2017年广东省广州市南沙区珠江中学八年级上学期期中数学试卷与解析答案
2017年八年级(上)数学期中考试试卷与答案
2017 年八年级(上)数学期中考试试卷(考试时间 100 分钟,试卷总分 100 分)一、选择题 (每小题 2 分,计 16 分.将正确答案的序号填写在下面的表格中 ) 1.以下轴对称图形中,对称轴条数最少的是(▲)AB C D2. 9 的平方根是( ▲ )A . 3B .± 3C .- 3D . 813.下列各数中,有理数是( ▲ )A . 8B .223D .7C . 424.下列各组线段能构成直角三角形的一组是( ▲ )A .3,4,5B .2,3,4C .1, 2, 3D .4, 5,65.根据下列已知条件,能够画出唯一△ABC 的是( ▲ )A .AB =5,BC =6,∠ A =70°B .AB =5,BC =6,AC =13C .∠ A = 50°,∠ B = 80°, AB = 8,D .∠ A = 40°,∠ B = 50°,∠ C =90°AABDE CBDC第 7 题第 6 题6.如图,△ ABD ≌△ ACE ,∠ AEC = 110°,则∠ DAE 的度数为( ▲ )A .40°B .30°C . 50°D . 60°7.如图,△ ABC 中, AB =AC , AD 是∠ BAC 的平分线,已知 AB =5, AD =3,则 BC 的长为( ▲ )A . 5B . 4C . 10D . 88. 规定:四条边对应相等,四个角对应相等的两个四边形全等.某学习小组在研究后发现判定两个四边形全等需要五组对应条件,于是把五组条件进行分类研究,并且针对二条边和三个角对应相等类型进行研究提出以下几种可能:① AB=A 1B 1, AD=A 1D 1,∠ A= ∠A 1,∠ B= ∠ B 1,∠ C=∠ C 1;② AB=A 1B 1, AD=A 1D 1,∠ A= ∠A 1,∠ B= ∠ B 1,∠ D=∠ D 1 ;③AB=A 1B 1, AD=A 1D 1,∠ B= ∠B 1,∠ C=∠ C1,∠ D=∠ D1;④ AB=A 1B 1, CD=C1D 1,∠ A= ∠A 1,∠ B= ∠ B1,∠ C=∠ C1.其中能判定四边形ABCD 和四边形 A 1B1C1D 1全等有(▲)个A . 1B. 2C. 3D. 4A A1D D1第 8 题B CB1C1二、填空题(每小题2分,共 20分)9.化简:16=▲,8▲.3=2711+ 3 10.比较大小:2▲.(用“>”、“=”或“<”填空).411.太阳的半径约是696000 千米,用科学计数法表示(精确到万位)约是 _____▲ ____千米.12.如图, PD⊥ AB, PE⊥ AC,垂足分别为 D 、 E,要使△ APD ≌△ APE,可添加的条件是▲. ( 写出一个即可 )BDC AAP DM O N(第 12题)E C A B B C第 13题第14题13.如图 ,在△ ABC 中,∠ C= 90°, AD 平分∠ BAC 交 BC 于点 D ,若 AD= 13, AC= 12,则点D 到 AB 的距离为 ______▲ _______14.如图,在△ ABC 中,∠ ABC、∠ ACB 的角平分线交于点O,MN 过点 O,且 MN∥ BC,分别交 AB、 AC 于点 M、N. 若 MN = 5cm, CN= 2cm,则 BM =▲cm15.如图,△ ABC 为等边三角形, BD 为中线,延长BC 至 E,使 CE=CD =1,连接 DE,则 DE=▲.AAA BDDP EC DB C-1O12B E C(第 15 题)第 16题第18题16.如图,正方形OABC 的边 OC 落在数轴上,点 C 表示的数为 1,点 P 表示的数为- 1,以 P 点为圆心, PB 长为半径作圆弧与数轴交于点D,则点 D 表示的数为▲.17.下面是“经过已知直线外一点作这条直线的垂线“的尺规作图过程 .已知:直线 l 和 l外一点 P.P求作:直线 l 的垂线,使它经过点Pl作法:如图,( 1)在直线 l 上任意两点 A、B;P( 2)分别以点 A, B 为圆心, AP, BP 长为l半径作弧,两弧相交于点Q;A B( 3)作直线 PQ,Q所以直线 PQ 就是所求作的垂线。
2017年秋期期中八年级学业水平测试数学-答案
2017年秋期期中八年级学业水平测试数学试题参考答案及评分标准一、选择题(每题3分,共30分)1. B2. D3. CB4. D5. C6. D7. A8. A 9.B 10.C 注:第3题选C 或选B 或选CB 均得3分。
原题:B .(x +2)2-1=(x +3)(x +1)二、填空题(每题3分,共15分)11. 4, ±3 2 12.49, 13. 两个角都是锐角,它们的和是直角,假14. 2ab 3 2ab 2 2ab 2 15. 3三、解答题(本题共8个小题,满分75分)16.⑴解:原式=9x 4y 2·(6xy 3)÷(9x 3y 4) ..................................2分=54x 5y 5÷9x 3y 4.................................................3分=6x 2y...............................................................4分(2)解:原式=3x 2+6x-3(x 2+2x-3)...........................................2分=3x 2+6x-3x 2-6x+9..............................................3分=9.....................................................................4分(3)解:原式=-()()x y 22224...............................................2分 =+-()()x y x y 222244.................................................3分=++-()()()x y x y x y 22422.........................................4分 (4) 解:原式=3a(x 2+2xy+y 2)................................................2分=3a(x +y)2...................................................4分17.解:原式=[4x 2y 2-9+x 2y 2+6xy+9]xy ÷............................2分=[5x 2y 2 +6xy]xy ÷...............................................3分=5xy+6.................................................................4分当 x=51,y =-2时,原式=546)2(51=+-⨯⨯.........................6分 18.(1)解法一:原式=(mx -my)+(nx -ny)................................2分=m(x-y)+n(x-y).........................................3分=(m+n)(x-y)................................................4分解法二:原式=(mx+nx)-(my+ny)...........................................2分=x(m+n)-y(m+n)..............................................3分=(m+n)(x-y).....................................................4分(2)解法一:原式=(2a+4b)-(3ma+6mb)..................................2分=2(a+2b)-3m(a+2b).....................................3分=(2-3m)(a+2b)............................................4分解法二:原式=(2a-3ma)+(4b-6mb).......................................2分=a(2-3m)+2b(2-3m).........................................3分=(2-3m)(a+2b).................................................4分19.(1)解:∵a+b=3,ab=-12,∴(1)(a-b)2 (2)a2+b2=a2-2ab+b2 ..........................1分=(a2+2ab+b2)-2ab........2分=(a2+2ab+b2)-4ab ..............2分=(a+b)2-2ab....................3分=(a+b)2-4ab ........................3分=32-2×(-12)=33..................4分=32-4×(-12)=57.......................4分20.解:(1)△ABE≌△CDF,△AFD≌△CEB,△ABC≌△CDA..................3分(2)∵AB∥CD,∴∠1=∠2,..................4分∵AF=CE,∴AF+EF=CE+EF,即AE=FC,..................6分又∵∠ABE=∠CDF在△ABE和△CDF中,,∴△ABE ≌△CDF (AAS )...................8分其它两种方法证明结果请参照以上证明过程合理给分21.(1)证明:在△BAD 与△CAD 中,⎩⎪⎨⎪⎧AB =AC ,AD =AD ,BD =CD ,∴△BAD ≌△CAD (S .S .S .),..................3分∴∠BAE =∠CAE ...................4分又∵AB =AC ,∴△ABC 是等腰三角形,..................5分∴AE ⊥BC .(等腰三角形三线合一)..................6分21.(2)证明:∵点D 是△ABC 中BC 边的中点,∴BD =DC ...................1分 ∵DE ⊥AC 于点E ,DF ⊥AB 于点F ,∴△BFD 和△DEC 为直角三角形...................2分在Rt △BFD 和Rt △CE D 中,⎩⎪⎨⎪⎧DE =DF ,DB =DC , ∴Rt △BFD ≌Rt △CED (H.L.),..................4分∴∠B =∠C ,.................5分∴AB =AC.(等角对等边)..................6分22.(1) ab 4 .................3分(2)ab b a b a 4)()(22+-=+ .................5分(3)上面部分的阴影周长为:2(a m a n -+-) .................6分下面部分的阴影周长为:2(b n b m 22-+-) .................7分总周长为:b a n m 8444--+ .................8分又m b a =+2总周长为n 4 .................9分23.解:(1)BP=2t ,则PC=BC ﹣BP=6﹣2t ;..................2分(2)△BPD 和△CQP 全等理由:∵t=1秒∴BP=CQ=2×1=2厘米,∴CP=BC﹣BP=6﹣2=4厘米,..................3分∵AB=8厘米,点D为AB的中点,∴BD=4厘米,∴PC=BD,..................4分在△BPD和△CQP中,BD=PC,∠B=∠C,BP=CQ,∴△BPD≌△CQP(SAS);..................6分(3)∵点P、Q的运动速度不相等,∴BP≠CQ..................7分又∵△BPD≌△CPQ,∠B=∠C,∴BP=PC=3cm,CQ=BD=4cm,..................8分∴点P,点Q运动的时间t=BP2=32秒,..................9分∴V Q=CQt=83厘米/秒...................10分。
2017-2018学年广东省八年级(上)期中数学试卷
2017-2018学年广东省八年级(上)期中数学试卷一、选择题(请将正确答案序号填入以下表格相应的题号下,否则不得分)1.下列图形分别是桂林、湖南、甘肃、佛山电视台的台徽,其中为轴对称图形的是()A.B.C.D.2.以下列各组线段为边,能组成三角形的是()A.2cm,3cm,5cm B.5cm,6cm,10cm C.1cm,1cm,3cm D.3cm,4cm,9cm 3.已知点M(a,3),点N(2,b)关于y轴对称,则(a+b)2015的值()A.﹣3 B.﹣1 C.1 D.34.如图,∠B=∠D=90°,CB=CD,∠1=30°,则∠2=()A.30°B.40°C.50°D.60°5.十二边形的外角和是()A.180°B.360°C.1800°D.2160°6.已知等腰三角形一边长为4,一边的长为6,则等腰三角形的周长为()A.14 B.16 C.10 D.14或167.如图,△ABC中,AB=AC,D为BC的中点,以下结论:(1)△ABD≌△ACD;(2)AD⊥BC;(3)∠B=∠C;(4)AD是△ABC的角平分线.其中正确的有()A.1个B.2个C.3个D.4个8.已知△DEF≌△ABC,AB=AC,且△ABC的周长是23cm,BC=4cm,则△DEF的边长中必有一边等于()A.9.5cm B.9.5cm或9cm C.4cm或9.5cm D.9cm9.下列条件中,能判定△ABC≌△DEF的是()A.∠A=∠D,∠B=∠E,∠C=∠F B.AC=DF,∠B=∠E,BC=EFC.AB=DE,∠B=∠E,AC=DF D.AB=DE,∠B=∠E,BC=EF10.如图,BE、CF是△ABC的角平分线,∠ABC=80°,∠ACB=60°,BE、CF相交于D,则∠CDE的度数是()A.110°B.70°C.80°D.75°二、填空题11.三角形的三边长分别为5,x,8,则x的取值范围是.12.已知如图,△ABC≌△FED,且BC=DE,∠A=30°,∠B=80°,则∠FDE=.13.如图,则∠A+∠B+∠C+∠D+∠E+∠F的度数为度.14.如图,已知AD平分∠BAC,要使△ABD≌△ACD,根据“AAS”需要添加条件.15.如图,在生活中,我们经常会看见在电线杆上拉两条钢线,来加固电线杆,这是利用了三角形的.16.如果一个多边形的每个内角都相等,且内角和为1800°,那么该多边形的一个外角是.17.在直角坐标系中,如果点A沿x轴翻折后能够与点B(﹣1,4)重合,那么A,B两点之间的距离等于.18.如图,在△ABC中,AB=AC,AF是BC边上的高,点E、D是AF的三等分点,若△ABC 的面积为12cm2,则图中全部阴影部分的面积是cm2.19.如图,已知∠ABD=40°,∠ACD=35°,∠A=55°,则∠BDC=.20.△ABC和△FED中,BD=FC,∠B=∠F.当添加条件时,就可得到△ABC≌△FED,依据是(只需填写一个你认为正确的条件).三、解答题(共40分)21.完成下列证明过程.如图,已知AB∥DE,AB=DE,D,C在AF上,且AD=CF,求证:△ABC≌△DEF.证明:∵AB∥DE∴∠=∠()∵AD=CF∴AD+DC=CF+DC即在△ABC和△DEF中AB=DE∴△ABC≌△DEF.22.