153分式方程导学案

合集下载

新人教版八年级数学上册15.3.3分式方程的解的情况导学案

新人教版八年级数学上册15.3.3分式方程的解的情况导学案

课题新人教版八年级数学上册15.3.3分式方程的解的情况导学案14目标当分式方程有增根时,无解时,怎样求参数的值。

重点分式方程产生增根时,求参数的值。

难点分式方程产生增根的原因。

自主学习一、导入识标:分式方程为什么会产生增根?分式方程产生增根的条件是什么?在哪一步产生增根的?分式方程无解时分为几种情况?二、自学新知:已知11124=--=xax是方程的解,求a的值。

导学探究类型分类:类型一:22=--+axxaxax的方程关于有一个根为1,试求a的值。

类型二:类型三:若)2)(1(2221-1--+=-+xxmxmxx的方程关于有增根,求m的值。

类型四: 若)2)(1(2221-1--+=-+x x m x m x x 的方程关于无解,求m 的值。

类型五: 当m 为何值时,关于x 的分式方程03)1(16=+-+--xx x m x x 有解?归纳总结:你能回答导入识标中的问题吗?谈谈你的认识。

达 标 拓展一、达标测试: 1、已知关于x 的方程的取值范围。

的解是非负数,求a x ax 122-=-+2、当m 为何值时,关于x 的分式方程234222+=-+-x x xm x 有增根?3、相关题:练习册22页B 组 反思提升。

八年级数学上册15.3分式方程导学案(新版)新人教版

八年级数学上册15.3分式方程导学案(新版)新人教版

八年级数学上册15.3分式方程导学案(新版)新人教版预览说明:预览图片所展示的格式为文档的源格式展示,下载源文件没有水印,内容可编辑和复制八年级数学上册 15.3 分式方程导学案(新版)新人教版15、3分式方程(1)学习目标:1、了解分式方程的概念, 和产生增根的原因、2、掌握分式方程的解法,会解可化为一元一次方程的分式方程,会检验一个数是不是原方程的增根、学习重点:会解可化为一元一次方程的分式方程,会检验一个数是不是原方程的增根、学习难点:会解可化为一元一次方程的分式方程,会检验一个数是不是原方程的增根、课前预习1、前面我们已经学习了哪些方程?是怎样的方程?如何求解?(1)前面我们已经学过了方程。

(2)一元一次方程是方程。

(3)一元一次方程解法步骤是:①去分母;②去括号;③移项;④合并同类项;⑤系数化为1。

如解方程:2、探究新知:一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流100千米所用时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?分析:设江水的流速为v千米/时,根据“两次航行所用时间相同”这一等量关系,得到方程:、像这样分母中含未知数的方程叫做分式方程。

分式方程与整式方程的区别在哪里?通过观察发现得到这两种方程的区别在于未知数是否在分母上。

未知数在分母的方程是分式方程。

未知数不在分母的方程是整式方程。

前面我们学过一元一次方程的解法,但是分式方程中分母含有未知数,我们又将如何解?解分式方程的基本思路是将分式方程转化为方程,具体的方法是去分母,即方程两边同乘以最简公分母。

如解方程:= …………………… ①去分母:方程两边同乘以最简公分母(20+v)(20-v),得100(20-v)=60(20+v)……………………②解得v=5观察方程①、②中的v的取值范围相同吗?① 由于是分式方程v≠20,而②是整式方程v可取任何实数。

这说明,对于方程①来说,必须要求使方程中各分式的分母的值均不为0、但变形后得到的整式方程②则没有这个要求。

15.3.1分式方程导学案(1)

15.3.1分式方程导学案(1)

2
23 6 (2) x 1 x 1 x 2 1
2x x 2 (4) 2x 1 x 2
2 1 0 (5) 5 x 1 x
2 3 4 0 (7) x 2 x x 2 x x 2 1
四、课堂小结 1、本节课你的收获是什么?
6 1 4x 7
(6) 3x 8
8 3x
1 5 3 (8) x 1 2x 2 4
x2 x (1) 2 3
43 7
1 3
(2) x y
(3) x 2 x
x(x 1) 1 (4) x
Hale Waihona Puke 3x x2x x 1 10 x 1 2
(5) 2 (6)
5
(7) x
2x 1 3x 1 (8) x
100 60 2,解方程; 20 v 20 v
方程两边同时乘以(20+v)(20-v)得
15.3. 分式方程(一)导学案 【学习目标】 1.了解分式方程的概念, 和产生增根的原因. 2.掌握分式方程的解法,会解可化为一元一次方程的分式方程,会检验一个数是不是原方程的增根. 学习重点:会解可化为一元一次方程的分式方程,会检验一个数是不是原方程的增根. 学习难点:会解可化为一元一次方程的分式方程,会检验一个数是不是原方程的增根. 学习过程 一,复习引入
x 2 2x 3 1
1,回忆一元一次方程的解法,并且解方程 4
6
2,一艘轮船在静水中的最大航速为 20 千米/时,它沿江以最大航速顺流航行 100 千米所用时间,与以最 大航速逆流航行 60 千米所用时间相等,江水的流速为多少? 分析:设江水的流速为 v 千米/时,根据“两次航行所用时间相同”这一等量关系,得到方程
解得:v=
检验: 将 v=

