线性规划的图解法

合集下载

线性规划图解法

线性规划图解法
第二节 线性规划的图解法
图解法 线性规划问题求解的 几种可能结果 由图解法得到的启示
上页
下页 继续
返回
例1的数学模型
目标函数 Max Z = 2x1 + 3x2 约束条件 x1 + 2x2 8 4x1 16 4x2 12 x 1、 x 2 0
上页
下页
返回
图解法
9— 8—
x1+ 2x2=8 4x1 =16
4x1 16
C 4 x2 16
4 —B
3— 2— 1—
最优解 (4, 2)
D
x1 + 2x2 8
| 6 | 7 | 8 | 9 | 4
A
0
| 1
| 2
| 3
E
| 5
x1 下页 返回
上页
图解法求解步骤
• 由全部约束条件作图求出可行域; • 作目标函数等值线,确定使目标函数最
(d)无可行解
Max Z = 2x1 + 3x2 x1 +2 x2 8 4 x1 16 4x2 12 -2x1 + x2 4 x 1、 x 2 0
可行域为空集
上页 下页 返回
图解法的几点结论:
(由图解法得到的启示)
– 可行域是有界或无界的凸多边形。 – 若线性规划问题存在最优解,它一定可以在
优的移动方向; • 平移目标函数的等值线,找出最优点, 算出最优值。
上页
下页
返回
线性规划问题求解的 几种可能结果
(a) 唯一最优解
x2
6— 5— 4— 3— 2— 1— | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | x 9 1

运筹学线性规划图解法

运筹学线性规划图解法

引理1.线性规划问题的可行解X为基本可行解的充分 必要条件是X的正分量所对应的系数列向量是线性独立的. 证明:
必要性:已知X为线性规划的基本可行解,要证X的 正分量所对应的系数列向量线性独立。
因为X为基本解,由定义,其非零分量所对应的系数 列向量线性独立;又因为X还是可行解,从而其非零分量 全为正。
•有唯一解
例1: max z=2x1+ 3x2 s.t. x1+2x2≤8 4x1≤16 x1,x2≥0
画图步骤: 1、约束区域的确定 2、目标函数等值线 3、平移目标函数等值线求最优值
x2
可行域
(4,2) z=14
目标函数 等值线
x1
•有无穷多解
例2 max z =2x1+4x2 s.t. x1+2x2≤8 4x2 ≤ 12 3x1 ≤12 x1, x2 ≥0
X(0)=Σ α iX(i) α i0,Σ α i=1 记X(1),X(2), …,X(k)中满足max CX(i)的顶点为X(m)。于是,
k
k
CX (0) Ci X (i) Ci X (m) CX (m)
i 1
i 1
由假设CX(0)为最优解,所以CX(0)=CX(m),即最优解可在顶点
充分性:已知可行解X的正分量所对应的系数列向量 线性独立,欲证X是线性规划的基本可行解。
若向量P1, P2,…, Pk线性独立,则必有k≤m;当k=m时, 它们恰构成一个基,从而X=(x1,x2,…,xk,0…0)为相 应的基可行解。K〈m时,则一定可以从其余的系数列向量 中取出m-k个与P1, P2,…, Pk构成最大的线性独立向量组, 其对应的解恰为X,所以根据定义它是基可行解。
§2 线性规划图解法

线性规划(图解法)

线性规划(图解法)