如图,四边形ABCD中,E点在AD上,其中∠BAE=∠BCE=∠ACD=90°,且BC=CE.请完整说明为何△ABC与△DEC全等的理由.23.如图,已知△ABC的三个顶点分别为A(2,3)、B(3,1)、C(﹣2,﹣2).(1)请在图中作出△ABC关于y轴对称图形△DEF;(2)写出D、E、F的坐标.24.如图,AB=AC,AC的垂直平分线交AB于D,交AC于E.(1)若∠A=40°,求∠BCD的度数;(2)若AE=5,△BCD的周长17,求△ABC的周长.25.如图,在四边形ABCD中,AD∥BC,E是AB的中点,连接DE并延长交CB的延长线于点F,点M在BC边上,且∠MDF=∠ADF.(1)求证:△ADE≌△BFE.(2)连接EM,如果FM=DM,判断EM与DF的关系,并说明理由.2017-2018学年广东省八年级(上)期中数学试卷参考答案与试题解析一、选择题(请将正确答案序号填入以下表格相应的题号下,否则不得分)1.下列图形分别是桂林、湖南、甘肃、佛山电视台的台徽,其中为轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:A、不是轴对称图形,故错误;B、不是轴对称图形,故错误;C、不是轴对称图形,故错误;D、是轴对称图形,故正确.故选D.【点评】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.以下列各组线段为边,能组成三角形的是()A.2cm,3cm,5cm B.5cm,6cm,10cm C.1cm,1cm,3cm D.3cm,4cm,9cm 【考点】三角形三边关系.【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【解答】解:根据三角形的三边关系,知A、2+3=5,不能组成三角形;B、5+6>10,能够组成三角形;C、1+1<3,不能组成三角形;D、3+4<9,不能组成三角形.故选B.【点评】此题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.3.已知点M(a,3),点N(2,b)关于y轴对称,则(a+b)2015的值()A.﹣3 B.﹣1 C.1 D.3【考点】关于x轴、y轴对称的点的坐标.【分析】根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”求出a、b的值,然后代入代数式进行计算即可得解.【解答】解:∵点M(a,3),点N(2,b)关于y轴对称,∴a=﹣2,b=3,所以,(a+b)2015=(﹣2+3)2015=1.故选C.【点评】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数.4.如图,∠B=∠D=90°,CB=CD,∠1=30°,则∠2=()A.30°B.40°C.50°D.60°【考点】全等三角形的判定与性质.【分析】根据直角三角形两锐角互余求出∠3,再利用“HL”证明Rt△ABC和Rt△ADC全等,根据全等三角形对应角相等可得∠2=∠3.【解答】解:∵∠B=90°,∠1=30°,∴∠3=90°﹣∠1=90°﹣30°=60°,在Rt△ABC和Rt△ADC中,,∴Rt△ABC≌Rt△ADC(HL),∴∠2=∠3=60°.故选D.【点评】本题考查了全等三角形的判定与性质,直角三角形两锐角互余的性质,熟练掌握三角形全等的判定方法是解题的关键.5.十二边形的外角和是()A.180°B.360°C.1800°D.2160°【考点】多边形内角与外角.【分析】根据任何多边形的外角和是360°即可求解.【解答】解:十二边形的外角和是360°.故选B.【点评】本题考查了多边形的外角和,理解任何多边形的外角和是360度是关键.6.已知等腰三角形一边长为4,一边的长为6,则等腰三角形的周长为()A.14 B.16 C.10 D.14或16【考点】等腰三角形的性质;三角形三边关系.【分析】因为底边和腰不明确,分两种情况进行讨论.【解答】解:(1)当4是腰时,符合三角形的三边关系,所以周长=4+4+6=14;(2)当6是腰时,符合三角形的三边关系,所以周长=6+6+4=16.故选D.【点评】注意此题一定要分两种情况讨论.但要注意检查是否符合三角形的三边关系.7.如图,△ABC中,AB=AC,D为BC的中点,以下结论:(1)△ABD≌△ACD;(2)AD⊥BC;(3)∠B=∠C;(4)AD是△ABC的角平分线.其中正确的有()A.1个B.2个C.3个D.4个【考点】等腰三角形的性质.【分析】由“三线合一”可知(2)(4)正确,由等边对等角可知(3)正确,且容易证明△ABD≌△ACD,可得出答案.【解答】解:∵AB=AC,∴∠B=∠C,∴(3)正确,∵D为BC的中点,∴AD⊥BC,∠BAD=∠CAD,∴(2)(4)正确,在△ABD和△ACD中∴△ABD≌△ACD(SSS),∴(1)正确,∴正确的有4个,故选D.【点评】本题主要考查等腰三角形的性质,掌握等腰三角形底边上的中线、底边上的高、顶角的角平分线相互重合是解题的关键.8.已知△DEF≌△ABC,AB=AC,且△ABC的周长是23cm,BC=4cm,则△DEF的边长中必有一边等于()A.9.5cm B.9.5cm或9cm C.4cm或9.5cm D.9cm【考点】全等三角形的性质.【分析】根据等腰三角形的性质求出AB,再根据全等三角形对应边相等解答.【解答】解:∵BC=4cm,∴腰长AB=×(23﹣4)=9.5cm,∵△DEF≌△ABC,∴△DEF的边长中必有一边等于9.5cm或4cm,故选:C.【点评】本题考查了等腰三角形的性质,全等三角形的性质,关键是掌握全等三角形的对应边相等.9.下列条件中,能判定△ABC≌△DEF的是()A.∠A=∠D,∠B=∠E,∠C=∠F B.AC=DF,∠B=∠E,BC=EFC.AB=DE,∠B=∠E,AC=DF D.AB=DE,∠B=∠E,BC=EF【考点】全等三角形的判定.【分析】根据全等三角形的判定定理进行判断.【解答】解:A、没有边的参与,不能判定△ABC≌△DEF,故本选项错误;B、根据SSA不能判定△ABC≌△DEF,故本选项错误;C、根据SSA不能判定△ABC≌△DEF,故本选项错误;D、由全等三角形的判定定理SAS可以证得△ABC≌△DEF.故本选项正确;故选:D.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.10.如图,BE、CF是△ABC的角平分线,∠ABC=80°,∠ACB=60°,BE、CF相交于D,则∠CDE的度数是()A.110°B.70°C.80°D.75°【考点】三角形内角和定理.【分析】由BE、CF是△ABC的角平分线,∠ABC=80°,∠ACB=60°,根据角平分线的定义,可求得∠EBC与∠FCB的度数,然后又三角形外角的性质,求得∠CDE的度数.【解答】解:∵BE、CF是△ABC的角平分线,∠ABC=80°,∠ACB=60°,∴∠CBE=∠ABC=40°,∠FCB=∠ACB=30°,∴∠CDE=∠CBE+∠FCB=70°.故选B.【点评】此题考查了三角形内角和定理、三角形外角的性质以及角平分线的定义.此题难度不大,注意掌握数形结合思想的应用.二、填空题11.三角形的三边长分别为5,x,8,则x的取值范围是3<x<13.【考点】三角形三边关系.【分析】由三角形的两边的长分别为8和5,根据已知三角形两边,则第三边的长度应是大于两边的差而小于两边的和,即可求得答案.【解答】解:根据三角形的三边关系,得:8﹣5<x<8+5,即:3<x<13.故答案为:3<x<13.【点评】本题考查了能够组成三角形三边的条件,其实用两条较短的线段相加,如果大于最长的那条就能够组成三角形.12.已知如图,△ABC≌△FED,且BC=DE,∠A=30°,∠B=80°,则∠FDE=70°.【考点】全等三角形的判定与性质.【分析】首先根据全等三角形的性质可得∠EDF=∠BCA,再根据三角形内角和定理计算出∠BCA=70°,进而得到答案.【解答】解:∵△ABC≌△FED,∴∠EDF=∠BCA,∵∠A=30°,∠B=80°,∴∠BCA=70°,∴∠EDF=70°.故答案为:70°.【点评】此题主要考查了全等三角形的性质,解题的关键是掌握全等三角形的对应边相等,题目比较简单,是中考常见题型.13.如图,则∠A+∠B+∠C+∠D+∠E+∠F的度数为360度.【考点】多边形内角与外角;三角形内角和定理.【分析】根据三角形外角的性质,以及四边形的四个内角的和是360°即可求解.【解答】解:∵∠1=∠C+∠D,∠2=∠A+∠B,∴∠A+∠B+∠C+∠D+∠E+∠F=∠1+∠2+∠E+∠F=360°.故答案是:360°.【点评】本题考查的是三角形外角的性质及三角形的外角和,熟知三角形的外角和是360度是解答此题的关键.14.如图,已知AD平分∠BAC,要使△ABD≌△ACD,根据“AAS”需要添加条件∠B=∠C.【考点】全等三角形的判定.【分析】首先根据AD平分∠BAC可得∠BAD=∠CAD,再加上公共边AD=AD,还缺少一个角相等的条件,因此可添加∠B=∠C.【解答】解:添加条件:∠B=∠C;∵AD平分∠BAC,∴∠BAD=∠CAD,在△ABD和△ACD中,,∴△ABD≌△ACD(AAS),故答案为:∠B=∠C.【点评】此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.15.如图,在生活中,我们经常会看见在电线杆上拉两条钢线,来加固电线杆,这是利用了三角形的稳定性.【考点】三角形的稳定性.【分析】根据三角形的稳定性解答即可.【解答】解:加固后构成三角形的形状,利用了三角形的稳定性.故答案为:稳定性.【点评】本题考查了三角形的稳定性,是基础题.16.如果一个多边形的每个内角都相等,且内角和为1800°,那么该多边形的一个外角是30°.【考点】多边形内角与外角.【分析】由多边形的内角和公式求得多边形的边数,然后根据任意多边形的外角和是360°求解即可.【解答】解:设这个多边形的边数为n.根据题意得:(n﹣2)×180°=1800°.解得:n=12.360÷12=30°.故答案为:30°.【点评】本题主要考查的是多边形的内角和和外角和,由多边形的内角和公式求得多边形的边数是解题的关键.17.在直角坐标系中,如果点A沿x轴翻折后能够与点B(﹣1,4)重合,那么A,B两点之间的距离等于8.【考点】翻折变换(折叠问题);坐标与图形变化﹣对称.【分析】首先依据关于x轴对称点的坐标特点可求得点A的坐标,然后依据点A和点B的坐标可求得A、B两点之间的距离.【解答】解:∵点A与点B关于x轴对称,B(﹣1,4),∴点A的坐标为(﹣1,﹣4).∴AB=4﹣(﹣4)=4+4=8.所以A,B两点之间的距离等于8.故答案为:8.【点评】本题主要考查的是翻折变换、坐标与图形的变化,依据关于x轴对称点的坐标特点求得点A的坐标是解题的关键.18.如图,在△ABC中,AB=AC,AF是BC边上的高,点E、D是AF的三等分点,若△ABC 的面积为12cm2,则图中全部阴影部分的面积是6cm2.【考点】等腰三角形的性质.【分析】首先由等腰三角形的性质可知BD=DC,从而可知AD是图形的对称轴,由轴对称图形的性质可知:阴影部分的面积等于△ABC面积的一半.【解答】解:∵AB=AC,AD是BC边上的高线,∴BD=D C.∵BD=DC,AD⊥BC,∴AD是△ABC的对称轴.由轴对称图形的性质可知:△EFC的面积=△BEF的面积.∴阴影部分的面积=△ABC的面积=6cm2.故答案为:6.【点评】本题主要考查的是等腰三角形的性质、轴对称的性质,利用轴对称的性质得到阴影部分的面积=S△ABC是解题的关键.19.如图,已知∠ABD=40°,∠ACD=35°,∠A=55°,则∠BDC=130°.【考点】三角形内角和定理.【分析】先根据三角形内角和定理求出∠DBC+∠DCB的度数,进而可得出∠BDC的度数.【解答】解:∵∠ABD=40°,∠ACD=35°,∠A=55°,∴∠DBC+∠DCB=180°﹣40°﹣35°﹣55°=50°,∴∠BDC=180°﹣50°=130°.故答案为:130°【点评】本题考查的是三角形内角和定理,熟知三角形内角和是180°是解答此题的关键.20.△ABC和△FED中,BD=FC,∠B=∠F.当添加条件AB=EF时,就可得到△ABC≌△FED,依据是SAS(只需填写一个你认为正确的条件).【考点】全等三角形的判定.【分析】先证出BC=FD,由SAS即可证明△ABC≌△EF D.【解答】解:添加条件:AB=EF;依据是SAS;理由如下:∵BD=FC,∴BC=F D.在△ABC和△EFD中,,∴△ABC≌△EFD(SAS);故答案为:AB=EF,SAS.【点评】本题考查了三角形全等的判定方法;熟练掌握全等三角形的判定方法,并能进行推理论证是解决问题的关键.三、解答题(共40分)21.完成下列证明过程.如图,已知AB∥DE,AB=DE,D,C在AF上,且AD=CF,求证:△ABC≌△DEF.证明:∵AB∥DE∴∠A=∠EDC(两直线平行,同位角相等)∵AD=CF∴AD+DC=CF+DC即AC=DF在△ABC和△DEF中AB=DE∠A=∠EDC,AC=DF∴△ABC≌△DEF(SAS).【考点】全等三角形的判定.【分析】根据平行线的性质可得∠A=∠EDC,根据等式的性质可得AC=DF,然后利用SAS 判定△ABC≌△DEF即可.【解答】证明:∵AB∥DE∴∠A=∠EDC(两直线平行,同位角相等)∵AD=CF∴AD+DC=CF+DC,即AC=DF,在△ABC和△DEF中,∴△ABC≌△DEF(SAS).【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.22.如图,四边形ABCD中,E点在AD上,其中∠BAE=∠BCE=∠ACD=90°,且BC=CE.请完整说明为何△ABC与△DEC全等的理由.【考点】全等三角形的判定.【分析】根据∠BCE=∠ACD=90°,可得∠3=∠5,又根据∠BAE=∠1+∠2=90°,∠2+∠D=90°,可得∠1=∠D,继而根据AAS可判定△ABC≌△DE C.【解答】解:∵∠BCE=∠ACD=90°,∴∠3+∠4=∠4+∠5,∴∠3=∠5,在△ACD中,∠ACD=90°,∴∠2+∠D=90°,∵∠BAE=∠1+∠2=90°,∴∠1=∠D,在△ABC和△DEC中,,∴△ABC≌△DEC(AAS).【点评】本题考查了全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.23.如图,已知△ABC的三个顶点分别为A(2,3)、B(3,1)、C(﹣2,﹣2).(1)请在图中作出△ABC关于y轴对称图形△DEF;(2)写出D、E、F的坐标.【考点】作图﹣旋转变换.【分析】(1)利用关于y轴对称点的坐标性质进而得出对应点位置得出答案即可;(2)利用(1)中所画图形,进而得出各点坐标即可.【解答】解:(1)如图所示:△DEF即为所求;(2)由(1)得:D(﹣2,3);E(﹣3,1);F(2,﹣2).【点评】此题主要考查了轴对称变换,得出对应点位置是解题关键.24.如图,AB=AC,AC的垂直平分线交AB于D,交AC于E.(1)若∠A=40°,求∠BCD的度数;(2)若AE=5,△BCD的周长17,求△ABC的周长.【考点】等腰三角形的性质;线段垂直平分线的性质.【分析】(1)根据等腰三角形的性质和三角形内角和等于180°列式求出∠BCD的度数;(2)根据线段垂直平分线的性质可得AD=BD,AB=2AE,把△BCD的周长转化为AC、BC 的和,然后代入数据进行计算即可得解.【解答】解:(1)∵AB=AC,∠A=40°,∴∠BCD=(180°﹣∠A)=(180°﹣40°)=70°;(2)∵DE是AB的垂直平分线,∴AD=BD,AB=2AE=10,∵△BCD的周长=BD+CD+BC=AD+CD+BC=AC+BC=17,∴△ABC的周长=10+17=27.【点评】本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,三角形的内角和定理,准确识图并熟记性质是解题的关键.25.如图,在四边形ABCD中,AD∥BC,E是AB的中点,连接DE并延长交CB的延长线于点F,点M在BC边上,且∠MDF=∠ADF.(1)求证:△ADE≌△BFE.(2)连接EM,如果FM=DM,判断EM与DF的关系,并说明理由.【考点】全等三角形的判定与性质;线段垂直平分线的性质.【分析】(1)由平行线的性质得出∠ADE=∠BFE,由E为AB的中点,得出AE=BE,由AAS证明△AED≌△BFE即可;(2)由△AED≌△BFE,得出对应边相等DE=EF,证明FM=DM,由三角形的三线合一性质得出EM⊥DF,即可得出结论.【解答】(1)证明:∵AD∥BC,∴∠ADE=∠BFE,∵E为AB的中点,∴AE=BE,在△AED和△BFE中,,∴△AED≌△BFE(AAS);(2)解:EM与DM的关系是EM垂直且平分DF;理由如下:连接EM,如图所示:由(1)得:△AED≌△BFE,∴DE=EF,∵∠MDF=∠ADF,∠ADE=∠BFE,∴∠MDF=∠BFE,∴FM=DM,∴EM⊥DF,∴ME垂直平分DF.【点评】本题考查了平行线的性质、全等三角形的判定与性质、等腰三角形的判定与性质;熟练掌握全等三角形的判定与性质,并能进行推理论证是解决问题的关键.。
