七年级数学全册单元测试卷培优测试卷

合集下载

人教版数学七年级上册全册单元试卷(培优篇)(Word版 含解析)

人教版数学七年级上册全册单元试卷(培优篇)(Word版 含解析)

人教版数学七年级上册全册单元试卷(培优篇)(Word版含解析)一、初一数学上学期期末试卷解答题压轴题精选(难)1.已知长方形纸片ABCD,点E,F,G分别在边AB,DA,BC上,将三角形AEF沿EF翻折,点A落在点处,将三角形EBG沿EG翻折,点B落在点处.(1)点E,,共线时,如图,求的度数;(2)点E,,不共线时,如图,设,,请分别写出、满足的数量关系式,并说明理由.【答案】(1)解:如图中,由翻折得: ,(2)解:如图,结论: .理由:如图中,由翻折得:,如图,结论:,理由: ,,.【解析】【分析】(1)根据翻折不变性得:,由此即可解决问题.(2)根据翻折不变性得到:,根据分别列等式可得图和的结论即可.2.如图1,已知∠MON=140°,∠AOC与∠BOC互余,OC平分∠MOB,(1)在图1中,若∠AOC=40°,则∠BOC=°,∠NOB=°.(2)在图1中,设∠AOC=α,∠NOB=β,请探究α与β之间的数量关系(必须写出推理的主要过程,但每一步后面不必写出理由);(3)在已知条件不变的前提下,当∠AOB绕着点O顺时针转动到如图2的位置,此时α与β之间的数量关系是否还成立?若成立,请说明理由;若不成立,请直接写出此时α与β之间的数量关系.【答案】(1)解:如图1,∵∠AOC与∠BOC互余,∴∠AOC+∠BOC=90°,∵∠AOC=40°,∴∠BOC=50°,∵OC平分∠MOB,∴∠MOC=∠BOC=50°,∴∠BOM=100°,∵∠MON=40°,∴∠BON=∠MON-∠BOM=140°-100°=40°,(2)解:β=2α-40°,理由是:如图1,∵∠AOC=α,∴∠BOC=90°-α,∵OC平分∠MOB,∴∠MOB=2∠BOC=2(90°-α)=180°-2α,又∵∠MON=∠BOM+∠BON,∴140°=180°-2α+β,即β=2α-40°;(3)解:不成立,此时此时α与β之间的数量关系为:2α+β=40°,理由是:如图2,∵∠AOC=α,∠NOB=β,∴∠BOC=90°-α,∵OC平分∠MOB,∴∠MOB=2∠BOC=2(90°-α)=180°-2α,∵∠BOM=∠MON+∠BON,∴180°-2α=140°+β,即2α+β=40°,答:不成立,此时此时α与β之间的数量关系为:2α+β=40.【解析】【分析】(1)先根据余角的定义计算∠BOC=50°,再由角平分线的定义计算∠BOM=100°,根据角的差可得∠BON的度数;(2)同理先计算∠MOB=2∠BOC=2(90°-α)=180°-2α,再根据∠BON=∠MON-∠BOM列等式即可;(3)同理可得∠MOB=180°-2α,再根据∠BON+∠MON=∠BOM列等式即可.3.点在线段上, .(1)如图1,,两点同时从,出发,分别以,的速度沿直线向左运动;①在还未到达点时,求的值;②当在右侧时(点与不重合),取中点,的中点是,求的值;(2)若是直线上一点,且 .求的值.【答案】(1)解:①AP=AC-PC,CQ=CB-QB,∵BC=2AC,P、Q速度分别为1cm/s、2cm/s,∴QB=2PC,∴CQ=2AC-2PC=2AP,∴②设运动秒,分两种情况A: 在右侧,,分别是,的中点,,∴B: 在左侧,,分别是,的中点,,∴(2)解:∵BC=2AC.设AC=x,则BC=2x,∴AB=3x,①当D在A点左侧时,|AD-BD|=BD-AD=AB= CD,∴CD=6x,∴;②当D在AC之间时,|AD-BD|=BD-AD= CD,∴2x+CD-x+CD= CD,x=- CD(不成立),③当D在BC之间时,|AD-BD|=AD-BD= CD,∴x+CD-2x+CD= CD,CD= x,∴;|AD-BD|=BD-AD= CD,∴2x-CD-x-CD= CD,∴CD=;④当D在B的右侧时,|AD-BD|=BD-AD= CD,∴2x-CD-x-CD= CD,CD=6x,∴ .综上所述,的值为或或或【解析】【分析】(1)由线段的和差关系,以及QB=2PC,BC=2AC,即可求解;(2)设AC=x,则BC=2x,∴AB=3x,D点分四种位置进行讨论,①当D在A点左侧时,②当D在AC之间时,③当D在BC之间时,④当D在B的右侧时求解即可.4.已知:如图(1)∠AOB和∠COD共顶点O,OB和OD重合,OM为∠AOD的平分线,ON为∠BOC的平分线,∠AOB=α,∠COD=β.(1)如图(2),若α=90°,β=30°,求∠MON;(2)若将∠COD绕O逆时针旋转至图(3)的位置,求∠MON(用α、β表示);(3)如图(4),若α=2β,∠COD绕O逆时针旋转,转速为3°/秒,∠AOB绕O同时逆时针旋转,转速为1°/秒,(转到OC与OA共线时停止运动),且OE平分∠BOD,请判断∠COE与∠AOD的数量关系并说明理由.【答案】(1)解:∵OM为∠AOD的平分线,ON为∠BOC的平分线,α=90°,β=30°∴∠MOB=∠AOB=45°∠NOD=∠BOC=15°∴∠MON=∠MOB+∠NOD=45°+15°=60°.(2)解:设∠BOD=γ,∵∠MOD= = ,∠NOB= =∴∠MON=∠MOD+∠NOB-∠DOB= + -γ=(3)解:① 为定值,设运动时间为t秒,则∠DOB=3t-t=2t,∠DOE= ∠DOB=t,∴∠COE=β+t,∠AOD=α+2t,又∵α=2β,∴∠AOD=2β+2t=2(β+t).∴【解析】【分析】(1)根据角平分线的定义,分别求出∠MOB和∠NOD,再根据∠MON=∠MOB+∠NOD,可求出∠MON的度数。

