人教版九年级上第23章《旋转》检测题

合集下载

人教版九年级数学上册单元清 检测内容:第二十三章 旋转

人教版九年级数学上册单元清 检测内容:第二十三章 旋转

检测内容:第二十三章旋转得分________卷后分________评价________一、选择题(每小题3分,共30分)1.(天水中考)下列图形中,是中心对称图形但不是轴对称图形的是( C )2.如图,△ABC绕点A逆时针旋转至△AEF,其旋转角是( A )A.∠BAE B.∠CAE C.∠EAF D.∠BAF第2题图第4题图第5题图3.(赤峰中考)下列图形绕某一点旋转一定角度都能与原图形重合,其中旋转角度最小的是( C )4.如图,在平面直角坐标系中,把△ABC绕原点O旋转180°得到△CDA,点A,B,C的坐标分别为(-5,2),(-2,-2),(5,-2),则点D的坐标为( A )A.(2,2) B.(2,-2) C.(2,5) D.(-2,5)5.如图,在平面直角坐标系中,A(1,0),B(-2,4),AB绕点A顺时针旋转90°得到AC,则点C的坐标是( C )A.(4,3) B.(4,4) C.(5,3) D.(5,4)6.如图,在平面直角坐标系中,已知菱形OABC的顶点A(1,2),B(3,3).作菱形OABC 关于y轴的对称图形OA′B′C′,再作图形OA′B′C′关于点O的中心对称图形OA″B″C″,则点C的对应点C″的坐标是( A )A.(2,-1) B.(1,-2) C.(-2,1) D.(-2,-1)第6题图第7题图第8题图第10题图7.(海南中考)如图,在Rt △ABC 中,∠C =90°,∠ABC =30°,AC =1 cm ,将Rt △ABC 绕点A 逆时针旋转得到Rt △AB ′C ′,使点C 落在AB 边上,连接BB ′,则BB ′的长度是( B )A .1 cm B. 2 cm C .3 cm D .23 cm8.(苏州中考)如图,在△ABC 中,∠BAC =108°,将△ABC 绕点A 按逆时针方向旋转得到△AB ′C ′.若点B ′恰好落在BC 边上,且AB ′=CB ′,则∠C ′的度数为( C )A .18°B .20°C .24°D .28°9.已知坐标平面上的机器人接受指令“[a ,A ]”(a ≥0,0°<A <180°)后的行动结果为:在原地顺时针旋转A 后,再向面对的方向沿直线行走a .若机器人的位置在原点,面对方向为y 轴的负半轴,则它完成一次指令[2,60°]后,所在位置的坐标为( D )A .(-1,- 3 )B .(-1, 3 )C .( 3 ,-1)D .(- 3 ,-1)10.(孝感中考)如图,点E 在正方形ABCD 的边CD 上,将△ADE 绕点A 顺时针旋转90°到△ABF 的位置,连接EF ,过点A 作EF 的垂线,垂足为点H ,与BC 交于点G .若BG =3,CG =2,则CE 的长为( B )A .54B .154C .4D .92二、填空题(每小题3分,共24分)11.(衡阳中考)如图,点A ,B ,C ,D ,O 都在方格纸的格点上,若△COD 是由△AOB 绕点O 按顺时针方向旋转而得到的,则旋转的角度为__90°__.第11题图 第12题图 第13题图第14题图12.(镇江中考)点O 是正五边形ABCDE 的中心,分别以各边为直径向正五边形的外部作半圆,组成了一幅美丽的图案(如图).这个图案绕点O 至少旋转__72__°后能与原来的图案互相重合.13.(泰安中考)如图,将正方形网格放置在平面直角坐标系中,其中,每个小正方形的边长均为1,点A,B,C的坐标分别为A(0,3),B(-1,1),C(3,1).△A′B′C′是△ABC关于x轴的对称图形,将△A′B′C′绕点B′逆时针旋转180°,点A′的对应点为M,则点M的坐标为__(-2,1)__.14.如图,用等腰直角三角板画∠AOB=45°,并将三角板沿OB方向平移到如图所示的虚线处后绕点M逆时针方向旋转22°,则三角板的斜边与射线OA的夹角α为__22__度.15.如图,在平面直角坐标系中,点A,B,D的坐标分别为(1,0),(3,0),(0,1),点C在第四象限,∠ACB=90°,AC=BC.若△ABC与△A′B′C′关于点D成中心对称,则点C′的坐标为__(-2,3)__.第15题图第16题图第17题图第18题图16.(随州中考)如图,在平面直角坐标系xOy中,菱形OABC的边长为2,点A在第一象限,点C在x轴的正半轴上,∠AOC=60°,若将菱形OABC绕点O顺时针旋转75°,得到四边形OA′B′C′,则点B的对应点B′的坐标为17.在Rt△ABC中,已知∠C=90°,∠B=50°,点D在边BC上,BD=2CD(如图),把△ABC绕着点D逆时针旋转m(0<m<180)度后,如果点B恰好落在初始Rt△ABC的边上,那么m=__80或120__.18.(新疆中考)如图,在△ABC中,AB=AC=4,将△ABC绕点A顺时针旋转30°,得到△ACD,延长AD交BC的延长线于点E,则DE的长为.三、解答题(共66分)19.(6分)如图,AC是正方形ABCD的对角线,△ABC经过旋转后到达△AEF的位置.(1)指出它的旋转中心;(2)说出它的旋转方向和旋转角是多少度;(3)分别写出点A,B,C的对应点.解:(1)它的旋转中心为点A(2)它的旋转方向为逆时针方向,旋转角是45度(3)点A,B,C的对应点分别为点A,E,F20.(6分)(枣庄中考)如图,在4×4的方格纸中,△ABC的三个顶点都在格点上.(1)在图①中,画出一个与△ABC成中心对称的格点三角形;(2)在图②中,画出一个与△ABC成轴对称且与△ABC有公共边的格点三角形;(3)在图③中,画出△ABC 绕着点C 按顺时针方向旋转90°后的三角形.题图答图解:(1)答案不唯一.如图所示,△DCE 为所求作 (2)答案不唯一.如图所示,△ACD 为所求作 (3)如图所示,△ECD 为所求作21.(9分)(绥化中考)如图,在边长均为1个单位长度的小正方形组成的网格中,点A ,点B ,点O 均为格点(每个小正方形的顶点叫做格点).(1)作点A 关于点O 的对称点A 1;(2)连接A 1B ,将线段A 1B 绕点A 1顺时针旋转90°得点B 对应点B 1,画出旋转后的线段A 1B 1;(3)连接AB 1,求出四边形ABA 1B 1的面积.解:(1)如图所示,点A 1即为所求(2)如图所示,线段A 1B 1即为所求(3)如图,连接BB 1,过点A 作AE ⊥BB 1,过点A 1作A 1F ⊥BB 1,则S 四边形ABA 1B 1=S△ABB 1+S △A 1BB 1 =12 ×8×2+12×8×4=24 22.(9分)如图,把正方形ABCD 绕点C 按顺时针方向旋转45°得到正方形A ′B ′CD ′(此时,点B ′落在对角线AC 上,点A ′落在CD 的延长线上),A ′B ′交AD 于点E ,连接AA ′,CE .求证:(1)△ADA ′≌△CDE ;(2)直线CE 是线段AA ′的垂直平分线.证明:(1)由正方形的性质及旋转得AD =DC ,∠ADC =90°,AC =A ′C ,∠DA ′E =45°,∠ADA ′=∠CDE =90°,∴∠DEA ′=∠DA ′E =45°,∴DA ′=DE ,∴△ADA ′≌△CDE (2)由正方形的性质及旋转得CD =CB ′,∠CB ′E =∠CDE =90°,又CE =CE ,∴Rt △CEB ′≌Rt △CED ,∴∠B ′CE =∠DCE ,∵AC =A ′C ,∴直线CE 是线段AA ′的垂直平分线23.(10分)在Rt △ABC 中,∠ABC =90°,∠BAC =30°,将△ABC 绕点A 顺时针旋转一定的角度α得到△AED ,点B ,C 的对应点分别是E ,D .(1)如图①,当点E 恰好在AC 上时,求∠CDE 的度数;(2)如图②,若α=60°时,点F 是边AC 中点,求证:四边形BFDE 是平行四边形. 解:(1)∵∠ABC =90°,∠BAC =30°,∴∠ACB =60°,∵△ABC 绕点A 顺时针旋转α得到△AED ,点E 恰好在AC 上,∴CA =AD ,∠EAD =∠BAC =30°,∴∠ACD =∠ADC =12(180°-30°)=75°,∵∠EDA =∠ACB =60°,∴∠CDE =∠ADC -∠EDA =15° (2)证明:∵点F 是边AC 中点,∴BF =AF =12 AC ,∵∠BAC =30°,∴BC =12AC ,∠FBA =∠BAC =30°,∴BF =BC ,∵△ABC 绕点A 顺时针旋转60°得到△AED ,∴∠BAE =∠CAD =60°,CB =DE ,∠DEA =∠ABC =90°,∴DE =BF ,如图②,延长BF 交AE 于点G ,则∠BGE =∠GBA +∠BAG =90°,∴∠BGE =∠DEA ,∴BF ∥ED ,∴四边形BFDE 是平行四边形24.(12分)如图①,将两个完全相同的三角形纸片ABC 和DEC 重合放置,其中∠C =90°.若固定△ABC ,将△DEC 绕点C 旋转.(1)当△DEC 绕点C 旋转到点D 恰好落在AB 边上时,如图②.①当∠B =∠E =30°时,此时旋转角的大小为__60°__;②当∠B =∠E =α时,此时旋转角的大小为__2α__;(用含a 的式子表示)(2)当△DEC 绕点C 旋转到如图③所示的位置时,小杨同学猜想:△BDC 的面积与△AEC 的面积相等.试判断小杨同学的猜想是否正确,若正确,请你证明小杨同学的猜想;若不正确,请说明理由.题图 答图解:(2)小扬同学猜想是正确的,证明如下:过点B 作BN ⊥CD 于点N ,过点E 作EM ⊥AC 于点M ,∵∠ACB =∠DCE =90°,∴∠1+∠2=90°,∠3+∠2=90°,∴∠1=∠3.∵BN ⊥CD ,EM ⊥AC ,∴∠BNC =∠EMC =90°.∵△ACB ≌△DCE ,∴BC =EC ,∴△CBN ≌△CEM ,∴BN =EM ,∵S △BDC =12 ·CD ·BN ,S △ACE =12·AC ·EM ,且CD =AC ,∴S △BDC =S △ACE25.(14分)感知:如图①,在等腰直角三角形ABC 中,∠ACB =90°,BC =m ,将边AB 绕点B 顺时针旋转90°得到线段BD ,过点D 作DE ⊥CB 交CB 的延长线于点E ,连接CD .(1)求证:△ACB ≌△BED ;(2)△BCD 的面积为__12 m 2__;(用含m 的式子表示) 拓展:如图②,在一般的Rt △ABC 中,∠ACB =90°,BC =m ,将边AB 绕点B 顺时针旋转90°得到线段BD ,连接CD ,用含m 的式子表示△BCD 的面积,并说明理由;应用:如图③,在等腰△ABC 中,AB =AC ,BC =8,将边AB 绕点B 顺时针旋转90°得到线段BD ,连接CD ,则△BCD 的面积为__16__;若BC =m ,则△BCD 的面积为__14 m 2__.(用含m 的式子表示)解:感知:(1)证明:∵△ABC 是等腰直角三角形,∴CA =CB =m ,∠A =∠ABC =45°,由旋转的性质可知,BA =BD ,∠ABD =90°,∴∠DBE =45°=∠A ,又∵∠ACB =∠E =90°,∴△ACB ≌△BED拓展:作DG ⊥CB 交CB 的延长线于点G ,∵∠ABD =90°,∴∠ABC +∠DBG =90°,又∠ABC +∠A =90°,∴∠A =∠DBG .又∵∠ACB =∠G ,AB =BD ,∴△ACB ≌△BGD ,∴BC =DG =m ,∴S △BCD =12 BC ·DG =12m 2应用:点拨:作AN ⊥BC 于点N ,DM ⊥BC 交CB 的延长线于点M ,易证△ANB ≌△BMD (AAS),∴BN =DM =12 BC =4.∴S △BCD =12 BC ·DM =12×8×4=16,若BC =m ,则BN =DM =12 BC =12 m ,∴S △BCD =12 BC ·DM =12 ×m ×12 m =14m 2。

人教版九年级上第23章《旋转》检测题(110分制)

人教版九年级上第23章《旋转》检测题(110分制)

满分:110分 时间:90分钟 班级:_______ 姓名:________第Ⅰ卷(选择题,共36分)一、选择题(本大题共12小题,每小题3分,共36分。

每道题只有一个最佳选项,多选、错选或不选均不得分。

请将选择题答案正确填写在答题卷表格内。

) 1.如果一个四边形ABCD 是中心对称图形,那么这个四边形一定是( ) A .等腰梯形 B .矩形 C .菱形 D .平行四边形2.如图,把图中的△ABC 经过一定的变换得到△A′B′C′,如果图中△ABC 上的点P 的坐标为(a ,b ),那么它的对应点P′的坐标为( ) A .(a -2,b ) B .(a +2,b ) C .(-a -2,-b ) D .(a +2,-b )3.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .4.下列各物体中,是一样的为( )A .(1)与(2)B .(1)与(3)C .(1)与(4)D .(2)与(3)5.如图,△ACD 和△AEB 都是等腰直角三角形,∠CAD =∠EAB =90°,四边形ABCD 是平行四边形,下列结论中错误的是( ) A .△ACE 以点A 为旋转中心,逆时针方向旋转90°后与△ADB 重合 B .△ACB 以点A 为旋转中心,顺时针方向旋转270°后与△DAC 重合 C .沿AE 所在直线折叠后,△ACE 与△ADE 重合 D .沿AD 所在直线折叠后,△ADB 与△ADE 重合 6.如图所示,已知△ABC 和△BDE 都是等边三角形,且A 、B 、D 三点共线.下列结论:①AE=CD ;②BF=BG ;③HB 平分∠AHD ;④∠AHC =60°,⑤△BFG 是等边三角形;⑥FG ∥AD .其中正确的有( ) A .3个 B .4个 C .5个 D .6个7.如图,在直角梯形ABCD 中,AD ∥BC ,∠C =90°,AD =5,BC =9,以A 为中心将腰AB 顺时针旋转90°至AE ,连接DE ,则△ADE 的面积等于( ) A .10 B .11 C .12 D .138.如图,在Rt △ABC 中,∠ACB =90°,∠A =30°,BC =2.将△ABC 绕点C 按顺时针方向旋转n 度后得到△EDC ,此时点D 在AB 边上,斜边DE 交AC 边于点F ,则n 的大小和图中阴影部分的面积分别为( ) A .30,2B .60,2第2题图第5题图第6题图第7题图(1)(2) (3) (4) 第4题图 人教版数学第23章《旋转》测试题C .60,32D .60, 39.如图,平面直角坐标系中,OB 在x 轴上,∠ABO =90°,点A 的坐标为(1,2),将△AOB 绕点A 逆时针旋转90°,点O 的对应点C 恰好落在双曲线y=k/x (x >0)上,则k 的值为( ) A .6 B .4 C .3 D .210.在下图右侧的四个三角形中,不能由△ABC 经过旋转或平移得到的是()第10题图A .A 图B .B 图C .C 图D .D 图 11.如图,在Rt △ABC 中,AB=AC ,D 、E 是斜边BC 上两点,且∠DAE =45°,将△ADC 绕点A 顺时针旋转90°后,得到△AFB ,连接EF ,下列结论: ①△AED ≌△AEF ;②AE :BE =AD :CD ;③△ABC 的面积等于四边形AFBD 的面积;④BE 2+DC 2=DE 2 ⑤BE+DC=DE 其中正确的是( )A .①②④B .③④⑤C .①③⑤D .①③④ 12.根据指令[s ,A ](s ≥0,0°<A ≤360°),机器人在平面上完成下列动作:先原地逆时针旋转角度A ,再朝其面对的方向行走s 个单位.现机器人在平面直角坐标系的原点,且面对x 轴的正方向,如果输入指令为[1,45°],那么连续执行三次这样的指令,机器人所在位置的坐标是( )A .(0,3 2 2 )B .( 2 2 , 2 2 )C .( 2 2 , 2+12,)D .(0,1+ 2 )第Ⅱ卷(非选择题,共74分)二、填空题(本大题共6小题,每小题3分,共18分)13.给出以下4个图形:①平行四边形,②正方形,③等边三角形,④圆.其中,既是轴对称图形又是中心对称图形的是________________(填序号)14.如图,正方形ABCD 边长为2,E 为CD 的中点,以点A 为中心,把△ADE 顺时针旋转90°得△ABF ,连接EF ,则EF 的长等于__________.15.如图等边三角形AOB ,绕点O 逆时针旋转到△COD 的位置,设旋转角 为α,AC 、BD 相交于点E ,AC 与OB 相交于点M ,BD 与OC 相交于点N ,写出图中一对全等的三角形是: ________________(写出一对即可) 16.如图,在△ABC 中,∠ACB =90°,AC =BC ,点P 在△ABC 内,△AP ′C 是由△BPC绕着点C 旋转得到的,PA = 5 ,PB =1,∠BPC =135°.则PC =_______________17.如图,在直角坐标系中,射线OA 与x 轴正半轴重合,以O 为旋转中心将OA 逆时针旋转:OA →OA 1→OA 2→…→OAn …,旋转角∠AOA1=2°,∠A 1OA 2=4°,∠A 2OA 3=8°,…要求下一个旋转角(不超过360°)是前一个旋转角的2倍.当旋转角大于360°时,又从2°开始旋转,即∠A 8OA 9=2°,∠A 9OA 10=4°,…周而复始.则当OA n 与y 轴正半轴第一次重合时,n 的值为_________________.(提示:2+22+23+24+25+26+27+28=510)第9题图第11题图 第14题图第15题图18.如图,是4×4的正方形网格,把其中一个标有数字的白色小正方形涂黑,就可以使图中的黑色部分构成一个中心对称图形,则这个白色小正方形内的数字是__________.三、解答题(本大题共6小题,其中19题7分,20题8分,21题9分,22题10分23题12分,24题12分,共56分,要写出必要的解答过程) 19.(7分)如图,在菱形ABCD 中,∠BAD =60°,把菱形ABCD 绕点A 按逆时针方向旋转α°,得到菱形AB′C′D ′. (1)(3分)当α的度数为________时,射线AB ′经过点C (此时射线AD 也经过点C ′); (2)(4分)在(1)的条件下,求证:四边形B′CC′D 是等腰梯形.20.(8分)如图,在平面直角坐标系中,Rt △ABC 的三个顶点分别是A (-3,2),B (0,4),C (0,2). (1)(3分)将△ABC 以点C 为旋转中心旋转180°,画出旋转后对应的△A 1B 1C 1;平移△ABC 若点A 的对应点A 2的坐标为(0,-4),画出平移后对应的△A 2B 2C 2; (2)(3分)若将△A 1B 1C 1绕某一点旋转可以得到△A 2B 2C 2;请直接写出旋转中心的坐标; (3)(2分)在x 轴上有一点P ,使得P A+PB 的值最小,请直接写出点P 的坐标. 21.(9分)在平面直角坐标系中,如图所示,△AOB 是边长为2的等边三角形,将△AOB 绕着点B 按顺时针方向旋转得到△DCB ,使得点D 落在x 轴的正半轴上,连接OC ,AD . (1)(3分)求证:OC =AD ; (2)(3分)求OC 的长; (3)(3分)求过A 、D 两点的直线的解析式. 22.(10分)如图1所示,将一个边长为2的正方形ABCD 和一个长为2、宽为1的长方形CEFD 拼在一起,构成一个大的长方形ABEF .现将小长方形CEFD 绕点C 顺时针旋转至CE′F′D′,旋转角为a . (1)(3分)当点D ′恰好落在EF 边上时,求旋转角a 的值; (2)(3分)如图2,G 为BC 中点,且0°<a <90°,求证:GD′=E′D ; (3)(4分)小长方形CEFD 绕点C 顺时针旋转一周的过程中,△DCD ′与△GBD ′能否全等?若能,直接写出旋转角a 的值;若不能说明理由.第16题图第18题图第17题图第19题图 第20题图 第21题图23.(12分)数学是丰富多彩的,想学好数学,就要学会探究、思考。

九年级数学上册第二十三章《旋转》测试卷-人教版(含答案)

九年级数学上册第二十三章《旋转》测试卷-人教版(含答案)