广东初二初中数学期中考试带答案解析
广东初二初中数学期中考试班级:___________ 姓名:___________ 分数:___________一、选择题1.下面有4个汽车标致图案,其中不是轴对称图形的是()2.下列长度的三条线段能组成三角形的是()A.2,3,6B.4,5,9C.3,5,6D.1,2,33.如果等腰三角形的两边长分别是4和5,则它的周长是()A.13B.13或14C.14D.无法确定4.在平面直角坐标系中,点P(-2,3)关于x轴的对称点在().A.第一象限B.第二象限C.第三象限D.第四象限5.一个多边形内角和是1080°,则这个多边形是()A.五边形B.六边形C.七边形D.八边形6.如图,△ABC≌△ADE,∠B=80°,∠C=30°,∠DAC=35°,则∠EAC的度数为()A.40°B.35°C.30°D.25°7.如图,AC和BD相交于O点,若OA=OD,用“SAS”证明△AOB≌△DOC还需()A.AB=DC B.OB=OC C.∠C=∠D D.∠AOB=∠DOC 8.下列语句:①面积相等的两个三角形全等;②两个等边三角形一定是全等图形;③如果两个三角形全等,它们的形状和大小一定都相同;④边数相同的图形一定能互相重合。
其中错误的说法有()A.4个B.3个C.2个D.1个9.如图所示,在RtΔACB中,∠C=90°,AD平分∠BAC,若BC=16,BD=10,则点D到AB的距离是()A.9B.8C.7D.610.如图,已知点P到AE,AD,BC的距离相等,则下列说法:①点P在∠BAC的平分线上;②点P在∠CBE的平分线上;③点P在∠BCD的平分线上;④点P是∠BAC,∠CBE,∠BCD的平分线的交点,其中正确的是( ).A.①②③④B.①②③C.④D.②③二、填空题1.为了使一扇旧木门不变形,木工师傅在木门的背面加钉了一根木条这样做的道理是三角形具有______________.2.若点P(-2a ,a-1)在y轴上,则点P的坐标为_______,点P关于x轴对称的点为______.3.一个多边形的每一个外角都等于30°,这个多边形的边数是,它的内角和是度.4.如图,∠ABC=50°,AD垂直平分线段BC于点D,∠ABC的平分线BE交AD于点E,连结EC,则∠AEC的度数是.5.如图,在△ABC中,AB=AC,AD是BC边上的高,点E、F是AD的三等分点,若△ABC的面积为12cm2,则图中阴影部分的面积是 cm26.如图,在△ABC中,∠C=90°,AC=BC,AD平分∠BAC交BC于点D,DE⊥AB于点E,若△BDE的周长是5 cm,则AB的长为__________.三、解答题1.如图,已知△ABC的三个顶点分别为A(2,3)、B(3,1)、C(-2,-2)。
2017年八年级上学期期中数学试卷两套合集十三附答案解析
2017年八年级上学期期中数学试卷两套合集十三附答案解析八年级(上)期中数学试卷一、选择题(本大题共10小题,每小题3分,满分30分.在每个小题给出的四个选项中,只有一项是正确的,每小题选对得3分,选错、不选或多选均得零分)1.在以下大众、东风、长城、奔驰四个汽车标志中,不是轴对称图形的是()A.B.C.D.2.平面内点A(﹣1,2)和点B(﹣1,﹣2)的对称轴是()A.x轴 B.y轴 C.直线y=4 D.直线x=﹣13.在△ABC中,∠A=30°,∠B=50°,则∠C为()A.30°B.50°C.80°D.100°4.下列图形中对称轴最多的是()A.等腰三角形B.正方形C.圆形D.线段5.以下列各组线段长为边,能组成三角形的是()A.1cm,2cm,4cm B.8cm,6cm,4cm C.12cm,5cm,6cm D.2cm,3cm,6cm6.如图所示,∠B=∠D=90°,BC=CD,∠1=40°,则∠2=()A.40°B.50°C.45°D.60°7.如图所示,某同学把一块三角形的玻璃不小心打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带()去.A.①B.②C.③D.①和②8.把一个正方形三次对折后沿虚线剪下,如图所示,则所得的图形是()A.B. C.D.9.△ABC中,AB=AC,AB的垂直平分线与直线AC相交所成锐角为40°,则此等腰三角形的顶角为()A.50°B.60°C.150° D.50°或130°10.如图,已知MB=ND,∠MBA=∠NDC,下列条件中不能判定△ABM≌△CDN 的是()A.∠M=∠N B.AM=CN C.AB=CD D.AM∥CN二、填空题(本大题共6小题,每小题3分,满分18分.)11.点P(1,﹣1)关于x轴对称的点的坐标为P′.12.五边形的内角和为.13.小明从平面镜子中看到镜子对面电子钟示数的像如图所示,这时的时刻应是.14.如图,已知AD=BC,根据“SSS”,还需要一个条件,可证明△ABC≌△BAD;根据“要SAS”,还需要一个条件,可证明△ABC≌△BAD.15.已知CD垂直平分AB,若AC=4cm,AD=5cm,则四边形ADBC的周长是cm.16.如图所示,∠B=∠D=90°,要证明△ABC与△ADC全等,还需要补充的条件是.(填上一个条件即可)三、解答题(本大题7小题,满分52分.解答应写出必要的演算步骤或推理过程)17.作图:①如图1,作出∠AOB的角平分线OC,不写作法但要保留作图痕迹.②如图2,把下列图形补成关于L对称的图形(保留痕迹)18.要在燃气管道L上修建一个泵站P,分别向A,B两镇供气,泵站修在管道的什么地方,可使所用的输气管线最短?在图上画出P点位置,保留作图痕迹.19.如图,写出△ABC的各顶点坐标,并画出△ABC关于y轴对称的△A1B1C1,写出△ABC关于X轴对称的△A2B2C2的各点坐标.20.如图,点E,F在BC上,BE=CF,∠A=∠D,∠B=∠C,AF与DE交于点O.(1)求证:AB=DC;(2)试判断△OEF的形状,并说明理由.21.如图,点P在AB上,∠1=∠2,∠3=∠4,求证:AC=AD.22.如图,已知:△ABC中,AB=AC,BD和CE分别是∠ABC和∠ACB的角平分线,且相交于O点.①试说明△OBC是等腰三角形;②连接OA,试判断直线OA与线段BC的关系,并说明理由.23.八(3)班同学到野外上数学活动课,为测量池塘两端A、B的距离,设计了如下方案:(Ⅰ)如图1,先在平地上取一个可直接到达A、B的点C,连接AC、BC,并分别延长AC至D,BC至E,使DC=AC,EC=BC,最后测出DE的距离即为AB的长;(Ⅱ)如图2,先过B点作AB的垂线,再在BF上取C、D两点使BC=CD,接着过D作BD的垂线DE,交AC的延长线于E,则测出DE的长即为AB的距离.阅读回答下列问题:(1)方案(Ⅰ)是否可行?请说明理由.(2)方案(Ⅱ)是否可行?请说明理由.(3)方案(Ⅲ)中作BF⊥AB,ED⊥BF的目的是;若仅满足∠ABD=∠BDE ≠90°,方案(Ⅱ)是否成立?.参考答案与试题解析一、选择题(本大题共10小题,每小题3分,满分30分.在每个小题给出的四个选项中,只有一项是正确的,每小题选对得3分,选错、不选或多选均得零分)1.在以下大众、东风、长城、奔驰四个汽车标志中,不是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念分别分析求解.【解答】解:A、轴对称图形,故本选项错误;B、不是轴对称图形,故本选项正确;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.故选:B.2.平面内点A(﹣1,2)和点B(﹣1,﹣2)的对称轴是()A.x轴 B.y轴 C.直线y=4 D.直线x=﹣1【考点】关于x轴、y轴对称的点的坐标.【分析】观察两坐标的特点,发现横坐标相同,所以对称轴为平行与y轴的直线,即y=纵坐标的平均数.【解答】解:∵点A(﹣1,2)和点B(﹣1,﹣2)对称,∴AB平行与y轴,∴对称轴是直线y=(﹣2+2)=0.故选A.3.在△ABC中,∠A=30°,∠B=50°,则∠C为()A.30°B.50°C.80°D.100°【考点】三角形内角和定理.【分析】直接利用三角形内角和定理进而得出答案.【解答】解:∵在△ABC中,∠A=30°,∠B=50°,∴∠C=180°﹣30°﹣50°=100°.故选:D.4.下列图形中对称轴最多的是()A.等腰三角形B.正方形C.圆形D.线段【考点】轴对称的性质.【分析】依据轴对称图形的概念,即在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,据此即可进行选择.【解答】解:A、因为等腰三角形分别沿底边的中线所在的直线对折,对折后的两部分都能完全重合,则等腰三角形是轴对称图形,底边的中线所在的直线就是对称轴,所以等腰三角形有1条对称轴;B、因为正方形沿对边的中线及其对角线所在的直线对折,对折后的两部分都能完全重合,则正方形是轴对称图形,对边的中线及其对角线所在的直线就是其对称轴,所以正方形有4条对称轴;C、因为圆沿任意一条直径所在的直线对折,对折后的两部分都能完全重合,则圆是轴对称图形,任意一条直径所在的直线就是圆的对称轴,所以说圆有无数条对称轴.D、线段是轴对称图形,有两条对称轴.故选:C.5.以下列各组线段长为边,能组成三角形的是()A.1cm,2cm,4cm B.8cm,6cm,4cm C.12cm,5cm,6cm D.2cm,3cm,6cm【考点】三角形三边关系.【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【解答】解:根据三角形的三边关系,得A、1+2<4,不能组成三角形;B、4+6>8,能组成三角形;C、5+6<12,不能组成三角形;D、3+2<6,不能够组成三角形.故选B.6.如图所示,∠B=∠D=90°,BC=CD,∠1=40°,则∠2=()A.40°B.50°C.45°D.60°【考点】全等三角形的判定与性质.【分析】本题要求∠2,先要证明Rt△ABC≌Rt△ADC(HL),则可求得∠2=∠ACB=90°﹣∠1的值.【解答】解:∵∠B=∠D=90°在Rt△ABC和Rt△ADC中,∴Rt△ABC≌Rt△ADC(HL)∴∠2=∠ACB=90°﹣∠1=50°.故选B7.如图所示,某同学把一块三角形的玻璃不小心打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带()去.A.①B.②C.③D.①和②【考点】全等三角形的应用.【分析】此题可以采用排除法进行分析从而确定最后的答案.【解答】解:第一块,仅保留了原三角形的一个角和部分边,不符合任何判定方法;第二块,仅保留了原三角形的一部分边,所以该块不行;第三块,不但保留了原三角形的两个角还保留了其中一个边,所以符合ASA判定,所以应该拿这块去.故选C.8.把一个正方形三次对折后沿虚线剪下,如图所示,则所得的图形是()A.B. C.D.【考点】剪纸问题.【分析】把一个正方形的纸片向上对折,向右对折,向右下方对折,从上部剪去一个等腰直角三角形,展开,看得到的图形为选项中的哪个即可.【解答】解:从折叠的图形中剪去8个等腰直角三角形,易得将从正方形纸片中剪去4个小正方形,故选C.9.△ABC中,AB=AC,AB的垂直平分线与直线AC相交所成锐角为40°,则此等腰三角形的顶角为()A.50°B.60°C.150° D.50°或130°【考点】线段垂直平分线的性质;等腰三角形的性质.【分析】此题根据△ABC中∠A为锐角与钝角分为两种情况解答.【解答】解:(1)当AB的中垂线MN与AC相交时易得∠A=90°﹣40°=50°,(2)当AB的中垂线MN与CA的延长线相交时,易得∠DAB=90°﹣40°=50°,∴∠A=130°,故选D.10.如图,已知MB=ND,∠MBA=∠NDC,下列条件中不能判定△ABM≌△CDN 的是()A.∠M=∠N B.AM=CN C.AB=CD D.AM∥CN【考点】全等三角形的判定.【分析】根据普通三角形全等的判定定理,有AAS、SSS、ASA、SAS四种.逐条验证.【解答】解:A、∠M=∠N,符合ASA,能判定△ABM≌△CDN,故A选项不符合题意;B、根据条件AM=CN,MB=ND,∠MBA=∠NDC,不能判定△ABM≌△CDN,故B 选项符合题意;C、AB=CD,符合SAS,能判定△ABM≌△CDN,故C选项不符合题意;D、AM∥CN,得出∠MAB=∠NCD,符合AAS,能判定△ABM≌△CDN,故D选项不符合题意.故选:B.二、填空题(本大题共6小题,每小题3分,满分18分.)11.点P(1,﹣1)关于x轴对称的点的坐标为P′(1,1).【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可直接得到答案.【解答】解:点P(1,﹣1)关于x轴对称的点的坐标为P′(1,1),故答案为:(1,1).12.五边形的内角和为540°.【考点】多边形内角与外角.【分析】根据多边形的内角和公式(n﹣2)•180°计算即可.【解答】解:(5﹣2)•180°=540°.故答案为:540°.13.小明从平面镜子中看到镜子对面电子钟示数的像如图所示,这时的时刻应是16:25:08.【考点】镜面对称.【分析】关于镜子的像,实际数字与原来的数字关于竖直的线对称,根据相应数字的对称性可得实际数字.【解答】解:∵是从镜子中看,∴对称轴为竖直方向的直线,∵5的对称数字为2,2的对称数字是5,镜子中数字的顺序与实际数字顺序相反,∴这时的时刻应是16:25:08.故答案为:16:25:08.14.如图,已知AD=BC,根据“SSS”,还需要一个条件BD=AC,可证明△ABC≌△BAD;根据“要SAS”,还需要一个条件∠DAB=∠CBA,可证明△ABC≌△BAD.【考点】全等三角形的判定.【分析】图形中隐含条件BC=BC,找出第三边BD和AC即可,找出∠DAB和∠CBA即可.【解答】解:BD=AC,∠DAB=∠CBA,理由是:在△ABC和△BAD中,∴△ABC≌△BAD(SSS),在△ABC和△BAD中,∴△ABC≌△BAD(SAS).故答案为:BD=AC,∠DAB=∠CBA.15.已知CD垂直平分AB,若AC=4cm,AD=5cm,则四边形ADBC的周长是18 cm.【考点】线段垂直平分线的性质.【分析】由于CD垂直平分AB,所以AC=BC,AD=BD,而AC=4cm,AD=5cm,由此即可求出四边形ADBC的周长.【解答】解:∵CD垂直平分AB,若AC=4cm,AD=5cm,∴AC=BC=4cm,AD=BD=5cm,∴四边形ADBC的周长为AD+AC+BD+BC=18cm.故填空答案:18.16.如图所示,∠B=∠D=90°,要证明△ABC与△ADC全等,还需要补充的条件是AB=AD或BC=CD或∠BAC=∠DAC或∠ACB=∠ACD.(填上一个条件即可)【考点】直角三角形全等的判定.【分析】要证明△ABC与△ADC全等,现有一角一边分别对应相等,还缺少一个条件,可选边,也可选角.