数学七年级上册全册单元试卷(培优篇)(Word版 含解析)

数学七年级上册全册单元试卷(培优篇)(Word版 含解析)

数学七年级上册全册单元试卷(培优篇)(Word版含解析)一、初一数学上学期期末试卷解答题压轴题精选(难)1.阅读理解如图1,已知点A是BC外一点,连接AB,AC,求∠BAC+∠B+∠C的度数.(1)阅读并补充下面推理过程解:过点A作ED∥BC∴∠B=∠________,∠C=∠________.又∵∠EAB+∠BAC+∠DAC=180°(平角定义)∴∠B+∠BAC+∠C=180°从上面的推理过程中,我们发现平行线具有“等角转化”的功能,将∠BAC,∠B,∠C“凑”在一起,得出角之间的关系,使问题得以解决(2)如图2,已知AB∥ED,求∠B+∠BCD+∠D的度数.小明受到启发,过点C作CF∥AB如图所示,请你帮助小明完成解答:(3)已知AB∥CD,点C在点D的右侧,∠ADC=70°.BE平分∠ABC,DE平分∠ADC,BE,DE所在的直线交于点E,点E在AB与CD两条平行线之间.①如图3,点B在点A的左侧,若∠ABC=60°,则∠BED的度数为________°.②如图4,点B在点A的右侧,且AB<CD,AD<BC.若∠ABC=n°,则∠BED的度数为________°(用含n的代数式表示)【答案】(1)∠EAB;∠DAC(2)如图2,过C作CF∥AB.∵AB∥DE,∴CF∥DE,∴∠D=∠FCD.∵CF∥AB,∴∠B=∠BCF.∵∠BCF+∠BCD+∠DCF=360°,∴∠B+∠BCD+∠D=360°(3)65;215°﹣n【解析】【解答】(1)∵ED∥BC,∴∠B=∠EAB,∠C=∠DAC.故答案为:∠EAB,∠DAC;( 3 )①如图3,过点E作EF∥AB.(1)∵AB∥CD,∴AB∥CD∥EF,∴∠ABE=∠BEF,∠CDE=∠DEF.∵BE平分∠ABC,DE平分∠ADC,∠ABC=60°,∠ADC=70°,∴∠ABE= ∠ABC=30°,∠CDE= ∠ADC=35°,∴∠BED=∠BEF+∠DEF=30°+35°=65°.故答案为:65;②如图4,过点E作EF∥AB.∵BE平分∠ABC,DE平分∠ADC,∠ABC=n°,∠ADC=70°∴∠ABE= ∠ABC= n°,∠CDE= ∠ADC=35°.∵AB∥CD,∴AB∥CD∥EF,∴∠BEF=180°﹣∠ABE=180°﹣ n°,∠CDE=∠DEF=35°,∴∠BED=∠BEF+∠DEF=180°﹣ n°+35°=215°﹣ n°.故答案为:215°﹣ n.【分析】(1)利用平行线的性质,可证得∠B=∠EAB,∠C=∠DAC,即可得出∠BAC+∠B+∠C的度数。

人教版七年级数学上册全册单元试卷(培优篇)(Word版 含解析)

人教版七年级数学上册全册单元试卷(培优篇)(Word版 含解析)

