集中出现了16次,同理数字2、3、4、5各出现42=16次,同理在集合{1,2,3,4,5,6}所有非空子集中,数字1、2、3、4、5、6各出现52=32次, 所以集合M 所有非空子集的元素和的总和为32(123456)672⨯+++++=.∴设集合{1}{12}{1,2,3}{1,2,3,4}、,、、的交替和分别为1234,,,S S S S , 集合{1}的所有非空子集的交替和为11S =集合{1,2}的所有非空子集的交替和212(21)4S =++-=,集合{1,2,3}的非空子集的交替和3123(21)(31)(32)(321)12S =+++-+-+-+-+=, 集合{1,2,3,4}的非空子集的交替和41234(21)(31)(41)S =++++-+-+-(32)(42)(43)(321)(421)(431)(432)(4321)32+-+-+-+-++-++-++-++-+-=所以根据前4项猜测集合{1,2,,}n ⋅⋅⋅的所有非空子集的交替和总和为12n n S n -=⋅,所以集合M 所有非空子集的交替和的总和5662192S =⨯=【点睛】解题的关键是根据题意,列出非空子集,求得元素和、交替和,总结规律,进行猜想,再代数求解,分析理解难度大,属难题.。

2024届山东省青岛市高一上数学期末综合测试试题含解析

2024届山东省青岛市高一上数学期末综合测试试题含解析
2024 届山东省青岛市高一上数学期末综合测试试题
注意事项: 1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。 2.答题时请按要求用笔。 3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。 4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。 5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
BD1 3 3 【点睛】考查了异面直线所成角的计算方法,关键得出直线 AD1 与 EF 所成角即为∠AD1B ,难度中等 12、 2 【解析】根据直线一般式,两直线平行则有 A1B2 A2B1 0 ,代入即可求解. 【详解】由题意,直线 x y 2 0 与直线 ax 2y 0 平行,
则有1 (2) 1 a 0 a 2 故答案为: 2
3

则反射光线所在直线方程 y 3 3 1 x 4 4 1
即: 4x 5y 1 0
故选 A 10、D 【解析】把方程的根转化为二次函数的零点问题,恰有一个零点属于(0,1),分为三种情况,即可得解.
【详解】方程 x2 (m 2)x 2m 1 0 对应的二次函数设为: f x x2 (m 2)x 2m 1
(m 2)2 42m 1 0 ,解得 m 6 2 7 ,
当 m 6 2 7 时,方程 x2 (m 2)x 2m 1 0 的根为 2 7 ,不合题意;
若 m 6 2 7 ,方程 x2 (m 2)x 2m 1 0 的根为 7 2 ,符合题意
综上:实数
m
的取值范围为
不一定有对任意 x R , f x 0 ,所以 A 错误,
对于 B,当函数 y f x 的图像关于原点成中心对称,可知 f (x) f (x) ,函数 f (x) 为奇函数,所以 B 错误,

【高一】高一数学上册模块综合能力测试题(带答案)

【高一】高一数学上册模块综合能力测试题(带答案)