D
max Z
可行域
(7.6,2) , )
34.2 = 3X1+5.7X2
X1 + 1.9X2 = 3.8(≥) X1 - 1.9X2 = 3.8 (≤) L0: 0=3X1+5.7X2
oபைடு நூலகம்
x1
图解法
min Z=5X1+4X2 x2
X1 + 1.9X2 = 10.2 (≤)
Page 18
43=5X1+4X2 8=5X1+4X2 此点是唯一最优解 (0,2) , )
图解法
线性规划问题的求解方法 一般有 两种方法 图解法 单纯形法 两个变量、 两个变量、直角坐标 三个变量、 三个变量、立体坐标
Page 1
适用于任意变量、 适用于任意变量、但必需将 一般形式变成标准形式
下面我们分析一下简单的情况—— 下面我们分析一下简单的情况—— 只有两个决策 变量的线性规划问题, 变量的线性规划问题,这时可以通过图解的方法来 求解。图解法具有简单、直观、 求解。图解法具有简单、直观、便于初学者窥探线 性规划基本原理和几何意义等优点。 性规划基本原理和几何意义等优点。
• 有效与无效 紧与松)约束:与最优解相关的约束为有效 有效与无效(紧与松 约束 紧与松 约束: (紧)约束。 紧 约束 约束。 • 最优解:总是在可行域的边界上,一般由可行域的顶 最优解:总是在可行域的边界上, 点表示。 点表示。 • 可行域:由约束平面围起来的凸多边形区域,可行域 可行域:由约束平面围起来的凸多边形区域, 个可行解。 内的每一个点代表一 个可行解。
20
无可行解(即无最优解 无可行解 即无最优解) 即无最优解
10
O
10

管理运筹学第二章线性规划的图解法

管理运筹学第二章线性规划的图解法

02
图解法的基本原理
图解法的概念
图解法是一种通过图形来直观展示线性规划问题解的方法。它通过在坐标系中绘 制可行域和目标函数,帮助我们理解问题的结构和最优解的位置。
图解法适用于线性规划问题中变量和约束条件较少的情况,能够直观地展示出最 优解的几何意义。
图解法的步骤
确定决策变量和目标函数
明确问题的决策变量和目标函数,以便在图 形中表示。
目标函数是要求最小化或最大化的函数,通常表示为 $f(x) = c_1x_1 + c_2x_2 + ldots + c_nx_n$。
04
约束条件是限制决策变量取值的条件,通常表示为 $a_1x_1 + a_2x_2 + ldots + a_nx_n leq b$或 $a_1x_1 + a_2x_2 + ldots + a_nx_n = b$。
LINDO是一款开源的线性规划求解器,用 户可以免费使用。
软件工具的使用方法
Excel
用户需要先在Excel中设置好线性规划模型,然后使 用“数据”菜单中的“规划求解”功能进行求解。
Gurobi/CPLEX/LINDO
这些软件通常需要用户先在软件界面中输入线性规划 模型,然后通过点击“求解”按钮进行求解。
实例三:分配问题
总结词
分配问题是指如何根据一定的分配原则 或目标,将有限的资源分配给不同的需 求方,以最大化整体效益。
VS
详细描述
分配问题在实际生活中广泛存在,如物资 分配、任务分配等。通过图解法,可以将 分配问题转化为线性规划模型,并利用图 形直观地展示最优解的资源分配方案。在 分配问题中,通常需要考虑不同需求方的 重要性和优先级,以及资源的有限性等因 素,以实现整体效益的最大化。

第2章 线性规划图解法

第2章 线性规划图解法
-8
x2
6
4
可行域
6
0
x1
23
3. 画出目标函数的图形(通常可画出当目 标函数值为零时的(基准)目标函数图),确 定目标函数平行移动的方向,并沿目标函 数直线的法向用小箭头标出。
例1. max Z = x1+3x2 s.t. x1+ x2≤6 -x1+2x2≤8 x ≥0, x ≥0 1 2
大轿车座椅的限制: 非负限制:
5 x1 2.5 x2 2500 x1 400 x1 0, x2 0
分析:问题是如何安排生产使得工厂获利最大?
项目 产品 生产能力 5 (小时 ⁄ 辆) 2.5 (小时 ⁄ 辆) 2500 (小时 ⁄ 年) 钢材 (吨 ) 装配座椅 (辆 ⁄ 年 ) 利润 (千元 ⁄ 辆)
4
§2.1
线性规划问题的提出
线性规划研究的内容和问题
线性规划是研究在线性不等式或等式的限 制条件下,使得某一个线性目标函数取得最大 (或最小)的问题。常见的线性规划问题有: (一) 运输问题 (二) 生产的组织与计划问题 (三) 合理下料问题 (四) 配料问题 (五) 布局问题 (六) 分派问题
5
7
例1. 某工厂在计划期内要安排Ⅰ、Ⅱ两种产品的生产, 已知生产单位产品所需的设备台时及A、B两种原材料的 消耗、资源的限制,如下表:
设备 原料 A 原料 B 单位产品获利 Ⅰ 1 2 0 50 元 Ⅱ 1 1 1 100 元 资源限制 300 台时 400 千克 250 千克
问题:工厂应分别生产多少单位Ⅰ、Ⅱ产品才能使工厂获 利最多?
6
§2.1
线性规划问题的提出
线性规划发展前景
另一方面,以线性规划为基础而发展起 来的多部门的线性规划 , 多时期的线性规划, 模糊线性规划,随机线性规划,以及整数规 划,非线性规划,目标规划等等,为现代管 理中各类实际问题的解决提供了科学的方法。 目前线性规划的理论研究仍十分活跃,其应 用前景也越来越广阔,它已成为国家重点推 广的现代管理方法之一。