【解答】解:添加AB=AD或BC=CD,依据HL,可证明△ABC与△ADC全等;∠BAC=∠DAC或∠ACB=∠ADC,依据AAS,可证明△ABC与△ADC全等.故需要补充的条件是AB=AD或BC=CD或∠BAC=∠DAC或∠ACB=∠ACD.(答案不唯一)故填AB=AD或BC=CD或∠BAC=∠DAC或∠ACB=∠ACD.三、解答题(本大题7小题,满分52分.解答应写出必要的演算步骤或推理过程)17.作图:①如图1,作出∠AOB的角平分线OC,不写作法但要保留作图痕迹.②如图2,把下列图形补成关于L对称的图形(保留痕迹)【考点】作图-轴对称变换.【分析】①根据角平分线的做法作图即可;②分别找出A、B、C关于l的对称点,再顺次连接即可.【解答】解:①以O为圆心,任意长为半径画弧分别交OA、OB于E、F两点,分别于E、F为圆心,大于EF为半径画弧交于点C分,连接OC:②过点A、B、C作直线l的对称点A1、B1、C1,连接AB、BC、AC.18.要在燃气管道L上修建一个泵站P,分别向A,B两镇供气,泵站修在管道的什么地方,可使所用的输气管线最短?在图上画出P点位置,保留作图痕迹.【考点】轴对称-最短路线问题;作图—应用与设计作图.【分析】作点A关于L的对称点A′,连接A′B交L于点P,则点P即为所求点.【解答】解:如图所示.19.如图,写出△ABC的各顶点坐标,并画出△ABC关于y轴对称的△A1B1C1,写出△ABC关于X轴对称的△A2B2C2的各点坐标.【考点】作图-轴对称变换.【分析】利用轴对称性质,作出A、B、C关于x轴的对称点,顺次连接各点,即得到关于y轴对称的△A1B1C1;利用轴对称性质,作出A、B、C关于y轴的对称点,顺次连接各点,即得到关于x轴对称的△A2B2C2;然后根据图形写出坐标即可.【解答】解:△ABC的各顶点的坐标分别为:A(﹣3,2),B(﹣4,﹣3),C(﹣1,﹣1);所画图形如下所示,其中△A2B2C2的各点坐标分别为:A2(﹣3,﹣2),B2(﹣4,3),C2(﹣1,1).20.如图,点E,F在BC上,BE=CF,∠A=∠D,∠B=∠C,AF与DE交于点O.(1)求证:AB=DC;(2)试判断△OEF的形状,并说明理由.【考点】全等三角形的判定与性质;等腰三角形的判定.【分析】(1)根据BE=CF得到BF=CE,又∠A=∠D,∠B=∠C,所以△ABF≌△DCE,根据全等三角形对应边相等即可得证;(2)根据三角形全等得∠AFB=∠DEC,所以是等腰三角形.【解答】(1)证明:∵BE=CF,∴BE+EF=CF+EF,即BF=CE.又∵∠A=∠D,∠B=∠C,∴△ABF≌△DCE(AAS),∴AB=DC.(2)解:△OEF为等腰三角形理由如下:∵△ABF≌△DCE,∴∠AFB=∠DEC,∴OE=OF,∴△OEF为等腰三角形.21.如图,点P在AB上,∠1=∠2,∠3=∠4,求证:AC=AD.【考点】全等三角形的判定与性质.【分析】需证两次三角形全等,△PDB≌△PCB和△ADB≌△ACB,分别利用ASA,SAS证明.【解答】解:解法一、∵∠1=∠2,∴∠DPB=∠CPB,又∵PB是公共边,∠3=∠4,∴△PDB≌△PCB,∴DB=CB,∵∠3=∠4,AB是公共边,∴△ADB≌△ACB(SAS),∴AD=AC.解法二、连接DC,∵∠1=∠2,∠1+∠BPD=180°,∠2+∠BPC=180°,∴∠BPD=∠BPC,在△PBD和△PBC中∵,∴△PBD≌△PBC(ASA),∴DB=BC,PD=PC,∴AB垂直平分DC,∴AD=AC.22.如图,已知:△ABC中,AB=AC,BD和CE分别是∠ABC和∠ACB的角平分线,且相交于O点.①试说明△OBC是等腰三角形;②连接OA,试判断直线OA与线段BC的关系,并说明理由.【考点】等腰三角形的判定与性质.【分析】①根据对边对等角得到∠ABC=∠ACB,再结合角平分线的定义得到∠OBC=∠OCB,从而证明OB=OC;②首先根据全等三角形的判定和性质得到OA平分∠BAC,再根据等腰三角形的三线合一的性质得到直线AO垂直平分BC.【解答】解:①∵在△ABC中,AB=AC,∴∠ABC=∠BCA;∵BD、CE分别平分∠ABC、∠BCA,∴∠OBC=∠BCO;∴OB=OC,∴△OBC为等腰三角形.②在△AOB与△AOC中.∵,∴△AOB≌△AOC(SSS);∴∠BAO=∠CAO;∴直线AO垂直平分BC.(等腰三角形顶角的平分线、底边上的高、底边上的中线互相重合)23.八(3)班同学到野外上数学活动课,为测量池塘两端A、B的距离,设计了如下方案:(Ⅰ)如图1,先在平地上取一个可直接到达A、B的点C,连接AC、BC,并分别延长AC至D,BC至E,使DC=AC,EC=BC,最后测出DE的距离即为AB的长;(Ⅱ)如图2,先过B点作AB的垂线,再在BF上取C、D两点使BC=CD,接着过D作BD的垂线DE,交AC的延长线于E,则测出DE的长即为AB的距离.阅读回答下列问题:(1)方案(Ⅰ)是否可行?请说明理由.(2)方案(Ⅱ)是否可行?请说明理由.(3)方案(Ⅲ)中作BF⊥AB,ED⊥BF的目的是∠ABD=∠BDE;若仅满足∠ABD=∠BDE≠90°,方案(Ⅱ)是否成立?不成立.【考点】三角形综合题.【分析】(1)由题意可证明△ACB≌△DCE,AB=DE,故方案(Ⅰ)可行;(2)由题意可证明△ABC≌△EDC,AB=ED,故方案(Ⅱ)可行;(3)方案(Ⅱ)中作BF⊥AB,ED⊥BF的目的是∠ABD=∠BDE;若仅满足∠ABD=∠BDE≠90°,故此时方案(Ⅱ)不成立.【解答】解:(1)方案(Ⅰ)可行;理由如下:∵DC=AC,EC=BC,在△ACB和△DCE中,,∴△ACB≌△DCE(SAS),∴AB=DE,∴测出DE的距离即为AB的长,故方案(Ⅰ)可行.(2)方案(Ⅱ)可行;理由如下:∵AB⊥BC,DE⊥CD∴∠ABC=∠EDC=90°,在△ACB和△EDC中,,∴△ABC≌△EDC(ASA),∴AB=ED,∴测出DE的长即为AB的距离,故方案(Ⅱ)可行.(3)方案(Ⅱ)中作BF⊥AB,ED⊥BF的目的是∠ABD=∠BDE.若仅满足∠ABD=∠BDE≠90°,方案(Ⅱ)不成立;理由如下:若∠ABD=∠BDE≠90°,∠ACB=∠ECD,∴△ABC∽△EDC,∴,∴只要测出ED、BC、CD的长,即可求得AB的长.但是此题没有其他条件,可能无法测出其他线段长度,∴方案(Ⅱ)不成立;故答案为:∠ABD=∠BDE,不成立.八年级(上)期中数学试卷一、选择题(每小题3分,共36分)1.下列各点中,在第一象限的点是()A.(2,3) B.(2,﹣3)C.(﹣2,﹣3)D.(﹣2,3)2.平面直角坐标系中,若点M(a,b)在第二象限,则点N(﹣b,a)在()A.第一象限B.第二象限C.第三象限D.第四象限3.如图,手掌盖住的点的坐标可能是()A.(3,4) B.(﹣4,3)C.(﹣4,﹣3)D.(3,﹣4)4.平面直角坐标系中,点M(﹣3,2)到y轴的距离是()A.3 B.2 C.3或2 D.﹣35.下列各图能表示y是x的函数是()A. B.C.D.6.一次函数y=2x+4的图象与y轴交点的坐标是()A.(0,﹣4)B.(0,4) C.(2,0) D.(﹣2,0)7.下面各点中,在函数y=﹣2x+3的图象上的点是()A.(1,﹣1)B.(﹣2,1)C.(﹣2,﹣1)D.(1,1)8.函数y=中,自变量x的取值范围是()A.x>2 B.x<2 C.x≠2 D.x≥29.已知,一次函数y=kx+b的图象如图,下列结论正确的是()A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<010.将函数y=﹣2x的图象沿y轴向上平移3个单位长度后,所得图象对应的函数表达式为()A.y=x B.y=﹣2x+3 C.y=﹣2x﹣3 D.y=﹣2(x+3)11.已知点(﹣3,y1),(1,y2)都在直线y=﹣x+2上,则y1、y2的大小关系是()A.y1>y2B.y1=y2C.y1<y2D.不能确定12.关于函数y=﹣2x+1,下列结论正确的是()A.图象必经过(﹣2,1)B.y随x的增大而增大C.图象经过第一、二、三象限D.当x>时,y<0二、填空题(每小题3分,共18分)13.请你任意写出一个在y轴上的点的坐标.14.如图,若在象棋盘上建立平面直角坐标系,使“炮”位于点(1,1),“馬”位于点(3,﹣1),则“兵”位于点(写出点的坐标).15.一次函数y=﹣3x+1的图象经过点(a,﹣1),则a=.16.将点P(﹣2,3)先向右平移3个单位,再向下平移5个单位后得到点P′,则点P′的坐标为.17.小明放学后步行回家,他离家的路程s(米)与步行时间t(分钟)的函数图象如图所示,则他步行回家的平均速度是米/分钟.18.如图,已知函数y=2x+b与函数y=kx﹣3的图象交于点P,则关于x的不等式kx﹣3>2x+b的解集是.19.写出一个同事具备下列两个条件的一次函数表达式:①y随着x的增大而增大;②图象不经过第二象限(只写一个即可).20.把下面图画函数y=﹣x+2图象的过程补充完整.解:(1)列表为:(2)画出的函数图象为:21.(1)在如图所给的平面直角坐标系中,描出点A(3,4),B(0,2),C(3,﹣2),再顺次连接A、B、C三点;(2)求三角形ABC的面积.22.在一次函数y=kx+b中,当x=1时,y=﹣2,当x=2时,y=1.(1)求k、b的值;(2)当x=﹣2时,y的值是多少?23.如图,在平面直角坐标系中,△ABC的顶点都在网格点上,其中点C坐标为(1,2).(1)写出点A、B的坐标:A;B.(2)若将△ABC先向左平移2个单位长度,再向上平移1个单位长度,得到△A′B′C′,请你画出△A′B′C′.(3)写出△′B′C′的三个顶点坐标:A′;B′;C′.24.我市出租车计费方法如图所示,x(千米)表示行驶里程,y(元)表示车费,请根据图象回答下列问题.(1)我市出租车的起步价是元;(2)当x>3时,求y关于x的函数关系式.(3)小叶有一次乘坐出租车的车费是21元,求他这次乘车的里程.25.为了加强公民的节水意识,合理利用水资源,各地采用价格调控手段达到节约用水的目的,某市规定如下用水收费标准:每户每月的用水量不超过6m3时时,水费按每立方米a元收费,超过6m3时,超过的部分每立方米按c元收费,不超过的部分每立方米仍按a元收费该市某户今年9、10月份的用水量和所交水费如下表所示:设某户每月用水量x(立方米),应交水费y(元)(1)a=,c=;(2)请分别求出用水不超过6m3和超过6m3时,y与x的函数关系式;(3)若该户11月份用水8m3,则该户应交水费多少元?参考答案与试题解析一、选择题(每小题3分,共36分)1.下列各点中,在第一象限的点是()A.(2,3) B.(2,﹣3)C.(﹣2,﹣3)D.(﹣2,3)【考点】点的坐标.【分析】根据各象限内点的坐标特征解答即可.【解答】解:A、在第一象限,故A正确;B、在第四象限,故B错误;C、在第三象限,故C错误;D、在第二象限,故D错误;故选:A.2.平面直角坐标系中,若点M(a,b)在第二象限,则点N(﹣b,a)在()A.第一象限B.第二象限C.第三象限D.第四象限【考点】点的坐标.【分析】根据M所在象限确定a和b的符号,然后确定N的横纵坐标的符号,进而确定所在象限.【解答】解:∵点M(a,b)在第二象限,∴a<0,b>0,则﹣b<0,则B(﹣b,a)在第三象限.故选C.3.如图,手掌盖住的点的坐标可能是()A.(3,4) B.(﹣4,3)C.(﹣4,﹣3)D.(3,﹣4)【考点】点的坐标.【分析】根据各象限内点的坐标特征解答即可.【解答】解:由图形,得点位于第三象限,故选:C.4.平面直角坐标系中,点M(﹣3,2)到y轴的距离是()A.3 B.2 C.3或2 D.﹣3【考点】点的坐标.【分析】根据点到y轴的距离是横坐标的绝对值,可得答案.【解答】解:点M(﹣3,2)到y轴的距离是|﹣3|=3,故选:A.5.下列各图能表示y是x的函数是()A. B.C.D.【考点】函数的概念.【分析】根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此对各选项分析判断后利用排除法求解.【解答】解:A、对于x的每一个取值,y有时有两个确定的值与之对应,所以y 不是x的函数,故A选项错误;B、对于x的每一个取值,y有时有两个确定的值与之对应,所以y不是x的函数,故B选项错误;C、对于x的每一个取值,y有时有两个确定的值与之对应,所以y不是x的函数,故C选项错误;D、对于x的每一个取值,y都有唯一确定的值与之对应关系,所以y是x的函数,故D选项正确.故选:D.6.一次函数y=2x+4的图象与y轴交点的坐标是()A.(0,﹣4)B.(0,4) C.(2,0) D.(﹣2,0)【考点】一次函数图象上点的坐标特征.【分析】在解析式中令x=0,即可求得与y轴的交点的纵坐标.【解答】解:令x=0,得y=2×0+4=4,则函数与y轴的交点坐标是(0,4).故选:B.7.下面各点中,在函数y=﹣2x+3的图象上的点是()A.(1,﹣1)B.(﹣2,1)C.(﹣2,﹣1)D.(1,1)【考点】一次函数图象上点的坐标特征.【分析】分别将各个点的值代入函数中满足的即在图象上.【解答】解:当x=1时,y=1,(1,﹣1)不在函数y=﹣2x+3的图象上,(1,1))在函数y=﹣2x+3的图象上;当x=﹣2时,y=7,(﹣2,1)和(﹣2,﹣1)不在函数y=﹣2x+3的图象上;故选D.8.函数y=中,自变量x的取值范围是()A.x>2 B.x<2 C.x≠2 D.x≥2【考点】函数自变量的取值范围.【分析】根据分母为零无意义,可得答案.【解答】解:由题意,得x﹣2≠0,解得x≠2,故选:C.9.已知,一次函数y=kx+b的图象如图,下列结论正确的是()A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<0【考点】一次函数图象与系数的关系.【分析】根据图象在坐标平面内的位置关系确定k,b的取值范围,从而求解.【解答】解:如图所示,一次函数y=kx+b的图象,y随x的增大而增大,所以k >0,直线与y轴负半轴相交,所以b<0.故选B.10.将函数y=﹣2x的图象沿y轴向上平移3个单位长度后,所得图象对应的函数表达式为()A.y=x B.y=﹣2x+3 C.y=﹣2x﹣3 D.y=﹣2(x+3)【考点】一次函数图象与几何变换.【分析】直接利用一次函数平移规律,“上加下减”进而得出即可.【解答】解:∵将函数y=﹣2x的图象沿y轴向上平移3个单位长度,∴平移后所得图象对应的函数关系式为:y=﹣2x+3.故选:B.11.已知点(﹣3,y1),(1,y2)都在直线y=﹣x+2上,则y1、y2的大小关系是()A.y1>y2B.y1=y2C.y1<y2D.不能确定【考点】一次函数图象上点的坐标特征.【分析】根据k=﹣<0可得y将随x的增大而减小,利用x的大小关系和函数的单调性可判断y1>y2.【解答】解:∵k=﹣<0,∴y将随x的增大而减小,∵﹣3<1,∴y1>y2.故选A.12.关于函数y=﹣2x+1,下列结论正确的是()A.图象必经过(﹣2,1)B.y随x的增大而增大C.图象经过第一、二、三象限D.当x>时,y<0【考点】一次函数的性质.【分析】根据一次函数的性质,依次分析选项可得答案.【解答】解:根据一次函数的性质,依次分析可得,A、x=﹣2时,y=﹣2×﹣2+1=5,故图象必经过(﹣2,5),故错误,B、k<0,则y随x的增大而减小,故错误,C、k=﹣2<0,b=1>0,则图象经过第一、二、四象限,故错误,D、当x>时,y<0,正确;故选D.二、填空题(每小题3分,共18分)13.请你任意写出一个在y轴上的点的坐标(0,1).【考点】点的坐标.【分析】根据y轴上点的横坐标为0写出即可.【解答】解:y轴上的点(0,1),答案不唯一.故答案为:(0,1).14.如图,若在象棋盘上建立平面直角坐标系,使“炮”位于点(1,1),“馬”位于点(3,﹣1),则“兵”位于点(﹣2,2)(写出点的坐标).【考点】坐标确定位置.【分析】根据炮的坐标确定出向左一个单位,向下一个单位为坐标原点,建立平面直角坐标系,然后写出兵的坐标即可.【解答】解:建立平面直角坐标系如图所示,“兵”位于点(﹣2,2).