八年级数学上册 15.3《分式方程》导学案3(新版)新人教版

八年级数学上册 15.3《分式方程》导学案3(新版)新人教版

八年级数学上册 15.3《分式方程》导学案3(新版)新人教版(一)教学知识点1、解分式方程的一般步骤,解分式方程验根的必要性、2、用分式方程的数学模型反映现实情境中的实际问题,用分式方程来解决现实情境中的问题、(二)能力训练要求1、通过具体例子,让学生独立探索方程的解法,经历和体会解分式方程的必要步骤、2、使学生进一步了解数学思想中的"转化"思想,认识到能将分式方程转化为整式方程,从而找到解分式方程的途径、3、经历运用分式方程解决实际问题的过程,发展抽象概括、分析问题和解决问题的能力、学习重点1、解分式方程的一般步骤,熟练掌握分式方程的解决、2、明确解分式方程验根的必要性、3、审明题意,寻找等量关系,将实际问题转化成分式方程的数学模型、学习难点1、明确分式方程验根的必要性、2、寻求实际问题中的等量关系,寻求不同的解决问题的方法、学习过程:一、知识梳理、分式方程:分母里含有未知数的方程叫分式方程。

注:分母中是否含有未知数是分式方程与整式方程的根本区别,分母中含未知数就是分式方程,否则就为整式方程。

2、解分式方程的一般步骤:(1)方程两边都乘以最简公分母,约去分母,化为整式方程。

(2)列整式方程,求得整式方程的根。

(3)验根:把求得的整式方程的根代入A,使最简公分母等于0的根是增根,否则是原方程的根。

(4)确定原分式方程解的情况,即有解或无解。

3、增根的概念:在分式方程去分母转化为整式方程的过程中,可能会增加使原分式方程中分式的分母为零的根,这个根叫原方程的增根,因此列分式方程一定要验根。

注:增根不是解题错误造成的。

4、列方程解应用题步骤:审、设、列、解、验、答。

二、基础知识练习解下列分式方程1、2、5、要使的值相等,则x=__________。

6、若关于x的分式方程无解,则m的值为__________。

7、A、B两地相距48千米,一艘轮船从A地顺流航行至B地,又立即从B地逆流返回A地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x千米/时,则可列方程-------------8、A、B两地相距50千米,甲骑自行车,乙骑摩托车,都从A地到B地,甲先出发1小时30分,乙的速度是甲的2、5倍,结果乙先到1小时,求甲、乙两人的速度。

新人教版八年级上《15.3.1分式方程(二)》导学案

新人教版八年级上《15.3.1分式方程(二)》导学案

15.3.1 分式方程(二)【学习目标】1.进一步了解分式方程的概念, 和产生增根的原因.2.掌握分式方程的解法,会解可化为一元一次方程的分式方程,会检验一个数是不是原方程的根.3.理解“增根”和“无解”不是一回事.【学习重点】:会解可化为一元一次方程的分式方程,会检验一个数是不是原方程的根.【学习难点】:掌握“增根”和“无解”不是一回事【知识准备】:【自主探究文】【探究一】解分式方程 .⑴11122x x =-- ⑵ 214111x x x +-=--【探究二】X 为何值时,代数式xx x x 231392---++的值等于2?【探究三】利用增根的性质解题。

若分式方程424-+=-x a x x 有增根,求a 的值【探究四】理解“增根”和“无解”.(一)已知分式方程有增根,确定字母系数的值。

例1.当a 为何值时,关于x 的方式方程349332+=-+-x x ax x 有增根?归纳:解决此类问题的一般步骤是:(1)把分式方程化为 方程;(2)求出使最简公分母为 的x 的值;(3)把x 的值分别代入整式方程,求出字母系数的值。

(二)已知分式方程无解,确定字母系数的值。

例2 若关于X 的分式方程132323-=-++--xmx x x 无解,求出m 的值。

【自测自结】1、方程2332x x =--的解是 , 2、若x =2是关于x 的分式方程2372a x x +=的解,则a 的值为 3、解方程①2373226x x +=++ ②2512552x x x +=+-③3233x x x =--- ④ 2211566x x x x =+-++4.如果关于x 的方程7766x m x x --=--有增根,则增根为 , 5.分式方程()2933x x x x x =+--出现增根,那么增根一定是( ) A .0 B .3 C .0或3 D .1通过本节课的学习,你有哪些收获?还有哪些困惑呢?。

