第一章排列组合单元设计
人教A版数学选修2-3第一章第2节《排列组合习题课》教学设计
【教学设计】教材分析1、教材的地位和作用所授篇目来源于人教A版选修2-3第一章第一节中的排列组合。
排列组合在中学数学中是很重要的内容之一,他是对后面的概率内容学习的延续,为后面的知识做了很好的铺垫。
因此,学好这一节的内容对整个中学数学,甚至在学生后期的自主招生,甚至竞赛考试中取得优秀的成绩都是至关重要的。
2、教学目标情感目标:培养学生积极参与、合作交流的主体意识,在知识的探索和发现过程中,使学生感受数学学习的意义。
能力目标:在复习排列组合的过程中,训练学生条理的逻辑思维能力,努力提高学生的观察、归纳概括和独立思考的能力,使学生在学习知识的同时掌握一些数学思想方法。
知识目标:掌握排列组合的有关知识点,并会解决对于有限制条件的排列组合。
3、重点难点的确定及依据根据这一节课的内容特点以及学生的实际情况:学生对有限制条件的排列组合的应用缺乏感性认识,不能够在理解的基础上来运用排列组合的知识点解决问题。
因此,本节课的难点是有限制条件的排列组合的求解,依据本节的教学内容和学生现有的实际水平和认知能力,把排列、组合的意义及其计算方法作为教学重点。
一、教法和学法分析1、教法分析根据上述的教材分析,针对职高学生的知识结构和心理特征,本节课遵循以教师为主导、学生为主体、训练为主线的教学原则。
采用发现法、启发引导式、练习相结合的教学法。
而且要注意分层次进行教学,抢答题和拓展题不要求所有学生会做,只要求中等偏上的同学会做。
在课堂教学中充分运用投影辅助教学演示手段的操作,投影学生的作业,通过学生观察分析,主动探索解决有限制条件的排列组合问题。
为强化重点,突破难点,通过比较,做练习让学生能更好的掌握。
由于学生的基础参差不齐,为此,在教学中要顾及全局,注意提高差生的学习兴趣和学习能力,耐心讲解,耐心辅导。
2、学法分析数学教学是师生之间,学生之间交往互动与共同发展的过程,学生的学是中心,会学是目的,因此在教学中要不断指导学生学会学习。
高中数学 第一章 计数原理 1.2 排列与组合 1.2.2 组合(第1课时)教案 新人教A版选修23
1.2.2 组合整体设计教材分析排列与组合都是研究从一些不同元素中任取元素,或排成一排或并成一组,并求有多少种不同方法的问题.排列与组合的区别在于问题是否与顺序有关.与顺序有关的是排列问题,与顺序无关的是组合问题,顺序对排列、组合问题的求解特别重要.排列与组合的区别,从定义上来说是简单的,但在具体求解过程中学生往往感到困惑,分不清到底与顺序有无关系.指导学生根据生活经验和问题的内涵领悟其中体现出来的顺序.教的秘诀在于度,学的真谛在于悟,只有学生真正理解了,才能举一反三、融会贯通.学生易于辨别组合、全排列问题,而排列问题就是先组合后全排列.在求解排列、组合问题时,可引导学生找出两定义的关系后,按以下两步思考:首先要考虑如何选出符合题意要求的元素来,选出元素后再去考虑是否要对元素进行排队,即第一步仅从组合的角度考虑,第二步则考虑元素是否需全排列,如果不需要,是组合问题;否则是排列问题.排列、组合问题大都来源于同学们生活和学习中所熟悉的情景,解题思路通常是依据具体做事的过程,用数学的原理和语言加以表述.也可以说解排列、组合题就是从生活经验、知识经验、具体情景出发,正确领会问题的实质,抽象出“按部就班”的处理问题的过程.据笔者观察,有些同学之所以在学习中感到抽象,不知如何思考,并不是因为数学知识跟不上,而是因为平时做事、考虑问题就缺乏条理性,或解题思路是自己主观想象的做法(很可能是有悖于常理或常规的做法).要解决这个问题,需要师生一道在分析问题时要根据实际情况,怎么做事就怎么分析,若能借助适当的工具,模拟做事的过程,则更能说明问题.久而久之,学生的逻辑思维能力将会大大提高.课时分配3课时第一课时教学目标知识与技能理解组合的意义,能写出一些简单问题的所有组合.明确组合与排列的联系与区别,能判断一个问题是排列问题还是组合问题.过程与方法通过具体实例,体会组合数的意义,总结排列数A m n与组合数C m n之间的联系,掌握组合数公式,能运用组合数公式进行计算.情感、态度与价值观能运用组合要领分析简单的实际问题,提高分析问题的能力.重点难点教学重点:组合的概念和组合数公式.教学难点:组合的概念和组合数公式.教学过程引入新课提出问题1:回顾分类加法计数原理和分步乘法计数原理,排列的概念和排列数公式.活动设计:教师提问.活动成果:1.分类加法计数原理:做一件事情,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有m n种不同的方法那么完成这件事共有N=m1+m2+…+m n种不同的方法.2.分步乘法计数原理:做一件事情,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n步有m n种不同的方法,那么完成这件事有N=m1×m2×…×m n种不同的方法.3.排列的概念:从n个不同元素中,任取m(m≤n)个元素(这里的被取元素各不相同)按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.4.排列数的定义:从n个不同元素中,任取m(m≤n)个元素的所有不同排列的个数叫做从n个不同元素中取出m个元素的排列数,用符号A m n表示.5.排列数公式:A m n=n(n-1)(n-2)…(n-m+1)(m,n∈N,m≤n).6.阶乘:n!表示正整数1到n的连乘积,叫做n的阶乘.规定0!=1.7.排列数的另一个计算公式:A m n=n!(n-m)!.设计意图:检查学生的掌握情况,为新知识的学习奠定基础.提出问题2:分析下列两个问题是不是排列问题,为什么?问题(1):从甲、乙、丙3名同学中选出2名去参加某天的一项活动,其中1名同学参加上午的活动,1名同学参加下午的活动,有多少种不同的选法?问题(2):从甲、乙、丙3名同学中选出2名去参加一项活动,有多少种不同的选法?活动设计:学生自己分析,教师提问.活动成果:问题(1)中不但要求选出2名同学,而且还要按照一定的顺序“排列”,而问题(2)只要求选出2名同学,是与顺序无关的,不是排列.我们把这样的问题称为组合问题.设计意图:引导学生通过具体实例找出排列与组合问题的不同,引出组合的概念.探索新知提出问题1:结合上述问题(2),试总结组合和组合数的概念.活动设计:学生小组讨论,总结概念.活动成果:1.组合的概念:一般地,从n个不同元素中取出m(m≤n)个元素合成一组,叫做从n 个不同元素中取出m个元素的一个组合.2.组合数的概念:从n个不同元素中取出m(m≤n)个元素的所有不同组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号C m n表示.设计意图:培养学生的类比和概括能力.理解新知提出问题1:判断下列问题是组合问题还是排列问题?(1)在北京、上海、广州三个民航站之间的直达航线上,有多少种不同的飞机票?(2)高中部11个班进行篮球单循环比赛,需要进行多少场比赛?(3)从全班23人中选出3人分别担任班长、副班长、学习委员三个职务,有多少种不同的选法?(4)10个人互相通信一次,共写了多少封信?(5)10个人互通电话一次,共打了多少个电话?活动设计:小组交流,共同分析.活动成果:(1)(3)(4)是排列;(2)(5)是组合.设计意图:通过具体实例比较排列和组合,加深对组合的理解.提出问题2:试找出排列和组合的区别和联系.活动设计:小组交流,教师提问,学生补充. 活动成果:1.区别:(1)排列有顺序,组合无顺序.(2)相同的组合只需选出的元素相同,相同的排列则需选出的元素相同,并且选出元素的顺序相同.2.联系:(1)都是从n 个不同的元素中选出m(m≤n)个元素; (2)排列可以看成先组合再全排列.设计意图:加深对排列组合的理解,为推导组合数公式奠定基础. 提出问题2:你能类比排列数的推导过程和排列与组合的联系推导出从4个不同元素a ,b ,c ,d 中取出3个元素的组合数C 34是多少吗?活动设计:小组交流,共同推导. 活动成果:由于排列是先组合再排列,而从4个不同元素中取出3个元素的排列数A 34可以求得,故我们可以考察一下C 34和A 34的关系,如下:组合 排列abc→abc,bac ,cab ,acb ,bca ,cba abd→abd,bad ,dab ,adb ,bda ,dba acd→acd,cad ,dac ,adc ,cda ,dca bcd→bcd,cbd ,dbc ,bdc ,cdb ,dcb由此可知,每一个组合都对应着6个不同的排列,因此,求从4个不同元素中取出3个元素的排列数A 34,可以分如下两步:①考虑从4个不同元素中取出3个元素的组合,共有C 34个;②对每一个组合的3个不同元素进行全排列,各有A 33种方法.由分步乘法计数原理得:A 34=C 34·A 33,所以,C 34=A 34A 33.设计意图:从具体实例出发,探索组合数的求法.提出问题3:你能想出求C mn 的方法吗? 活动设计:小组交流,共同推导. 活动成果:一般地,求从n 个不同元素中取出m 个元素的组合数C mn ,可以分如下两步:①先求从n 个不同元素中取出m 个元素的排列数A mn ;②求每一个组合中m 个元素的全排列数A m m ,根据分步乘法计数原理得:A m n =C m n ·A mm . 得到组合数的公式:C m n=A mn A m m =n(n -1)(n -2)…(n -m +1)m !或C mn =n !m !(n -m)!(n ,m∈N ,且m≤n).规定:C 0n =1.设计意图:引导学生逐步利用分步乘法计数原理推导出组合数公式. 运用新知类型一:组合数公式的应用1计算:(1)C 47; (2)C 710. 解:(1)C 47=7×6×5×44!=35;(2)解法1:C 710=10×9×8×7×6×5×47!=120.解法2:C 710=10!7!3!=10×9×83!=120.【巩固练习】 求证:C mn =m +1n -m·C m +1n . 证明:∵C mn =n !m !(n -m)!,m +1n -m·C m +1n=m +1n -m ·n !(m +1)!(n -m -1)!=m +1(m +1)!·n !(n -m)(n -m -1)!=n !m !(n -m)!,∴C mn =m +1n -m·C m +1n . 【变练演编】设x∈N *,求C x -12x -3+C 2x -3x +1的值.解:由题意可得:⎩⎪⎨⎪⎧2x -3≥x-1,x +1≥2x-3,解得2≤x≤4,∵x∈N *,∴x=2或x =3或x =4.当x =2时原式的值为4;当x =3时原式的值为7;当x =4时原式的值为11. ∴所求的值为4或7或11.类型二:简单的组合问题例2一位教练的足球队共有17名初级学员,他们中以前没有一人参加过比赛.按照足球比赛规则,比赛时一个足球队的上场队员是11人.