故答案为:(﹣2,2).15.一次函数y=﹣3x+1的图象经过点(a,﹣1),则a=.【考点】一次函数图象上点的坐标特征.【分析】把点(a,﹣1)代入y=﹣3x+1即可求解.【解答】解:把点(a,﹣1)代入y=﹣3x+1,得:﹣3a+1=﹣1.解得a=.故答案为.16.将点P(﹣2,3)先向右平移3个单位,再向下平移5个单位后得到点P′,则点P′的坐标为(1,﹣2).【考点】坐标与图形变化-平移.【分析】根据横坐标,右移加,左移减;纵坐标,上移加,下移减可得点P′的坐标为(﹣2+3,3﹣5),再计算即可.【解答】解:点P(﹣2,3)先向右平移3个单位,再向下平移5个单位后得到点P′,则点P′的坐标为(﹣2+3,3﹣5),即(1,﹣2),故答案为:(1,﹣2).17.小明放学后步行回家,他离家的路程s(米)与步行时间t(分钟)的函数图象如图所示,则他步行回家的平均速度是80米/分钟.【考点】函数的图象.【分析】他步行回家的平均速度=总路程÷总时间,据此解答即可.【解答】解:由图知,他离家的路程为1600米,步行时间为20分钟,则他步行回家的平均速度是:1600÷20=80(米/分钟),故答案为:80.18.如图,已知函数y=2x+b与函数y=kx﹣3的图象交于点P,则关于x的不等式kx﹣3>2x+b的解集是x<4.【考点】一次函数与一元一次不等式.【分析】直线y=kx﹣3落在直线y=2x+b上方的部分对应的x的取值范围即为所求.【解答】解:∵函数y=2x+b与函数y=kx﹣3的图象交于点P(4,﹣6),∴不等式kx﹣3>2x+b的解集是x<4.故答案为x<4.19.写出一个同事具备下列两个条件的一次函数表达式:①y随着x的增大而增大;②图象不经过第二象限y=x﹣2(只写一个即可).【考点】待定系数法求一次函数解析式;一次函数的性质.【分析】根据①确定k>0;根据②,判定出b<0.【解答】解:∵一次函数表达式:y随着x的增大而增大;图象不经过第二象限,∴k>0;b<0.∴该一次函数的表达式可为:y=x﹣2(答案不唯一,k>0;b<0.)故答案为:y=x﹣2.20.把下面图画函数y=﹣x+2图象的过程补充完整.解:(1)列表为:(2)画出的函数图象为:【考点】一次函数的图象.【分析】(1)根据解析式分别将x的值代入计算即可;(2)描点,连线,画出图象.【解答】解:(1)列表为:(2)画出的图象为下图:21.(1)在如图所给的平面直角坐标系中,描出点A(3,4),B(0,2),C(3,﹣2),再顺次连接A、B、C三点;(2)求三角形ABC的面积.【考点】坐标与图形性质.【分析】(1)根据点在坐标系中的表示即可求解;(2)利用三角形的面积公式即可求解.【解答】解:(1)=×6×3=9.(2)AC=6,则S△ABC22.在一次函数y=kx+b中,当x=1时,y=﹣2,当x=2时,y=1.(1)求k、b的值;(2)当x=﹣2时,y的值是多少?【考点】待定系数法求一次函数解析式.【分析】(1)将x与y的两对值代入y=kx+b中求出k与b的值,即可确定出一次函数解析式.(2)把x=﹣2代入解析式即可求得.【解答】解:(1)依题意得:,解之得:,(2)由(1)知该一次函数解析式为y=3x﹣5,当x=﹣2时,y=3×(﹣2)﹣5=﹣11.23.如图,在平面直角坐标系中,△ABC的顶点都在网格点上,其中点C坐标为(1,2).(1)写出点A、B的坐标:A(2,﹣1);B(4,3).(2)若将△ABC先向左平移2个单位长度,再向上平移1个单位长度,得到△A′B′C′,请你画出△A′B′C′.(3)写出△′B′C′的三个顶点坐标:。
广州市南沙珠江中学八年级数学上学期期中试题(有答案) 新人教’
广州市南沙珠江中学20XX-20XX学年八年级上学期中段考数学试卷考生注意:1 .考试内容:三角形、全等三角形、轴对称、整式的乘法:2.本次考生时间90分钟,总分值100分,共三大题,25小题:3.把答案写在答卷规定位置上.在试卷上答题不得分:4.考试结束后,按顺序上交答卷.自己保管好试卷.以便老师评讲:5.考试不得使用计算器.一、选择题:(共10小题,每题2分,共20分)1.在卜图中,正确画出AC边上高的是()・A B C I)答案:C2.假设一个多边形的内角和等于1080。
,那么这个多边形的边数是()C. 7答案:B3.能把一个任意三角形分成面积相等的两局部是()A.角平分线B.中线C.高D. A B、C都可以答案:B4.以下命题中:《1>形状相同的两个三的形是全等形:⑵在两个三的形中,相等的角是对应角,相等的边是对应边:⑶全等三角形对应边上的高、中线及对应角平分线分别相等,其中真命题的个数有()A、3个B、2个C、1个D、0个答案:C5.以下各组条件中,能判定△力彻泸的是A.Af^DE. BGEF,夺ADB.UF. AOEFC.A^DE. BOEF.△/弟。
的周长=△〃砰的周长D.Z/J=ZP, dE, ZJ>DF答案:B6. 在平面宜角坐标系中,点(5, 6)关于*轴的对称点是(A. (6, 5)B. (-5, 6)C.《5, -6)D. (—5, —6) 答案:C7. 到三角形A.三边中垂线三条中线 C.三条高 D.三条内角平分线 答案:A8.以下运算iE 确的是( A 、2-X2MB 、 (一2X3)J36 Cs (23)1=2,2答案:C 9.化简(-x )1- (-X )2的结果正确的选项是(B. x*答案:)C. X 5D. -x 10. 假设等腰三角形的三边分别为3、4、a,那么a 的取值范围是( A.a >7B. a<7C. Ka<7D. 3<a<6 答案:C二、填空题:(共6小题,每题2分,共12分)11. 八边形的内用和为.答案:1080°12. 如图,假设△ABC 丝△A&G ,且£4 = 110°,Zfl = 40\ 那么ZC ( =答案:30° 13.如图,AOBD, Z1 = Z2,那么些 其判定根据是 答案:△BAD, SAS 11.判断以下图形(如下图)是轴对称图形的是 .(填序号)第12题CD答案:(1) (3) (6) 15.清在下面这一组图形符号中找出它们所蕴含的内在规律,然后在横线上的空n 处填上恰当的图 1 1 S2 8365V7 形. 答案:卜牝36 16. (10)% _______答案:10”过顶点A 画中蛙 过顶点A 画角平分残 过顶点A 画高,18. (8分)在中,/A=!/C 二!/ABC, BD 是角平分线,求匕A 及/RDC 的度数” 解:⑴(2)解答题:(共68A可求得:ZA=35°• ZBDC>72°。
最新八年级上学期期中数学试卷两套合集十三附答案解析.docx
2017年八年级上学期期中数学试卷两套合集十三附答案解析八年级(上)期中数学试卷一、选择题(本大题共10小题,每小题3分,满分30分.在每个小题给出的四个选项中,只有一项是正确的,每小题选对得3分,选错、不选或多选均得零分)1.在以下大众、东风、长城、奔驰四个汽车标志中,不是轴对称图形的是()A.B.C.D.2.平面内点A(﹣1,2)和点B(﹣1,﹣2)的对称轴是()A.x轴 B.y轴 C.直线y=4 D.直线x=﹣13.在△ABC中,∠A=30°,∠B=50°,则∠C为()A.30°B.50°C.80°D.100°4.下列图形中对称轴最多的是()A.等腰三角形B.正方形C.圆形D.线段5.以下列各组线段长为边,能组成三角形的是()A.1cm,2cm,4cm B.8cm,6cm,4cm C.12cm,5cm,6cm D.2cm,3cm,6cm6.如图所示,∠B=∠D=90°,BC=CD,∠1=40°,则∠2=()A.40°B.50°C.45°D.60°7.如图所示,某同学把一块三角形的玻璃不小心打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带()去.A.①B.②C.③D.①和②8.把一个正方形三次对折后沿虚线剪下,如图所示,则所得的图形是()A.B. C.D.9.△ABC中,AB=AC,AB的垂直平分线与直线AC相交所成锐角为40°,则此等腰三角形的顶角为()A.50°B.60°C.150° D.50°或130°10.如图,已知MB=ND,∠MBA=∠NDC,下列条件中不能判定△ABM≌△CDN 的是()A.∠M=∠N B.AM=CN C.AB=CD D.AM∥CN二、填空题(本大题共6小题,每小题3分,满分18分.)11.点P(1,﹣1)关于x轴对称的点的坐标为P′.12.五边形的内角和为.13.小明从平面镜子中看到镜子对面电子钟示数的像如图所示,这时的时刻应是.14.如图,已知AD=BC,根据“SSS”,还需要一个条件,可证明△ABC≌△BAD;根据“要SAS”,还需要一个条件,可证明△ABC≌△BAD.15.已知CD垂直平分AB,若AC=4cm,AD=5cm,则四边形ADBC的周长是cm.16.如图所示,∠B=∠D=90°,要证明△ABC与△ADC全等,还需要补充的条件是.(填上一个条件即可)三、解答题(本大题7小题,满分52分.解答应写出必要的演算步骤或推理过程)17.作图:①如图1,作出∠AOB的角平分线OC,不写作法但要保留作图痕迹.②如图2,把下列图形补成关于L对称的图形(保留痕迹)18.要在燃气管道L上修建一个泵站P,分别向A,B两镇供气,泵站修在管道的什么地方,可使所用的输气管线最短?在图上画出P点位置,保留作图痕迹.19.如图,写出△ABC的各顶点坐标,并画出△ABC关于y轴对称的△A1B1C1,写出△ABC关于X轴对称的△A2B2C2的各点坐标.20.如图,点E,F在BC上,BE=CF,∠A=∠D,∠B=∠C,AF与DE交于点O.(1)求证:AB=DC;(2)试判断△OEF的形状,并说明理由.21.如图,点P在AB上,∠1=∠2,∠3=∠4,求证:AC=AD.22.如图,已知:△ABC中,AB=AC,BD和CE分别是∠ABC和∠ACB的角平分线,且相交于O点.①试说明△OBC是等腰三角形;②连接OA,试判断直线OA与线段BC的关系,并说明理由.23.八(3)班同学到野外上数学活动课,为测量池塘两端A、B的距离,设计了如下方案:(Ⅰ)如图1,先在平地上取一个可直接到达A、B的点C,连接AC、BC,并分别延长AC至D,BC至E,使DC=AC,EC=BC,最后测出DE的距离即为AB的长;(Ⅱ)如图2,先过B点作AB的垂线,再在BF上取C、D两点使BC=CD,接着过D作BD的垂线DE,交AC的延长线于E,则测出DE的长即为AB的距离.阅读回答下列问题:(1)方案(Ⅰ)是否可行?请说明理由.(2)方案(Ⅱ)是否可行?请说明理由.(3)方案(Ⅲ)中作BF⊥AB,ED⊥BF的目的是;若仅满足∠ABD=∠BDE ≠90°,方案(Ⅱ)是否成立?.参考答案与试题解析一、选择题(本大题共10小题,每小题3分,满分30分.在每个小题给出的四个选项中,只有一项是正确的,每小题选对得3分,选错、不选或多选均得零分)1.在以下大众、东风、长城、奔驰四个汽车标志中,不是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念分别分析求解.【解答】解:A、轴对称图形,故本选项错误;B、不是轴对称图形,故本选项正确;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.故选:B.2.平面内点A(﹣1,2)和点B(﹣1,﹣2)的对称轴是()A.x轴 B.y轴 C.直线y=4 D.直线x=﹣1【考点】关于x轴、y轴对称的点的坐标.【分析】观察两坐标的特点,发现横坐标相同,所以对称轴为平行与y轴的直线,即y=纵坐标的平均数.【解答】解:∵点A(﹣1,2)和点B(﹣1,﹣2)对称,∴AB平行与y轴,∴对称轴是直线y=(﹣2+2)=0.故选A.3.在△ABC中,∠A=30°,∠B=50°,则∠C为()A.30°B.50°C.80°D.100°【考点】三角形内角和定理.【分析】直接利用三角形内角和定理进而得出答案.【解答】解:∵在△ABC中,∠A=30°,∠B=50°,∴∠C=180°﹣30°﹣50°=100°.故选:D.4.下列图形中对称轴最多的是()A.等腰三角形B.正方形C.圆形D.线段【考点】轴对称的性质.【分析】依据轴对称图形的概念,即在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,据此即可进行选择.【解答】解:A、因为等腰三角形分别沿底边的中线所在的直线对折,对折后的两部分都能完全重合,则等腰三角形是轴对称图形,底边的中线所在的直线就是对称轴,所以等腰三角形有1条对称轴;B、因为正方形沿对边的中线及其对角线所在的直线对折,对折后的两部分都能完全重合,则正方形是轴对称图形,对边的中线及其对角线所在的直线就是其对称轴,所以正方形有4条对称轴;C、因为圆沿任意一条直径所在的直线对折,对折后的两部分都能完全重合,则圆是轴对称图形,任意一条直径所在的直线就是圆的对称轴,所以说圆有无数条对称轴.D、线段是轴对称图形,有两条对称轴.故选:C.5.以下列各组线段长为边,能组成三角形的是()A.1cm,2cm,4cm B.8cm,6cm,4cm C.12cm,5cm,6cm D.2cm,3cm,6cm【考点】三角形三边关系.【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【解答】解:根据三角形的三边关系,得A、1+2<4,不能组成三角形;B、4+6>8,能组成三角形;C、5+6<12,不能组成三角形;D、3+2<6,不能够组成三角形.故选B.6.如图所示,∠B=∠D=90°,BC=CD,∠1=40°,则∠2=()A.40°B.50°C.45°D.60°【考点】全等三角形的判定与性质.【分析】本题要求∠2,先要证明Rt△ABC≌Rt△ADC(HL),则可求得∠2=∠ACB=90°﹣∠1的值.【解答】解:∵∠B=∠D=90°在Rt△ABC和Rt△ADC中,∴Rt△ABC≌Rt△ADC(HL)∴∠2=∠ACB=90°﹣∠1=50°.故选B7.如图所示,某同学把一块三角形的玻璃不小心打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带()去.A.①B.②C.③D.①和②【考点】全等三角形的应用.【分析】此题可以采用排除法进行分析从而确定最后的答案.【解答】解:第一块,仅保留了原三角形的一个角和部分边,不符合任何判定方法;第二块,仅保留了原三角形的一部分边,所以该块不行;第三块,不但保留了原三角形的两个角还保留了其中一个边,所以符合ASA判定,所以应该拿这块去.故选C.8.把一个正方形三次对折后沿虚线剪下,如图所示,则所得的图形是()A.B. C.D.【考点】剪纸问题.【分析】把一个正方形的纸片向上对折,向右对折,向右下方对折,从上部剪去一个等腰直角三角形,展开,看得到的图形为选项中的哪个即可.【解答】解:从折叠的图形中剪去8个等腰直角三角形,易得将从正方形纸片中剪去4个小正方形,故选C.9.△ABC中,AB=AC,AB的垂直平分线与直线AC相交所成锐角为40°,则此等腰三角形的顶角为()A.50°B.60°C.150° D.50°或130°【考点】线段垂直平分线的性质;等腰三角形的性质.【分析】此题根据△ABC中∠A为锐角与钝角分为两种情况解答.【解答】解:(1)当AB的中垂线MN与AC相交时易得∠A=90°﹣40°=50°,(2)当AB的中垂线MN与CA的延长线相交时,易得∠DAB=90°﹣40°=50°,∴∠A=130°,故选D.10.如图,已知MB=ND,∠MBA=∠NDC,下列条件中不能判定△ABM≌△CDN 的是()A.∠M=∠N B.AM=CN C.AB=CD D.AM∥CN【考点】全等三角形的判定.【分析】根据普通三角形全等的判定定理,有AAS、SSS、ASA、SAS四种.逐条验证.【解答】解:A、∠M=∠N,符合ASA,能判定△ABM≌△CDN,故A选项不符合题意;B、根据条件AM=CN,MB=ND,∠MBA=∠NDC,不能判定△ABM≌△CDN,故B 选项符合题意;C、AB=CD,符合SAS,能判定△ABM≌△CDN,故C选项不符合题意;D、AM∥CN,得出∠MAB=∠NCD,符合AAS,能判定△ABM≌△CDN,故D选项不符合题意.故选:B.