人教版-数学-八年级上册-15-3 分式方程 导学案3

人教版-数学-八年级上册-15-3 分式方程 导学案3

15.3 分式方程学习目标:1、通过学习能够举例说明什么方程是分式方程;2、会解可化为一元一次方程的分式方程,会检验一个数是不是原方程的解并了解为什么会出现这种情况。

学前准备:1.解方程11 23x x+-=解一元一次方程的步骤:2.请写出船在在静水中速度、水流速度、逆流与顺流速度之间的关系式.逆流速度=顺流速度=导入:一、自主学习,合作交流阅读教材P26-P281.填空(1)轮船顺流航行速度为千米/时,逆流航行速度为千米/时。

(2)顺流航行100千米所用时间为小时。

(3)逆流航行60千米所用时间为小时。

(4)根据题意可列方程为。

2.思考下列问题(1)分式方程的特征是什么?(2)解分式方程的基本思路怎样?具体做法如何?(3)如何对分式方程进行检验?尝试练习:下列方程中,哪些是分式方程?哪些整式方程(1)32y x=(2)32x x-=π(3)()11x xx-=-(4)2131xxx++=(5)223x x-=(6)()1x ya ba b+=、为已知数分式方程有:()整式方程有:()二、精讲点拔:老师根据学生填写的情况点拨例1.请你试着解出分式方程233x x=-的解。

解:方程两边同乘最简公分母,得例2.解方程31 (1)(2)1xx x x=--+-注意:写出解分式方程的步骤,为什么要检验,上题出现了什么情况?你是怎样认为的?三、课堂小结:1.本节课的收获有:2.本节课你不会做的题有:四、当堂检测(1)1223x x=+(2)21133x xx x=+++五、课后作业:必做题1.解关于x 的方程311x m x x -=--无解,则常数 m 的值等于( ) A. -2 B.-1 C. 1 D. 22.解方程:(1)22411x x =--; (2)2242141x x =--;(3)32122x x x选做题 1.若关于x 的方程2413x x a x -+=-无解,求 a 的值.2.设23,111x A B x x ==+--,当x 为何值时,A 与B 的值相等?3.解方程(1)22510x x x x -=+- (2)224124x x x -+=+-(3)33122xx x(4)31523162x x七、课后反思。

15.3 分式方程 导学案

15.3 分式方程 导学案

第十一课时 15.3 分式方程(1)【学习目标】1.了解分式方程的概念.2.会用去分母的方法解可化为一元一次方程的简单的分式方程,体会化归思想和程序化思想. 3.了解解分式方程根需要进行检验的原因. 【学习重点】利用去分母的方法解分式方程 【学习难点】产生增根的原因.一、学前准备1、前面我们已经学习了哪些方程?是怎样的方程?如何求解?(1)前面我们已经学过了 方程。

