数学竞赛辅导训练

合集下载

五年级数学竞赛辅导试题集

五年级数学竞赛辅导试题集

人教版五年级上册数学竞赛辅导试题学校: 班级: 姓名: 得分:1、0.01+0.02+0.03+……+0.97+0.98+0.99=( )2、甲乙两数的差是0.09,甲数的小数点向右移动一位则与乙数相等,甲数是( ),乙数是( )。

3、李军把80×(△+9)当成80×△+9来算了,得到的得数与正确答案相差( )。

4、一根绳子长6.96米,对折4次,平均每段长( )米。

5、甲、乙、丙三个数,甲乙两数的和是200,乙丙两数的和是140,甲丙两数的和是180,甲数是乙数的1.5倍,是丙数的2倍,甲乙丙三个数各是:甲=( )乙=( )丙=( )。

6、学校组织的体检活动中,参加体检的360名学生按照站队的顺序从前至后1、2、3、4、5、6、7、8依次报数。

凡是报1的同学分在1组,报2的同学就分在第2组……凡是报8的同学就分在第8组。

林林排在258位,他将被分到第( )组。

7、甲、乙、丙三数之和是183,乙比丙的2倍少4,甲比丙的3倍多7,那么甲=( ) 乙=( )丙=( )。

8、甲、乙两仓共存粮89吨,如果甲仓再运进16吨,乙仓运出10吨,那么甲仓比乙仓还少1吨,两仓原来各存粮多少吨?甲=( )吨,乙=( )吨9、工厂仓库里有17个车轮,能组装( )自行车和( )三轮车。

10、已知一个三位数,各位上数字之和是24,这样的三位数一共有( )个。

11、有5个连续偶数,中间一个数为m ,这5个数的和是( )。

12、甲厂人数比乙厂少540人,若从两厂各调走600人,乙厂人数恰好是甲厂人数的4倍,甲厂原来有( )人。

13、爸爸比儿子大27岁,妈妈比儿子大24岁,爸爸与妈妈的年龄和是93岁,儿子的年龄是( )岁。

14、把1400元奖学金按照两种奖项给22名学生,其中一等奖每人200元,二等奖每人50元,获得一等奖的学生有( )人。

15、一个三角形的底是3米,如果底延长1米,那么三角形的面积就增加1.2平方米。

九年级数学竞赛辅导系列 讲座一 数练习试题

九年级数学竞赛辅导系列 讲座一 数练习试题

轧东卡州北占业市传业学校数学竞赛辅导系列讲座一 —数1、 计算:1111(12)(123)(12320)2320+++++++++++.2、 如果5555555555555554444666666233322n ++++++++⨯=+++,那么n=_______. 3、 HY 训基地购置苹果慰问学员,苹果总数用八进制表示为abc ,七进制表示为cba ,那么苹果总数用十进制表示为_______.4、 实数a 满足|2012|2013a a a --=,那么a -20212的值是〔 〕A 、2021B 、2012C 、2021D 、20215、设分数13(13)56n n n -≠+不是最简分数,那么正整数n 的最小值可以是〔 〕A 、84B 、68C 、45D 、1156、数272-1能被500与600之间的假设干整数整除,试找出三个这样的整数,它们是________. 7、n 是自然数,19n+14与10n+3都是某个不等于1的自然数d 的倍数,那么d=________. 8、设71a=,那么3a 3+12a 2-6a -12=〔 〕A 、24B 、25C 、10D 、129、a 、b 是正整数,且满足2⎛⎝是整数,那么这样的有序数对〔a ,b 〕共有____对. 10、设n 是大于1909的正整数,使得19092009n n--为完全平方数的n 的个数有〔〕个A 、3B 、4C 、5D 、611、设a n 表示数n 4的末位数,那么a 1+a 2+…+a 2021=________.12、如果对于某一特定范围内x 的任意允许值,p=|1-2x|+|1-3x|+…+|1-10x|为定值,那么定值为〔 〕A 、2B 、3C 、4D 、513、假设1,2,3xy yz zxx y y z z x===+++,那么x=______. 14、试求|x -1|+|x -2|+|x -3|+…+|x -2021|的最小值.15、p 、q 均为素数,且满足5p 2+3q=59,那么以p+3,1-p+q ,2p+q -4为边长的三角形是〔 〕A 、锐角三角形B 、直角三角形C 、钝角三角形D 、等腰三角形16、假设x 1、x 2 、x 3 、x 4 、x 5为互不相等的正奇数,满足(2005-x 1)(2005-x 2)(2005-x 3)(2005-x 4)(2005-x 5)=242,那么x 12+x 22+x 32+x 42+x 52的末尾数字是〔 〕A 、1B 、3C 、5D 、717、在数1、2、3、…、2021、2021前面任意添加上“+〞或“-〞进行计算,所得可能的最小非负数是________.18、设a 、b 、c 为实数,2222,2,2362xa b y b c z c a πππ=-+=-+=-+,x 、y 、z 中至少有一个值〔 〕A 、大于0B 、等于0C 、不大于0D 、小于019、今天是星期日,假设明天算第1天,那么第13+23+…+20213天是星期_____.20、()()()⎪⎭⎫⎝⎛++⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+++++=201313121201321.11)(2f f f f f f x x f 则=.21、四个互不相等的正数x、y、m、n中,x最小,n最大,且x:y=m:n,试比较x+n与y+m的大小,并证明你的结论.2210099++23、设x>0,y>0=的值.2425、设a、b、c为有理数.26=0<x<y,那么满足上述等式的整数对(x,y)的个数有多少?27、设11980100S=++++[S]表示不超过S的最大整数,试求S.28、x、y是整数,并且13|(9x+10y),求证:13|(4x+3y).29、假设a、b是整数,且7|(a+b),7|(2a-b),求证:7|(5a+2b).30、正整数p、q都大于1,且2121,p qq p--都是整数,求p+q.31、当n是正整数时,n4-6n2+25是质数还是合数?证明你的结论.32、a是自然数,问a4-3a2+9是质数还是合数?证明你的结论.33、试求出一个四位数,它是一个完全平方数,并且它的前两位数字相同,后两位数字也相同.34、设a、b、c、d是正整数,并且a2+b2=c2+d2,证明a+b+c+d一定是合数.35、你能找到三个正整数a、b、c,使得关系式(a+b+c)(a-b+c)(a+b-c)(b+c-a)=3388成立吗?如果能找到,请举一例;如果找不到,请说明理由.36、一个正整数a,假设将其数字重新排列,可得到一个新的正整数b,如果a恰好是b的3倍,我们称a 是一个“希望数〞.〔1〕请你举例:“希望数〞一定存在;〔2〕请你证明:如果a 、b 都是“希望数〞,那么ab 一定是729的倍数.37、将自然数1、2、3、…、21这21个数,任意地放在一个圆周上,证明:一定有相邻的三个数,它们的和不小于33.38、设x =a 是x 的小数局部,b 是-x 的小数局部,求333ab ab ++的值.39、设a 、b 都是整数,求证:a ,b ,a 2+b 2,a 2-b 2中一定有一个被5整除.40、假设一个数能够表示成2222xxy y ++(x ,y 是整数)的形式,那么称该数为“好数〞〔1〕试判断29是否为好数; 〔2〕写出80,81,…,100中的好数; 〔3〕如果m ,n 都是好数,证明mn 也是好数.41、有三堆小石子的个数分别是19、8、9,现在进行如下的操作:每次从三堆中的任意两堆中取出1个石子,然后把这两个石子都加到另一堆中,试问能否进过假设干次这样的操作后,使得〔1〕三堆的石子数分别是2、12、22? 〔2〕三堆的石子数都是12?如能到达要求,请用最小的操作次数完成它,如不能到达,请说明理由.注:每次操作可用如下方式表示,比方从第一、二堆中各取出一个石子,加到第三堆上,可表示为〔19,8,9〕→〔18,7,11〕等等.42为无理数.43、p 为大于3的质数,证明p 的平方被24除的余数是1.44、M 是一个四位的完全平方数,假设将M 的千位数字减少3而各位数字增加3可以得到另一个完全平方数,那么M=_________.45、在“□1□2□3□4□5□6□7□8□9”的小方格中填上“+〞或“-〞号,如果可以使其代数和为n ,就称数n 是“可被表出的数〞,否那么,就称数n 是“不可被表出的数〞〔如1是可被表出的数,这是因为1+2-3-4+5+6-7-8+9是1的一种可被表出的方法〕. 〔1〕求证:7是可被表出的数,而8是不可被表出的数; 〔2〕求25可被表出的不同方法种数.46、是否存在:用0,1,2,…,9这十个数字组成几个数,使它们的和恰好为100,每个数字都用一次并且只能用一次.47、设〔x 〕表示不超过实数x 的最大整数.那么在平面直角坐标系xoy 中满足〔x 〕〔y 〕=2021的所有点〔x ,y 〕组成的图形的面积 . 48、201321,,,a a a 是一列互不相等的正整数.假设任意改变这2021个数的顺序,并201321,b,,b b 记为.那么数()()()201320132211b a b a b a M ---= 的值必为 .49、〔1〕证明:由2021个1和0组成的自然数不是完全平方数;〔2〕试说明:存在最左边2021位都是1的形如11…1﹡﹡…﹡的自然数〔﹡代表阿拉伯数码〕是完全平方数.。