二、填空题(本大题共6小题,每小题3分,满分18分.)11.点P(1,﹣1)关于x轴对称的点的坐标为P′(1,1).【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可直接得到答案.【解答】解:点P(1,﹣1)关于x轴对称的点的坐标为P′(1,1),故答案为:(1,1).12.五边形的内角和为540°.【考点】多边形内角与外角.【分析】根据多边形的内角和公式(n﹣2)•180°计算即可.【解答】解:(5﹣2)•180°=540°.故答案为:540°.13.小明从平面镜子中看到镜子对面电子钟示数的像如图所示,这时的时刻应是16:25:08.【考点】镜面对称.【分析】关于镜子的像,实际数字与原来的数字关于竖直的线对称,根据相应数字的对称性可得实际数字.【解答】解:∵是从镜子中看,∴对称轴为竖直方向的直线,∵5的对称数字为2,2的对称数字是5,镜子中数字的顺序与实际数字顺序相反,∴这时的时刻应是16:25:08.故答案为:16:25:08.14.如图,已知AD=BC,根据“SSS”,还需要一个条件BD=AC,可证明△ABC≌△BAD;根据“要SAS”,还需要一个条件∠DAB=∠CBA,可证明△ABC≌△BAD.【考点】全等三角形的判定.【分析】图形中隐含条件BC=BC,找出第三边BD和AC即可,找出∠DAB和∠CBA即可.【解答】解:BD=AC,∠DAB=∠CBA,理由是:在△ABC和△BAD中,∴△ABC≌△BAD(SSS),在△ABC和△BAD中,∴△ABC≌△BAD(SAS).故答案为:BD=AC,∠DAB=∠CBA.15.已知CD垂直平分AB,若AC=4cm,AD=5cm,则四边形ADBC的周长是18 cm.【考点】线段垂直平分线的性质.【分析】由于CD垂直平分AB,所以AC=BC,AD=BD,而AC=4cm,AD=5cm,由此即可求出四边形ADBC的周长.【解答】解:∵CD垂直平分AB,若AC=4cm,AD=5cm,∴AC=BC=4cm,AD=BD=5cm,∴四边形ADBC的周长为AD+AC+BD+BC=18cm.故填空答案:18.16.如图所示,∠B=∠D=90°,要证明△ABC与△ADC全等,还需要补充的条件是AB=AD或BC=CD或∠BAC=∠DAC或∠ACB=∠ACD.(填上一个条件即可)【考点】直角三角形全等的判定.【分析】要证明△ABC与△ADC全等,现有一角一边分别对应相等,还缺少一个条件,可选边,也可选角.【解答】解:添加AB=AD或BC=CD,依据HL,可证明△ABC与△ADC全等;∠BAC=∠DAC或∠ACB=∠ADC,依据AAS,可证明△ABC与△ADC全等.故需要补充的条件是AB=AD或BC=CD或∠BAC=∠DAC或∠ACB=∠ACD.(答案不唯一)故填AB=AD或BC=CD或∠BAC=∠DAC或∠ACB=∠ACD.三、解答题(本大题7小题,满分52分.解答应写出必要的演算步骤或推理过程)17.作图:①如图1,作出∠AOB的角平分线OC,不写作法但要保留作图痕迹.②如图2,把下列图形补成关于L对称的图形(保留痕迹)【考点】作图-轴对称变换.【分析】①根据角平分线的做法作图即可;②分别找出A、B、C关于l的对称点,再顺次连接即可.【解答】解:①以O为圆心,任意长为半径画弧分别交OA、OB于E、F两点,分别于E、F为圆心,大于EF为半径画弧交于点C分,连接OC:②过点A、B、C作直线l的对称点A1、B1、C1,连接AB、BC、AC.18.要在燃气管道L上修建一个泵站P,分别向A,B两镇供气,泵站修在管道的什么地方,可使所用的输气管线最短?在图上画出P点位置,保留作图痕迹.【考点】轴对称-最短路线问题;作图—应用与设计作图.【分析】作点A关于L的对称点A′,连接A′B交L于点P,则点P即为所求点.【解答】解:如图所示.19.如图,写出△ABC的各顶点坐标,并画出△ABC关于y轴对称的△A1B1C1,写出△ABC关于X轴对称的△A2B2C2的各点坐标.【考点】作图-轴对称变换.【分析】利用轴对称性质,作出A、B、C关于x轴的对称点,顺次连接各点,即得到关于y轴对称的△A1B1C1;利用轴对称性质,作出A、B、C关于y轴的对称点,顺次连接各点,即得到关于x轴对称的△A2B2C2;然后根据图形写出坐标即可.【解答】解:△ABC的各顶点的坐标分别为:A(﹣3,2),B(﹣4,﹣3),C(﹣1,﹣1);所画图形如下所示,其中△A2B2C2的各点坐标分别为:A2(﹣3,﹣2),B2(﹣4,3),C2(﹣1,1).20.如图,点E,F在BC上,BE=CF,∠A=∠D,∠B=∠C,AF与DE交于点O.(1)求证:AB=DC;(2)试判断△OEF的形状,并说明理由.【考点】全等三角形的判定与性质;等腰三角形的判定.【分析】(1)根据BE=CF得到BF=CE,又∠A=∠D,∠B=∠C,所以△ABF≌△DCE,根据全等三角形对应边相等即可得证;(2)根据三角形全等得∠AFB=∠DEC,所以是等腰三角形.【解答】(1)证明:∵BE=CF,∴BE+EF=CF+EF,即BF=CE.又∵∠A=∠D,∠B=∠C,∴△ABF≌△DCE(AAS),∴AB=DC.(2)解:△OEF为等腰三角形理由如下:∵△ABF≌△DCE,∴∠AFB=∠DEC,∴OE=OF,∴△OEF为等腰三角形.21.如图,点P在AB上,∠1=∠2,∠3=∠4,求证:AC=AD.【考点】全等三角形的判定与性质.【分析】需证两次三角形全等,△PDB≌△PCB和△ADB≌△ACB,分别利用ASA,SAS证明.【解答】解:解法一、∵∠1=∠2,∴∠DPB=∠CPB,又∵PB是公共边,∠3=∠4,∴△PDB≌△PCB,∴DB=CB,∵∠3=∠4,AB是公共边,∴△ADB≌△ACB(SAS),∴AD=AC.解法二、连接DC,∵∠1=∠2,∠1+∠BPD=180°,∠2+∠BPC=180°,∴∠BPD=∠BPC,在△PBD和△PBC中∵,∴△PBD≌△PBC(ASA),∴DB=BC,PD=PC,∴AB垂直平分DC,∴AD=AC.22.如图,已知:△ABC中,AB=AC,BD和CE分别是∠ABC和∠ACB的角平分线,且相交于O点.①试说明△OBC是等腰三角形;②连接OA,试判断直线OA与线段BC的关系,并说明理由.【考点】等腰三角形的判定与性质.【分析】①根据对边对等角得到∠ABC=∠ACB,再结合角平分线的定义得到∠OBC=∠OCB,从而证明OB=OC;②首先根据全等三角形的判定和性质得到OA平分∠BAC,再根据等腰三角形的三线合一的性质得到直线AO垂直平分BC.【解答】解:①∵在△ABC中,AB=AC,∴∠ABC=∠BCA;∵BD、CE分别平分∠ABC、∠BCA,∴∠OBC=∠BCO;∴OB=OC,∴△OBC为等腰三角形.②在△AOB与△AOC中.∵,∴△AOB≌△AOC(SSS);∴∠BAO=∠CAO;∴直线AO垂直平分BC.(等腰三角形顶角的平分线、底边上的高、底边上的中线互相重合)23.八(3)班同学到野外上数学活动课,为测量池塘两端A、B的距离,设计了如下方案:(Ⅰ)如图1,先在平地上取一个可直接到达A、B的点C,连接AC、BC,并分别延长AC至D,BC至E,使DC=AC,EC=BC,最后测出DE的距离即为AB的长;(Ⅱ)如图2,先过B点作AB的垂线,再在BF上取C、D两点使BC=CD,接着过D作BD的垂线DE,交AC的延长线于E,则测出DE的长即为AB的距离.阅读回答下列问题:(1)方案(Ⅰ)是否可行?请说明理由.(2)方案(Ⅱ)是否可行?请说明理由.(3)方案(Ⅲ)中作BF⊥AB,ED⊥BF的目的是∠ABD=∠BDE;若仅满足∠ABD=∠BDE≠90°,方案(Ⅱ)是否成立?不成立.【考点】三角形综合题.【分析】(1)由题意可证明△ACB≌△DCE,AB=DE,故方案(Ⅰ)可行;(2)由题意可证明△ABC≌△EDC,AB=ED,故方案(Ⅱ)可行;(3)方案(Ⅱ)中作BF⊥AB,ED⊥BF的目的是∠ABD=∠BDE;若仅满足∠ABD=∠BDE≠90°,故此时方案(Ⅱ)不成立.【解答】解:(1)方案(Ⅰ)可行;理由如下:∵DC=AC,EC=BC,在△ACB和△DCE中,,∴△ACB≌△DCE(SAS),∴AB=DE,∴测出DE的距离即为AB的长,故方案(Ⅰ)可行.(2)方案(Ⅱ)可行;理由如下:∵AB⊥BC,DE⊥CD∴∠ABC=∠EDC=90°,在△ACB和△EDC中,,∴△ABC≌△EDC(ASA),∴AB=ED,∴测出DE的长即为AB的距离,故方案(Ⅱ)可行.(3)方案(Ⅱ)中作BF⊥AB,ED⊥BF的目的是∠ABD=∠BDE.若仅满足∠ABD=∠BDE≠90°,方案(Ⅱ)不成立;理由如下:若∠ABD=∠BDE≠90°,∠ACB=∠ECD,∴△ABC∽△EDC,∴,∴只要测出ED、BC、CD的长,即可求得AB的长.但是此题没有其他条件,可能无法测出其他线段长度,∴方案(Ⅱ)不成立;故答案为:∠ABD=∠BDE,不成立.八年级(上)期中数学试卷一、选择题(每小题3分,共36分)1.下列各点中,在第一象限的点是()A.(2,3) B.(2,﹣3)C.(﹣2,﹣3)D.(﹣2,3)2.平面直角坐标系中,若点M(a,b)在第二象限,则点N(﹣b,a)在()A.第一象限B.第二象限C.第三象限D.第四象限3.如图,手掌盖住的点的坐标可能是()A.(3,4) B.(﹣4,3)C.(﹣4,﹣3)D.(3,﹣4)4.平面直角坐标系中,点M(﹣3,2)到y轴的距离是()A.3 B.2 C.3或2 D.﹣35.下列各图能表示y是x的函数是()A. B.C.D.6.一次函数y=2x+4的图象与y轴交点的坐标是()A.(0,﹣4)B.(0,4) C.(2,0) D.(﹣2,0)7.下面各点中,在函数y=﹣2x+3的图象上的点是()A.(1,﹣1)B.(﹣2,1)C.(﹣2,﹣1)D.(1,1)8.函数y=中,自变量x的取值范围是()A.x>2 B.x<2 C.x≠2 D.x≥29.已知,一次函数y=kx+b的图象如图,下列结论正确的是()A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<010.将函数y=﹣2x的图象沿y轴向上平移3个单位长度后,所得图象对应的函数表达式为()A.y=x B.y=﹣2x+3 C.y=﹣2x﹣3 D.y=﹣2(x+3)11.已知点(﹣3,y1),(1,y2)都在直线y=﹣x+2上,则y1、y2的大小关系是()A.y1>y2B.y1=y2C.y1<y2D.不能确定12.关于函数y=﹣2x+1,下列结论正确的是()A.图象必经过(﹣2,1)B.y随x的增大而增大C.图象经过第一、二、三象限D.当x>时,y<0二、填空题(每小题3分,共18分)13.请你任意写出一个在y轴上的点的坐标.14.如图,若在象棋盘上建立平面直角坐标系,使“炮”位于点(1,1),“馬”位于点(3,﹣1),则“兵”位于点(写出点的坐标).15.一次函数y=﹣3x+1的图象经过点(a,﹣1),则a=.16.将点P(﹣2,3)先向右平移3个单位,再向下平移5个单位后得到点P′,则点P′的坐标为.17.小明放学后步行回家,他离家的路程s(米)与步行时间t(分钟)的函数图象如图所示,则他步行回家的平均速度是米/分钟.18.如图,已知函数y=2x+b与函数y=kx﹣3的图象交于点P,则关于x的不等式kx﹣3>2x+b的解集是.19.写出一个同事具备下列两个条件的一次函数表达式:①y随着x的增大而增大;②图象不经过第二象限(只写一个即可).20.把下面图画函数y=﹣x+2图象的过程补充完整.解:(1)列表为:(2)画出的函数图象为:21.(1)在如图所给的平面直角坐标系中,描出点A(3,4),B(0,2),C(3,﹣2),再顺次连接A、B、C三点;(2)求三角形ABC的面积.22.在一次函数y=kx+b中,当x=1时,y=﹣2,当x=2时,y=1.(1)求k、b的值;(2)当x=﹣2时,y的值是多少?23.如图,在平面直角坐标系中,△ABC的顶点都在网格点上,其中点C坐标为(1,2).(1)写出点A、B的坐标:A;B.(2)若将△ABC先向左平移2个单位长度,再向上平移1个单位长度,得到△A′B′C′,请你画出△A′B′C′.(3)写出△′B′C′的三个顶点坐标:A′;B′;C′.24.我市出租车计费方法如图所示,x(千米)表示行驶里程,y(元)表示车费,请根据图象回答下列问题.(1)我市出租车的起步价是元;(2)当x>3时,求y关于x的函数关系式.(3)小叶有一次乘坐出租车的车费是21元,求他这次乘车的里程.25.为了加强公民的节水意识,合理利用水资源,各地采用价格调控手段达到节约用水的目的,某市规定如下用水收费标准:每户每月的用水量不超过6m3时时,水费按每立方米a元收费,超过6m3时,超过的部分每立方米按c元收费,不超过的部分每立方米仍按a元收费该市某户今年9、10月份的用水量和所交水费如下表所示:设某户每月用水量x(立方米),应交水费y(元)(1)a=,c=;(2)请分别求出用水不超过6m3和超过6m3时,y与x的函数关系式;(3)若该户11月份用水8m3,则该户应交水费多少元?参考答案与试题解析一、选择题(每小题3分,共36分)1.下列各点中,在第一象限的点是()A.(2,3) B.(2,﹣3)C.(﹣2,﹣3)D.(﹣2,3)【考点】点的坐标.【分析】根据各象限内点的坐标特征解答即可.【解答】解:A、在第一象限,故A正确;B、在第四象限,故B错误;C、在第三象限,故C错误;D、在第二象限,故D错误;故选:A.2.平面直角坐标系中,若点M(a,b)在第二象限,则点N(﹣b,a)在()A.第一象限B.第二象限C.第三象限D.第四象限【考点】点的坐标.【分析】根据M所在象限确定a和b的符号,然后确定N的横纵坐标的符号,进而确定所在象限.【解答】解:∵点M(a,b)在第二象限,∴a<0,b>0,则﹣b<0,则B(﹣b,a)在第三象限.故选C.3.如图,手掌盖住的点的坐标可能是()A.(3,4) B.(﹣4,3)C.(﹣4,﹣3)D.(3,﹣4)【考点】点的坐标.【分析】根据各象限内点的坐标特征解答即可.【解答】解:由图形,得点位于第三象限,故选:C.4.平面直角坐标系中,点M(﹣3,2)到y轴的距离是()A.3 B.2 C.3或2 D.﹣3【考点】点的坐标.【分析】根据点到y轴的距离是横坐标的绝对值,可得答案.【解答】解:点M(﹣3,2)到y轴的距离是|﹣3|=3,故选:A.5.下列各图能表示y是x的函数是()A. B.C.D.【考点】函数的概念.【分析】根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此对各选项分析判断后利用排除法求解.【解答】解:A、对于x的每一个取值,y有时有两个确定的值与之对应,所以y 不是x的函数,故A选项错误;B、对于x的每一个取值,y有时有两个确定的值与之对应,所以y不是x的函数,故B选项错误;C、对于x的每一个取值,y有时有两个确定的值与之对应,所以y不是x的函数,故C选项错误;D、对于x的每一个取值,y都有唯一确定的值与之对应关系,所以y是x的函数,故D选项正确.故选:D.6.一次函数y=2x+4的图象与y轴交点的坐标是()A.(0,﹣4)B.(0,4) C.(2,0) D.(﹣2,0)【考点】一次函数图象上点的坐标特征.【分析】在解析式中令x=0,即可求得与y轴的交点的纵坐标.【解答】解:令x=0,得y=2×0+4=4,则函数与y轴的交点坐标是(0,4).故选:B.7.下面各点中,在函数y=﹣2x+3的图象上的点是()A.(1,﹣1)B.(﹣2,1)C.(﹣2,﹣1)D.(1,1)【考点】一次函数图象上点的坐标特征.【分析】分别将各个点的值代入函数中满足的即在图象上.【解答】解:当x=1时,y=1,(1,﹣1)不在函数y=﹣2x+3的图象上,(1,1))在函数y=﹣2x+3的图象上;当x=﹣2时,y=7,(﹣2,1)和(﹣2,﹣1)不在函数y=﹣2x+3的图象上;故选D.8.函数y=中,自变量x的取值范围是()A.x>2 B.x<2 C.x≠2 D.x≥2【考点】函数自变量的取值范围.【分析】根据分母为零无意义,可得答案.【解答】解:由题意,得x﹣2≠0,解得x≠2,故选:C.9.