(2)一元一次方程是 方程。

(3)一元一次方程解法 步骤是:①去 ;②去____;③移项;④合并 ;⑤_____化为12、解方程:163242=--+x x二、探索思考探究(一):1、一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流100千米所用时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多2、 仔细观察这个方程,未知数的位置有什么特点?3、方程 与上面的方程有什么共同特征?4、分式方程的概念:【练习一】下列式子中,属于分式方程的是 ,属于整式方程的是 (填序号).探索(二) 1、你能试着解分式方程探索(一)列出的方程及以下方程吗? (1)v v -=+30603090 (2)275-=x x (3)1132-=+x x2、思考:(1)如何把分式方程转化为我们会解的整式方程呢? (2)怎样去分母?(3)这样做的依据是什么?三、典例分析【例】解下列分式方程 (1)2510512-=-x x (2)13321++=+x x x x (3) 23112-+=--x x x x【例题反思】1、解分式方程为什么要检验? 2、解分式方程的一般步骤:① ;② ③ ;④ 四、当堂反馈 解方程:(1)3221+=x x (2)14122-=-x x (3)()531222x x x x -=--(4)01522=--+x x x x (5)2324111x x x +=+-- (6)23132--=--xx x五、学习反思1、学习目标完成情况反思:2、 错题原因分析:21133=+++x x x x 21211023525==+--x x x x ;;第十二课时 15.3 分式方程(2)【学习目标】1.会解较复杂的分式方程和较简单的含有字母系数的分式方程. 2.能够列分式方程解决简单的实际问题.3.通过学习分式方程的解法,体会转化的数学思想.【学习重点】解分式方程,列分式方程解决简单的实际问题. 【学习难点】解含有字母系数的分式方程. 一、学前准备1、 整式方程与分式方程的区别在哪里?________________________________________________________.2、解分式方程的步骤是什么?(1)___________________;(2)___________________(3)____________________.(4) 3、解分式方程 ⑴11122x x =-- ⑵ 63041x x -=+- (3)()()31112x x x x -=--+二、探索思考探索(一)1、两个工程队共同参与一项筑路工程,甲队单独施工1个月完成总工程的二分之一,这时增加了乙队,两队又共同工作了半个月,总工程全部完成,哪个队的施工速度快?(1)填右表 (2)等量关系:(3)设未知数,据等量关系列出方程并解答【练习一】 某车间有甲、乙两个小组,甲组的工作效率比乙组工作效率高25%,因此甲组加工2 000个零件 所用的时间比乙组加工1 800个零件所用的时间少半小时,问甲、乙两组每小时各加工多少个零件?【例】 解关于x 的方程 ≠【练习二】 解关于x 的方程 ≠ ≠四、当堂反馈1、若x =2是关于x 的分式方程2372a x x+=的解,则a 的值为 2、解方程 ①2373226x x +=++ ②2512552x x x +=+- ③1637222-=-++x x x x x3、(1)在公式1221P P V V =中,20P ≠,求出表示2V 的公式 (2)在公式12111RR R =+中,1R R ≠,求出表示2R 的公式4、要在规定的日期内加工一批机器零件,如果甲单独做,恰好在规定的日期内完成,如果乙单独做, 则要超过规定如期3天才能完成,现甲、乙两人合作2天后,再由乙单独做,正好按期完成,问规定的日期是多少天?五、学习反思1、学习目标完成情况反思:2、 错题原因分析:工作效率 工作时间 工作量甲队乙队x111+=.-a b b x a()001-=+mn m n x x ().第十三课时 15.3 分式方程(3)【学习目标】列分式方程解决实际问题【学习重点】列分式方程解决实际问题【学习难点】找实际问题中的数量关系及等量关系一、学前准备1、甲、乙两地相距19千米,某人从甲地去乙地,先步行7千米,然后改骑自行车,共用了2小时到达乙地,已知这个人骑自行车的速度是步行速度的4倍,求步行的速度和骑自行车的速度.2、列分式方程解应用题的一般步骤是什么?(1);(2)(3)(4)(5)二、探索思考探索(一)某次列车平均提速v km/h.用相同的时间,列车提速前行驶s km,提速后比提速前多行驶60 km,提速前列车的平均速度为多少?(1)这个问题中的已知量有、、,未知量是、(2)等量关系:(3)设未知数,据等量关系列出方程并尝试解答【练习一】八年级学生去距学校s km的博物馆参观,一部分学生骑自行车先走,过了t min后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是学生骑车速度的2倍,求学生骑车的速度.【例】一个圆柱形容器的容积为Vm3,开始用一根小水管向容器内注水,水面高度达到容器高度一半后,改用口径为小水管2倍的大水管注水,向容器中注满水的全过程共用时间t min. 求两根水管各自的注水速度。

新人教版初中数学八年级上册《第十五章分式:15.3分式方程》优课导学案_0

新人教版初中数学八年级上册《第十五章分式:15.3分式方程》优课导学案_0
情感态度
通过转化思想的渗透以及转化时产生无解的原因,让学生感受到全面分析、整体思考的积极性情感
重点
正确、完整的解可化为一元一次方程的分式方程
难点
检验分式方程解的原因
问题与活动设计
【定向自学】
【探究1】
问题一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速航行100千米所用的时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?
【判断】下列各式哪些是分式方程:_______________________
(1) (2) (3)
(4) (5) (6)
【交流互学】
【探究2】尝试解分式方程:
【归纳2】基本思路,将分式方程化为____________,具体做法:去分母——方程两边同乘____________。
【探究3】解分式方程:
A.1B.3 C.-1D.-3
3.方程 的解是( )
A. =1 B. =-1 C. = D. =2
4.解下列方程
(1) (2)
5.若关于x的方程 无解,试确定m的值
归纳
总结
本节课我学习的知识是:
我获得数学思想或方法:
我还有疑问的是
作业
布置
教科书习题15.3第1(1)~(4)题
课后
反思
本节课是在学生已经学习了整式方程,特别是含有分母的一元一次方程的基础上,进一步认识分式方程(未知数在分母中),并探讨分式方程的解法。反思本节课的教学,有以下几点值得肯定:
问题:x=5代入原分式方程检验,发现分母为0,分式无意义,x=5是分式方程的解吗?__________
生展开讨论,充分讨论交流分式方程无解的原因,以及怎样检验
【归纳3】1、产生的原因:分式方程两边同乘以一个零因式后,所得的解是整式方程的解,而不是分式方程的解.