问:(1)这位教练从这17名学员中可以形成多少种学员上场方案? (2)如果在选出11名上场队员时,还要确定其中的守门员,那么教练员有多少种方式做这件事情?思路分析:对于(1),根据题意,17名学员没有角色差异,地位完全一样,因此这是一个从17个不同元素中选出11个元素的组合问题;对于(2),守门员的位置是特殊的,其余上场学员的地位没有差异,因此这是一个分步完成的组合问题.解:(1)由于上场学员没有角色差异,所以可以形成的学员上场方案种数为C 1117=12 376. (2)教练员可以分两步完成这件事情:第1步,从17名学员中选出11人组成上场小组,共有C 1117种选法;第2步,从选出的11人中选出1名守门员,共有C 111种选法. 所以教练员做这件事情的方式种数为 C 1117×C 111=136 136. 【巩固练习】(1)平面内有10个点,以其中每2个点为端点的线段共有多少条? (2)平面内有10个点,以其中每2个点为端点的有向线段共有多少条?解:(1)以平面内10个点中每2个点为端点的线段的条数,就是从10个不同的元素中取出2个元素的组合数,即线段条数为C 210=10×91×2=45.(2)由于有向线段的两个端点中一个是起点、另一个是终点,以平面内10个点中每2个点为端点的有向线段的条数,就是从10个不同元素中取出2个元素的排列数,即有向线段条数为A 210=10×9=90. 【变练演编】(1)凸五边形有多少条对角线?(2)凸n(n>3)边形有多少条对角线?解答:(1)凸五边形的五个顶点中,任意两个顶点的连线是凸五边形的一条对角线或是一条边,所以,凸五边形的对角线条数为C 25-5=5.(2)凸n 边形的n 个顶点中,任意两个顶点的连线是凸n 边形的一条对角线或是一条边,所以,凸n 边形的对角线条数为C 2n -n =n(n -3)2.【达标检测】1.判断下列问题哪个是排列问题,哪个是组合问题:(1)从4个风景点中选出2个安排游览,有多少种不同的方法? (2)从4个风景点中选出2个,并确定这2个风景点的游览顺序,有多少种不同的方法? 2.7名同学进行乒乓球擂台赛,决出新的擂主,则共需进行的比赛场数为( ) A .42 B .21 C .7 D .63.如果把两条异面直线看作“一对”,则在五棱锥的棱所在的直线中,异面直线有( )A .15对B .25对C .30对D .20对 答案:1.(1)是组合问题 (2)是排列问题 2.B 3.A 课堂小结1.知识收获:组合概念、组合数公式. 2.方法收获:化归.3.思维收获:分类讨论、化归思想. 补充练习 【基础练习】1.A ,B ,C ,D ,E 5个足球队进行单循环比赛,(1)共需比赛多少场?(2)若各队的得分互不相同,则冠、亚军的可能情况共有多少种?2.空间有10个点,其中任何4点不共面,(1)过每3个点作一个平面,一共可作多少个平面?(2)以每4个点为顶点作一个四面体,一共可作多少个四面体?3.壹圆、贰圆、伍圆、拾圆的人民币各一张,一共可以组成多少种币值? 4.写出从a ,b ,c ,d ,e 这5个元素中每次取出4个的所有不同的组合.答案:1.(1)10 (2)20 2.(1)C 310=120 (2)C 410=210 3.C 14+C 24+C 34+C 44=24-1=15. 4.a ,b ,c ,d a ,b ,c ,e a ,b ,d ,e a ,c ,d ,e b ,c ,d ,e. 【拓展练习】5.第19届世界杯足球赛于2010年夏季在南非举办,共32支球队有幸参加,他们先分成8个小组进行循环赛,决出16强(每队均与本组其他队赛一场,各组一、二名晋级16强),这16支球队按确定的程序进行淘汰赛,最后决出冠亚军,此外还要决出第三名、第四名,问这次世界杯总共将进行多少场比赛?解:可分为如下几类比赛:(1)小组循环赛:每组有C 24=6场,8个小组共有48场;(2)八分之一淘汰赛:8个小组的第一、二名组成16强,根据赛制规则,每两个队比赛一场,可以决出8强,共有8场;(3)四分之一淘汰赛:根据赛制规则,8强中每两个队比赛一次,可以决出4强,共有4场;(4)半决赛:根据赛制规则,4强每两个队比赛一场,可以决出2强,共有2场;(5)决赛:2强比赛1场确定冠亚军,4强中的另两支队比赛1场决出第三、四名,共有2场.综上,共有8C24+8+4+2+2=64场比赛.设计说明本节课是组合的第一课时,主要目标是学习组合的概念,探究组合数公式,并利用组合数公式解决简单的计数问题.主要特点是:类比排列数公式的推导方法,抓住排列和组合的区别和联系,利用排列数公式推导出组合数公式.本节课的设计充分体现教师所提问题的主导作用和学生根据问题自主探究的主体地位,学生在与教师和与同学的思维碰撞中自主学习、自主探究.备课资料在判断一个问题是排列还是组合问题时,主要看元素的组成有没有顺序性,有顺序的是排列,无顺序的是组合.有大小形状相同的3个红色小球和5个白色小球,排成一排,共有多少种不同的排列方法?误解:因为是8个小球的全排列,所以共有A88种方法.错因分析:误解中没有考虑3个红色小球是完全相同的,5个白色小球也是完全相同的,同色球之间互换位置是同一种排法.正解:8个小球排好后对应着8个位置,题中的排法相当于在8个位置中选出3个位置给红球,剩下的位置给白球,由于这3个红球完全相同,所以没有顺序,是组合问题.这样共有:C38=56种排法.。
组合数学 第一章 排列组合4允许重复的排列与组合及不相邻的组合
设所求方案数为p(m+n;m,n)
则P(m+n;m,n)·m!·n!=(m+n)!
故P(m+n;m,n)=
—(mm—+!nn—!)!
=
(
m+n m
)
=(m+nn
)
=C(m+n,m)
设c≥a,d≥b,则由(a,b)到(c,d)的简单格路数
为|(a,b)(c,d)|=(
(c-a)+(d-b) c-a
y y=x
(m,n)
y x-y=1
(m,n. )
(0,1) . .
0 (1,0)
x (0,0) .. ..
x
(1,-1)
容易看出从(0,1)到(m,n)接触x=y的格路与
(1,0)到(m,n)的格路(必穿过x=y)一一对应
故所求格路数为( m+mn-1)-( mm+n-1-1)
=
(—m+—n-1—)!
例A {1, 2,3, 4,5, 6, 7},取3个作不相邻的组合的组合数。
例 已知线性方程 x1 x2 ... xn b, n和b都是整数,n 1, 求此方程的非负整数解的个数
例
简单格路问题
|(0,0)→(m,n)|=(
m+n m
)
从 (0,0)点出发沿x轴或y轴的正方向每步
走一个单位,最终走到(m,n)点,有多少
m!(n-1)!
-(m—+n—-1)—!
(m-1)!n!
=(m—(m-1+—)!n(-n—1-)1!)—!
( m1—
-
1n—)
=
—n-n—m
(
排列组合问题(教案
排列组合问题(教案)第一章:排列组合基础1.1 排列组合概念:排列、组合的定义及其区别1.2 排列组合的基本公式:排列数公式、组合数公式1.3 排列组合的应用:简单的排列组合问题求解第二章:排列组合的性质与方法2.1 排列组合的性质:交换律、结合律、分配律等2.2 排列组合的方法:直接法、排除法、插空法等2.3 排列组合的实例分析:解决实际问题第三章:排列组合的拓展3.1 排列组合的递推关系:Fibonacci数列与排列组合3.2 排列组合的极限问题:鸽巢原理、包含-排除原理3.3 排列组合与其他数学领域的联系:组合数学与图论、概率论等第四章:排列组合在实际问题中的应用4.1 排列组合在组合优化问题中的应用:旅行商问题、装箱问题等4.2 排列组合在信息科学中的应用:编码理论、密码学等4.3 排列组合在生物学中的应用:遗传组合、进化论等第五章:排列组合问题的解题技巧与策略5.1 排列组合的分类讨论:按照元素属性、按照排列顺序等5.2 排列组合的简化方法:图论方法、recurrence relation 等5.3 排列组合的思维策略:逻辑思维、创新思维等第六章:排列组合的综合应用题6.1 排列组合与概率论的结合:计算事件的概率6.2 排列组合与图论的结合:解决图论中的问题6.3 排列组合与数论的结合:组合数与素数的关系等第七章:排列组合与其他数学问题的联系7.1 排列组合与组合优化:线性规划、整数规划等7.2 排列组合与算法:动态规划、回溯算法等7.3 排列组合与数学竞赛:排列组合在数学竞赛中的应用第八章:现代排列组合方法与工具8.1 计算机算法:排列组合问题的计算机算法实现8.2 数学软件:使用数学软件解决排列组合问题8.3 组合设计:拉丁方、Steiner系统等组合设计理论第九章:排列组合在生活中的应用9.1 排列组合在日常生活中的应用:如彩票、概率游戏等9.2 排列组合在社会科学中的应用:如人口统计、社会调查等9.3 排列组合在艺术中的应用:如密码、图案设计等第十章:排列组合问题的研究前沿与展望10.1 排列组合问题的新模型:如网络流模型、组合优化模型等10.2 排列组合问题的新方法:如图论方法、代数方法等10.3 排列组合问题的未来发展趋势:如与、大数据的结合等重点和难点解析重点环节一:排列组合概念的区分学生需要理解排列和组合的定义,并能够区分它们的应用场景。
排列组合教案优秀高中数学
排列组合教案优秀高中数学目标:通过本节课程的学习,学生将能够理解排列与组合的概念, 掌握排列组合的计算方法,并能够熟练应用于实际问题中。
教学内容:1. 排列的定义与性质2. 排列的计算方法3. 组合的定义与性质4. 组合的计算方法5. 排列组合在应用问题中的应用教学步骤:第一步:导入教师通过一个生活场景引入排列组合的概念,让学生了解排列组合在日常生活中的实际应用。
第二步:讲解排列的概念与性质教师向学生介绍排列的定义,并说明排列中元素的顺序是有意义的。
通过几个简单的例子,让学生理解排列的概念和性质。
第三步:讲解排列的计算方法教师向学生介绍如何计算排列的数量,包括全排列、循环排列和重复排列。
通过多个例题,让学生掌握排列的计算方法。
第四步:讲解组合的概念与性质教师向学生介绍组合的定义,并说明组合中元素的顺序是无关紧要的。
通过几个简单的例子,让学生理解组合的概念和性质。
第五步:讲解组合的计算方法教师向学生介绍如何计算组合的数量,包括从n个元素中选取r个元素的方法。
通过多个例题,让学生掌握组合的计算方法。
第六步:应用解决问题教师设计一些实际问题,让学生运用所学的排列组合知识进行解决。
通过让学生思考、分析和计算,培养学生的解决问题的能力。
第七步:总结与拓展教师对本节课的内容进行总结,复习排列组合的知识点。
同时,引导学生思考排列组合在更复杂问题中的应用,并鼓励他们自主学习。
教学活动设计:1. 小组讨论:学生分组讨论排列组合的相关问题,并向全班汇报他们的讨论结果。
2. 案例分析:教师给予学生一些排列组合的实际案例,让学生运用所学知识解决问题。
3. 游戏竞赛:设计一个排列组合游戏,让学生在游戏中体验排列组合的乐趣并巩固所学知识。
教学评价:教师通过观察学生的表现、听取学生的解题思路和整理学生的作业,对学生的学习情况进行评价。
同时,可以设计一些综合性的测试题,进行学生的能力评估。