数学竞赛专题训练精选100题及答案

数学竞赛专题训练精选100题及答案

数学竞赛专题训练精选100题及答案题目1:整数方程设a和b是满足以下方程的整数:5a+3b=25。

求a和b的所有整数解。

题目2:几何题在直角三角形XYZ中,∠Z为直角,XY=10,XZ=6。

点W是边XZ上的一个点,使得ZW=8。

求∠XWY的大小。

题目3:排列组合有8个不同的水果和4个不同的盘子,你打算将这些水果放在这些盘子中。

每个盘子至少有一个水果,一共有多少种不同的分配方式?题目4:函数问题考虑函数g(x)=x^4-4x^3+6x^2-4x+1。

求g(x)的最小值以及对应的x值。

题目5:概率题一枚硬币被抛掷3次。

计算至少2次出现正面的概率。

题目6:代数方程解方程:2x^2-5x-12=0。

题目7:几何问题在平面上,有一个正方形ABCD,边长为6。

点E在边AB上,离点A的距离为2。

点F在边BC上,离点B的距离为3。

求线段EF的长度。

题目8:概率问题一副扑克牌中随机抽取5张牌,计算至少有一对的概率。

题目9:代数方程解方程:3(x-2)=5(x+1)。

题目10:几何问题在直角三角形PQR中,∠R为直角,PQ=12,PR=15。

点S是边PQ上的一个点,使得QS= 8。

求∠PSR的大小。

题目11:整数方程设m和n是满足以下方程的整数:4m+7n=38。

求m和n的所有整数解。

题目12:几何题在平行四边形ABCD中,AB=8,BC=6,∠A=120°。

求BD的长度。

题目13:排列组合有10个不同的音乐家,其中有5位小提琴手和5位钢琴家。

你打算在一排座位上让他们坐下,要求相邻的座位上不能坐同一种乐器的音乐家。

一共有多少不同的座位安排方式?题目14:函数问题考虑函数h(x)=x^2-6x+9。

求h(x)的最小值以及对应的x值。

题目15:概率题一副扑克牌中随机抽取7张牌,计算至少有两张牌相同点数的概率。

题目16:代数方程解方程:2(x+3)=4(x-1)。

题目17:几何问题在等腰三角形MNO中,∠N=∠O,NO=10,MN=6。

人教版下册三年级数学期末复习试卷竞赛培优训练易错提高练习题经典题目含答案

人教版下册三年级数学期末复习试卷竞赛培优训练易错提高练习题经典题目含答案

人教版下册三年级数学期末复习试卷竞赛培优训练易错提高练习题经典题目含答案一、三年级数学竞赛训练1.一根长30厘米的铁丝,可以围成_________ 种不同的长方形〔边长是整厘米数〕.2.看图填数2800 克1600 克3・如图,需需家的菜园是一个山4块正方形的菜地和1个小长方形的水池组成20平方米且菜园的长为9米,那么菜园中水池〔图中阴影局部〕的周长是________ 米.4・甲、乙、丙、丁获得了学校的前4名〔无并列〕,他们说:甲:“我既不是第一,也不是第二〞;乙说:“我既不是第二,也不是第—• 〞—■・• ♦丙:"我的名次和乙相邻〞;丁:"我的名次和丙相邻〞.现知道,甲、乙、丙、丁分别获得第A、B、C、D名,并且他们都是不说谎的好学生,那么四位数药= _______________ .5.如下图,从正三角形的边作一个正方形,再用与正三角形不相邻的正方形一边做一个正五边形,再从与正方形不相邻的正五边形一边作一个正六边形,继续以相同的方式再作一个正七边形,依序再作一个正八边形,这样形成了一个多边形,请问这个多边形有____________________ 个边.6.图中一共能数出正方形.7.传说,能在三叶草中找到四叶草的人,都是幸运之人.一天,佳佳在大森林中摘取三叶草,当她摘到第一颗四叶草时,发现摘到的草刚好共有100片叶子,那么,她已经有_______ 颗三叶草.8.在如图的竖式中,不同的汉字代表“0・9〞是个不同数字,该竖式成立,那么展示活动代表的四位数最小的是______ .B * n a+ 純力展示话9.____________________________________________________________ 用同样长的小棒按如下方式摆三角形.那么,摆12个三角形要__________________ 根小棒.10.6口4一3,要使商的中间有一位是0, □里可以填_________ .〔儿种情况填写完整〕11.动物园的饲养员把一堆桃子分给假设干只猴子,如果每只猴子分6个,剩57个桃子;如果每只猴子分9个,就有5只猴子一个也分不到,还有一只猴子只分到3个.那么,有〔〕个桃子.A. 216B. 324C. 273D. 30112.有四个数,它们的和是45,把第一个数加2,第二个数减2,第三个数乘2,笫四个数除以2,得到的结果都相同.那么,原来这四个数依次是〔〕A. 10, 10, 10, 10 B. 12, 8, 20, 5C. 8, 12, 5, 20D. 9, 11, 12, 1313.〔12分〕一次考试有三道题,四个好朋友考完后互相交流了成绩.发现四人各对了 3、2、1、0题.这时一个路人问:你们考的怎么样啊?甲:“我对了两道题,而且比乙对的多,丙考的不如丁. 〞乙:"我全对了,丙全错了,甲考的不如丁. 〞丙:"我对了一道,丁对了两道,乙考的不如甲.〞T:“我全对了,丙考的不如我,甲考的不如乙.〞大家都是对了儿道题就说儿句真话,那么对了2题的人是〔〕A.甲B.乙C.丙D. T14.今年小春的年龄比他哥哥的年龄小18岁,再过3年小春的年龄将是他哥哥年龄的一半,那么小春今年________ 岁.15•祖玛游戏中,龙嘴里不断吐岀很多颜色的龙珠,先4颗红珠,接着3颗黃珠,再2颗绿珠,最后1颗口珠,按此方式不断重复,从龙嘴里吐出的第2000 颗龙珠是〔〕A.红珠B.黄珠C.绿珠D.白珠16・张老师将一根木料锯成9小段,每段长43公米的小段,一共要锯_______ 次.17•观察以下四图,求出x的值.19・只许移动1根火柴棒,使等式成立—20.红星小学组织学生参加演练,一开始只有40个男生参加,后来调整队伍,每次调整减少3个男生,增加2个女生,那么调整__________ 次后男生女生人数就相等了.21.四月份共有30天,如果其中有5个星期六和星期日,那么4月1日是星期_______ .22.超市中的某种汉堡每个10元,这种汉堡最近推出了“买二送一〞的优惠活动,即花钱买两个汉堡,就可以免费获得一个汉堡,东东和朋友需要买9个汉堡,那么他们最少需要花_______ 元钱.23.张、李、王三位老师分别来自北京、上海、深圳,分别教数学、语文、英语.根据下面提供的信息,可以推出张老师来自__________ ,教_________ ;王老师来自_______ ,教_______ •①张老师不是北京人,李老师不是上海人;②北京的老师不教英语;③上海的老师教数学;④李老师不教语文.24.15张乒乓球台上同时有38人正在进行乒乓球比赛,在进行单打的球台有张,在进行双打的球台有_____ 张.25.有一个挂钟,3时敲3下,要用612时敲12下,需要用秒.26.2000 ・ 180+220 ・ 180+220 ・ 180+220 ・ 180+220 - 180+220= .27.电力公司在公路两旁埋同样多的电线杆共402根,每相邻两根之间的距离是20米.后来全部改装,只埋了 202根.改装后每相邻两根之间的距离是米.28.找规律填数:1、4、3、8、5、12、7、_______ .29.△ = 0+0+0, △+0=40,那么O= ______________ ,△= _________ .30.如图的两个竖式中,相同的字母代表相同的数字,不同的字母代表不同的数字,那么ABCD所代表的四位数是〔)ABBA E F-C D D C+ G H 1 J1 2 2 1 2 0 14A- 5240 B. 3624 C. 7362 D. 7564【参考答案】一、三年级数学竞赛训练1.解:长方形的周长=〔长+宽〕X2,长与宽的和是:304-2=15 〔厘米〕,因为 15=1 + 14=2+13 = 3+12=4+11=5+10 = 6+9 = 7+8,所以可以围成 7 种不同的长方形.答:可以围成7种不同的长方形.故答案为:7.2.解:1个苹果的质量+2个梨的质量=1600克…①,3个苹果的质量+2个梨的质量= 2800克…②,②■①可得:3・1个苹果的质量=2800 - 16002个苹果的质量=12001个苹果的质量= 600答:1个苹果的质量是600克.故答案为:600.3.解:根据分析,根据图中4块正方形和小长方形的关系,易知水池的长和宽之和为9,菜园中水池〔图中阴影局部〕的周长=2X9=18 〔米〕,故答案是:18.4.解:根据分析,甲、乙、丙、丁分别获得第q、B、C、D名,并且他们都是不说谎的好学生,A = 4, B=l, C= 2, D=3,故答案是:蹴5=4123.5.ft?: (3・1 ) + (4 ・2) + (5 ・2) + (6・2) + (7 ・2) + (8・1)=2+2+3+4+5+7=23 (条)答:这个多边形有23个边.故答案为:23.6.解:根据分析可得,8+1+4=13 (个)答:图中一共能数出13正方形.故答案为:13.7.解:(100・4)十3=964-3=32 (棵)答:她已经有了 32棵三叶草.故答案为:32.8.解:要使和最小,那么数必须为1,展必须为2,学必须为9,示为0,活动的最小值为34,经试验1956+78=2034成立,那么展示活动代表的四位数最小的是2034,故答案为2034.9.解:一个三角形需要3根小棒,2个三角形需要3+2 = 5根小棒,3个三角形需要3+2X2 = 7根小棒,• • •12个三角形需要3+2 X (12・1) =25根小棒.答:摆12个三角形要25根小棒.故答案为:25.10.解:6口4一3中,要使商的中间有一位是0,那么口<3,所以□里可以填:0、1、2.故答案为:0、1、2.11.解:依题意可知:如果每只猴子分6个,剩579个,就有5只猴子一个也分不到,还有一只猴子只分到3个证明少了 5X9+6 = 51;猴子共有〔57+51〕 4- 〔9・6〕 =36 〔只〕;桃子共有36X6+57=273.应选:C.12.解:设相同的结果为根据题意有:2x・2+2x+2+x+4x=45,解得x=5,所以原来的4个数依次是8, 12, 5, 20.13.解:全对的人不会说自己对的题少于3,故只有乙、丁可能全对.假设乙全对,那么排名是乙、丁、甲、丙,与丙所说的"丁对了 2道〞是假话相矛盾;假设丁全对,那么丙的后两句是假话,不可能是第二名,乂由丁的'‘甲考得不如乙〞能知道第二名是乙,故丙全错,甲只有'‘丙考得不如丁〞是真话,排名是丁、乙、甲、丙且4人的话没有矛盾.所以对了 2题的人是乙.应选:B.14.解:184- 〔2 ・ 1〕・ 3=18 ・ 3=15 〔岁〕答:小春今年15岁.故答案为:15.15.解:20004- 〔4+3+2+1〕= 20004-10= 200 〔组〕商是200,没有余数,说明第2000颗龙珠是200组的最后一个,是口珠.答:从龙嘴里吐出的第2000颗龙珠是白珠.应选:D.16.解:4X94-3=12 〔段〕,12 ・ 1 = 11 〔次〕,答:需要锯11次.故答案为:11.17.解:根据分析知此题的规律是:三角形是上面的数是下面左面的数扩大10 倍与下面右面数的和.45X10+15=465.故答案为:465.18.解:(144+14) 4- (3-1) +144,= 1584-2+144,= 79+144,=223,答:甲数是223.故应填:223.19.解:移动后为:故答案为:20.解:40-r (3+2)=404-5=8 (次)答:调整8次后男生女生人数就相等了.故答案为:8.21.解:4月份有30天;304-7=4 (周)・・・2 (天);余下的2天是星期六和星期日;所以4月1日是星期六.故答案为:六.22.解:94- (2+1) =3 (个)10X(94- (2+1) X2]= 10X[94-3X2]= 10X6=60 (元);答:他们最少需要花60元钱.故答案为:60.23.解:因为李老师不是上海人,上海的老师教数学,那李老师只可能教语文或英语,乂因为李老师不教语文,所以李老师教英语,李老师不是上海人,北京的老师不教英语,所以李老师是深圳人;张老师不是北京人,只能是上海人,教数学;王老师是北京人,教语文.故答案为:上海,数学,北京,语文.24.解:假设15张全是双打台,那么人数为:15X4=60 〔人〕,比人数多了 60 - 38=22 〔人〕,双打台比单打台每台多4・2=2 〔人〕,所以单打台有:224-2=11 〔张〕,那么双打台有:15・11=4 〔张〕;答:单打台有11张;双打台有4张.故答案为:11; 4.25.解:64- 〔3 ・ 1〕 X 〔12 ・ 1〕,= 64-2X11,= 3X11,=33 〔秒〕,答:需要33秒;故答案为:33.26.解:2000 ・ 180+220 ・ 180+220 ・ 180+220 - 180+220 ・ 180+220,= 2000+220X5 ・ 180X5,= 2000+ 〔220 ・ 180〕 X5,= 2000+40X5,= 2000+200,= 2200.故答案为:2200.27.解:〔402F2 ・ 1〕 X20=4000 〔米〕,2024-2=101 〔根〕,40004- 〔101 ・ 1〕 =40 〔米〕;答:改装后每相邻两根之间的距离是40米.故答案为:40.28.解:根据分析可得,12+4=16,故答案为:16.29.解:因为,△ = 0+0+0,所以,△ = 30,将 2\ = 30 代入△+0=40,30+0=40,即 40=40,0 = 10,△ = 30 = 3X10=30:故答案为:10; 30.30.解:根据左边的数字谜中,可分析出4、C是相邻的,B、D是差2的. 右边的数字谜中,显然鬲=19,假设个位没有向十位进位,那么F、丿分别是0、 4, E、/是8、3 或 6、5,但无论是哪组解都不能满足左边数字谜“A、C相邻,B、D差2〞的要求.故知右边个位向十位进位了,F+J= 14, F、J只能分别是8、6, E+/=10, E、I 只能分别是3、7,此时得到蹴5=5240.应选:A.。

数学竞赛备战与辅导安排

数学竞赛备战与辅导安排

数学竞赛备战与辅导安排一、课程目标知识目标:1. 熟练掌握数学竞赛中的基础知识和核心概念,如代数、几何、数论等;2. 了解并掌握数学竞赛中常见的解题方法和策略,提高解决问题的能力;3. 掌握数学竞赛中部分高难度题目的解题技巧,提升数学思维水平。

技能目标:1. 培养学生运用数学知识解决实际问题的能力,提高分析问题和解决问题的技巧;2. 培养学生良好的数学逻辑思维,提高数学推理和论证能力;3. 培养学生快速准确地进行数学计算和估算的能力。

情感态度价值观目标:1. 培养学生对数学学科的兴趣和热情,激发学生主动参与数学竞赛的积极性;2. 培养学生面对困难时勇于挑战、坚持不懈的精神,增强自信心;3. 培养学生良好的团队协作精神,学会与他人共同探讨、交流数学问题。

课程性质:本课程为数学竞赛备战与辅导课程,旨在提高学生的数学素养和竞赛水平。

学生特点:学生具备一定的数学基础,思维活跃,对数学竞赛有较高的兴趣和热情。

教学要求:结合学生实际情况,注重基础知识巩固与拓展,突出实用性,提高学生的数学竞赛能力。

在教学过程中,将课程目标分解为具体的学习成果,便于教学设计和评估。

二、教学内容根据课程目标,教学内容分为以下三个部分:1. 基础知识巩固- 教材章节:代数基础、几何基础、数论基础- 内容:方程与不等式、函数与图像、几何图形性质、平面几何证明、数论基本概念2. 解题方法与策略- 教材章节:解题策略、数学竞赛题型- 内容:分类讨论、转化法、构造法、排除法、特殊值法等解题策略;分析常见数学竞赛题型,如组合题、计数题、几何题等3. 高难度题目训练- 教材章节:数学竞赛难题解析- 内容:针对数学竞赛中的高难度题目进行讲解和训练,包括代数难题、几何难题、数论难题等教学进度安排:1. 基础知识巩固:4周2. 解题方法与策略:4周3. 高难度题目训练:4周在教学过程中,将根据学生实际情况调整教学内容和进度,确保教学内容与课程目标紧密结合,提高学生的数学竞赛能力。

