11.长方体和正方体的表面积

合集下载

长方体和正方体的表面积专项训练题带详细答案

长方体和正方体的表面积专项训练题带详细答案

长方体与正方体的表面积专项训练一、知识点总结长方体与正方体的表面积是指(长方体和正方体表面六个面的面积)长方体表面积的计算公式:((长×宽+宽×高+长×高)×2)正方体表面积的计算公式:(棱长×棱长×6)二、基础过关一、填空题。

1、一个魔方的表面积是54平方厘米,它的一个面的面积是(9)平方厘米。

2、一个正方体的棱长是12厘米,这个正方体的表面积是(864)平方分米。

3、一个正方体的棱长是2厘米,把它的棱长扩大到原来的3倍,现在这个正方体的表面积是(216)平方厘米。

4、一个长方体的无盖水桶,长4分米,宽3分米,高5分米,制作这个水桶至少需要铁皮(82)平方分米。

5、用一根长132厘米的铁丝,围成一个正方体的模型,棱长应是(11)厘米,如果围成一个长方体的模型,长、宽、高的和是(44)厘米。

6、把2个棱长3厘米的正方体拼成一个长方体,表面积比原来两个正方体减少( 18)平方厘米,这个长方体的表面积是(90)立方厘米。

7、把3个棱长都为5厘米的正方体拼成一个长方体,表面积减少了(100)平方厘米。

8、把一个棱长6分米的正方体切成两个相等的长方体,增加的面积是(72)平方分米。

9、把一根长80厘米,宽5厘米,高3厘米的长方体木料锯成长都是40厘米的两段,表面积比原来增加了(30)平方厘米。

10、至少需要(48)厘米长的铁丝才能做一个底面周长是18厘米、高3厘米的长方体框架。

11、将一根长96厘米的铁丝围成一个正方体框架,这个框架的棱长是(8)厘米。

12、一个长方体的棱长总和是80厘米,长是10厘米,宽是7厘米。

这个长方体的高是(3)厘米。

13、一个正方体的棱长总和是84厘米,它的棱长是(7)厘米,一个面的面积是(49)平方厘米,表面积是(294)平方厘米。

14、欢欢老师想做两个长20厘米、宽15厘米、高10厘米的长方体无盖玻璃鱼缸,他至少需要准备(2000)平方厘米玻璃。

长方体和正方体的表面积 - 答案

长方体和正方体的表面积 - 答案

长方体和正方体的表面积答案典题探究例1.一个正方体的棱长总和是24米,它的表面积是24平方米.正确.考点:长方体和正方体的表面积.分析:根据题意可得出正方体的棱长为24÷12=2米,有表面积公式计算可得出结论.解答:解:24÷12=2(米),2×2×6=24(平方米),所以原题说法正确.故答案为:正确.点评:此题考查了正方体的表面积公式的应用,可以先借助公式计算出正确答案,再进行判断.例2.棱长为6cm的正方体的体积和表面积相等.错误.(判断对错)考点:长方体和正方体的表面积;长方体和正方体的体积.专题:立体图形的认识与计算.分析:根据正方体的表面积公式:s=6a2,正方体的体积公式:v=a3,因为表面积和体积不是同类量,无法进行比较.由此解答.解答:解:表面积:6×6×6=216(平方厘米);体积:6×6×6=216(立方厘米);因为表面积和体积不是同类量,无法进行比较.故答案为:错误.点评:此题解答关键是明确:只有同类量才能进行比较大小,不是同类量无法进行比较.例3.一个正方体棱长扩大2倍,则表面积扩大4倍,体积扩大8倍.考点:长方体和正方体的表面积;长方体和正方体的体积.分析:根据正方体表面积扩大的倍数是棱长扩大倍数的平方,体积扩大的倍数是棱长扩大倍数的立方求解即可.解答:解:一个正方体棱长扩大2倍,则表面积扩大2×2=4倍,体积扩大2×2×2=8倍.故答案为:4,8.点评:考查了正方体的体积,正方体的表面积和正方体棱长的关系,是基础题型,比较简单.例4.一个长方体的棱长总和是108厘米,它的长、宽、高的比为4:3:2,这个长方体的表面积是468平方厘米.考点:长方体和正方体的表面积;按比例分配应用题.分析:根据长方体的特征,12条棱分为互相平行的3组,每组4条棱的长度相等,6个面都是长方形(特殊情况有两个相对的面是正方形),相对的面的面积相等;已知一个长方体的棱长总和是108厘米,它的长、宽、高之比是4:3:2,首先根据按比例分配的方法分别求出长、宽、高;再根据长方体的表面积公式解答.解答:解:4+3+2=9(份),长:108÷4×=27×=12(厘米),宽:108÷4×=27×=9(厘米),高:108÷4×=27×=6(厘米);表面积:(12×9+12×6+9×6)×2,=(108+72+54)×2,=234×2,=468(平方厘米);答:这个长方体的表面积是468平方厘米.故答案为:468平方厘米.点评:此题主要考查长方体的特征和表面积的计算,以及了解和掌握长方体的表面积公式:S=2(ab+ah+bh);解题的关键是根据按比例分配的方法求出长、宽、高.例5.一块长方形铁皮(如图),长25厘米,宽15厘米,从四个角分别剪去边长2厘米的小正方形,然后把四周折起来,做成没有盖子的铁盒,请你帮忙计算一下:做这样一个盒子至少需要多少铁皮?铁盒的容积是多少?考点:长方体和正方体的表面积;长方体和正方体的体积.专题:压轴题.分析:求做这样一个盒子至少需要多少铁皮,用长方形铁皮的面积减去四个边长2厘米的正方形的面积;计算铁盒的容积,需要求出盒子的长、宽,长方形铁皮的长、宽都要减去两个2厘米即是盒子的长、宽,高是2厘米.根据长方体的容积公式解答.解答:解;25×15﹣2×2×4,=375﹣16,=359(平方厘米);(25﹣2﹣2)×(15﹣2﹣2)×2,=21×11×2,=462(立方厘米);答:做这样一个盒子至少需要359平方厘米铁皮,铁盒的容积是462立方厘米.点评:此题这样考查长方体的表面积和体积的计算,在计算长方体的表面积的时候,一定要分清求几个面的面积,根据公式解答即可.演练方阵A档(巩固专练)一.选择题(共15小题)1.一个正方体油桶的底面积是9平方厘米,它的表面积是()A.81cm2B.18cm2C.54cm2考点:长方体和正方体的表面积.专题:立体图形的认识与计算.分析:根据正方体的表面积公式:s=6a2,用正方体的底面积乘6即可.解答:解:9×6=54(平方厘米),答:它的表面积是54平方厘米.故选:C.点评:此题主要考查正方体的表面积公式的灵活运用.2.一个正方体的棱长是5厘米,它的表面积是()A.25平方厘米B.200平方厘米C.125立方厘米D.150平方厘米考点:长方体和正方体的表面积.专题:立体图形的认识与计算.分析:正方体的表面积=棱长×棱长×6,正方体的棱长已知,代入公式即可求解.解答:解:5×5×6=25×6=150(平方厘米);答:正方体的表面积是150平方厘米.故选:D.点评:此题主要考查正方体表面积的计算方法.3.东东从拼好的长方体中拿走了一块(如图),它的表面积()A.