拓展延伸:1. 学生个性化探究:允许学生在学习过程中提出问题,鼓励他们独立探索,并给予适当的指导。
排列组合教学设计方案
一、教学目标1. 知识与技能目标:(1)理解排列组合的概念,掌握排列组合的基本原理;(2)学会运用排列组合的方法解决实际问题;(3)提高逻辑思维和数学运算能力。
2. 过程与方法目标:(1)通过小组合作、讨论交流,培养学生的合作意识和沟通能力;(2)通过实例分析和练习,提高学生分析问题和解决问题的能力;(3)引导学生运用数学知识解决实际问题,培养学生的创新思维。
3. 情感态度与价值观目标:(1)激发学生对数学的兴趣,培养学生严谨的数学态度;(2)培养学生对数学知识的热爱,树立科学的价值观;(3)培养学生的团队精神和责任感。
二、教学内容1. 排列组合的定义及基本原理;2. 排列组合的计算方法;3. 排列组合的应用实例。
三、教学重难点1. 教学重点:排列组合的定义、基本原理及计算方法;2. 教学难点:复杂排列组合问题的解决方法。
四、教学过程1. 导入新课通过实例引入排列组合的概念,激发学生的学习兴趣。
2. 讲授新课(1)讲解排列组合的定义及基本原理,引导学生理解排列组合的内在联系;(2)介绍排列组合的计算方法,如排列公式、组合公式等;(3)举例说明排列组合在生活中的应用,让学生感受到数学知识的实用性。
3. 小组合作与讨论将学生分成若干小组,针对以下问题进行讨论:(1)如何理解排列组合的定义?(2)排列组合的计算方法有哪些?(3)如何运用排列组合解决实际问题?4. 练习与巩固教师布置一系列排列组合的练习题,让学生独立完成,巩固所学知识。
5. 课堂小结总结本节课的学习内容,强调排列组合的重要性和实用性。
6. 课后作业布置一定数量的排列组合练习题,让学生在课后巩固所学知识。
五、教学评价1. 课堂表现:观察学生在课堂上的参与度、合作意识、问题解决能力等;2. 作业完成情况:检查学生课后作业的完成情况,了解学生对排列组合知识的掌握程度;3. 考试评价:通过书面考试,评估学生对排列组合知识的掌握程度。
2023最新-《排列与组合》教案设计10篇
《排列与组合》教案设计10篇作为一位杰出的教职工,常常要根据教学需要编写教案,借助教案可以更好地组织教学活动。
如何把教案做到重点突出呢?奇文共欣赏,疑义相如析,以下是勤劳的小编为家人们找到的《排列与组合》教案设计10篇,欢迎阅读。
排列组合的经典教案篇一教学目标:1、使学生通过观察、操作、实验等活动,找出简单事物的排列组合规律。
2、培养学生初步的观察、分析和推理能力以及有顺序地、全面地思考问题的意识。
3、使学生感受数学在现实生活中的广泛应用,尝试用数学的方法来解决实际生活中的问题。
使学生在数学活动中养成与人合作的良好习惯。
教学过程:一、创设增境,激发兴趣。
师:今天我们要去数学广角乐园游玩,你们想去吗?二、操作探究,学习新知。
<一>组合问题l、看一看,说一说师:那我们先在家里挑选穿上漂亮的衣服吧。
(课件出示主题图)师引导思考:这么多漂亮的衣服,你们用一件上装在搭配一件下装可以怎么穿呢?(指名学生说一说)2、想一想,摆一摆(1)引导讨论:有这么多种不同的穿法,那怎样才能做到不遗漏、不重复呢?①学生小组讨论交流,老师参与小组讨论。
②学生汇报(2)引导操作:小组同学互相合作,把你们设计的穿法有序的贴在展示板上。
(要求:小组长拿出学具衣服图片、展示板)①学生小组合作操作摆,教师巡视参与小组活动。
②学生展示作品,介绍搭配方案。
③生生互相评价。
(3)师引导观察:第一种方案(按上装搭配下装)有几种穿法?(4种)第二种方案(按下装搭配上装)有几种穿法?(4种)师小结:不管是用上装搭配下装,还是用下装搭配上装,只要做到有序搭配就能够不重复、不遗漏的把所有的方法找出来。
在今后的学习和生活中,我们还会遇到许多这样的问题,我们都可以运用有序的思考方法来解决它们。
<二>排列问题师:数学广角乐园到了,不过进门之前我们必须找到开门密码。
(课件出示课件密码门)密码是由1、2、3 组成的两位数。
(1)小组讨论摆出不同的两位数,并记下结果。
高中语文排列组合教案
高中语文排列组合教案教学目标1. 理解排列组合的基本概念及其在语文学科中的应用。
2. 分析文学作品中的排列组合特点,提高文学鉴赏能力。
3. 运用排列组合的原则进行创意写作,培养创新能力。
教学内容1. 排列组合的基本概念介绍。
2. 文学作品中的排列组合特点分析。
3. 排列组合在创意写作中的应用。
教学过程引入新课开始课程时,教师可以通过提出问题的方式激发学生的兴趣:“你们是否注意到,在诗歌、散文、小说中,作者如何通过不同的词语和句子的排列组合来表达情感和创造意境?”通过这样的问题,引导学生思考排列组合在语文学科中的重要性。
概念讲解教师需要对排列组合的基本概念进行讲解。
可以通过简单的例子,如汉字的不同组合可以形成不同的意义,来帮助学生理解排列组合的基本思想。
还可以介绍排列组合在文学史上的应用,比如古典诗词的平仄声调排列、现代诗歌的自由排列等。
文学作品分析在这一环节,教师可以选择一些经典的文学作品,如唐诗、宋词、现代短篇小说等,分析其中的排列组合技巧。
例如,可以选取王之涣的《登鹳雀楼》进行诗句的重新排列,让学生探讨不同排列对诗意的影响。
通过这样的活动,学生不仅能够深入理解文学作品的结构美,还能够锻炼自己的审美和分析能力。
创意写作实践为了让学生将所学知识应用到实践中,教师可以设计一些创意写作的活动。
例如,要求学生创作一首五言绝句,其中必须使用特定的字或词,或者要求学生尝试改变一篇短文的句子顺序,创造出全新的阅读体验。
这样的练习不仅能够提高学生的写作技能,还能够激发他们的创造力和想象力。
教学小结在课程的教师应该对学生的学习成果进行总结,并强调排列组合在语文学习中的重要性。
同时,鼓励学生在今后的学习和创作中,积极运用排列组合的方法,不断提升自己的语文素养。
《组合数学》教案 1章(排列组合基础)
第1章组合数学基础1.1 绪论(一)背景起源:数学游戏幻方问题:给定自然数1, 2, …, n2,将其排列成n阶方阵,要求每行、每列和每条对角线上n个数字之和都相等。
这样的n阶方阵称为n阶幻方。
每一行(或列、或对角线)之和称为幻方的和(简称幻和)。
例:3阶幻方,幻和=(1+2+3+…+9)/3=15。
关心的问题(1)存在性问题:即n阶幻方是否存在?(2)计数问题:如果存在,对某个确定的n,这样的幻方有多少种?(3)构造问题:即枚举问题,亦即如何构造n阶幻方。
图1.1.1 3阶幻方奇数阶幻方的生成方法:一坐上行正中央,依次斜填切莫忘,上边出格往下填,右边出格往左填,右上有数往下填,右上出格往下填。
例:将2,4,6,8,10,12,14,16,18填入下列幻方:【例1.1.1】(拉丁方)36名军官问题:有1,2,3,4,5,6共六个团队,从每个团队中分别选出具有A、B、C、D、E、F六种军衔的军官各一名,共36名军官。
问能否把这些军官排成6×6的方阵,使每行及每列的6名军官均来自不同的团队且具有不同军衔?本问题的答案是否定的。
A1 B2 C3 D4 E5 F6 A1 B2 C3 D4 E5 F6B2 C3 D4 E5 F6 A1B3 C4 D5 E6 F1 A2C3 D4 E5 F6 A1 B2 C5 D6 E1 F2 A3 B4D4 E5 F6 A1 B2 C3 D2 E3 F4 A5 B6 C1E5 F6 A1 B2 C3 D4 E4 F5 A6 B1 C2 D3F6 A1 B2 C3 D4 E5 F6【例1.1.2】(计数——图形染色)用3种颜色红(r)、黄(y)、蓝(b)涂染平面正方形的四个顶点,若某种染色方案在正方形旋转某个角度后,与另一个方案重合,则认为这两个方案是相同的。
求本质上不同的染色方案。
举例:形式总数:43=81种。
实际总数(见第6章):L =()32334124⨯++=24 【例1.1.3】(存在性)不同身高的26个人随意排成一行,那么,总能从中挑出6个人,让其出列后,他们的身高必然是由低到高或由高到低排列的(见第5章)。
高二第一单元数学教案:排列组合教案
高二第一单元数学教案:排列组合教案排列、组合、二项式定理复习教案求解排列应用题的主要方法:直接法:把符合条件的排列数直接列式计算;优先法:优先安排特殊元素或特殊位置捆绑法:把相邻元素看作一个整体与其他元素一起排列,同时注意捆绑元素的内部排列插空法:对不相邻问题,先考虑不受限制的元素的排列,再将不相邻的元素插在前面元素排列的空档中定序问题除法处理:对于定序问题,可先不考虑顺序限制,排列后,再除以定序元素的全排列。
间接法:正难则反,等价转化的方法。
例1:有3名男生,4名女生,在下列不同要求下,求不同的排列方法总数:(1) 全体排成一行,其中甲只能在中间或者两边位置;(2) 全体排成一行,其中甲不在最左边,乙不在最右边;(3) 全体排成一行,其中男生必须排在一起;(4) 全体排成一行,男生不能排在一起;(5) 全体排成一行,男、女各不相邻;(6) 全体排成一行,其中甲、乙、丙三人从左至右的顺序不变;(7) 全体排成一行,甲、乙两人中间必须有3人;(8) 若排成二排,前排3人,后排4人,有多少种不同的排法。
某班有54位同学,正、副班长各1名,现选派6名同学参加某科课外小组,在下列各种情况中,各有多少种不同的选法?(1)无任何限制条件;(2)正、副班长必须入选;(3)正、副班长只有一人入选;(4)正、副班长都不入选;(5)正、副班长至少有一人入选;(5)正、副班长至多有一人入选;6本不同的书,按下列要求各有多少种不同的选法:(1)分给甲、乙、丙三人,每人2本;(2)分为三份,每份2本;(3)分为三份,一份1本,一份2本,一份3本;(4)分给甲、乙、丙三人,一人1本,一人2本,一人3本;(5)分给甲、乙、丙三人,每人至少1本例2、(1)10个优秀指标分配给6个班级,每个班级至少一个,共有多少种不同的分配方法?(2)10个优秀指标分配到1、2、 3三个班,若名额数不少于班级序号数,共有多少种不同的分配方法?.(1)四个不同的小球放入四个不同的盒中,一共有多少种不同的放法?(2)四个不同的小球放入四个不同的盒中且恰有一个空盒的放法有多少种?。
20-21版:1.2.1 排列(一)(创新设计)
1.2.1 排列(一)
20
题型三 排列数公式的应用 例3 求解下列问题: (1)用排列数表示(55-n)(56-n)…(69-n)(n∈N+且n<55); 解 因为55-n,56-n,…,69-n中的最大数为69-n, 且共有69-n-(55-n)+1=15(个), 所以(55-n)(56-n)…(69-n)=A 1659-n;
1.2.1 排列(一)
17
规律方法 “树形图”在解决排列问题个数不多的情况时, 是一种比较有效的表示方式.在操作中先将元素按一定顺序排 出,然后以先安排哪个元素为分类标准,进行分类,在每一 类中再按余下的元素在前面元素不变的情况下确定第二位元 素,再按此元素分类,依次进行,直到完成一个排列,这样 能做到不重不漏,然后再按树形图写出排列.