八年级数学上册 15.3 分式方程导学案(新版)新人教版

八年级数学上册 15.3 分式方程导学案(新版)新人教版

八年级数学上册 15.3 分式方程导学案(新版)新人教版1、了解分式方程的概念;2、掌握分式方程的解法,会运用转化思想将分式方程转化为整式方程。

学教重点、难点:掌握分式方程的解法、学教过程:一、温故知新:1、归纳分式方程的定义:_______________________________ ____的方程叫分式方程。

2、巩固练习:下列方程中是分式方程的有____________________(填序号)①2x=1 ② ③ ④⑤ ⑥ ⑦ ⑧3、如何将分式方程①转化为整式方程?方程两边同时乘以最简公分母约去分母得解这个整式方程得检验:、归纳:上述解方程的实质是将分式方程转化为整式方程来解,通常是在分式方程两边同时乘以最简公分母、二、看懂例题,大胆尝试1、解方程①=; ②=、2、归纳解分式方程的一般步骤:、解方程: =讨论:方程=去分母后所得整式方程的解却不是方程的解呢?归纳:(1)将分式方程变形为整式方程时,方程两边同乘以一个含有未知数的整式,并约去分母,有可能产生不适合原方程的解(或根),这种根通常称为增根、(2)解分式方程时,去分母后所得整式方程的解有可能使原方程中分母为0,因此应检验:将整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解、值、三、基础演练1、下列方程:①=5; ② ; ③x+3=; ④=中是分式方程的有、2、分式方程=的解是、3、当x= 时,分式的值是1、4、设A=,B=+1,当x= 时,A与B的值相等、5、解方程:① =+1 ②-=06、当a取什么值时,方程的解是负数?一、学习目标会列出分式方程解决简单的实际问题,并能根据实际问题的意义检验所得的结果是否合理、二、学习重难点1、重点:如何结合实际分析问题,找出等量关系,列出分式方程2、难点:分析过程,得到等量关系三、知识储备:1、寻找实际问题中等量关系2、会解分式方程四、学习过程:1、一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用的时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?分析:设江水的流速为v 千米/时,填空轮船顺流航行的速度为千米/时,逆流航行的速度为千米/时,顺流航行100千米所用的时间为小时,逆流航行60千米所用的时间为小时。

八年级数学上册 15.3 分式方程导学案3(新版)新人教版

八年级数学上册 15.3 分式方程导学案3(新版)新人教版

八年级数学上册 15.3 分式方程导学案3(新版)新人教版15、3 分式方程学习目标1、使学生会解简单的字母系数的分式方程。

2、能应用分式方程的解法进行简单的公式变形。

3、正确分析实际问题中的数量关系、找准等量关系,进而列出分式方程。

学习重点:会解含字母系数的分式方程学习难点:明确解含哪一个字母(未知数)的分式方程学前准备:1、解关于x的方程:(1)(2)2、速度、距离、时间三者之间的关系导入:一、自主学习,合作交流例、从2004年5月起某列车平均提速v千米/时,用相同的时间,列车提速前行驶s千米,提速后比提速前多行驶50千米,提速前列车的平均速度为多少?分析:这里的字母v,s表示已知数据,设提速前列车的平均速度为x千米/时,先考虑下面的填空:提速前列车行驶s千米所用时间为小时,提速后列车的平均速度为千米/时,提速后列车运行(s+50)千米所用时间为小时、根据行驶时间的等量关系可以列出方程、二、精讲点拨根据学生交流的情况教师给予点拨跟踪练习:甲、乙两地相距19千米,某人从甲地去乙地,先步行7千米,然后改骑自行车,共用了2小时到达乙地,已知这个人骑自行车的速度是步行速度的4倍,求步行的速度和骑自行车的速度。

三、课堂检测1、解方程:(1)(2)纠错栏2、张明4小时清点完一批图书的一半,李强加入清点另一半图书的工作,两人合作1小时清点完另一半图书,如果李强单独清点这批图书需要几小时?四、课堂小结:1、本节课的收获有:2、本节课你不会做的题有:五、课后作业:必做题1、解方程(1)(2)2、甲、乙两人分别从距目的地6千米和10千米的两地同时出发,甲、乙的速度比是3:4,结果甲比乙提前20分到达目的地、求甲、乙的速度?选做题1、一个圆柱形容器的容积为V立方米,开始用一根小水管向容器内注水,水面高度达到容器高度一半后,改用一根口径为小水管2倍的大水管注水,向容器中注满水的全过程共用时间t 分,求两根水管各自的注水速度。