【高一】高一数学上册模块综合能力测试题(带答案)模块综合能力检测题本试卷分第ⅰ卷和第ⅱ卷非两部分,满分150分,时间120分钟。

第ⅰ卷(选择题共60分后)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.(09全国ⅰ文)未知tanα=4,tanβ=3,则tan(α+β)=( )a.711 b.-711c.713d.-713[答案] b[解析] ∵tanβ=3,tanα=4,∴tan(α+β)=tanα+tanβ1-tanαtanβ=4+31-4×3=-711.2.(09广东文)函数y=2cos2x-π4-1就是( )a.最小正周期为π的奇函数b.最轻正周期为π的偶函数c.最小正周期为π2的奇函数d.最轻正周期为π2的偶函数[答案] a[解析] 因为y=2cos2x-π4-1=cos2x-π2=sin2x为奇函数,t=2π2=π,所以挑选a.3.(09山东文)将函数y=sin2x的图象向左平移π4个单位,再向上平移1个单位,所得图象的函数解析式是( )a.y=2cos2xb.y=2sin2xc.y=1-sin(2x+π4)d.y=cos2x[答案] a4.(09浙江文)已知向量a=(1,2),b=(2,-3).若向量c满足(c+a)∥b,c⊥(a +b),则c=( )a.(79,73)b.(-73,-79)c.(73,79)d.(-79,-73)[答案] d[解析] 设c=(,n),∵c+a=(+1,n+2),a+b=(3,-1),∴由(c+a)∥b,c⊥(a+b)得:-3(+1)-2(n+2)=03-n=0,解得=-79,n=-73.故挑选d.5.函数y=cosxtanx-π2<x<π2的大致图象是( )[答案] c[解析] ∵y=cosxtanx=-sinx -π2<x<0sinx0≤x<π2,故挑选c.6.在△abc中,sina=35,cosb=513,则cosc的值为( )a.-5665b.-1665c.1665d.5665[答案] c[解析] ∵cosb=513,∴sinb=1213,∵sinb>sina,a、b为△abc的内角,∴b>a,∴a为锐角,∵sina=35,cosa=45,∴cosc=-cos(a+b)=-cosacosb+sinasinb=-45×513+35×1213=1665.7.已知a=(1,3),b=(2+λ,1),且a与b成锐角,则实数λ的取值范围是( ) a.λ>-5b.λ>-5且λ≠-53c.λ<-5d.λ<1且λ≠-53[答案] b[解析] ∵a与b夹角为锐角,∴ab=2+λ+3>0,∴λ>-5,当a与b同向时,存有正数k,并使b=ka,∴2+λ=k1=3k,∴k=13λ=-53,因此λ>-5且λ≠-53.8.(09陕西理)若3sinα+cosα=0,则1cos2α+sin2α的值( )a.103b.53c.23d.-2[答案] a[解析] ∵3sinα+cosα=0,∴tanα=-13,∴原式=sin2α+cos2αcos2α+2sinαcosα=tan2α+11+2tanα=19+11-23=103,故选a.9.若sin4θ+cos4θ=1,则sinθ+cosθ的值( )a.0b.1c.-1d.±1[答案] d[解析] 数学分析一:由sin4θ+cos4θ=1言sinθ=0cosθ=±1或sinθ=±1cosθ=0,∴sinθ+cosθ=±1.解法二:∵sin4θ+cos4θ=(sin2θ+cos2θ)2-2sin2θcos2θ=1-2sin2θcos2θ=1,∴sin2θcos2θ=0,∴sinθcosθ=0,∴(sinθ+cosθ)2=1+2sinθcosθ=1,∴sinθ+cosθ=±1.10.a与b的夹角为120°,a=2,b=5,则(2a-b)a=( )a.3b.9c.12d.13[答案] d[解析] ab=2×5×cos120°=-5,∴(2a-b)a=2a2-ab=8-(-5)=13.11.设e1与e2是两个不共线向量,ab→=3e1+2e2,cb→=ke1+e2,cd→=3e1-2ke2,若a、b、d三点共线,则k的值为( )a.-94b.-49c.-38d.不存在[答案] a[解析] bd→=bc→+cd→=(-ke1-e2)+(3e1-2ke2)=(3-k)e1-(1+2k)e2,∵a、b、d共线,∴ab→∥bd→,∴3-k3=-1-2k2,∴k=-94.12.