比原来大B.比原来小C.不变考点:长方体和正方体的表面积.专题:立体图形的认识与计算.分析:据此即可解答问题.从正方体顶点处拿掉一个小正方体,减少三个面的同时又增加三个面,所以表面积不变;据此解答.解答:解:从正方体顶点处拿掉一个小正方体,减少三个面的同时又增加三个面,所以表面积不变.故选:C.点评:该题主要考查正方体的表面积和立方体的切拼问题.4.一根长方体木料,长是8分米,宽是2分米,高是4分米,这根长方体木料的表面积是()平方分米.A.64 B.56 C.112考点:长方体和正方体的表面积.分析:根据长方体的表面积公式计算即可求得这根长方体木料的表面积.解答:解:(8×2+8×4+2×4)×2,=(16+32+8)×2,=56×2,=112(平方分米);答:这根长方体木料的表面积是112平方分米.故选:C.点评:考此题查了长方体的表面积,长方体的表面积公式:S=2(ab+ah+bh),是基础题.5.把三个棱长是1cm的正方体拼成一个长方体,表面积减少了()cm2.A.2B.4C.6D.8考点:长方体和正方体的表面积.专题:立体图形的认识与计算.分析:由题意可知:三个棱长都是1cm的正方体拼成一个长方体后,减少了4个面,每个面的面积可求,从而可以求出减少的面积.解答:解:1×1×4=4(平方厘米)答:表面积减少了4平方厘米.故选:B.点评:解答此题的关键是明白:三个棱长都是1cm的正方体拼成一个长方体后,减少了4个面.6.一个长方体水池,长20米,宽10米,深2米,占地()平方米.A.200 B.400 C.520考点:长方体和正方体的表面积.专题:压轴题.分析:求占地面积也就是求长方体的底面积,利用长方形的面积公式计算.解答:解:20×10=200(平方米);答:占地200平方米.故选:A.点评:此题考查的目的是理解水池的占地面积,实际就是求长方体的底面积,根据长方形的面积公式计算解答.7.把正方体的棱长扩大4倍,它的表面积扩大()A.4倍B.8倍C.12倍D.16倍考点:长方体和正方体的表面积.分析:根据正方体的表面积的计算方法,正方体的表面积=棱长×棱长×6,再根据积的变化规律,积扩大的倍数等于因数扩大倍数的乘积;由此解答.解答:解:根据积的变化规律,把正方体的棱长扩大4倍,它的表面积扩大:4×4=16倍;故选:D.点评:此题主要根据正方体的表面积的计算方法和积的变化规律解决问题.8.(•高邮市)有两盒滋补品,用下面三种方式包装,你认为最省包装纸的是()A.B.C.考点:长方体和正方体的表面积.专题:压轴题.分析:由题意可知,哪种方式包装的表面积最小,则最省包装纸.解答:解:假设每盒滋补品三种面的面积分别为1、2、3,则A的表面积=3×4+2×2+1×4=20;B的表面积=3×2+2×4+1×4=18;C的表面积=3×4+2×4+1×2=22;所以B种包装最省包装纸.故选:B.点评:解答此题的关键是,看哪种方式包装的表面积最小,则最省包装纸.9.(•江都市)如图上画了长方体的长、宽、高,这个长方体左面的面积是()A.15平方厘米B.12平方厘米C.20平方厘米D.无法确定考点:长方体和正方体的表面积.专题:压轴题.分析:由图意可知:左面的长和宽分别为4厘米和3厘米,于是利用长方形的面积公式即可求解.解答:解:4×3=12(平方厘米),故选:B.点评:弄清楚左面的长和宽是正确解答本题的关键.10.(•淳安县)一个棱长2厘米的正方体,挖掉一个棱长1厘米的小正方体后(如图),它的表面积()A.增大了B.减少了C.不变D.无法断定考点:长方体和正方体的表面积.专题:立体图形的认识与计算.分析:根据正方体的特征,6个面都是正方形,6个面的面积都相等,正方体的表面积=棱长×棱长×6;从一个棱长2厘米的正方体,挖掉一个棱长1厘米的小正方体,因为这个小正方体在顶点上,有3个1平方厘米的把外露,挖掉一个棱长1厘米的小正方体后,又露出与原来相同的3个面,所以表面积不变.解答:解:2×2×6=24(平方厘米);答:它的表面积不变,还是24平方厘米.故选:C.点评:此题考查的目的是使学生理解掌握正方体的特征及表面积的计算方法.11.(•恭城县)棱长是6cm的正方体,它的体积和表面积相比()A.体积大B.表面积大C.一样大D.无法比较考点:长方体和正方体的表面积;长方体和正方体的体积.分析:根据体积和表面积的意义进行解答,进而得出结论.解答:解:体积和表面积的意义不同:正方体的体积是正方体所占空间的大小,它的单位是立方米、立方分米、立方厘米;而表面积是指正方体六个面的总面积,它的单位是平方米、平方分米、平方厘米;所以棱长是6cm的正方体,它的体积和表面积没有可比行,无法比较;故选:D.点评:解答此题应根据体积和表面积的意义进行分析即可.12.(•张家港市)把2个棱长4厘米的正方体木块粘合成一个长方体,这个长方体的表面积是()A.160平方厘米B.128平方厘米C.192平方厘米D.172平方厘米考点:长方体和正方体的表面积.分析:由“把2个棱长4厘米的正方体木块粘合成一个长方体”可知,两个正方体共有12个面,粘合成长方体后,减少了2个面,即还剩10个面,求这10个面的面积就是长方体的表面积.解答:解:4×4×10=160(平方厘米);故答案为:A.点评:解答此题的关键是明白,粘合成长方体后,减少了2个面,即还剩10个面.13.(•靖江市)棱长是a米的正方体,它的表面积是()平方米.A.12a B.a3C.6a2D.a2考点:长方体和正方体的表面积.专题:立体图形的认识与计算.分析:根据正方体的特征:它的6个面是完全相同的正方形.由正方体的表面积公式:s=6a2,据此解答.解答:解:棱长是a米的正方形,它的表面积是6a2平方米;故选:C.点评:此题考查的目的是掌握正方体的特征和表面积的计算方法.14.(•新邵县)一个正方体的棱长是a分米,它的表面积是()平方分米.A.a2B.4a2C.6a2考点:长方体和正方体的表面积.分析:正方体的表面积=棱长×棱长×6,由此可以解决问题.解答:解:正方体的表面积=a×a×6=6a2;故答案为:C.点评:此题考查了正方体表面积公式的应用.15.(•雁江区)两块同样的肥皂用三种包装,第()种包装更省包装纸.A.B.C.考点:长方体和正方体的表面积.分析:根据把两个相同的长方体拼成一个大长方体,表面积都减少两个面,求哪种包装最省包装纸,只要减少两个最大的面(两个最大的面重合)即可.解答:解:由分析知,求哪种包装最省包装纸,只要减少两个最大的面(两个最大的面重合)即可;由图可知A种包装最省纸;故选:A.点评:解答此题要明确:把两个相同的长方体拼成一个大长方体,表面积减少了两个面的面积.二.填空题(共13小题)16.把底面积为25平方厘米的两个相同的正方体,拼成一个长方体,则长方体的表面积是250平方厘米.