36
1234
2.从甲、乙、丙三人中选两人站成一排的所有站法为( ) A.甲乙,乙甲,甲丙,丙甲 B.甲乙丙,乙丙甲 C.甲乙,甲丙,乙甲,乙丙,丙甲,丙乙 D.甲乙,甲丙,乙丙
1.2.1 排列(一)
37
1234
解析 选出两人,两人的不同顺序都要考虑. 答案 C
1.2.1 排列(一)
38
1234
1.2.1 排列(一)
33
(3)恰好有两个相同数字的三位数共有多少个? 解 两个数字相同有三种可能性,即第一、二位,第二、三 位,第三、一位相同,而每种情况有6×5种, 故有3×6×5=90(个).
1.2.1 排列(一)
34
课堂反馈
课堂达标
自主反馈,检测成效
1234
1.下列问题属于排列问题的是( )
①从10个人中选2人分别去种树和扫地;
②从10个人中选2人去扫地;
③从班上30名男生中选出5人组成一个篮球队;
排列组合教案设计——小学五年级数学课《有趣的格子组合》
排列组合教案设计——小学五年级数学课《有趣的格子组合》一、教学目标1.学习排列组合的基本概念和方法。
2.理解排列组合在实际生活中的应用。
3.培养学生的逻辑思维和创造思维能力。
二、教学内容本课程的教学内容主要包括三部分:排列、组合和实际应用。
其中,排列和组合是教学的基本内容,而实际应用是帮助学生更好地理解和应用排列组合的知识点。
1.排列排列是指从一组不同的元素中任选出几个进行排列,其产生的所有可能性的总数称为排列数。
在本课程中,我们将通过课堂活动和实例来让学生理解排列的概念和计算方法。
2.组合组合是指从一组不同的元素中任选出几个进行组合,其产生的所有可能性的总数称为组合数。
在本课程中,我们将通过课堂活动和实例来让学生理解组合的概念和计算方法。
3.实际应用排列组合不仅是数学的一门重要课程,同时也广泛应用于各个领域,如密码学、物流管理、赛事抽签、生产排班等等。
在本课程中,我们将结合具体例子来帮助学生更好地理解排列组合在实际生活中的应用。
三、教学方法本课程的教学将采用多种方法,包括讲授、演示、练习和活动等。
具体方法如下:1.讲授通过轻松愉快的语言,简洁明了的讲解方式,来让学生初步了解排列组合的概念和计算方法。
2.演示通过丰富多彩的PPT演示,形象直观地展示排列组合的具体方法和实现过程,提高学生的理解能力。
3.练习通过多种练习题和实例,让学生参与其中,操练排列组合的基本方法,从而巩固所学知识。
4.活动通过多种方式和形式进行课堂活动,如小组讨论、模拟实验和游戏等,激发学生对排列组合的兴趣,培养学生的创造性思维。
四、教学流程1.热身 10min通过两个简单的数学题目来引入排列和组合的概念。
例题1:有3个球,依次编号为1、2、3,从中任取2个,写出所有可能的方案。
例题2:有4个不同的字,从中任取3个排列,共有多少种不同的方案。
2.讲授 15min(1)介绍排列的概念和计算方法。
(2)介绍组合的概念和计算方法。
3.演示 20min(1)通过PPT形象地展示排列和组合的具体方法和实现过程。
高中数学 第一章组合教案5 新人教A版选修2-3
高中数学选修2-3:第一章《组合》教案5例14.证明:p n p m p m p n n m C C C C --⋅=⋅。
证明:原式左端可看成一个班有m 个同学,从中选出n 个同学组成兴趣小组,在选出的n 个同学中,p 个同学参加数学兴趣小组,余下的p n -个同学参加物理兴趣小组的选法数。
原式右端可看成直接在m 个同学中选出p 个同学参加数学兴趣小组,在余下的p m -个同学中选出p n -个同学参加物理兴趣小组的选法数。
显然,两种选法是一致的,故左边=右边,等式成立。
例15.证明:++-110m m n m m n C C C C …m n m m m n C C C +=+0(其中m n ≥)。
证明:设某班有n 个男同学、m 个女同学,从中选出m 个同学组成兴趣小组,可分为1+m 类:男同学0个,1个,…,m 个,则女同学分别为m 个,1-m 个,…,0个,共有选法数为++-110m m n m m n C C C C …0m m n C C +。
又由组合定义知选法数为m n m C +,故等式成立。
例16.证明:+++32132n n n C C C …12-=+n n n n nC 。
证明:左边=+++32132n n n C C C …n n nC +=+++313212111n n n C C C C C C …n n n C C 1+,其中i n i C C 1可表示先在n 个元素里选i 个,再从i 个元素里选一个的组合数。
设某班有n 个同学,选出若干人(至少1人)组成兴趣小组,并指定一人为组长。
把这种选法按取到的人数i 分类(,,21=i …n ,),则选法总数即为原式左边。
现换一种选法,先选组长,有n 种选法,再决定剩下的1-n 人是否参加,每人都有两种可能,所以组员的选法有12-n 种,所以选法总数为12-n n 种。
显然,两种选法是一致的,故左边=右边,等式成立。
例17.证明:+++3222132n n n C C C …222)1(-+=+n n n n n C n 。
第一章排列组合单元设计
《第二章—概率与统计》单元设计注:本单元设计分为单元学前设计、单元教学设计和单元巩固设计【单元学前设计】一、知识体系梳理(旧知识)本章共分3节,约需14课时,本章知识如下:二、本单元地位本章内容是《数学》(基础模块下册)第10章概率与统计初步知识内容的延展。
在学生已经学习了概率与统计初步知识的基础上,介绍排列、组合、二项式定理、离散型随机变量及其分布、二项分布及正态分布,为学生的进一步学习奠定基础。
学习本单元新知识应具备基础知识测试:第三章概率与统计3.1排列与组合3.2二项式定理3.3离散型随机变量及其分布3.1.1 排列及排列数的计算 (复习分类和分步计数原理)3.1.2 组合及组合数的计算3.2 二项式定理 3.3.1离散型随机变量3.3.2 离散型随机变量的数字 特征3.1. 3排列与组合的应用举例 3.4 二项分布3.5 正态分布【单元教学设计】一、 单元知识点:1. 排列、组合和二项式定理⑴排列数公式:m n P =n(n-1)(n-2)…(n-m +1)=)!(!m n n -(m ≤n,m 、n ∈N*),当m=n 时为全排列n n P =n(n-1)(n-2)…3.2.1=n!;⑵组合数公式:(1)(1)!(1)(2)321mm n nP n n n m C m m m m ⋅-⋅⋅⋅--==⋅-⋅-⋅⋅⋅⋅⋅(m ≤n ),10==n n n C C ; ⑶组合数性质:m n m n m n m n n mnC C C C C 11;+--=+=;⑷二项式定理:)()(1110*--∈+++++=+N n b C b a C b a C a C b a nn n k k n k n n n n n n①通项:);,...,2,1,0(1n r b a C T rr n r n r ==-+②注意二项式系数与系数的区别;⑸二项式系数的性质:①与首末两端等距离的二项式系数相等;②若n 为偶数,中间一项(第2n+1项)二项式系数最大;若n 为奇数,中间两项(第21+n 和21+n +1项)二项式系数最大; ③;2;213120210-=⋅⋅⋅++=⋅⋅⋅++=+⋅⋅⋅+++n n n n n n n n n n n C C C C C C C C(6)求二项展开式各项系数和或奇(偶)数项系数和时,注意运用赋值法。
人教版高中数学《排列组合》教案设计
排列与组合一、教学目标1、知识传授目标:正确理解和掌握加法原理和乘法原理2、能力培养目标:能准确地应用它们分析和解决一些简单的问题3、思想教育目标:发展学生的思维能力,培养学生分析问题和解决问题的能力二、教材分析1.重点:加法原理,乘法原理。
解决方法:利用简单的举例得到一般的结论.2.难点:加法原理,乘法原理的区分。
解决方法:运用对比的方法比较它们的异同.三、活动设计1.活动:思考,讨论,对比,练习.2.教具:多媒体课件.四、教学过程正1.新课导入随着社会发展,先进技术,使得各种问题解决方法多样化,高标准严要求,使得商品生产工序复杂化,解决一件事常常有多种方法完成,或几个过程才能完成。
排列组合这一章都是讨论简单的计数问题,而排列、组合的基础就是基本原理,用好基本原理是排列组合的关键.2.新课我们先看下面两个问题.(l)从甲地到乙地,可以乘火车,也可以乘汽车,还可以乘轮船.一天中,火车有4班,汽车有 2班,轮船有 3班,问一天中乘坐这些交通工具从甲地到乙地共有多少种不同的走法?板书:图因为一天中乘火车有4种走法,乘汽车有2种走法,乘轮船有3种走法,每一种走法都可以从甲地到达乙地,因此,一天中乘坐这些交通工具从甲地到乙地共有 4十2十3=9种不同的走法.一般地,有如下原理:加法原理:做一件事,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有m n种不同的方法.那么完成这件事共有N=m1十m2十…十m n种不同的方法.(2) 我们再看下面的问题:由A村去B村的道路有3条,由B村去C村的道路有2条.从A 村经B村去C村,共有多少种不同的走法?板书:图这里,从A村到B村有3种不同的走法,按这3种走法中的每一种走法到达B村后,再从B村到C村又有2种不同的走法.因此,从A村经B村去C村共有 3X2=6种不同的走法.一般地,有如下原理:乘法原理:做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n步有m n种不同的方法.那么完成这件事共有N=m1 m2…m n种不同的方法.例1 书架上层放有6本不同的数学书,下层放有5本不同的语文书.1)从中任取一本,有多少种不同的取法?2)从中任取数学书与语文书各一本,有多少的取法?解:(1)从书架上任取一本书,有两类办法:第一类办法是从上层取数学书,可以从6本书中任取一本,有6种方法;第二类办法是从下层取语文书,可以从5本书中任取一本,有5种方法.根据加法原理,得到不同的取法的种数是6十5=11.答:从书架L任取一本书,有11种不同的取法.(2)从书架上任取数学书与语文书各一本,可以分成两个步骤完成:第一步取一本数学书,有6种方法;第二步取一本语文书,有5种方法.根据乘法原理,得到不同的取法的种数是 N=6X5=30.答:从书架上取数学书与语文书各一本,有30种不同的方法.练习:一同学有4枚明朝不同古币和6枚清朝不同古币1)从中任取一枚,有多少种不同取法? 2)从中任取明清古币各一枚,有多少种不同取法?例2:(1)由数字l,2,3,4,5可以组成多少个数字允许重复三位数?(2)由数字l,2,3,4,5可以组成多少个数字不允许重复三位数?(3)由数字0,l,2,3,4,5可以组成多少个数字不允许重复三位数?解:要组成一个三位数可以分成三个步骤完成:第一步确定百位上的数字,从5个数字中任选一个数字,共有5种选法;第二步确定十位上的数字,由于数字允许重复,这仍有5种选法,第三步确定个位上的数字,同理,它也有5种选法.根据乘法原理,得到可以组成的三位数的个数是N=5X5X5=125.答:可以组成125个三位数.练习:1、从甲地到乙地有2条陆路可走,从乙地到丙地有3条陆路可走,又从甲地不经过乙地到丙地有2条水路可走.(1)从甲地经乙地到丙地有多少种不同的走法?