(09宁夏、海南理)已知o,n,p在△abc所在平面内,且oa→=ob→=oc→,na→+nb→+nc→=0,且pa→pb→=pb→pc→=pc→pa→,则点o,n,p依次是△abc 的( )a.战略重点外心正三角形b.重心外心内心c.外心战略重点正三角形d.外心重心内心(备注:三角形的三条高线缴于一点,此点为三角形的正三角形)[答案] c[解析] ∵o,n,p在△abc所在平面内,且oa→=ob→=oc→,∴o是△abc外接圆的圆心,由na→+nb→+nc→=0,得n就是△abc的战略重点;由pa→pb→=pb→pc→=pc→pa→得pb→(pa→-pc→)=pb→ca→=0,∴pb⊥ca,同理可证pc⊥ab,pa⊥bc,∴p为△abc的正三角形.第ⅱ卷(非选择题共90分)二、题(本大题共4个小题,每小题4分后,共16分后,把恰当答案填上在题中横线上)13.函数y=2cos2x+sin2x的最小值是________.[答案] 1-2[解析] y=2cos2x+sin2x=1+cos2x+sin2x=1+2sin2x+π4,∵x∈r,∴yin=1-2.14.在abcd中,、n分别就是dc、bc的中点,未知a→=c,an→=d,用c、d则表示ab→=________.[答案] 43d-23c[解析] d=ab→+bn→=ab→+12ad→①c=ad→+d→=ad→+12ab→②求解①②共同组成的方程组得ad→=43c-23d,ab→=43d-23c.15.已知点p(sinα+cosα,tanα)在第二象限,则角α的取值范围是________.[答案] 2kπ-π4<α<2kπ或2kπ+π2<α<2kπ+3π4k∈z[解析] ∵点p在第二象限,∴sinα+cosα>0tanα<0,例如图所述,α的值域范围就是2kπ-π4<α<2kπ或2kπ+π2<α<2kπ+3π4k∈z.16.如图所示,已知o为平行四边形abcd内一点,oa→=a,ob→=b,oc→=c,则od→=________.[答案] c+a-b[解析] od→=oc→+cd→=oc→+ba→=oc→+(oa→-ob→)=c+a-b.三、解答题(本大题共6个小题,共74分,解答应写出文字说明,证明过程或演算步骤)17.(本题满分12分后)(09湖南文)未知向量a=(sinθ,cosθ-2sinθ),b=(1,2).(1)若a∥b,求tanθ的值;(2)若a=b,0<θ<π,谋θ的值.[解析] (1)因为a∥b,所以2sinθ=cosθ-2sinθ,于是4sinθ=cosθ,故tanθ=14.(2)由a=b知,sin2θ+(cosθ-2sinθ)2=5,所以1-2sin2θ+4sin2θ=5.从而-2sin2θ+2(1-cos2θ)=4,即sin2θ+cos2θ=-1,于是sin2θ+π4=-22.又由0<θ<π言,π4<2θ+π4<9π4,所以2θ+π4=5π4,或2θ+π4=7π4.因此θ=π2,或θ=3π4.18.(本题满分12分)(09重庆文)设函数f(x)=(sinωx+cosωx)2+2cos2ωx(ω>0)的最小正周期为2π3.(1)谋ω的值;(2)若函数y=g(x)的图象是由y=f(x)的图象向右平移π2个单位长度得到,求y=g(x)的单调增区间.[解析] (1)f(x)=sin2ωx+cos2ωx+2sinωxcosωx+1+cos2ωx=sin2ωx+cos2ωx+2=2sin(2ωx+π4)+2,依题意得2π2ω=2π3,故ω=32.(2)f(x)=2sin3x+π4+2,依题意得g(x)=2sin3x-π2+π4+2=2sin3x-5π4+2,由2kπ-π2≤3x-5π4≤2kπ+π2(k∈z)Champsaur23kπ+π4≤x≤23kπ+7π12(k∈z),故g(x)的单调减区间为23kπ+π4,23kπ+7π12(k∈z).19.(本题满分12分)(09陕西文)已知函数f(x)=asin(ωx+φ),x∈r,其中a>0,ω>0,0<φ<π2的周期为π,且图象上一个最低点为2π3,-2.(1)谋f(x)的解析式;(2)当x∈0,π12时,求f(x)的最值.[解析] (1)由最低点为2π3,-2得a=2,由t=π得ω=2πt=2ππ=2,∴f(x)=2sin(2x+φ).