考点:长方体和正方体的表面积.分析:两个相同的正方体,拼成一个长方体,则长方体的表面积=两个正方体的表面积的和﹣2个面的面积.解答:解:25×6×2﹣25×2=300﹣50=250(平方厘米);答:长方体的表面积是250平方厘米.故答案为:250.点评:考查了正方体的表面积公式:正方体的表面积=一个面的面积×6.本题关键是明白两个相同的正方体,拼成一个长方体,长方体的表面积=两个正方体的表面积的和﹣2个面的面积.17.用铁皮做一个无盖的长方体油箱,要求做一个油箱至少需要多少铁皮,是求油箱的A,要求油箱能装多少升汽油,是求油箱的DA、表面积B、底面积C、体积D、容积.考点:长方体和正方体的表面积;长方体和正方体的体积.专题:立体图形的认识与计算.分析:做一个长方体的油箱(无盖),要求至少需要多少铁皮,就是求这个长方体油箱的5个面要用多少(面积单位)的铁皮,实际上就是求这个油箱的表面积.体积是物体所占空间的大小,容积是指容器所能容纳物质的体积,所以容积体积不是一回事.求油箱能装多少升汽油,是求油箱的容积.解答:解:做一个长方体的油箱,要求至少需要多少铁皮,这是求油箱的表面积.求油箱能装多少升汽油,是求油箱的容积.故选:A、D.点评:本题主要是考查体积、容积的意义,面积的意义.注意,求这个油箱能装多少油,是求它的容积,它有多大,求它的体积,求用多少铁皮是求它的表面积.18.一个底面半径2cm,高10cm的圆柱的表面积是150.72平方厘米.考点:长方体和正方体的表面积.专题:立体图形的认识与计算.分析:首先明确条件,已知“圆柱的底面半径是2厘米,高是10厘米”,根据公式表面积=底面积×2+侧面积,解答即可.解答:解:3.14×22×2+2×3.14×2×10=25.12+125.6=150.72(平方厘米)答:这个圆柱的表面积是150.72平方厘米.故答案为:150.72.点评:理解和掌握圆柱体的表面积计算公式是解题的关键.19.一个长方体它的底面是正方形,面积是25平方厘米,它的一个侧面的面积是30平方厘米.这个长方体的表面积是170平方厘米.考点:长方体和正方体的表面积.专题:立体图形的认识与计算.分析:一个底面是正方形的长方体,它的底面积是25平方厘米,可求出这个正方形的边长是5厘米,用30除以5,可求出这个长方体的高,再根据长方体表面积公式计算即可.解答:解:因这个长方体的底面是正方形,且面积是25平方厘米,可知这个正方形的边长是5厘米.30÷5=6(厘米)5×5×2+5×6×4=50+120=170(平方厘米)答:这个长方体的表面积是170平方厘米.点评:本题的关键是求出这个长方体底面的边长和它的高.然后再根据表面积公式进行计算.20.一个棱长为9分米的正方体的表面积是486平方分米,把它削成一个最大的圆锥,体积是190755立方厘米.考点:长方体和正方体的表面积;圆锥的体积.专题:立体图形的认识与计算.分析:(1)正方体的棱长已知,利用正方体的表面积S=6a2,即可求得其表面积.(2)由题意可知:这个最大圆锥的底面直径和高都应等于正方体的棱长,利用圆锥的体积V=Sh,即可求出这个圆锥的体积.解答:解:(1)9×9×6=81×6=486(平方分米)答:这个正方体的表面积是486平方分米.(2)×3.14×()2×9=9.42×(4.5)2=190.755(立方分米)=190755(立方厘米)答:体积是190755立方厘米.故答案为:729、190755点评:此题主要考查正方体的表面积和圆锥的体积的计算方法,关键是明白:这个最大圆锥的底面直径和高都应等于正方体的棱长,解答时要注意单位的换算.21.正方体棱长总和是24厘米,它的表面积是24平方厘米,体积是8立方厘米.考点:长方体和正方体的表面积;正方体的特征;长方体和正方体的体积.专题:立体图形的认识与计算.分析:正方体的棱长总和=棱长×12,棱长总和除以12 即可求出棱长.再根据表面积公式:s=6a2,体积公式:v=a3把数据分别代入公式解答解答:解:棱长:24÷12=2(厘米),表面积:2×2×6=24(平方厘米),体积:2×2×2=8(立方厘米);答:它的表面积是24平方厘米,体积是8立方厘米.故答案为:24平方厘米,8立方厘米.点评:此题主要考查正方体的棱长总和公式、表面积公式、体积公式的灵活运用.22.鲜奶盒长6.3厘米,宽4厘米,高10.5厘米.将24盒鲜奶盒包装成一箱,纸箱使用的纸最少是2070.6平方厘米.考点:长方体和正方体的表面积.分析:要使用的纸最少,必须使纸箱的容积最大,如何才能使纸箱的容积最大,它的长宽高越接近.24合装一箱,可设计成2×3×4排放,长6.3×3=18.9厘米,宽4×4=16厘米,高10.5×2=21厘米;然后根据:长方体的表面积=(长×宽+长×高+宽×高)×2;由此列式解答.解答:解:包装箱的长、宽、高分别是;长:6.3×3=18.9(厘米),宽:4×4=16(厘米),高:10.5×2=21(厘米);包装箱的表面积是:(18.9×16+18.9×21+16×21)×2,=(302.4+396.9+336)×2,=1035.3×2,=2070.6 (平方厘米);答:纸箱使用的纸最少是2070.6平方厘米.故答案为:2070.6.点评:此题属于长方体的表面积的实际应用,关键是如何设计使用的纸最少,必须使纸箱的容积最大,也就是它的长宽高越接近.容积最大,用纸最少;再根据长方体的表面积公式解答.23.(•温江区模拟)把两个棱长是2厘米的正方体拼成一个长方体,则长方体的表面积是40平方厘米.考点:长方体和正方体的表面积.专题:立体图形的认识与计算.分析:把两个棱长2厘米的正方体拼成一个长方体后,减少了两个面的面积,也就是两个正方体10个面的面积,正方体的棱长已知,从而可以求出这个长方体的表面积.解答:解:2×2×10=4×10=40(平方厘米)答:这个长方体的表面积是40平方厘米.故答案为:40.点评:解答此题的关键是:弄清楚长方体的表面积和两个正方体的表面积的关系.24.(•岚山区模拟)把表面积是54平方厘米的正方体等分成两个长方体,每个长方体的表面积是36平方厘米.考点:长方体和正方体的表面积.专题:立体图形的认识与计算.分析:由“一个正方体的表面积是54平方厘米”可以求出正方体的1个面的面积,也能求出正方体的棱长;分成的长方体的长和宽都等于正方体的棱长,高等于棱长的一半,从而可以分别求出每个长方体的表面积.解答:解:54÷6=9(平方厘米)又因3×3=9(厘米)所以正方体的棱长是3厘米;则长方体的长、宽、高分别为3、3、1.5厘米,长方体的表面积:(3×3+1.5×3+3×1.5)×2=18×2=36(平方厘米)答:每个长方体的表面积是36平方厘米.故答案为:36平方厘米.点评:解答此题的关键是先求出正方体的棱长,再据分成的长方体的长和宽都等于正方体的棱长,高等于棱长的一半,即可逐步求解.25.