人教版七年级数学上册全册单元试卷(培优篇)(Word版含解析)一、初一数学上学期期末试卷解答题压轴题精选(难)1.如图,在数轴上有三个点A、B、C,完成下列问题:(1)将点B向右移动六个单位长度到点D,在数轴上表示出点D.(2)在数轴上找到点E,使点E为BA的中点(E到A、C两点的距离相等),井在数轴上标出点E表示的数,求出CE的长.(3)O为原点,取OC的中点M,分OC分为两段,记为第一次操作:取这两段OM、CM 的中点分别为了N1、N2,将OC分为4段,记为第二次操作,再取这两段的中点将OC分为8段,记为第三次操作,第六次操作后,OC之间共有多少个点?求出这些点所表示的数的和.【答案】(1)解:如图所示,(2)解:如图所示,点E表示的数为:﹣3.5,∵点C表示的数为:4,∴CE=4﹣(﹣3.5)=7.5(3)解:∵第一次操作:有3=(21+1)个点,第二次操作,有5=(22+1)个点,第三次操作,有9=(23+1)个点,∴第六次操作后,OC之间共有(26+1)=65个点;∵65个点除去0有64个数,∴这些点所表示的数的和=4×()=130.【解析】【分析】(1)根据数轴上的点移动时的大小变化规律“左减右加”即可求解;(2)根据题意和数轴上两点间的距离等于两坐标之差的绝对值即可求解;(3)由题意可得点数依次是2的指数次幂+1,再求和即可求解.2.如图,OD平分∠BOC,OE平分∠AOC.若∠BOC=70°,∠AOC=50°.(1)求出∠AOB及其补角的度数;(2)请求出∠DOC和∠AOE的度数,并判断∠DOE与∠AOB是否互补,并说明理由.【答案】(1)解:∠AOB=∠BOC+∠AOC=70°+50°=120°,其补角为180°-∠AOB=180°-120°=60°(2)解:∠DOC= ×∠BOC= ×70°=35°,∠AOE= ×∠AOC= ×50°=25°.∠DOE与∠AOB互补,理由:∵∠DOE=∠DOC+∠COE=35°+25°=60°,∴∠DOE+∠AOB=60°+120°=180°,故∠DOE与∠AOB互补【解析】【分析】(1)由∠BOC、∠AOC的度数,求出∠AOB=∠BOC+∠AOC的度数,再求出∠AOB补角的度数;(2)根据角平分线定义求出∠DOC、∠AOE的度数,再由(1)中的度数得到∠DOE与∠AOB互补.3.阅读理解如图1,已知点A是BC外一点,连接AB,AC,求∠BAC+∠B+∠C的度数.(1)阅读并补充下面推理过程解:过点A作ED∥BC∴∠B=∠________,∠C=∠________.又∵∠EAB+∠BAC+∠DAC=180°(平角定义)∴∠B+∠BAC+∠C=180°从上面的推理过程中,我们发现平行线具有“等角转化”的功能,将∠BAC,∠B,∠C“凑”在一起,得出角之间的关系,使问题得以解决(2)如图2,已知AB∥ED,求∠B+∠BCD+∠D的度数.小明受到启发,过点C作CF∥AB如图所示,请你帮助小明完成解答:(3)已知AB∥CD,点C在点D的右侧,∠ADC=70°.BE平分∠ABC,DE平分∠ADC,BE,DE所在的直线交于点E,点E在AB与CD两条平行线之间.①如图3,点B在点A的左侧,若∠ABC=60°,则∠BED的度数为________°.②如图4,点B在点A的右侧,且AB<CD,AD<BC.若∠ABC=n°,则∠BED的度数为________°(用含n的代数式表示)【答案】(1)∠EAB;∠DAC(2)如图2,过C作CF∥AB.∵AB∥DE,∴CF∥DE,∴∠D=∠FCD.∵CF∥AB,∴∠B=∠BCF.∵∠BCF+∠BCD+∠DCF=360°,∴∠B+∠BCD+∠D=360°(3)65;215°﹣n【解析】【解答】(1)∵ED∥BC,∴∠B=∠EAB,∠C=∠DAC.故答案为:∠EAB,∠DAC;( 3 )①如图3,过点E作EF∥AB.(1)∵AB∥CD,∴AB∥CD∥EF,∴∠ABE=∠BEF,∠CDE=∠DEF.∵BE平分∠ABC,DE平分∠ADC,∠ABC=60°,∠ADC=70°,∴∠ABE= ∠ABC=30°,∠CDE= ∠ADC=35°,∴∠BED=∠BEF+∠DEF=30°+35°=65°.故答案为:65;②如图4,过点E作EF∥AB.∵BE平分∠ABC,DE平分∠ADC,∠ABC=n°,∠ADC=70°∴∠ABE= ∠ABC= n°,∠CDE= ∠ADC=35°.∵AB∥CD,∴AB∥CD∥EF,∴∠BEF=180°﹣∠ABE=180°﹣ n°,∠CDE=∠DEF=35°,∴∠BED=∠BEF+∠DEF=180°﹣ n°+35°=215°﹣ n°.故答案为:215°﹣ n.【分析】(1)利用平行线的性质,可证得∠B=∠EAB,∠C=∠DAC,即可得出∠BAC+∠B+∠C的度数。