新人教版八年级数学上册15.3分式方程导学案

新人教版八年级数学上册15.3分式方程导学案

新人教版八年级数学上册15.3分式方程导学案
学习目标
1.理解分式方程的概念和分式方程产生无解的原因.
2.掌握分式方程的解法,会解可化为一元一次方程的分式方程.(体会化归思想)
3.体会数学学习带来的快乐.
学习重难点:解分式方程
心灵寄语:与其羡慕别人优秀,不如让自己比别人更优秀!
学习过程:
一、创设情境,导入新课
一艘轮船在静水中的最大航速为30 km/h,它沿江以最大航速顺流航行90 km 所用时间,与以最大航速逆流航行60 km 所用时间相等,江水的流速为多少?
二 合作交流,探究新知
1 分式方程的概念 分母中含有未知数的方程叫做分式方程.如: 对比:分母里不含有未知数的方程叫做整式方程.如:3x+1=0,2x-3y=1等。

2 概念应用
下列方程中,哪些是整式方程,哪些是分式方程?
例:解分式方程:
思考:分式方程无解的原因?
v
v -=+306030
90
v v -=+306030902110.x 5x 25=--
三、巩固提高:
1. 解分式方程:
2.的解是中考)分式方程金华12
-x 1(=⋅ 3.211(=-++⋅x
x x x 中考)解方程:嘉兴
四、小结与作业:
1、解分式方程的步骤:通过去分母把分式方程化为 然后再解这个整式方程?最后一定要记得检验,这个解是否是这个分式方程的解。

2、作业:练习册
五、教学反思:
1、本节课你有哪些收获?
2、预习时的疑难问题解决了吗?你还有哪些疑惑?
015)4(1412)3(13321)2(3
221)1(222=--+-=-++=++=x x x x x x x x x x x x。

八年级数学上册 15.3 分式方程导学案4(新版)新人教版

八年级数学上册 15.3 分式方程导学案4(新版)新人教版

八年级数学上册 15.3 分式方程导学案4(新版)新人教版一、温故知新:1、一项工程,若甲单独做m天完成,乙单独做n天完成,则甲、乙合做每天可完成此项工程___________,甲、乙合做完成此项工程需要_______天、2、某车间要制造a个零件,原计划每天制造x个,需要______天才能完成;若每天多制造b个,则可提前天完成。

3、今年6月1日起,国家实施了中央财政补贴条例支持高效节能电器的推广使用,某款定速空调在条列实施后,每购买一台,客户可获财政补贴200元,若同样用1万元所购买的此款空调台数,条例实施后比条例实施前多10%,则条例实施前此款空调的售价为元。

4、甲、乙两班学生植树造林,已知甲班每天比乙班多植5棵树,甲班植80•棵树所用的天数与乙班植70棵树所用的天数相等,若设甲班每天植树x棵,•则根据题意列出方程是、问题梳理区学习导航二、探索新知:5、A、B两地相距48千米、一艘轮船从A地顺流航行至B地,又立即从B地逆流返回A地,共用去9小时、已知水流速度为4千米/时,若设该轮船在静水中的速度为x千米/时,则可列方程。

6、小张和小王同时从学校出发去距离15千米的野营地,小张比小王每小时多走1千米,结果比小王早到半小时,设小王每小时走x千米。

则可列方程为。

7、为保证达万高速公路在xx年底全线顺利通车,某路段规定在若干天内完成修建任务、已知甲队单独完成这项工程比规定时间多用10天,乙队单独完成这项工程比规定时间多用40天,如果甲、乙两队合作,可比规定时间提前14天完成任务、若设规定的时间为x天,由题意列出的方程是。

三、运用新知:我部队到某桥头阻击敌人,出发时敌军离桥头24千米,我部队离桥头30千米,我部队急行军速度是敌人的1、5倍,结果比敌人提前48分钟到达,求我部队急行军的速度。

甲、乙两地相距360千米,一辆贩毒车从甲地前往乙地接头取货,警方获取情报后,立即组织干警从甲地出发前往乙地缉拿这伙犯罪分子,结果警车与贩毒车同时到达,警方迅速将犯罪分子一网打尽。