高一数学竞赛辅导

高一数学竞赛辅导

高一数学竞赛10.141.已知集合**410x x M x N N ⎧⎫=∈∈⎨⎬⎩⎭且,集合40x N x Z ⎧⎫=∈⎨⎬⎩⎭,则( )A. M N =B. N M ⊆C. 20x M N x Z ⎧⎫⋃=∈⎨⎬⎩⎭D. *40x M N x N ⎧⎫⋂=∈⎨⎬⎩⎭2.(2021年全国高中数学联赛)设{}{}{}1,2,3=2,,,2,,A B x y x y A x y C x y x y A x y =+∈=+∈,<>,则B C ⋂的所有元素之和为_______________。

3.设集合{}{}222,,12A x xB y y x x =-≤==--≤≤,则A B⋂=_________________.4.设条件():0:14p x m m q x ≤-≤≤>,,若p 是q 的充分条件,则m 的最大值为_______,若p 是q 的必要条件,则m 的最小值为________。

5.若非空集合A,B,C 满足A B C ⋃=,且B 不是A 的子集,则""x C ∈是""x A ∈的___________________条件。

高一数学竞赛10.14-------基本不等式“1”的巧用1.若正数,a b 满足121a b +=,则2b a+的最小值为_________________。

2.若00x y >,>,且211x y+=,227x y m m ++>恒成立,则实数m 的取值范围是_________________________。

基本不等式的构造3.已知0a b >>,则412a a b a b+++-的最小值为_______________。

4.设a b >>c ,n N ∈,且218n a b b c a c +≥---恒成立,则n 的最大值是______________。

5.设010,x a b <<,>>0,,a b 为常数,则221a b x x +-的最小值是___________________.基本不等式的综合运用6.已知4a b ab =>0,>0,,则11a b b a+++的最小值为________________。

初中数学竞赛辅导全完整版.doc

初中数学竞赛辅导全完整版.doc

第一篇 一元一次方程的讨论第一部分 基本方法1. 方程的解的定义:能使方程左右两边的值相等的未知数的值叫做方程的解。

一元方程的解也叫做根。

例如:方程 2x +6=0, x (x -1)=0, |x |=6, 0x =0, 0x =2的解 分别是: x =-3, x =0或x =1, x =±6, 所有的数,无解。

2. 关于x 的一元一次方程的解(根)的情况:化为最简方程ax =b 后, 讨论它的解:当a ≠0时,有唯一的解 x =ab; 当a =0且b ≠0时,无解;当a =0且b =0时,有无数多解。

(∵不论x 取什么值,0x =0都成立) 3. 求方程ax =b (a ≠0)的整数解、正整数解、正数解 当a |b 时,方程有整数解;当a |b ,且a 、b 同号时,方程有正整数解; 当a 、b 同号时,方程的解是正数。

综上所述,讨论一元一次方程的解,一般应先化为最简方程ax =b 第二部分 典例精析例1 a 取什么值时,方程a (a -2)x =4(a -2) ①有唯一的解?②无解? ③有无数多解?④是正数解?例2 k取什么整数值时,方程①k(x+1)=k-2(x-2)的解是整数?②(1-x)k=6的解是负整数?例3己知方程a(x-2)=b(x+1)-2a无解。

问a和b应满足什么关系?例4a、b取什么值时,方程(3x-2)a+(2x-3)b=8x-7有无数多解?第三部分典题精练1. 根据方程的解的定义,写出下列方程的解:①(x+1)=0, ②x2=9, ③|x|=9,④|x|=-3,⑤3x +1=3x -1, ⑥x +2=2+x2. 关于x 的方程ax =x +2无解,那么a __________3. 在方程a (a -3)x =a 中,当a 取值为____时,有唯一的解; 当a ___时无解;当a _____时,有无数多解; 当a ____时,解是负数。

4. k 取什么整数值时,下列等式中的x 是整数?① x =k4②x =16-k ③x =k k 32+ ④x =123+-k k5. k 取什么值时,方程x -k =6x 的解是 ①正数? ②是非负数?6. m 取什么值时,方程3(m +x )=2m -1的解 ①是零? ②是正数?7. 己知方程221463+=+-a x 的根是正数,那么a 、b 应满足什么关系?8. m 取什么整数值时,方程m m x 321)13(-=-的解是整数?9. 己知方程ax x b 231)1(2=++有无数多解,求a 、b 的值。

数学竞赛培训方案设计

数学竞赛培训方案设计

数学竞赛培训方案设计全文共四篇示例,供读者参考第一篇示例:一、培训目标数学竞赛培训的目标主要是培养学生的数学思维和解决问题能力,提高他们在数学方面的成绩。

具体目标包括:1. 培养学生的数学兴趣和学习动力,激发他们对数学竞赛的热情;2. 培养学生的数学分析和逻辑推理能力,提高他们的问题解决能力;3. 提高学生的数学知识水平和技能,使他们能够在竞赛中有所斩获。

二、培训内容数学竞赛培训的内容应该涵盖数学的各个方面,既包括基础知识的学习,也包括解题技巧的训练。

具体内容包括:1. 数学基础知识:包括数学公式、定理、推理方法等;2. 数学解题技巧:包括数学问题的分析方法、解题思路、解题技巧等;3. 数学竞赛题型:包括各类数学竞赛常见的题型,如选择题、填空题、计算题、证明题等;4. 备战技巧:包括备赛心态、应试技巧、考场策略等。

三、培训方法数学竞赛培训的方法应该多样化,既注重理论学习,又注重实践训练。

常见的培训方法包括:1. 理论授课:由专业老师授课,讲解数学知识和解题技巧;2. 题目训练:提供大量的练习题目,让学生熟悉各种题型,并提高解题速度和准确性;3. 模拟考试:定期组织模拟考试,让学生感受竞赛的氛围,检验自己的学习成果;4. 辅导答疑:为学生提供数学竞赛相关问题的辅导和解答,帮助学生及时解决学习中遇到的问题。