七年级数学上册全册单元试卷(培优篇)(Word版 含解析)

七年级数学上册全册单元试卷(培优篇)(Word版 含解析)

七年级数学上册全册单元试卷(培优篇)(Word版含解析)一、初一数学上学期期末试卷解答题压轴题精选(难)1.已知线段AB=6.(1)取线段AB的三等分点,这些点连同线段AB的两个端点可以组成多少条线段?求这些线段长度的和;(2)再在线段AB上取两种点:第一种是线段AB的四等分点;第二种是线段AB的六等分点,这些点连同(1)中的三等分点和线段AB的两个端点可以组成多少条线段?求这些线段长度的和。

【答案】(1)解:如图:点C、D为线段AB的三等分点,可以组成的线段为:3+2+1=6(条),∵AB=6,点C、D为线段AB的三等分点,∴AC=CD=DB=2,AD=BC=4,∴这些线段长度的和为:2+2+2+4+4+6=20.(2)解:再在线段AB上取两种点:第一种是线段AB的四等分点D1、D2、D3;第二种是线段AB的六等分点E1、E2,∴这些点连同(1)中的三等分点和线段AB的两个端点可以组成多少条线段共有1+2+3+…+8=36(条);根据题意以A为原点,AB为正方向,建立数轴,则各点对应的数为:A:0;B:6;C:2;D:4;D1:1.5;D2:3;D3:4.5;E1:1;E2:5;∴①以A、B为端点的线段有7+7+1=15(条),长度和为:6×8=48;②不以A、B为端点,以E1、E2为端点的线段有5+5+1=11(条),长度和为:4×6=24;③不以A、B、E1、E2为端点,以D1、D3为端点的线段有3+3+1=7(条),长度和为:3×4=12;④不以A、B、E1、E2、D1、D3为端点,以C、D为端点的线段有1+1+1=3(条),长度和为:2×2=4;∴这些线段长度的和为:48+24+12+4=88.【解析】【分析】(1)如图,根据线段的三等分点可分别求得每条线段的长度,再由线段的概念先找出所有线段,从而求得它们的和.(2)再在线段AB上取两种点:第一种是线段AB的四等分点D1、D2、D3;第二种是线段AB的六等分点E1、E2;根据线段定义和数线段的规律求得线段条数;根据题意以A为原点,AB为正方向,建立数轴,则各点对应的数为:A:0;B:6;C:2;D:4;D1:1.5;D2:3;D3:4.5;E1:1;E2:5;再分情况讨论,从而求得所有线段条数和这些线段的长度.2.如图,已知数轴上点A表示的数为8,B是数轴上一点,且AB=14.动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数________ ,点P表示的数________(用含t的代数式表示);(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时追上点Q?(3)若M为AP的中点,N为PB的中点.点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长;(4)若点D是数轴上一点,点D表示的数是x,请你探索式子|x+6|+|x﹣8|是否有最小值?如果有,直接写出最小值;如果没有,说明理由.【答案】(1)点B表示的数是﹣6;点P表示的数是8﹣5t(2)解:设点P运动x秒时,在点C处追上点Q (如图)则AC=5x,BC=3x,∵AC﹣BC=AB∴5x﹣3x=14…解得:x=7,∴点P运动7秒时,在点C处追上点Q(3)解:没有变化.分两种情况:①当点P在点A.B两点之间运动时:MN=MP+NP= AP+ BP= (AP+BP)= AB=7…②当点P运动到点B的左侧时:MN=MP﹣NP= AP﹣ BP= (AP﹣BP)= AB=7…综上所述,线段MN的长度不发生变化,其值为7…(4)解:式子|x+6|+|x﹣8|有最小值,最小值为14.…【解析】【分析】(1)由于A点表示的数是8,故OA=8,又AB=14,从而得出OB=AB-OA=6,由于点B表示的数在原点的左边,故B点表示的数是-6,根据路程等于速度乘以时间得出AP=5t,从而得出P点表示的数是8-5t;(2)设点P运动x秒时,在点C处追上点Q (如图)格努路程定于速度乘以时间得出AC=5x,BC=3x,然后由AC﹣BC=AB列出方程求解即可得出x的值;(3)没有变化.根据线段中点的定义得出PM=AP,NP=BP,分两种情况:①当点P在点A.B两点之间运动时,由MN=MP+NP= AP+ BP= (AP+BP)= AB得出答案;②当点P运动到点B的左侧时:MN=MP-NP= AP- BP= (AP-BP)= AB得出答案,综上所述即可得出答案;(4)式子|x+6|+|x﹣8|有最小值,最小值为14,点D是数轴上一点,点D表示的数是x,那么|x+6|表示点D,B两点间的距离,|x﹣8|表示点D,A两点间的距离,要|x+6|+|x﹣8|其实质就是DB+AD的和,要DB+AD的和最小,只有在D为线段AB上的时候,DB+AD的和最小=AB,即可得出答案。