八年级上册数学15.3 分式方程及其解法导学案

八年级上册数学15.3 分式方程及其解法导学案

15.3分式方程第1课时分式方程及其解法一、新课导入1.导入课题:前面我们探讨了分式的有关性质及其运算,在分式的研究中,还有一个重要的内容就是分式方程,今天我们一起走进分式方程.2.学习目标:(1)知道分式方程的概念,(2)会解分式方程.3.学习重、难点:重点:分式方程及其解法.难点:分式方程产生增根的原因.二、分层学习1.自学指导:(1)自学内容:教材第149页到第150页的内容.(2)自学时间:5分钟.(3)自学方法:对照自学提纲,认真阅读课本.重点词句或不理解的地方做上记号.(4)自学参考提纲:①什么样的方程叫分式方程?分母中含有未知数的方程叫分式方程.②解分式方程的基本思路是什么?将分式方程化为整式方程.③将分式方程化成整式方程的关键步骤是什么?去分母,即方程两边乘最简公分母.2.自学:请同学们结合自学指导进行自学.3.助学:(1)师助生:①明了学情:了解学生是否认识分式方程的特点和分式方程的解法.②差异指导:指导个别学生正确找出最简公分母.(2)生助生:学生之间相互交流帮助.4.强化:(1)判断分式方程的方法是:看分母是否含有未知数.(2)分式方程的关键步骤是去分母,难点是找最简公分母.(3)下列方程哪些是分式方程?④⑤.(4)指出下列方程中各分母的最简分母,并写出去分母后得到的整式方程.解:①最简公分母2x(x+3),去分母得x+3=4x;②最简公分母x2-1,去分母,得2(x+1)=4;③最简公分母3x+3,去分母,得3x=2x+3x+3.1.自学指导:(1)自学内容:教材第150页“思考”到第151页的内容. (2)自学时间:8分钟.(3)自学方法:认真阅读课本,思考去分母后化成的整式方程的解,为什么有的是原分式方程的解,有的不是?对照课本中的例子想想理由.归纳解分式方程的基本步骤.(4)自学参考提纲:①说说为什么解分式方程一定要检验?因为得到的解可能会导致最简公分母为0,即分母为0. ②说说解分式方程的检验方法.将整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解③解分式方程的一般有哪些步骤? 去分母,解整式方程,检验.④某生在解例2时去分母得x(x+2)-1=3,你认为他错在哪里? 漏乘了最简公分母. ⑤试解方程23511x x =--; 解:去分母,得3(x+1)=5 x=53-1=23检验:当x=23时,(x+1)(x-1)≠0, 所以,原分式方程的解为x=23.32122x x x =--- 解:去分母,得2x=3-2(2x-2) 去括号得2x=3-4x+4 移项6x=7 系数化为1,x=76检验:当x=76时,2(x-1)≠0. 所以原分式方程的解为x=762.自学:同学们结合自学指导进行自学.3.助学: (1)师助生:①明了学情:观察学生在解分式方程过程中易产生错误的环节或步骤.②差异指导:对学生出现的错误进行分类指导. (2)生助生:交流提纲④,对⑤互相批改、纠错. 4.强化:(1)解分式方程的一般步骤. (2)分式方程的验根方法. (3)分式方程无解的条件.检验:当x=1时,4x2-1=0,2因此x=1不是原分式方程的解.2所以,原分式方程无解.三、评价1.学生的自我评价(围绕三维目标):学生代表交流自己的学习收获和学后体验.2.教师对学生的评价:(1)表现性评价:对学生的学习态度、情感、方法、成果及不足进行归纳点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):在本课的教学过程中,应从这样的几个方面入手:(1)分式方程和整式方程的区别:分清楚分式方程必须满足的两个条件:①方程式里必须有分式,②分母中含有未知数.这两个条件是判断一个方程是否为分式方程的必要条件.同时,由于分母中含有未知数,所以将其转化为整式方程后求出的解就应使每一个分式有意义,否则,这个根就是原方程的增根.正是由于分式方程与整式方程的区别,在解分式方程时必须进行检验.(2)分式方程和整式方程的联系:分式方程通过方程两边都乘以最简公分母,约去分母,就可以转化为整式方程来解,教学时应充分渗透这种化归思想.(3)解分式方程时,如果分母是多项式,应先写出将分母进行因式分解的步骤,从而让学生准确无误地找出最简公分母.另外,对分式方程可能产生增根的原因,要启发学生认真思考和讨论.一、基础巩固(每题10分,共60分)1.下列式子是分式方程的是(C)2.把分式方程两边同乘(x-1),约去分母后,得(D)3.分式方程的解是(D)D.无解A.x=1B.x =-1C.x=-14解:(1)去分母,3x-6+4(x+2)=16去括号,合并同类项7x=14系数化为1,x=2检验:当x=2时,(x+2)(x-2)=0,因此x=2不是原分式方程的解.所以,原分式方程无解.(2)去分母得,(x+1)(x+2)=x(x+4)去括号,合并同类项,得3x+2=4x移项,x=2检验:当x=2时,x(2+x)≠0,所以,原分式方程的解为x=2.二、综合应用(20分)7.已知关于x的方程有增根,求该方程的增根和k的值.解:去分母,得3x+3-(x-1)=x2+kx,整理,得x2+(k-2)x-4=0.因为有增根,所以增根为x=0或x=1.当x=0时,代入方程得-4=0,所以x=0不是方程的增根;当x=1时,代入方程,得k=5,所以k=5时方程有增根x=1.三、拓展延伸(20分)8.解方程:。