四、培训周期数学竞赛培训的周期一般为数月甚至一年,根据学生的基础和需求进行个性化安排。

通常包括以下阶段:五、综合考虑在设计数学竞赛培训方案时,需要综合考虑学生的实际情况、学习需求和培训资源,量身定制适合学生的培训方案。

培训方案要以学生为中心,注重培养学生的主动学习能力和解决问题能力,鼓励学生积极参与培训活动,为数学竞赛的成功备战打下坚实的基础。

数学竞赛培训方案设计要科学、合理,并且具有针对性,只有这样才能帮助学生取得更好的成绩。

希望通过不懈的努力和有效的培训,学生们能在数学竞赛中取得优异的成绩,为未来的学习和发展打下良好的基础。

学生数学竞赛辅导计划

学生数学竞赛辅导计划

学生数学竞赛辅导计划数学竞赛一直是考察学生数学综合能力和解决问题能力的重要途径之一。

为了帮助学生提高参加数学竞赛的能力,许多学校和培训机构都开设了数学竞赛辅导计划。

这些计划旨在通过系统化和针对性的教学,培养学生的数学思维和解题能力,并在数学竞赛中取得优异的成绩。

本文将从多个角度探讨学生数学竞赛辅导计划的重要性与实施方法。

首先,学生数学竞赛辅导计划可以帮助学生建立坚实的数学基础。

数学竞赛中的题目通常需要很高的抽象思维和创造力,而这些都依赖于学生对基础知识的掌握。

通过系统化的辅导,学生可以更好地理解数学概念、原理和定理,提高数学推理和证明的能力。

同时,辅导计划还可以帮助学生发现数学中的美和趣味,增强对数学学习的兴趣和热情。

其次,学生数学竞赛辅导计划可以培养学生的解题思维和策略。

数学竞赛中的问题往往是非常有挑战性的,需要学生具备独立思考和解决问题的能力。

辅导计划可以引导学生学会正确分析问题,找出解题的关键和思路,并培养学生的严密推理和逻辑思维能力。

同时,辅导老师会给予学生一些解题技巧和策略,帮助学生提高解题的效率和准确性。

再次,学生数学竞赛辅导计划可以帮助学生积累解题经验。

在辅导课程中,学生不仅会接触到各类数学竞赛的题目,还会解析一些经典的解题思路和方法。

通过反复练习和讲解,学生可以逐渐积累起丰富的解题经验,并学会将这些经验应用到其他类似的问题中。

这种经验的积累既可以提高学生在数学竞赛中的成绩,也可以为学生日后的学习和工作打下良好的基础。

此外,学生数学竞赛辅导计划还可以培养学生的团队合作和竞争意识。

在一些大型的数学竞赛中,学生通常需要组队参赛。

通过与其他有相同兴趣和目标的同学进行互动和合作,学生可以互相借鉴和学习,共同攻克难题。

同时,在竞争中,学生也会感受到来自其他同学的压力和挑战,激发自己的竞争意识和求胜欲望。

这种团队合作和竞争意识的培养在学生的成长过程中具有重要意义。

那么,如何实施学生数学竞赛辅导计划呢?首先,学校和培训机构应该制定科学合理的课程和教学计划。

【高中数学竞赛专题大全】 竞赛专题10 排列组合、二项式定理(50题竞赛真题强化训练)解析版+原卷版

【高中数学竞赛专题大全】 竞赛专题10 排列组合、二项式定理(50题竞赛真题强化训练)解析版+原卷版

【高中数学竞赛专题大全】 竞赛专题10 排列组合、二项式定理(50题竞赛真题强化训练)一、填空题1.(2018·广东·高三竞赛)袋中装有m 个红球和n 个白球,m >n≥4.现从中任取两球,若取出的两个球是同色的概率等于取出的两个球是异色的概率,则满足关系40m n +≤的数组(m ,n )的个数为_______. 【答案】3 【解析】 【详解】记“取出两个红球”为事件A ,“取出两个白球”为事件B ,“取出一红一白两个球”为事件C ,则()22m m n C P A C +=,()22n m n C P B C +=,()112m nm nC C P C C +⋅=. 依题意得()()()P A P B P C +=,即2211m n m n C C C C +=.所以()2m n m n +=-,从而m n +为完全平方数.又由4m n >≥及40m n +≤,得940m n ≤+≤. 所以9,3,m n m n +=⎧⎨-=⎩或16,4,m n m n +=⎧⎨-=⎩或25,5,m n m n +=⎧⎨-=⎩或36,6,m n m n +=⎧⎨-=⎩. 解之得(m ,n )=(6,3)(舍去),或(10,6),或(15,10),或(21,15). 故符合题意的数组(m ,n )有3个. 故答案为32.(2018·湖南·高三竞赛)已知123A B={a ,,}a a ⋃,当A B ≠时,(,)A B 与(,)B A 视为不同的对,则这样的(,)A B 对的个数有_____个. 【答案】26 【解析】 【详解】由集合A 、B 都是A B 的子集,A B ≠且()123,,A B a a a ⋃=. 当 A =∅时,B 有1种取法; 当A 为一元集时,B 有2种取法;当A 为二元集时,B 有4种取法; 当A 为三元集时,B 有7种取法.故不同的(A ,B )对有13234726+⨯+⨯+=(个). 故答案为263.(2018·湖南·高三竞赛)从-3、-2、-1、0、1、2、3、4八个数字中,任取三个不同的数字作为二次函数()()20f x ax bx c a =++≠的系数.若二次函数的图象过原点,且其顶点在第一象限或第三象限,这样的二次函数有_____个. 【答案】24 【解析】 【详解】可将二次函数分为两大类:一类顶点在第一象限;另一类顶点在第三象限,然后由顶点坐标的符号分别考查.因为图象过坐标原点,所以c=0.故二次函数可写成()2f x a bx =+的形式.又()2224b b f x a x a a ⎛⎫=+- ⎪⎝⎭,所以其顶点坐标是2,24b b a a ⎛⎫- ⎪⎝⎭.若顶点在第一象限,则有02b a >,204b a->.故0a <,0b >. 因此,这样的二次函数有113412A A ⋅=个.若顶点在第三象限,则有02b a -<,204b a-<.故0a >,0b >.这样的二次函数有2412A =个. 由加法原理知,满足条件的二次函数共有11234424A A A ⋅+=个.故答案为244.(2018·湖南·高三竞赛)31||2||x x ⎛⎫+- ⎪⎝⎭的展开式中常数项为_____.【答案】-20 【解析】 【详解】因为6312x x ⎫⎛⎫+-= ⎪ ⎪⎝⎭.所以()333346120T C ⎛⎫=-=-. 故答案为-205.(2018·四川·高三竞赛)设集合{}1,2,3,4,5,6,7,8I =,若I 的非空子集A B 、满足A B =∅,就称有序集合对(),A B 为I 的“隔离集合对”,则集合I 的“隔离集合对”的个数为______.(用具体数字作答) 【答案】6050 【解析】 【详解】设A 为I 的()17k k ≤≤元子集,则B 为I 的补集的非空子集.所以,“隔离集合对”的个数为()()()()7778880880808898888888111212122223216050kkk kk k k k C C C C C C C --===-=-=+-+---=-+=∑∑∑. 故答案为6050.6.(2020·浙江·高三竞赛)已知十进制九位数()12910a a a ⋅⋅⋅,则所有满足1254a a a >>>=,569a a a <<<的九位数的个数为__________.【答案】25 【解析】 【详解】由题意得:{}i (i 1,2,3,4,6,7,8,9)5,6,7,8,9a =∈,且有顺序.于是满足题意的有445525N C C =⋅=.故答案为:25.7.(2018·山东·高三竞赛)集合A 、B 满足{}1,2,3,,10A B =,A B =∅,若A 中的元素个数不是A 中的元素,B 中的元素个数不是B 中的元素,则满足条件的所有不同的集合A 的个数为______. 【答案】186 【解析】 【详解】设A 中元素个数为()1,2,,9k k =,则B 中元素个数为10k -,依题意k A ∉,441122m k m ⎛⎫⎛⎫-<<+ ⎪ ⎪⎝⎭⎝⎭.10k B -∉,10k A -∈,此时满足题设要求的A 的个数为1102k C --.其中,当5k =时,不满足题意,故5k ≠.所以A 的个数为018484888882186C C C C C +++-=-=.8.(2020·辽宁锦州·高二期末)202148被7除后的余数为_______. 【答案】6 【解析】 【分析】将问题转化为二项式定理即可求解. 【详解】()2021202148491=-的通项公式为()202112021491r rr r T C -+=⨯⨯-,当{}0,1,2,,2020r ∈时,1r T +都能整除7,当2021r =时,该项为-1,所以余数为6. 故答案为:6 【点睛】本题主要考查二项式定理,属于基础题.9.(2021·江西·铅山县第一中学高二阶段练习(理))已知多项式()()10310290129101(1)(1)1x x a a x a x a x a x +=+++++++++,则2a =___________.【答案】42 【解析】 【分析】根据题意把310x x +变形为()()3101111x x ⎡⎤⎡⎤-+++-++⎣⎦⎣⎦,然后利用二项式定理来求. 【详解】因为()()3103101111x x x x ⎡⎤⎡⎤+=-+++-++⎣⎦⎣⎦()()10290129101(1)(1)1a a x a x a x a x =+++++++++,所以22231042a C C =-+=.故答案为:42.10.(2021·全国·高三竞赛)若33223(2011)x y ax bx y cxy dy +=+++,则248a b c d -+-=__________.【答案】8-【分析】 【详解】令x 1,y 2==-,条件式立即化为3(2)248a b c d -=-+-,即2488a b c d -+-=-. 故答案为:8-.11.(2020·江苏·高三竞赛)用三个数字“3,1,4”构成一个四位密码,共有___________种不同结果. 【答案】81 【解析】 【详解】解析:只有一个数时,3种;两个数时,()221344242C C C +⨯=种;三个数时,33436⨯⨯=种,共81种. 故答案为:81.12.(2020·江苏·高三竞赛)已知集合{}1,2,3,4,5,6A =,则满足()()()f f f x x =的函数f :A A →共有___________个.【答案】47 【解析】 【详解】解析,值域中元素的个数为1或6,若值域中元素的个数为1, 则()f x m =(m 为常数),共6种; 若值域中元素的个数6, 当()f x x =时,1种;当()(())((()))x f x f f x f f f x x →→→→,则3个一组,有36240C =.因此题述所求为164047++=个. 故答案为:47.13.(2018·河北·高三竞赛)欲登上7阶楼梯,某人可以每步跨上两阶楼梯,也可以每步跨上一阶楼梯,则共有_____种上楼梯的方法.【解析】 【详解】本题采用分步计数原理.第一类:0次一步跨上2阶楼梯,即每步跨上一阶楼梯,跨7次楼梯,只有1种上楼梯的方法;第二类,1次一步跨上2阶楼梯,5次每步跨上一阶楼梯,跨6次楼梯,有166C =种方法;第三类:2次一步跨上2阶楼梯,3次每步跨上一阶楼梯,跨5次楼梯,有5210C =种方法;第四类:3次一步跨上2阶楼梯,1次每步跨上一阶楼梯,跨4次楼梯,有344C =种方法;共计21种上楼梯的方法.14.(2018·河南·高三竞赛)若()()222012224nn n x a a x a x a x n *+=++++∈N ,则242n a a a +++被3除的余数是______.【答案】1 【解析】 【详解】令0x =,得204na =.分别令1x =和1x =-,将得到的两式相加,得()2202421622nn n a a a a ++++=+. 所以()()2222122242162423142nn n n n n n a a a -+++=+-=+- ()()21211121mod3n n -≡-⨯-≡-≡.15.(2018·湖北·高三竞赛)一枚骰子连贯投掷四次,从第二次起每次出现的点数都不小于前一次出现的点数的概率为______. 【答案】772【解析】 【详解】设1234a a a a 、、、分别是四次投掷骰子得到的点数,那么()1234,,,a a a a 共有46种不同的情况. 如果从第二次起每次出现的点数都不小于前一次出现的点数,则1234a a a a ≤≤≤.若1234a a a a 、、、的值都相等,则()1234,,,a a a a 有16C 种不同的情况;若1234a a a a 、、、恰好取两个不同的值,则()1234,,,a a a a 有263C 种不同的情况;若1234a a a a 、、、恰好取3个不同的值,则()1234,,,a a a a 有363C 种不同的情况;若1234a a a a 、、、恰好取4个不同的值,则()1234,,,a a a a 有46C 种不同的情况.因此,满足1234a a a a ≤≤≤的情况共有1234666633126C C C C +++=(种).故所求的概率为41267672=. 16.(2019·河南·高二竞赛)称{1,2,3,4,5,6,7,8,9}的某非空子集为奇子集:如果其中所有数之和为奇数,则奇子集的个数为____________ . 【答案】256 【解析】 【详解】全集{1,2,3,…,9}中含有5个奇数、4个偶数.根据奇子集的定义知,奇子集中只能含有1个奇数、3个奇数、5个奇数,而偶数的个数为0、1、2、3、4都有可能. 所以,奇子集共有:()()()101401450144444435454445C C C C C C C C C C C C +++++++++++()()135014555444C C C C C C =+++++()451012256=++⨯=个.故答案为:256.17.(2019·贵州·高三竞赛)已知m ∈{11,13,15,17,19},n ∈{2000,2001,…,2019},则mn 的个位数是1的概率为____________ . 【答案】25【解析】 【详解】当m =11,n ∈{2000,2001,…,2019}时,mn 的个位数都是1,此时有20种选法; 当m =13,n ∈{2000,2004,2008,2012,2016}时,mn 的个位数都是1,此时有5种选法; 当m =15时,mn 的个位数不可能为1,此时有0种选法;当m =17,n ∈{2000,2004,2008,2012,2016}时,mn 的个位数都是1,此时有5种选法; 当m =19,n ∈{2000,2002,2004,…,2018}时,m 的个位数都是1,此时有10种选法. 综上,所求概率为205051025205++++=⨯.故答案为:25.18.(2020·全国·高三竞赛)在1,2,3,…,10中随机选出一个数a 在-1,-2,-3,…,-10中随机选出一个数b ,则2a b +被3整除的概率为______ . 【答案】37100【解析】 【分析】题中条件2a b +是3的倍数,考虑2a 被3除的余数分情况讨论.另外注意有2a 和b 被3除的余数相加是3的倍数. 【详解】数组(),a b 共有210100=种等可能性的选法. 考虑其中使2a b +被3整除的选法数N .若a 被3整除,则b 也被3整除.此时,a b 各有3种选法,这样的(),a b 有239=种.若a 不被3整除,则()()222319613321a k k k k k =±=±+=±+,于是2a 被3除余1,那么b 被3除余2.此时a 有7种选法,b 有4种选法,这样的(),a b 有7428⨯=种.因此92837.N =+=于是所求概率为37100. 【点睛】此题考查计数原理和概率的知识,属于中档题.19.(2021·全国·高三竞赛)把数字09~进行排列,使得2在3的左边,3在5的左边,5在7的左边的排法种数为_________. 【答案】151200 【解析】 【分析】 【详解】考虑全排列,有种1010A 排法;将数字2、3、5、7从队列中拿出来,保留原队列顺序,有44A 种排法;使得2在3的左边,3在5的左边,5在7的左边,只能按照2、3、5、7的顺序排列,有1种排法;故满足题意的排法数是1010441151200A A ⋅=. 故答案为:151200.20.(2021·全国·高三竞赛)若多项式219201x x x x -+--+可以表示成1920011920a a y a y a y ++++,这里1y x =+,则2a =___.【答案】1330 【解析】 【分析】 【详解】 因为: ()()219202192021211(1)111(1)y x x x x x x x x x x y -+--+=+-+--+=+=+-,又因为:()()219201920220210119200119201y x x x x y a a y a y a y a y a y a y a y -+--+=++++=++++,所以3221C 1330a ==.故答案为:1330.21.(2021·全国·高三竞赛)有甲乙两个盒子,甲盒中有5个球,乙盒中有6个球(所有球都是一样的).每次随机选择一个盒子,并从中取出一个球,直到某个盒子中不再有球时结束.则结束时是甲盒中没有球的概率为______. 【答案】319512【解析】 【分析】 【详解】相当于前十次中至少有五次选择了甲盒的概率, 即5101011101051319222512i i p CC ===+=∑.故答案为:319 512.22.(2021·全国·高三竞赛)一次聚会有8个人参加,每个人都恰好和除他之外的两个人各握手一次.聚会结束后,将所有握手的情况记录下来,得到一张记录单.若记录单上的每条握手记录不计先后顺序(即对某两张记录单,可以分别对其各条记录进行重新排列后成为两张完全相同的,则这两张被认为是同一种),则所有可能的记录单种数为_______.【答案】3507【解析】【分析】【详解】根据已知,将这8个人进行分组,每组的所有人排成一个圆圈,每个人和与其相邻的两个人握手.问题转化为这样的分组、以及分完组之后的项链排列(因为要求握手记录无序)方法有几种.注意到最多分成两组,则:当分成一组时,有7!2种;当分成两组时,若两组人数分别为3和5,则有384!2! 22C⋅⋅种;若两组人数都是4,则有483!3!2!22C⋅⋅种.故共有43887!4!2!3!3!3507 2222!22CC+⋅⋅+⋅⋅=种.故答案为:3507.23.(2021·全国·高三竞赛)先后三次掷一颗骰子,则其中某两次的点数和为10的概率为___________.【答案】23 108【解析】【分析】【详解】有两次为5的概率为213531166216C C+=,有两次为6和4的概率为211134323306216A C C C+=,所以概率为163023216216108+=. 故答案为:23108. 24.(2021·浙江·高二竞赛)对于正整数n ,若(5315)n xy x y -+-展开式经同类项合并,(,0,1,,)i j x y i j n =合并后至少有2021项,则n 的最小值为______.【答案】44 【解析】 【分析】 【详解】由(5315)(3)(5)n n n xy x y x y -+-=+-,共有()21n +项,所以2(1)2021n +≥,得1n ≥,则min 44n =. 故答案为:44.25.(2021·浙江·高三竞赛)已知整数数列1a ,2a ,…,10a ,满足1012a a =,4862+=a a a ,且11k k a a +-=(1k =,2,…,9),则这样的数列个数共有______个. 【答案】192 【解析】 【分析】 【详解】 分情况讨论:①先考虑468,,a a a ,设4a r =,则:(1)45678,1,2,3,4a r a r a r a r a r ==+=+=+=+; (2)45678,1,,1,a r a r a r a r a r ==+==+=; (3)45678,1,,1,a r a r a r a r a r ==+==-=; (4)45678,1,2,3,4a r a r a r a r a r ==-=-=-=-; (5)45678,1,2,3,a r a r a r a r a r ==-=-=+=; (6)45678,1,,1,a r a r a r a r a r ==-==-=;②再考虑910,a a ,同理共有4种,且10a r s =+,其中6,4,2,0,2,4,6s =---;③最后考虑123,,a a a 共有8种,且1a r t =+,其中1,3t =±±,所以110a a ≠,故1012a a =一定有解, 综上共有864192⨯⨯=个; 故答案为:192.26.(2021·全国·高三竞赛)将2枚白棋和2枚黑棋放入一个44⨯的棋盘中,使得棋盘的每个方格内至多放入一枚棋子,且相同颜色的棋子既不在同一行,也不在同一列,如果我们只区分颜色而不区分同种颜色的棋子,则不同放法的种数为_________. 【答案】3960 【解析】 【分析】利用去杂法可求不同方法的种数. 【详解】解析:将两枚白棋放入方格中的方法数为169722⨯=种,两枚黑棋放入方格中使得它们既不在同一行,也不在同一列的方法数为169722⨯=,其中至少有1枚黑棋与白棋放入同一方格的方法数为1892=⨯种,两枚黑棋均放入两枚白棋所在的方格中的方法数为1种,故由容斥原理可知不同的方法数为72(72291)3960⨯-⨯+=种. 故答案为:3960. 【点睛】思路点睛:对于较为复杂的组合计数问题,我们可以采用去杂法从反面考虑,但要注意防止重复计算,如本题中同色的棋子不做区分.27.(2021·全国·高三竞赛)用平行于各边的直线将一个边长为10的正三角形分成边长为1的正三角形表格,则三个顶点均为格点且各边平行于分割线或与分割线重合的正三角形的个数是___________. 【答案】315 【解析】 【详解】解析:设边长为n 的正三角形中由格点构成各边平行于分割线或与分割线重合的正三角形的个数为n a ,则1231,5,13a a a ===,当n 为偶数时,则21+12+212322n n n n n a a C --⎛⎫=+++++ ⎪⎝⎭,其中21n C +为增加的一条边上的1n +分点中的任意两个不同的构成的正三角形的个数; 2212322n n -⎛⎫++++ ⎪⎝⎭为以增加的一条边上的1n +分点中的任意一个点为顶点的正三角形的个数,同理,当n 为奇数时,则21+11+21232n n n n a a C --⎛⎫=++++ ⎪⎝⎭,其中21n C +为增加的一条边上的1n +分点中的任意两个不同的构成的正三角形的个数; 121232n -⎛⎫+++ ⎪⎝⎭为以增加的一条边上的1n +分点中的任意一个点为顶点的正三角形的个数,故2221034111a C C C =++++()()()()()2012121221221234212345+⨯++⨯+⨯++⨯+++⨯++++⨯++++⎡⎤⎣⎦=()()3223441112123454136101580315C C C C ++++++++++++=++=答案为:315.28.(2021·全国·高三竞赛)设()40382019201k k k x xa x =++=∑,其中(0,1,,4038)i a i =为常数,则134630kk a==∑___________.【答案】20183 【解析】 【详解】 设()201822403601240361x x b b x b x b x ++=++++,则()()()201922498601403611x x x x b b x b x ++=+++++.