(2)从甲地到丙地共有多少种不同的走法?2.一名儿童做加法游戏.在一个红口袋中装着2O张分别标有数1、2、…、19、20的红卡片,从中任抽一张,把上面的数作为被加数;在另一个黄口袋中装着10张分别标有数1、2、…、9、1O的黄卡片,从中任抽一张,把上面的数作为加数.这名儿童一共可以列出多少个加法式子?3.题2的变形4.由0-9这10个数字可以组成多少个没有重复数字的三位数?小结:要解决某个此类问题,首先要判断是分类,还是分步?分类时用加法,分步时用乘法其次要注意怎样分类和分步,以后会进一步学习练习1.(口答)一件工作可以用两种方法完成.有 5人会用第一种方法完成,另有4人会用第二种方法完成.选出一个人来完成这件工作,共有多少种选法?2.在读书活动中,一个学生要从 2本科技书、 2本政治书、 3本文艺书里任选一本,共有多少种不同的选法?3.乘积(a1+a2+a3)(b1+b2+b3+b4)(c1+c2+c3+c4+c5)展开后共有多少项?4.从甲地到乙地有2条路可通,从乙地到丙地有3条路可通;从甲地到丁地有4条路可通,从丁地到丙地有2条路可通.从甲地到丙地共有多少种不同的走法?5.一个口袋内装有5个小球,另一个口袋内装有4个小球,所有这些小球的颜色互不相同.(1)从两个口袋内任取一个小球,有多少种不同的取法?(2)从两个口袋内各取一个小球,有多少种不同的取法?作业:排列【复习基本原理】1.加法原理做一件事,完成它可以有n类办法,第一类办法中有m1种不同的方法,第二办法中有m2种不同的方法……,第n办法中有m n种不同的方法,那么完成这件事共有N=m1+m2+m3+…m n种不同的方法.2.乘法原理做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n步有m n种不同的方法,.那么完成这件事共有N=m1⨯m2⨯m3⨯…⨯m n种不同的方法.3.两个原理的区别:【练习1】1.北京、上海、广州三个民航站之间的直达航线,需要准备多少种不同的机票?2.由数字1、2、3可以组成多少个无重复数字的二位数?请一一列出.【基本概念】1.什么叫排列?从n个不同元素中,任取m(nm≤)个元素(这里的被取元素各不相同)按照一定的顺序.....排成一列,叫做从n个不同元素中取出m个元素的一个排列....2.什么叫不同的排列?元素和顺序至少有一个不同. 3.什么叫相同的排列?元素和顺序都相同的排列. 4. 什么叫一个排列?【例题与练习】1. 由数字1、2、3、4可以组成多少个无重复数字的三位数?2.已知a 、b 、c 、d 四个元素,①写出每次取出3个元素的所有排列;②写出每次取出4个元素的所有排列.【排列数】1. 定义:从n 个不同元素中,任取m(n m ≤)个元素的所有排列的个数叫做从n 个元素中取出m 元素的排列数,用符号m n p 表示.用符号表示上述各题中的排列数.2. 排列数公式:m n p =n(n-1)(n-2)…(n-m+1)=1n p ;=2n p ;=3n p ;=4n p ;计算:25p = ; 45p = ;215p = ;【课后检测】1. 写出:① 从五个元素a 、b 、c 、d 、e 中任意取出两个、三个元素的所有排列;② 由1、2、3、4组成的无重复数字的所有3位数.③ 由0、1、2、3组成的无重复数字的所有3位数.2.计算: ① 3100p ② 36p ③ 2848p 2p - ④ 712812p p 排 列课题:排列的简单应用(1)目的:进一步掌握排列、排列数的概念以及排列数的两个计算公式,会用排列数公式计算和解决简单的实际问题.过程:一、复习:(引导学生对上节课所学知识进行复习整理)1.排列的定义,理解排列定义需要注意的几点问题;2.排列数的定义,排列数的计算公式)1()2)(1(+---=m n n n n A m n 或)!(!m n n A m n -= (其中m ≤n m,n ∈Z ) 3.全排列、阶乘的意义;规定 0!=14.“分类”、“分步”思想在排列问题中的应用.二、新授:例1:⑴ 7位同学站成一排,共有多少种不同的排法?解:问题可以看作:7个元素的全排列——77A =5040⑵ 7位同学站成两排(前3后4),共有多少种不同的排法? 解:根据分步计数原理:7×6×5×4×3×2×1=7!=5040 ⑶ 7位同学站成一排,其中甲站在中间的位置,共有多少种不同的排法?解:问题可以看作:余下的6个元素的全排列——66A =720⑷ 7位同学站成一排,甲、乙只能站在两端的排法共有多少种? 解:根据分步计数原理:第一步 甲、乙站在两端有22A 种;第二步 余下的5名同学进行全排列有55A 种 则共有22A 55A =240种排列方法⑸ 7位同学站成一排,甲、乙不能站在排头和排尾的排法共有多少种?解法一(直接法):第一步 从(除去甲、乙)其余的5位同学中选2位同学站在排头和排尾有25A 种方法;第二步 从余下的5位同学中选5位进行排列(全排列)有55A 种方法 所以一共有25A 55A =2400种排列方法.解法二:(排除法)若甲站在排头有66A 种方法;若乙站在排尾有66A 种方法;若甲站在排头且乙站在排尾则有55A 种方法.所以甲不能站在排头,乙不能排在排尾的排法共有77A -662A +55A =2400种.小结一:对于“在”与“不在”的问题,常常使用“直接法”或“排除法”,对某些特殊元素可以优先考虑.例2 : 7位同学站成一排.⑴甲、乙两同学必须相邻的排法共有多少种?解:先将甲、乙两位同学“捆绑”在一起看成一个元素与其余的5个元素(同学)一起进行全排列有66A 种方法;再将甲、乙两个同学“松绑”进行排列有22A 种方法.所以这样的排法一共有66A 22A =1440⑵甲、乙和丙三个同学都相邻的排法共有多少种?解:方法同上,一共有55A 33A =720种.⑶甲、乙两同学必须相邻,而且丙不能站在排头和排尾的排法有多少种?解法一:将甲、乙两同学“捆绑”在一起看成一个元素,此时一共有6个元素,因为丙不能站在排头和排尾,所以可以从其余的5个元素中选取2个元素放在排头和排尾,有25A 种方法;将剩下的4个元素进行全排列有44A 种方法;最后将甲、乙两个同学“松绑”进行排列有22A 种方法.所以这样的排法一共有25A 44A 22A =960种方法.解法二:将甲、乙两同学“捆绑”在一起看成一个元素,此时一共有6个元素,若丙站在排头或排尾有255A 种方法,所以丙不能站在排头和排尾的排法有960)2(225566=⋅-A A A 种方法.解法三:将甲、乙两同学“捆绑”在一起看成一个元素,此时一共有6个元素,因为丙不能站在排头和排尾,所以可以从其余的四个位置选择共有14A 种方法,再将其余的5个元素进行全排列共有55A 种方法,最后将甲、乙两同学“松绑”,所以这样的排法一共有14A 55A 22A =960种方法.小结二:对于相邻问题,常用“捆绑法”(先捆后松).例3: 7位同学站成一排.⑴甲、乙两同学不能相邻的排法共有多少种?解法一:(排除法)3600226677=⋅-A A A解法二:(插空法)先将其余五个同学排好有55A 种方法,此时他们留下六个位置(就称为“空”吧),再将甲、乙同学分别插入这六个位置(空)有26A 种方法,所以一共有36002655=A A 种方法.⑵甲、乙和丙三个同学都不能相邻的排法共有多少种? 解:先将其余四个同学排好有44A 种方法,此时他们留下五个“空”,再将甲、乙和丙三个同学分别插入这五个“空”有35A 种方法,所以一共有44A 35A =1440种.小结三:对于不相邻问题,常用“插空法”(特殊元素后考虑). 三、小结:1.对有约束条件的排列问题,应注意如下类型: ⑴某些元素不能在或必须排列在某一位置; ⑵某些元素要求连排(即必须相邻); ⑶某些元素要求分离(即不能相邻); 2.基本的解题方法:⑴ 有特殊元素或特殊位置的排列问题,通常是先排特殊元素或特殊位置,称为优先处理特殊元素(位置)法(优限法);⑵ 某些元素要求必须相邻时,可以先将这些元素看作一个元素,与其他元素排列后,再考虑相邻元素的内部排列,这种方法称为“捆绑法”;⑶ 某些元素不相邻排列时,可以先排其他元素,再将这些不相邻元素插入空挡,这种方法称为“插空法”;⑷ 在处理排列问题时,一般可采用直接和间接两种思维形式,从而寻求有效的解题途径,这是学好排列问题的根基.四、作业:《课课练》之“排列 课时1—3” 课题:排列的简单应用(2)目的:使学生切实学会用排列数公式计算和解决简单的实际问题,进一步培养分析问题、解决问题的能力,同时让学生学会一题多解.过程: 一、复习:1.排列、排列数的定义,排列数的两个计算公式; 2.常见的排队的三种题型:⑴某些元素不能在或必须排列在某一位置——优限法;⑵某些元素要求连排(即必须相邻)——捆绑法; ⑶某些元素要求分离(即不能相邻)——插空法. 3.分类、分布思想的应用. 二、新授:示例一: 从10个不同的文艺节目中选6个编成一个节目单,如果某女演员的独唱节目一定不能排在第二个节目的位置上,则共有多少种不同的排法?解法一:(从特殊位置考虑)1360805919=A A 解法二:(从特殊元素考虑)若选:595A ⋅ 若不选:69A 则共有 595A ⋅+69A =136080解法三:(间接法)=-59610A A 136080 示例二:⑴ 八个人排成前后两排,每排四人,其中甲、乙要排在前排,丙要排在后排,则共有多少种不同的排法?略解:甲、乙排在前排24A ;丙排在后排14A ;其余进行全排列55A . 所以一共有24A 14A 55A =5760种方法. ⑵ 不同的五种商品在货架上排成一排,其中a , b 两种商品必须排在一起,而c, d 两种商品不排在一起, 则不同的排法共有多少种? 略解:(“捆绑法”和“插空法”的综合应用)a , b 捆在一起与e 进行排列有22A ;此时留下三个空,将c, d 两种商品排进去一共有23A ;最后将a ,b “松绑”有22A .所以一共有22A 23A 22A =24种方法.⑶ 6张同排连号的电影票,分给3名教师与3名学生,若要求师生相间而坐,则不同的坐法有多少种?略解:(分类)若第一个为老师则有33A 33A ;若第一个为学生则有33A 33A所以一共有233A 33A =72种方法. 示例三:⑴ 由数字1,2,3,4,5可以组成多少个没有重复数字的正整数?略解:3255545352515=++++A A A A A ⑵ 由数字1,2,3,4,5可以组成多少个没有重复数字,并且比13 000大的正整数?解法一:分成两类,一类是首位为1时,十位必须大于等于3有3313A A 种方法;另一类是首位不为1,有4414A A 种方法.所以一共有3313A A 1144414=+A A 个数比13 000大.解法二:(排除法)比13 000小的正整数有33A 个,所以比13 000大的正整数有-55A 33A =114个.示例四: 用1,3,6,7,8,9组成无重复数字的四位数,由小到大排列.⑴ 第114个数是多少? ⑵ 3 796是第几个数?解:⑴ 因为千位数是1的四位数一共有6035=A 个,所以第114个数的千位数应该是“3”,十位数字是“1”即“31”开头的四位数有1224=A 个;同理,以“36”、“37”、“38”开头的数也分别有12个,所以第114个数的前两位数必然是“39”,而“3 968”排在第6个位置上,所以“3 968” 是第114个数.