由点2π3,-2在图象勐仑2sin4π3+φ=-2即sin4π3+φ=-1,∴4π3+φ=2kπ-π2即φ=2kπ-11π6,k∈z,又φ∈0,π2,∴k=1,∴φ=π6,∴f(x)=2sin2x+π6.(2)∵x∈0,π12,∴2x+π6∈π6,π3,∴当2x+π6=π6,即x=0时,f(x)取得最小值1;当2x+π6=π3,即x=π12时,f(x)获得最大值3.20.(本题满分12分)(北京通州市09~10高一期末)已知向量a=(3cosωx,sinωx),b=sin(ωx,0),且ω>0,设函数f(x)=(a+b)b+k,(1)若f(x)的图象中相连两条对称轴间距离不大于π2,谋ω的值域范围;(2)若f(x)的最小正周期为π,且当x∈-π6,π6时,f(x)的最大值为2,求k的值.[解析] ∵a=(3cosωx,sinωx),b=(sinωx,0),∴a+b=(3cosωx+sinωx,sinωx).∴f(x)=(a+b)b+k=3sinωxcosωx+sin2ωx+k=32sin2ωx-12cos2ωx+12+k=sin2ωx-π6+12+k.(1)由题意可得:t2=2π2×2ω≥π2.∴ω≤1,又ω>0,∴ω的取值范围是0<ω≤1.(2)∵t=π,∴ω=1.∴f(x)=sin2x-π6+12+k∵-π6≤x≤π6,∴-π2≤2x-π6≤π6.∴当2x-π6=π6,即x=π6时,f(x)获得最大值fπ6=2.∴sinπ6+12+k=2.∴k=1.21.(本题满分12分后)(09江苏文)设立向量a=(4cosα,sinα),b=(sinβ,4cosβ),c=(cosβ,-4sinβ)(1)若a与b-2c垂直,求tan(α+β)的值;(2)谋b+c的最大值;(3)若tanαtanβ=16,求证:a∥b.[解析] (1)∵a=(4cosα,sinα),b=(sinβ,4cosβ),c=(cosβ,-4sinβ)∵a与b-2c横向,∴a(b-2c)=ab-2ac=4cosαsinβ+4sinαcosβ-2(4cosαcosβ-4sinαsinβ)=4sin(α+β)-8cos(α+β)=0,∴tan(α+β)=2.(2)∵b+c=(sinβ+cosβ,4cosβ-4sinβ)∴b+c2=sin2β+2sinβcosβ+cos2β+16cos2β-32cosβsinβ+16sin2β=17-30sinβcosβ=17-15sin2β,当sin2β=-1时,最大值为32,∴b+c的最大值为42.(3)由tanαtanβ=16得sinαsinβ=16cosαcosβ即4cosα4cosβ-sinαsinβ=0,∴a∥b.22.(本题满分14分)(09福建文)已知函数f(x)=sin(ωx+φ),其中ω>0,φ<π2.(1)若cosπ4cosφ-sin3π4sinφ=0,谋φ的值;(2)在(1)的条件下,若函数f(x)的图象的相邻两条对称轴之间的距离等于π3,求函数f(x)的解析式;并求最小正实数,使得函数f(x)的图象向左平移个单位后所对应的函数是偶函数.[解析] 数学分析一:(1)由cosπ4cosφ-sin3π4sinφ=0得cosπ4cosφ-sinπ4sinφ=0,即cosπ4+φ=0.又φ<π2,∴φ=π4;(2)由(1)得,f(x)=sinωx+π4.依题意,t2=π3.又t=2πω,故ω=3,∴f(x)=sin3x+π4.函数f(x)的图象向左位移个单位后,税金图象对应的函数为g(x)=sin3(x+)+π4, g(x)是偶函数当且仅当3+π4=kπ+π2(k∈z),即为=kπ3+π12(k∈z).从而,最小正实数=π12.数学分析二:(1)同数学分析一.(2)由(1)得,f(x)=sinωx+π4.依题意,t2=π3.又t=2πω,故ω=3,∴f(x)=sin3x+π4.函数f(x)的图象向左平移个单位后所得图象对应的函数为g(x)=sin3(x+)+π4.g(x)就是偶函数当且仅当g(-x)=g(x)对x∈r恒设立,亦即sin-3x+3+π4=sin3x+3+π4对x∈r恒成立.∴sin(-3x)cos3+π4+cos(-3x)sin3+π4=sin3xcos3+π4+cos3xsin3+π4,即2sin3xcos3+π4=0对x∈r恒设立.∴cos3+π4=0,故3+π4=kπ+π2(k∈z),∴=kπ3+π12(k∈z),。