九年级数学上册第二十三章《旋转》测试卷-人教版(含答案)一、选择题(共10小题)1. 下列图形中,是轴对称图形但不是中心对称图形的是( )A. 正三角形B. 正方形C. 正六边形D. 圆2. 如图,在△ABC中,AB=2,BC=3.6,∠B=60∘,将△ABC绕点A顺时针旋转一定角度得到△ADE,当点B的对应点D恰好落在BC边上时,CD的长为( )A. 1.6B. 1.8C. 2D. 2.63. 平面直角坐标系内的点A(−(12)−1,1)与点B(∣−2∣,−1)关于( )A. y轴对称B. x轴对称C. 原点对称D. 以上都不对4. 如图,紫荆花图案绕中心至少旋转x∘后能与原来的图案互相重合,则x的值为( )A. 36B. 45C. 60D. 725. 下列图形中是中心对称图形的有( )个.A. 1B. 2C. 3D. 46. 如图,紫荆花图案旋转一定角度后能与自身重合,则旋转的角度是( )A. 30∘B. 60∘C. 72∘D. 90∘7. 勾股定理是“人类最伟大的十个科学发现之一”.我国对勾股定理的证明是由汉代的赵爽在注解《周髀算经》时给出的,他用来证明勾股定理的图案被称为“赵爽弦图”.2002年在北京召开的国际数学大会选它作为会徽.下列图案中是“赵爽弦图”的是( )A. B.C. D.8. 如图,在△ABC中,∠BAC=120∘,将△ABC绕点C逆时针旋转得到△DEC,点A,B的对应点分别为D,E,连接AD.当点A,D,E在同一条直线上时,下列结论一定正确的是( )A. ∠ABC=∠ADCB. CB=CDC. DE+DC=BCD. AB∥CD9. 已知一次函数y=kx+b(k≠0)经过(2,−1),(−3,4)两点,则它的图象不经过( ).A. 第一象限B. 第二象限C. 第三象限D. 第四象限10. △ABC中,AB=15,AC=13,高AD=12,则△ABC的周长为( )A. 42B. 32C. 42或32D. 37或33二、填空题(共8小题)11. 如图,△ABC中,∠BAC=30∘,将△ABC绕点A按顺时针方向旋转85∘,对应得到△ADE,则∠CAD=∘.12. (1)等边三角形绕中心至少旋转∘与自身重合;(2)正方形绕中心至少旋转∘与自身重合;(3)五角星绕中心至少旋转∘与自身重合;(4)正n边形绕中心至少旋转∘与自身重合.13. 已知A(2,4),B(6,2),以原点为位似中心,将线段AB缩小为原来的一半,则A的对应点坐标为.14. 七巧板是我们祖先的一项卓越创造,被誉为“东方魔板”,小明利用七巧板(如图①所示)中各板块的边长之间的关系拼成一个凸六边形(如图②所示),则该凸六边形的周长是cm.15. 如图,将矩形ABCD绕点A旋转至矩形ABʹCʹDʹ的位置,此时ACʹ的中点恰好与D点重合,ABʹ交CD于点E.若AB=3,则△AEC的面积为.16. 已知直角坐标系内有A(−1,2),B(3,0),C(1,4),D(x,y)四个点.若以A,B,C,D为顶点的四边形是平行四边形,则点D的坐标为.17. 如图,在Rt△ABC中,∠ACB=90∘,将△ABC绕顶点C逆时针旋转得到△AʹBʹC,M是BC的中点,N是AʹBʹ的中点,连接MN,若BC=4,∠ABC=60∘,则线段MN的最大值为.18. 如图在Rt△ABC中,AB=AC,∠ABC=∠ACB=45∘,D,E是斜边BC上两点,且∠DAE=45∘,若BD=3,CE=4,S△ADE=15,则△ABD与△AEC的面积之和是.三、解答题(共5小题)19. 请回答下列问题.(1)如图,点A与Aʹ关于原点对称,写出Aʹ坐标.(2)如图,点A与Aʹ关于原点对称,写出Aʹ坐标.20. 如图所示,△ABC是等边三角形,D是BC延长线上一点,△ACD经过旋转后到达△BCE的位置.(1)旋转中心是,逆时针旋转了度;(2)如果M是AD的中点,那么经过上述旋转后,点M转到的位置为.21. 已知:四边形ABCD(如图).(1)画出四边形A1B1C1D1,使四边形A1B1C1D1与四边形ABCD关于直线MN成轴对称;(2)画出四边形A2B2C2D2,使四边形A2B2C2D2与四边形ABCD关于点O成中心对称;(3)四边形A1B1C1D1与四边形A2B2C2D2是对称图形吗?若是,请在图上画出对称轴或对称中心.22. 如图,已知菱形ABCD的对角线AC与BD相交于点O,AE垂直且平分边CD,垂足为E.求∠BCD的度数.OA<OM=ON),∠AOB=∠MON= 23. 如图,已知△AOB和△MON都是等腰直角三角形(√2290∘.(1)如图①,连接AM,BN,求证:△AOM≌△BON;(2)若将△MON绕点O顺时针旋转,①如图②,当点N恰好在AB边上时,求证:BN2+AN2=2ON2;②当点A,M,N在同一条直线上时,若OB=4,ON=3,请直接写出线段BN的长.参考答案1. A【解析】A.正三角形是轴对称图形但不是中心对称图形,故本选项符合题意;B.正方形既是轴对称图形,又是中心对称图形,故本选项不合题意;C.正六边形既是轴对称图形,又是中心对称图形,故本选项不合题意;D.圆既是轴对称图形,又是中心对称图形,故本选项不合题意.2. A【解析】由旋转的性质可得,AD =AB ,∵∠B =60∘,∴△ADB 为等边三角形,∴BD =AB =2,∴CD =CB −BD =1.6.3. C【解析】∵−(12)−1=−2,∴A 点坐标为 (−2,1),∵∣−2∣=2,∴B 点坐标为 (2,−1),∵−2 与 2 互为相反数,1 与 −1 互为相反数,∴ 点 A (−2,1) 与点 B (2,−1) 关于原点对称.4. D5. B6. C7. B【解析】“赵爽弦图”是由四个全等的直角三角形和中间的小正方形拼成的一个大正方形, 8. D【解析】由旋转的性质得出 CD =CA ,∠EDC =∠CAB =120∘,∵ 点 A ,D ,E 在同一条直线上,∴∠ADC =60∘,∴△ADC 为等边三角形,∴∠DAC =60∘,∴∠BAD =60∘=∠ADC ,∴AB ∥CD .9. C【解析】将(2,−1)与(−3,4)分别代入一次函数解析式y=kx+b中,得到一次函数解析式为y=−x+1,不经过第三象限.10. C【解析】分两种情况:①如图,当△ABC是锐角三角形时,∵AD是△ABC的高,∴AD⊥BC,∴∠ADB=∠ADC=90∘,∵AB=15,AD=12,∴在Rt△ABD中,BD2=AB2−AD2=152−122=81=92,∴BD=9,∵AC=13,AD=12,∴在Rt△ACD中,CD2=AC2−AD2,132−122=25=52,∴CD=5,∴△ABC的周长为15+13+9+5=42;②如图,当△ABC是钝角三角形时,由①可知,BD=9,CD=5,∴BC=BD−CD=9−5=4,∴△ABC的周长为15+13+4=32.故选C.11. 5512. 120,90,72∘,360n13. (1,2)或(−1,−2)14. (32√2+16)15. √3【解析】由旋转的性质可知ACʹ=AC,∵D为ACʹ的中点,∴AD=12ACʹ=12AC,∵四边形ABCD是矩形,∴AD⊥CD,∴∠ACD=30∘,∵AB∥CD,∴∠CAB=30∘,∴∠CʹABʹ=∠CAB=30∘,∴∠EAC=30∘,∴AE=EC,∴DE=12AE=12EC,∴CE=23CD=23AB=2,DE=1,∴AD=√3,∴S△AEC=12EC⋅AD=√3.16. (1,−2)或(5,2)或(−3,6)【解析】由图象可知,满足条件的点D的坐标为(1,−2)或(5,2)或(−3,6).17. 6【解析】连接CN.在Rt△ABC中,∵∠ACB=90∘,∠B=60∘,∴∠A=30∘,∴AB=AʹBʹ=2BC=8,∵N是AʹBʹ的中点,AʹBʹ=4,∴CN=12∵CM=BM=2,∴MN≤CN+CM=6,∴MN的最大值为6.18. 21【解析】将△AEC顺时针方向旋转90∘至△AFB,过点A作AH⊥BC于H,根据旋转的性质可得△AEC≌△ABF,∴∠ABF=∠ACD=45∘,∠BAF=∠CAE,AE=AF,∴∠FBE=45∘+45∘=90∘,BF=CE,∴BD2+BF2=DF2,∵∠DAE=45∘,∴∠BAD+∠CAE=45∘,∴∠BAD+∠BAF=45∘,∴∠DAE=∠DAF,又∵AD=AD,∴△DAE≌△DAF(SAS),∴DE=DF,∴BD2+BF2=DE2,∵BD=3,CE=4,∴DE=5,∴BC=BD+DE+CE=12,∵AB=AC,∠BAC=90∘,AH⊥BC,∴AH=BH=CH=12BC=6,∴△ABD与△AEC的面积之和:=12×BD×AH+12×CE×AH=12×(3+4)×6=21.19. (1)Aʹ(−2,−1)(2)Aʹ(1,−2) 20. (1)点C;60(2)BE的中点21. (1)图略(2)图略(3)图略22. 由条件可推出AC=AD,即△ACD,△ACB都是等边三角形,于是可得∠BCD=120∘.23. (1)因为∠AOB=∠MON=90∘,所以∠AOM=∠BON,在△AOM和△BON中,{AO=BO,∠AOM=∠BON, OM=ON,所以△AOM≌△BON(SAS).(2)①如图1,连接AM.同(1)可证△AOM≌△BON,∴AM=BN,∠OAM=∠B=45∘.∵∠OAB=∠B=45∘,∴∠MAN=∠OAM+∠OAB=90∘,∴在Rt△AMN中,MN2=AN2+AM2.∵△MON是等腰直角三角形,∴MN2=2ON2,∴BN2+AN2=2ON2.②BN=√46−3√22.【解析】②如图2,设OA交BN于J,过点O作OH⊥MN于H.∵△AOM ≌△BON ,∴AM =BN ,∵OM =ON =3,∠MON =90∘,OH ⊥MN , ∴MN =3√2,MH =HN =OH =3√22, ∴AH =√OA 2−OH 2=√42−(3√22)2=√462, ∴BN =AM =MH +AH =√46+3√22. 如图 3,同法可证 BN =AM =√46−3√22.。

人教版九年级数学上册第二十三章《旋转》测试带答案解析

人教版九年级数学上册第二十三章《旋转》测试带答案解析

人教版九年级数学上册第二十三章《旋转》测试带答案解析学校:___________姓名:___________班级:___________考号:___________一、单选题(本大题12个小题,每小题4分,共48分)1.下列图形中既是轴对称图形又是中心对称图形的是()A.B.C.D.2.下列垃圾分类的标志中,既是轴对称图形又是中心对称图形的是()A.可回收物B.厨余垃圾C.有害垃圾D.其它垃圾物3.下列垃圾分类图标分别表示:“可回收垃圾”、“有害垃圾”、“厨余垃圾”、“其它垃圾”,其中既是轴对称图形,又是中心对称图形的是()A.B.C.D.4.观察下列图形,其中既是轴对称图形又是中心对称图形的是()A.B.C.D.5.下列图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.6.为推动世界冰雪运动的发展,我国将于2022年举办北京冬奥会.在此之前进行了冬奥会会标的征集活动,以下是部分参选作品,其文字上方的图案既是轴对称图形又是中心对称图形的是()A.B.C.D.7.2022年油价多次上涨,新能源车企迎来了更多的关注,如图是理想、蔚来、小鹏、哪吒四款新能源汽车的标志,其中既是轴对称图形,又是中心对称图形的是()A.B.C.D.8.如图,在平面直角坐标系中,△ABC的边AB⊥x轴,A(﹣2,0),C(﹣4,1),二次函数y=x2﹣2x﹣3的图象经过点B.将△ABC沿x轴向右平移m(m>0)个单位,使点A平移到点A′,然后绕点A'顺时针旋转90°,若此时点C的对应点C′恰好落在抛物线上,则m的值为()A B C D .9.如图,将ABC 绕点A 逆时针旋转40︒得到ADE ,AD 与BC 相交于点F ,若80E ∠=︒且AFC 是以线段FC 为底边的等腰三角形,则BAC ∠的度数为( )A .55︒B .60︒C .65︒D .70︒10.如图,在平面内将五角星绕其中心旋转180︒后所得到的图案是( )A .B .C .D .11.如图,矩形ABCD 中,AD =2,ABAC 上有一点G (异于A ,C ),连接 DG ,将△AGD 绕点A 逆时针旋转60°得到△AEF ,则BF 的长为( )A B .C D .=60°,在x 轴正半轴上有一点C ,点C 坐标为()1,0,将线段AC 绕点A 逆时针旋转120°,得线段AD ,连接BD .则BD 的长度为( )A .B .4CD .152二、填空题(本大题4个小题,每小题4分,共16分)13.点(6,1)-关于原点的对称点是__________.14.如图,在ABC 中,80ACB ∠=︒,将ABC 在平面内绕点A 逆时针旋转到AB C ''△的位置,使CC '平分B C A ''∠,则旋转角的度数为__________.15.如图,在ABC 中,70CAB ∠=︒,在同一平面内,将ABC 绕点A 逆时针旋转到AB C ''△的位置,使CC AB '∥,作B D AC '∥交BC 于点D ,则AB D '∠=______.16.如图,在ABC 中,90B ,4AB BC ==,将ABC 绕点A 逆时针旋转60︒,得到ADE ,则点D 到BC 的距离是______.三、解答题(共9个小题,17、18每小题8分,19-25每小题10分,共86分)17.如图所示的正方形网格中,画出将△ABC 绕点C 逆时针旋转90°得到的△MNC ,A 、B 的对应点分别为M 、N .18.如图,ABC 的顶点坐标分别为(4,5)A -,(5,2)B -,(3,4)C -.(1)画出与ABC 关于原点O 对称的111A B C △,并写出点1A 的坐标为___________.(2)D 是x 轴上一点,使DB DC 的值最小,画出点D (保图痕迹),D 点坐标为___________.(3)(,0)P t 是x 轴上的动点,将点C 绕点P 顺时针旋转90︒至点E ,直线25y x =-+经过点E ,则t 的值为___________.19.阅读理解,并解答问题:观察发现:如图1是一块正方形瓷砖,分析发现这块瓷砖上的图案是按图2所示的过程设计的,其中虚线所在的直线是正方形的对称轴.问题解决:用四块如图1所示的正方形瓷砖按下列要求拼成一个新的大正方形,并在图3和图4中各画一种拼法.(1)图3中所画拼图拼成的图案是轴对称图形,但不是中心对称图形;(2)图4中所画拼图拼成的图案既是轴对称图形,又是中心对称图形.20.如图,在平面直角坐标系内,ABC 的顶点坐标分别为(4,4)A -,(2,5)B -,(2,1)C -.(1)平移ABC ,使点C 移到点1(2,2)C ,画出平移后的111A B C △;(2)将ABC 绕点(0,0)旋转180︒,得到222A B C △,画出旋转后的222A B C △;(3)连接12A C ,21A C ,求四边形1221A C A C 的面积.21.如图,在平面直角坐标系中,点A 的坐标为()1,1,点B 的坐标为()4,1,点C 的坐标为()3,3.(1)画出将ABC 向下平移5个单位长度得到的111A B C △;(2)画出将ABC 绕点原点O 逆时针旋转90°后得到的222A B C △,写出2C 的坐标.22.如图,在△ABC 中,AB =AC ,∠BAC =α,点D 在边BC 上(不与点B ,C 重合),连接AD ,以点A 为中心,将线段AD 逆时针旋转180°﹣α得到线段AE ,连接BE .(1)∠BAC +∠DAE = °;(2)取CD 中点F ,连接AF ,用等式表示线段AF 与BE 的数量关系,并证明.23.对于平面直角坐标系xOy 中的图形M 和点P ,给出如下定义:将图形M 绕点P 顺时针旋转90 得到图形N ,图形N 称为图形M 关于点P 的“垂直图形”.例如,图1中点D 为点C 关于点P 的“垂直图形”.(1)点A 关于原点O 的“垂直图形”为点B .①若点A 的坐标为()0,3,则点B 的坐标为___________;②若点B 的坐标为()3,1,则点A 的坐标为___________;(2)(3,3)E -,(2,3)F -,(,0)G a ,线段EF 关于点G 的“垂直图形”记为E F '',点E 的对应点为E ',点F 的对应点为F '.①求点E '的坐标(用含a 的式子表示);②若O 的半径为2E F '',上任意一点都在O 内部或圆上,直接写出满足条件的EE '的长度的最大值.24.已知AOB 和MON △都是等腰直角三角形OM OA ⎫<<⎪⎪⎝⎭,90AOB MON ∠=∠=︒.(1)如图1,连接AM ,BN ,求证:AM BN =;(2)将MON △绕点O 顺时针旋转.①如图2,当点M 恰好在AB 边上时,求证:2222AM BM OM +=;②当点A ,M ,N 在同一条直线上时,若4OA =,3OM =,请直接写出线段AM 的长.25.如图,在Rt ABC △中,90BAC ∠=︒,将Rt ABC △绕点A 旋转一定的角度得到Rt ADE △,且点E 恰好落在边BC 上.(1)求证:AE 平分CED ∠;(2)连接BD ,求证:90DBC ∠=︒.参考答案:1.C【分析】根据中心对称图形的定义:把一个图形绕某一点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形就叫做中心对称图形;轴对称图形的定义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形.【详解】解:A.是轴对称图形,不是中心对称图形,故本选项不符合题意;B.既不是轴对称图形,也不是中心对称图形,故本选项不符合题意;C.既是轴对称图形,又是中心对称图形,故本选项符合题意;D.既不是轴对称图形,也不是中心对称图形,故本选项不符合题意.故选:C【点睛】本题考查了中心对称图形与轴对称图形的概念,正确掌握相关定义是解题关键.2.C【分析】根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解.【详解】解:A.既不是中心对称图形,也不是轴对称图形,故本选项不合题意;B.不是中心对称图形,是轴对称图形,故本选项不合题意;C.既是中心对称图形又是轴对称图形,故本选项符合题意;D.既不是中心对称图形,也不是轴对称图形,故本选项不合题意.故选:C.【点睛】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.B【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A.既不是轴对称图形,也不是中心对称图形.故本选项不合题意;B.既是轴对称图形,又是中心对称图形.故本选项符合题意;C.是轴对称图形,不是中心对称图形.故本选项不合题意;D.既不是轴对称图形,也不是中心对称图形.故本选项不合题意.故选:B.【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.4.D【分析】根据轴对称图形和中心对称图形的定义进行判断即可.【详解】A是轴对称图形不是中心对称图形,不符合题意;B是轴对称图形不是中心对称图形,不符合题意;C既不是轴对称图形也不是中心对称图形,不符合题意;D既是轴对称图形又是中心对称图形,符合题意;故选:D.【点睛】本题考查了轴对称图形和中心对称图形的定义,即轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.5.A【分析】根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解.【详解】解:A.既是轴对称图形,又是中心对称图形,故本选项符合题意;B.是轴对称图形,不是中心对称图形,故本选项不合题意;C.不是轴对称图形,是中心对称图形,故本选项不合题意;D.是轴对称图形,不是中心对称图形,故本选项不合题意.故选:A.【点睛】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.6.B【分析】根据轴对称图形及中心对称图形的概念可直接进行排除选项.【详解】解:A、文字上方的图案既不是轴对称图形也不是中心对称图形,故不符合题意;B、文字上方的图案既是轴对称图形也是中心对称图形,故符合题意;C、文字上方的图案是轴对称图形但不是中心对称图形,故不符合题意;D、文字上方的图案既不是轴对称图形,也不是中心对称图形,故不符合题意;故选B.【点睛】本题主要考查轴对称图形及中心对称图形的识别,熟练掌握轴对称图形及中心对称图形的概念是解题的关键.7.C【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A.既不是轴对称图形,也不是中心对称图形.故本选项不合题意;B.是轴对称图形,不是中心对称图形.故本选项不符合题意;C.既是轴对称图形又是中心对称图形.故本选项符合题意;D.是轴对称图形,不是中心对称图形.故本选项不合题意.故选:C.【点睛】此题考查中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180°后与原图重合.8.C【分析】作CD⊥AB于D,C'D'⊥A'B'于D',先根据已知条件求出点B坐标,由A、B、C三点坐标可得CD=2,AD=1.设点A(﹣2,0)向右平移m个单位后得点A'(m>0),则点A'坐标为(m﹣2,0).进而表示出点C'的坐标为(m﹣1,2),最后将C'坐标代入二次函数解析式中计算即可得到点C坐标.【详解】解:作CD⊥AB于D,C'D'⊥A'B'于D',∵AB⊥x轴,二次函数y=x2﹣2x﹣3的图象经过点B,∴点B(﹣2,5)∵A(﹣2,0),C(﹣4,1),∴CD=2,AD=1.设点A(﹣2,0)向右平移m个单位后得点A'(m>0),则点A'坐标为(m﹣2,0).∵A'D'=AD=1,C'D'=CD=2,∴点C'坐标为(m﹣1,2),又点C'在抛物线上,∴把C'(m﹣1,2)代入y=x2﹣2x﹣3中,得:(m ﹣1)2﹣2(m ﹣1)﹣3=2,整理得:m 2﹣4m ﹣2=0.解得:m 1=m 2=2(舍去).故选:C .【点睛】此题考查了二次函数图象上点的坐标特点,平移的性质,解一元二次方程,正确理解平移的性质是解题的关键.9.B【分析】由旋转的性质得出80E C ∠=∠=︒,40BAD ∠=︒,由等腰三角形的性质得出80C AFC ∠=∠=︒,求出20CAF ∠=︒,根据BAC BAD CAF ∠=∠+∠即可得出答案. 【详解】解:将ABC 绕点A 逆时针旋转40︒得到ADE ,且80E ∠=︒,80E C ∴∠=∠=︒,40BAD ∠=︒,又AFC 是以线段FC 为底边的等腰三角形,AC AF ∴=,80C AFC ∴∠=∠=︒,180180808020CAF C AFC ∴∠=︒-∠-∠=︒-︒-︒=︒,402060BAC BAD CAF ∴∠=∠+∠=︒+︒=︒,故选:B .【点睛】本题考查了旋转的性质、等腰三角形的性质、三角形内角和定理,熟练掌握旋转的性质是解题的关键.10.C【分析】根据旋转的性质找出阴影部分三角形的位置即可得答案.【详解】∵将五角星绕其中心旋转180︒,∴图中阴影部分的三角形应竖直向下,故选:C .【点睛】本题考查旋转的性质,图形旋转前后,对应边相等,对应角相等,前后两个图形全等;熟练掌握旋转的性质是解题关键.11.A【分析】过点F 作FH ⊥BA 交BA 的延长线于点H ,则∠FHA =90°,△AGD 绕点A 逆时针旋转60°得到△AEF ,得∠F AD =60°,AF =AD =2,又由四边形ABCD 是矩形,∠BAD =90°,得AF=1,由勾股定理得AH=,得到到∠F AH=30°,在Rt△AFH中,FH=12BH=AH+AB,再由勾股定理得BF=【详解】解:如图,过点F作FH⊥BA交BA的延长线于点H,则∠FHA=90°,∵△AGD绕点A 逆时针旋转60°得到△AEF∴∠F AD=60°,AF=AD=2,∵四边形ABCD是矩形∴∠BAD=90°∴∠BAF=∠F AD+ ∠BAD=150°∴∠F AH=180°-∠BAF=30°AF=1在Rt△AFH中,FH=12由勾股定理得AH=在Rt△BFH中,FH=1,BH=AH+AB由勾股定理得BF=故BF故选:A【点睛】本题考查了图形的旋转,矩形的性质,含30度角的直角三角形的性质,勾股定理等知识,解决此题的关键在于作出正确的辅助线.12.C【分析】连接CD,过点A作AE⊥CD于点E,过点E作FG⊥x轴于点F,过点A作AG⊥FG于点G,设E(m,n),根据旋转证∠ACG=30°,CE,根据两角对应相等证△AEG∽△ECF,求出74E ⎛ ⎝⎭,52D ⎛ ⎝⎭,结合B (-2,0)求出BD =. 【详解】连接CD ,过点A 作AE ⊥CD 于点E ,过点E 作FG ⊥x 轴于点F ,过点A 作AG ⊥FG 于点G ,则∠AEC =∠OFG =∠G =90°,∵∠AOF =90°,∴∠OAG =90°,∴四边形AOFG 是矩形,∵(0,A ,∴FG =OA设E (m ,n ),∴AG =OF =m ,EF =n ,∴CF =m -1,EGn ,由旋转知,∠CAD =120°,AC =AD ,∴CE =DE ,∠ACG =30°,∴CE,∵∠CEF +∠ECF =∠AEG +∠CEF =90°,∴∠AEG =∠ECF ,∴△AEG ∽△ECF ,∴EF CE AG AE ==,∴=n m∵CF CE EG AE==∴74m =,n∴74E ⎛ ⎝⎭, ∵73144-=,735442+=,∴52D ⎛ ⎝⎭,∵∠ABO=60°,=OA∴OB =2,B (-2,0),∴BD =. 故选C .【点睛】本题主要考查了旋转,等腰三角形,含30°的直角三角形,两点间的距离公式,熟练掌握旋转图形全等性质,三线合一含30°角的直角三角形边的性质,两点间的距离公式是解决此题的关键.13.(6,1)-【分析】根据两个点关于原点对称时,它们的坐标符号相反,即点P (x ,y )关于原点O 的对称点是点P '(﹣x ,﹣y ),进而得出答案.【详解】解:点(6,﹣1)关于原点的对称点的坐标为(﹣6,1).故答案为:(﹣6,1).【点睛】此题主要考查了原点对称点的性质,正确掌握横纵坐标的符号关系是解题关键. 14.100︒##100度【分析】根据旋转的性质得出80B C A ''∠=︒,C A AC '=,再根据角平分线的性质得出40CC A '∠=︒,利用等腰三角形的性质可求旋转角.【详解】解:∵ABC 在平面内绕点A 逆时针旋转到AB C ''△的位置,∴80C B C A A B ∠︒==''∠,C A AC '=,∵CC '平分B C A ''∠,∴1402CC A B C A '''∠=∠=︒,∴40CC A C CA ''∠=∠=︒,∴100C AC '∠=︒,故答案为:100°.【点睛】本题考查了旋转的性质和等腰三角形的性质,解题关键是熟练运用旋转的性质得出角的度数.15.30°##30度【分析】利用旋转的性质可求得AC =AC ′,∠CAB =∠C ′AB ′,由平行线性质和三角形内角和定理可求得∠C ′AC ;进而求得∠CAB ′即可解答;【详解】解:∵CC AB '∥,∴∠C ′CA =∠CAB =70°,由旋转的性质可得:AC =AC ′,∠CAB =∠C ′AB ′=70°,∴∠ACC ′=∠AC ′C =70°,∴∠C ′AC =180°-70°-70°=40°,∴∠CAB ′=∠C ′AB ′-∠C ′AC =70°-40°=30°,∵B D AC '∥,∴∠AB ′D =∠CAB ′=30°,故答案为:30°.【点睛】本题考查了旋转的性质,等腰三角形的性质,三角形内角和定理,平行线的性质;掌握旋转的性质是解题关键.16.2【分析】由旋转的性质可得4AB AD ==,60BAD ∠=︒,可证ABD △是等边三角形,由直角三角形的性质可求解.【详解】解:如图,连接BD ,过点D 作DH BC ⊥于H ,将ABC 绕点A 逆时针旋转60︒,4AB AD ∴==,60BAD ∠=︒,ABD ∴是等边三角形,4BD AB ∴==,60ABD ∠=︒,30DBC ∴∠=︒,DH BC ⊥,122DH BD ∴==, ∴点D 到BC 的距离是2,故答案为:2.【点睛】本题考查了旋转的性质,等边三角形的判定和性质,直角三角形的性质,掌握旋转的性质是解题的关键.17.见解析【分析】根据题意画出旋转后的图形即可;【详解】:如图,【点睛】本题主要考查了图形的旋转,掌握旋转图形的画法是解题的关键.18.(1)作图见详解,(4,5)-(2)作图见详解,13,03⎛⎫- ⎪⎝⎭(3)2-【分析】(1)已知ABC 三点坐标,ABC 关于原点O 对称的111A B C △各对应点的坐标与原坐标的横纵坐标均为相反数,由此即可作图;(2)作点B 关于x 轴的对称点B',连接'CB 交x 轴于点D ,此时BD CD +的值最小; (3)构造全等三角形求出等E 坐标,利用待定系数法即可解问题.【详解】(1)解:已知ABC 三点坐标(4,5)A -,(5,2)B -,(3,4)C -,关于原点对称,则对应点的坐标分别是1(4,5)A -,1(5,2)B -,1(3,4)C -,连接1A ,1B ,1C 所组成的图形为所求图形111A B C △,如图所示,(2)解:作点B 关于x 轴的对称点B',连接'CB 交x 轴于点D ,此时BD CD +的值最小,如图所示,已知(4,5)A -,(5,2)B -,(3,4)C -,点B'是点B 关于x 轴的对称点,∴'(5,2)B --、(34)C -,, ∴直线'BC 解析式为313y x =+,当0y =时,133x , ∴1303D ⎛⎫- ⎪⎝⎭,. (3)解:如图所示,作CH x ⊥轴于H EK x ⊥,轴于K ,根据题意得,(34)C -,,90CHP CPE PKE ∠=∠=∠=︒, ∴9090CPH HCP CPH EPK ∠+∠=︒∠+∠=︒,,∴PCH EPK ∠=∠,∵PC PE =,∴(AAS)PCH EPK △≌△,∴43PK CH EK PH t ====+,,∴4OK t =+,∴(43)E t t ++,,∵点E 在直线25y x =-+上,∴3245t t +=-++(),∴2t =-.【点睛】本题考查平面直角坐标系中图形的旋转变换,一次函数图像上的点的特征,轴对称最短问题等知识,解题的关键是熟练掌握旋转变换的性质,根据题意添加常用辅助线,构造全等三角形解决问题.19.(1)见解析(2)见解析【分析】(1)按照轴对称的意义得出答案即可;(2)按照轴对称的定义和中心对称的定义设计,所设计的图案既是中心对称图形,又是轴对称图形.(1)解:(1)参考图案,如图所示:(2)(2)参考图案,如图所示:【点睛】本题考查利用轴对称或中心对称设计图案,关键是理解轴对称和中心对称的定义.20.(1)见解析(2)见解析(3)6【分析】(1)首先确定C 点的平移规律,依此规律平移A 、B 两点,从而得到111A B C △; (2)利用中心对称的性质作出A 、B 、C 的对应点2A 、2B 、2C 即可;(3)先求112AC C 的面积,四边形1221A C A C 的面积为112AC C 面积的2倍.(1)解:如图所示,111A B C △为所求作;(2)解:如图所示,222A B C △为所求作; (3)解:如图,123C C =,1A 到12C C 距离为2; 则112AC C 的面积为:13232⨯⨯=. ∴由图可得四边形1221A C A C 的面积为236S =⨯=.【点睛】本题考查了坐标的平移,中心对称图形的画法,网格中图形面积的求法,解题的关键是根据题意画出图象. 21.(1)见解析 (2)见解析,()3,3-【分析】(1)利用平移的坐标特征写出1A 、1B 、1C 的坐标,然后描点依次连接即可; (2)利用网格特点和旋转的性质找出 A 、B 、C 的对应点 2A 、2B 、2C ,然后描点依次连接即可得 (1)解:经过平移可得:()11,4A -,()14,4B -,()13,2C -,顺次连接,如图所示:111A B C △即为所求作;(2)解:旋转后的点的坐标分别为:()21,1A -,()21,4B -,()23,3C -,然后顺次连接, 如图所示:222A B C △即为所求作,2C 的坐标()3,3-【点睛】本题考查了作图:平移及旋转变换,找到对应点的坐标,然后顺次连接各点是解题关键. 22.(1)180 (2)12AF BE =,证明见解析;【分析】(1)由旋转可知∠DAE =180°-a ,所以得到:∠BAC +∠DAE =a +180°-a =180°; (2)连接并延长AF ,使FG =AF ,连接DG ,CG ;因为DF =CF ,AF =GF ;可以得到四变形ADGC 为平行四边形;从而有∠DAC +∠ACG =180°,再证∠ACG =∠BAE 继而证明△ABE ≌△CAG 得到BE =AG ,即可得线段AF 与BE 的数量关系; 【详解】(1)解:由旋转可知∠DAE =180°-a , ∠BAC +∠DAE =a +180°-a =180° 故答案为:180(2)解:如图所示:连接并延长AF ,使FG =AF ,连接DG ,CG ; ∵DF =CF ,AF =GF ;∴四变形ADGC 为平行四边形; ∴∠DAC +∠ACG =180°,即∠ACG =180°-∠DAC ,∠BAE =∠BAC +∠DAE-∠DAC =180°-∠DAC , 所以∠ACG =∠BAE ,∵四变形ADGC 为平行四边形; ∴AD =CG , 又∵AD =AE , AE =CG ,在△ABE 和△CAG 中,{AB CA BAE ACG AE CG=∠=∠=∴△ABE ≌△CAG , ∴BE =AG , ∴AF =12AG =12BE ,故线段AF 与BE 的数量关系:AF =12BE ;【点睛】本题考查了旋转的性质,旋转角的定义,以及全等三角形的性质的判定,解题的关键是熟悉并灵活应用以上性质. 23.(1)①()3,0,②()1,3- (2)①(3,3)a a ++,【分析】(1)①②根据“垂直图形”的定义可得答案;(2)①过点E 作EP x ⊥轴于点P ,过点E '作E H x '⊥轴于点H ,利用AAS证明PEG HGE '△≌△得3E H PG a '==+,3GH EP ==,从而得出答案;②由点E '的坐标可知,满足条件的点E '在第一象限的O 上,求出点E '的坐标,从而解决问题. (1)解:①点A 的坐标为()0,3, ∴点B 的坐标为()3,0,故答案为:()3,0;②当()3,1B 时,如图,()1,3A -,故答案为:()1,3-; (2)解:①过点E 作EP x ⊥轴于点P ,过点E '作E H x '⊥轴于点H ,90EGE ∠'=︒,EG E G =',90EGP E GH ∴∠+∠'=︒,90EGP E ∠+∠=︒, E E GH ∴∠=∠',EPG GHE ∠=∠',∴AAS HG PEG E '△≌△(), 3E H PG a ∴'==+,3GH EP ==,3OH a ∴=+,3,3E a a ∴'++();②如图,观察图象知,满足条件的点E '在第一象限的O 上,()3,3E a a '++,2OE '=,()()222332a a ∴+++=,3a +=负值舍去),3a ∴=,E ∴',EE ∴'EE ∴'【点睛】本题是几何变换综合题,主要考查了全等三角形的判定与性质,“垂直图形”的定义,坐标与图形,求出点E '的坐标是解题的关键.24.(1)见解析;(2)①见解析; 【分析】(1)证明△AMO ≌△BNO 即可;(2)①连接BN ,证明△AMO ≌△BNO ,得到∠A =∠OBN =45°,进而得到∠MBN =90°,且△OMN 为等腰直角三角形,再在△BNM 中使用勾股定理即可证明; ②分两种情况分别画出图形即可求解.【详解】解:(1)∵AOB 和MON △都是等腰直角三角形, ∴90OA OB ON OM AOBNOM ,,,又=+=90+AOM NOM AON AON ,=+=90+BON AOB AON AON ,∴=BON AOM , ∴()AMO BNO SAS ≌, ∴AM BN =;(2)①连接BN ,如下图所示:∴==90AOM AOBBOM BOM , ==90BON MONBOM BOM ,且OA OB OM ON ,==, ∴()AMO BNO SAS ≌, ∴45A OBN,AM BN =,∴454590ABNABOOBN,且OMN ∆为等腰直角三角形,∴MN ,在Rt BMN ∆中,由勾股定理可知:22222(2)2BM BN MN OM OM ,且AM BN =∴2222AM BM OM +=; ②分类讨论:情况一:如下图2所示,设AO 与NB 交于点C ,过O 点作OH ⊥AM 于H 点,45HNO ,NHO 为等腰直角三角形,∴332222NO HOHM ,在Rt AHO ∆中,22223223464()222AH AO OH , ∴46322AMAH HM; 情况二:如下图3所示,过O 点作OH ⊥AM 于H 点,45HNO ,NHO 为等腰直角三角形,∴332222NO HOHM ,在Rt AHO ∆中,22223223464()222AH AO OH , ∴46322AM AH HM;故46322AM或.【点睛】本题属于几何变换综合题,考查了全等三角形的判定和性质,等腰直角三角形的性质,勾股定理等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型. 25.(1)见解析 (2)见解析【分析】(1)根据旋转性质得到对应边相等,对应角相等,进而根据等边对等角性质可将角度进行等量转化,最后可证得结论;(2)根据旋转性质、等腰三角形的性质以及三角形内角和定理对角度进行等量转化可证得结论.【详解】(1)证明:由旋转性质可知:AE AC =,AED C ∠=∠,AEC C ∴∠=∠AED AEC ∴∠=∠AE ∴平分CED ∠.(2)证明:如图所示:由旋转性质可知:AD AB =,90DAE BAC ∠=∠=︒,ADB ABD ∴∠=∠,DAE BAE BAC BAE ∠-∠=∠-∠,即DAB EAC ∠=∠,=1802DAB ABD ∠︒-∠,1802EAC C ∠=︒-∠, ABD C ∴∠=∠,∵在Rt ABC △中,90BAC ∠=︒, 90ABC C ∴∠+∠=︒, 90ABC ABD ∴∠+∠=︒,即90DBC ∠=︒.【点睛】本题考查了三角形的旋转变化,熟练掌握旋转前后图形的对应边相等,对应角相等以及合理利用三角形内角和定理是解决本题的关键.。