⑵ 由上可知“37”开头的数的前面有60+12+12=84个,而3 796在“37”开头的四位数中排在第11个(倒数第二个),故3 796是第95个数.示例五: 用0,1,2,3,4,5组成无重复数字的四位数,其中 ⑴ 能被25整除的数有多少个? ⑵ 十位数字比个位数字大的有多少个?解: ⑴ 能被25整除的四位数的末两位只能为25,50两种,末尾为50的四位数有24A 个,末尾为25的有1313A A 个,所以一共有24A +1313A A =21个.注: 能被25整除的四位数的末两位只能为25,50,75,00四种情况.⑵ 用0,1,2,3,4,5组成无重复数字的四位数,一共有3003515=A A个.因为在这300个数中,十位数字与个位数字的大小关系是“等可..能的..”,所以十位数字比个位数字大的有150213515 A A 个. 三、小结:能够根据题意选择适当的排列方法,同时注意考虑问题的全面性,此外能够借助一题多解检验答案的正确性.四、作业:“3+X ”之 排列 练习 组 合 ⑴课题:组合、组合数的概念目的:理解组合的意义,掌握组合数的计算公式. 过程:一、复习、引入:1.复习排列的有关内容:以上由学生口答. 2.提出问题:示例1: 从甲、乙、丙3名同学中选出2名去参加某天的一项活动,其中1名同学参加上午的活动,1名同学参加下午的活动,有多少种不同的选法?示例2: 从甲、乙、丙3名同学中选出2名去参加一项活动,有多少种不同的选法?引导观察:示例1中不但要求选出2名同学,而且还要按照一定的顺序“排列”,而示例2只要求选出2名同学,是与顺序无关的.引出课题:组合..问题.二、新授:1.组合的概念:一般地,从n 个不同元素中取出m (m ≤n )个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合. 注:1.不同元素 2.“只取不排”——无序性 3.相同组合:元素相同判断下列问题哪个是排列问题哪个是组合问题:⑴ 从A 、B 、C 、D 四个景点选出2个进行游览;(组合) ⑵ 从甲、乙、丙、丁四个学生中选出2个人担任班长和团支部书记.(排列)2.组合数的概念:从n 个不同元素中取出m (m ≤n )个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数.用符号m n C 表示.例如:示例2中从3个同学选出2名同学的组合可以为:甲乙,甲丙,乙丙.即有323=C 种组合.又如:从A 、B 、C 、D 四个景点选出2个进行游览的组合:AB ,AC ,AD ,BC ,BD ,CD 一共6种组合,即:624=C在讲解时一定要让学生去分析:要解决的问题是排列问题还是组合问题,关键是看是否与顺序有关.那么又如何计算m n C 呢?3.组合数公式的推导⑴提问:从4个不同元素a ,b ,c ,d 中取出3个元素的组合数34C 是多少呢?启发: 由于排列是先组合再排列.........,而从4个不同元素中取出3个元素的排列数34A 可以求得,故我们可以考察一下34C 和34A 的关系,如下:组 合 排列dcbcdb bdc dbc cbd bcd bcddca cda adc dac cad acd acd dba bda adb dab bad abd abdcba bca acb cab bac abc abc ,,,,,,,,,,,,,,,,,,,,→→→→ 由此可知:每一个组合都对应着6个不同的排列,因此,求从4个不同元素中取出3个元素的排列数34A ,可以分如下两步:① 考虑从4个不同元素中取出3个元素的组合,共有34C 个;② 对每一个组合的3个不同元素进行全排列,各有33A 种方法.由分步计数原理得:34A =⋅34C 33A ,所以:333434A A C =.⑵ 推广: 一般地,求从n 个不同元素中取出m 个元素的排列数m n A ,可以分如下两步:① 先求从n 个不同元素中取出m 个元素的组合数m n C ;② 求每一个组合中m 个元素全排列数m m A ,根据分布计数原理得:m n A =m n C m m A ⋅⑶ 组合数的公式:!)1()2)(1(m m n n n n A A C m m mn mn+---==或 )!(!!m n m n C m n -=),,(n m N m n ≤∈*且⑷ 巩固练习:1.计算:⑴ 47C ⑵ 710C2.求证:11+⋅-+=m n m n C mn m C 3.设,+∈N x 求321132-+--+x x x x C C 的值.解:由题意可得:⎩⎨⎧-≥+-≥-321132x x x x 即:2≤x ≤4 ∵,+∈N x ∴x =2或3或4当x =2时原式值为7;当x =3时原式值为7;当x =2时原式值为11.∴所求值为4或7或11. 4.例题讲评例1. 6本不同的书分给甲、乙、丙3同学,每人各得2本,有多少种不同的分法?略解:90222426=⋅⋅C C C例2.4名男生和6名女生组成至少有1个男生参加的三人实践活动小组,问组成方法共有多少种?解法一:(直接法)小组构成有三种情形:3男,2男1女,1男2女,分别有34C ,1624C C ⋅,2614C C ⋅,所以一共有34C +1624C C ⋅+2614C C ⋅=100种方法.解法二:(间接法)10036310=-C C5.学生练习:(课本99练习)三、小结:此外,解决实际问题时首先要看是否与顺序有关,从而确定是排列问题还是组合问题,必要时要利用分类和分步计数原理.四、作业:课堂作业:教学与测试75课课外作业:课课练课时7和8组合⑵课题:组合的简单应用及组合数的两个性质目的:深刻理解排列与组合的区别和联系,熟练掌握组合数的计算公式;掌握组合数的两个性质,并且能够运用它解决一些简单的应用问题.过程:一、复习回顾:1.复习排列和组合的有关内容:强调:排列——次序性;组合——无序性.2.练习一:练习1:求证:11--=m n m n C mn C . (本式也可变形为:11--=m n m n nC mC ) 练习2:计算:① 310C 和710C ; ② 2637C C -与36C ;③ 511411C C +答案:① 120,120 ② 20,20 ③ 792 (此练习的目的为下面学习组合数的两个性质打好基础.) 3.练习二:⑴ 平面内有10个点,以其中每2个点为端点的线段共有多少条?⑵ 平面内有10个点,以其中每2个点为端点的有向线段共有多少条?答案:⑴45210=C (组合问题) ⑵90210=A (排列问题) 二、新授:1.组合数的 性质1:m n n m n C C -=.理解: 一般地,从n 个不同元素中取出m 个元素后,剩下n - m 个元素.因为从n 个不同元素中取出m 个元素的每一个组合,与剩下的n -m 个元素的每一个组合一一对应....,所以从n 个不同元素中取出m 个元素的组合数,等于从这n 个元素中取出n - m 个元素的组合数,即:mn n m n C C -=.在这里,我们主要体现:“取法”与“剩法”是“一一对应”的思想.证明:∵)!(!!)]!([)!(!m n m n m n n m n n C m n n -=---=- 又 )!(!!m n m n C mn -=∴m n n m n C C -= 注:1︒ 我们规定 10=n C2︒ 等式特点:等式两边下标同,上标之和等于下标. 3︒ 此性质作用:当2n m >时,计算m n C 可变为计算m n n C -,能够使运算简化.例如:20012002C =200120022002-C =12002C =2002.4︒ y n x n C C =y x =⇒或n y x =+2.示例一:(课本101例4)一个口袋内装有大小相同的7个白球和1个黑球.⑴ 从口袋内取出3个球,共有多少种取法?⑵ 从口袋内取出3个球,使其中含有1个黑球,有多少种取法? ⑶ 从口袋内取出3个球,使其中不含黑球,有多少种取法? 解:⑴ 5638=C ⑵ 2127=C ⑶ 3537=C 引导学生发现:=38C +27C 37C .为什么呢?我们可以这样解释:从口袋内的8个球中所取出的3个球,可以分为两类:一类含有1个黑球,一类不含有黑球.因此根据分类计数原理,上述等式成立.一般地,从121,,,+n a a a 这n +1个不同元素中取出m 个元素的组合数是m n C 1+,这些组合可以分为两类:一类含有元素1a ,一类不含有1a .含有1a 的组合是从132,,,+n a a a 这n 个元素中取出m -1个元素与1a 组成的,共有1-m n C 个;不含有1a 的组合是从132,,,+n a a a 这n 个元素中取出m 个元素组成的,共有m n C 个.根据分类计数原理,可以得到组合数的另一个性质.在这里,我们主要体现从特殊到一般的归纳思想,“含与不含其元素”的分类思想.3.组合数的 性质2:m n C 1+=m n C +1-m n C . 证明: )]!1([)!1(!)!(!!1---+-=+-m n m n m n m n C C m n m n )!1(!!)1(!+-++-=m n m m n m n n )!1(!!)1(+-++-=m n m n m m n)!1(!)!1(+-+=m n m n m n C 1+= ∴ m n C 1+=m n C +1-m n C .注:1︒ 公式特征:下标相同而上标差1的两个组合数之和,等于下标比原下标多1而上标与高的相同的一个组合数.2︒ 此性质的作用:恒等变形,简化运算.在今后学习“二项式定理”时,我们会看到它的主要应用.4.示例二:⑴ 计算:69584737C C C C +++⑵ 求证:n m C 2+=n m C +12-n m C +2-n m C ⑶ 解方程:3213113-+=x x C C⑷ 解方程:333222101+-+-+=+x x x x x A C C ⑸ 计算:4434241404C C C C C ++++和554535251505C C C C C C +++++ 推广:n nn n n n n nC C C C C 21210=+++++- 5.组合数性质的简单应用: 证明下列等式成立:⑴ (讲解)11321++---=+++++k n k k k k k n k n k n C C C C C C ⑵ (练习)1121++++++=++++k k n k n k k k k k k k C C C C C⑶ )(23210321nn n n n n n n n C C C nnC C C C +++=++++6.处理《教学与测试》76课例题 三、小结:1.组合数的两个性质; 2.从特殊到一般的归纳思想. 四、作业: 课堂作业:《教学与测试》76课 课外作业:课本习题10.3;课课练课时9 组 合 ⑶课题:组合、组合数的综合应用⑴目的:进一步巩固组合、组合数的概念及其性质,能够解决一些较为复杂的组合应用问题,提高合理选用知识的能力.过程: 一、知识复习:1.复习排列和组合的有关内容:依然强调:排列——次序性;组合——无序性. 2.排列数、组合数的公式及有关性质性质1:m n n m n C C -= 性质2:m n C 1+=m n C +1-m n C 常用的等式:111010====+++k k k k k k C C C C 3.