可见0031236456,,,a b a b b b a b b b ==++=++,因此40384036a b =.20180340380140363a a a b b b +++=+++=.故答案为:20183.29.(2021·全国·高三竞赛)设129,,,a a a 是1,2,…,9的一个排列,如果它们满足123456789a a a a a a a a a <<>>>><<,则称之为一个“波浪形排列”.则所有的“波浪形排列”的个数为___________. 【答案】379 【解析】 【详解】解析: 3a 只能取7、8、9,按照3a 取值依次分成三类,若39a =,有2385280C C =种排列;若38a =,有237484C C =种排列;若37a =,有26=15C 种排列; 可得总数为379. 故答案为:379.30.(2021·全国·高三竞赛)从正方形的四个顶点及四条边的中点中随机选取三个点,则“这三个点能够组成等腰三角形”发生的概率为___________. 【答案】514【解析】 【详解】解析:按照选取点中正方形顶点的个数进行分类,依次可以为3、2、1、0个,相应的等腰三角形个数为3344C 4142C 20+⨯+⨯+=,因此所求概率为38205C 14=. 故答案为:514. 31.(2021·全国·高三竞赛)圆周上有20个等分点,从中任取4个点,是某个梯形4个顶点的概率是_______. 【答案】48323【解析】 【详解】解析:梯形共有两种:从10组平行于直径的9条平行直线中选2条,或从10组不平行于直径的10条平行直线中选2条.第一种去掉矩形有()2910C 4320⨯-=个,第二种去掉矩形有()21010C 5400⨯-=个,共有720个,故概率是42072048323C =.故答案为:48323. 32.(2021·全国·高三竞赛)在平面直角坐标系xOy 中,点集{(,){1,2},{1,2,3,4}}K x y x y =∈∈.从K 中随机取出五个点,则其中有四点共线或四点共圆的概率为____________. 【答案】57【解析】 【详解】考虑任四点不共线、任四点不共圆的情形. 由无四点共线知每列至少有一个点不取.不妨设左边一列有两个点不取,分六种情况知方法数为2200228+++++=.故原概率为3838C 165C 7P -==. 故答案为:57.33.(2021·全国·高三竞赛)在0、1、2、3、4、5、6中取5个数字组成无重复数字的五位数,其中是27倍数的最小数是_______. 【答案】14256 【解析】 【详解】解析:首先这个数是9的倍数,故这5个数字只能是0、3、4、5、6或1、2、4、5、6,五位数字之和为18.设五位数是abcde ,则()1000010001001010810mod27a b c d e a b c d e ++++≡+-++, 为了使数最小,考虑1a =,故可取各数字为1、2、4、5、6,先考虑12456,此时10810123250628a b c d e +-++=-++=,不合要求; 再考虑14256,此时10810141650654a b c d e +-++=-++=,符合要求. 故所求的最小的数是14256. 故答案为:14256.34.(2019·山东·高三竞赛)6个相同的红色球,3个相同的白色球,3个相同的黄色球排在一条直线上,那么同色球不相邻的概率是______ .【答案】5924【解析】 【详解】由题意可知,所有的排列方法种数为:12!6!3!3!N =⨯⨯,满足题意的排列方法数量为:5!253!2!n =⨯⨯⨯, 故同色球不相邻的概率为5!2553!2!12!9246!3!3!p ⨯⨯⨯==⨯⨯. 故答案为:5924. 35.(2019·贵州·高三竞赛)若(a +b )n 的展开式中有连续三项的二项式系数成等差数列,则最大的三位正整数n =____________ . 【答案】959 【解析】 【详解】设(a +b )n 的展开式中连续三项的二项式系数为11C ,C ,C (11)k k k n n n k n -+-.因为112C C C k k k n n n -+=+,所以22(41)420n k n k -++-=,得到n =①由n 为正整数,则8k +9应为奇完全平方数,故设8k +9=(2m +1)2,即222k m m =+-, 代入①式得n =(m +1)2-2或n =m 2-2. 所以,三位正整数n 的最大值为959. 故答案为:959.36.(2019·广西·高三竞赛)从1,2,…,20中任取3个不同的数,这3个数构成等差数列的概率为____________ . 【答案】338【解析】 【详解】设取出的3个不同的数分别为a 、b 、c .不同的取法共有320C 种,若这3个数构成等差数列,则有a +c =2b .故、c 同为奇数或同为偶数,且a 与c 确定后,b 随之而定.从而所求概率为221010320338C C P C +==. 故答案为:338. 37.(2019·浙江·高三竞赛)在复平面上,任取方程10010z -=的三个不同的根为顶点组成三角形,则不同的锐角三角形的数目为____________. 【答案】39200 【解析】 【详解】易知10010z -=的根在单位圆上,且相邻两根之间弧长相等,都为2100π,即将单位圆均匀分成100段小弧.首先选取任意一点A 为三角形的顶点,共有100种取法.按顺时针方向依次取顶点B 和顶点C ,设AB 弧有x 段小弧,CB 弧有y 段小弧,AC 弧有z 段小弧,则△ABC 为锐角三角形的等价条件为:1001,,49x y z x y z ++=⎧⎨⎩970,,48x y z x y z ++=⎧⇒⎨⎩ ① 计算方程组①的整数解个数,记1{|97,49}P x x y z x =++=,2{|97,49}P y x y z y =++=,3{|97,49}P z x y z z =++=,{(,,)|97,,,0}S x y z x y z x y z =++=,则123123||P P P S P P P ⋂⋂=-⋃⋃2991231C |i j i j P P P P P P <⎛=-++-∑⋂+ ⎝)23|P P ⋂⋂229950C 3C 1176=-=. 由于重复计算3次,所以所求锐角三角形个数为1001176392003⨯=.故答案为:39200.38.(2019·新疆·高三竞赛)随机取一个由0和1构成的8位数,它的偶数位数字之和与奇数位数字之和相等的概率为____________ . 【答案】35128【解析】 【分析】该8位数首位数字必须为1,分别计算出奇数位上和偶数位上1的个数,结合组合知识求出基本事件总数和偶数位数字之和与奇数位数字之和相等包含的基本事件个数即可得解. 【详解】设n 是满足题意的8位数,故知其偶数位上1的个数和在奇数位上1的个数相同,从而在奇数位上与偶数位上1的个数可能为1、2、3或4.注意到首位为1,下面分情况讨论:(1)奇数位上与偶数位上有1个1,3个0共有0134C C 4⋅=种可能;(2)奇数位上与偶数位上有2个1,2个0,共有1234C C 18⋅=种可能;(3)奇数位上与偶数位上有3个1,1个0,有2334C C 12⋅=种可能;(4)奇数位上与偶数位上有4个1,共有34341C C ⋅=种可能.合计共有4+18+12+1=35个满足条件的自然数n .又因为0和1构成的8位数共有72128=个,从而概率为35128. 故答案为:35128【点睛】此题考查求古典概型,关键在于熟练掌握计数原理,根据分类计数原理结合组合知识求解概率.39.(2019·新疆·高三竞赛)记[x ]为不超过实数x 的最大整数.若27788A ⎡⎤⎡⎤=+++⎢⎥⎢⎥⎣⎦⎣⎦201920207788⎡⎤⎡⎤+⎢⎥⎢⎥⎣⎦⎣⎦,则A 除以50的余数为____________ .【答案】40 【解析】 【分析】根据21277,88k k -均不是整数,利用放缩法分析出21221217772788k k k k ---⎡⎤⎡⎤-<+<⎢⎥⎢⎥⎣⎦⎣⎦,结合二项式定理得A 除以50的余数. 【详解】注意到21277,88k k-均不是整数. 按定义212212212212177777772117888888k k k k k kk k -----⎛⎫⎛⎫⎡⎤⎡⎤-=-+-<+<+= ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦, 所以对任意正整数k 均有21221777188k k k --⎡⎤⎡⎤+=-⎢⎥⎢⎥⎣⎦⎣⎦22771k -=⋅-17(49)1k -=⋅- ()()()1101111117(501)175050111r k k k r k r k k k k C C C ---------=⋅--=⋅⨯+⋅⋅⋅+⨯⨯-+⋅⋅⋅+⨯--17(1)1(mod 50)k -=⋅--.从而71010(11)101040(mod50)A ≡⋅⋅--≡. 故答案为:40 【点睛】此题考查数论相关知识点,涉及同余问题结合二项式定理处理,需要熟练掌握初等数论相关知识.40.(2020·全国·高三竞赛)现有10张卡片,每张卡片上写有1,2,3,4,5中两个不同的数,且任意两张卡片上的数不完全相同.将这10张卡片放入标号为1,2,3,4,5的五个盒子中,规定写有i ,j 的卡片只能放在i 号或j 号盒子中.一种放法称为“好的”,如果1号盒子中的卡片数多于其他每个盒子中的卡片数.则“好的”放法共有________种. 【答案】120. 【解析】 【分析】结合题意,对满足情况进行分类,运用组合的相关知识进行求解. 【详解】解:用{,}i j 表示写有i ,j 的卡片.易知这10张卡片恰为{,}(15)i j i j ≤<≤.考虑“好的”卡片放法.五个盒子一共放有10张卡片,故1号盒至少有3张卡片,能放入1号盒的卡片仅有{1,2},{1,3},{1,4},{1,5}.情况一:这4张卡片都在1号盒中,此时其余每个盒中已经不可能达到4张卡片,故剩下6张卡片无论怎样放都符合要求,有6264=种好的放法.情况二:这4张卡片恰有3张在1号盒中,且其余每盒最多仅有2张卡片. 考虑{1,2},{1,3},{1,4}在1号盒,且{1,5}在5号盒的放法数N .卡片{2,3},{2,4},{3,4}的放法有8种可能,其中6种是在2,3,4号的某个盒中放两张,其余2种则是在2,3,4号盒中各放一张.若{2,3},{2,4},{3,4}有两张在一个盒中,不妨设{2,3},{2,4}在2号盒,则{2,5}只能在5号盒,这样5号盒已有{1,5},{2,5},故{3,5},{4,5}分别在3号与4号盒,即{2,5},{3,5},{4,5}的放法唯一;若{{2,3},{2,4},{3,4}在2,3,4号盒中各一张,则2,3,4号盒均至多有2张卡片,仅需再使5号盒中不超过2张卡片,即{2,5},{3,5},{4,5}有0张或1张在5号盒中,对应0133C C 4+=种放法.因此612414N =⨯+⨯=.由对称性,在情况二下有456N =种好的放法. 综上,好的放法共有6456120+=种. 【点睛】关键点点睛:解答本题的关键是结合题意进行分类讨论,需要考虑全面,不要漏掉情况,要求综合能力较强.41.(2021·浙江·高三竞赛)一条直线上有三个数字1a ,2a ,3a ,数字2a 位于1a ,3a 之间,称数值1223a a a a -+-为该直线的邻差值.现将数字1~9填入33⨯的格子中,每个数字均出现,过横向三个格子、竖向三个格子及对角线三个格子共形成8条直线.则这8条直线的邻差值之和的最小值为______,最大值为______. 【答案】 36 60 【解析】 【分析】 【详解】如图1,这8条直线的邻差值之和:9212387894147636951i i M a a a a a a a a a a a a a a a a a a ==-+-+-+-+-+-+-+-+-∑,利用局部调整法,当(1,2,,9)i a i i ==⋯时,M 有最小值2226668436+++++++=.当如图2排列时,M 有最大值8189(9823)224602i i =⨯++--⨯=+=∑. 故答案为:36,60.42.(2021·全国·高三竞赛)刘老师为学生购买纪念品,商店中有四种不同类型纪念品各10件(每种类型纪念品完全相同),刘老师计划购买24件纪念品,且每种纪念品至少购买一件.则共有________种不同的购买方案. 【答案】633 【解析】 【详解】解析:只需计算()4210()f x x x x =+++中24x 的系数而()()4104210441()(1)x f x x x x x x -=+++=⋅-又由幂级数展开式可得233411420(1)nn x x C x x +=+++++-,故()()4102030403301464n n n f x x x x x x C x ∞+=⎛⎫=-+-+ ⎪⎝⎭∑,故24x 的系数为3332313346633C C C -+=.故答案为:633.43.(2021·全国·高三竞赛)从集合{1,2,,2020}的非空子集中随机取出一个,其元素之和恰为奇数的概率为____________. 【答案】20192020221- 【解析】 【详解】解析:集合{1,2,,2020}共有非空子集202021-个,元素和为奇数的子集个数恰为函数()()22000()(1)11f x x x x =+++的展开式中奇次项系数之和2019(1)(1)22f f --=.故20192020221P =-.故答案为:20192020221-. 44.(2021·全国·高三竞赛)将圆周21n 等分于点1221,,,n A A A +,在以其中每三点为顶点的三角形中,含有圆心的三角形个数为__________. 【答案】1(1)(21)6n n n ++【解析】 【详解】任取一个分点记为P ,然后将其余2n 个分点这样标志, 自P 点后,逆时针方向的连续n 个点依次记为12,,,n A A A ,顺时针方向的连续n 个点依次记为12,,,n B B B .先考虑以P 为顶点且含有圆心的三角形,如图,显然这种三角形的另两个顶点必须一个属于点集{}12,,,n A A A ,而另一个属于点集{}12,,,n B B B .且这种i j PA B ,含有圆心当且仅当1,,{1,2,,}i j n i j n ++∈.现计算符合条件的三角形个数:当i k =时,j 可取值,1,,1n n n k --+,共计k 个值.因此这种含有圆心的i j PA B 个数为()112nk n n k =+=∑ , 当点P 取遍21n 个位置,共得1(1)(21)2n n n ++个三角形,由于每个三角形有三个顶点,故每个三角形重复计算了三遍, 因此符合条件的三角形个数为1(1)(21)6n n n ++.故答案为:1(1)(21)6n n n ++.二、解答题45.(2021·全国·高二课时练习)已知集合M={1,2,3,4,5,6},N={6,7,8,9},从M 中选3个元素,N 中选2个元素组成一个含5个元素的新集合C ,则这样的集合C 共有多少个? 【答案】90 【解析】 【分析】分类计数,再用加法原理求解. 【详解】第一类:从M 中选取3个元素且含6有25C 种,从N 中选取2个元素不含6有23C 种,根据分步乘法计数原理,有2253C C ⨯=10×3=30(种);第二类:从M 中选取3个元素且不含6有35C 种,从N 中选取2个元素有24C 种,根据分步乘法计数原理,有3254C C ⨯=10×6=60(种).由分类加法计数原理,集合C 共有30+60=90(个). 46.(2018·广东·高三竞赛)已知正整数n 都可以唯一表示为2012999m m n a a a a =+⋅+⋅++⋅ ①的形式,其中m 为非负整数,{}0,1,,8j a ∈(0j =,1,,1m -),{}1,,8m a ∈.试求①中的数列012,,,,m a a a a 严格单调递增或严格单调递减的所有正整数n 的和. 【答案】984374748 【解析】【详解】设A 和B 分别表示①中数列严格单调递增和递减的所有正整数构成的集合.符号S (M )表示数集M 中所有数的和,并将满足①式的正整数记为110m m n a a a a -=.把集合A 分成如下两个不交子集{}000A n A a =∈=和{}100A n A a =∈≠. 我们有()()()01S A S A S A ==.对任意1n A ∈,令()09f n n A =∈,则f 是1A 到0A 的双射. 由此得()()019S A S A =,从而()()110S A S A =. 又对任意10m m a a a a B -=∈,令()()()()101999m m b g a a a a A -==---∈,则g 是B 到1A 的双射,其中()119999918m m m a b +++=+++=-. 因为{}101018,0,1,,7m m m m B a a a a a a m --=≤<<<≤=所以B 中共有718m m C+=∑个元素,因此()()()7111809918m m m S B S A C ++=+=-∑88880099988k k k k k C C ===-∑∑ ()8891028=-. 又令2A 表示A 中最高位数8m a =的正整数全体,A 中其余的数和零所构成的集合记为3A , 则()()()23S A S A S A =+. 对任意10m m a a a a B -=∈,令()()()()103888m m b a a a a A σ-==---∈则σ是B 到3A 的双射,其中118989891m m m a b -++=⋅+⋅++=-.所以()()()71138091m m m S B S A C++=+=-∑ ()888091102k k o k C ==-=-∑.最后对任意{}0288ma a a A =∈-,令()()()088mb a a a B τ==--∈.则τ是{}28A -到B 的双射,其中128989891m m m a b +++=⋅+⋅++=-.所以()()()712280891m m m S B S A C ++=+=+-∑()8188818919102k k k C +==+-=⋅-∑.于是,()()()()()8899191021082102S B S A S B S A ⎧+=-⎪⎨⎪+=-⎩解之得()931108096875008032S A =⨯+=,()15624704S B =. 由于A 和B 中都含有1,2,…,8,因此所求正整数的和等于()()36984374748S A S B +-=. 47.(2019·江苏·高三竞赛)平面直角坐标系中有16个格点(i ,j ),其中0≤i ≤3,0≤j ≤3.若在这16个点中任取n 个点,这n 个点中总存在4个点,这4个点是一个正方形的顶点,求n 的最小值. 【答案】11. 【解析】 【分析】分两步来证明:先找到10个点,它们中的任意四点不能构成正方形的顶点,再根据抽屉原理证明任意的11个点,一定存在4个点为正方形的四个顶点. 【详解】存在下面的10点即:点(0,0),(1,0),(2,0),(2,1),(3,1),(0,2),(3,2),(0,3),(1,3),(3,3), 其中任意4个点不能构成正方形的顶点,故11n ≥. 下证:任意11点中,一定存在4个点为正方形的四个顶点.因为共取11个点,分两种情况讨论:(1)有一行有4个点(设为1234,,,P P P P ),则余下三行共有7个点, 由抽屉原理知余下三行中必有一行至少有3个点(设为123,,Q Q Q ),因1234,,,P P P P ,123,,Q Q Q 分布在两行,若该两行相邻或中间隔一行,则存在四个点,它们为正方形的四个顶点;若该两行间隔两行,如图,不妨设1234,,,P P P P 为线段AB 上的格点,123,,Q Q Q 为线段OC 上的格点,对应的点的坐标为()()()0,0,1,0,2,0,余下4个点分布在中间两行,若线段DE 上有两个整点,则它们和1234,,,P P P P 中的两点构成正方形的顶点,否则线段GF 上至少有3个点,则其中必有两个格点与123,,Q Q Q 中的两点构成正方形的顶点.(2)任意一行都没有4个点,则各行的格点数分别为3,3,3,2,故4行中必有相邻两行各有3个格点,这6个格点中必存在4个格点,它们构成正方形的顶点. 【点睛】本题考查组合最值,此类问题,解决的基本方法是先找一个反例,从而确定变量的初始范围,再利用抽屉原理来证明该范围成立.48.(2019·上海·高三竞赛)设n 为正整数,称n ×n 的方格表Tn 的网格线的交点(共(n +1)2个交点)为格点.现将数1,2,……,(n +1)2分配给Tn 的所有格点,使不同的格点分到不同的数.称Tn 的一个1×1格子S 为“好方格”,如果从2S 的某个顶点起按逆时针方向读出的4个顶点上的数依次递增(如图是将数1,2,…,9分配给T 2的格点的一种方式,其中B 、C 是好方格,而A 、D 不是好方格)设Tn 中好方格个数的最大值为f (n ).(1)求f (2)的值;(2)求f (n )关于正整数n 的表达式.【答案】(1)f (2)=3.(2)221()2n n f n ⎡⎤+-=⎢⎥⎣⎦.【解析】【详解】(1)如图①,将T 2的4个1×1格子(以下简称“格子”)分别记为A 、B 、C 、D ,将9个格点上的数分别记为a 、b 、c 、d 、e 、f 、g 、h 、i.当a ,b ,……,i 依次取为1,2,……,9时,易验证B 、C 、D 均为好方格,这表明f (2)≥3. 现假设f (2)=4,即存在一种数的分配方式,使A 、B 、C 、D 均为好方格.由对称性,不妨设边界上8个数a ,b ,……,h 中的最小数为a 或b .此时由A 为好方格知,或者有a <b <i <h ,或者有b <i <h <a ,故b <i <h 总是成立的.进而由B 、C 为好方格知,必有i <f <g <h ,b <c <d <i ,但这时d <i <f ,与D 为好方格矛盾. 综上可得f (2)=3.(2)设Tn 的各格点的数已被分配好,此时好方格有k 个称格子的一条边为一段“格线”我们对Tn 的每段格线标记一个箭头若格线连结了两个格点U 、V ,其中U 上的数小于V 上的数,则对格线UV 标上一个指向UV 顺时针旋转90°后所得方向的箭头.称一个格子S 及S 的一条边UV 所构成的有序对(S ,UV )为一个“对子”,如果UV 上所标的箭头由S 内指向S 外设对子总数为N .一方面,每个格子S 至少贡献1个对子(否则沿逆时针方向读S 顶点上的数将永远递减,矛盾),而根据好方格的定义每个好方格贡献3个对子,于是()22312N k n k k n +⋅-=+.另一方面,Tn 的每段格线至多贡献1个对子,且Tn 边界上至少有一段格线标有向内的箭头(否则,沿逆时针方向读n 边界上的数将永远递增,矛盾),从而不贡献对子.注意到Tn 的格线段数为2n (n +1),所以又有2(1)1N n n +-.综合两方面得,2k +n 2≤2n (n +1)-1,即好方格的个数2212n n k+-. 最后,对n 为奇数和n 为偶数的情况,分别如图②和图③,将1,2,……,(n +1)2按粗线经过的次序依次分配给所有格点对图中标有“▲”记号的每个格子,易验证,按被粗线经过的先后次序排列其4个顶点,恰是一种逆时针排列,因而这些格子均为好方格.。