人教版九年级数学上册第二十三章《旋转》综合测试卷(含答案)

人教版九年级数学上册第二十三章《旋转》综合测试卷(含答案)

人教版九年级数学上册第二十三章《旋转》综合测试卷(含答案)班级 座号 姓名 成绩一、选择题(每小题4分,共40分)1. 在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转.下列图形中不能由一个图形通过旋转而构成的是( )A. B . C. D.2.将左图按顺时针方向旋转90°后得到的是( )3.在平面直角坐标系中,点.(4,3)A -关于原点对称点的坐标为( ) A. .(4,3)A --B. .(4,3)A -C. .(4,3)A -D. .(4,3)A4.将△AOB 绕点O 旋转180°得到△DOE ,则下列作图正确的是( )A. B. C. D.5.如图,将三角尺ABC (其中∠ABC=60°,∠C=90°)绕B 点按顺时针方向转动一个角度到A 1BC 1的位置,使得点A ,B ,C 1在同一条直线上,那么这个角度等于( ) A 、120° B 、90° C 、60° D 、30°6.将如图所示的正五角星绕其中心旋转,要使旋转后与它自身重合,则至少应旋转( ).A .36°B .60°C .72°D .180°7.若点A 的坐标为(6,3),O 为坐标原点,将OA 绕点O 按顺时针方向旋转90°得到OA′,则点A′的坐标是( )A 、(3,﹣6)B 、(﹣3,6)C 、(﹣3,﹣6)D 、(3,6) 8. 如图,将△ABC 绕点C 顺时针旋转90°得到△EDC .若点A ,D ,E 在同一条直线上,∠ACB=20°,则∠ADC 的度数是( ) A .55° B .60° C .65° D .70°9.如图,在正方形ABCD 中有一点P ,把⊿ABP 绕点B 旋转到⊿CQB ,连接PQ ,则⊿PBQ 的形状是( )A. 等边三角形B. 等腰三角形C.直角三角形D.等腰直角三角形10. 如图,设P 到等边三角形ABC 两顶点A 、B 的距离分别 为2、3,则PC 所能达到的最大值为( )A .5B .13C .5D .6 二、填空题(每题4分,共24分)11.如图,将ABC △绕点A 顺时针旋转60︒得到AED △, 若线段3AB =,则BE = .12.如图,将Rt △ABC 绕直角顶点C 顺时针旋转90°,得到△A ′B ′C , 连接BB',若∠A′B′B =20°,则∠A 的度数是 .13将点A (-3,2)绕原点O 逆时针旋转90°到点B ,则点B 的坐标为 . 14.若点(2,2)M a -与(2,)N a -关于原点对称,则______.15.在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,与图中阴影部分构成中心对称图形,涂黑的小正方形的序号是_________16.如图,在平面直角坐标系中,已知点A (-3,0),B (0,4),对△AOB 连续作旋转变换,依次得到三角形①,②,③,…,那么第⑤个三角形离原点O 最远距离的坐标是(21,0),第2020个三角形离原点O 最远距离的坐标是 .•第5题图第6题图第8题图第9题图第16题图第15题图第12题图第10题图第11题图三、解答题(共86)17.在平面直角坐标系中,已知点A(4,1),B(2,0),C(3,1).请在如图的坐标系上上画出△ABC,并画出与△ABC关于原点O对称的图形.18.如图,已知△ABC的顶点A、B、C的坐标分别是A(-1,-1),B(-4,-3),C(-4,-1).C1;(1)作出△ABC关于原点O的中心对称图形△A1B1(2)将△ABC绕原点O按顺时针方向旋转90°后得到△A2B2C2,画出△A2B2C2;19.如图,在等边△ABC中,点D是AB边上一点,连接CD,将线段CD绕点C按顺时针方向旋转60°后得到CE,连接AE.求证:AE∥BC.20.如图,△ABC中,AD是中线.(1)画出将△ACD关于点D成中心对称的△EBD(2)如果AB=7,AC=5,若中线AD长为整数,求AD的最大值21.如图甲,在Rt△ACB中,四边形DECF是正方形.(1)将△AED绕点按逆时针方向旋转°,可变换成图乙,此时∠A1DB的度数是°.(2)若AD=3,BD=4,求△ADE与△BDF的面积之和.22.如图,点O是等腰直角三角形ABC内一点,∠ACB=90°,∠AOB=140°,∠AOC=α.将△AOC绕直角顶点C按顺时针方向旋转90°得△BDC,连接OD.(1)试说明△COD是等腰直角三角形;(2)当α=95°时,试判断△BOD的形状,并说明理由.23.已知△ABC中,△ACB=135°,将△ABC绕点A顺时针旋转90°,得到△AED,连接CD,CE.(1)求证:△ACD为等腰直角三角形;(2)若BC=1,AC=2,求四边形ACED的面积.24.建立模型:(1)如图 1,已知△ABC,AC=BC,△C=90△,顶点C 在直线 l 上。

人教版九年级数学上《第23章旋转》单元测试题含答案

人教版九年级数学上《第23章旋转》单元测试题含答案

第23章 旋转一、选择题1.在平面直角坐标系中,点A (﹣2,1)与点B 关于原点对称,则点B 的坐标为( )A .(﹣2,1)B .(2,﹣1)C .(2,1)D . (﹣2,﹣1)2.如图,边长为2的正方形ABCD 的对角线相交于点O ,过点O 的直线分别交边AD 、BC 与E 、F 两点,则阴影部分的面积是( )A .1B .2C .3D . 43.如图,△ABC 绕着点O 按顺时针方向旋转90°后到达了△CDE 的位置,下列说法中不正确的是( )A .线段AB 与线段CD 互相垂直 B .线段AC 与线段CE 互相垂直C .点A 与点E 是两个三角形的对应点D .线段BC 与线段DE 互相垂直 4.把一副三角板按如图放置,其中∠ABC=∠DEB=90°,∠A =45°,∠D =30°,斜边AC =BD =10,若将三角板DEB 绕点B 逆时针旋转45°得到△D′E′B,则点A 在△D′E′B 的( )A .内部B .外部C .边上D .以上都有可能 5.如图,如果正方形ABCD 旋转后能与正方形CDEF 重合,那么图形所在平面内,可作为旋转中心的点个数( )A .1个B .2个C .3个D .4个6.如图,直线y =-43x +4与x 轴、y 轴分别交于A ,B 两点,把△AOB 绕点A 顺时针旋转90°后得到△AO ′B ′,则点B ′的坐标是( )A.(3,4) B.(4,5) C.(4,3) D.(7,3)7.如图,是用围棋子摆出的图案(围棋子的位置用有序数对表示,如点A在(5,1)),如果再摆一黑一白两枚棋子,使9枚棋子组成的图案既是轴对称图形又是中心对称图形,则下列摆放正确的是( )A.黑(3,3),白(3,1) B.黑(3,1),白(3,3)C.黑(1,5),白(5,5) D.黑(3,2),白(3,3)8.如图,在等边△ABC中,AC=9,点O在AC上,且AO=3,点P是AB上一动点,连接OP,将线段OP绕点O逆时针旋转60°得到线段OD.要使点D恰好落在BC上,则AP的长是( )A.4 B.5 C.6 D.89.如图,已知△ABC与△CDA关于点O对称,过O任作直线EF分别交AD,BC于点E,F,下面的结论:①点E和点F,点B和点D是关于中心O的对称点;②直线BD必经过点O;③四边形ABCD是中心对称图形;④四边形DEOC与四边形BFOA的面积必相等;⑤△AOE 与△COF成中心对称,其中正确的个数为( )A.2个 B.3个 C.4个 D.5个10.如图,在方格纸上,△DEF是由△ABC绕定点P顺时针旋转得到的.如果用(2,1)表示方格纸上A点的位置,(1,2)表示B点的位置,那么点P的位置为( )A.(5,2) B.(2,5) C.(2,1) D.(1,2)二、填空题11、将一个直角三角尺AOB绕直角顶点O旋转到如图3所示的位置,若∠AOD=110°,则旋转角的角度是______°,∠BOC =______°.12、时钟6点到9点,时针转动了__度.13.在方格纸上建立如图所示的平面直角坐标系,将△ABO 绕点O 按顺时针方向旋转90°得△A ′B ′O ,则点A 的对应点A ′的坐标为_ _.14.如图,大圆的面积为4π,大圆的两条直径互相垂直,则图中阴影部分的面积的和为____.15.如图,平行四边形ABCD 绕点A 逆时针旋转30°,得到平行四边形AB′C′D′(点B′与点B 是对应点,点C′与点C 是对应点),点B′恰好落在BC 边上,则∠C=__ __度.16.如图,已知抛物线C 1,抛物线C 2关于原点对称.若抛物线C 1的解析式为y =34(x +2)2-1,那么抛物线C 2的解析式为__ __.三、解答题17.在如图所示的直角坐标系中,解答下列问题:(1)分别写出A ,B 两点的坐标;(2)将△ABC 绕点A 顺时针旋转90°,画出旋转后的△AB 1C 1.18.直角坐标系第二象限内的点P(x 2+2x ,3)与另一点Q(x +2,y)关于原点对称,试求x +2y 的值.19.如图,将等腰△ABC 绕顶点B 逆时针方向旋转α度到△A 1BC 1的位置,AB 与A 1C 1相交于点D ,AC 与A 1C 1,BC 1分别交于点E ,F.(1)求证:△BCF≌△BA 1D ;(2)当∠C=α度时,判定四边形A 1BCE 的形状,并说明理由.答案 BACCC DBCDA11、20°、70°,12、90º ,13. (2,3)14. π15. 10516. y =-34(x -2)2+1 17.解:(1)由点A 、B 在坐标系中的位置可知:A (2,0),B (-1,-4);(2)如图所示:2)如图所示:18 解:根据题意,得(x2+2x)+(x+2)=0,y=-3.∴x1=-1,x2=-2.∵点P在第二象限,∴x2+2x<0,∴x=-1,∴x+2y=-719解:(1)∵△ABC是等腰三角形,∴AB=BC,∠A=∠C,∵将等腰△ABC绕顶点B逆时针方向旋转α度到△A1BC1的位置,∴A1B=AB=BC,∠A=∠A1=∠C,∠A1BD=∠CBC1,由ASA可证△BCF≌△BA1D(2)四边形A1BCE是菱形,理由如下:∵将等腰△ABC绕顶点B逆时针方向旋转α度到△A1BC1的位置,∴∠A1=∠A,∵∠ADE=∠A1DB,∴∠AED=∠A1BD=α,∵∠C=α,∴∠AED=∠C,∴A1E∥BC,由(1)知△BCF≌△BA1D,∴∠C=∠A1,∴∠A1=∠AED=α,∴A1B ∥AC,∴四边形A1BCE是平行四边形,又∵A1B=BC,∴四边形A1BCE是菱形。

2024-2025学年人教版数学九年级上 第二十三章 旋转 单元练习卷(含答案)

2024-2025学年人教版数学九年级上  第二十三章 旋转  单元练习卷(含答案)