已知,一次函数y=kx+b的图象如图,下列结论正确的是()A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<0【考点】一次函数图象与系数的关系.【分析】根据图象在坐标平面内的位置关系确定k,b的取值范围,从而求解.【解答】解:如图所示,一次函数y=kx+b的图象,y随x的增大而增大,所以k >0,直线与y轴负半轴相交,所以b<0.故选B.10.将函数y=﹣2x的图象沿y轴向上平移3个单位长度后,所得图象对应的函数表达式为()A.y=x B.y=﹣2x+3 C.y=﹣2x﹣3 D.y=﹣2(x+3)【考点】一次函数图象与几何变换.【分析】直接利用一次函数平移规律,“上加下减”进而得出即可.【解答】解:∵将函数y=﹣2x的图象沿y轴向上平移3个单位长度,∴平移后所得图象对应的函数关系式为:y=﹣2x+3.故选:B.11.已知点(﹣3,y1),(1,y2)都在直线y=﹣x+2上,则y1、y2的大小关系是()A.y1>y2B.y1=y2C.y1<y2D.不能确定【考点】一次函数图象上点的坐标特征.【分析】根据k=﹣<0可得y将随x的增大而减小,利用x的大小关系和函数的单调性可判断y1>y2.【解答】解:∵k=﹣<0,∴y将随x的增大而减小,∵﹣3<1,∴y1>y2.故选A.12.关于函数y=﹣2x+1,下列结论正确的是()A.图象必经过(﹣2,1)B.y随x的增大而增大C.图象经过第一、二、三象限D.当x>时,y<0【考点】一次函数的性质.【分析】根据一次函数的性质,依次分析选项可得答案.【解答】解:根据一次函数的性质,依次分析可得,A、x=﹣2时,y=﹣2×﹣2+1=5,故图象必经过(﹣2,5),故错误,B、k<0,则y随x的增大而减小,故错误,C、k=﹣2<0,b=1>0,则图象经过第一、二、四象限,故错误,D、当x>时,y<0,正确;故选D.二、填空题(每小题3分,共18分)13.请你任意写出一个在y轴上的点的坐标(0,1).【考点】点的坐标.【分析】根据y轴上点的横坐标为0写出即可.【解答】解:y轴上的点(0,1),答案不唯一.故答案为:(0,1).14.如图,若在象棋盘上建立平面直角坐标系,使“炮”位于点(1,1),“馬”位于点(3,﹣1),则“兵”位于点(﹣2,2)(写出点的坐标).【考点】坐标确定位置.【分析】根据炮的坐标确定出向左一个单位,向下一个单位为坐标原点,建立平面直角坐标系,然后写出兵的坐标即可.【解答】解:建立平面直角坐标系如图所示,“兵”位于点(﹣2,2).故答案为:(﹣2,2).15.一次函数y=﹣3x+1的图象经过点(a,﹣1),则a=.【考点】一次函数图象上点的坐标特征.【分析】把点(a,﹣1)代入y=﹣3x+1即可求解.【解答】解:把点(a,﹣1)代入y=﹣3x+1,得:﹣3a+1=﹣1.解得a=.故答案为.16.将点P(﹣2,3)先向右平移3个单位,再向下平移5个单位后得到点P′,则点P′的坐标为(1,﹣2).【考点】坐标与图形变化-平移.【分析】根据横坐标,右移加,左移减;纵坐标,上移加,下移减可得点P′的坐标为(﹣2+3,3﹣5),再计算即可.【解答】解:点P(﹣2,3)先向右平移3个单位,再向下平移5个单位后得到点P′,则点P′的坐标为(﹣2+3,3﹣5),即(1,﹣2),故答案为:(1,﹣2).17.小明放学后步行回家,他离家的路程s(米)与步行时间t(分钟)的函数图象如图所示,则他步行回家的平均速度是80米/分钟.【考点】函数的图象.【分析】他步行回家的平均速度=总路程÷总时间,据此解答即可.【解答】解:由图知,他离家的路程为1600米,步行时间为20分钟,则他步行回家的平均速度是:1600÷20=80(米/分钟),故答案为:80.18.如图,已知函数y=2x+b与函数y=kx﹣3的图象交于点P,则关于x的不等式kx﹣3>2x+b的解集是x<4.【考点】一次函数与一元一次不等式.【分析】直线y=kx﹣3落在直线y=2x+b上方的部分对应的x的取值范围即为所求.【解答】解:∵函数y=2x+b与函数y=kx﹣3的图象交于点P(4,﹣6),∴不等式kx﹣3>2x+b的解集是x<4.故答案为x<4.19.写出一个同事具备下列两个条件的一次函数表达式:①y随着x的增大而增大;②图象不经过第二象限y=x﹣2(只写一个即可).【考点】待定系数法求一次函数解析式;一次函数的性质.【分析】根据①确定k>0;根据②,判定出b<0.【解答】解:∵一次函数表达式:y随着x的增大而增大;图象不经过第二象限,∴k>0;b<0.∴该一次函数的表达式可为:y=x﹣2(答案不唯一,k>0;b<0.)故答案为:y=x﹣2.20.把下面图画函数y=﹣x+2图象的过程补充完整.解:(1)列表为:(2)画出的函数图象为:【考点】一次函数的图象.【分析】(1)根据解析式分别将x的值代入计算即可;(2)描点,连线,画出图象.【解答】解:(1)列表为:(2)画出的图象为下图:21.(1)在如图所给的平面直角坐标系中,描出点A(3,4),B(0,2),C(3,﹣2),再顺次连接A、B、C三点;(2)求三角形ABC的面积.【考点】坐标与图形性质.【分析】(1)根据点在坐标系中的表示即可求解;(2)利用三角形的面积公式即可求解.【解答】解:(1)=×6×3=9.(2)AC=6,则S△ABC22.在一次函数y=kx+b中,当x=1时,y=﹣2,当x=2时,y=1.(1)求k、b的值;(2)当x=﹣2时,y的值是多少?【考点】待定系数法求一次函数解析式.【分析】(1)将x与y的两对值代入y=kx+b中求出k与b的值,即可确定出一次函数解析式.(2)把x=﹣2代入解析式即可求得.【解答】解:(1)依题意得:,解之得:,(2)由(1)知该一次函数解析式为y=3x﹣5,当x=﹣2时,y=3×(﹣2)﹣5=﹣11.23.如图,在平面直角坐标系中,△ABC的顶点都在网格点上,其中点C坐标为(1,2).(1)写出点A、B的坐标:A(2,﹣1);B(4,3).(2)若将△ABC先向左平移2个单位长度,再向上平移1个单位长度,得到△A′B′C′,请你画出△A′B′C′.(3)写出△′B′C′的三个顶点坐标:。
广东省广州市珠江中学2016-2017学年八年级上期中考试数学试题附答案(word版)
=(4-2)×180°=360° ……10分
18.(10分)
证明:∵BF=CE
∴BF+FC=CE+FC即BC=EF ……2分
在 △ABC和△ DEF中 ……3分
……6分
∴△ABC≌△ DEF(SAS) ……8分
∴∠A=∠D……10分
19.(10分)
么货物中转站应建在哪里?
(2)若要求货物中转站到A、B两个开发区的距离和最小,那么货物中转站应建在哪里?
BB
MNMN
(1)
(2)
20.(10分)如图,AD是△ABC的外角平分线,交BC的延长线于D点,若∠B=30°,
∠ACD=100°,求∠DAE的度数.
第20题图
21.(12分)已知:E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,垂足分别为C、
又∵ED=EC,即E在线段CD的垂直平分线上,……11分
∴OE是CD的垂直平分线。……12分
(或用等腰三角形的三线合一即证明△OCD或△EDC为等腰三角形(9分),再说明OE是顶角平分线(10分),最后说明OE是CD的垂直平分线(12分),再或者设OE与CD交于点F,证明△ODF≌△OCF(10分)再说明OE是CD的垂直平分线(12分))
第5题图
6.如图,将△ABC沿直线DE折叠后,使得点B与点A重合.
已知AC=5cm,△ADC的周长为17cm,则BC的长为()
A.7cmB.10cmC.12cmD.22cm
7.如果两个三角形中两条边和其中一边上的高对应相等,那么这两个三角形的第三条边所对的角的关系是()
A.相等B.不相等C.互余或相等D.互补或相等8、如图,AD是△ABC的角平分线,点O在AD上,且OE⊥BC
广东初二初中数学期中考试带答案解析
广东初二初中数学期中考试班级:___________ 姓名:___________ 分数:___________一、选择题1.下列各数中,是无理数的是()A.B.C.D.2.下面三组数中是勾股数的一组是()A.7,8,9B.3,4,5C.1.5,5,2.5D.20,28,35 3.和数轴上的点一一对应的数是()A.整数B.有理数C.实数D.无理数4.估计的大小应在().A.5~6之间B.6~7之间C.8~9之间D.7~8之间5.在平面直角坐标系中,若点P在轴上,则的值是()A.-3B.1C.3D.-16.满足的整数是()A.-1,0,1,2B.-2,-1,0,1C.-1,1,2,3D.0,1,2,3 7.在平面直角坐标系中,点Q(-2,3)在()A.第一象限B.第二象限C.第三象限D.第四象限8.下列说法中,错误的是()A.4的算术平方根是±2B.的平方根是±3C.8的立方根是2D.立方根等于-1的实数是-19.已知x、y为实数,且,则x-y的值为()A.3B.C.1D.10.直角三角形的两直角边分别为5厘米、12厘米,则斜边上的高是()A.6厘米B.8厘米C.厘米D.厘米二、填空题1.剧院的5排4号可以记作(5,4),那么8排3号可以记作__________,(6,5)表示的意义是________。
2.比较大小,填>或<号:____,____。
3.在 Rt△ABC中,斜边AB=4,则AB2+BC2+AC2=___________ 。
4.如图所示,在长方形ABCD中,CD=3,CB=2,则此时点A的坐标为_______。
5.的平方根是_________,-64的立方根是__________。
6.底边长为10cm,底边上的高为12cm的等腰三角形的腰长为___________。
7.的相反数是________________;绝对值是___________________.8.如图,四边形ABCD为长方形纸片,把纸片ABCD折叠,使点B恰好落在CD的中点E处,折痕为AF,若CD =8,则AD=___________。
广东初二初中数学期中考试带答案解析
广东初二初中数学期中考试班级:___________ 姓名:___________ 分数:___________一、选择题1.下列说法正确的是()A.是无理数B.是有理数C.是无理数D.是有理数2.点P(﹣2,1)在平面直角坐标系中所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限3.以下列各组数为三边的三角形中不是直角三角形的是()A.25、7、24B.41、40、9C.6、5、4D.9、12、154.下列说法正确的是()A.36的平方根是±6B.-3是的算术平方根C.8的立方根是±2D.3是-9的算术平方根5.点P在轴上,则的值为()A.1B.2C.-1D.06.一个直角三角形的两条边分别是6和8,则第三边是()A.10B.12C.12或D.10或7.要使二次根式有意义,字母必须满足的条件是()A.≥1B.≥-1C.>-1D.>18.如图,△ABC中,∠C=90°,AC=3,点P是BC边上一动点,则AP的长不可能是()A.3B.3.5C.2.8D.49.如图,将△AOB绕点O逆时针旋转90°,得到△A/O/B/.若A的坐标为,是A/的坐标为()A.B.C.D.10.如图3,以Rt△ABC的三边为斜边分别向外作等腰三角形,若斜边AB=3,则图中阴影部分的面积为()A.9B.C.D.3二、填空题1.如果将电影票上“6排3号”简记为(6,3),那么“9排21号”可表示为______________.2.若的整数部分为,小数部分为,则.3.在Rt△ABC中,∠ABC=90°,AB=5,则AB2+AC2+BC2=_________4.若A(a,b)在第二、四象限的角平分线上,a与b的关系是 .5.已知,那么.6.将一根24㎝的筷子置于底面直径为8㎝,高为15㎝的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度为㎝,则的取值范围是_____________.三、解答题1.计算(1)(2)化简2.如图,每个小正方形的边长是1(1)在图①中画出一个面积为2的直角三角形;(2)在图②中画出一个面积是2的正方形.3.如图,已知等边三角形ABC的边长为4,建立适当的直角坐标系,并写出各点的坐标.4.已知、互为倒数,、互为相反数,求的值.5.已知点A和点B关于轴对称,求的值.6.(本题8分)如图,某住宅小区在施工过程中留下了一块空地,已知AD=4米,CD=3米,∠ADC=90°,AB=13米,BC=12米,小区为美化环境,欲在空地上铺草坪,已知草坪每平方米100元,试问用该草坪铺满这块空地共需花费多少元?7.已知数满足,求.8.已知某个图形是按下面方法连接而成的:(0,0)→(2,0) ;(1,0)→(0,-1);(1,1)→(1,-2);(1,0)→(2,-1)(1)请连接图案,它是一个什么汉字?(2)作出这个图案关于轴的轴对称图形,并写出新图案相应各端点的坐标,你得到一个什么汉字?9.一架梯子AB长25米,如图斜靠在一面墙上,梯子底端B离墙7米.(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了4米,那么梯子底部在水平方向滑动了4米吗?为什么?广东初二初中数学期中考试答案及解析一、选择题1.下列说法正确的是()A.是无理数B.是有理数C.是无理数D.是有理数【答案】D【解析】分析:先对各选项进行化简,然后根据有理数和无理数的定义即可判断.解答:解:A、=1是有理数,故本选项错误,B、是无理数,故本选项错误,C、=2是有理数,故本选项错误,D、=-2是有理数,故本选项正确.故选D.2.点P(﹣2,1)在平面直角坐标系中所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【答案】B.【解析】点P(﹣2,1)在第二象限.故选B.【考点】点的坐标.3.以下列各组数为三边的三角形中不是直角三角形的是()A.25、7、24B.41、40、9C.6、5、4D.9、12、15【答案】C【解析】A选项,∵,∴25、7、49能围成直角三角形;B选项,∵,∴41、40、9能围成直角三角形;C选项,∵,∴6、5、4不能围成直角三角形;D选项,∵,∴9、12、15能围成直角三角形;故选C.点睛:判断三条线段能否围成直角三角形,就看较短两边的平方和是否等于最长边的平方,若是就能围成,反之则围不成.4.下列说法正确的是()A.36的平方根是±6B.-3是的算术平方根C.8的立方根是±2D.3是-9的算术平方根【答案】A【解析】A选项,∵,∴36的平方根是是正确的;B选项,∵是的平方根,但不是算术平方根,∴B选项说法错误;C选项,∵,∴不是8的立方根,∴C选项说法错误;D选项,∵负数没有平方根,∴D选项说法错误;故选A.5.点P在轴上,则的值为()A.1B.2C.-1D.0【答案】A【解析】∵点P(m+3,m-1)在轴上,∴m-1=0,解得m=1.故选A.6.一个直角三角形的两条边分别是6和8,则第三边是()A.10B.12C.12或D.10或【答案】D【解析】(1)当长为6和8的两边都是直角边时,第三边是斜边,其长为:;(2)当长为8的是斜边是,第三边是直角边,其长为:;即第三边的长为10或.故选D.点睛:已知直角三角形的两边长,求第三边长时,一定要分两种情况讨论:(1)已知两边都是直角边,求斜边;(2)已知两边中较长的是斜边,另一边是直角边,求第二条直角边.7.要使二次根式有意义,字母必须满足的条件是()A.≥1B.≥-1C.>-1D.>1【答案】B【解析】∵二次根式有意义,∴,解得.故选B.8.如图,△ABC中,∠C=90°,AC=3,点P是BC边上一动点,则AP的长不可能是()A.3B.3.5C.2.8D.4【答案】C【解析】∵∠C=90°,∴AC⊥BC,∴根据“垂线段最短”可知AP AC,∴AP3,即AP长不能为2.8.故选C.9.如图,将△AOB绕点O逆时针旋转90°,得到△A/O/B/.若A的坐标为,是A/的坐标为()A.B.C.D.【答案】D【解析】由旋转的性质可知:△A′OB′≌△AOB,∴OB′=OB=,A′B′=AB=,∵旋转后点A′在第二象限,∴点A′的坐标为(,).故选D.10.