2024年初二数学竞赛辅导计划(二篇)

2024年初二数学竞赛辅导计划(二篇)

2024年初二数学竞赛辅导计划为了确保第一轮入选的____名学生能够在第二轮顺利过关,并尽可能在全县数学、英语竞赛中取得更为优异的成绩,初二数学备课组于第十七周备课组会议制定竞赛辅导计划。

分三个阶段,分别如下:第一阶段:第十七周-期末考试1、各数学老师整理本学期数学课本所涉及到的所有得知识点,给入选学生过好知识关,一定做到扎实复习,从而夯实基础。

2、每天数学课上给入选学生一道竞赛模拟题,先做后讲,逐渐拔高。

3、利用活动课、自习课进行集中辅导,拓宽知识,培养能力。

第二阶段:寒假1、要求入选学生每人一本奥数资料,放假前由各数学老师勾选习题,布置假期完成。

2、各数学老师在假期期间,对自己班级的入选学生进行辅导,方式可以为:家访辅导、集中学生到老师家里辅导,电话问答、查询、督促,网上辅导等,整个寒假,对每位学生至少辅导3-____次。

3、开学检查假期奥数作业,讲评疑难。

第三阶段:下学期开学-竞赛1、全面复习初一、初二数学所学的全部知识点,做到内容熟悉,基础扎实。

2、继续选做奥数题,完成奥数资料。

3、每天课堂给两道竞赛模拟题,先做后讲,辅导思路。

4、利用活动课、自习课进行集中辅导,点拨思路,讲解解题技巧。

5、数学教师下载并重组奥数模拟题3-____套,赛前集中训练,全面提升竞赛学生能力。

初二数学备课组第二篇。

初二数学竞赛试卷你如果认识从前的我,也许会原谅现在的我。

初二数学竞赛试卷一、选择题:1、若a是有理数则4a与3a的大小关系是...(a)4a>3a(b)4a____3a(c)4aacp是角平分线ad延长线上一点.请说明ab-ac>pb-pc19、如图在梯形abcd中ad∥bcab____ad+bce为cd中点说明:ae⊥be20、若(____2+a____+10)(____2-3____+b)的展开式中不含____项与____项试求____a____b____的值21、在暑假期间为了丰富广大师生的业余文化生活某市剧场举行了专场音乐会售票处有团体和零售票两种其中____人以上(含____人)为团体票每人____元若买零售票教师每人____元学生每人____元某校有六位教师与若干名学生去听音乐会如何购票最省钱。

初中数学竞赛辅导资料(70)

初中数学竞赛辅导资料(70)