练习:处理《教学与测试》76课例题 二、例题评讲:例1.100件产品中有合格品90件,次品10件,现从中抽取4件检查.⑴ 都不是次品的取法有多少种?⑵ 至少有1件次品的取法有多少种? ⑶ 不都是次品的取法有多少种?解:⑴ 2555190490=C ; ⑵ 13660354101903102902103901104904100=+++=-C C C C C C C C C ; ⑶ 39210154901103902102903101904104100=+++=-C C C C C C C C C . 例2.从编号为1,2,3,…,10,11的共11个球中,取出5个球,使得这5个球的编号之和为奇数,则一共有多少种不同的取法?解:分为三类:1奇4偶有4516C C ;3奇2偶有2536C C ;5奇1偶有56C所以一共有4516C C +2536C C +23656=C . 例3.现有8名青年,其中有5名能胜任英语翻译工作;有4名青年能胜任德语翻译工作(其中有1名青年两项工作都能胜任),现在要从中挑选5名青年承担一项任务,其中3名从事英语翻译工作,2名从事德语翻译工作,则有多少种不同的选法?解:我们可以分为三类:① 让两项工作都能担任的青年从事英语翻译工作,有2324C C ;② 让两项工作都能担任的青年从事德语翻译工作,有1334C C ;③ 让两项工作都能担任的青年不从事任何工作,有2334C C .所以一共有2324C C +1334C C +2334C C =42种方法.例4.甲、乙、丙三人值周,从周一至周六,每人值两天,但甲不值周一,乙不值周六,问可以排出多少种不同的值周表 ?解法一:(排除法)422131424152426=+-C C C C C C 解法二:分为两类:一类为甲不值周一,也不值周六,有2414C C ;另一类为甲不值周一,但值周六,有2324C C .所以一共有2414C C +2324C C =42种方法.例5.6本不同的书全部送给5人,每人至少1本,有多少种不同的送书方法?解:第一步从6本不同的书中任取2本“捆绑”在一起看成一个元素有26C 种方法;第二步将5个“不同元素(书)”分给5个人有55A 种方法.根据分步计数原理,一共有26C 55A =1800种方法.变题1:6本不同的书全部送给5人,有多少种不同的送书方法? 变题2: 5本不.同的书全部送给6人,每人至多1本,有多少种不同的送书方法?变题3: 5本相.同的书全部送给6人,每人至多1本,有多少种不同的送书方法?答案:1.1562556=; 2.72056=A ; 3.656=C . 三、小结:1.组合的定义,组合数的公式及其两个性质;2.组合的应用:分清是否要排序. 四、作业:《3+X 》 组合基础训练 《课课练》课时10 组合四 组 合 ⑷课题:组合、组合数的综合应用⑵。
排列组合主题单元设计模板
《排列组合》主题单元设计学习活动设计(针对该专题所选择的活动形式及过程新课引入:问题1:5本不同的数学书, 4本不同的语文书,3本不同的物理书,(1)从中任取1本,有多少种取法?(2)从中各科中各取1本,有多少种不同的取法?教师活动:教师提出问题,学生阅读、思考、回答。
设计意图:复习上节相关内容,正确地区分“分类”和“分步”问题2:北京、上海、广州三个民航站之间的直达航线,需要准备多少种不同飞机票?.问题(2)的解答过程能否简化?教师引导学生分析计数过程。
引起寻找新的方法,简化计数过程的需要。
希望得出如下感知:过程重复,比较繁琐,可以简化。
问题3:现有红、黄、白球各一个,从中任取2个,分别放入甲、乙盒子里,多少种不同的放法?此问题中要完成的“一件事”是什么?教师引导学生分析,得出“一件事”是“从3个球中任取2个,分别放入甲、乙盒子里。
为理解排列的概念奠定基础怎样用计数原理解决它?教师提问,学生讨论回答,得出分步完成选球放入盒中。
启发学生联系计数原理.问题4:从1、2、3、4这4个数字中,每次取出3个排成一个三位数,共可得到多少个不同的三位数?在问题4中要完成的“一件事”是什么?学生分析得出“一件事”是“从4个数字中选3个排成一个三位数”为理解排列概念奠定基础。
二、引出定义定义:从n个不同元素中,任取m(nm )个元素的所有排列的个数叫做从n个元素中取出m元素的排列数,用符号mnA表示.用符号表示上述各题中的排列数.三、例题讲解例1:⑴7位同学站成一排,共有多少种不同的排法?解:问题可以看作:7个元素的全排列——77A=5040⑵7位同学站成两排(前3后4),共有多少种不同的排法?解:根据分步计数原理:7×6×5×4×3×2×1=7!=5040⑶7位同学站成一排,其中甲站在中间的位置,共有多少种不同的排法?解:问题可以看作:余下的6个元素的全排列——66A=720⑷7位同学站成一排,甲、乙只能站在两端的排法共有多少种?解:根据分步计数原理:第一步甲、乙站在两端有22A种;第二步余下的5名同学进行全排列有55A种则共有22A55A=240种排列方法⑸7位同学站成一排,甲、乙不能站在排头和排尾的排法共有多少种?解法一(直接法):第一步从(除去甲、乙)其余的5位同学中选2位同学站在排头和排尾有25A种方法;第二步从余下的5位同学中选5位进行排列(全排列)有55A种方法所以一共有25A 55A =2400种排列方法. 解法二:(排除法)若甲站在排头有66A 种方法;若乙站在排尾有66A 种方法;若甲站在排头且乙站在排尾则有55A 种方法.所以甲不能站在排头,乙不能排在排尾的排法共有77A -662A +55A =2400种. 小结一:对于“在”与“不在”的问题,常常使用“直接法”或“排除法”,对某些特殊元素可以优先考虑.例2 : 7位同学站成一排.⑴甲、乙两同学必须相邻的排法共有多少种?解:先将甲、乙两位同学“捆绑”在一起看成一个元素与其余的5个元素(同学)一起进行全排列有66A 种方法;再将甲、乙两个同学“松绑”进行排列有22A 种方法.所以这样的排法一共有66A 22A =1440 ⑵甲、乙和丙三个同学都相邻的排法共有多少种? 解:方法同上,一共有55A 33A =720种. ⑶甲、乙两同学必须相邻,而且丙不能站在排头和排尾的排法有多少种?解法一:将甲、乙两同学“捆绑”在一起看成一个元素,此时一共有6个元素,因为丙不能站在排头和排尾,所以可以从其余的5个元素中选取2个元素放在排头和排尾,有25A 种方法;将剩下的4个元素进行全排列有44A 种方法;最后将甲、乙两个同学“松绑”进行排列有22A 种方法.所以这样的排法一共有25A 44A 22A =960种方法. 解法二:将甲、乙两同学“捆绑”在一起看成一个元素,此时一共有6个元素,若丙站在排头或排尾有255A 种方法,所以丙不能站在排头和排尾的排法有960)2(225566=⋅-A A A 种方法.解法三:将甲、乙两同学“捆绑”在一起看成一个元素,此时一共有6个元素,因为丙不能站在排头和排尾,所以可以从其余的四个位置选择共有14A 种方法,再将其余的5个元素进行全排列共有55A 种方法,最后将甲、乙两同学“松绑”,所以这样的排法一共有14A 55A 22A =960种方法. 小结二:对于相邻问题,常用“捆绑法”(先捆后松). 例3: 7位同学站成一排.⑴甲、乙两同学不能相邻的排法共有多少种? 解法一:(排除法)3600226677=⋅-A A A解法二:(插空法)先将其余五个同学排好有55A 种方法,此时他们留下六个位置(就称为“空”吧),再将甲、乙同学分别插入这六个位置(空)有26A 种方法,所以一共有36002655=A A 种方学习活动设计(针对该专题所选择的活动形式及过程课题引入:通过上节课研究排列的问题出发,对比引出另一种与排列不同的计数方法,即组合。
《排列组合》教案[修改版]
第一篇:《排列组合》教案《排列组合》教学设计上泉小学赵泽旻一、教学目标知识目标:通过观察、猜测、操作等活动,找出最简单的事物的排列数和组合数。
能力目标:经历探索简单事物排列与组合规律的过程,培养学生有顺序地、全面思考问题的意识。
情感价值观目标:让学生感受数学与生活的紧密联系,培养学生学习数学的兴趣和用数学解决问题的意识。
二、教学重难点教学重点:经历探索简单事物排列与组合规律的过程。
突破方法:通过创设情境,自主探究突破重点。
教学难点:初步理解简单事物排列与组合的不同。
突破方法:通过合作交流、探讨突破难点。
三、教学准备课件、数字卡片、数位表格四、教学方法与手段1.从生活情景出发,结合学生感兴趣的动画故事为学生创设探究学习的情境。
2.采用观察法、操作法、探究法、讲授法、演示法等教学方法,通过让学生动手操作、独立思考和开展小组合作交流活动,完善自己的想法,努力构建学生独特的学习方式。
3.通过灵活、有趣的练习,如:握手、拍照等游戏,提高学生解决问题的能力,同时寻求解决问题的多种办法。
五、教学过程(一)创设情境,激发兴趣1.故事导入:灰太狼抓走了美羊羊,为了阻止喜洋洋来救,设置了门锁密码,要想闯关成功,要了解一个知识—搭配,揭示课题。
2.猜一猜第一关的密码是由1、2两个数字组成的两位数,个位上的数字比十位上的数字大,这个密码可能是多少?(二)动手操作,探索新知 1.过渡谈话,引出例1 灰太狼增加了难度,在第二关设置了超级密码锁,密码是1、2 和3 组成的两位数,每个两位数的十位数和个位数不能一样,能组成几个两位数?”(课件出示例1)2.尝试学习,自主探究(1)引导理清题意:你都知道了什么(2)指导学法:你有什么办法解决这个问题?(3)动手操作:分发3张数字卡片,任意选取其中两张摆一摆,组成不同的两位数。
鼓励学生动脑,找规律去摆,比一比谁摆的数多而不重复。
3.小组交流,展示成果(1)小组交流:学生自主摆完后,小组交流讨论,探讨排列的方法。
排列组合数学教案设计
排列组合數學教案設計标题:排列组合数学教案设计一、课程介绍排列组合是高中数学的重要组成部分,它主要研究如何从有限的元素中取出一部分或全部进行排序或组合的问题。
通过学习排列组合,学生可以了解并掌握解决实际问题的方法和技巧。
二、教学目标1. 学生能够理解和掌握排列和组合的基本概念。
2. 学生能够熟练运用公式进行排列和组合的计算。
3. 学生能够将排列组合的知识应用到实际生活中,解决相关问题。
三、教学内容1. 排列的概念与计算方法2. 组合的概念与计算方法3. 排列与组合的区别与联系4. 实际问题的应用四、教学步骤1. 引入:以生活中的实例引入排列组合的概念,如从5本书中选择2本,有多少种选法?2. 讲解:详细讲解排列和组合的概念,以及它们之间的区别和联系。
并通过具体的例子演示排列和组合的计算过程。
3. 练习:提供一些简单的排列和组合的题目,让学生自己动手做,然后集体讨论答案,加深理解。
4. 应用:提出一些实际生活中的问题,让学生尝试用排列组合的知识来解决。
5. 总结:回顾本次课程的主要内容,强调排列和组合在实际生活中的重要性。
五、教学评估1. 课堂表现:观察学生在课堂上的参与度,是否能积极思考并回答问题。
2. 作业反馈:通过批改学生的作业,了解他们对排列组合的理解程度。
3. 小测试:定期进行小测试,检查学生的学习进度。
六、教学资源1. 教科书:《高中数学》2. 参考书:《排列组合教程》3. 在线资源:Khan Academy、Coursera等在线教育平台的相关课程。
七、教学建议1. 利用生动的例子帮助学生理解抽象的数学概念。
2. 鼓励学生积极参与课堂讨论,提高他们的思维能力和解决问题的能力。