七年级数学上册全册单元测试卷(培优篇)(Word版 含解析)

七年级数学上册全册单元测试卷(培优篇)(Word版 含解析)

七年级数学上册全册单元测试卷(培优篇)(Word版含解析)一、初一数学上学期期末试卷解答题压轴题精选(难)1.已知数轴上两点A、B所表示的数分别为a和b,且满足|a+3|+(b-9)2018=0,O为原点(1)试求a和b的值(2)点C从O点出发向右运动,经过3秒后点C到A点的距离是点C到B点距离的3倍,求点C的运动速度?(3)点D以1个单位每秒的速度从点O向右运动,同时点P从点A出发以5个单位每秒的速度向左运动,点Q从点B出发,以20个单位每秒的速度向右运动.在运动过程中,M、N分别为PD、OQ的中点,问的值是否发生变化,请说明理由.【答案】(1)解:a=-3,b=9(2)解:设3秒后,点C对应的数为x则CA=|x+3|,CB=|x-9|∵CA=3CB∴|x+3|=3|x-9|=|3x-27|当x+3=3x-27,解得x=15,此时点C的速度为当x+3+3x-27=0,解得x=6,此时点C的速度为(3)解:设运动的时间为t点D对应的数为:t点P对应的数为:-3-5t点Q对应的数为:9+20t点M对应的数为:-1.5-2t点N对应的数为:4.5+10t则PQ=25t+12,OD=t,MN=12t+6∴为定值.【解析】【分析】(1)根据几个非负数之和为0,则每一个数都是0,建立关于a、b的方程,求出a、b的值,就可得出点A、B所表示的数。

(2)根据点C从O点出发向右运动,经过3秒后点C到A点的距离是点C到B点距离的3倍,可表示出CA=|x+3|,CB=|x-9|,再由CA=3CB,建立关于x的方程,求出方程的解,然后求出点C的速度即可。

(3)根据点的运动速度和方向,分别用含t的代数式表示出点D、P、Q、M、N对应的数,再分别求出PQ、OD、MN的长,然后求出的值时常量,即可得出结论。

2.已知线段AB=6.(1)取线段AB的三等分点,这些点连同线段AB的两个端点可以组成多少条线段?求这些线段长度的和;(2)再在线段AB上取两种点:第一种是线段AB的四等分点;第二种是线段AB的六等分点,这些点连同(1)中的三等分点和线段AB的两个端点可以组成多少条线段?求这些线段长度的和。

数学七年级上册全册单元试卷(培优篇)(Word版 含解析)

数学七年级上册全册单元试卷(培优篇)(Word版 含解析)