高一数学必修一必修二综合测试题(有答案)

高一数学必修一必修二综合测试题(有答案)

高一数学《必修1》《必修2》综合测试题一、选择题(共12小题;每小题5分,共60分)1. 已知全集R U =,集合}32{≤≤-=x x A ,}41{>-<=x x x B 或,则()B C A U ⋃( )A.{}42≤≤-x xB.}43{≥≤x x x 或C.}12{-<≤-x xD.}31{≤≤-x x2. 过点(1,0)且与直线x -2y -2=0垂直的直线方程是( )A .x -2y -1=0B .x -2y +1=0C .2x +y -2=0D .x +2y -1=03. 圆台的一个底面圆周长是另一个底面圆周长的3倍,母线长为3,圆台的侧面积为84π,则圆台较小底面圆的半径为( )A .3B .5C .6D .74. 已知圆C :x 2:y 2:4y :0,直线l 过点P (0,1),则 ( )A. l 与C 相交B. l 与C 相切C. l 与C 相离D. 以上三个选项均有可能5. 一个几何体的三视图如图所示(单位:m ),则该几何体的体积为( )3mA.π2B.38πC.π3D. 310π6. 已知,则函数的图象不经过( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限7. 若直线2x y -=被圆22()4x a y -+=所截得的弦长为22,则实数a 的值为( ) A. 0或4 B. 1或3 C. 2-或6 D. 1-或3 8. 在三棱柱ABC­A 1B 1C 1中,各棱长相等,侧棱垂直于底面,点D 是侧面BB 1C 1C 的中心,则AD 与平面BB 1C 1C 所成角的大小是( ) A .30° B .45° C .60° D .90° 9. 若幂函数)(x f y =是经过点)33,3(,则此函数在定义域上是 ( ) A .偶函数 B .奇函数 C .增函数 D .减函数 10. 一个多面体的三视图如图所示,则该多面体的表面积为 A.321+ B.318+ C.18 D.21 11.若定义在R 上的偶函数()x f 满足)()2(x f x f =+,且当[]1,0∈x 时,x x f y x x f 3log )(,)(-==则函数的零点个数是( ) A .6个 B .4个 C .3个 D .2个 12. 已知A(3,1),B(-1,2),若:ACB 的平分线方程为y =x +1,则AC 所在的直线方程为( ) A .y =2x +4 B .y =12x -3 C .x -2y -1=0 D .3x +y +1=001,1a b <<<-x y a b =+二、填空题(共4小题,每小题5分,共20分)13. 若直线1x y +=与圆222(0)x y r r +=>相切,则实数r 的值等于________.14. 在平面直角坐标系中,正三角形ABC 的边BC 所在直线的斜率是0,则AC ,AB 所在直线的斜率之和为________.15. 函数ax x y 22--=()10≤≤x 的最大值是2a ,则实数a 的取值范围是________ .16.若圆C :x 2+y 2−2ax +b =0上存在两个不同的点A ,B 关于直线x −3y −2=0对称,其中b ∈N ,则圆C 的面积最大时,b = .三、解答题(共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17. (10分)已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=2x -1.(1)求f (3)+f (-1);(2)求f (x )的解析式.18. (12分)如图,在三棱锥P ­ABC 中,PC ⊥底面ABC ,AB ⊥BC ,D ,E 分别是AB ,PB 的中点.(1)求证:DE ∥平面PAC ;(2)求证:AB ⊥PB .19.(12分)直线l 1过点A (0,1),l 2过点B (5,0),如果l 1∥l 2且l 1与l 2的距离为5,求l 1,l 2的方程. 20.(12分)已知圆22:2240C x y mx ny ++++=,直线:10l x my -+=相交于A :B 两点. :1)若交点为(1,2)A ,求m 及n 的值. :2)若直线l 过点(2,3):60ACB ∠=︒,求22m n +的值. 21.(12分)已知直线:(1)(23)60m a x a y a -++-+=,:230n x y -+=. (1)当0a =时,直线l 过m 与n 的交点,且它在两坐标轴上的截距相反,求直线l 的方程; (2)若坐标原点O 到直线m 的距离为5,判断m 与n 的位置关系. 22.(12分)(1)圆C 与直线2x +y -5=0切于点(2,1),且与直线2x +y +15=0也相切,求圆C 的方程. (2)已知圆C 和y 轴相切,圆心C 在直线x -3y =0上,且被直线y =x 截得的弦长为27,求圆C 的方程.高一数学答案一、选择题(共12小题;每小题5分,共60分). 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 A C D A B A A C D A B C二、填空题:本大题共4小题,每小题5分,共20分,把答案填在题中横线上13.22 14.0 15.[-1,0] 16.0三、解答题(本大题共6小题,共70分)17.