2024-2025学年人教版数学九年级上第二十三章旋转一、单选题1.下列中国品牌新能源车的车标中,是中心对称图形的是()A.B.C.D.2.如图,五角星绕着它的旋转中心旋转,使得△ABC与△DEF重合,那么旋转角的度数至少为( )A.60°B.120°C.72°D.144°3.已知一直角坐标系内有点,将线段OA绕原点O顺时针旋转90°后,A的对应点A 坐标为()A.B.C.D.4.如图,点A,C的坐标分别为(1,1)、(2,4),将△ABC绕点A按逆时针方向旋转90°,得到△A'B'C',则C'点的坐标为( )A.(﹣2,4)B.(4,0)C.(﹣1,3)D.(﹣2,2)5.如图,将绕点O逆时针旋转后得到,若,则的度数是A.B.C.D.6.如图,在平面直角坐标系中,,,,请确定一点D,使得以点A,B,C,D为顶点的四边形是轴对称图形但不是中心对称图形,则点D的坐标可能是()A.B.C.D.7.如图,在平面直角坐标系中,已知点,点B在第一象限内,,,绕点O逆时针旋转,每次旋转,则第2023次旋转后,点B的坐标为( )A.B.C.D.8.如图,在等腰直角中,,D、E为斜边上的点,,若,则的长是( )A.3B.C.D.9.如图,在平面直角坐标系中,将正方形绕O点顺时针旋转后,得到正方形,以此方式,绕O点连续旋转2023次得到正方形,如果点C坐标为,那么点的坐标为()A.B.C.D.10.如图,在正方形中,E,F是对角线上两点,,且.将以点A为中心顺时针旋转得到,点D,F的对应点分别为点B,G,连接,则下列结论一定正确的是()A.B.C.D.二、填空题11.若点和点关于原点对称,则点的坐标为.12.如图,在中,,将绕点C按逆时针方向旋转得到,点A的对应点为,点恰好在边上,则点与点B之间的距离为.13.如图,在平面直角坐标系xOy中,△OCD可以看成是△AOB经过若干次图形的变化(平移、轴对称、旋转)得到的,写出一种由△AOB得到△OCD的过程.14.如图,△ABC中,∠C=90°,BC=3,AC=4.将△ABC绕点B逆时针旋转90°,点A 旋转后的对应点为A',则线段AA'的长为.15.如图,等腰△ABC中,∠BAC=120°,点D在边BC上,等腰△ADE绕点A顺时针旋转30°后,点D落在边AB上,点E落在边AC上,若AE=2cm,则四边形ABDE的面积是.16.如图,将绕着点A顺时针旋转得到.若点在同一条直线上..则的度数为.17.如图,中,,,,点是边上的一点,将绕点旋转得到,点的对应点为点,点的对应点为点,连接.如果,那么的长等于.18.如图,正方形的边长为2,,点是直线上一个动点,连接,线段绕点顺时针旋转得到,连接,则线段长度的最小值为.三、解答题19.如图,将绕直角顶点顺时针旋转,得到,连接,(1)求的长(2)若,求的度数.20.如图,图形中每一小格正方形的边长为1,已知.(1)的长等于,的面积等于;(2)将向右平移2个单位得到,则A点的对应点的坐标是;(3)将绕点C按逆时针方向旋转后得到,写出B点对应点的坐标.21.如图1,在△ABC 中,∠ACB=90°,∠B=20°,点O在AB边上.连结OC,已知OA=OB=OC.(1)直接写出∠A的度数;(2)如图2,将OA 绕着点O 逆时针旋转β角至OP,连结BP、CP.①当β=40°时,请你通过计算说明∠BCP=∠BPC;②当∠PBC=∠PCB时,求旋转角β的度数(0°<β<180°).22.正方形和等腰共顶点D,,将绕点D逆时针旋转一周.(1)如图1,当点F与点C重合时,若,求的长;(2)如图2,M为中点,连接,探究的关系,并说明理由;(3)如图3,在(2)条件下,连接并延长交于点Q,若,在旋转过程中,的最小值为.23.如图①,∠QPN的顶点P在正方形ABCD两条对角线的交点处,∠QPN=α,将∠QPN绕点P旋转,旋转过程中∠QPN的两边分别与正方形ABCD的边AD和CD交于点E和点F (点F与点C,D不重合).(1)如图①,当α=90°时,DE,DF,AD之间满足的数量关系是;(2)如图②,将图①中的正方形ABCD改为∠ADC=120°的菱形,其他条件不变,当α=60°时,(1)中的结论变为DE+DF=AD,请给出证明;(3)在(2)的条件下,若旋转过程中∠QPN的边PQ与射线AD交于点E,其他条件不变,探究在整个运动变化过程中,DE,DF,AD之间满足的数量关系,直接写出结论,不用加以证明.参考答案:1.B2.D3.B4.D5.B6.C7.D8.D9.C10.A11.12.13.将△AOB顺时针旋转90°,再向左平移2个单位长度14.15.2cm216.50°17.或18.19.(1)解:由题意,根据旋转的性质可知:,,;(2)由旋转的性质可知:,,,,,,.20(1)如图,根据题意,得:,,,∴;∴,(2)∵,∴向右平移2个单位得到,此时即,故答案为:.(3)根据旋转方向,旋转的性质,得,21.解:(1)∵∠A+∠B+∠ACB=180°,∠ACB=90°,∠B=20°,∴∠A=180°-90°-20°=70°;(2)①∵OB=OC,∠ABC=20°,∴∠BCO=∠ABC=20°,∴∠AOC=∠BCO+∠ABC=40°,∵∠AOP=β=40°,∴∠AOC=∠AOP,∴∠BOC=∠BOP,在△BOC和△BOP中,∵OC=OP,∠BOC=∠BOP,BO=BO,∴△BOC≌△BOP(SAS),∴BC=BP,∴∠BCP=∠BPC;②如图3,∵∠PBC=∠PCB,∠BCO=∠ABC=20°,∴∠1=∠2,∵OP=OC=OB,∴∠2=∠4,∠1=∠3,设∠1=x°,则∠PBC=∠PCB=(x+20)°,∠BPC=2x°,由三角形的内角和定理可得:2(x+20)+2x=180,解得:x=35,即∠1=∠3=35°,∴∠AOP=β=∠1+∠3=70°;即当∠PBC=∠PCB时,旋转角β=70°.22.1)解:如图:连接,∵四边形为正方形,∴,∵,∴,∴,∴.(2)解:;理由如下:如图2,延长至Q,使,连接,∵,∴,∴,∴,延长交于点N∴,∴,∴,∴,∴,∴,∴.(3)解:如图:连接,取的中点O,连接.∵四边形是正方形,,∴,∵,∴,∴点M的运动轨迹是O为圆心,为半径的圆,当与相切时,的值最小,∵,∴,∵,∴,∵,∴,在上取一点T,使得,连接,∵,∴,∴,∴,∴,∴最小.23.解:(1)正方形ABCD的对角线AC,BD交于点P,∴PA=PD,∠PAE=∠PDF=45°,∵∠APE+∠EPD=∠DPF+∠EPD=90°,∴∠APE=∠DPF,在△APE和△DPF中∴△APE≌△DPF(ASA),∴AE=DF,∴DE+DF=AD;(2)如图②,取AD的中点M,连接PM,∵四边形ABCD为∠ADC=120°的菱形,∴BD=AD,∠DAP=30°,∠ADP=∠CDP=60°,∴△MDP是等边三角形,∴PM=PD,∠PME=∠PDF=60°,∵∠PAM=30°,∴∠MPD=60°,∵∠QPN=60°,∴∠MPE=∠FPD,在△MPE和△FPD中,∴△MPE≌△FPD(ASA)∴ME=DF,∴DE+DF=AD;(3)如图,在整个运动变化过程中,①当点E落在AD上时,DE+DF=AD,②当点E落在AD的延长线上时,DF-DE=AD.。

九年级数学上册 第二十三章 旋转 单元测试卷(人教版 2024年秋)

九年级数学上册 第二十三章 旋转 单元测试卷(人教版 2024年秋)

九年级数学上册第二十三章旋转单元测试卷(人教版2024年秋)一、选择题(本题有10小题,每小题3分,共30分)1.中国航天取得了举世瞩目的成就,为人类和平贡献了中国智慧和中国力量,下列是有关中国航天的图标,其文字上方的图案是中心对称图形的是()2.下列说法中正确的有()(1)如果把一个图形绕着一定点旋转后和另一个图形重合,那么这两个图形成中心对称;(2)如果两个图形关于一点成中心对称,那么其对应点之间的距离相等;(3)如果一个旋转对称图形有一个旋转角为120°,那么它不是中心对称图形;(4)如果一个旋转对称图形有一个旋转角为180°,那么它是中心对称图形.A.0个B.1个C.2个D.3个3.(2024重庆期末)如图,在△ABC中,∠BAC=135°,将△ABC绕点C逆时针旋转得到△DEC,点A,B的对应点分别为D,E,连接AD.当点A,D,E在同一条直线上时,下列结论不正确的是()A.△ABC≌△DEC B.∠ADC=45°C.AD=2AC D.AE=AB+CD(第3题)(第4题)(第5题)(第7题) 4.如图,将△ABC绕点A逆时针旋转55°得到△ADE,若∠E=75°且AD⊥BC于点F,则∠BAC的度数为()A.65°B.70°C.75°D.80°5.如图,在平面直角坐标系xOy中,若将△ABC以某点为旋转中心,顺时针旋转90°得到△DEF,其中点C的对应点是F,点A的对应点是D,点B的对应点是E,则旋转中心的坐标是()A.(0,0)B.(1,0)C.(1,-1)D.(2.5,0.5) 6.在平面直角坐标系中,已知点A(2a,a-b+2),B(b,a+2)关于原点对称,则a,b的值是()A.a=-1,b=2B.a=1,b=2C.a=-1,b=-2D.a=1,b=-27.如图,以正六边形ABCDEF的顶点C为旋转中心,按顺时针方向旋转,使得新正六边形A′B′CD′E′F′的顶点E′落在直线BC上,则正六边形ABCDEF至少旋转的度数为()A.60°B.90°C.100°D.30°8.如图,点A-1,52,将OA绕点O顺时针旋转90°得到OA′,则点A′的坐标为()A.-1,-52 B.1,52 C.52,1 D.1,-52(第8题)(第9题)(第10题)(第11题)9.如图,已知在正方形ABCD内有一点P,连接AP,DP,BP,将△APD顺时针旋转90°得到△AEB,连接DE,点P恰好在线段DE上,AP=2,BP=10,则DP的长度为()A.2 B.6C.22 D.1010.如图,在平面直角坐标系中,四边形OABC的顶点O在原点上,OA边在x 轴的正半轴上,AB⊥x轴,AB=CB=2,OA=OC,∠AOC=60°.将四边形OABC绕点O逆时针旋转,每次旋转90°,则第2025次旋转结束时,点C 的坐标为()A.(3,3)B.(3,-3)C.(-3,1)D.(1,-3)二、填空题(本题有6小题,每小题4分,共24分)11.镇江是一座底蕴深厚、人文荟萃的历史文化古城,如图是镇江的一个古建筑的装饰物(里面是一个个小等边三角形),该图形绕旋转中心(点O)至少旋转________度后可以和自身完全重合.12.在平面直角坐标系xOy中,将点A(1,2)绕着旋转中心旋转180°,得到点B(-3,2),则旋转中心的坐标为__________.13.如图,D是△ABC的边BC的中点,连接AD并延长到点E,使DE=AD,连接BE.(1)△ADC和________成中心对称;(2)已知△ADC的面积为4,则△ABE的面积是________.(第13题)(第14题)(第15题)(第16题)14.(2023郴州期末)如图,在平面直角坐标系中,平行四边形OABC的顶点A的坐标为(6,0),顶点C的坐标为(2,2),若直线y=mx+2平分平行四边形OABC的面积,则m的值为________.15.(2024杭州期中)如图,在平面直角坐标系中,Rt△OAB的顶点A(-2,4)在抛物线y=ax2上,直角顶点B在x轴上.将Rt△OAB绕点O顺时针旋转90°得到△OCD,边CD与该抛物线交于点P,则CP的长为________.16.如图,在Rt△ACB中,∠ACB=90°,∠ABC=25°.O为AB的中点,将OA 绕着点O逆时针旋转θ(0°<θ<180°)至OP.(1)当θ=30°时,∠CBP=________;(2)当△BCP恰为等腰三角形时,θ的度数为____________.三、解答题(本题有7小题,共66分,各小题都必须写出解答过程)17.(8分)(2023丰台模拟)如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,将△ABC绕点C逆时针旋转得到△DEC,使点A的对应点D落在BC边上,点B的对应点为E,求线段BD,DE的长.18.(8分)已知平面直角坐标系第二象限内的点P(x2+2x,3)与另一点Q(x+2,y)关于原点对称,试求x+2y的值.19.(8分)如图,将△ABC绕点C顺时针旋转90°得到△EDC.若点A,D,E在同一条直线上,∠ACB=20°,求∠ADC的度数.20.(10分)如图,在Rt△ABC中,∠C=90°.(1)将△ABC绕点B顺时针旋转90°,画出旋转后的△A′BC′;(2)连接AA′,若AC-BC=1,AA′=10,求BC边的长.21.(10分)在如图所示的方格纸中,每个小方格都是边长为1个单位长度的正方形,图①、图②、图③均为顶点在格点上的三角形(每个小方格的顶点叫格点).(1)在图中,图①经过________变换可以得到图②(填“平移”“旋转”或“轴对称”);(2)在图中画出图①绕点A逆时针旋转90°后得到的图形;(3)在图中,图③与图②关于某点中心对称,则其对称中心是点________(填“A”“B”或“C”).22.(10分)(2023北京)在△ABC中,∠B=∠C=α(0°<α<45°),AM⊥BC于点M,D是线段MC上的动点(不与点M,C重合),将线段DM绕点D顺时针旋转2α得到线段DE.(1)如图①,当点E在线段AC上时,求证:D是MC的中点;(2)如图②,若在线段BM上存在点F(不与点B,M重合)满足DF=DC,连接AF,AE,EF,请写出∠AEF的大小,并证明.23.(12分)某数学兴趣小组在一次综合与实践活动中探究这样一个问题:将足够大的直角三角尺PEF(∠EPF=90°,∠F=30°)的顶点P放在等腰直角三角形ABC的斜边AC的中点O处,S△ABC=4.(1)尝试探究如图①,三角尺PEF的两条直角边分别与△ABC的边AB,BC交于点M,N,当PE⊥AB时,①PM________PN(填“>”“<”或“=”);②三角尺PEF与△ABC重叠部分的面积为________.(2)操作发现如图②,将三角尺PEF绕点O旋转,在旋转过程中,三角尺PEF的两条直角边分别与△ABC的边AB,BC交于点M,N(点M不与点A,B重合),PM 与PN相等吗?请说明理由.(3)类比应用在(2)的条件下,三角尺PEF与△ABC重叠部分的面积变化吗?若变化,请说明理由;若不变,请求出重叠部分的面积.答案一、1.C 2.B 3.D 4.B 5.C 6.A 7.B 8.C 9.B10.A 点拨:连接OB ,过点C 作CP ⊥OA ,垂足为P ,如图所示.∵AB =CB ,OA =OC ,OB =OB ,∴△AOB ≌△COB (SSS ).∴∠AOB =∠COB =12∠AOC =30°.在Rt △AOB 中,AB =2,∠AOB =30°,∴OB =2AB =4.∴OA =OB 2-AB 2=2 3.∴OC =2 3.在Rt △COP 中,∠POC =60°,∴∠OCP =30°.∴OP =12OC =3.∴CP =OC 2-OP 2=3.∴点C 的坐标为(3,3).∵每次旋转90°,360°÷90°=4,∴每旋转4次为一个循环.∵2025÷4=506……1,∴第2025次旋转结束时点C 的位置和最开始时点C 的位置相同.∴第2025次旋转结束时,点C 的坐标为(3,3).故选A.二、11.6012.(-1,2)13.(1)△EDB(2)814.-1415.4-216.(1)40°(2)50°或65°或80°点拨:(1)由题意结合旋转的性质可得OA =OB =OP ,进而得∠OBP =∠OPB ,然后根据三角形外角的性质得到∠OBP=12∠AOP=15°,进而求解.(2)连接AP,易得∠APB=90°.如图①,当BC=BP时,易证△ABC≌△ABP,∴∠ABP=∠ABC=25°,∴∠AOP=2∠ABP=50°;如图②,当BC=PC时,连接CO并延长交PB于H,根据线段垂直平分线的判定得到CH垂直平分PB,求得∠CHB=90°,再根据等腰三角形的性质及三角形外角的性质易得θ=80°;如图③,当PB=PC时,连接OC,易得OB=OC,延长PO交BC于G,易得PG垂直平分BC,得到∠BGO=90°,再根据三角形的内角和得到∠BOG =65°,∴θ=65°.综上,θ的度数为50°或65°或80°.三、17.解:根据题意,得△ABC≌△DEC,∴AB=DE,AC=DC.∵AC=3,∴DC=3.∵BC=4,∴BD=1.在Rt△ABC中,根据勾股定理,得AB=AC2+BC2=5,∴DE=5. 18.解:根据题意,得(x2+2x)+(x+2)=0,y=-3.∴x1=-1,x2=-2(不符合题意,舍去).∴x+2y=-1+2×(-3)=-7.19.解:∵将△ABC绕点C顺时针旋转90°得到△EDC,∴∠DCE=∠ACB=20°,∠ACE=90°,AC=CE.∴∠E=∠EAC=45°.∴∠ADC=∠E+∠DCE=45+20°=65°.20.解:(1)如图,△A′BC′即为所求.(2)如图,设BC=x,则AC=BC+1=x+1.在Rt△ABC中,AB2=BC2+AC2=x2+(x+1)2.由旋转的性质得A′B=AB,∠ABA′=90°.在Rt△AA′B中,A′A2=A′B2+AB2=2AB2.因为AA′=10,所以(10)2=2[x2+(x+1)2].整理得x2+x-2=0.解得x1=1,x2=-2(舍去).所以BC=1.21.解:(1)平移(2)图①绕点A逆时针旋转90°后得到的图形如图①所示.①(3)C点拨:如图②,连接DE,发现DE和FG相交于点C,所以对称中心是点C.②22.(1)证明:由旋转的性质,得DM=DE,∠MDE=2α.∵∠C=α,∴∠DEC=∠MDE-∠C=α.∴∠C=∠DEC.∴DE=DC.∴DM=DC.∴D是MC的中点.(2)解:∠AEF=90°.证明:如图,延长FE到H,使EH=FE,连接CH,AH.∵DF=DC,∴DE是△FCH的中位线.∴DE∥CH,CH=2DE.∴∠FCH=∠FDE.∵∠MDE=2α,∴∠FCH=2α.∵∠B=∠ACB=α,∴∠ACH=α,AB=AC.∴∠B=∠ACH.设DM=DE=m,CD=n,则CH=2m,CM=m+n,DF=n,∴FM=DF-DM=n-m.∵AM⊥BC,AB=AC,∴BM=CM=m+n.∴BF=BM-FM=m+n-(n-m)=2m.∴BF=CH.在△ABF和△ACH =AC,B=∠ACH,=CH,∴△ABF≌△ACH(SAS).∴AF=AH.又∵FE=EH,∴AE⊥FH.∴∠AEF=90°. 23.解:(1)①=②2(2)PM=PN.理由如下:连接BP.∵△ABC是等腰直角三角形,∴∠ABC=90°,∠C=45°,AB=BC.又∵O是AC的中点,P在O处,∴BP⊥AC,BP=PC且∠ABP=∠CBP=45°.11∴∠CPN +∠NPB =90°,∠ABP =∠C .∵MP ⊥PN ,∴∠BPM +∠NPB =90°.∴∠BPM =∠CPN .在△MPB 和△NPCBPM =∠CPN ,=CP ,MBP =∠C ,∴△MPB ≌△NPC (ASA ).∴PM =PN .(3)不变.∵S △ABC =4,O 是AC 的中点,P 在O 处,∴S △BCP =12S △ABC =2.由(2)知△MPB ≌△NPC ,∴三角尺PEF 与△ABC 重叠部分的面积=△MPB 的面积+△BON 的面积=△NPC 的面积+△BON 的面积=△BCP 的面积=2.。

人教版九年级上册《旋转》测试题及答案

人教版九年级上册《旋转》测试题及答案

九年级上第23 章《旋转》测试题一、相信你的选择(每题 4 分,共 32 分).1.正方形的对称轴的条数为()A .1B .2C. 3D. 42.以下图形中既是轴对称图形,又是中心对称图形的是()A.等边三角形B.平行四边形C.正方形D.正五边形6.如图,在 Rt△ ABC 中,∠ ACB=90 °,∠ ABC=30 °,将△ ABC 绕点 C 顺时针旋转至△A′B′C,使得点 A′恰好落在 AB 上,则旋转角度为()A .30°B .60°C 90°D. 150°7.如图,将△ABC 沿 BC 方向平移2cm 获得△ DEF ,若△ ABC 的周长为16cm,则四边形ABFD 的周长为()A .16cmB .18cm C. 20cm D. 22cm8.将点 P(﹣ 2, 3)向右平移 3 个单位获得点P1,点 P2与点 P1对于原点对称,则P2的坐标是()A .(﹣ 5,﹣ 3)B.( 1,﹣ 3)C.(﹣1,﹣ 3)D.( 5,﹣ 3)xkb1.com二、试一试你的身手(每题 4 分,共 20 分).11. 如图,将等边△ABC 绕极点 A 顺时针方向旋转,使边AB 与 AC 重合得△点 E 的对应点为F,则∠ EAF 的度数是.ACD ,BC 的中12.如图,在平面直角坐标系 xOy 中,已知点 A( 3,4),将 OA 绕坐标原点 O 逆时针旋转90°至13. 将 y=x OA′,则点 A′的坐标是.的图象向上平移 2 个单位,平移后,若y>0,则x 的取值范围是.三、挑战你的技术(共48分).14.( 8 分)如图,△ABC与△DEF对于某条直线对称,请用无刻度的直尺,在下边两个图中分别作出该直线 .15. (10 分 )如图,在 Rt△ ABC 中,∠ ACB=90 °,∠ B=30 °,将△ ABC 绕点 C 按顺时针方向旋转 n 度后,获得△ DEC ,点 D 恰好落在 AB 边上.(1)求 n 的值;(2)若 F 是 DE 的中点,判断四边形 ACFD 的形状,并说明原因.16.( 8 分)在棋盘中成立如下图的直角坐标系,三颗棋子A, O,B 的地点如图,它们的坐标分别是1, 1 ,(0,0),(1,0).(1)如图 2,增添棋 C 子,使四颗棋子 A, O, B, C 成为一个轴对称图形,请在图中画出该图形的对称轴;(2)在其余格点地点增添一颗棋子 P,使四颗棋子 A,O, B, P 成为轴对称图形,请直接写出棋子 P 的地点的坐标 . (写出 2 个即可)17. ( 12 分)如图,△ ABC 三个极点的坐标分别为 A ( 1, 1), B( 4, 2), C( 3, 4).( 1)请画出△ ABC 向左平移 5 个单位长度后获得的△ A 1B1C1;(2)请画出△ ABC 对于原点对称的△ A 2B 2C2;(3)在 x 轴上求作一点 P,使△ PAB 的周小最小,请画出△ PAB ,并直接写出 P 的坐标.18.( 10 分)如图,已知二次函数y=a( x﹣ h)2+的图象经过原点O( 0,0), A( 2,0).(1)写出该函数图象的对称轴;(2)若将线段 OA 绕点 O 逆时针旋转 60°到 OA′,试判断点 A′能否为该函数图象的顶点?参照答案:一、1.D 2. C 3. A 4. C 5. B 6 . B7.C8.C二、9.45°10.55°11.60°12.(-4,3)13.x>﹣ 4三、 14.15.解:( 1)∵在 Rt△ ABC 中,∠ ACB=90 °,∠ B=30 °,将△ ABC 绕点 C 按顺时针方向旋转 n 度后,获得△ DEC,∴AC=DC ,∠ A=60 °,∴△ ADC 是等边三角形,∴∠ ACD=60 °,∴n 的值是 60;(2)四边形ACFD 是菱形;原因:∵∠ DCE= ∠ ACB=90 °, F 是 DE 的中点,∴F C=DF=FE ,∵∠CDF= ∠ A=60 °,∴△DFC 是等边三角形,∴D F=DC=FC ,∵△ ADC 是等边三角形,∴AD=AC=DC ,∴A D=AC=FC=DF ,∴四边形 ACFD 是菱形.16.略17.解:( 1)△ A 1B1C1如下图;(2)△ A 2B 2C2如下图;(3)△ PAB 如下图, P( 2, 0).。