一个正方体木块的棱长为a厘米,把它锯成两个长方体,这两个长方体的棱长总和是20a厘米,表面积总和是8a2平方厘米.考点:长方体和正方体的表面积.分析:锯成两个长方体后,长方体的棱长就变成了分别为a厘米、a厘米、a厘米;表面积比原来多了两个面的面积,即有8个面的面积.解答:解:棱长总和:(a+a+a)×4×2=20a(厘米),表面积:a×a×8=8a2(平方厘米),答:这两个长方体的棱长总和是20a厘米,表面积总和是8a2平方厘米.故答案为:20a,8a2.点评:此题要注意锯开后增加的棱长的长度,以及原正方体的棱长的变化.26.(•北京)一个正方体的棱长为acm,它的棱长总和是12a厘米,它的表面积是6a2平方厘米,它的体积是a3立方厘米.考点:长方体和正方体的表面积;长方体和正方体的体积.专题:立体图形的认识与计算.分析:根据正方体的特征,12条棱的长度都相等,正方体的棱长总和=棱长×12;再根据正方体的表面积公式:s=6a2,体积公式:v=a3,把数据代入公式解答即可.解答:解:一个正方体的棱长为acm,棱长和=12a(厘米)表面积是:6×a×a=6a2(平方厘米)体积是:a×a×a=a3(立方厘米).答:它的棱长和是12a厘米,表面积是6a2平方厘米,体积是a3立方厘米.故答案为:12a厘米、6a2平方厘米、a3平方厘米.点评:掌握正方体的特征、棱长和、表面积和体积公式是解题的关键.27.(•满洲里市)在一个长方体中(如图)知道了后面的面积大小还要知道宽的长度,就可以求体积了;同样知道了横截面积,还知道长的长度,也可以求体积.如果告诉你这个长方体是一个玻璃鱼缸,长是8分米、宽是5分米、高是5分米,那么这个玻璃鱼缸的棱长之和是72分米,而且做这个鱼缸至少需要170平方分米的玻璃材料,另外如果在这个鱼缸内放入3分米高的水,这些水有120升;再放入几条金鱼后水面上升1.2厘米,这些金鱼的体积是4800立方厘米.考点:长方体和正方体的表面积;长方体和正方体的体积.专题:立体图形的认识与计算.分析:(1)在一个长方体中知道了后面的面积大小,也就知道了长方体的长和高,要求体积,还要知道宽度;(2)知道了横截面积,也就知道了长方体的高和宽,要求体积,还要知道长度;(3)因为长方体中长、宽、高各有4条棱,因此玻璃鱼缸的棱长之和是(长+宽+高)×4,代入数据计算即可;(4)此题是求这个长方体鱼缸的表面积,假若鱼缸无盖,需要玻璃材料为8×5+(5×5+5×8)×2,计算即可;(5)在这个鱼缸内放入3分米高的水,要求水的体积.已知长是8分米、宽是5分米,根据长方体的体积计算公式解答即可;(6)根据题意,水面上升的体积,就是金鱼的体积.解答:解:(1)在一个长方体中知道了后面的面积大小还要知道(宽)的长度,就可以求体积了;(2)知道了横截面积,还知道(长)的长度,也可以求体积;(3)(8+5+5)×4=18×4=72(分米);答:这个玻璃鱼缸的棱长之和是72分米.(4)8×5+(5×5+5×8)×2,=40+65×2,=40+130,=170(平方分米);答:做这个鱼缸至少需要170平方分米的玻璃材料.(5)8×5×3=120平方分米=120(升);答:这些水有120升.(6)1.2厘米=0.12分米,8×5×0.12=4.8(立方分米)=4800(立方厘米);答:这些金鱼的体积是4800立方厘米.故答案为:宽,长,72,170,120,4800.点评:解答有关长方体计算的实际问题,一定要搞清所求的是什么,再进一步选择合理的计算方法进行计算解答问题.28.(•静宁县模拟)一个正方体的棱长总和48厘米,它的棱长是4厘米,表面积是96平方厘米,体积是64立方厘米.考点:长方体和正方体的表面积;长方体和正方体的体积.分析:正方体有12个棱长,有一个正方体的棱长总和是48厘米,可以求得棱长,根据正方体的表面积=棱长×棱长×6;体积=棱长×棱长×棱长可以解决问题.解答:解:48÷12=4厘米,4×4×6=96平方厘米,4×4×4=64立方厘米;故答案为:4厘米;96平方厘米;64立方厘米.点评:此题考查了正方体棱长,表面积,体积的综合运算.B档(提升精练)一.选择题(共15小题)1.(•岚山区模拟)把一个棱长为a的正方体,任意截成两个长方体,这两个长方体表面积之积是()A.a×a×6 B.a×a×7 C.a×a×8 D.无法确定考点:长方体和正方体的表面积.专题:立体图形的认识与计算.分析:应明确把一个正方体,分割成两个长方体,增加两个面,增加的两个面的面积为:a×a×2=2a2平方厘米;然后根据“正方体的表面积=棱长×棱长×6”计算出原来正方体的表面积,加上增加的面积即可.解答:解:a×a×6+a×a×2=6×a×a+2×a×a=8×a×a故选:C.点评:解答此题应明确把一个正方体分割成2个长方体,增加两个面,进而根据“正方体的表面积=棱长×棱长×6”计算出原来正方体的表面积,加上增加的面积即可.2.(•陆良县)如图是一个长3厘米,宽与高都是2厘米的长方体,在它的上面挖掉一个棱长为1厘米的小正方体,这时它的表面积是()平方厘米.A.32 B.34 C.不能计算考点:长方体和正方体的表面积;简单的立方体切拼问题.专题:立体图形的认识与计算.分析:由图意可知:在它的上面挖掉一个棱长为1厘米的小正方体,则增加了小正方体的2个面的面积,于是利用正方体的表面积加上小正方体的2个面的面积,问题即可得解.解答:解:3×2×4+2×2×2+(2÷2)×(2÷2)×2,=24+8+2,=34(平方厘米);答:这时它的表面积是34平方厘米.故选:B.点评:弄清楚在它的上面挖掉一个棱长为1厘米的小正方体,面的增加或减少情况,是解答本题的关键.3.(•上海)如图中两个物体的表面积比较,结果是()A.甲>乙B.甲<乙C.甲=乙考点:长方体和正方体的表面积.分析:由图可知,乙物体是从长方体甲一个顶点处去掉了一个小正方体,减去3个面又增加了3个面,所以表面积不变,由此即可得答案.解答:解:甲物体从一个顶点处去掉了一个小正方体得到了乙物体,体积减少,但表面积不变.故选:C.点评:此题主要理解从长方体一个顶点处去掉小正方体后,体积虽然减少,但是表面积没减少.4.(•团风县模拟)一根长方体木料,长2米,宽和厚都是5米,把它锯成1米长的两段,表面积增加了()平方米.A.50 B.40 C.25考点:长方体和正方体的表面积.分析:把它锯成1米长的两段,表面积增加了两个边长为5米的正方形面,由此可以解决问题.解答:解:5×5×2=50平方米;故选A.点评:此题注意锯成两段后增加的是两个面的面积.5.(•中山模拟)把一个正方体的棱长扩大20%,它的表面积就扩大()A.20% B.40% C.44% D.120%考点:长方体和正方体的表面积;百分数的实际应用.。