初中数学竞赛辅导资料(70)正整数简单性质的复习甲. 连续正整数一. n 位数的个数:一位正整数从1到9,共9个,两位数从10到99,共90个,三位数从100到999共9×102个,那么 n 位数的个数共__________.(n 是正整数)练习:1. 一本书共1989页,用0到9的数码,给每一页编号,总共要用数码___个.2. 由连续正整数写成的数1234……9991000是一个_______位数;100110021003……19881989是_______位数.3. 除以3余1的两位数有____个,三位数有____个,n 位数有_______个.4. 从1到100的正整数中,共有偶数____个,含 3的倍数____个;从50到1000的正整数中,共有偶数____个,含3的倍数____个.二. 连续正整数的和:1+2+3+……+n=(1+n)×2n . 把它推广到连续偶数,连续奇数以及以模m 有同余数的连续数的和.练习:5.计算2+4+6+……+100=__________.6. 1+3+5+……+99=____________.7. 5+10+15+……+100=_________.8. 1+4+7+……+100=____________.9. 1+2+3+……+1989其和是偶数或奇数?答______10. 和等于100的连续正整数共有______组,它们是______________________.11. 和等于100的连续整数共有_____组,它们是__________________________.三. 由连续正整数连写的整数,各位上的数字和整数 123456789各位上的数字和是:(0+9)+(1+8)+…+(4+5)=9×5=45;1234…99100各位数字和是(0+99)+(1+98)+…+(49+50)+1=18×50+1=901.练习:12. 整数 1234……9991000各位上的数字和是_____________.13. 把由1开始的正整数依次写下去,直到第198位为止:44443444421ΛΛ位198011121234567891这个数用9除的余数是__________. (1987年全国初中数学联赛题)14. 由1到100这100个正整数顺次写成的数1234……99100中:① 它是一个________位数;② 它的各位上的数字和等于________;③ 从这一数中划去100个数字,使剩下的数尽可能大,那么 剩下的数的前十位是___________________________.四.连续正整数的积:① 1×2×3×…×n 记作n ! 读作n 的阶乘.② n 个连续正整数的积能被n !整除.如:2!|a(a+1), 3!|a (a+1)(a+2), n !|a(a+1)(a+2)…(a+n -1). a 为整数.③ n ! 中含有质因数m 的个数是⎥⎦⎤⎢⎣⎡m n +⎥⎦⎤⎢⎣⎡2m n +…+⎥⎦⎤⎢⎣⎡i m n . [x]表示不大于x 的最大正整数,i=1,2,3… m i ≤n如:1×2×3×…×10的积中,含质因数3的个数是:⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡2310310=3+1=4 练习:15. 在100!的积中,含质因数5的个数是:____16.一串数1,4,7,10,……,697,700相乘的积中,末尾共有零_______个(1988年全国初中数学联赛题)17. 求证:10494 | 1989!18. 求证:4! | a(a 2-1)(a+2) a 为整数五. 两个连续正整数必互质练习:19. 如果n+1个正整数都小于2n, 那么必有两个是互质数,试证之.乙. 正整数十进制的表示法一. n+1位的正整数记作:a n ×10n +a n -1×10n -1+……+a 1×10+a 0其中n 是正整数,且0≤a i ≤9 (i=1,2,3,…n)的整数, 最高位a n ≠0.例如:54321=5×104+4×103+3×102+2×10+1.例题:从12到33共22个正整数连写成A=121314…3233. 试证:A 能被99整除.证明:A=12×1042+13×1040+14×1038+……+31×104+32×102+33=12×10021+13×10020+14×1019+……+31×1002+32×100+33.∵ 100的任何次幂除以9的余数都是1,即100 n =(99+1) n ≡1 (mod 9)∴ A=99k+12+13+14+……+31+32+33 (k 为正整数 )=99 k+(12+33)+(13+32)+…+(22+23)=99k+45×11=99k+99×5.∴A 能被99整除.练习:20. 把从19到80的连结两位数连写成19202122…7980.试证明这个数能被1980整除二. 常见的一些特例 43421Λ99999个n =10 n -1, 321Λ33333个n =31(10 n -1), 9111111=321Λ个n (10 n -1). 例题:试证明12,1122,111222,11112222,……这些数中的任何一个,都是两个相邻的正整数的积.证明:第n 个数是43421Λ321Λ2122221111个个n n =)110(91 -n ×10 n +)110(92-n =)110(91 -n (10 n +2) =331103110+-⨯-n n=)13110(3110+-⨯-n n =321Λ33333个n ×433333)1(321Λ个-n . 证毕. 练习:21. 化简 43421Λ99999个n ×43421Λ99999个n +143421Λ99999个n =_______________________________.22. 化简 43421Λ321Λ2122222-1111个个n n =____________________________________________.23. 求证 321Λ119901111个是合数.24. 已知:存在正整数 n,能使数321Λ11111个n 被1987整除.求证:数p=321Λ11111个n 43421Λ99999个n 321Λ88888个n 43421Λ77777个n 和数q=321Λ111111个+n 43421Λ919999个+n 321Λ818888个+n 43421Λ717777个+n 都能被1987整除.(1987年全国初中数学联赛题)25. 证明: 把一个大于1000的正整数分为末三位一组,其余部分一组,若这两组数的差,能被7(或13)整除,则这个正整数就能被7(或13)整除.26. 求证:321Λ11111个n ×143421Λ010000个-n 5+1是完全平方数.丙. 末位数的性质.一.用N (a)表示自然数的个位数. 例如a=124时,N (a)=4; a=-3时,N (a)=3.1. N (a 4k+r )=N (a r ) a 和k 都是整数,r=1,2,3,4.特别的: 个位数为0,1,5,6的整数,它们的正整数次幂的个位数是它本身.个位数是4,9 的正偶数次幂的个位数也是它本身.2. N (a)=N (b)⇔N (a -b)=0⇔10 |(a -b).3. 若N (a)=a 0, N (b)=b 0. 则N (a n )=N (a 0n ); N (ab)=N (a 0b 0).例题1:求①53100 ; 和 ②777的个位数. 解:①N (53100)=N (34×24+4)=N (34)=1②先把幂的指数77化为4k+r 形式,设法出现4的因数.77=77-7+7=7(76-1)+4+3=7(72-1)(74+72+1)+4+3=7×4×12× (74+72+1)+4+3=4k+3∴N(777)=N(74k+3)=N(73)=3.练习:27. 19891989的个位数是______,999的个位数是_______.28. 求证:10 | (19871989-19931991).29. 2210×3315×7720×5525的个位数是______.二. 自然数平方的末位数只有0,1,4,5,6,9;连续整数平方的个位数的和,有如下规律:12,22,32,……,102的个位数的和等于1+4+9+6+5+5+9+4+0=45.1. 用这一性质计算连续整数平方的个位数的和例题1. 填空:12,22,32,……,1234567892的和的个位数的数字是_______.(1991年全国初中数学联赛题) 解:∵12,22,32,……,102的个位数的和等于1+4+9+6+5+5+9+4+0=45.11到20;21到30;31到40;………123456781到123456789,的平方的个位数的和也都是45. 所以所求的个位数字是:(1+4+9+6+5+5+9+4+0)×(12345678+1)的个位数5.2. 为判断不是完全平方数提供了一种方法例题2. 求证:任何五个连续整数的平方和不能是完全平方数.证明:(用反证法)设五个连续整数的平方和是完全平方数,那么可记作:(n-2)2+(n-1)2+n2+(n+1)2+(n+2)2=k2(n, k都是整数)5(n2+2)=k2 .∵k2是5的倍数,k也是5的倍数.设k=5m, 则5(n2+2)=25m2.n2+2=5m2.n2+2是5的倍数,其个位数只能是0或5,那么n2的倍数是8或3.但任何自然数平方的末位数,都不可能是8或3.∴假设不能成立∴任何五个连续整数的平方和不能是完全平方数.3.判断不是完全平方数的其他方法例题3. 已知:a是正整数.求证:a(a+1)+1不是完全平方数证明:∵a(a+1)+1=a2+a+1,且a是正整数∴a2< a(a+1)+1=a2+a+1<(a+1)2,∵a 和a+1是相邻的两个正整数,a(a+1)+1介于它们的平方之间∴a(a+1)+1不是完全平方数例题4. 求证:321Λ11111个n(n>1的正整数) 不是完全平方数证明:根据奇数的平方数除以4必余1,即(2k+1)2=4(k+1)+1.但321Λ11111个n =1100111112-+321Λ个n=4k+11=4k+4×2+3=4(k+2)+3即32 1Λ11111个n除以4余数为3,而不是1,∴它不是完全平方数.例题5. 求证:任意两个奇数的平方和,都不是完全平方数.证明:设2a+1,2b+1(a,b是整数)是任意的两个奇数.∵(2a+1)2+(2b+1)2=4a2+4a+1+4b2+4b+1=4(a2+b2+a+b)+2.这表明其和是偶数,但不是4的倍数,故任意两个奇数的平方和,都不可能是完全平方数.三. 魔术数:将自然数N 接写在每一个自然数的右面,如果所得到的新数,都能被N整除,那么N 称为魔术数.常见的魔术数有:a) 能被末位数整除的自然数,其末位数是1,2,5 (即10的一位正约数是魔术数) b) 能被末两位数整除的自然数,其末两位数是10,20,25,50(即100的两位正约数也是魔术数))c) 能被末三位数整除的自然数,其三末位数是100,125,200,250,500(即1000的三位正约数也是魔术数)练习:30. 在小于130的自然数中魔术数的个数为_________.(1986年全国初中数学联赛题)四. 两个连续自然数,积的个位数只有0,2,6;和的个位数只有1,3,5,7,9. 练习:31. 已知:n 是自然数,且9n 2+5n+26的值是两个相邻自然数的积,那么n 的值是:___________________. (1985年上海初中数学竞赛题)丁. 质数、合数1. 正整数的一种分类:⎪⎩⎪⎨⎧).1(.)1( 1然数整除和本身外还能被其他自除合数;然数整除和本身外不能被其他自除质数; 2. 质数中,偶数只有一个是2,它也是最小的质数.3. 互质数:是指公约数只有1的两个正整数. 相邻的两个正整数都是互质数.例题:试写出10个连续自然数,个个都是合数.解:答案不是唯一的,其中的一种解法是:令A=1×2×3×4×5×6×7×8×9×10×11那么A+2,A+3,A+4,A+5,A+6,A+7,A+8,A+9,A+10,A+11就是10个连续数,且个个都是合数.一般地,要写出n 个连续自然数,个个是合数,可用令m=n+1, 那么m !+2, m !+3, m !+4, +……+ m !+n+1 就是所求的合数.∵m !+i (2≤i ≤n+1) 有公约数i.练习:32. 已知质数a , 与奇数b 的和等于11,那么a=___,b=___.33. 两个互质数的最小公倍数是72,若这两个数都是合数,那么它们分别等于____,____.34. 写出10个连续正奇数,个个都是合数,可设m=(10+1)×2, m !=22!那么所求的合数是22!+3,_____,____,____,……35. 写出10个连续自然数,个个都是合数,还可令 N=2×3×5×7×11.(这里11=10+1,即N 是不大于11的质数的积).那么 N+2,N+3,N+4,……N+11就是所求的合数.这是为什么?如果 要写15个呢?36. 已知:x, m, n 都是正整数 . 求证:24m+2+x 4n 是合数.戊.奇数和偶数1.整数的一种分类:⎩⎨⎧)12(.2)02(2,余数为即除以整除的整数奇数:不能被,余数为即除以整除的整数;偶数:能被2. 运算性质:奇数+奇数=偶数, 偶数+偶数=偶数, 奇数+偶数=奇数.奇数×奇数=奇数,偶数×偶数=偶数,奇数×偶数=偶数.(奇数)正整数=奇数,(偶数)正整数=偶数.4. 其他性质:① 两个连续整数必一奇一偶,其和是奇数,其积是偶数.② 奇数的平方被4除余1;偶数的平方能被4整除;除以4余2或3的整数不是平方数.a) 2n (n 为正整数)不含大 于1的奇因数.b) 若两个整数的和(差)是奇数,则它们必一奇一偶.c) 若n 个整数的积是奇数,则它们都是奇数.例1. 设m 与n 都是正整数,试证明m 3-n 3为偶数的充分必要条件是m -n 为偶数.证明:∵m 3-n 3=(m -n )(m 2+mn+n 2).当m -n 为偶数时,不论m 2+mn+n 2是奇数或偶数,m 3-n 3都是偶数;∴m -n 为偶数是m 3-n 3为偶数的充分条件.当m -n 为奇数时,m, n 必一奇一偶,m 2,mn ,n 2三个数中只有一个奇数,∴m 2+mn+n 2是奇数,从而m 3-n 3也是奇数.∴m -n 为偶数,是m 3-n 3为偶数的必要条件.综上所述m 3-n 3为偶数的充分必要条件是m -n 为偶数.例2. 求方程x 2-y 2=1990的整数解.解:(x+y)(x -y)=2×5×199.若x, y 同是奇数或同是偶数,则 x+y ,x -y 都是偶数,其积是4的倍数,但1990不含4的因数,∴方程左、右两边不能相等.若x, y 为一奇一偶,则x -y ,x+y 都是奇数,其积是奇数,但1990不是奇数,∴方程两边也不能相等.综上所述,不论x, y 取什么整数值,方程两边都不能相等.所以 原方程没有整数解本题是根据整数的一种分类:奇数和偶数,详尽地讨论了方程的解的可能性.练习:37. 设n 为整数,试判定n 2-n+1是奇数或偶数.38. 1001+1002+1003+……+1989其和是偶数或奇数,为什么?39. 有四个正整数的和是奇数,那么它们的立方和,不可能是偶数,试说明理由.40. 求证:方程x 2+1989x+9891=0没有整数根.41. 已知: ⎩⎨⎧=⨯⨯⨯⨯=++++.0321321n x x x x x x x x n n ΛΛ; 求证:n 是4的倍数. 42. 若n 是大于1的整数,p=n+(n 2-1)2)1(1n --试判定p 是奇数或偶数,或奇偶数都有可能. (1985年全国初中数学联赛题)已. 按余数分类1. 整数被正整数 m 除,按它的余数可分为m 类,称按模m 分类.如:模m=2,可把整数分为2类:{2k}, {2k+1} k 为整数,下同模m=3,可把整数分为3类:{3k}, {3k+1},{3k+2}.……模m=9,可把整数分为9类:{9k},{9k+1},{9k+2}.…{9k+8}.2. 整数除以9的余数,与这个整数各位上的数字和除以9的余数相同.如:6372,5273,4785各位数字和除以9的余数分别是0,8,6. 那么这三个数除以9的余数也分别是0,8,6.3. 按模m 分类时,它们的余数有可加,可乘,可乘方的性质.如:若a=5k 1+1, b=5k 2+2.则a+b 除以5 余数 是3 (1+2);ab 除以5余2 (1×2);b 2 除以5余4 (22).例1. 求19891989除以7的余数.解:∵19891989=(7×284+1)1989,∴19891989≡11989 ≡1 (mod 7).即19891989除以7的余数是1.练习:43. 今天是星期一,99天之后是星期________.44. n 个整数都除以 n -1, 至少有两个是同余数,这是为什么?45. a 是整数,最简分数7a 化为小数时,若为循环小数,那么一个循环节最多有几位?4. 运用余数性质和整数除以9的余数特征,可对四则运算进行检验例2. 下列演算是否正确?① 12625+9568=21193 ; ② 2473×429=1060927.解:①用各位数字和除以9,得到余数:12625,9568,21193除以9的余数分别是7,1,7.∵ 7+1≠7, ∴演算必有错.② 2473,429,1060927除以9的余数分别是7,6,7.而7×6=42,它除以9余数为6,不是7,故演算也有错.注意:发现差错是准确的,但这种检验并不能肯定演算是绝对正确.练习:46. 检验下列计算有无差错:①372854-83275=289679 ; ②23366292÷6236=3748.5. 整数按模分类,在证明题中的应用例3. 求证:任意两个整数a 和b ,它们的和、差、积中,至少有一个是3的倍数.证明:把整数a 和b 按模3分类,再详尽地讨论.如果a, b 除以3,有同余数 (包括同余0、1、2),那么a, b 的差是3的倍数;如果a, b 除以3,余数不同,但有一个余数是0,那么a, b 的积是3的倍数;如果a, b 除以3,余数分别是1和2,那么a, b 的和是3的倍数.综上所述任意两个整数a ,b ,它们的和、差、积中,至少有一个是3的倍数.(分类讨论时,要求做到既不重复又不违漏)例4. 已知: p ≥5,且 p 和2p+1都是质数.求证:4p+1是合数.证明:把整数按模3分类. 即把整数分为3k,3k+1,3k+2 (k 为整数)三类讨论∵p 是质数,∴不能是3的倍数,即p ≠3k ;当p=3k+1时, 2p+1=2(3k+1)+1=3(2k+1). ∴ 2p+1不是质数,即p ≠3k+1; 只有当质数p=3k+2时, 2p+1=2(3k+2)+1=6k+5.∴2 p+1也是质数, 符合题设.这时,4p+1=4(3k+2)+1=3(4k+3)是合数. 证毕练习:47. 已知:整数a 不能被2和3整除 . 求证:a 2+23能被24整除.48. 求证:任何两个整数的平方和除以8,余数不可能为6.49. 若正整数a 不是5的倍数. 则a 8+3a 4-4能被100整除.50. 已知:自然数n>2求证:2n -1和2n +1中,如果 有一个是质数,则另一个必是合数.51.设a,b,c 是三个互不相等的正整数,求证 a 3b -ab 3,b 3c -bc 3,c 3a -ca 3三个数中,至少有一个能被10整除. (1986年全国初中数学联赛题)庚. 整数解1. 二元一次方程 ax+by=c 的整数解:当a,b 互质时,若有一个整数的特解⎩⎨⎧==00y y x x 那么可写出它的通解)(00为整数k ak y y bk x x ⎩⎨⎧-=+= 2. 运用整数的和、差、积、商、幂的运算性质整数±整数=整数, 整数×整数=整数,整数÷(这整数的约数)=整数, (整数)自然数=整数3. 一元二次方程,用求根公式,根的判别式,韦达定理讨论整数解.4. 根据已知条件讨论整数解.例1. 小军和小红的生日.都在10月份,且星期几也相同,他们生日的日期的和等于34,小军比小红早出生,求小军的生日.解:设小军和小红的生日分别为x, y ,根据题意,得⎩⎨⎧=+=-347x y k x y (k=1,2,3,4) 2x=34-7k x=17-k 27 k=1, 3时, x 没有整数解;当k=2时, ⎩⎨⎧==.2410y x , 当k=4时,⎩⎨⎧==.313y y x , (10月份没有31日,舍去) ∴小军的生日在10月10日例2. 如果一个三位数除以11所得的商,是这个三位数的各位上的数的平方和,试求符合条件的所有三位数. (1988年泉州市初二数学双基赛题)解:设三位数为100a+10b+c, a, b, c 都是整数,0<a ≤9,0≤b, c ≤9.那么 1191110100c b a b a c b a +-++=++ , 且-8<a -b+c<18. 要使a -b+c 被11整除,其值只能是0和11.( 1)当a -b+c=0时, 得9a+b=a 2+b 2+c 2.以b=a+c 代入,并整理为关于a 的二次方程,得2a 2+2(c -5)a+2c 2-c=0根据韦达定理⎪⎩⎪⎨⎧-=-=+.2522121c c a a c a a , 这是必要而非充分条件. ∵5-c>0, 以c=0, 1, 2, 3, 4 逐一讨论a 的解.当 c=2, 4时,无实数根; 当c=1, 3时,无整数解;只有当c=0时,a=5;或 a=0. (a=0不合题意,舍去)∴只有c=0, a=5, b=5适合∴所求的三位数是550;(2)当a -b+c=11时, 得9a+b+1=a 2+b 2+c 2.以b=a+c 代入,并整理为关于a 的二次方程,得2a 2+2(c -16)a+2c 2-23c+131=0.仿(1)通过韦达定理,由c 的值逐一以讨论a 的解.只有当c=3时, a=8, b=0适合所有条件.即所求三位数为803.综上所述,符合条件的三位数有550和803.练习:52. 正整数x 1, x 2, x 3,……x n 满足等式x 1+x 2+x 3+x 4+x 5=x 1x 2x 3x 4x 4x 5 那么 x 5的最大值是________. (1988年全国初中数学联赛题)53. 如果p, q, pq q p 12,12-- 都是整数,.且p>1, q>1, 试求p+q 的值. (1988年全国初中数学联赛题) 54.能否找到这样的两个正整数m 和n ,使得等式m 2+1986=n 2成立. 试说出你的猜想,并加以证明. (1986年泉州市初二数学双基赛题) 55.当m 取何整数时,关于x 的二次方程m 2x 2-18mx+72=x 2-6x 的根是正整数,并求出它的根. (1988年泉州市初二数学双基赛题) 56.若关于x 的二次方程(1+a )x 2+2x+1-a=0的两个实数根都是整数,那么a 的取值是________________. (1989年泉州市初二数学双基赛题) 57.不等边三角形的三条边都是整数,周长的值是28,最大边与次大边的差比次大边与最小边的差大1,适合条件的三角形共有____个,它们的边长分别是:______________________________________________________________. 58.直角三角形三边长都是整数,且周长的数值恰好等于面积的数值,求各边长. 59.鸡翁一,值钱;,鸡母一,值钱三;鸡雏三,值钱一.百钱买百鸡,问鸡翁、鸡母、鸡雏各几何? 60. 甲买铅笔4支,笔记本10本,文具盒1个共付1.69元,乙买铅笔3支,笔记本7本,文具盒1个共付1.26元,丙买铅笔、笔记本、文具盒各1,应付几元? 若1×2×3×4×……×99×100=12 n ×M ,其中M 为自然数,n 为使得等式成立的最大自然数,则M 是( )(A).能被2整除,不能被3整除 . (B).能被3整除,但不能被2整除.(C).被4整除,不能被3整除. (D).不能被3整除,也不能被2整除.(1991年全国初中数学联赛题)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学竞赛辅导训练
——盈亏问题
根据一定人数,分配一定物品,在两次分配中一次有余,一次不足,或两次都有余或两次都不足,这类涉及分配有余或不足的问题,叫做盈亏问题。