新人教版九年级上第二十三章旋转自主检测试卷及答案

新人教版九年级上第二十三章旋转自主检测试卷及答案

第二十三章自主检测(满分:120分时间:100分钟)一、选择题(本大题共10小题,每小题3分,共30分)1.在平面直角坐标系中,点(3,-2)关于原点对称点的坐标是()A.(3,2) B.(-3,-2) C.(-3,2) D.(-3,-2)2.如图23-1,由“基本图案”正方形ABCO绕O点顺时针旋转90°后的图形是()图23-1A B C D3.如图23-2,△ABC绕点A旋转后得到△ADE,那么图形是如何旋转的()A.顺时针转45°B.逆时针转45°C.顺时针转90°D.逆时针转90°图23-2 图23-3 图23-4 4.如图23-3,把△ABC按逆时针转动一定的角度至△AB′C′,其中属于旋转角的是()A.∠BAC B.∠C′AB′C.∠BAB′D.∠BAC′5.如图23-4所示的图形旋转一定角度后能与自身重合,则旋转的角度可以是() A.30°B.45°C.60°D.90°6.下列图形中,是中心对称图形的是()7.如图23-5,在方格纸中,△ABC经过变换得到△DEF,正确的变换是()A.把△ABC绕点C逆时针方向旋转90°,再向下平移2格B.把△ABC绕点C顺时针方向旋转90°,再向下平移5格C.把△ABC向下平移4格,再绕点C逆时针方向旋转180°D.把△ABC向下平移5格,再绕点C顺时针方向旋转180°图23-5 图23-6 8.如图23-6,将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′,若∠AOB=15°,则∠AOB′的度数是()A.25°B.30°C.35 D.40°9.图23-7是用围棋子摆出的图案[棋子的位置用有序数对表示,如A点在(5,1)],如果再摆1黑1白两枚棋子,使9枚棋子组成的图案既是轴对称图形又是中心对称图形,则下列摆放正确的是()图23-7A.黑(3,3),白(3,1)B.黑(3,1),白(3,3)C.黑(1,5),白(5,5)D.黑(3,2),白(3,3)10.如图23-8,将正方形纸片两次对折,并剪出一个菱形小洞后展开铺平,得到的图形是()图23-8二、填空题(本大题共6小题,每小题4分,共24分)11.如图23-9所示,图形(1)经过________变换得到图形(2);图形(2)经过________变到图形(3);图形(3)经过________变换得到图形(4).(填平移、旋转或轴对称)图23-912.如图23-10所示的美丽图案中,既是轴对称图形又是中心对称图形的有________个.图23-1013.若点P的坐标为(x+1,y-1),其关于原点对称的点P′的坐标为(-3,-5),则(x,y)为______.14.如图23-11,D,E分别为△ABC两边AB,AC的中点,将△ABC沿线段DE折叠,使点A落在点F处,若∠B=50°,则∠BDF=________°.图23-1115.如图23-12,在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,与图中阴影部分构成中心对称图形,涂黑的小正方形的序号是__________.图23-1216.如图23-13,在平面直角坐标系中,将△ABC绕点A逆时针旋转90°后,点B对应点的坐标为________.图23-13三、解答题(一)(本大题共3小题,每小题6分,共18分)17.如图23-14,画出△ABC关于点O对称的图形.图23-1418.如图23-15,请你画出方格纸中的图形关于点O的中心对称图形,并写出整个图形的对称轴的条数.图23-1519.如图23-16,在△ABC中,∠B=10°,∠ACB=20°,AB=4 cm,△ABC逆时针旋转一定角度后与△ADE重合,且点C恰好成为AD的中点.(1)指出旋转中心,并求出旋转的度数;(2)求出∠BAE的度数和AE的长.图23-16四、解答题(二)(本大题共3小题,每小题7分,共21分)20.在平面直角坐标系中,△ABC的位置如图23-17所示,请解答下列问题:(1)将△ABC向下平移3个单位长度,得到△A1B1C1,画出平移后的△A1B1C1;(2)将△ABC绕点O顺时针方向旋转180°,得到△A2B2C2,画出旋转后的△A2B2C2,并写出点A2的坐标.图23-1721.如图23-18,在直角三角形ABC中,∠ACB=90°,AC=BC=10,将△ABC绕点B 沿顺时针方向旋转90°得到△A1BC1.(1)线段A1C1的长度是________,∠CBA1的度数是________;(2)连接CC1,求证:四边形CBA1C1是平行四边形.图23-1822.如图23-19,P是正三角形ABC内的一点,且P A=6,PB=8,PC=10,若将△P AC 绕点A逆时针旋转后,得到△P′AB,求点P与点P′之间的距离及∠APB的度数.图23-19五、解答题(三)(本大题共3小题,每小题9分,共27分)23.某公司为了节约开支,购买了质量相同的两种颜色的残缺地砖,准备用来装修地面,现已加工成如图23-20(1)的等腰直角三角形,王聪同学设计了如图23-20(2)(3)(4)(5)的四种图案.图23-20(1)请问你喜欢哪种图案?并简述该图案的形成过程;(2)请你利用学过的知识再设计一幅与上述不同的图案.24.如图23-21,在网格中有一个四边形图案.(1)请你画出此图案绕点O顺时针方向旋转90°,180°,270°的图案,你会得到一个美丽的图案,千万不要将阴影位置涂错;(2)若网格中每个小正方形的边长为1,旋转后点A的对应点依次为A1,A2,A3,求四边形AA1A2A3的面积;(3)这个美丽图案能够说明一个著名结论的正确性,请写出这个结论.图23-2125.如图23-22(1),已知△ABC中,∠BAC=90°,AB=AC,AE是过点A的一条直线,且B,C在A,E的异侧,BD⊥AE于点D,CE⊥AE于点E.(1)试说明:BD=DE+CE;(2)若直线AE绕点A旋转到图23-22(2)位置时(BD<CE),其余条件不变,问BD与DE,CE的关系如何?请直接写出结果;(3)若直线AE绕点A旋转到图23-22(3)位置时(BD>CE),其余条件不变,问BD与DE,CE的关系如何?请直接写出结果,不需说明理由.图23-22第二十三章自主检测1.C 2.A 3.D 4.C 5.C 6.B 7.B 8.B 9.B 10.C11.轴对称 平移 旋转 12.3 13.(2,6) 14.80 15.② 16.(0,2) 17.解:如图D88,△A ′B ′C ′与△ABC 关于点O 中心对称.图D8818.解:如图D89.图D89可见共有4条对称轴.19.解:(1)∵△ABC 逆时针旋转一定角度后与△ADE 重合,A 为顶点, ∴旋转中心是点A .根据旋转的性质可知:∠CAE =∠BAD =180°-∠B -∠ACB =150°, ∴旋转度数为150°.(2)由(1)可知:∠BAE =360°-150°×2=60°, 由旋转可知:△ABC ≌△ADE ,∴AB =AD ,AC =AE .又点C 为AD 中点,∴AE =AC =12AD =12AB =12×4=2(cm).20.解:(1)(2)所画图形如图D90.图D90∴点A 2的坐标为(2,-3). 21.(1)10 135° 解析:∵将△ABC 绕点B 沿顺时针方向旋转90°得到△A 1BC 1, ∴A 1C 1=10,∠CBC 1=90°. 而△ABC 是等腰直角三角形, ∴∠A 1BC 1=45°.∴∠CBA 1=135°. (2)证明:∵∠A 1C 1B =∠C 1BC =90°,∴A 1C 1∥BC . 又∵A 1C 1=AC =BC ,∴四边形CBA 1C 1是平行四边形.22.解:由旋转可知,∠P AP ′=∠BAC =60°. ∵P A =P ′A =6,∴△PP ′A 是等边三角形.∴PP ′=P A =6.在△PP ′B 中,PB =8,PP ′=6,P ′B =PC =10,∴△P ′PB 是直角三角形.∴∠APB =∠APP ′+∠BPP ′=60°+90°=150°.23.解:(1)我喜欢图案(5),图案(5)的形成是以同行或同列的两个由三角形组成的正方形为“基本图案”,绕大正方形的中心旋转180°得到的.(答案不唯一)(2)如图D91.图D9124.解:(1)如图D92,正确画出图案.图D92(2)123AA A A S 四边形=123BB B BS 四边形-43BAA S △=(3+5)2-4×12×3×5=34.故四边形AA 1A 2A 3的面积为34.(3)由图可知:(a +c )2=4×12ac +b 2,整理,得c 2+a 2=b 2. 即AB 2+BC 2=AC 2.25.解:(1)∵∠BAC =90°,∴∠BAD +∠EAC =90°. 又∵BD ⊥AE ,CE ⊥AE , ∴∠BDA =∠AEC =90°,∠BAD +∠ABD =90°. ∴∠ABD =∠CAE .又∵AB =AC ,∴△ABD ≌△CAE . ∴BD =AE ,AD =CE .∵AE =AD +DE =CE +DE ,∴BD =DE +CE . (2)与(1)相同,可得DE =BD +CE . (3)与(1)相同,可得DE =BD +CE .。

九年级上册数学《旋转》单元检测题(含答案)

九年级上册数学《旋转》单元检测题(含答案)

人教版数学九年级上学期《旋转》单元测试(满分120分,考试用时120分钟)一、选择题(共14 小题,每小题 3 分,共42 分)1.…依次观察左边的三个图形,并判断照此规律从左向右的第四个图形是( )A...B...C...D.2.在下列四个图案中既是轴对称图形,又是中心对称图形的是( )A...B...C...D.3.已知平面直角坐标系中的三个点,,,将绕点按顺时针方向旋转度,则点的对应点的坐标为( )A...B...C...D.4.在平面直角坐标系中,点绕原点顺时针旋转后得到点( )A...B...C...D.5.如图,在中,,,,由绕点顺时针旋转得到,其中点与点、点与点是对应点,连接,且、、在同一条直线上,则的长为( )A...B...C...D.6.已知点是点关于原点的对称点,则的值为( )A...B.-..C...D.±67.如图,已知与关于点成中心对称图形,则下列判断不正确的是( )A.∠ABC=∠A'B'C..B.∠BOC=∠B'A'C.. C.AB=A'B..D.OA=OA'8.在如图的正方形网格上画有两条线段. 现在要再画一条,使图中的三条线段组成一个轴对称图形,能满足条件的线段有( )A.2..B.3..C.4..D.5条9.观察下列四个图案,它们分别绕中心旋转一定的角度后,都能和原来的图形重合,其中旋转的角度最大的是( )A...B...C...D.10.如图,在的正方形网格中,每个小正方形的顶点称为格点,左上角阴影部分是一个以格点为顶点的正方形(简称格点正方形). 若再作一个格点正方形,并涂上阴影,使这两个格点正方形无重叠面积,且组成的图形是轴对称图形,又是中心对称图形,则这个格点正方形的作法共有( )A.2..B.3..C.4..D.5种11.下列所给的正方体的展开图中,是中心对称图形的是图( )A.①②..B.①②..C.②③..D.①②③④12.如图,矩形的边,分别在坐标轴上,且点的坐标为,将矩形沿轴正方向平移个单位,得到矩形,再以点为旋转中心,把矩形顺时针方向旋转,得到矩形″″″″″,″,″,″,则点所经过的路线为″的长为( )A.1..B.1..C.4+5..D.4+13.如图,三个顶点的坐标分别为,,,将绕点按顺时针方向旋转,得到,则点的坐标为( )A.(1, 2..B.(2, 1..C.(1, 1..D.(2, 2)14.下面、、、四个图形中的哪个图案可以通过旋转图案①得到( )A...B...C...D.二、填空题(共6 小题,每小题 3 分,共18 分)15.一个图形绕某一点旋转后与另一个图形重合,则这两个图形成________,这个点叫________.16.如图,在网格中有一个四边形和两个三角形.①请你画出这三个图形关于点成中心对称的图形;②将原图和画出后的图形看成一个整体图形,它有________条对称轴;它至少旋转________度后与自身重合.17.在平面直角坐标系中,若与点关于原点对称,则点在第________象限.18.对于平面图形上的任意两点, ,如果经过某种变换(如:平移、旋转、轴对称等)得到新图形上的对应点, ,保持,我们把这种对应点连线相等的变换称为“同步变换”. 对于三种变换:①平移、②旋转、③轴对称,其中一定是“同步变换”的有________(填序号).19.在图中,是由基本图案多边形旋转而成的,它的旋转角为________.20.如图,将绕点逆时针方向旋转,得到,看点的坐标为,则点坐标为________.三、解答题(共4 小题,每小题10 分,共40 分)21.如图所示,是一块边长为的正方形瓷砖,其中瓷砖的阴影部分是半径为的扇形. 请你用这种瓷砖拼出三种不同的图案. 使拼成的图案既是轴对称图形又是中心对称图形,把它们分别画在下面边长为的正方形中(要求用圆规画图).22.如图所示,每个小正方形的边长为个单位长度,作出关于原点对称的并写出、、的坐标.23.如图,已知, 绕点逆时针旋转得到,恰好在上,连接.(1) 与有何关系?并说明理由;线段与在位置上有何关系?为什么?24.如图所示的网格中,每个小方格都是边长为的小正方形,,把绕点按顺时针旋转后得到,请画出这个三角形并写出点的坐标;以点为位似中心放大,得到,使放大前后的面积之比为,请在下面网格内出.参考答案一、选择题(共14 小题,每小题 3 分,共42 分)1.…依次观察左边的三个图形,并判断照此规律从左向右的第四个图形是()A...B...C...D.【答案】D【解析】试题分析: 根据图形,由规律可循. 从左到右是顺时针方向可得到第四个图形是D.故选D.考点: 生活中的旋转现象.2.在下列四个图案中既是轴对称图形,又是中心对称图形的是()A...B...C...D.【答案】B【解析】试题分析: 根据轴对称图形和中心对称图形的定义可得选项B正确.故选B.考点: 1.轴对称图形;2.中心对称图形.3.已知平面直角坐标系中的三个点,,,将绕点按顺时针方向旋转度,则点的对应点的坐标为()A...B...C...D.【答案】D【解析】【分析】把△ABO绕点O按顺时针方向旋转45°,就是把它上面的各个点按顺时针方向旋转45度. 点A 在第二象限的角平分线上,且OA= ,正好旋转到y轴正半轴. 则A点的对应点A1的坐标是(0, ).【详解】∵A的坐标是(-1,1),∴OA= ,且A1在y轴正半轴上,∴A1点的坐标是(0, ).【点睛】考查了坐标与图形变化-旋转,解答本题要能确定A的位置,只有这样才能确定点A的对应点A1的位置,求出坐标.4.在平面直角坐标系中,点绕原点顺时针旋转后得到点()A...B...C...D.【答案】A【解析】【分析】设A( ,1),过A作AB⊥x轴于B,于是得到AB=1,OB= ,根据边角关系得到∠AOB=30°,由于点( ,1)绕原点顺时针旋转60°,于是得到∠AOA′=60°,得到∠A′OB=30°,于是结论即可求出.【详解】设A( ,1),过A作AB⊥x轴于B,则AB=1,OB= ,∴tan∠AOB= == ,∴∠AOB=30°,∵点( ,1)绕原点顺时针旋转60°,∴∠AOA′=60°,∴∠A′OB=30°,∴点( ,1)绕原点顺时针旋转60°后得到点是( ,-1),故选: A.【点睛】考查了坐标与图形的变换-旋转,特殊角的三角函数,正确的画出图形是解题的关键.5.如图,在中,,,,由绕点顺时针旋转得到,其中点与点、点与点是对应点,连接,且、、在同一条直线上,则的长为()A...B...C...D.【答案】A【分析】先利用互余计算出∠BAC=30°,再根据含30度的直角三角形三边的关系得到AB=2BC=2,接着根据旋转的性质得A′B′=AB=2,B′C=BC=1,A′C=AC,∠A′=∠BAC=30°,∠A′B′C=∠B=60°,于是可判断△CAA′为等腰三角形,所以∠CAA′=∠A′=30°,再利用三角形外角性质计算出∠B′CA=30°,可得B′A=B′C=1,然后利用AA′=AB′+A′B′进行计算.【详解】∵∠ACB=90°,∠B=60°,∴∠BAC=30°,∴AB=2BC=2×1=2,∵△ABC绕点C顺时针旋转得到△A′B′C′,∴A′B′=AB=2,B′C=BC=1,A′C=AC,∠A′=∠BAC=30°,∠A′B′C=∠B=60°,∴△CAA′为等腰三角形,∴∠CAA′=∠A′=30°,∵A.B′、A′在同一条直线上,∴∠A′B′C=∠B′AC+∠B′CA,∴∠B′CA=60°-30°=30°,∴B′A=B′C=1,∴AA′=AB′+A′B′=2+1=3.故选: A.【点睛】考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等. 也考查了含30度的直角三角形三边的关系.6.已知点是点关于原点的对称点,则的值为()A...B.-..C...D.±6【答案】C【解析】【分析】根据关于原点对称的点,横坐标与纵坐标都互为相反数,结合题意可得ab的值,代入a+b可得答案.【详解】根据题意,有点A(a,-3)是点B(-2,b)关于原点O的对称点,则a=-(-2)=2,b=-(-3)=3,则a+b=3+2=5.【点睛】考查平面直角坐标系关于坐标轴成轴对称的两点的坐标之间的关系.7.如图,已知与关于点成中心对称图形,则下列判断不正确的是()A.∠ABC=∠A'B'C..B.∠BOC=∠B'A'C.. C.AB=A'B..D.OA=OA'【答案】B【解析】【分析】根据中心对称的定义: 把一个图形绕着某个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心,来求解即可.【详解】因为△ABC与△A′B′C′关于点O成中心对称图形,所以可得∠ABC=∠A′B′C′,AB=A′B′,OA=OA',故选: B.【点睛】考查了中心对称的定义,解题的关键是熟记中心对称的定义. 也可用三角形全等来求解.8.在如图的正方形网格上画有两条线段. 现在要再画一条,使图中的三条线段组成一个轴对称图形,能满足条件的线段有( )A.2..B.3..C.4..D.5条【答案】C【解析】试题分析: 直接利用轴对称图形的性质分别得出符合题意的答案.解: 如图所示: 能满足条件的线段有4条.故选:C.考点: 利用轴对称设计图案.9.观察下列四个图案,它们分别绕中心旋转一定的角度后,都能和原来的图形重合,其中旋转的角度最大的是()A...B...C...D.【答案】A【解析】【分析】求出各旋转对称图形的最小旋转角度,再比较即可.【详解】A选项: 最小旋转角度= =120°;B.最小旋转角度= =90°;C.最小旋转角度= =72°;D.最小旋转角度= =60°;综上可得: 旋转的角度最大的是A.故选: A.【点睛】考查了旋转对称图形中旋转角度的确定,求各图形的最小旋转角度时,关键要看各图形可以被平分成几部分,被平分成n部分,旋转的最小角度就是.10.如图,在的正方形网格中,每个小正方形的顶点称为格点,左上角阴影部分是一个以格点为顶点的正方形(简称格点正方形). 若再作一个格点正方形,并涂上阴影,使这两个格点正方形无重叠面积,且组成的图形是轴对称图形,又是中心对称图形,则这个格点正方形的作法共有( )A.2..B.3..C.4..D.5种【答案】C【解析】试题分析: 利用轴对称图形的性质以及中心对称图形的性质分析得出符合题意的图形即可.解: 如图所示: 组成的图形是轴对称图形,又是中心对称图形,则这个格点正方形的作法共有4种.故选:C.点评: 此题主要考查了利用轴对称以及旋转设计图案,正确把握相关定义是解题关键.【此处有视频,请去附件查看】11.下列所给的正方体的展开图中,是中心对称图形的是图()A.①②..B.①②..C.②③..D.①②③④【答案】B【解析】【分析】根据中心对称图形的概念(在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形,这个旋转点就叫做中心对称点)求解.【详解】根据中心对称图形的概念可是: ①②④是中心对称图形;而③不是中心对称图形.故选: B.【点睛】考查了中心对称图形的概念. 在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形,这个旋转点就叫做中心对称点.12.如图,矩形的边,分别在坐标轴上,且点的坐标为,将矩形沿轴正方向平移个单位,得到矩形,再以点为旋转中心,把矩形顺时针方向旋转,得到矩形″″″″″,″,″,″,则点所经过的路线为″的长为()A.1..B.1..C.4+5..D.4+【答案】D【解析】【分析】利用平移变换和弧长公式计算.【详解】此题平移规律是(x+4,y),照此规律计算可知点B平移的距离是5个单位长度.把矩形O′A′B′C′顺时针方向旋转90°,点B′走过的路程是半径为5,圆心角是90度的弧长为,所以点B所经过的路线为B⇒B′⇒B″的长为4+.故选: D.【点睛】考查图形的平移变换和弧长公式的运用. 在平面直角坐标系中,图形的平移与图形上某点的平移相同. 平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.13.如图,三个顶点的坐标分别为,,,将绕点按顺时针方向旋转,得到,则点的坐标为()A.(1, 2..B.(2, 1..C.(1, 1..D.(2, 2)【答案】B【解析】【分析】直接利用旋转的性质得出对应点位置进而得出答案;【详解】∵A(-2,5),B(-5,1),C(-2,1),∴AC=4,AC∥y轴,∵△ABC绕点C按顺时针方向旋转90°,得到△DEC,∴∠DCE=∠ACB=90°,CD=AC=4,∴B,C,D三点在一条直线上,∴D(2,1),故选: B.【点睛】考查了旋转变换以及扇形面积求法,正确得出对应点位置是解题关键.14.下面、、、四个图形中的哪个图案可以通过旋转图案①得到()A...B...C...D.【答案】B【解析】【分析】根据旋转的性质旋转变化前后,图形的相对位置不变,注意时针与分针的位置关系,分析选项.【详解】根据旋转的性质(旋转变化前后,对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等)可得: 图案①顺时针旋转90°得到B.故选B.【点睛】考查旋转的性质:旋转变化前后,对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等. 要注意旋转的三要素: ①定点为旋转中心;②旋转方向;③旋转角度.二、填空题(共6 小题,每小题 3 分,共18 分)15.一个图形绕某一点旋转后与另一个图形重合,则这两个图形成________,这个点叫________.【答案.. (1).中心对.. (2).对称中心【解析】【分析】根据中心对称图形的概念求解.【详解】一个图形绕某一点旋转180°后与另一个图形重合,则这两个图形成中心对称,这个点叫对称中心. 故答案是: 中心对称,对称中心.【点睛】考查了中心对称图形的概念: 把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.16.如图,在网格中有一个四边形和两个三角形.①请你画出这三个图形关于点成中心对称的图形;②将原图和画出后的图形看成一个整体图形,它有________条对称轴;它至少旋转________度后与自身重合.【答案】(1)详见解析,(2)4,90【解析】【分析】(1)将图形的各顶点与点O连线并延长相同长度找对应点,然后顺次连接得中心对称图形;(2)根据轴对称的性质,找对称轴,只要连接两组对应点,作出对应点所连线段的两条垂直平分线.【详解】(1)如图所示,共有4条对称轴;(2)4条对称轴,这个整体图形至少旋转90度.故答案为: 4,90.【点睛】考查了轴对称图形和旋转变换图形的方法,注意,做这类题时,掌握旋转与轴对称的性质是解决问题的关键.17.在平面直角坐标系中,若与点关于原点对称,则点在第________象限.【答案】四【解析】【分析】根据关于原点对称的点的横坐标与纵坐标都互为相反数求出点P的坐标,再根据各象限内点的坐标特征解答.【详解】∵P(m,n)与点Q(-2,3)关于原点对称,∴m=2,n=-3,∴点P的坐标为(2,-3),∴点P在第四象限.故答案是: 四.【点睛】考查了关于原点对称的点的坐标,两点关于原点对称,则两点的横、纵坐标都是互为相反数.18.对于平面图形上的任意两点, ,如果经过某种变换(如:平移、旋转、轴对称等)得到新图形上的对应点, ,保持,我们把这种对应点连线相等的变换称为“同步变换”. 对于三种变换:①平移、②旋转、③轴对称,其中一定是“同步变换”的有________(填序号).【答案】①【解析】【分析】根据平移变换、旋转变换和轴对称变换的性质,依据“同步变换”的定义判断可得.【详解】平移的性质是把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的所有点平移的方向和距离都相等,故平移变换一定是“同步变换”;若将线段PQ绕点P旋转,则PP′=0,而QQ′≠0,故旋转变换不一定是“同步变换”;将相对于直线倾斜的线段PQ经过该直线的轴对称变换,所得PP′≠QQ′,故轴对称变换不一定是“同步变换”,故答案是: ①.【点睛】考查几何变换的类型,熟练掌握平移变换、旋转变换和轴对称变换的性质是解题的关键.19.在图中,是由基本图案多边形旋转而成的,它的旋转角为________.【答案】【解析】【分析】由于图形是基本图案多边形ABCDE旋转而成的,根据图形可以得到旋转形成的图形是一个正六边形,由此即可确定旋转角的度数.【详解】∵图形是基本图案多边形ABCDE旋转而成的,而根据图形知道旋转形成的图形是一个正六边形,∴它的旋转角是: 60°.【点睛】考查了旋转的性质,主要利用了旋转角的定义和正六边形的性质解决问题.20.如图,将绕点逆时针方向旋转,得到,看点的坐标为,则点坐标为________.【答案】【解析】【分析】利用旋转的性质得OB′=OB=2,A′B′=AB=1,∠BOB′=90°,∠OB′A′=∠OBA=90°,然后利用第二象限内点的坐标特征写出点A′坐标.【详解】∵A(2,1),∴AB=1,OB=2,∵△AOB绕点O逆时针方向旋转90°,得到△A′OB′,∴OB′=OB=2,A′B′=AB=1,∠BOB′=90°,∠OB′A′=∠OBA=90°,∴点A′坐标为(-1,2).故答案是: (-1,2).【点睛】考查了坐标与图形变化:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标. 常见的是旋转特殊角度如:30°,45°,60°,90°,180°.三、解答题(共4 小题,每小题10 分,共40 分)21.如图所示,是一块边长为的正方形瓷砖,其中瓷砖的阴影部分是半径为的扇形. 请你用这种瓷砖拼出三种不同的图案. 使拼成的图案既是轴对称图形又是中心对称图形,把它们分别画在下面边长为的正方形中(要求用圆规画图).【答案】见解析.【解析】图形(1)既轴对称(对称轴为正方形对角线所在的直线),又中心对称(对称中心为正方形的中心),根据小正方形的对称性,将小正方形换动不同方向,得出既轴对称图形又中心对称的图形.【详解】既轴对称图形又中心对称的图形如图所示. 答案不唯一.【点睛】考查了运用旋转,轴对称方法设计图案的问题. 关键是熟悉有关图形的对称性,利用中心对称性拼图.22.如图所示,每个小正方形的边长为个单位长度,作出关于原点对称的并写出、、的坐标.【答案】见解析.【解析】【分析】根据直角坐标系中,关于原点对称的两个点的坐标特点是: 横坐标,纵坐标都互为相反数,根据点的坐标就确定原图形的顶点的对应点,进而即可作出所求图形.【详解】解: 根据图形可知: , , ,各点关于原点对称的点的坐标分别是: , , ,然后连接点再依次连接可得所求图形.【点睛】考查了关于原点对称的知识,要求学生会画图,会表示点的坐标. 关键是掌握关于原点对称的两个点的坐标特点是: 横坐标,纵坐标都互为相反数,根据点的坐标就可以画出对称图形.23.如图,已知, 绕点逆时针旋转得到,恰好在上,连接.(1) 与有何关系?并说明理由;线段与在位置上有何关系?为什么?【答案】(1)互补;(2) .【解析】(1)根据旋转的性质可得∠BAC=∠DAE=90°,然后表示出∠CAE,再根据∠BAE=∠BAC+∠CAE列式整理即可得解;(2)根据旋转的性质可得∠BAD=∠CAE,AB=AD,AC=AE,再利用等腰三角形两底角相等表示出∠B.∠ACE,然后求出∠BCE=90°,根据垂直的定义即可得解.【详解】解:与互补. 理由如下:由旋转的性质知: ,∴,∵,∴,因此与互补;线段. 理由如下:由旋转知: , , ,∴,,∴,∵,∴,∴,∴.【点睛】考查了旋转的性质,等腰三角形两底角相等的性质,垂直的定义,熟练掌握旋转的性质是解题的关键.24.如图所示的网格中,每个小方格都是边长为的小正方形,,把绕点按顺时针旋转后得到,请画出这个三角形并写出点的坐标;以点为位似中心放大,得到,使放大前后的面积之比为,请在下面网格内出.【答案】见解析.【分析】(1)直接利用旋转的性质得出对应点位置进而得出答案;(2)利用位似图形的性质进而得出对应点位置即可得出答案.【详解】如图所示: ,即为所求,点的坐标为: ;如图所示:.【点睛】考查了位似变换和旋转变换,解题关键是正确得出对应点位置.。