数学七年级上册全册单元试卷(培优篇)(Word版含解析)一、初一数学上学期期末试卷解答题压轴题精选(难)1.如图1,已知∠MON=140°,∠AOC与∠BOC互余,OC平分∠MOB,(1)在图1中,若∠AOC=40°,则∠BOC=°,∠NOB=°.(2)在图1中,设∠AOC=α,∠NOB=β,请探究α与β之间的数量关系(必须写出推理的主要过程,但每一步后面不必写出理由);(3)在已知条件不变的前提下,当∠AOB绕着点O顺时针转动到如图2的位置,此时α与β之间的数量关系是否还成立?若成立,请说明理由;若不成立,请直接写出此时α与β之间的数量关系.【答案】(1)解:如图1,∵∠AOC与∠BOC互余,∴∠AOC+∠BOC=90°,∵∠AOC=40°,∴∠BOC=50°,∵OC平分∠MOB,∴∠MOC=∠BOC=50°,∴∠BOM=100°,∵∠MON=40°,∴∠BON=∠MON-∠BOM=140°-100°=40°,(2)解:β=2α-40°,理由是:如图1,∵∠AOC=α,∴∠BOC=90°-α,∵OC平分∠MOB,∴∠MOB=2∠BOC=2(90°-α)=180°-2α,又∵∠MON=∠BOM+∠BON,∴140°=180°-2α+β,即β=2α-40°;(3)解:不成立,此时此时α与β之间的数量关系为:2α+β=40°,理由是:如图2,∵∠AOC=α,∠NOB=β,∴∠BOC=90°-α,∵OC平分∠MOB,∴∠MOB=2∠BOC=2(90°-α)=180°-2α,∵∠BOM=∠MON+∠BON,∴180°-2α=140°+β,即2α+β=40°,答:不成立,此时此时α与β之间的数量关系为:2α+β=40.【解析】【分析】(1)先根据余角的定义计算∠BOC=50°,再由角平分线的定义计算∠BOM=100°,根据角的差可得∠BON的度数;(2)同理先计算∠MOB=2∠BOC=2(90°-α)=180°-2α,再根据∠BON=∠MON-∠BOM列等式即可;(3)同理可得∠MOB=180°-2α,再根据∠BON+∠MON=∠BOM列等式即可.2.如图,点B、C在线段AD上,CD=2AB+3.(1)若点C是线段AD的中点,求BC-AB的值;(2)若BC=AD,求BC-AB的值;(3)若线段AC上有一点P(不与点B重合),AP+AC=DP,求BP的长.【答案】(1)解:设AB长为x,BC长为y,则CD=2x+3.若C是AB的中点,则AC=CD,即x+y=2x+3,得:y-x=3,即BC-AB=3(2)解:设AB长为x,BC长为y,若BC= CD,即AB+CD=3BC,∴x+2x+3=3y,∴y=x+1,即y-x=1,∴BC-AB=1(3)解:以A为原点,AD方向为正方向,1为单位长度建立数轴,则A:0,B:x,C:x+y,D:x+y+2x+3=3x+y+3.设P:p,由已知得:0≤p≤x+y,则AP=p,AC=x+y,DP=3x+y+3-p,∵AP+AC=DP,BP= ,∴p+x+y=3x+y+3-p,解得:2p-2x=3,∴p-x=1.5,∴BP=1.5【解析】【分析】(1)此题可以设未知数表示题中线段的长度关系,设AB长为x,BC长为y,则AC=AB+BC=x+y,CD=2x+3 ,根据中点的定义得出 AC=CD ,从而列出方程,变形即可得出答案;(2)设AB长为x,BC长为y ,则CD=2x+3 ,由BC= CD,得出AB+CD=3BC,从而列出方程变形即可得出答案;(3)设AB长为x,BC长为y ,则CD=2x+3 ,以A为原点,AD方向为正方向,1为单位长度建立数轴,则A点表示的数为0,B点表示的数为x,C点表示的数为x+y,D点表示的数为x+y+2x+3=3x+y+3.设P点表示的数为p,由已知得:0≤p≤x+y,则AP=p,AC=x+y,DP=3x+y+3-p,由AP+AC=DP,列出方程,并行得出P-X的值,再根据BP= 即可得出答案。

七年级数学上册全册单元测试卷(培优篇)(Word版 含解析)

七年级数学上册全册单元测试卷(培优篇)(Word版 含解析)

七年级数学上册全册单元测试卷(培优篇)(Word版含解析)一、初一数学上学期期末试卷解答题压轴题精选(难)1.科学实验证明,平面镜反射光线的规律是:射到平面镜上的光线和反射出的光线与平面镜所夹的角相等.(1)如图,一束光线m射到平面镜a上,被a反射到平面镜b上,又被b镜反射出去,若b镜反射出的光线n平行于m,且∠1=30 ,则∠2=________,∠3=________;(2)在(1)中,若∠1=70 ,则∠3=________;若∠1=a,则∠3=________;(3)由(1)(2)请你猜想:当∠3=________时,任何射到平面镜a上的光线m经过平面镜a和b的两次反射后,入射光线m与反射光线n总是平行的?请说明理由.(提示:三角形的内角和等于180 )【答案】(1)60°;90°(2)90°;90°(3)90°【解析】【解答】(1)∵入射角与反射角相等,即∠1=∠4,∠5=∠2,根据邻补角的定义可得根据m∥n,所以所以根据三角形内角和为所以故答案为:( 2 )由(1)可得∠3的度数都是( 3 )理由:因为所以又由题意知∠1=∠4,∠5=∠2,所以由同旁内角互补,两直线平行,可知:m∥n.【分析】(1)由入射角等于反射角可得∠1=∠4,∠5=∠2;由邻补角的定义可求得∠6的度数;于是由两直线平行,同旁内角互补可得∠6+∠7=则∠7的度数可求解,由图知∠5+∠7+∠2=所以∠5和∠2的度数可求解;再根据三角形的内角和等于可求得∠3的度数;(2)由(1)可知∠3=;(3)由(1)和(2)可得∠3=2.将一副三角板中的两块直角三角尺的直角顶点 O 按如图方式叠放在一起.(1)如图 1 ,若∠BOD=35°,则∠AOC=________;若∠AOC=135°,则∠BOD=________;(2)如图2,若∠AOC=140°,则∠BOD=________;(3)猜想∠AOC 与∠BOD 的大小关系,并结合图1说明理由.(4)三角尺 AOB 不动,将三角尺 COD 的 OD 边与 OA 边重合,然后绕点 O 按顺时针或逆时针方向任意转动一个角度,当∠A OD(0°<∠AOD<90°)等于多少度时,这两块三角尺各有一条边互相垂直,直接写出∠AOD 角度所有可能的值,不用说明理由.【答案】(1)145°;45°(2)40°(3)解:∠AOC 与∠BOD 互补.∵∠AOD+∠BOD+∠BOD+∠BOC=180°.∵∠AOD+∠BOD+∠BOC=∠AOC,∴∠AOC+∠BOD=180°,即∠AOC 与∠BOD 互补(4)解:OD⊥AB 时,∠AOD=30°,CD⊥OB 时,∠AOD=45°,CD⊥AB 时,∠AOD=75°,OC⊥AB 时,∠AOD=60°,即∠AOD 角度所有可能的值为:30°、45°、60°、75°【解析】【解答】解:(1)若∠BOD=35°,∵∠AOB=∠COD=90°,∴∠AOC=∠AOB+∠COD﹣∠BOD=90°+90°﹣35°=145°,若∠AOC=135°,则∠BOD=∠AOB+∠COD﹣∠AOC=90°+90°﹣135°=45°;( 2 )如图 2,若∠AOC=140°,则∠BOD=360°﹣∠AOC﹣∠AOB﹣∠COD=40°;故答案为:(1)145°,45°;(2)40°.【分析】(1)根据∠AOC=∠AOB+∠COD﹣∠BOD,就可求出∠AOC的度数;再由∠BOD=∠AOB+∠COD﹣∠AOC,可求出∠BOD的度数。