基本解题方法:(盈+亏)÷(两次分得之差)=人数
(大盈-小盈)÷(两次分得之差)=人数
(大亏-小亏)÷(两次分得之差)=人数
例1、小玲买苹果,买4斤还剩1元8角钱,买6斤差4元2角,苹果每斤多少元?
解:(1.8+4.2)÷(6-4)=6÷2=3(元)
答:苹果每斤3元。

练习题:
1、童子分桃,每人分4个剩3个,每人分6个不足7个。

求童子几人,桃几个?
2、童子分桃,其中两人各少分2个,余者每人分4个还剩5个,若2人各得2个,余者每人分6个少17个,求童子数和桃数?
3、有井不知其深,用绳两折测之剩3尺,三折测之差3尺。

求井深和绳长。

4、某校学生分住宿舍,一屋住7人余7人没处住,一屋住9人则空一屋。

求屋数和人数?
5、陈老师给小朋友分饼干,每人分3块要多出5块,如果每人分5块还少9块。

小朋友有多少人?饼干共有多少块?
6、学校有一批图书,分给几个班,如果每班分10本,则余48本,如果每班分13本,
则不足24本。

问每班分几本刚好分完?
7、数学老师下班前批改两组同学的作业,如果每分钟批5道题,要晚下班4分钟才批完,如果每分钟批8道题,下班前5分钟批完,这两组同学的作业共有多少题?
8、有笔记本若干,奖给三好学生,每人发3本剩48本,每人非5本仍剩12本,问三好学生几人?笔记本几本?
9、一个班召开家长会,给每位家长各一只茶杯,结果少5只,又到总务处借来原来杯子数的一半,这时却多出13只杯子,问这次到会的家长有多少人?
10、学校有一批树苗,交给若干名少先队员去栽种,一次一次往下分,每次分一棵,最后剩下12棵不够分,如果再拿来8棵树苗,那么每个少先队员正好栽10棵,问参加栽树的少先队员多少人?原来树苗多少棵?
11、小卫每天早晨7点从家出发上学去,如果分分钟走60米,则迟到6分钟,如果分分钟走80米,则可提前3分钟到校。

求从家里出发需每分钟多少米才准时到学校?小卫家距离学校多少米?
12、猴妈妈采来一堆桃子,平均分给小猴子吃,每只小猴子分10个,有两只小猴子没分到,第二次重分,每只小猴子分8个,刚好分完。

问这堆桃子共有多少个?小猴子有多少只?
参考答案:
1、(3+7)÷(6-4)=5(人)
4×5+3=23(个)
2、[5-2×2+(17-2×2)]÷(6-4)=14÷2=7(人)
(4-2)×2+4×(7-2)+5=29(个)
3、井深:(2×3+3×3)÷(3-2)=15(尺)或:(3+3)×2+3=15(尺)绳长:15×2+2×3=36(尺)
4、屋数:(7+9)÷(9-7)=8(间)
人数:7×8+7=63(人)
5、(5+9)÷(5-3)=14÷2=7(人)
3×7+5=26(块)
6、(48+24)÷(13-10)=24(班)
10×24+48=288(本)
288÷24=12(本)
7、(5×4+8×5)÷(8-5)=60÷3=20(分钟)
5×(20+4)=120(题)
8、(48-12)÷(5-3)=18(人)
3×18+48=102(本)
9、(13+5)×2+5=41(人)
10、队员:12+8=20(人)
树苗:10×20-8=192(棵)
11、(60×6+80×3)÷(80-60)=(360+240)÷20=600÷20=30(分)
60×(30+6)=2160(米)
2160÷30=72(米)
答:需每分钟72米才准时到学校。

家距离学校2160米。

12、(10×2)÷(10-8)=20÷2=10(只)
8×10=80(个)。

相关文档
最新文档