线性规划的图解法

线性规划的图解法

x2
30
20
A
10
B C D 20
0
10
30
图4-5
x1
线性规划的图解法
求最优解
x2
Z=40x1+50x2 0=40x1+50x2 (0,0), (10,-8)
C点: x1+2x2 =30 3x1+2x2 =60 最优解:x* = (15,7.5) Zmax =975
30
20
A
10
B C D 20
求:最大利润的生产计划。
线性规划数学模型
解:设产品A, B产量分别为变量x1 , x2 max Z= 40x1 +50x2 约束条件:x1 + 2x2 30 3x1 + 2x2 60 2x2 24 x1,x2 0
线性规划的图解法
图解法的步骤:
1、在平面上建立直角坐标系; 2、图示约束条件,找出可行域; 3、图示目标函数和寻找最优解。
0
10
30
x1
图4-6
4.线性规划的图解法
例4-3、 maxZ=40x1+ 80x2 x2 x1+2x2 30 3x1+2x2 60 2x2 24 x1 , x2 0 A 解: 最优解:BC线段 0 B点 C点 x(1)=(6,12) x(2)=(15,7.5) x= x(1)+(1-) x(2) (0 1) B
8
产品产量最优组合的确定
PA/ PB= QB/QA 图4-4
QB E 产 品 B
o
QA
产品A
9
第2 节
产品产量最优组合决策的实用方法 ——线性规划法
10

第二章线性规划的图解法

第二章线性规划的图解法

➢ 答案:
X2 ➢ 最优解为: x1 =15 ,x2=10 40 ➢ 最优值为:z*=2500×15+1500×10

30
=52500
3x2=75
20
(15,10)
10
O
10
20
30
40
50 X1
3x1+2x2=65
2x1+x2=40
五、线性规划问题解的情况
➢ 例1.5的最优解只有一个,这是线性规划问题 最一般的解的情况,但线性规划问题解的情 况还存在其它特殊的可能:无穷多最优解、 无界解或无可行解。
... am1x1+am2x2 +…+amnxn≤( =, ≥ )bm x1 ,x2 ,… ,xn ≥ ( ≤) 0 或无约束
xj为待定的决策变量; cj为目标函数系数,或价值系数、费用系数; aij为技术系数; bj为资源常数,简称右端项; 其中i=1,2,…m; j=1,2,…n
可以看出,一般LP模型的特点: A、决策变量x1,x2,x3,……xn表示要寻求
O
100 200 300
X1
3、无界解的情况
➢若将例1.5的线性规划模型中约束条件1、2的 不等式符号改变,则线性规划模型变为:
➢ 目标函数:Max z= 50x1+100 x2 约束条件:x1+x2 ≥ 300 2x1+x2 ≥ 400 x2≤250 x1 ≥0, x2 ≥0
B、定义决策变量;
C、用决策变量的线性函数形式写出所要追求 的目标,即目标函数;
D、用一组决策变量的等式或不等式来表示在 解决问题过程中所必须遵循的约束条件。
三、线性规划的数学模型
1、LP模型的一般形式 目标函数:

线性规划问题的图解法

线性规划问题的图解法

20 40
.
即B点坐标为20 ,40,代入目标函数可得最优值Smax 50 20 30 40 2 200 .
线性规划问题的图解法
例2

1. 求可行域(如图7 - 2所示)
(1)建立直角坐标系Ox1x2 . (2)满足条件 x1 x2 2 的所有点均落在直线 x2 2 x1 的右下半平面内; (3)满足条件 x1 x2 2 的所有点均落在直线 x2 2 x1 的右上半平面内. 由约束条件可知,无界区域ABCD是其可行域 .
3 截距最大的点即为最优解,其对应的S值就是最优值 .因此,我们可以把过原点且斜率 5的直
3 线作为参照直线,然后在可行域里进行平移,直到找到最优解 .
显然,斜率为 5的直线在可行域里平移时过B点的纵截距最大,求B点的坐标,联立 3
方程
x2 x2
Hale Waihona Puke 80 2x1 40,解得
x1 x2
图7-2
线性规划问题的图解法
2. 求最优解 把目标函数 S x1 2x2 中的S看作参数,当S 0时,目标函数S x1 2x2是一条过原点 的直线,在坐标系内画出这样的直线(用虚线表示),然后再将该直线向可行域内平移 . 在平移
时,7-2中B点是满足该约束条件的S最小值,其坐标为2 ,0,于是得到该线性规划问题的最
于是从约束条件知,由l1 ,l2 ,l3以及x1轴围成的区域 ABCD是该线性规划问题的可行域,如图7-1所示 .
图7-1
线性规划问题的图解法
2.求最优解 可行域的点满足约束条件,但并非使得目标函数 max S 50x1 30x2 取得最大值的解, 且该目标函数对应的图象也是一条直线,其斜率为 5,可行域里能使该直线与y轴的纵
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
AX ≤(或=,≥) b
st .
C=(c1 , c2 , … … , cn )
A=
a11 a12 a21 a22
… a1n … a2n
表 达
X≥ 0
am1 am2
amn
矩阵A称为约束方程组(约束条件)的系数矩阵。

… …
§2 图 解 法
对于只有两个决 例2-1.目标函数:
策变量的线性规划问
Max z = 50 x1 + 100 x2
3.用决策变量的线性函数形式写出目标函数,确定最大化或最 小化目标;
4.用一组决策变量的等式或不等式表示解决问题过程中必须遵 循的约束条件
• 一般形式
目标函数: 约束条件:
Max (Min) z = c1 x1 + c2 x2 + … + cn xn
s.t.
a11 x1 + a12 x2 + … + a1n xn a21 x1 + a22 x2 + … + a2n xn
产品
1 2 3
资源/h
单位利润
技术服务 劳动力 行政管理 /元
1
10
2
10
1
4
2
6
1
5
6
4
• 解:设三种产品的生产量分别为x1、x2、x3。 • 线性规划模型为: • Max z=10x1+6x2+4x3 • S.t. x1+x2+x3≤100 • 10x1+4x2+5x3 ≤600 • 2x1+2x2+6x3 ≤300 • x1,x2,x3≥0
线性规划模型的组成: •决策变量 用符号来表示可控制的因素 •目标函数 Max F 或 Min F •约束条件 s.t. (subject to) 满足于
§1 问题的提出
例1. 某工厂在计划期内要安排Ⅰ、Ⅱ两种产品的生产,已知生产单位产 品所需的设备台时及A、B两种原材料的消耗、资源的限制,如下表:
例2 M&D公司生产两种产品A和B,基于对现有的存 储水平和下一个月的市场潜力的分析,M&D公司管 理层决定A和B的总产量至少要达到350千克,此外, 公司的一个客户订了125千克的A产品必须首先满足。 每千克A、B产品的制造时间分别为2小时和1小时, 总工作时间为600小时。每千克A、B产品的原材料 成本分别为2$和3$。确定在满足客户要求的前提下, 原材料成本最小的生产计划。
st.
……
an1x1 + a2nx2 + … … + annxn ≤ (或=,≥) bm
x1,x2 , … … ,xn ≥ 0
决策 变量
xj称为该问题的决策变量。
c 价值 在目标函数中xj的系数 j称为
系数 该决策变量的价值系数。
技术系 数或工 艺系数
aij 称为该问题的技术
系数或工艺系数。由所有
aij组成的矩阵称为约束 方程的系数矩阵。
2 x1 + x2 ≤ 400 x2 ≤ 250
x1 , x2 ≥ 0
• 一家工厂制造三种产品,需要三种资源:技术服务、 劳动力、行政管理。下表列出了三种单位产品对每 种资源的需要量。今有100h的技术服务,600h的劳 动力和300h的行政管理时间可供使用。试确定能使 总利润最大的产品生产量的线性规划模型。
第二章 线性规划的图解法
在管理中一些典型的线性规划应用 • 合理利用线材问题:如何在保证生产的条件下,下料最少 • 配料问题:在原料供应量的限制下如何获取最大利润 • 投资问题:从投资项目中选取方案,使投资回报最大 • 产品生产计划:合理利用人力、物力、财力等,使获利最
大 • 劳动力安排:用最少的劳动力来满足工作的需要 • 运输问题:如何制定调运方案,使总运费最小
资源拥 有量
在问题中,xj的取值受m项资
b 源的约束, i称为第i项资源
的拥有量。
其它表示方式
n
简 max(min) z cjxj
化=
j 1 n