人教版九年级数学上册第二十三章《旋转》测试题(含答案)

人教版九年级数学上册第二十三章《旋转》测试题(含答案)

人教版九年级数学上册第二十三章《旋转》测试题(含答案)一.选择题1.下面生活中的实例,不是旋转的是()A.传送带传送货物B.螺旋桨的运动C.风车风轮的运动D.自行车车轮的运动2.下列图形绕某点旋转90°后,不能与原来图形重合的是()A.B.C.D.3.已知点A的坐标为(2,3),O为坐标原点,连接OA,将线段OA绕点A按顺时针方向旋转90°得AB,则点B的坐标为()A.(5,1)B.(﹣3,2)C.(﹣1,5)D.(3,﹣2)4.下列说法中错误的是()A.成中心对称的两个图形全等B.成中心对称的两个图形中,对称点的连线被对称轴平分C.中心对称图形的对称中心是对称点连线的中心D.中心对称图形绕对称中心旋转180°后,都能与自身重合5.下列英语单词中,是中心对称图形的是()A.SOS B.CEO C.MBA D.SAR6.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.7.在平面直角坐标系中,点M(3,﹣5)关于原点对称的点的坐标是()A.(﹣3,﹣5)B.(3,5)C.(5,﹣3)D.(﹣3,5)8.第24届冬季奥林匹克运动会,将于2022年02月04日~2022年02月20日在中华人民共和国北京市和张家口市联合举行.在会徽的图案设计中,设计者常常利用对称性进行设计,下列四个图案是历届会徽图案上的一部分图形,其中不是轴对称图形的是()A.B.C.D.9.将图绕中心按顺时针方向旋转60°后可得到的图形是()A.B.C.D.10.如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=15,将△ABC绕点B顺时针旋转60°,得到△BDE,连接DC交AB于点F,则△ACF与△BDF的周长之和为()A.48B.50C.55D.60二.填空题11.与电子显示的四位数6925不相等,但为全等图形的四位数是.12.若数字串“000”和数字串“101”既是轴对称图形,又是中心对称图形,那么数字串“110”是图形(填写“轴对称”、“中心对称”).13.如图,在△ABC中,AB=4,AC=3,∠BAC=30°,将△ABC绕点A逆时针旋转60°得到△AB1C1,连接BC1,则BC1的长为.14.如图,是4×4正方形网格,其中已有4个小方格涂成了黑色,现在要从其余12个白色小方格中选出一个也涂成黑色,使整个黑色部分图形构成轴对称图形,这样的白色小方格有个.15.如图,△ABC与△DEF关于O点成中心对称.则AB DE,BC∥,AC=.16.在平面直角坐标系中,点(﹣3,4)关于原点对称的点的坐标是.17.时钟从上午9时到中午12时,时针沿顺时针方向旋转了度.18.时钟的时针在不停地转动,从上午6时到上午9时,时针旋转的旋转角为度,从上午9时到下午5时时针旋转的旋转角为度.19.如图,把这个“十字星”形图绕其中心点O旋转,当至少旋转度后,所得图形与原图形重合.20.如图,在平面直角坐标系中,点P1的坐标为(,),将线段OP1绕点O按顺时针方向旋转45°,再将其长度伸长为OP1的2倍,得到线段OP2;又将线段OP2绕点O按顺时针方向旋转45°,长度伸长为OP2的2倍,得到线段OP3;如此下去,得到线段OP4,OP5,…,OP n(n为正整数),则点P2020的坐标是.三.解答题21.在14×9的方格纸中,每个小正方形的边长都为1,△ABC与△A′B′C′的位置如图所示;(1)请说明△ABC与△A′B′C′的位置关系;(2)若点C的坐标为(0,0),则点B′的坐标为;(3)求线段CC′的长.22.如图所示的图形是一个轴对称图形,且每个角都是直角,小明用n个这样的图形,按照如图(2)所示的方法玩拼图游戏,两两相扣,相互间不留空隙.(1)用含a、b的式子表示c;(2)当n=2时,求小明拼出来的图形总长度;(用含a、b的式子表示)(3)当a=4,b=3时,小明用n个这样的图形拼出来的图形总长度为28,求n的值.23.(1)计算:+﹣2﹣1;(2)一串有趣的图案按一定规律排列.请仔细观察,按此规律画出的第10个图案是;在前16个图案中有个;第2008个图案是.24.在△ABC中,∠B+∠ACB=30°,AB=4,△ABC逆时针旋转一定角度后与△ADE重合,且点C恰好成为AD中点,如图(1)指出旋转中心,并求出旋转角的度数.(2)求出∠BAE的度数和AE的长.25.在平面内,如果一个图形绕一个定点旋转一定的角度后能与自身重合,那么就称这个图形是旋转对称图形,转动的这个角称为这个图形的一个旋转角.例如:正方形绕着它的对角线的交点旋转90°后能与自身重合(如图),所以正方形是旋转对称图形,它有一个旋转角为90度.(1)判断下列命题的真假(在相应的括号内填上“真”或“假”).①等腰梯形是旋转对称图形,它有一个旋转角为180度.()②矩形是旋转对称图形,它有一个旋转角为180°.()(2)填空:下列图形中,是旋转对称图形,且有一个旋转角为120°的是(写出所有正确结论的序号):①正三角形;②正方形;③正六边形;④正八边形.(3)写出两个多边形,它们都是旋转对称图形,都有一个旋转角为72°,并且分别满足下列条件:①是轴对称图形,但不是中心对称图形:;②既是轴对称图形,又是中心对称图形:.26.在平面直角坐标系中,O为原点,点A(4,0),点B(0,3),把△ABO绕点B逆时针旋转,得△A′BO′,点A、O旋转后的对应点为A′、O′,记旋转角为a.(1)如图1,若a=90°,求AA′的长;(2)如图2,若a=120°,求点O′的坐标.参考答案一.选择题1.解:传送带传送货物的过程中没有发生旋转.故选:A.2.解:A、绕它的中心旋转90°能与原图形重合,故本选项不合题意;B、绕它的中心旋转90°能与原图形重合,故本选项不合题意;C、绕它的中心旋转90°能与原图形重合,故本选项不合题意;D、绕它的中心旋转120°才能与原图形重合,故本选项符合题意.故选:D.3.解:如图,过A作y轴的平行线,过B作x轴的平行线,交点为C,由∠C=∠ADO,∠BAC=∠AOD,AB=OA,可得△ABC≌△OAD,∴AC=OD=2,BC=AD=3,∴CD=5,点B离y轴的距离为:3﹣2=1,∴点B的坐标为(﹣1,5),故选:C.4.解:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形与另一个图形重合,那么就说明这两个图形的形状关于这个点成中心对称,中心对称图形的对称中心是对称点连线的交点,根据中心对称图形的定义和性质可知A、C、D正确,B错误.故选:B.5.解:是中心对称图形的是A,故选A.6.解:A、是轴对称图形,不是中心对称图形,故本选项不符合题意;B、既是轴对称图形,又是中心对称图形,故本选项符合题意;C、不是轴对称图形,是中心对称图形,故本选项不符合题意;D、不是轴对称图形,是中心对称图形,故本选项不符合题意.故选:B.7.解:点M(3,﹣5)关于原点对称的点的坐标是(﹣3,5),故选:D.8.解:A、是轴对称图形,故此选项错误;B、是轴对称图形,故此选项错误;C、是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项正确;故选:D.9.解:将图绕中心按顺时针方向旋转60°后得到的图形是.故选:A.10.解:∵将△ABC绕点B顺时针旋转60°,得到△BDE,∴△ABC≌△BDE,∠CBD=60°,∴BD=BC=15,∴△BCD为等边三角形,∴CD=BC=BD=15,∵AB===17,∴△ACF与△BDF的周长之和=AC+AF+CF+BF+DF+BD=AC+AB+CD+BD=8+15+15+17=55,故选:C.二.填空题11.答:5269.12.解:根据对称图形的概念,知110仅是轴对称图形,对称轴为正中水平直线.13.解:∵将△ABC绕点A逆时针旋转60°得到△AB1C1,∴AC=AC1=3,∠CAC1=60°,∴∠BAC1=90°,∴BC1===5,故答案为:5.14.解:如图所示:1,2,3位置即为符合题意的答案.故答案为:3.15.解:∵△ABC与△DEF关于O点成中心对称∴△ABC≌△DEFAB=DE,AC=DF又∵BO=OE,CO=OF,∠BOC=∠FOE∴△BOC≌△EOF∴∠BCO=∠OFEBC∥EF故填:=,EF,DF16.解:点(﹣3,4)关于原点对称的点的坐标是(3,﹣4).故答案为:(3,﹣4).17.解:从上午9时到中午12时,时针就从指向9,旋转到指向12,共顺时针转了3个“大格”,而每个“大格”相应的圆心角为30°,所以,30°×3=90°,故答案为:90.18.解:从上午6时到上午9时时针转过3个大格,所以,3×30°=90°,上午9时到下午5时时针转过8个大格,所以,8×30°=240°.故答案为:90;240.19.解:把这个“十字星”形图绕其中心点O旋转,当至少旋转360°÷4=90°后,所得图形与原图形重合,故答案为:90.20.解:∵点P1的坐标为(,),将线段OP1绕点O按顺时针方向旋转45°,再将其长度伸长为OP1的2倍,得到线段OP2;∴OP1=1,OP2=2,∴OP3=4,如此下去,得到线段OP4=23,OP5=24…,∴OP n=2n﹣1,由题意可得出线段每旋转8次旋转一周,∵2020÷8=252…4,∴点P2020的坐标与点P4的坐标在同一直线上,正好在y轴的负半轴上,∴点P2020的坐标是(0,﹣22019).故答案为:(0,﹣22019).三.解答题21.解:(1)△ABC与△A′B′C′成中心对称;(2)根据点C的坐标为(0,0),则点B′的坐标为:(7,﹣2);(3)线段CC′的长为:=2.22.解:(1)由图(1)可得,c=;(2)观察图形可知:当2个图(1)拼接时,总长度为:2a﹣2c=2a﹣2×=a+b;(3)结合(2)发现:用n个这样的图形拼出来的图形总长度为:a+(n﹣1)b,当a=4,b=3时,4+3(n﹣1)=28,解得:n=9.∴n的值为9.23.解:(1)原式==2;(2)根据分析,知应分别为,5,.24.解:(1)在△ABC中,∵∠B+∠ACB=30°,∴∠BAC=150°,当△ABC逆时针旋转一定角度后与△ADE重合,∴旋转中心为点A,∠BAD等于旋转角,即旋转角为150°;(2)∵△ABC绕点A逆时针旋转150°后与△ADE重合,∴∠DAE=∠BAC=150°,AB=AD=4,AC=AE,∴∠BAE=360°﹣150°﹣150°=60°,∵点C为AD中点,∴AC=AD=2,∴AE=2.25.解:(1)等腰梯形必须旋转360°才能与自身重合;矩形旋转180°可以与自身重合.①等腰梯形是旋转对称图形,它有一个旋转角为180度.(假)②矩形是旋转对称图形,它有一个旋转角为180°.(真)(2)①只要旋转120°的倍数即可;②只要旋转90°的倍数即可;③只要旋转60°的倍数即可;④只要旋转45°的倍数即可.故是旋转对称图形,且有一个旋转角为120°的是①、③.(3)360°÷72°=5.①是轴对称图形,但不是中心对称图形:如正五边形,正十五边形;②既是轴对称图形,又是中心对称图形:如正十边形,正二十边形.26.解:(1)∵点A(4,0),点B(0,3),∴OA=4,OB=3.在Rt△ABO中,由勾股定理得AB=5.根据题意,△A′BO′是△ABO绕点B逆时针旋转900得到的,由旋转是性质可得:∠A′BA=90°,A′B=AB=5,∴AA′=5.(2)如图,根据题意,由旋转是性质可得:∠O′BO=120°,O′B=OB=3过点O′作O′C⊥y轴,垂足为C,则∠O′CB=90°.在Rt△O′CB中,由∠O′BC=60°,∠BO′C=30°.∴BC=O′B=.由勾股定理O′C=,∴OC=OB+BC=.∴点O′的坐标为(,).。

人教版九年级数学(上)第二十三章《旋转》检测卷含答案

人教版九年级数学(上)第二十三章《旋转》检测卷含答案

人教版九年级数学(上)第二十三章《旋转》检测卷(120分钟150分)一、选择题(本大题共10小题,每小题4分,满分40分)1.下列图形,既是轴对称图形,又是中心对称图形的是2.将大写字母E绕点P按顺时针方向旋转90°得到的图形是3.下列说法中,正确的有①平行四边形是中心对称图形;②两个全等三角形一定成中心对称;③中心对称图形的对称中心是连接两对称点的线段的中点;④一个图形若是轴对称图形,则一定不是中心对称图形;⑤一个图形若是中心对称图形,则一定不是轴对称图形.A.1个B.2个C.3个D.4个4.如图,已知点O是六边形ABCDEF的中心,图中所有的三角形都是等边三角形,则下列说法正确的是A.△ODE绕点O顺时针旋转60°得到△OBCB.△ODE绕点O逆时针旋转120°得到△OABC.△ODE绕点F顺时针旋转60°得到△OABD.△ODE绕点C逆时针旋转90°得△OAB5.在直角坐标系中,将点(-2,3)关于原点的对称点向左平移2个单位长度,得到的点的坐标是A.(4,-3)B.(-4,3)C.(0,-3)D.(0,3)6.如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,△ABC绕着点B逆时针旋转90°到△A'BC'的位置,则AA'的长为A.10√2B.10C.20D.5√27.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2.将△ABC绕点C按顺时针方向旋转n度后得到△EDC,此时点D在AB边上,斜边DE交AC边于点F,则n的大小和图中阴影部分的面积分别为A.30,2B.60,2D.60,√3C.60,√328.如图,在平面直角坐标系中,将△ABC绕点C(0,1)旋转180°得到△A'B'C,设点A的坐标为(a,b),则点A'的坐标为A.(-a,-b)B.(-a,-b-1)C.(-a,-b+1)D.(-a,-b+2)9.有两个完全重合的直尺,将其中一个始终保持不动,另一个直尺绕其对称中心O按逆时针方向进行旋转,每次均旋转45°,第1次旋转后得到图①,第2次旋转后得到图②,…,则第10次旋转后得到的图形与图①~④中相同的是A.图①B.图②C.图③D.图④10.Rt△ABC中,AB=AC,点D为BC中点.∠MDN=90°,∠MDN绕点D旋转,DM,DN分别与边AB,AC交于E,F两点.下列结论:①(BE+CF )=√22BC ;②S △AEF ≤14S △ABC ;③S 四边形AEDF =AD ·EF ;④AD ≥EF ;⑤AD 与EF 可能互相平分,其中正确结论的个数是A.1个B.2个C.3个D.4个二、填空题(本大题共4小题,每小题5分,满分20分)11.已知a<0,则点P (-a 2,-a+1)关于原点的对称点P'在第 四 象限.12.如图所示,把一个直角三角尺ACB 绕着30°角的顶点B 顺时针旋转,使得点A 落在CB 延长线上的点E 处,则∠BDC= 15° .13.如图,在Rt △ABC 中,∠ACB=90°,∠BAC=60°,AB=6,Rt △AB'C'可以看作是由Rt △ABC 绕点A 逆时针方向旋转60°得到的,则线段B'C 的长为 3√7 .14.如图,在Rt △ABC 中,∠ACB=90°,∠A=30°,AC=6√3,BC 的中点为D ,将△ABC 绕点C 顺时针旋转任意一个角度得到△FEC ,EF 的中点为G ,连接DG 在旋转过程中,DG 的最大值是 9 .三、(本大题共2小题,每小题8分,满分16分)15.如图,四边形ABCD绕点O旋转后,顶点A的对应点为点E.试确定旋转后的四边形.解:如图所示,四边形EB'C'D'即为四边形ABCD绕点O旋转后的四边形.AB,请你用旋转的16.如图,在正方形ABCD中,E是AD的中点,F是BA延长线上一点,且AF=12方法说明线段BE和DF之间的关系.AB,∴AE=AF,解:∵四边形ABCD为正方形,∴AD=AB,∠BAD=90°,∵E是AD的中点,AF=12∴△DFA≌△BEA,∴把△ABE绕点A逆时针旋转90°可得到△ADF,∴BE=DF,BE⊥DF.四、(本大题共2小题,每小题8分,满分16分)17.△ABC在平面直角坐标系中的位置如图所示,A,B,C三点在格点上.(1)作出△ABC关于y轴对称的△A1B1C1,并写出点C1的坐标;(2)作出△ABC关于原点O对称的△A2B2C2,并写出点C2的坐标.答案图解:(1)如图,C 1(-3,2). (2)如图,C 2(-3,-2).18.已知点P (x+1,2x-1)关于原点的对称点在第一象限,试化简:|x-3|-|1-x|. 解:∵点P (x+1,2x-1)关于原点的对称点P'的坐标为(-x-1,-2x+1),点P'在第一象限,∴{-x -1>0,-2x +1>0,∴x<-1,∴|x-3|-|1-x|=-x+3-1+x=2.五、(本大题共2小题,每小题10分,满分20分)19.如图,在等边△ABC 中,AC=9,点O 在AC 上,且AO=3,点P 是AB 上的一动点,连接OP ,将线段OP 绕点O 逆时针旋转60°得到线段OD ,要使点D 恰好落在BC 上,求AP 的长. 解:如图,∵AC=9,AO=3,∴OC=6,∵△ABC为等边三角形,∴∠A=∠C=60°,∵线段OP绕点D逆时针旋转60°得到线段OD,要使点D恰好落在BC上,∴OD=OP,∠POD=60°,∵∠1+∠2+∠A=180°,∠1+∠3+∠POD=180°,∴∠1+∠2=120°,∠1+∠3=120°,∴∠2=∠3,在△AOP和△CDO中,{∠A=∠C,∠2=∠3, OP=OD,∴△AOP≌△CDO,∴AP=CO=6.20.在平面直角坐标系中,O为原点,B(0,6),A(8,0),以点B为旋转中心把△ABO逆时针旋转,得△A'BO',点O,A旋转后的对应点为O',A',记旋转角为β.(1)如图1,若β=90°,求AA'的长;(2)如图2,若β=120°,求点O'的坐标.解:(1)∵β=90°,∴∠A'BA=90°,∵A(8,0),B(0,6),∴OA=8,OB=6,根据勾股定理得,AB=√OA 2+OB 2=√82+62=10, 由旋转的性质得,A'B=AB=10,在Rt △A'BA 中,根据勾股定理得,AA'=√AB 2+A 'B 2=√102+102=10√2. (2)如图,过点O'作O'C ⊥y 轴于点C , 由旋转的性质得,O'B=OB=6,∵β=120°,∴∠OBO'=120°,∴∠O'BC=180°-120°=60°, ∴BC=12O'B=12×6=3,CO'=√O 'B 2-BC 2=√62-32=3√3,∴OC=OB+BC=6+3=9,∴点O'的坐标为(3√3,9).六、(本题满分12分)21.如图,在等腰△ABC 中,∠CAB=90°,P 是△ABC 内一点,PA=1,PB=3,PC=√7,将△APB 绕点A 逆时针旋转后与△AQC 重合.求: (1)线段PQ 的长; (2)∠APC 的度数.解:(1)∵△APB 绕点A 旋转与△AQC 重合,∴AQ=AP=1,∠QAP=∠CAB=90°, ∴在Rt △APQ 中,PQ=√AQ 2+AP 2=√2.(2)∵∠QAP=90°,AQ=AP,∴∠APQ=45°.∵△APB绕点A旋转与△AQC重合,∴CQ=BP=3.在△CPQ中,PQ=√2,CQ=3,CP=√7,∴CP2+PQ2=CQ2,∴∠CPQ=90°,∴∠APC=∠CPQ+∠APQ=135°.七、(本题满分12分)22.如图,▱ABCD中,AB⊥AC,AB=1,BC=√5,对角线BD,AC交于点O.将直线AC绕点O顺时针旋转分别交BC,AD于点E,F.(1)试说明在旋转过程中,AF与CE总保持相等;(2)证明:当旋转角为90°时,四边形ABEF是平行四边形;(3)在旋转过程中,四边形BEDF可能是菱形吗?如果不能请说明理由;如果能,求出此时AC绕点O顺时针旋转的角度.解:(1)在▱ABCD中,AD∥BC,OA=OC,∴∠1=∠2,在△AOF和△COE中,{∠1=∠2,OA=OC,∠3=∠4,∴△AOF≌△COE(ASA),∴AF=CE.(2)由题意,∠AOF=90°(如图1),又∵AB ⊥AC ,∴∠BAO=90°,∴∠BAO=∠AOF ,∴AB ∥EF ,∵四边形ABCD 是平行四边形,∴AD ∥BC ,即AF ∥BE , ∵AB ∥EF ,AF ∥BE ,∴四边形ABEF 是平行四边形.(3)当EF ⊥BD 时,四边形BEDF 是菱形(如图2).由(1)知,AF=CE ,∵▱ABCD ,∴AD=BC ,AD ∥BC ,∴DF ∥BE ,DF=BE ,∴四边形BEDF 是平行四边形,又∵EF ⊥BD ,∴▱BEDF 是菱形,∵AB ⊥AC ,∴在△ABC 中,∠BAC=90°,∴BC 2=AB 2+AC 2, ∵AB=1,BC=√5,∴AC=√BC 2-AB 2=√(√5)2-12=2, ∵四边形ABCD 是平行四边形,∴OA=12AC=12×2=1, ∵在△AOB 中,AB=AO=1,∠BAO=90°, ∴∠1=45°,∵EF ⊥BD ,∴∠BOF=90°,∴∠2=∠BOF-∠1=90°-45°=45°,即旋转角为45°. 八、(本题满分14分)23.如图1,在正方形ABCD 中,点M ,N 分别在AD ,CD 上,若∠MBN=45°,易证MN=AM+CN. (1)如图2,在梯形ABCD 中,BC ∥AD ,AB=BC=CD ,点M ,N 分别在AD ,CD 上,若∠MBN=12∠ABC ,试探究线段MN ,AM ,CN 有怎样的数量关系?请写出猜想,并给予证明.(2)如图3,在四边形ABCD 中,AB=BC ,∠ABC+∠ADC=180°,点M ,N 分别在DA ,CD 的延长线上,若∠MBN=12∠ABC ,试探究线段MN ,AM ,CN 又有怎样的数量关系?请直接写出猜想,不需证明.解:(1)MN=AM+CN.理由如下:如图2,∵BC ∥AD ,AB=BC=CD ,∴梯形ABCD 是等腰梯形,∴∠A+∠BCD=180°,把△ABM 绕点B 顺时针旋转使AB 边与BC 边重合,则△ABM ≌△CBM',∴AM=CM',BM=BM',∠A=∠BCM',∠ABM=∠M'BC ,∴∠BCM'+∠BCD=180°,∴点M',C ,N 三点共线,∵∠MBN=12∠ABC ,∴∠M'BN=∠M'BC+∠CBN=∠ABM+∠CBN=∠ABC-∠MBN=12∠ABC ,∴∠MBN=∠M'BN ,在△BMN 和△BM'N 中,{BM =BM ',∠MBN =∠M 'BN ,BN =BN , ∴△BMN ≌△BM'N (SAS),∴MN=M'N ,又∵M'N=CM'+CN=AM+CN ,∴MN=AM+CN.(2)MN=CN-AM.。