解:(1)∵f (x )是奇函数,∴f (3)+f (-1)=f (3)-f (1)=23-1-2+1=6. .................4分(2)设x <0,则-x >0,∴f (-x )=2-x -1,∵f (x )为奇函数,∴f (x )=-f (-x )=-2-x +1,.................8分∴f (x )=⎩⎪⎨⎪⎧ 2x -1,x ≥0,-2-x +1,x <0. ........................10分18. 解 (1)证明:因为D ,E 分别是AB ,PB 的中点,所以DE ∥PA.又因为PA ⊂平面PAC ,DE ⊄平面PAC ,所以DE ∥平面PAC. .................6分(2)证明:因为PC ⊥底面ABC ,AB ⊂底面ABC ,所以PC ⊥AB.又因为AB ⊥BC ,PC ∩BC =C ,所以AB ⊥平面PBC ,又因为PB ⊂平面PBC ,所以AB ⊥PB. .................6分19.解: 若直线l 1,l 2的斜率都不存在,则l 1的方程为x =0,l 2的方程为x =5,此时l 1,l 2之间距离为5,符合题意;.................3分若l 1,l 2的斜率均存在,设直线的斜率为k ,由斜截式方程得直线l 1的方程为y =kx +1,即kx -y +1=0,.................6分由点斜式可得直线l 2的方程为y =k (x -5),即kx -y -5k =0,在直线l 1上取点A (0,1),则点A 到直线l 2的距离d =|1+5k |1+k2=5,∴25k 2+10k +1=25k 2+25,∴k =125. ∴l 1的方程为12x -5y +5=0,l 2的方程为12x -5y -60=0. .................10分 综上知,满足条件的直线方程为l 1:x =0,l 2:x =5或l 1:12x -5y +5=0,l 2:12x -5y -60=0. .......12分20.【解析】试题分析:(1)将点()1,2A 代入直线和圆方程,可解得1m =,114n =-. (2)将点()2,3代入直线方程得1m =.又由已知可判断ACB V 是等边三角形.所以有圆心到直线10x y -+=的距离233322d r n ==-,代入解得29n =,从而2210m n +=. 试题解析::1)将点()1,2A 代入直线10x my -+=:∴1210m -+=,解出1m =:再将()1,2A 代入圆2221240x y x ny ++⨯++=: ∴22122440n ++++=,解得114n =-: ∴1m =:114n =-: :2)将点()2,3代入直线10x my -+=:∴2310m -+=,解出1m =:又∵在ACB V 中,CA CB =且60ACB ∠=︒:∴ACB V 是等边三角形.∵圆()()222221230x x y ny nn ++++++-=: 即()()22213x y n n +++=-:圆心()1,n --,半径23r n =-:其中圆心到直线10x y -+=的距离222113332211n d r n -++===-+: 代入解出29n =:∴2210m n +=:21.(12分)【详解】试题分析:(1)联立360230.x y x y -++=⎧⎨-+=⎩,解得m 与n 的交点为(-21,-9),当直线l 过原点时,直线l 的方程为370x y -=;当直线l 不过原点时,设l 的方程为1x y b b+=-,将(-21,-9)代入得12b =-,解得所求直线方程(2)设原点O 到直线m 的距离为d ,则()()2265123a d a a -+==-++,解得:14a =-或73a =-,分情况根据斜率关系判断两直线的位置关系;试题解析:解:(1)联立360230.x y x y -++=⎧⎨-+=⎩,解得21,9,x y =-⎧⎨=-⎩即m 与n 的交点为(-21,-9). 当直线l 过原点时,直线l 的方程为370x y -=;当直线l 不过原点时,设l 的方程为1x y b b+=-,将(-21,-9)代入得12b =-, 所以直线l 的方程为120x y -+=,故满足条件的直线l 方程为370x y -=或120x y -+=.(2)设原点O 到直线m 的距离为d ,则()()2265123a d a a -+==-++,解得:14a =-或73a =-, 当14a =-时,直线m 的方程为250x y --=,此时//m n ; 当73a =-时,直线m 的方程为250x y +-=,此时m n ⊥.22.解: (1)设圆C 的方程为(x -a )2+(y -b )2=r 2.∵两切线2x +y -5=0与2x +y +15=0平行,∴2r =|15-(-5)|22+12=45,∴r =25, ∴|2a +b +15|22+1=r =25,即|2a +b +15|=10①|2a +b -5|22+1=r =25,即|2a +b -5|=10② 又∵过圆心和切点的直线与过切点的切线垂直,∴b -1a -2=12③ 由①②③解得⎩⎨⎧ a =-2,b =-1.∴所求圆C 的方程为(x +2)2+(y +1)2=20.(2)设圆心坐标为(3m ,m ).∵圆C 和y 轴相切,得圆的半径为3|m |,∴圆心到直线y =x 的距离为|2m |2=2|m |.由半径、弦心距、半弦长的关系得9m 2=7+2m 2,∴m =±1,∴所求圆C 的方程为(x -3)2+(y -1)2=9或(x +3)2+(y +1)2=9.。