st . aijxj ≤ (或=,≥) bi (i=1,2, … … ,m)

j 1
xj ≥ 0 ( j=1,2, … … ,n)
用 max(min) z CX
向 量
=
n
Pjxj ≤(或=,≥) b
j 1
表 达
st .
X≥ 0
C=(c1 , c2 , …, cn )
其中
X=(x1 , x2 , … … , xn)T Pj=(a1j , a2j , … … , anj)T b=(b1 , b2 , … … , bm)T
用 矩 阵
max(min) z CX =


资源限制
设备 原料 A 原料 B 单位产品获利
1 2 0 50 元
1 1 1 100 元
300 台时 400 千克 250 千克
问题:工厂应分别生产多少单位Ⅰ、Ⅱ产品才能使工厂获利最多?
线性规划模型:
目标函数:Max 约束条件:s.t.
z = 50 x1 + 100 x2 x1 + x2 ≤ 300
题,可以在平面直角 约束条件:
坐标系上作图表示线 性规划问题的有关概 念,并求解。
下面通过例1详细 讲解其方法:
s.t.
x1 + x2 ≤ 300 (A) 2 x1 + x2 ≤ 400 (B)
x2 ≤ 250 (C) x1 ≥ 0 (D) x2 ≥ 0 (E) 得到最优解:
x1 = 50, x2 = 250 最优目标值 z = 27500
解:设产品 A、B 的产量分别为x, y 。则,数学模型为:
min Z 2x 3y x 125 x y 350 2x y 600 x, y 0
§1 问题的提出
• 建模过程
1.理解要解决的问题,了解解题的目标和条件;
2.定义决策变量( 案;
x1
,x2
,…
,xn
),每一组值表示一个方
图解线性规划问题步骤
• 第一步,画直角坐标系 • 第二步,根据约束条件画可行域
• 第三步,画过坐标原点的目标函数线,斜率 为-c1/c2
• 第四步,确定目标函数值的增大(减小)方 向
• 第五步,让目标函数沿着增大(减小)方向 平行移动,与可行域相交且有最大(最小) 目标函数值的顶点,即为线性规划问题的最 优解,然后根据最优解求最优值。
≤ ≤
( (
=, =,
Hale Waihona Puke ≥ ≥))bb21
…… ……
axm11,x1x+2 ,am…2 x,2 +x…n ≥+0amn xn ≤ ( =, ≥ )bm
目标函数
max(min) z = c1x1 + c2x2 + … … + cnxn
约束 条件
a11x1 + a12x2 + … … + a1nxn ≤ (或=,≥) b1 a21x1 + a22x2 + … … + a2nxn ≤ (或=,≥) b2
相关文档
最新文档