人教版初中九年级数学上册第二十三章《旋转》经典测试题(含答案解析)

人教版初中九年级数学上册第二十三章《旋转》经典测试题(含答案解析)

一、选择题1.下列图形中,既是轴对称图形,又是中心对称图形的是( )A .等边三角形B .平行四边形C .圆D .五角星2.以原点为中心,将点P (3,4)旋转90°,得到的点Q 所在的象限为( ) A .第二象限 B .第三象限 C .第四象限 D .第二或第四象限 3.如图所示,把ABC 绕C 点旋转35︒,得到A B C ''',A B ''交AC 于点D ,若90A DC '∠=︒,则A ∠等于( )A .35︒B .65︒C .55︒D .45︒4.如图,正方形ABCD 内一点P ,5AB =,2BP =,把ABP △绕点B 顺时针旋转90°得到CBP ',则PP '的长为( )A .22B .23C .3D .32 5.如图,正方形ABCD 的边长为1,将其绕顶点C 旋转,得到正方形CEFG ,在旋转过程中,则线段AE 的最小值为( )A 32B 2-1C .0.5D 51-6.如图所示,在Rt ABC ∆中,90ACB ∠=︒,将ABC ∆绕顶点C 逆时针旋转得到A B C ∆'',M 是BC 的中点,P 是A B ''的中点,连接PM .若2BC =,30A ∠=︒,则线段PM 长的最大值是( )A .4B .3C .2D .1 7.若点P(-m ,m -3)关于原点对称的点是第二象限内的点,则m 满足( ) A .m >3 B .0<m≤3 C .m <0 D .m <0或m >3 8.以下关于新型冠状病毒的防范宣传图标中是中心对称图形的是( )A .B .C .D .9.下列图形中,既是轴对称图形又是中心对称图形的是( )A .等边三角形B .平行四边形C .正五边形D .菱形10.如图①是3×3正方形方格,将其中两个方格涂黑,并且使得涂黑后的整个图案是轴对称图形,约定绕正方形ABCD 的中心旋转能重合的图案都视为同一种,例②中四幅图就视为同一种,则得到不同共有( )A .4种B .5种C .6种D .7种 11.既是中心对称图形又是轴对称图形,且只有两条对称轴的四边形是( ) A .正方形 B .矩形 C .菱形 D .矩形或菱形 12.下列图形既是轴对称图形,又是中心对称图形的是( )A .B .C .D .13.下列图标中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D . 14.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D . 15.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是( )A .B .C .D .二、填空题16.如图所示,在直角坐标系中,点()0,6A ,点()3,4P 将AOP 绕点O 顺时针方向旋转,使OA 边落在x 轴上,则PP '=_______________.17.已知点(,2)A m m 在直线3y x 上,则点A 关于原点对称点B 的坐标为______. 18.如图,在正方形ABCD 中,3AB =,点E 在CD 边上,1DE =,把ADE 绕点A 顺时针旋转90°,得到ABE '△,连接EE ',则线段EE '的长为______.19.如图,在平面直角坐标系中有一个等边OBA △,其中A 点坐标为()1,0,将OBA △绕顶点A 顺时针旋转120︒,得到11AO B ;将得到的11AO B 绕顶点B 顺时针旋转120︒,得到112B AO ;然后再将得到的112B AO 绕顶点2O 顺时针旋转120︒,得到222O B A …按照此规律,继续旋转下去,则2014A 点的坐标为________.20.如图,点E 在正方形ABCD 的边CB 上,将DCE 绕点D 顺时针旋转90˚到ADF 的位置,连接EF ,过点D 作EF 的垂线,垂足为点H ,于AB 交于点G ,若4AG =,3BG =,则BE 的长为___________.21.如图,把△ABC 绕点C 顺时针旋转得到△A 'B 'C ',此时A ′B ′⊥AC 于D ,已知∠A =50°,则∠B ′CB 的度数是_____°.22.如图,四边形ABCD 是菱形,O 是两条对角线的交点,过O 点的三条直线将菱形分成阴影和空白部分,若菱形的面积为20cm 2,则阴影部分的面积为_____cm 2.23.在直角坐标系中,点(﹣1,2)关于原点对称点的坐标是_____.24.如图,在△ABC 中,AB =6,将△ABC 绕点B 按逆时针方向旋转30°后得到△A 1BC 1,则阴影部分的面积为________.25.如图,正方形ABCD 的边长为2,BE 平分∠DBC 交CD 于点E ,将△BCE 绕点C 顺时针旋转90°得到△DCF ,延长BE 交DF 于G ,则BF 的长为_____.26.若点()3,5B n +与点()4,A m 关于原点O 中心对称,则m n +=______________.三、解答题27.如图,四边形ABCD 是正方形,△ADF 旋转一定角度后得到△ABE ,如图所示,如果AF=4,AB=7,求:(1)指出旋转中心和旋转角度;(2)求DE 的长度;(3)BE 与DF 的位置关系如何?28.如图1,等腰Rt ABC 中,90A ∠=︒,点D ,E 分别在边AB ,AC 上,AD AE =,连接DC ,点M ,P ,N 分别为DE ,DC ,BC 的中点.(1)观察猜想:图1中,线段PM 与PN 的数量关系是______,位置关系是______. (2)探究证明:把ADE 绕点A 逆时针方向旋转到图2的位置,连接MN ,BD ,CE ,判断PMN 的形状,并说明理由;(3)拓展延伸:把ADE 绕点A 在平面内自由旋转,若8AD =,20AB =,请直接写出PMN 面积的最大值.29.如图,在一个1010⨯的正方形网格中有一个,ABC ABC ∆∆的顶点都在格点上.(1)在网格中画出ABC ∆向下平移4个单位,再向右平移6个单位得到的111A B C ∆. (2)在网格中画出ABC ∆关于点P 成中心对称得到的222A B C ∆.(3)若可将111A B C ∆绕点О旋转得到222A B C ∆,请在正方形网格中标出点O ,连接12A A 和12B B ,请直接写出四边形2211A B A B 的面积.30.如图,已知ABC 和A B C ''''''△及点O .(1)画出ABC 关于点O 对称的A B C ''';(2)若A B C ''''''△与A B C '''关于点O '对称,请确定点O '的位置.。

第23章 旋转 人教版九年级数学上册单元测试卷(含答案)

第23章 旋转 人教版九年级数学上册单元测试卷(含答案)

第二十三章 旋转一、选择题(共10小题,每小题3分,共30分.每小题有四个选项,其中只有一个选项符合题意)1.(2022·浙江湖州期中)如图是神舟十三号载人飞行任务标识,该标识经过旋转能得到的是 ( ) A B C D2.(2022·河南三门峡期中)已知点P1(a,-2)与点P2(3,b)关于原点对称,则(a+b)2023=( )A.-1B.1C.-52023D.520233.在如图所示的方格纸中,将标有序号的小正方形中的一个涂上阴影,使它与图中阴影部分组成的新图形是中心对称图形,该小正方形的序号是( )A.①B.②C.③D.④(第3题) (第4题)4.(2021·浙江湖州吴兴区期末)如图,在正方形网格中,线段A'B'是线段AB绕某点顺时针旋转一定角度后所得,点A'与点A是对应点,则这个旋转角可能是( )A.45°B.60°C.90°D.135°5.(2021·山东济南市中区段考)如图,将△ABC绕点A逆时针旋转90°得到△ADE,若点D恰好在线段BC的延长线上,则下列结论中错误的是( )A.∠BAD=∠CAEB.∠CDE=90°C.∠ABC=45°D.∠ACB=120°(第5题) (第6题)6.(2021·山西运城盐湖区期末)如图,已知▱ABCD中,AE⊥BC,以点B为中心,取旋转角等于∠ABC,将△BAE顺时针旋转,得到△BA'E',连接DA'.若∠ADC=60°,∠ADA'=50°,则∠DA'E'的度数为( )A.130°B.150°C.160°D.170°7.(2021·江西南昌期中)如图,将△ABC绕点C(0,-1)旋转180°得到△A'B'C,设点A的坐标为(a,b),则点A'的坐标为( ) A.(-a,-b-2) B.(-a,-b-1)C.(-a,-b+1)D.(-a,-b)(第7题) (第8题)8.(2021·海南模拟)如图,将边长为1的正方形ABCD绕点C按逆时针方向旋转一定角度后,得到正方形FGCE,使得点B落在对角线CF上,则阴影部分的面积是( )A.1B.2-24C.2-1D.129.(2022·浙江杭州西湖区期中)上数学拓展课的时候,小明转动三角板发现了一个很奇妙的结论:如图(1),将含有45°角的三角板ABC绕点A顺时针旋转,当∠BAD<90°时,延长线段ED和线段CB使之相交于点F,如图(2),则CF-DF的值始终不变.若AB=5,则CF-DF的值为( )2A.102B.10C.15D.15210.(2022·甘肃白银期末改编)如图,在正方形ABCD中,顶点A,B,C,D在坐标轴上,且B(2,0),以AB为边构造菱形ABEF,将菱形ABEF与正方形ABCD组成的图形绕点O顺时针旋转,每次旋转90°,则第2022次旋转结束时,点F2022的坐标为( )A.(-2,22)B.(-2,-22)C.(22,-2)D.(-22,-2)二、填空题(共5小题,每小题3分,共15分)11.新风向开放性试题请任写一个成中心对称图形的汉字、字母或数字: .12.新风向新定义试题(2022·四川南充期中改编)若f(m,n)=(m,-n),g(m,n)=(-m,-n),则g[f(-2,3)]= .13.在如图所示的平面直角坐标系中,△ABC绕原点O顺时针旋转90°后得到△A'B'C',则点A的对应点A'的坐标是 .(第13题) (第14题)14.(2021·江西南昌红谷滩区模拟)如图,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,△A'B'C是由△ABC绕点C顺时针旋转得到的,其中点A'与点A是对应点,点B'与点B是对应点,连接AB',且A,B',A'三点在同一条直线上,则AA'的长为 .15.(2022·河南焦作段考)如图,在△AOB和△COD中,∠AOB=∠COD=90°,∠B=38°,∠C=72°,点D在OA上.将△COD绕点O顺时针旋转一周,每秒旋转10°,在旋转过程中,当时间为 时,CD∥AB.三、解答题(共6小题,共55分)16.(6分)(2021·浙江宁波模拟)图(1)、图(2)、图(3)均是由边长为1的正三角形构成的网格,每个网格图中有5个正三角形已涂黑.请在余下的正三角形中按下列要求作图.(1)在图(1)中选择1个正三角形涂黑,使得阴影部分图形是中心对称图形,但不是轴对称图形;(2)在图(2)中选择2个正三角形涂黑,使得阴影部分图形是轴对称图形,但不是中心对称图形;(3)在图(3)中选择3个正三角形涂黑,使得阴影部分图形既是中心对称图形,又是轴对称图形.17.(8分)(2022·甘肃庆阳期中改编)在下列网格图中,每个小正方形的边长均为1,在Rt△ABC中,∠C=90°,AC=3,BC=4.(1)试在图中作出△ABC以点A为旋转中心,按顺时针方向旋转90°后得到的图形△AB1C1;(2)若点B的坐标为(-3,5),试在图中画出直角坐标系,并写出A,C两点的坐标;(3)根据(2)中的直角坐标系作出与△ABC关于原点对称的图形△A2B2C2,并写出B2,C2两点的坐标.18.(9分)如图(1),一个内角等于60°的菱形ABCD,将∠MAN的顶点与该菱形的顶点A重合,且∠MAN=60°.以点A为旋转中心,按顺时针方向旋转∠MAN,使它的两边分别交CB,DC于点E,F.(1)当BE=DF时,AE与AF的数量关系是 ;(2)如图(2),当BE≠DF时,(1)中的结论是否成立?若成立,请加以证明;若不成立,请说明理由.19.(9分)(2022·重庆江津区联考)如图,将△ABC绕点C逆时针旋转90°得到△DEC,其中点A,B的对应点分别是点D,E,点B落在DE边上,延长AC交DE于点F,AB,DC 交于点G.(1)判断AB与DE的位置关系,并说明理由.(2)求证:FB+BG=2BC.20.(11分)(2022·吉林长春期中)阅读与理解:图(1)是边长分别为a和b(a>b)的两个等边三角形纸片叠放在一起的图形(C和C'重合).操作与证明:(1)操作:固定△ABC,将△C'DE绕点C按顺时针方向旋转30°,连接AD,BE,如图(2),线段BE与AD之间具有怎样的大小关系?证明你的结论; 图(1) 图(2) 图(3)(2)操作:若将图(1)中△C'DE,绕点C按顺时针方向任意旋转一个角度α,连接AD,BE,如图(3),线段BE与AD之间具有怎样的大小关系?证明你的结论.猜想与发现:(3)若将图(1)中的△C'DE,绕点C'按逆时针方向旋转α(0°<α<360°),当α等于多少时,△BCD的面积最大?请直接写出结果.21.(12分)新风向探究性试题(2022·河南洛阳外国语学校期中)如图(1),已知∠DAC=90°,△ABC是等边三角形,点P为射线AD上任意一点(点P不与点A重合),连接CP,将线段CP绕点C顺时针旋转60°得到线段CQ,连接QB并延长交直线AD 于点E.(1)如图(1),猜想∠QEP= °;(2)如图(2)和图(3),若当∠DAC为锐角或钝角时,其他条件不变,猜想∠QEP的度数,并选取一种情况加以证明;(3)如图(3),若∠DAC=135°,∠ACP=15°,且AC=4,求BQ的长.图(1) 图(2)图(3)第二十三章 旋转答案1.B2.A ∵点P 1(a ,-2)与点P 2(3,b )关于原点对称,∴a=-3,b=2,∴(a+b )2023=(-3+2)2023=-1.3.B 4.C 连接AA',BB',作线段AA',BB'的垂直平分线交于点O ,点O 即为旋转中心.连接OA ,OA',即∠AOA'为旋转角,∴旋转角可能为90°.故选C .5.D ∵将△ABC 绕点A 逆时针旋转90°得到△ADE ,∴AB=AD ,∠ABC=∠ADE ,∠BAD=∠CAE=90°,∴∠ABC=∠ADC=∠ADE=45°,∴∠CDE=90°,∴选项A,B,C 正确.而∠ACB=120°推不出来,故选D .6.C ∵四边形ABCD 为平行四边形,∴∠ABC=∠ADC=60°,AD ∥BC ,∴∠ADA'+∠DA'B=180°.∵∠ADA'=50°,∴∠DA'B=130°.∵AE ⊥BE ,∴∠BAE=30°.由旋转可知∠BA'E'=∠BAE=30°,∴∠DA'E'=130°+30°=160°.7.A 根据题意,点A ,A'关于点C 对称,设点A'的坐标是(x ,y ),则a +x 2=0,b +y 2=-1,解得x=-a ,y=-b-2,∴点A'的坐标是(-a ,-b-2).8.C 设AB 与EF 交于点H.由题意知EF=CE=1,CF=12+12=2,∴BF=2-1.∵∠BFE=45°,∴BH=BF=2-1,S 阴影部分=S △EFC -S △HBF =12×1×1-12×(2-1)2=2-1.9.B 如图,连接AF.由题意得∠ABF=∠AEF=90°,AB=AE.在Rt △ABF 和Rt △AEF 中,AF =AF ,AB =AE ,∴Rt △ABF ≌Rt △AEF (HL),∴BF=EF ,∴CF-DF=BC+BF-DF=BC+EF-DF=BC+DE=2BC.∵△ABC 是等腰直角三角形,∴BC=AB=5,∴CF-DF=10.10.D 由题意可得OB=OA=2,∴AB=22.∵四边形ABEF是菱形,∴AF=AB=22,∴F(22,2).由题意可得,F1(2,-22),F2(-22,-2),F3(-2,22),F4(22,2)……每旋转4次为一个循环.∵2022÷4=505……2,∴点F2022的坐标为(-22,-2).11.0(或田,N等,答案不唯一) 12.(2,3) 由题意得f(-2,3)=(-2,-3),∴g[f(-2,3)]=g(-2,-3)=(2,3).13.(4,1)图解:如图,点A'的坐标是(4,1).14.6 ∵△A'B'C是由△ABC绕点C顺时针旋转得到的,∴CA'=CA,CB'=CB=2,∠A'CB'=∠ACB=90°,∠A'B'C=∠B=60°,∠A'=∠BAC=30°.∵A,B',A'三点在同一条直线上,CA'=CA,∴∠A'AC=∠A'=30°.又∠A'B'C=∠B'AC+∠B'CA=60°,∴∠B'CA=∠B'AC=30°,∴AB'=B'C=2.在Rt△A'B'C中,由∠A'=30°,得A'B'=2B'C=4,∴AA'=AB'+B'A'=2+4=6.15.11秒或29秒 (分类讨论思想)∵∠C=72°,∠COD=90°,∴∠CDO=18°.①如图(1),CD和AB在点O同侧时,设CD与OB相交于点E.∵AB∥CD,∴∠CEO=∠B=38°,∴∠DOE=∠CEO-∠CDO=38°-18°=20°,∴旋转角∠AOD=∠AOB+∠DOE=90°+20°=110°.∵每秒旋转10°,∴此时旋转时间为11秒.②如图(2),CD和AB 在点O异侧时,延长BO与CD相交于点E.∵AB∥CD,∴∠CEO=∠B=38°,∴∠DOE=∠CEO-∠CDO=38°-18°=20°,∴旋转角为270°+20°=290°.∵每秒旋转10°,∴旋转时间为29秒.综上所述,当时间为11秒或29秒时,CD∥AB.16.【参考答案】(1)如图(1).(2分)(2)如图(2),答案不唯一.(4分)(3)如图(3).(6分)17.【参考答案】(1)△AB1C1如图所示.(2分)(2)直角坐标系如图所示,点A的坐标为(0,1),点C的坐标为(-3,1).(5分)(3)△A2B2C2如图所示,点B2的坐标为(3,-5),点C2的坐标为(3,-1).(8分) 18.【思路导图】(1)菱形ABCD的性质△ABE≌△ADF→AE=AF(2)连接AC△ABC,△ACD为等边三角形△BAE≌△CAF→AE=AF【参考答案】(1)AE=AF(4分)解法提示:∵四边形ABCD是菱形,∴AB=AD,∠B=∠D.在△ABE和△ADF中,AB=AD,∠B=∠D,BE=DF,∴△ABE≌△ADF(SAS),∴AE=AF.(2)成立.(5分)证明:如图,连接AC,∵四边形ABCD是菱形,∠B=60°,∴AB=BC=AD=CD,∠D=∠B=60°,∴△ABC和△ACD都是等边三角形,∴AB=AC,∠ACD=∠B=∠BAC=60°.(7分)∵∠MAN=60°=∠BAC,∴∠BAE=∠CAF.在△BAE和△CAF中,∠BAE=∠CAF,AB=AC,∠B=∠ACF,∴△BAE≌△CAF(ASA),∴AE=AF.(9分)19.【参考答案】(1)AB⊥DE.(1分)理由:由旋转可得∠A=∠D,∠ACD=∠BCE=90°.∵∠DGB=∠CGA,∴∠DBG=∠ACG=90°,∴AB⊥DE.(4分) (2)由旋转可得∠ABC=∠E,∠ACB=∠DCE,BC=EC.∴∠BCG=∠ECF,∴△CBG≌△CEF,∴EF=BG,∴FB+BG=FB+EF=BE.∵EC=BC,∠BCE=90°,∴△BCE为等腰直角三角形,∴BE=2BC,即FB+BG=2BC.(9分) 20.【参考答案】(1)BE=AD.(1分)证明:∵△C'DE绕点C按顺时针方向旋转30°,∴∠BCE=∠ACD=30°.(2分)∵△ABC与△C'DE是等边三角形,∴CB=CA,CE=CD,(3分)∴△BCE≌△ACD,∴BE=AD.(5分) (2)BE=AD.(6分)证明:∵△C'DE绕点C按顺时针方向旋转的角度为α,∴∠BCE=∠ACD=α.(7分)∵△ABC与△C'DE是等边三角形,∴CB=CA,CE=CD,(8分)∴△BCE≌△ACD,∴BE=AD.(9分) (3)α=150°或330°.(11分)解法提示:如图,当D旋转到点D1或点D2位置时,△BCD的面积最大,此时旋转角是60°+90°=150°或360°-30°=330°.21.【参考答案】(1)60(2分)解法提示:如图(1),连接PQ.设QE与PC交于点M.∵PC=CQ,∠PCQ=60°,△ABC是等边三角形,∴∠PCQ=∠ACB,BC=AC,∴∠PCQ-∠PCB=∠ACB-∠PCB,即∠BCQ=∠ACP.在△CQB和△CPA中,CQ=CP,∠BCQ=∠ACP, BC=AC,∴△CQB≌△CPA,∴∠CQB=∠CPA.在△PEM和△CQM中,∵∠EMP=∠CMQ,∴∠QEP=∠QCP=60°.(2)∠QEP=60°.以∠DAC为锐角为例进行证明.证明:如图(2),∵△ABC是等边三角形,∴AC=BC,∠ACB=60°.∵线段CP绕点C顺时针旋转60°得到线段CQ,∴CP=CQ,∠PCQ=60°,∴∠ACB+∠BCP=∠BCP+∠PCQ,即∠ACP=∠BCQ.(4分)在△CQB和△CPA中,CQ=CP,∠BCQ=∠ACP, BC=AC,∴△CQB≌△CPA,∴∠Q=∠CPA.(6分)∵∠1=∠2,∴∠QEP=∠QCP=60°.(7分) (3)如图(3),过点C作CH⊥AD交DA的延长线于点H,易证得△CQB≌△CPA,∴BQ=AP.(9分)∵∠DAC=135°,∠ACP=15°,∴∠APC=30°,∠CAH=45°,∴△ACH 为等腰直角三角形,(10分)∴AH=CH=22AC=22×4=22.∵∠CPH=30°,∴CP=2CH=42.由勾股定理可得,PH=PC 2-CH 2=(42)2-(22)2=26,∴PA=PH-AH=26-22,∴BQ=26-22.(12分)图(1)图(2)图(3)。