七年级数学上册全册单元测试卷(培优篇)(Word版 含解析)

七年级数学上册全册单元测试卷(培优篇)(Word版 含解析)

(1)点 E, , 共线时,如图 ,求
的度数;
(2)点 E, , 不共线时,如图
,设

、 满足的数量关系式,并说明理由.
【答案】 (1)解:如图 中,由翻折得:
,请分别写出 ,
(2)解:如图 ,结论:
.
理由:如图 中,由翻折得:

如图 ,结论:

理由:
,

. 【解析】【分析】(1)根据翻折不变性得: 解决问题.(2)根据翻折不变性得到:
接 写出
之间的关系.
【答案】 (1)解:∵ ∴
∵ ∴

(2)解: 过点 G 作 ∴ ∵ ∴ ∴


这三个角的度数和为一个定值,是 交 BE 于点 H
(3)解:过点 G 作 ∴ ∵ ∴ ∴


交 BE 于点 H

的关系仍成立
(4)不成立| ∠ EGF-∠ DEC+∠ BFG=180° 【解析】【解答】解:(4)过点 G 作
(1)如图①,当点 E 在线段 AC 上时,求证:

(2)在(1)的条件下,判断
这三个角的度数和是否为一个定
值? 如果是,求出这个值,如果不是,说明理由.
(3)如图②,当点 E 在线段 AC 的延长线上时,(2)中的结论是否仍然成立?如果不成
立, 请直接写出
之间的关系.
(4)当点 E 在线段 CA 的延长线上时,(2)中的结论是否仍然成立?如果不成立,请直
故答案为:不成立,∠ EGF-∠ DEC+∠ BFG=180°
【分析】(1)根据两条直线平行,内错角相等,得出
;两条直线平行,
同位角相等,得出
,即可证明
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.如果两个角的差的绝对值等于 ,就称这两个角互为反余角,其中一个角叫做另一个
角的反余角,例如,


,则 和 互为反
余角,其中 是 的反余角, 也是 的反余角.
(1)如图 为直线 AB 上一点,
于点 O,
角是________,
的反余角是________;
于点 O,则
的反余
(2)若一个角的反余角等于它的补角的 ,求这个角.
∴ ∠ AOP=∠ A′OP=2∠ POB,
∴ ∠ AOB=∠ AOP+∠ POB=3∠ POB=60°,
∴ ∠ POB=20°,
∴ ∠ AOP=2∠ POB=40°
(2)解:①当点 O 运动到使点 A 在射线 OP 的左侧,且射线 OB 在在∠ A′OP 的内部时,
如图 1,
设∠ A′OB=x,则∠ AOM=3∠ A′OB=3x,∠ AOA′=
(2)当点 O 运动到使点 A 在射线 OP 的左侧,∠ AOM=3∠ A′OB 时,求
的值.
(3)当点 O 运动到某一时刻时,∠ A′OB=150°,直接写出∠ BOP=________度.
【答案】 (1)解:由题意可得:∠ AOB=60°,∠ AOP=∠ A′OP,
∵ OB 平分∠ A′OP,
∴ ∠ A′OP=2∠ POB,
七年级数ห้องสมุดไป่ตู้全册单元测试卷培优测试卷
一、初一数学上学期期末试卷解答题压轴题精选(难)
1.点 在线段 上,
.
(1)如图 1, , 两点同时从 , 出发,分别以

的速度沿直线 向左
运动;
①在 还未到达 点时,求 的值;
②当 在 右侧时(点 与 不重合),取 中点 , 的中点是 ,求 的值;
(2)若 是直线 上一点,且
|AD-BD|=AD-BD= CD,
∴ x+CD-2x+CD= CD,
CD= x,


|AD-BD|=BD-AD= CD,
∴ 2x-CD-x-CD= CD,
∴ CD=
; ④当 D 在 B 的右侧时,
|AD-BD|=BD-AD= CD,
∴ 2x-CD-x-CD= CD, CD=6x,