长方体和正方体总棱长、表面积和体积相关公式

长方体和正方体总棱长、表面积和体积相关公式

长方体和正方体的相关公式1、求长方体的表面积时(6个面):(长×宽+长×高+宽×高)×22、求长方体的表面积时(5个面):(长×高+宽×高)×2+长×宽注:这一类题类大致是求:布衣柜、洗衣机或电视机的布罩、抽屉、无盖鱼缸、游泳池、浴池、粉刷房间(记着要扣除门窗的面积)3、求长方体的表面积时(4个面):(长×高+宽×高)×2注:这类题型通常是求:水管、烟囱、排气管或是在包装盒的四周贴广告等。

4、求特殊长方体(有两个面是正方形)的表面积时(4个面):长×高(宽)×4或高(宽)×4×长注:这类题型是求:水管、烟囱、排气管或是在包装盒的四周贴广告等。

5、求正方体的表面积(6个面):边长×边长×66、求正方体的表面积(5个面):边长×边长×(6-1)注:这类题型通常是求:正方体的鱼缸,就算是题目中没有写无盖,我们也把它看成是5个面,因为鱼缸不可能有盖。

7、长方体的总棱长:(长+宽+高)×4 高=总棱长÷4-(长+宽)长=总棱长÷4-(高+宽)宽=总棱长÷4-(长+高)8、正方体的总棱长:边长×12 边长=总棱长÷12注意:有正方体的题,往往会告诉你总棱长,让你求正方体的表面积,这时我们一定要看清题目,要先求出边长,再求表面积。

※※在做表面积及体积的题时,一定要看情问题中的单位和已知条件的单位,如果不一样,我们可以先计算出结果再换算单位,做到单位统一,还有要注意看清问题,是求总棱长还是求表面积还是求体积。

常考的题有粉刷房间,先求出房间要粉刷的面积,最后再问需要多少涂料。

9、长方体的体积=长×宽×高正方体的体积=棱长×棱长×棱长长方体和正方体的体积=底面积×高高=体积÷底面积注:把长方体变成正方体的过程中体积不变,表面积改变。

长方体正方体的表面积和体积试题精选和答案解析

长方体正方体的表面积和体积试题精选和答案解析

长方体正方体的表面积和体积练习卷答案1. 长方体表面积的求法:长方体的表面积= (长×宽+长×高+宽×高)×2 。

如果用字母a、b、h分别表示长方体的长、宽、高。

S表示它的表面积,则S= (ab+ac+bc)×2。

长方体的体积= 长×宽×高。

字母表示: V=abc2. 正方体表面积的求法:正方体的表面积=棱长×棱长×6 。

如果用字母a表示正方体的棱长,S表示正方体的表面积,则正方体的表面积计算公式是:S= 6a 。

正方体的体积= 棱长×棱长×棱长。

字母表示:s=a*a*a 。

1、一个长方体有(6 )个面,他们一般都是(长方)形,也有可能( 2 )个面是正方形.2、把长方体放在桌面上,最多可以看到(3 )个面。

3、一个长方体,长12厘米,宽和高都是8厘米,这个长方体的表面积是(512平方厘米)。

4、一个长方体,长8厘米,宽是5厘米,高是4厘米,这个长方体的表面积是(184平方厘米),棱长之和是( 68厘米)。

5、一个正方体的棱长之和是84厘米,它的棱长是( 7厘米),一个面的面积是(49平方厘米),表面积是(294平方厘米)。

6、把三个棱长是1厘米的正方体拼成一个长方体,这个长方体的表面积是(14平方厘米),比原来3个正方体表面积之和减少了(4平方厘米)。

7、把三个棱长是2分米的正方体拼成一个长方体,表面积是(56平方分米),体积是(24立方分米)。

8、用棱长为1厘米的小正方体木块拼成一个较大的正方体,至少要( 8 )个这样的小木块才能拼成一个正方体。

9、一个正方体的棱长如果扩大2倍,那么表面积扩大( 4)倍,体积扩大(8 )倍。

10、一个无盖正方体铁桶内外进行涂漆,涂漆的是(10 )个面.11、有一根长52厘米的铁丝,恰好可以焊接成一个长6厘米,宽4厘米,高( 3 )厘米的长方体。

12、一个长方体的长宽高分别是a ,b, h,如果高增高3米,那么表面积比原来增加()平方米,体积增加()立方米。

关于《长方体和正方体的表面积》教学设计(精选5篇)

关于《长方体和正方体的表面积》教学设计(精选5篇)

《长方体和正方体的表面积》教学设计关于《长方体和正方体的表面积》教学设计(精选5篇)作为一位杰出的教职工,通常会被要求编写教学设计,借助教学设计可以让教学工作更加有效地进行。

那要怎么写好教学设计呢?下面是小编为大家收集的关于《长方体和正方体的表面积》教学设计(精选5篇),仅供参考,希望能够帮助到大家。

《长方体和正方体的表面积》教学设计篇1教学内容:义务教育教科书人教版教材五年级下册第三单元第三课时。

教学目标:1、认识长方体和正方体的展开图,理解长方体和正方体的表面积的概念,会计算长方体和正方体的表面积。

2、经历观察、操作、想象、探索等数学活动过程,理解长方体展开图中每个面与长方体长、宽、高之间的关系,探索长方体和正方体的表面积的计算方法,能解决有关表面积计算的实际问题。

3、体验数学与生活的联系,培养学生的空间观念,培养学生比较、观察、推理的能力。

教学重点:认识长方休和正方体表面积的展开图,掌握长方体和正方体表面积的计算方法。

教学难点:应用表面积的计算方法解决有关实际问题,培养学生的空间想象能力。

教学资源:长方体、正方体的纸盒,长方体和正方体的展开图。

教学过程:一、创设情境,导入新课1、课件出示长方体和正方体。

这是我们以前学过和长方体和正方体,老师想用彩纸把这两个立体图形包装起来,但是不知道至少要用多大的彩纸,你能帮我想想办法吗?(把这长方体和正方体的6个面的面积和算出来,就是至少要用的彩纸)2、长方体或正方体6个面的总面积,叫做它们的表面积。

这节课我们就来研究长方体和正方体的表面积。

板书课题:长方体和正方体的表面积。

二、自主探索,合作交流1、认识长方体和正方体的展开图。

(1)如果我们把长方体和正方体的纸盒展开,会是什么形状呢?请你闭上眼睛想象。

(2)把长方体和正方体纸盒剪开,长方体和正方体的6个面的展开图是这样的,(课件出法展开图),和你想的一们吗?(3)请同学们用上、下、左、右、前、后,分别标出6个面。