人教版高一数学必修一期末综合练习题(含答案)

人教版高一数学必修一期末综合练习题(含答案)

人教版高一数学必修一期末综合练习题(含答案)人教版高一数学必修一期末综合练题(含答案)一、单选题1.已知实数a,b,c满足lga=10=b,则下列关系式中不可能成立的是()A。

a>b>cB。

a>c>bC。

c>a>bD。

c>b>a2.已知函数f(x)=x(e^x+a),若函数f(x)是偶函数,记a=m,若函数f(x)为奇函数,记a=n,则m+2n的值为()A。

0B。

1C。

2D。

-13.命题:“对于任意实数x,x^2+x>0” 的否定是( )A。

存在实数x,使得x^2+x≤0B。

对于任意实数x,x^2+x≤0C。

存在实数x,使得x^2+x<0D。

对于任意实数x,x^2+x≥04.已知sin2α=-1/2,则cos(α+π/3)=()A。

-1/3B。

-2/3C。

1/3D。

2/35.已知ω>0,函数f(x)=cos(ωx+π/2),则ω的取值范围是()A。

(0,π/12]B。

(0,π/6]C。

(0,π/4]D。

(0,π/2]6.为了得到函数y=cos2x的图象,只需将函数y=sin(2x-π/2)的图象上所有点A。

向右平移π个单位B。

向左平移π个单位C。

向右平移π/2个单位D。

向左平移π/2个单位7.下列函数中,与函数y=x相同的是()A。

y=1/xB。

y=x^2C。

y=√xD。

y=|x|8.若2sinx-cos(π/2+x)=1,则cos2x=()A。

-8/9B。

-7/9C。

7/9D。

8/99.设A={x|x^2-4x+3≥0},B={x|x^2-6x+5≤0},则“A包含于B”是“B包含于A”的()A。

充分必要条件B。

必要不充分条件C。

充分不必要条件D。

既不充分也不必要条件10.已知集合A={x|y=ln(x+1)},集合B={x|x≤2},则A∩B等于()A。

(-1,2]B。

[0,2]C。

(0,∞)D。

(5,6]11.已知集合P={x|x-3≤2,x∈R},Q={3,5,6},则P∩Q=()A。

高中数学必修综合测试卷三套+含答案

高中数学必修综合测试卷三套+含答案

高一数学必修一综合测试卷一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.若集合}1,1{-=A ,}1|{==mx x B ,且A B A =⋃,则m 的值为( ) A .1 B .1- C .1或1- D .1或1-或02、函数1()(0)f x x x x =+≠是( )A 、奇函数,且在(0,1)上是增函数B 、奇函数,且在(0,1)上是减函数C 、偶函数,且在(0,1)上是增函数D 、偶函数,且在(0,1)上是减函数3. 已知b ax y x f B y A x R B A +=→∈∈==:,,,是从A 到B 的映射,若1和8的原象分别是3和10,则5在f 下的象是( )A .3B .4C .5D .64. 下列各组函数中表示同一函数的是( )⑴3)5)(3(1+-+=x x x y ,52-=x y ; ⑵111-+=x x y , )1)(1(2-+=x x y ;⑶x x f =)(, 2)(x x g = ; ⑷x x f =)(,()g x ; ⑸21)52()(-=x x f ,52)(2-=x x fA 、⑴、⑵B 、 ⑵、⑶C 、 ⑷D 、 ⑶、⑸5.若)(x f 是偶函数,其定义域为()+∞∞-,,且在[)+∞,0上是减函数,则)252()23(2++-a a f f 与的大小关系是( )A .)23(-f >)252(2++a a f B .)23(-f <)252(2++a a f C .)23(-f ≥)252(2++a a f D .)23(-f ≤)252(2++a a f 6.设⎪⎩⎪⎨⎧-=-)1(log 2)(231x ex f x )2()2(≥<x x 则[])2(f f =( ) A .2 B .3 C .9 D .187.函数1(0,1)x y a a a a=->≠的图象可能是( )8.给出以下结论:①11)(--+=x x x f 是奇函数;②221)(2-+-=x x x g 既不是奇函数也不是偶函数;③)()()(x f x f x F -= )(R x ∈是偶函数 ;④xxx h +-=11lg )(是奇函数.其中正确的有( )个A .1个B .2个C .3个D .4个9. 函数1)3(2)(2+-+=x a ax x f 在区间[)+∞-,2上递减,则实数a 的取值范围是( )A .(]3,-∞-B .[]0,3-C . [)0,3-D .[]0,2-10.函数33()11f x x x =++-,则下列坐标表示的点一定在函数f(x)图象上的是( )A .(,())a f a --B .(,())a f a -C .(,())a f a -D .(,())a f a ---11. 若函数a x x x f +-=24)(有4个零点,则实数a 的取值范围是( )A . []0,4- B. []4,0 C. )4,0( D. )0,4(-12. 设()f x 是奇函数,且在(0,)+∞内是增函数,又(3)0f -=,则()0x f x ⋅<的解集是( ) A .{}|303x x x -<<>或 B .{}|303x x x <-<<或C .{}|3003x x x -<<<<或D .{}|33x x x <->或二、填空题(本大题共4小题,每小题5分)13.若函数2()(1)3f x kx k x =+-+是偶函数,则()f x 的递减区间是 ;14.已知函数11()()142x x y =-+的定义域为[3,2]-,则该函数的值域为 ;15. 函数()()R b a x bax x f ∈+-=,25,若()55=f ,则()=-5f ;16.设函数()f x =x |x |+b x +c ,给出下列四个命题:①若()f x 是奇函数,则c =0②b =0时,方程()f x =0有且只有一个实根 ③()f x 的图象关于(0,c )对称④若b ≠0,方程()f x =0必有三个实根 其中正确的命题是 (填序号)三、解答题(解答应写文字说明,证明过程或演算步骤)17.(10分)已知集合{}0652<--=x x x A ,集合{}01562≥+-=x x x B ,集合⎭⎬⎫⎩⎨⎧<---=09m x m x x C(1)求B A ⋂(2)若C C A =⋃,求实数m 的取值范围;18.(本小题满分12分)已知函数()log (1),()log (1)a a f x x g x x =+=-其中)10(≠>a a 且,设()()()h x f x g x =-.(1)求函数()h x 的定义域,判断()h x 的奇偶性,并说明理由; (2)若(3)2f =,求使()0h x <成立的x 的集合。

2022-2023学年北京市房山区房山实验中学数学高一上期末综合测试试题含解析

2022-2023学年北京市房山区房山实验中学数学高一上期末综合测试试题含解析
第二步:由x的取值范围确定ωx+φ的取值范围,再确定sin(ωx+φ)(或cos(ωx+φ))的取值范围
第三步:求出所求函数的值域(或最值)
21、(1)证明见解析;(2) ;
【解析】(1)连接 ,由三角形中位线可证得 ,根据线面平行判定定理可证得结论;
(2)根据线面角定义可知所求角为 ,且 ,由长度关系可求得结果.
故答案为:
三、解答题(本大题共6小题,共70分)
17、(1) , , ;
(2) .
【解析】(1)直接利用三角函数的坐标定义求解;
(2)化简 ,即得解.
【小问1详解】
解: ,
有 , , ;
【小问2详解】
解: ,
将 代入,可得
18、(1) , , 为正整数
(2)一年中该植物在该地区可生存的月份数是
【解析】(1)先利用月平均气温最低、最高的月份求出周期和 及 值,再利用最低气温和最高气温求出 、 值,即得到所求函数的解析式;
A 充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件
8.半径为1cm,圆心角为 的扇形的弧长为()
A. B.
C. D.
9.已知函数 在区间 上是单调增函数,则实数 的取值范围为()
A. B.
C. D.
10.设集合 ,则 ()
A.{1,3}B.{3,5}
C.{5,7}D.{1,7}
A.向左平移 个单位
B.向右平移 个单位
C.向左平移 个单位
D.向右平移 个单位
4.函数 的定义域为()
A.(-∞,2)B.(-∞,2]
C. D.
5.已知向量 和 的夹角为 ,且 ,则
A. B.
C. D.