.
综上所述, 的值为 或 或 或 【解析】【分析】(1)由线段的和差关系,以及 QB=2PC,BC=2AC,即可求解;(2)设 AC=x,则 BC=2x,∴ AB=3x,D 点分四种位置进行讨论,①当 D 在 A 点左侧时,②当 D 在 AC 之间时,③当 D 在 BC 之间时,④当 D 在 B 的右侧时求解即可.
+∠ A′OB,由角平分线的性质可得
∠ AOP=∠ A′OP, 于是可得关于∠ A′OB 的方程,解方程可求得∠ A′OB 的度数,则 可求解; ② 当点 O 运动到使 A 在射线 OP 的左侧,但是射线 OB 在∠ A′ON 内部时,同理可求解; (3)由题意可分两种情况讨论求解:①当∠ A′OB 沿顺时针成 150°时 , 结合已知条件易求解; ② 当∠ A′OB 沿时针方向成 150°时,结合题意易求解。

∵ OP⊥MN,
∴ ∠ AON=180°-3,∠ AOP=90°-3x,


∵ ∠ AOP=∠ A′OP,
∴ ∠ AOP=∠ A′OP=

,解得:



②当点 O 运动到使 A 在射线 OP 的左侧,但是射线 OB 在∠ A′ON 内部时,如图 2,
设∠ A′OB=x,则∠ AOM=3x,∠ AON= ∵ ∠ AOP=∠ A′OP,
【答案】 (1)
;∠ BOD、∠ COE
【解析】【分析】(1)由角平分线的性质和∠ AOP=∠ A′OP 可得∠ POB= ∠ AOB,∠ AOP=
∠ AOB,则∠ POA 的度数可求解; (2)由题意可分两种情况: ①
当点 O 运动到使点 A 在射线 OP 的左侧,且射线 OB 在在∠ A′OP 的内部时,由角的构成易
得 ∠ AOP= -∠ AOM= -3∠ A′OB,∠ AOA′=
由图可得: ∴ ∠ AOP=45° ,
∴ ∠ BOP=60°+45°=105°; ②如图 4,
当∠ A′OB=150°时,由图可得
∠ A′OA=360°-150°-60°=150° ,
又 ∵ ∠ AOP=∠ A′OP ,
∴ ∠ AOP=75° ,
∴ ∠ BOP=60°+75°=135°; 综上所述:∠ BOP 的度数为 105°或 135°.
(3)如图 2,O 为直线 AB 上一点,
,将
绕着点 O 以每秒 角的速
度逆时针旋转得
,同时射线 OP 从射线 OA 的位置出发绕点 O 以每秒 角的速度逆
时针旋转,当射线 OP 与射线 OB 重合时旋转同时停止,若设旋转时间为 t 秒,求当 t 为何
值时,

互为反余角 图中所指的角均为小于平角的角 .
2.如图 1,平面内一定点 A 在直线 MN 的上方,点 O 为直线 MN 上一动点,作射线 OA、 OP、OA′,当点 O 在直线 MN 上运动时,始终保持∠ MOP=90°、∠ AOP=∠ A′OP,将射线 OA 绕点 O 顺时针旋转 60°得到射线 OB
(1)如图 1,当点 O 运动到使点 A 在射线 OP 的左侧,若 OB 平分∠ A′OP,求∠ AOP 的度 数.



(2)解:∵ BC=2AC. 设 AC=x,则 BC=2x, ∴ AB=3x, ①当 D 在 A 点左侧时,
|AD-BD|=BD-AD=AB= CD, ∴ CD=6x,


②当 D 在 AC 之间时,
|AD-BD|=BD-AD= CD,
∴ 2x+CD-x+CD= CD,
x=- CD(不成立), ③当 D 在 BC 之间时,
,∠ AOA′=

∴ ∠ AOP=∠ A′OP=

∵ OP⊥MN,
∴ ∠ AOP=90-∠ AOM=90-3x,

,解得:



( 3 ) 解 : ① 如 图 3 , 当 ∠ A′OB=150° 时 , ∠ A′OA=∠ A′OB-∠ AOB=150°-60°=90° , 又 ∵ ∠ AOP=∠ A′OP ,
.求 的值.
【答案】 (1)解:①AP=AC-PC,CQ=CB-QB,
∵ BC=2AC,P、Q 速度分别为 1cm/s、2cm/s,
∴ QB=2PC,
∴ CQ=2AC-2PC=2AP,
∴ ②设运动 秒
, 分两种情况 A: 在 右侧,
, 分别是 , 的中点


∴ B: 在 左侧,
, 分别是 , 的中点
相关文档
最新文档