长方体和正方体的表面积的计算

长方体和正方体的表面积的计算

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 长方体和正方体的表面积的计算优质课评选教案长方体和正方体的表面积的计算【课题】:长方体和正方体的表面积的计算【课型】:新授课【学习目标】:1、理解和掌握长方体和正方体的表面积和体积的含义。

2、理解并熟练掌握长方体和正方体表面积的推导过程和计算方法。

【教学重点】:理解并熟练掌握长方体和正方体表面积的计算方法。

【教学难点】:理解长方体和正方体表面积计算的推导过程以及将立体图形转化为平面图形的转化思想。

【教学方法】:直观演示启发引导小组合作强调总结讲练结合【教具】:长方体和正方体的实物小黑板【教学过程】:一、旧知铺垫 1、长方体有()个面,一般都是()形,相对的两个面积()。

2、长方体有()条棱,相对的四条棱的长度()。

3、长方体有()个顶点。

1 / 63、正方体有()个面,都是完全相同的(),所有面的面积都()。

4、正方体有()条棱,长度都()。

5、正方体有()个顶点。

6、正方体是()的长方体。

二、问题启发、导入新课关于长方体和正方体的表面积大家掌握的非常好,那么长方体和正方体的表面有没有大小呢?它们的表面大小该如何计算呢?这就是今天要学习的新内容长方体和正方体的表面积的计算(板书课题)。

三、讲授新课 1、出示长方体和正方体的立体图形和平面展开图,并让学生观察对比,并在展开图上原长方体和正方体的上、下、前、后左右六个面,并指出上、下相对,左、右相对,前后相对从而顺势给出长方体和正方体的表面积的含义:长方体或正方体 6 个面的总面积,叫做它们的表面积。

后上下左右前右前后长宽高上后下前左右棱长 2、让学生分别摸自己制作长方体和正方体模型的六个面感受表面积的含义。

长方体和正方体的表面积

长方体和正方体的表面积

知识要点知识点:长方体和正方体的认识,长方体和正方体表面积的意义及计算方法。

教学要求:使学生认识长方体和正方体,掌握长方体和正方体的特征,认识长方体的长、宽、高,理解长方体和正方体的关系,理解长方体和正方体的表面积的意义,掌握表面积的计算方法,能根据具体情况解决生活中有关表面积的实际问题。

教学重难点:认识长方体和正方体,掌握长方体和正方体表面积的计算方法,能根据具体情况解决有关表面积的实际问题。

精例分析例1 一个正方体棱长和为96分米,它的表面积是多少?1、一个正方体的木盒,它的棱长之和是180分米,问这个正方体木盒的表面积是多少平方分米?2、一个正方体的棱长是4厘米,用8个这样的正方体拼成一个大正方体,这个大正方体的棱长总和是多少?表面积是多少?例2 一块正方形铁皮,从四个顶点各剪下一个边长为3分米的正方形后,所剩下的部分正好焊成一个无盖的正方体铁皮盒,这个铁盒的表面积是多少平方分米?1、一块正方形的铁皮,边长50cm,在它的四角上剪去边长是10cm 的小正方形,再把它围成一个无盖的长方体铁皮盒。

这个铁皮盒的表面积是多少平方厘米?2、有一块长方形铁皮,长20分米,宽15分米,从四个角上各剪去一个边长为4分米的正方形后,所剩部分正好焊成一个无盖的长方体铁盒。

这个盒子的表面积是多少平方分米?例3 一个长方体纸盒,它的长是6分米,宽是5分米,棱长之和是56分米,表面积是多少平方分米?1、一个长方体的棱长和是120厘米,已知它的长是12厘米,宽是10厘米,它的表面积是多少平方厘米?2、用60厘米的铁丝做一个长方体框架,长是8厘米,宽是4厘米,它的表面积是多少平方厘米?例4 在一个棱长5分米的正方体上放一个棱长为4分米的小正方体(如下图),求这个立体图形的表面积。

1、在一个棱长为5分米的正方形上放一个棱长为3分米的小正方形(如下图),求这个立体图形的表面积。

2、在一个长7分米,宽5分米,高3分米的长方体上放一个棱长为4分米的正方体,求这个立体图形的表面积?例5 光盘为什么这样放秦老师和小多多去买英语光盘,营业员给他们拿来一个大纸盒,里面有两盒光盘是这样放的:为什么呢?1、用两个长5厘米、宽4厘米、高3厘米的长方体码放成一个大长方体。

小六数学长方体和正方体的体积、表面积

小六数学长方体和正方体的体积、表面积

长方体和正方体的体积、表面积本次课课堂教学内容知识点一长方体的表面积公式:面积=2⨯⨯+⨯+⨯高)长高宽宽(长 正方体的表面积公式:面积=6⨯⨯边长边长知识点二长方体的体积公式:体积=高宽长⨯⨯长方体的体积公式:体积=边长边长边长⨯⨯注意单位换算!!!(表面积巩固过关)1.填空(l )长方体或正方体( )个面的总面积,叫做它们的表面积。

(2)计算正方体的表面积可以用( )×( )×( )的方法计算。

这是因为正方体有( )个面,每个面都是( )形,而且( )都相等。

(3)一个正方体的表面积是36平方厘米,把它放在桌子上占的面积是( )平方厘米。

(4)一个长方体长5厘米,宽5厘米,高4厘米,这个长方体有2个面是( )形,有( )个面的面积相等,长方体的表面积是( )。

(5)正方体的棱长扩大3倍,它的表面积就扩大( )倍。

2.判断(l )一个正方体的表面积是这个正方体一个面的面积的6倍。

( )(2)把两个表面积为12平方分米的完全一样的正方体拼成一个长方体,这个长方体的表面积为24平方分米。

( )(3)把一个正方体锯成两个长方体,它的表面积增加了6平方厘米,那么原正方体的表面积是18平方厘米。

()3.一个正方体棱长0.8分米,它的表面积是多少平方分米?4.一个长方体长、宽、高是8厘米、7厘米、5厘米,求它的表面积。

5.有一个长方体的糖盒长和宽都是12厘米,高10厘米,在盒的四周贴上商标纸,这张商标纸的面积至少是多少?6.用铁皮焊15个底面是边长25厘米的正方形,高4分米的长方体无盖水桶,至少要用多少铁皮7.一个小食堂长10米,宽8米,高5米,要粉刷四壁和顶棚。

扣除门窗面积18.4平方米,平均每平方米用石灰0.2千克,一共用石灰多少千克?8.用三个棱长为8厘米的正方体木块拼成一个长方体,长方体的表面积是多少?棱长之和是多少?9、有一根长52厘米的铁丝,恰好可以焊接成一个长6厘米,宽4厘米,高多少厘米的长方体?10、一个长方体,长12厘米,宽和高都是8厘米,这个长方体的表面积是多少平方厘米?11、用两个棱长为5厘米的正方体拼成一个长方体,这个长方体的表面积是多少平方厘米?12、一个长方体和一个正方体的棱长之和相等,已知长方体的长为5厘米,宽为3厘米,高为4厘米,求正方体的棱长。

长方体和正方体的表面积

长方体和正方体的表面积

3、亮亮家要给一个长0.75m,宽0.5m,高1.6m的简易 衣柜换布罩(如右图,没有底面)。至少需要用布多少 平方米? 课本24页做一做
同桌思考: 1、求至少需要用布多少平方米? 就是求什么?长方体的表面积 1.6 2、这题求长方体几个面的面积。 5个面的面积 0.75 0.5 自己独立解答: 方法一: (0.75×0.5+0.75×1.6+0.5×1.6)×2 -0.75×0.5 方法二: 0.75×0.5+0.75×1.6×2+0.5×1.6×2
20× 20 × 6
=400 × 6 =2400(平方厘米)
答:做这个铁盒至少要用2400平方厘米铁皮。
我们的教室长6米,宽5米,高3米,现在要
粉刷教室的墙壁和顶棚(除门窗10平方米外).求 粉刷的面积是多少平方米?