3. 定期复习,巩固学生的学习成果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《第二章—概率与统计》单元设计注:本单元设计分为单元学前设计、单元教学设计和单元巩固设计【单元学前设计】一、知识体系梳理(旧知识)本章共分3节,约需14课时,本章知识如下:二、本单元地位本章内容是《数学》(基础模块下册)第10章概率与统计初步知识内容的延展。
在学生已经学习了概率与统计初步知识的基础上,介绍排列、组合、二项式定理、离散型随机变量及其分布、二项分布及正态分布,为学生的进一步学习奠定基础。
学习本单元新知识应具备基础知识测试:第三章概率与统计3.1排列与组合3.2二项式定理3.3离散型随机变量及其分布3.1.1 排列及排列数的计算 (复习分类和分步计数原理)3.1.2 组合及组合数的计算3.2 二项式定理 3.3.1离散型随机变量3.3.2 离散型随机变量的数字 特征3.1. 3排列与组合的应用举例 3.4 二项分布3.5 正态分布【单元教学设计】一、 单元知识点:1. 排列、组合和二项式定理⑴排列数公式:m n P =n(n-1)(n-2)…(n-m +1)=)!(!m n n -(m ≤n,m 、n ∈N*),当m=n 时为全排列n n P =n(n-1)(n-2)…3.2.1=n!;⑵组合数公式:(1)(1)!(1)(2)321mm n nP n n n m C m m m m ⋅-⋅⋅⋅--==⋅-⋅-⋅⋅⋅⋅⋅(m ≤n ),10==n n n C C ; ⑶组合数性质:m n m n m n m n n mnC C C C C 11;+--=+=;⑷二项式定理:)()(1110*--∈+++++=+N n b C b a C b a C a C b a nn n k k n k n n n n n n①通项:);,...,2,1,0(1n r b a C T rr n r n r ==-+②注意二项式系数与系数的区别;⑸二项式系数的性质:①与首末两端等距离的二项式系数相等;②若n 为偶数,中间一项(第2n+1项)二项式系数最大;若n 为奇数,中间两项(第21+n 和21+n +1项)二项式系数最大; ③;2;213120210-=⋅⋅⋅++=⋅⋅⋅++=+⋅⋅⋅+++n n n n n n n n n n n C C C C C C C C(6)求二项展开式各项系数和或奇(偶)数项系数和时,注意运用赋值法。
2. 概率与统计⑴随机变量的分布列:①随机变量分布列的性质:p i ≥0,i=1,2,…; p 1+p 2+…=1; ②离散型随机变量:X x 1 X 2 … x n … PP 1P 2…Pn…期望:EX = x 1p 1 + x 2p 2 + … + x n p n + … ;方差:DX =⋅⋅⋅+-+⋅⋅⋅+-+-n n p EX x p EX x p EX x 2222121)()()( ; 注:DX a b aX D b aEX b aX E 2)(;)(=++=+;③两点分布:X 0 1 期望:EX =p ;方差:DX =p(1-p). P 1-p p① 超几何分布:一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则},,min{,,1,0,)(n M m m k C C C k X P nNk n MN k M ====-- 其中,N M N n ≤≤,。
称分布列X 0 1 … mP nN n MN M C C C 00-- n N n M N M C C C 11-- … n Nm n M N m M C C C -- 为超几何分布列, 称X 服从超几何分布。
⑤二项分布(独立重复试验):若X ~B (n,p ),则EX =np, DX =np (1- p );注:k n kk n p p C k X P --==)1()( 。
⑵条件概率:称)()()|(A P AB P A B P =为在事件A 发生的条件下,事件B 发生的概率。
注:①0≤P (B|A )≤1;②P(B ∪C|A)=P(B|A)+P(C|A)。
⑶独立事件同时发生的概率:P (AB )=P (A )P (B )。
⑷正态总体的概率密度函数:,,21)(222)(R x ex f x ∈=--σμσπ式中σμ,是参数,分别表示总体的平均数(期望值)与标准差;(6)正态曲线的性质:①曲线位于x 轴上方,与x 轴不相交;②曲线是单峰的,关于直线x =μ 对称; ③曲线在x =μ处达到峰值πσ21;④曲线与x 轴之间的面积为1;② 当σ一定时,曲线随μ质的变化沿x 轴平移;③ 当μ一定时,曲线形状由σ确定:σ越大,曲线越“矮胖”,表示总体分布越集中;σ越小,曲线越“高瘦”,表示总体分布越分散。
注:P )(σμσμ+≤<-x =0.6826;P )22(σμσμ+≤<-x =0.9544P )33(σμσμ+≤<-x =0.9974 二、高考考点: 高频考点解读考点一排列与组合1.基本原理的应用:分类计数原理 N=m1+m2+…+m n分步计数原理 N=m1m2…m n2.排列组合实际问题应用排列组合定义从n个不同元素中取出m个元素,按照一定的顺序排成一列,叫从n个不同元素中取出m个元素的一个数列.所有排列的个数叫排列数,记为mnP。
(m、n∈N*且m≤n.从n个不同元素中取出m个元素并成一组,叫从n个不同元素中取出m个元素的一个组合。
所有组合的个数叫组合数,记为C n m.m、n∈N*且m≤n.公式mnP=n(n-1)(n-2)…(n-m+1)nnP=n!, 0!=1mnP=)!(!mnn-C n m=(1)(2)(1)!mnmmP n n n n mP m---+=C n m=)!(!!mnmn-, C n0=1性质C n m=C n n-m C n+1m=C n m+C n m-1区别排列与元素顺序有关排列先取后排组合与元素顺序无关组合只取不排[易错点提示]1.应用两个基本原理解题时,应正确区分是分类还是分步.2.解排列组合应用题时,应注意方法及分类标准的选择,并做到层次清晰,不重不漏。
考点二二项式定理1.定理:(a+b)n=C n0a n+C n1a n-1b+…+C n r a n-r b r+…+C n n b n,n∈N*2.二项式系数:C n r,r=0,1,2,,…n.3.通项T r+1=C n r a n-r b r (r=0,1,2…n)4.二项式系数性质⑴对称性:与首末两端“等距离”的两个二项式系数相等。
即C n0=C n n,C n1=C n n-1,C n2=C n n-2,…⑵增减性:f(r)=C n r,当r<21+n 时,C n r 递增,当r ≥21+n 时,C n r递减 ⑶最大值:幂指数n 展开式项数n+1二项式系数最大 项(中间项)值偶数 奇数 T 12+n2nnC奇数偶数T 21+n 、T 121++n21n n C -=21n n C +⑷C n 0+C n 1+C n 2+…+C n n=2nC n 0+C n 2+C n 4+…=2n -1C n 1+C n 3+C n 5+…=2n -1另:⑴二项式系数表(杨辉三角)略。
⑵1121++++++=++++m n m m n m m m m m m m C C C C C⑶(a -b)n =C n 0a n -C n 1a n -1b+C n 2a n -2b 2-…+(-1)n C n n b n⑷(1+x)n =C n 0+C n 1x+C n 2x 2+…+C n n x n[易错点提示]1.在二项式定理中,注意系数与二项式系数、奇数项与偶数项、奇次项与偶次项的区别. C n r a n -r b r是第r+1项.2.多项式展开通常化为二项式展开处理,求展开式中某些项的系数(值)关系时,常用赋值法.3.用二项式定理计算余数问题时,余数不能为负数.如:∵233=811=(9-1)11=9k -1∴233被9除余数为8.4.证明形如:2n>2n (n ≥3且n ∈N),比较2n 与n 2 (n ∈N *)大小,此类问题常用二项式定理. 考点三 离散型随机变量及其分布离散型随机变量的均值与方差是高考命题的热点,多以解答题的形式呈现,多为中档题. 高考对离散型随机变量的均值与方差的考查主要有以下三个命题角度: (1)已知离散型随机变量符合条件,求其均值与方差; (2)已知离散型随机变量的均值与方差,求参数值; (3)已知离散型随机变量满足两种方案,试作出判断. 考点四 实际生活问题中正态分布的应用 三、教学内容设计、教学学时安排 §3.1.1 排列及排列数的计算(1课时) §3.1.2 组合及组合数的计算(1课时) §3.1.3排列与组合的应用举例(2课时) §3.2 二项式定理(1课时)§3.3 离散型变量及其分布 (2课时) §3.4二项分布(2课时) §3.5 正态分布(2课时) §练习与复习(2课时) 四、高考真题:【2015,10】 由数字1,2,3,4,5组成没有重复数字的两位数的个数为( )A .15B .10C .25D .20【2017.21】有语文书3本,数学书4本,英语书5本,书都各不相同,要把这些书随机排在书架上。
(1)求三种书各自都必须排在排在一起的排法有多少种?(2)求英语书不挨着的概率p 【2016.19】把8本不同的书分给甲乙两人,每人4本,不同分法的种类数为( )A .1428C CB .48PC .48C D .4812C 【2010,9】将6人分成甲、乙、丙三组,一组1人,一组2人,一组3人,分法共有( )A .240种B .300种C .360种D .420种【2017.10】()71x -的二项式展开式中系数最小的项是( )A .第4项B .第6项C .第4项和第6项D .第5项【2007,9】二项式()222na b+展开式的项数是 _____________________.【2010.30】二项式41x x ⎛⎫- ⎪⎝⎭展开式中,常数项是( )。
A .5B .8C .6D .12【2013,10】二项式()41x -展开式中,2x 的系数是( )。
A .6B .-6C .4D .-4【2012.18】二项式()62x +展开式中,3x 的系数是_____________【单元巩固设计】【单元基础训练题】一.选择题(每题4分,计40分)1.从6名医师和3名护士中选出3名医师和2名护士分别参加5个不同的医疗队,不同的分配方法的种数为( )A .325635C C PB .32635C C C .3263P PD .3263C C2. 某乒乓球队共有男女队员18人,现从中选出男女队员各一人组成一对双打组合,由于男队员中有两人主攻单打项目,不参与双打组合,这样共有64种组合方式,则此队中男队员的人数有( )A 、10人B 、8人C 、6人D 、12人3.设34)1(6)1(4)1(234-+-+-+-=x x x x S ,则S 等于( )A 、x 4B 、x 4+1C 、(x-2)4D 、x 4+44.学校要选派4名爱好摄影的同学中的3名参加校外摄影小组的3期培训(每期只派1名),由于时间上的冲突,甲、乙两位同学都不能参加第1期培训,则不同的选派方式有( )A 、6种B 、8种C 、10种D 、12种5.甲、乙、丙三个同学在课余时间负责一个计算机房周一至周六的值班工作,每天1人值班,每人值班2天。