人教版数学九年级上册第23章《旋转》单元检测试卷及答案解析

人教版数学九年级上册第23章《旋转》单元检测试卷及答案解析

第23章《旋转》单元测试卷一、选择题(共10小题,每小题3分,共30分)1.下列图形中,是中心对称图形的是()2.以下图的右边缘所在直线为轴将该图案向右翻折后,再绕中心旋转180°,所得到的图形是()3.用数学的方式理解“当窗理云鬓,对镜贴花黄”和“坐地日行八万里”(只考虑地球的自转),其中蕴含的图形运动是()A.平移和旋转B.对称和旋转 C.对称和平移 D.旋转和平移4.已知点A(a,2013)与点A′(﹣2014,b)是关于原点O的对称点,则a+b 的值为()A.1 B.5 C.6 D.45.在平面直角坐标系中,若点P(m,m﹣n)与点Q(﹣2,3)关于原点对称,则点M(m,n)在()A.第一象限B.第二象限C.第三象限D.第四象限6.如图是一个标准的五角星,若将它绕旋转中心旋转一定角度后能与自身重合,则至少应将它旋转的度数是()A.60°B.72°C.90°D.144°7.如图,将△OAB 绕点O 逆时针旋转80°,得到△OCD ,若∠A=2∠D=100°,则∠α的度数是( )A .50°B .60°C .40°D .30°8.在平面直角坐标系xOy 中,A 点坐标为(3,4),将OA 绕原点O 顺时针旋转180°得到OA′,则点A′的坐标是( )A .(﹣4,3)B .(﹣3,﹣4)C .(﹣4,﹣3)D .(﹣3,4)9.如图,将Rt △ABC (其中∠B=30°,∠C=90°)绕点A 按顺时针方向旋转到△AB1C1的位置,使得点B 、A 、B1在同一条直线上,那么旋转角等于( )B 1C 1C BAA .30°B .60°C .90°D .180° 10.如图,在△ABC 中,∠AB=90°,将△ABC 绕点A 顺时针旋转90°,得到△ADE ,连接BD ,若AC=3,DE=1,则线段BD 的长为( )E DCB AA .5B .3C .4D .10二、填空题(共6小题,每小题3分,共18分)11.如图,△ABC 中,∠C =30°,将△ABC 绕点A 顺时针旋转60°得△ADE ,AE 与BC 交于F ,则∠AFB =_______°.12如图,把Rt △ABC 绕点A 逆时针旋转44°,得到Rt △AB′C′,点C′恰好落在边AB 上,连接BB′,则∠BB′C′=图11B'C'CBA图1213.如图,在平面直角坐标系中,将△ABO绕点A顺时针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置点A2在x轴上,依次进行下去….若点A(,0),B(0,2),则点B2016的坐标为.14.如图,直线y=﹣33x+2与x轴、y轴分别交于A、B两点,把△AOB绕点A顺时针旋转60°后得到△AO′B′,则点B′的坐标是.15.时钟上的时针不停地旋转,从上午8时到上午11时,时针旋转的旋转角是.16.在等腰三角形ABC中,∠C=90°,BC=2cm,如果以AC的中点O为旋转中心,将△ABC旋转180°,点B落在B′处,则BB′的长度为.三、解答题(共8题,共72分)17.(本题8分)如图,说出这个图形的旋转中心,它绕旋转中心至少旋转多大角度才能与原来图形重合?18.(本题8分)将下图所示的图形面积分成相等的两部分.(图中圆圈为挖去部分)19.(本题8分)19.(8分)直角坐标系第二象限内的点P(x2+2x,3)与另一点Q(x+2,y)关于原点对称,试求x+2y的值.20.(本题8分)如图,已知AD=AE,AB=AC.(1)求证:∠B=∠C;(2)若∠A=50°,问△ADC经过怎样的变换能与△AEB重合?21.(本题8分)如图,在平面直角坐标系中,已知点B(4,2),BA⊥x轴,垂足为A.(1)将点B绕原点逆时针方向旋转90°后记作点C,求点C的坐标;(2)△O′A′B′与△OAB关于原点对称,写出点B′、A′的坐标.22.(本题10分)当m为何值时(1)点A(2,3m)关于原点的对称点在第三象限;(2)点B(3m﹣1,0.5m+2)到x轴的距离等于它到y轴距离的一半?23.(本题10分)直角坐标系中,已知点P(﹣2,﹣1),点T(t,0)是x轴上的一个动点.(1)求点P关于原点的对称点P′的坐标;(2)当t取何值时,△P′TO是等腰三角形?24.(本题12分)等边△OAB在平面直角坐标系中,已知点A(2,0),将△OAB 绕点O顺时针方向旋转a°(0<a<360)得△OA1B1.(1)求出点B的坐标;(2)当A1与B1的纵坐标相同时,求出a的值;(3)在(2)的条件下直接写出点B1的坐标.第23章《旋转》单元测试卷解析一、选择题1.【答案】A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、是中心对称图形,故本选项正确;D、不是中心对称图形,故本选项错误;故选:C2.【答案】以图的右边缘所在的直线为轴将该图形向右翻转180°后,黑圆在右上角,再按顺时针方向旋转180°,黑圆在左下角.故选:A.3.【答案】根据对称和旋转定义可知:“当窗理云鬓,对镜贴花黄”是对称;“坐地日行八万里”是旋转.故选B.4.【答案】∵点A(a,2013)与点A′(﹣2014,b)是关于原点O的对称点,∴a=2014,b=﹣2013,则a+b的值为:2014﹣2013=1.故选:A.5.【答案】根据平面内两点关于原点对称的点,横坐标与纵坐标都互为相反数,∴m=2且m﹣n=﹣3,∴m=2,n=5,∴点M(m,n)在第一象限,故选A.6.【答案】如图,设O的是五角星的中心,∵五角星是正五角星,∴∠AOB=∠BOC=∠COD=∠DOE=∠AOE,∵它们都是旋转角,而它们的和为360°,∴至少将它绕中心顺时针旋转360÷5=72°,才能使正五角星旋转后与自身重合.故选:B.7.【答案】∵将△OAB绕点O逆时针旋转80°,∴∠A=∠C∠AOC=80°∴∠DOC=80°﹣α,∠D=100°∵∠A=2∠D=100°,∴∠D=50°∵∠C+∠D+∠DOC=180°,∴100°+50°+80°﹣α=180°解得α=50°,故选A8.【答案】根据题意得,点A关于原点的对称点是点A′,∵A点坐标为(3,4),∴点A′的坐标(﹣3,﹣4).故选B.9.【答案】∵B、A、B1在同一条直线上,∴∠BAB1=180°,∴旋转角等于180°.故选D.10.【答案】由旋转的性质可知:BC=DE=1,AB=AD,∵在RT△ABC中,AC=3,BC=1,∠ACB=90°,∴由勾股定理得:10又旋转角为90°,∴∠BAD=90°,∴在RT △ADB 中,即:BD 的长为故:选A二、填空题11.【答案】90º12.【答案】∵Rt △ABC 绕点A 逆时针旋转40°得到Rt △AB′C′,∴AB=AB′,∠BAB′=44°,在△ABB′中,∠ABB′=12(180°﹣∠BAB′)=12(180°﹣44°)=68°, ∵∠AC′B′=∠C=90°,∴B′C′⊥AB ,∴∠BB′C′=90°﹣∠ABB′=90°﹣68°=22°.故答案为:22°.13.【答案】∵AO=32,BO=2,∴AB=52,∴OA+AB1+B1C2=6,∴B2的横坐标为:6,且B2C2=2,∴B4的横坐标为:2×6=12,∴点B2016的横坐标为:2016÷2×6=6048.∴点B2016的纵坐标为:2. ∴点B2016的坐标为:(6048,2).故答案为:(6048,2).14.【答案】令y=0x+2=0,解得令x=0,则y=2,∴点A (0),B (0,2),∴OB=2,∴∠BAO=30°,∴AB=2OB=2×2=4,∵△AOB 绕点A 顺时针旋转60°后得到△AO′B′,∴∠BAB′=60°,∴∠OAB′=30°+60°=90°,∴AB′⊥x 轴,∴点B′(4).故答案为:(4).15.【答案】∵时针从上午的8时到11时共旋转了3个格,每相邻两个格之间的夹角是30°,∴时针旋转的旋转角=30°×3=90°.故答案为:90°.16.【答案】如图所示:在直角△OBC 中,OC=12AC=12BC=1cm ,则(cm ),则(cm ).故答案为:cm .三、解答题17.【答案】这个图形的旋转中心为圆心;∵360°÷6=60°,∴该图形绕中心至少旋转60度后能和原来的图案互相重合.18.【答案】如图:19.【答案】解:根据题意,得(x2+2x)+(x+2)=0,y=-3.∴x1=-1,x2=-2.∵点P在第二象限,∴x2+2x<0,∴x=-1,∴x+2y=-720.【答案】(1)证明:在△AEB与△ADC中,AB=AC,∠A=∠A,AE=AD;∴△AEB≌△ADC,∴∠B=∠C.(2)解:先将△ADC绕点A逆时针旋转50°,再将△ADC沿直线AE对折,即可得△ADC与△AEB重合.或先将△ADC绕点A顺时针旋转50°,再将△ADC沿直线AB对折,即可得△ADC与△AEB重合.21.【答案】(1)如图,点C的坐标为(﹣2,4);(2)点B′、A′的坐标分别为(﹣4,﹣2)、(﹣4,0).22.【答案】(1)∵点A(2,3m),∴关于原点的对称点坐标为(﹣2,﹣3m),∵在第三象限,∴﹣3m<0,∴m>0;(2)由题意得:①0.5m +2=12(3m ﹣1),解得:m=52;②0.5m +2=﹣12(3m ﹣1),解得:m=﹣34.23.【答案】(1)点P 关于原点的对称点P'的坐标为(2,1); (2)OP '=(a )动点T 在原点左侧,当1TO OP '=时,△P'TO 是等腰三角形,∴点1T,0),(b )动点T 在原点右侧,①当T2O=T2P'时,△P'TO 是等腰三角形,得:2T (54,0),②当T3O=P'O 时,△P'TO 是等腰三角形,得:3T,0),③当T4P'=P'O 时,△P'TO 是等腰三角形,得:点T4(4,0).综上所述,符合条件的t 的值为,54,4.24.【答案】(1)如图1所示过点B 作BC ⊥OA ,垂足为C .图1∵△OAB 为等边三角形,∴∠BOC=60°,OB=BA .∵OB=AB ,BC ⊥OA ,∴OC=CA=1.在Rt △OBC中,BCOC =,∴∴点B 的坐标为(1.(2)如图2所示:(A 1)图2yx O B 1CB A∵点B1与点A1的纵坐标相同,∴A1B1∥OA .①如图2所示:当a=300°时,点A1与点B1纵坐标相同.如图3所示:A 1图3yxO B 1CBA当a=120°时,点A1与点B1纵坐标相同.∴当a=120°或a=300°时,点A1与点B1纵坐标相同.(3)如图2所示:由旋转的性质可知A1B1=AB=2,点B 的坐标为(1,2), ∴点B1的坐标为(﹣1.如图3所示:由旋转的性质可知:点B1的坐标为(1.∴点B1的坐标为(﹣11.【素材积累】司马迁写《史记》汉朝司马迁继承父业,立志著述史书。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

满分:110分 时间:90分钟 班级:_______ 姓名:________第Ⅰ卷(选择题,共36分)一、选择题(本大题共12小题,每小题3分,共36分。

每道题只有一个最佳选项,多选、错选或不选均不得分。

请将选择题答案正确填写在答题卷表格内。

)1.如果一个四边形ABCD 是中心对称图形,那么这个四边形一定是( )A .等腰梯形B .矩形C .菱形D .平行四边形2.如图,把图中的△ABC 经过一定的变换得到△A′B′C′,如果图中△ABC 上的点P 的坐标为(a ,b ),那么它的对应点P′的坐标为( )A .(a -2,b )B .(a +2,b )C .(-a -2,-b )D .(a +2,-b ) 3.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .4.下列各物体中,是一样的为( )A .(1)与(2)B .(1)与(3)C .(1)与(4)D .(2)与(3)5.如图,△ACD 和△AEB 都是等腰直角三角形,∠CAD =∠EAB =90°,四边形ABCD 是平行四边形,下列结论中错误的是( )A .△ACE 以点A 为旋转中心,逆时针方向旋转90°后与△ADB 重合B .△ACB 以点A 为旋转中心,顺时针方向旋转270°后与△DAC 重合C .沿AE 所在直线折叠后,△ACE 与△ADE 重合D .沿AD 所在直线折叠后,△ADB 与△ADE 重合6.如图所示,已知△ABC 和△BDE 都是等边三角形,且A 、B 、D 三点共线.下列结论:①AE=CD ;②BF=BG ;③HB 平分∠AHD ;④∠AHC =60°,⑤△BFG 是等边三角形;⑥FG ∥AD .其中正确的有( )A .3个B .4个C .5个D .6个7.如图,在直角梯形ABCD 中,AD ∥BC ,∠C =90°,AD =5,BC =9,以A 为中心将腰AB 顺时针旋转90°至AE ,连接DE ,则△ADE 的面积等于( )A .10B .11C .12D .138.如图,在Rt △ABC 中,∠ACB =90°,∠A =30°,BC =2.将△ABC 绕点C 按顺时针方向旋转n 度后得到△EDC ,此时点D 在AB 边上,斜边DE 交AC 边于点F ,则n 的大小和图中阴影部分的面积分别为( )A .30,2B .60,2 第2题图 第5题图 第6题图 第7题图第8题图(1)(2) (3) (4) 第4题图 人教版数学第23章《旋转》测试题C .60,32D .60, 39.如图,平面直角坐标系中,OB 在x 轴上,∠ABO =90°,点A 的坐标为(1,2),将△AOB 绕点A 逆时针旋转90°,点O 的对应点C 恰好落在双曲线y=k/x (x >0)上,则k 的值为( )A .6B .4C .3D .210.在下图右侧的四个三角形中,不能由△ABC 经过旋转或平移得到的是()第10题图A .A 图B .B 图C .C 图D .D 图11.如图,在Rt △ABC 中,AB=AC ,D 、E 是斜边BC 上两点,且∠DAE =45°,将△ADC 绕点A 顺时针旋转90°后,得到△AFB ,连接EF ,下列结论:①△AED ≌△AEF ;②AE :BE =AD :CD ;③△ABC 的面积等于四边形AFBD 的面积;④BE 2+DC 2=DE 2 ⑤BE+DC=DE 其中正确的是( )A .①②④B .③④⑤C .①③⑤D .①③④12.根据指令[s ,A ](s ≥0,0°<A ≤360°),机器人在平面上完成下列动作:先原地逆时针旋转角度A ,再朝其面对的方向行走s 个单位.现机器人在平面直角坐标系的原点,且面对x 轴的正方向,如果输入指令为[1,45°],那么连续执行三次这样的指令,机器人所在位置的坐标是( )A .(0,3 2 2 )B .( 2 2 , 2 2 )C .( 2 2 , 2+1 2,)D .(0,1+ 2 ) 第Ⅱ卷(非选择题,共74分)二、填空题(本大题共6小题,每小题3分,共18分)13.给出以下4个图形:①平行四边形,②正方形,③等边三角形,④圆.其中,既是轴对称图形又是中心对称图形的是________________(填序号)14.如图,正方形ABCD 边长为2,E 为CD 的中点,以点A 为中心,把△ADE 顺时针旋转90°得△ABF ,连接EF ,则EF 的长等于__________.15.如图等边三角形AOB ,绕点O 逆时针旋转到△COD 的位置,设旋转角 为α,AC 、BD 相交于点E ,AC 与OB 相交于点M ,BD 与OC 相交于点N ,写出图中一对全等的三角形是: ________________(写出一对即可)16.如图,在△ABC 中,∠ACB =90°,AC =BC ,点P 在△ABC 内,△AP ′C 是由△BPC绕着点C 旋转得到的,PA = 5 ,PB =1,∠BPC =135°.则PC =_______________17.如图,在直角坐标系中,射线OA 与x 轴正半轴重合,以O 为旋转中心将OA 逆时针旋转:OA →OA 1→OA 2→…→OAn …,旋转角∠AOA1=2°,∠A 1OA 2=4°,∠A 2OA 3=8°,…要求下一个旋转角(不超过360°)是前一个旋转角的2倍.当旋转角大于360°时,又从2°开始旋转,即∠A 8OA 9=2°,∠A 9OA 10=4°,…周而复始.则当OA n 与y 轴正半轴第一次重合时,n 的值为_________________.(提示:2+22+23+24+25+26+27+28=510) 第9题图第11题图 第14题图 第15题图18.如图,是4×4的正方形网格,把其中一个标有数字的白色小正方形涂黑,就可以使图中的黑色部分构成一个中心对称图形,则这个白色小正方形内的数字是__________.三、解答题(本大题共6小题,其中19题7分,20题8分,21题9分,22题10分23题12分,24题12分,共56分,要写出必要的解答过程)19.(7分)如图,在菱形ABCD 中,∠BAD =60°,把菱形ABCD 绕点A 按逆时针方向旋转α°,得到菱形AB′C′D ′.(1)(3分)当α的度数为________时,射线AB ′经过点C (此时射线AD 也经过点C ′);(2)(4分)在(1)的条件下,求证:四边形B′CC′D 是等腰梯形.20.(8分)如图,在平面直角坐标系中,Rt △ABC 的三个顶点分别是A (-3,2),B (0,4),C (0,2).(1)(3分)将△ABC 以点C 为旋转中心旋转180°,画出旋转后对应的△A 1B 1C 1;平移△ABC 若点A 的对应点A 2的坐标为(0,-4),画出平移后对应的△A 2B 2C 2;(2)(3分)若将△A 1B 1C 1绕某一点旋转可以得到△A 2B 2C 2;请直接写出旋转中心的坐标;(3)(2分)在x 轴上有一点P ,使得P A+PB 的值最小,请直接写出点P 的坐标.21.(9分)在平面直角坐标系中,如图所示,△AOB 是边长为2的等边三角形,将△AOB 绕着点B 按顺时针方向旋转得到△DCB ,使得点D 落在x 轴的正半轴上,连接OC ,AD.(1)(3分)求证:OC =AD ;(2)(3分)求OC 的长;(3)(3分)求过A 、D 两点的直线的解析式.22.(10分)如图1所示,将一个边长为2的正方形ABCD 和一个长为2、宽为1的长方形CEFD 拼在一起,构成一个大的长方形ABEF .现将小长方形CEFD 绕点C 顺时针旋转至CE′F′D′,旋转角为a . (1)(3分)当点D ′恰好落在EF 边上时,求旋转角a 的值;(2)(3分)如图2,G 为BC 中点,且0°<a <90°,求证:GD′=E′D ;(3)(4分)小长方形CEFD 绕点C 顺时针旋转一周的过程中,△DCD ′与△GBD ′能否全等?若能,直接写出旋转角a 的值;若不能说明理由.第16题图第18题图第17题图第19题图 第20题图 第21题图23.(12分)数学是丰富多彩的,想学好数学,就要学会探究、思考。

让我们一起畅游数学的海洋吧。

请根据提示完成下列各题。

【操作与证明】如图1,把一个含45°角的直角三角板ECF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点C重合,点E、F分别在正方形的边CB、CD上,连接AF.取AF中点M,EF的中点N,连接MD、MN.(1)(4分)连接AE,求证:△AEF是等腰三角形;【猜想与发现】(2)(4分)再(1)的条件下,请判断MD、MN的数量关系和位置关系,得出结论.★结论1:DM、MN的数量关系是_________;(2分)★结论2:DM、MN的位置关系是_________;(2分)【拓展与探究】(3)(4分)如图2,将图1中的直角三角板ECF绕点C顺时针旋转180°,其他条件不变,则第(2)问中的两个结论还成立吗?若成立,请加以证明;若不成立,请说明理由.24.(12分)已知,正方形ABCD的边长为1,直线l1∥直线l2,l1与l2之间的距离为1,l1、l2与正方形ABCD的边总有交点.(1)(4分)如图1,当l1⊥AC于点A,l2⊥AC交边DC、BC分别于E、F时,求△EFC 的周长;(2)(4分)把图1中的l1与l2同时向右平移x,得到图2,问△EFC与△AMN的周长的和是否随x的变化而变化,若不变,求出△EFC与△AMN的周长的和;若变化,请说明理由;(3)(4分)把图2中的正方形饶点A逆时针旋转α,得到图3,问△EFC与△AMN的周长的和是否随α的变化而变化?若不变,求出△EFC与△AMN的周长的和;若变化,请说明理由.。

相关文档
最新文档