【最新】人教版八年级数学上册《15.3分式方程(3)》导学案

【最新】人教版八年级数学上册《15.3分式方程(3)》导学案

【最新】人教版八年级数学上册《15.3分式方程(3)》导学案新人教版八年级数学上册《15.3分式方程(3)》导学案学教目标:1.能进行简单的公式变形2.熟练解分式方程学教重点:解分式方程学教难点:进行公式变形学教过程:温故知新:填空:⒈方程2101x x-=-的解是⒉当x = 时,424x x --的值与54x x --的值相等⒊已知x =3是方程112x a -=-的解。

则a = ⒋如果关于x 的方程7766x m x x--=--有增根,则增根为,m 的值为。

⒌下列关于x 的方程①153x -= ②144x x =- ③313x x -=- ④11x a b =-中是分式方程的是(填序号)。

()6分式方程41322x x-=++的解是() A .x =-2 B .x =2 C .x =1 D .x =-1 7将方程243211x x x -=-++去分母化简后得到的方程是 A .2230x x --= B .2250x x --= C .230x -= D .250x -= 8分式方程()2933x x x x x =+--出现增根,那么增根一定是 A .0 B .3 C .0或3 D .19对于分式方程3233x x x =+--有以下几种说法:①最简公分母为()23x -;②转化为整式方程23x =+,解得5x =;③原方程的解为3x =;④原方程无解,其中正确的说法的个数为()A .4个B .3个C .2个D .1个10下列分式方程去分母后所得结果正确的是()A .12111x x x +=--+ 解:()()1121x x x +=-+- B .512552x x x+=-- 解:525x x +=- C .222242x x x x x x -+-=+-- 解:()()2222x x x x --+=+D .2131x x =+- 解:()213x x -=+二、学教互动:(1)在公式12111R R R =+中,1R R ≠,求出表示2R 的公式(2)在公式1221P P V V =中,20P ≠,求出表示2V 的公式三、随堂练习:⑴已知r R S n += (S R ≠),求n ;⑵已知m a e m a -=+(1e ≠-),求a ;⑶已知RV S U V =-(0R S +≠),求V (4)在公式10V V gt =-中,已知0V 、1V 、g ≠0求t(5)若分式3254x x +-的值为1,则x 等于四、反馈检测解方程:(1)63041x x -=+- (2)2536111x x x -=+--(3)已知RV S U V =-(0R S +≠),求u (4)已知31x y x -=-,试用含y 的代数式表示x =5、小结与反思:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

15.3分式方程(2)导学案
授课教师:艾山江·托乎提授课教材:八年级上册授课时间:2014年12月17日
一、教学目标:
(一)知识和技能:
1、了解解分式方程的基本思路和解法。

2、理解分式方程的意义,解分式方程时可能无解的原因。

3、掌握解分式方程的验根方法。

(二)过程和方法:
经历“实际问题——分式方程——整式方程”的过程,渗透数学的转化思想,培养学生分析问题解决问题的能力。

(三)情感态度和价值观:在活动中培养学生乐于探究、合作学习的习惯,体会数学的应用价值。

学教重点:会解可化为一元一次方程的分式方程,会检验一个数是不是原方程的根。

学教难点:会解可化为一元一次方程的分式方程,会检验一个数是不是原方程的根。

二、教学过程:
(一)复习引入:
【1】什么是分式方程?整式方程和分式方程的区别?
【2】解一元一次方程解法步骤是什么?
【3
】解方程①1
6
3
2
4
2
=
-
-
+x
x
;②;
(二)讲授新课:
【合作学习探索新知】
思考1:怎样才能解
v
v-
=
+20
60
20
100
;5
1
-
x
=
25
10
2-
x这两个方程呢?
思考2:怎样检验这个整式方程的解是不是原分式的解?
将整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解,否则这个解就不是原分式方程的解。

【讲解例题】
6
2
3
-
=
x
x
(三)课堂训练:
4、课本第152页练习①,②
(四)课堂小结:
通过本课时的学习,需要我们
1、理解分式方程的概念和分式方程产生无解的原因 ,
会辨别整式方程与分式方程。

2、掌握分式方程的解法,会解可化为一元一次方程的分式方程 。

解分式方程的一般步骤:
①去分母,将分式方程转化为整式方程;
②解整式方程; ③验根作答。

(五)布置作业:
1、p 154习题15.3第1题。

2、小练习册。

课堂小测(约5分钟)
331112211221--==++---x x x x x x ();().。

相关文档
最新文档