长方体上面(或下面)的面积=长×宽
长方体前面(或后面)的面积=长×高
长方体左面(或右面)的面积=宽×高 长方体的表面积=长×宽×2﹢长×高×2﹢宽×高×2 或=(长×宽+长×高+高×宽)× 2 正方体的表面积=棱长×棱长×6 或=棱长2×6
2厘米(高) 10厘米(长)
10厘米 ,宽是________ 6厘米 , (1)它上、下每个面的长是_________ 60平方厘米 面积是 。
总结:长方体上面(或下面)的面积=长×宽
2厘米(高) 10厘米(长)
10厘米 ,宽是________ 2厘米 , (2)它前、后每个面的长是_________ 20平方厘米 面积是 。


解法二: (6×5+6×4+5×4) ×2
= (30+24+20) ×2
6厘米
4厘米 5厘米

长方体和正方体的表面积教学反思11篇

长方体和正方体的表面积教学反思11篇

长方体和正方体的表面积教学反思11篇(实用版)编制人:______审核人:______审批人:______编制单位:______编制时间:__年__月__日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如演讲稿、工作总结、工作计划、心得体会、教学总结、事迹材料、优秀作文、教学设计、合同范文、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, this store provides various types of practical materials for everyone, such as speeches, work summaries, work plans, experiences, teaching summaries, deeds materials, excellent essays, teaching designs, contract samples, and other materials. If you want to learn about different data formats and writing methods, please pay attention!长方体和正方体的表面积教学反思11篇长方体和正方体的表面积教学反思11、侧重学生解决生活实际问题能力的培养以前我在上这节课的时候,第1课时是没有教学实际问题中求五个面的情况。

长方体正方体的表面积和体积公式

长方体正方体的表面积和体积公式
8、一个面的面积是36平方米的正方体,它所有的棱长的和是多少厘米?
建筑安全网 建筑安全网价格
OO4Ov8ZD4P1S
)平方厘米。
10、一个长方体长4分米,宽3分米,高2分米,它的表面积是(
)平方分米。
11、正方体的棱长之和是60分米,它的表面积是(
)平方分米。
二、判断题
1、把两个完全一样的正方体拼成一个长方体,体积和表面积都不变。( )
2、长方体的长、宽、高分别是3 cm、4 cm和4 cm,其中有两个相对的面是正方形。(
5、用一根铁丝刚好焊成一个棱长8厘米的正方体框架,如果用这根铁丝焊成一个长10厘米、 宽7厘米的长方体框架,它的高应该是多少厘米?
6、天天游泳池,长25米,宽10米,深1.6米,在游泳池的四周和池底砌瓷砖,如果瓷砖的边长 是1分米的正方形,那么至少需要这种瓷砖多少块?
7、一盒饼干长20厘米,宽15厘米,高30厘米,现在要在它的四周贴上商标纸,如果商标纸的 接头处是4厘米,这张商标纸的面积是多少平方厘米?
c=πd =2πr Ѕ=πr S=ch
S=2πr +2πrh=2π(d÷2) +2π(d÷2)h=2π(C÷2÷π) +Ch 圆柱的体积=底面积×高 V=Sh
V=πr h=π(d÷2) h=π(C÷2÷π) h 圆锥的体积=底面积×高÷3
V=Sh÷3=πr h÷3=π(d÷2) h÷3=π(C÷2÷π) h÷3
A. 增加了
B .减少了
C. 没有变
10、如果把一个棱长是10厘米的正方体切成两个完全相同的长方体,这两个长方体的表面积
之和比原来的正方体表面积(
)。
A. 增加了
B. 减少了
C .没有变化

02长方体正方体的表面积(教师版)

02长方体正方体的表面积(教师版)

第02讲:长方体正方体的表面积一、熟练掌握长方体正方体表面积计算公式二、学会运用长方体正方体面积公式解决实际问题三、了解长方体正方体切割的面积变化,了解增加减少了几个面四、了解正方体的表面涂色问题,可以自己推导一般情况一、长方体与正方体的表面积一、考点: 掌握长方体、正方体面积的计算.二、难点: 应用长方体、正方体表面积的计算解决实际问题. 三、易错点:实际应用中长方体、正方体的表面积应该求几个面.一.长方体表面积计算方法1.长方体表面积:长×宽+长×宽+长×高+长×高+宽×高+宽×高; 字母公式:S 长=c b c b c a c a b a b a ⨯+⨯+⨯+⨯+⨯+⨯ 2.长方体表面积:长×宽×2+长×高×2+宽×高×2;字母公式:S 长=222⨯⨯+⨯⨯+⨯⨯c b c a b a 3.长方体表面积:(长×宽+长×高+宽×高)×2; 字母公式:S 长=2)⨯⨯+⨯+⨯c b c a b a (二.正方体表面积的计算方法 1.正方体表面积:边长×边长×6字母公式:S 正=6⨯⨯a a.三.根据实际情况求长方体或正方体的表面积1.当一组对面是正方形时求表面积公式:S长=;a242⨯⨯+⨯ba2.求粉刷墙面、无盖水箱时有时并不要求6个面;3.求一些拼接类题需要考虑“接头”部分.题模一:长方体表面积的计算方法例1黎明用240厘米长的铁丝围成一个底面边长是15厘米长方体灯笼框架,接头处不计,如果把这个灯笼糊上彩纸(上面不糊),至少需要多少平方厘米的彩纸?【答案】15×8=120cm(240-120)÷4=30cm15×30×4+15×15=2025cm2题模二:正方体表面积的计算方法例1一个正方体的棱长是8cm,这个正方体的表面积是多少平方厘米?【答案】3842cm例2求下面所示图形的表面积.(单位:cm)【答案】6642cm题模三:长方体正方体的拼接切割面积变化例1 将一个由4个棱长是8cm的正方体拼成的长方体拆开(如图),4个正方体的表面积之和是多少?与长方体的表面积相等吗?与同伴交流。