福建省龙岩市龙岩九中2022-2023学年数学高一上期末综合测试试题含解析

福建省龙岩市龙岩九中2022-2023学年数学高一上期末综合测试试题含解析
所以 log2 0.3 log2 1 0 , 综上, log2 0.3 0.32 20.3 ,
故选:C 7、C 【解析】根据集合自身是自身的子集,可知①正确;根据集合无序性可知②正确;根据元素与集合只有属于与不属于 关系可知③⑤不正确;根据元素与集合之间的关系可知④正确;根据空集是任何集合的子集可知⑥正确,即正确的关
所以 f (1) m2 2m 8 0 ,解得 m 2 或 m 4 . 当 m 4 时, f (x) (x 1)2 4 cos(x 1) 4 ,易知 f (x) 是连续函数,又 f (1) 4cos 2 0 , f (2) 5 4cos3 0 ,
所以 f (x) 在[1, 2] 上也必有零点,此时 f (x) 不止有一个零点,故 m 4 不合题意;
且值域为[0, ) ,在 (1, ) 上递增且值域为 (0, ) ;
| f (x) | 的图象如下:
所以 0 m 1时, y m与 | f (x) | 的图象有四个交点,不妨假设 a b c d ,
由图及函数性质知: 4 a 2 b 0 1 c 1 d 10 ,易知: a b 4, c d (2,101] ,
7.下列六个关系式:⑴{a,b}{b,a}2a,b b,a30 400506 0 其中正确的个数
为() A.6 个 C.4 个
B.5 个 D.少于 4 个
8.已知函数
f
x
3x ,
x 2 ,则 f f 1 ()
x 1, x 2
A.2
B.5
C.7
D.9
9.设集合
A
{1,
3,
5,
7},
B
2022-2023 学年高一上数学期末模拟试卷
注意事项: 1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。 2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再 选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。 3.考试结束后,将本试卷和答题卡一并交回。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一数学综合练习测试题试卷(九)
班级 姓名 学号
一、选择题
1、直线l 经过(1,1)且斜率为1,则直线l 的方程是
A 、0=+y x
B 、0=-y x
C 、02=-+y x
D 、01=+-y x
2、数列{}n a 为等差数列,1210921=+++a a a a ,则10S =
A 、30
B 、20
C 、10
D 、5
3、在ABC ∆中,,75,60,800===C B a 则b=
A 、24
B 、34
C 、64
D 、
3
32 4、直线l 经过点A (2,1)、B (1,2)两点,那么直线l 的倾斜角是
A 、3π
B 、43π
C 、4π-
D 、6π 5、已知圆1)1()1(:221=-+-y x C 与圆2222)21()2()2(:-=-+-y x C ,则两圆的位置关系是
A 、外切
B 、内切
C 、相交
D 、以上都不对
6、已知某个几何体的三视图如下,根据图中标出的尺寸(单位:cm ),可得这个几何体的体积是
A.34000cm 3
B.38000cm 3 C.32000cm D.34000cm
7、已知点),(y x P 在32=+y x 直线上,则y x 4
2+的最小值是
A 、22
B 、24
C 、16
D 、不存在
8、若b a R c b a >∈,,,,则下列不等式成立的是
A 、b a 11<
B 、22b a >
C 、1
122+>+c b c a D 、||||c b c a > 9、给 出下列四个命题
(1)垂直于同一直线的两条直线互相平行
(2)垂直于同一平面的两个平面互相平行
(3)若直线21,l l 与同一平面所成的角相等,则21,l l 互相平行
(4)若直线21,l l 是异面直线,则与21,l l 都相交的两条直线是异面直线,其中假命题...的个数是
A 、1
B 、2
C 、3
D 、4
10、如图,点P (3,4)为圆2522=+y x 上的一点,点E ,
F 为y 轴上的两点,PEF ∆是以点P 为顶点的等腰三角
形,直线PE ,PF 交圆于D ,C 两点,直线CD 交y 轴于
点,则DAO ∠sin 的值为
A 、54
B 、53
C 、2
3 D 、21
二、填空题
11、已知圆04422=+--y x x 的圆心是点P ,则点P 到直线01=--y x 的距离是
12、在空间直角坐标系中,点A (2,3,4),点B (1,2,3),则AB 的长度是
13、R y x ∈,且⎪⎩
⎪⎨⎧≤-≥-+≤--03204202y y x y x ,则y x z -=2的最小值为
14、已知直线012:,011:21=++=-+y ax l y x l ,则21//l l ,则a=
15、如图,在正三棱柱ABC —A 1B 1C 1中,侧棱长为2,
底面三角形的边长为1,则BC 1与侧面ACC 1A 1所成的
角是
16、一个细胞,每三分钟分裂一次(1个分裂成3个),把
一个这种细胞放入一个容器内,恰好一小时把容器充满,
如果开始把9个这种细胞放入该容器内,那么细胞把容
器充满的时间为分钟。

17、对于任意实数y x ,规定运算:cxy by ax y x ++=⊗,其中c b a ,,是常数,等式右边的运算是正常的加法和乘法运算,已知321=⊗,432=⊗,并且存在一个非零常数m ,使得对任意实数x 都有x m x =⊗,则m =
三、解答题
18、记关于x 的不等式0)1(2<--+a x a x 的解集为P ,不等式1|1|≤-x 的解集为Q
(1)若3=a ,求P
(2)若P Q ⊆,求正数a 的取值范围。

B1C1
A B。

相关文档
最新文档