《长方体和正方体的表面积》教学设计优秀6篇

《长方体和正方体的表面积》教学设计优秀6篇

《长方体和正方体的表面积》教学设计优秀6篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、演讲发言、策划方案、合同协议、心得体会、计划规划、应急预案、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, speeches, planning plans, contract agreements, insights, planning, emergency plans, teaching materials, essay summaries, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!《长方体和正方体的表面积》教学设计优秀6篇【教学内容】:《长方体和正方体的表面积》(P23-2(4)这次本店铺为您整理了《长方体和正方体的表面积》教学设计优秀6篇,希望能够给您提供一些帮助。

西师大版五年级下册数学单元测试《长方体 正方体》(含答案)

西师大版五年级下册数学单元测试《长方体 正方体》(含答案)

五年级下册数学单元测试-3.长方体正方体一、单选题1.至少()个完全一样的小正方体可以拼成一个稍大的正方体.A. 4B. 8C. 92.长方体有四个面的面积相等,其余两个面是().A. 长方形B. 正方形C. 长方体D. 无法确定3.一个长方体游泳池长25米,宽14米,高2米,它的占地面积是()。

A. 350平方米B. 50平方米C. 28平方米4.用一根52厘米长的铅丝,正好可以焊成长6厘米,宽4厘米,高()厘米的长方体教具。

A. 1B. 2C. 35.如图所示的展开图中是左边的正方体的展开图的是()A. B. C. D.二、判断题6.在一个长方体中,从一个顶点出发的三条棱的和是15分米,这个长方体的所有棱的长度之和是60分米。

7.把表面积是6平方厘米的正方体切成两个长方体,这时它们的表面积是12平方厘米。

8.长方体长和宽可以相等,长、宽、高也可以相等。

9.用4个一样大小的小正方体木块就可以拼成一个再大一些的正方体。

三、填空题10.0.56立方分米=________立方厘米.11.长方体或正方体的表面积是指长方体或正方体________的和.12.长方体或者正方体________叫做它的表面积。

13.一个长方体正好可以截成两个完全一样的正方体,已知长方体的表面积是40平方厘米,那么每个正方体的表面积是________平方厘米.14.把一个棱长5厘米的正方体木块表面涂上红色,然后切成棱长1厘米的小正方体木块。

三面涂色的小正方体有________块,两面涂色的小正方体有________块,一面涂色的小正方体有________块。

四、解答题15.做一个这样的纸盒用多少钱?(每平方厘米0.6元)16.你能把下面的图形都分成两个三角形和两个长方形吗?画一画五、综合题17.一个长方体的沙坑,长3.6米,宽1.8米,深0.8米。

(1)这个沙坑的占地面积是________平方米。

(2)要在沙坑的四壁和底面抹上水泥,抹水泥部分的面积是________平方米。

五年级长方体和正方体的表面积

五年级长方体和正方体的表面积

10cm
这个颁奖台是由3个长方体合并而成的,它的前后两面涂上黄色 油漆,其他露出来的面涂红色油漆。涂黄油漆和红油漆的面积 各是多少?
65cm
40cm
40cm
40cm
(1)求黄色油漆的面积: 40×(65-10)×2+40×65×2+40×40×2 =4400+5200+3200 =12800(cm2)
(3)教室内粉刷墙面的面积
(4)长方体油桶的用料面积
判断正误
(1)长、宽、高都相等的长方体叫做正方体。( ) (2)长方体上面、下面和左面三个个面的和就是它的 表面积( ) (3)用四个同样大的正方体小木块拼成一个长方 体,这个长方体的表面积,比原来四个小正方体表 面积的和小。( )
4、正方体的棱长扩大2倍,它的表面积扩大8倍。
答:这个长方体的表面积是170cm²。
你会算吗?
一个长方体的大小如右图。(单位:dm)
(1)上、下两个面的面积的和 (2)前、后两个面的面积的和 (3)左、右两个面的面积的和 (4)表面积是 。 。 。 。
5 2.5 2
2、计算下面两个图形的表面积。
算一算
制作右面这样一个长方体纸盒。至少要用 多少平方厘米的纸板?
上 右

长方体的表面积=棱长×棱长×6
做一个长6厘米,宽5厘米,高4 厘米 的长方体纸盒,至少要用多少平方厘 米硬纸板?
5厘米 6厘米 4厘米 6厘米 4厘米 5厘米 长方体有6个面
6厘米 6厘米 ,宽——— 5厘米 , 上、下每个面,长———
4 厘 米 5厘米
6×5=30(平方厘米) ; 面积是___________________
(2)它前、后每个面的长是原长方体的 长 ,长度是 8cm ; 宽是原长方体的 高 ,长度是 6cm ,面积是 48cm² 。 (3)它左、右每个面的长是原长方体的 高 ,长度是 6cm ; 宽是原长方体的 宽 ,长度是 5cm ,面积是 30cm² 。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

长方体和正方体的表面积
1.如图,每个小正方体的棱长是2厘米,求它的表面积。

2.将一个长是6厘米、宽是3厘米、高是4厘米的长方体的六个面涂上
红色,然后把这个长方体切割成一个个棱长是1厘米的小正方体。

这些小正方体中,一个面、二个面、三个面有红色的各有多少个?
3.有一个正方体的棱长是6厘米,在它的每一个面的中心各挖去一个棱
长是2厘米的小正方体,做成一个模具,求这个模具的表面积。

4.一个长方体的棱长之和是132厘米,已知长是宽的2倍少4厘米,宽
是高的2倍多3厘米,求这个长方体的表面积。

5.把两个相同的正方体拼成一个长方体,这个长方体的表面积是80平方
厘米,求原来每个正方体的表面积。

6.一个正方体的表面积是96平方厘米,把它截成2个相等的长方体后,
每个长方体的表面积是多少?
练习:(1)把体积是1立方米的正方体切成体积为1立方厘米的小正方体,然后排成一列,求这一列长多少千米?
(2)一个正方体的体积为1728立方厘米,求它的表面积。

1.一个表面被涂上红色,棱长是20厘米的正方体木块,把它截成8块相
等的小正方体,这8个小正方体中,没有被涂上红色的表面积之和是多少?
2.把三个表面积是24平方厘米的正方体木块粘成一个长方体,求这个长
方体的表面积。

练习:一个长方体棱长总和是60厘米,它正好能被截成三个同样的正方体。

求原来长方体的表面积。

(小升初试题一中)
3.一个长方体木块,它的长、宽、高分别为8分米、6分米、4分米,把
它全部锯成棱长是2分米的正方体木块若干块,则表面积增加了多少?
4.一个长方体的正面和上面的面积之和是143平方厘米,它的长、宽、
高都是整厘米数,且为质数,求这个长方体的表面积。

5.有一个底面是正方形的长方体,它的表面积是792平方厘米。

若用一
个平行于底面的平面将它截成两个长方体,则这两个长方体的表面积的和为864平方厘米,求原长方体可以截成多少个最大的正方体?
6.有N个同样大小的正方体,将它们摞(luò)成一个长方体,这个长方
体的底面就是原正方体的底面。

如果这个长方体的表面积是3096平方厘米,当从这个长方体的顶部拿去一个正方体后,新的长方体的表面积比原来长方体的表面积减少了144平方厘米。

求N是多少?。

相关文档
最新文档