如图3,以Rt△ABC的三边为斜边分别向外作等腰三角形,若斜边AB=3,则图中阴影部分的面积为()A.9B.C.D.3【答案】B【解析】由题意可知;△ACD、△CEB、△ABF,分别是以AC、CB、AB为斜边的等腰直角三角形,∴S△ACD=AD CD=AD2=(AC)2=AC2,S△CEB=CE BE=CE2=(BC)2=BC2,S△ABF=AF BF=AF2=(AB)2=AB2,∴S阴影=S△ACD+S△CEB+S△ABF=AC2+BC2+AB2=(AC2+ BC2)+AB2,∵在Rt△ABC中,∠ACB=90°,AB=3,∴AC2+BC2=AB2=9,∴S=.阴影故选B.二、填空题1.如果将电影票上“6排3号”简记为(6,3),那么“9排21号”可表示为______________.【答案】(9,21)【解析】由“6排3号”简记为(6,3)可知:括号中的第一个数表示排数,第二个数表示号数,∴“9排21号”可表示为(9,21).2.若的整数部分为,小数部分为,则.【答案】3,【解析】∵,∴.3.在Rt△ABC中,∠ABC=90°,AB=5,则AB2+AC2+BC2=_________【答案】50【解析】如图所示:在Rt△ABC中,BC2+AC2=AB2,∵AB=5,∴BC2+AC2=25,∴AB2+AC2+BC2=25+25=50.故答案是:50.4.若A(a,b)在第二、四象限的角平分线上,a与b的关系是 .【答案】互为相反数【解析】A(a,b)在第二、四象限的角平分线上,则a与b的值互为相反数,则a=-b.解:∵A(a,b)在第二、四象限的角平分线上,第二象限内点的坐标的符号特征是(-,+),第四象限内点的坐标的符号特征是(+,-),原点的坐标是(0,0),所以二、四象限角平分线上的点的横纵坐标的关系是a=-b.故填a=-b.平面直角坐标系中,象限角平分线上的点的坐标特征,一、三象限角平分线上的点的坐标特征是(x,x),二、四象限角平分线上是点的坐标特征是(x,-x).5.已知,那么.【答案】8【解析】∴,且,∴,解得,∴.点睛:(1)一个式子的绝对值、一个式子的偶次方、一个式子的算术平方根都是非负数;(2)几个非负数的和为0,则这几个非负数都为0.6.将一根24㎝的筷子置于底面直径为8㎝,高为15㎝的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度为㎝,则的取值范围是_____________.【答案】7≤≤9【解析】如图,当筷子象图1那样直立放置在水杯中时,露在杯外的部分最长,此时=24-15=9(cm);当筷子象图2那样放置在水杯中时,露在杯外的部分最短,由已知条件可得杯内的部分AB=(cm),此时=24-17=7(cm);∴的取值范围为:.三、解答题1.计算(1)(2)化简【答案】(1);(2)【解析】(1)利用零指数幂的意义和立方根的定义化简即可;(2)利用二次根式的运算法则和乘法公式进行化简即可;试题解析:(1)原式=(2)原式= .2.如图,每个小正方形的边长是1(1)在图①中画出一个面积为2的直角三角形;(2)在图②中画出一个面积是2的正方形.【答案】见解析【解析】(1)面积为2的直角三角形,其两直角边的乘积应为4,取其两直角边都为2即可(方法不止一种);(2)面积为2的正方形,其边长应为,而在方格纸中,每个小正方形的对角线长刚好为,所以以小正方形的对角线为边长作正方形即可;试题解析:所画图形如图所示:3.如图,已知等边三角形ABC的边长为4,建立适当的直角坐标系,并写出各点的坐标.【答案】见解析.【解析】这题没有固定答案,建立的坐标系不一样,各顶点的坐标就不一样,现以BC所在直线为横轴,BC中点为原点建立坐标系,利用等腰三角形的性质就可求出各顶点坐标;试题解析:以BC所在的直线轴,以BC边上的高所在的直线为轴,建立平面直角坐标系如图:∵等边△ABC的边长为4,∴ BO=CO=2,∴点B、C的坐标分别为B(-2,0),C(2,0),∴AO=,∴点A的坐标为(0,).4.已知、互为倒数,、互为相反数,求的值.【答案】0.【解析】直接利用倒数以及相反数的定义分别化简得出答案.试题解析:∵a、b互为倒数,c、d互为相反数,∴ab=1,c+d=0,∴=−1+0+1=0.点睛:此题考查了实数的混合运算,熟练掌握运算法则是解本题的关键.5.已知点A和点B关于轴对称,求的值.【答案】-1【解析】由关于轴对称的两个点,横坐标相等,纵坐标互为相反数可列出方程求得的值,代入就可求值了;试题解析:∵点A,点B关于轴对称,∴,解得∴.点睛:(1)关于轴对称的两个点,横坐标相等,纵坐标互为相反数;(2)关于轴对称的两个点,横坐标互为相反数,纵坐标相等;(3)关于原点对称的两个点,横坐标和横坐标、纵坐标和纵坐标都互为相反数.6.(本题8分)如图,某住宅小区在施工过程中留下了一块空地,已知AD=4米,CD=3米,∠ADC=90°,AB=13米,BC=12米,小区为美化环境,欲在空地上铺草坪,已知草坪每平方米100元,试问用该草坪铺满这块空地共需花费多少元?【答案】2400.【解析】连接AC,根据勾股定理求出AC,根据勾股定理的逆定理求出∠ACB=90°,求出区域的面积,即可求出答案.试题解析:连结AC ,在Rt △ACD 中,∠ADC=90°,AD=4米,CD=3米,由勾股定理得:AC=(米),∵AC 2+BC 2=52+122=169,AB 2=132=169,∴AC 2+BC 2=AB 2,∴∠ACB=90°, 该区域面积S=S △ACB ﹣S △ADC =×5×12﹣×3×4=24(平方米),即铺满这块空地共需花费=24×100=2400元. 【考点】1.勾股定理;2.勾股定理的逆定理.7.已知数满足,求.【答案】2017 【解析】由二次根式的意义可得,即,由此可得,从而原等式化为:,由此可得,即;试题解析:由二次根式的意义可得,即,∴,∴原等式可化为:,∴, ∴, ∴.8.已知某个图形是按下面方法连接而成的:(0,0)→(2,0) ;(1,0)→(0,-1); (1,1)→(1,-2);(1,0)→(2,-1) (1)请连接图案,它是一个什么汉字?(2)作出这个图案关于轴的轴对称图形,并写出新图案相应各端点的坐标,你得到一个什么汉字?【答案】见解析 【解析】(1)在方格纸中建立坐标系,按各点的坐标描出各点,再按指定要求连接各对点,即可得到相应的图形; (2)按要求先作出各点关于y 轴的对称点,并把相应的各对点连接,就可得相应的图形; 试题解析:(1)如图所示:这是一个“木”字;(2)如图所示:这是一个“林”字;对应各端点坐标如下:(0,0)→(-2,0);(-1,0)→(0,-1);(-1,1)→(-1,-2);(-1,0)→(-2,-1). 9.一架梯子AB长25米,如图斜靠在一面墙上,梯子底端B离墙7米.(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了4米,那么梯子底部在水平方向滑动了4米吗?为什么?【答案】(1)这个梯子的顶端距地面24米;(2)梯子底部在水平方向不是滑动了4米,而是8米.【解析】(1)由题意得a=24米,c=25米,根据勾股定理得a2+b2=c2,可求出梯子底端离墙有多远;(2)由题意得此时a=20米,c=25米,由勾股定理可得出此时的b,继而能和(1)的b进行比较.解:(1)由题意得此时a=24米,c=25米,根据a2+b2=c2,则b==7(米),答:这个梯子底端离墙有7米;(2)不是.设滑动后梯子的底端到墙的距离为b米,得方程,b2+(24﹣4)2=252,解得:b=15,所以梯子向后滑动了8米.故如果梯子的顶端下滑了4米,那么梯子的底部在水平方向不是滑4米.【考点】勾股定理的应用.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016-2017学年广东省广州市南沙区珠江中学八年级(上)期中数学试卷一、选择题(10小题,每小题3分,共30分)1.(3分)下面所给的交通标志图中是轴对称图形的是()A.B.C.D.2.(3分)下列长度的三条线段中,能组成三角形的是()A.3cm,5cm,8cm B.8cm,8cm,18cmC.0.1cm,0.1cm,0.1cm D.3cm,40cm,8cm3.(3分)已知实数x,y满足,则以x,y的值为两边长的等腰三角形的周长是()A.20或16 B.20C.16 D.以上答案均不对4.(3分)已知三角形的三个外角的度数比为2:3:4,则它的最大内角的度数为()A.90°B.110°C.100° D.120°5.(3分)如图,在△ABC中,AB=AC,点D、E在BC上,连接AD、AE,如果只添加一个条件使∠DAB=∠EAC,则添加的条件不能为()A.BD=CE B.AD=AE C.DA=DE D.BE=CD6.(3分)如图,将△ABC沿直线DE折叠后,使得点B与点A重合.已知AC=5cm,△ADC的周长为17cm,则BC的长为()A.7cm B.10cm C.12cm D.22cm7.(3分)如果两个三角形的两条边和其中一条边上的高对应相等,那么这两个三角形的第三条边所对的角的关系是()A.相等B.互余C.互补或相等D.不相等8.(3分)如图,AD是△ABC的角平分线,点O在AD上,且OE⊥BC于点E,∠BAC=60°,∠C=80°,则∠EOD的度数为()A.20°B.30°C.10°D.15°9.(3分)如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正三角形ABC和正三角形CDE,AD与BE交与点O,AD与BC交与点P,BE与CD交与点Q,连接PQ.有下列结论:①AD=BE;②AP=BQ;③∠AOB=60°;④DC=DP;⑤△CPQ为正三角形.其中正确的结论有()A.①②③⑤B.①③④⑤C.①②⑤D.②③④10.(3分)将一个正方形纸片依次按图a,b的方式对折,然后沿图c中的虚线裁剪,成图d样式,将纸展开铺平,所得到的图形是图中的()A.B.C.D.二、填空题(6小题,每小题3分,共18分)11.(3分)点(2,b)与(a,﹣4)关于y轴对称,则a+b=.12.(3分)如果一个正多边形的一个内角等于135°,则这个正多边形一共有条对角线.13.(3分)等腰三角形一腰上的高与另一腰的夹角为60°,则这个等腰三角形的顶角为.14.(3分)如图,在△ABC中,∠ABC与∠ACB的平分线交于点O,过点O作DE∥BC,分别交AB、AC于点D、E.若△ADE的周长为9,△ABC的周长是14,则BC=.15.(3分)如图,在△ABC中,DE∥BC,DF∥AB,D,E,M分别为AC,AB,BE的中点,连接DM,以DM为边作△DMN,连接FN,且DM=DN.若∠B=∠C=∠MDN=60°,AB=6,则FN的长度为.16.(3分)如图,已知△ABC的内角∠A=a,分别作内角∠ABC与外角∠ACD的平分线,两条平分线交于点A1,得∠A1;∠A1BC和∠A1CD的平分线交于点A2,得∠A2;…以此类推得到∠A2016,则∠A2016的度数是.三、解答题(共102分)17.(10分)如图所示,求∠A+∠B+∠C+∠D+∠E+∠F的度数.18.(10分)如图,点F、C在BE上,BF=CE,AB=DE,∠B=∠E.求证:∠A=∠D.19.(10分)尺规作图:如图,要在公路MN旁修建一个货物中转站,分别向A、B两个开发区运货.(1)若要求货物中转站到A、B两个开发区的距离相等,那么货物中转站应建在哪里?(2)若要求货物中转站到A、B两个开发区的距离和最小,那么货物中转站应建在哪里?20.(10分)如图,AD是△ABC的外角平分线,交BC的延长线于D点,若∠B=30°,∠ACD=100°,求∠DAE的度数.21.(12分)如图已知:E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,垂足分别为C、D.求证:(1)∠ECD=∠EDC;(2)OE是CD的垂直平分线.22.(10分)如图,△ABC的三条角平分线AD、BE、CF交于点O.(1)试判断∠AOE和∠1之间的关系,并写出推理过程.(2)过点O作BC的垂线段,交BC于点H,求证:∠BOD=∠COH.23.(12分)如图,在等边△ABC中,点D、E分别在边BC、AC上,且AE=CD,BE与AD相交于点P,BQ⊥AD于点Q.(1)求证:BE=AD;(2)求证:PQ=BP.24.(14分)如图1,CA=CB,CD=CE,∠ACB=∠DCE=a,AD、BE交于点H,连CH.(1)求∠AHE的度数;(用a表示)(2)如图2,连接CH,求证:CH平分∠AHE;(3)如图3,若a=60°,P,Q 分别是AD,BE的中点,连接CP,PQ,CQ.请判断三角形PQC的形状,并证明.25.(14分)已知:在等腰三角形ABC中,AB=AC,AD⊥BC于点D,以AC为边作等边三角形ACE,直线BE交直线AD于点F,连接FC.(1)如图1,120°<∠BAC<180°,△ACE与△ABC在直线AC的异侧,且FC交AE于点M.①求证:∠FEA=∠FCA;②猜想线段FE,FA,FD之间的数量关系,并证明你的结论:(2)当60°<∠BAC<120°,且△ACE与△ABC在直线AC的同侧时,利用图2画出图形探究线段FE,FA,FD之间的数量关系,并直接写出你的结论.2016-2017学年广东省广州市南沙区珠江中学八年级(上)期中数学试卷参考答案与试题解析一、选择题(10小题,每小题3分,共30分)1.(3分)下面所给的交通标志图中是轴对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,故本选项正确;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选:A.2.(3分)下列长度的三条线段中,能组成三角形的是()A.3cm,5cm,8cm B.8cm,8cm,18cmC.0.1cm,0.1cm,0.1cm D.3cm,40cm,8cm【解答】解:A.3cm,5cm,8cm中,3+5=8,故不能组成三角形;B.8cm,8cm,18cm中,8+8<18,故不能组成三角形;C.0.1cm,0.1cm,0.1cm中,任意两边之和大于第三边,故能组成三角形;D.3cm,40cm,8cm中,3+8<40,故不能组成三角形;故选:C.3.(3分)已知实数x,y满足,则以x,y的值为两边长的等腰三角形的周长是()A.20或16 B.20C.16 D.以上答案均不对【解答】解:根据题意得,解得,(1)若4是腰长,则三角形的三边长为:4、4、8,不能组成三角形;(2)若4是底边长,则三角形的三边长为:4、8、8,能组成三角形,周长为4+8+8=20.故选:B.4.(3分)已知三角形的三个外角的度数比为2:3:4,则它的最大内角的度数为()A.90°B.110°C.100° D.120°【解答】解:设三个外角的度数分别为2k,3k,4k,根据三角形外角和定理,可知2k°+3k°+4k°=360°,得k=40°,所以最小的外角为2k=80°,故最大的内角为180°﹣80°=100°.故选:C.5.(3分)如图,在△ABC中,AB=AC,点D、E在BC上,连接AD、AE,如果只添加一个条件使∠DAB=∠EAC,则添加的条件不能为()A.BD=CE B.AD=AE C.DA=DE D.BE=CD【解答】解:A、添加BD=CE,可以利用“边角边”证明△ABD和△ACE全等,再根据全等三角形对应角相等得到∠DAB=∠EAC,故本选项错误;B、添加AD=AE,根据等边对等角可得∠ADE=∠AED,然后利用三角形的一个外角等于与它不相邻的两个内角的和求出∠DAB=∠EAC,故本选项错误;C、添加DA=DE无法求出∠DAB=∠EAC,故本选项正确;D、添加BE=CD可以利用“边角边”证明△ABE和△ACD全等,再根据全等三角形对应角相等得到∠DAB=∠EAC,故本选项错误.故选:C.6.(3分)如图,将△ABC沿直线DE折叠后,使得点B与点A重合.已知AC=5cm,△ADC的周长为17cm,则BC的长为()A.7cm B.10cm C.12cm D.22cm【解答】解:根据折叠可得:AD=BD,∵△ADC的周长为17cm,AC=5cm,∴AD+DC=17﹣5=12(cm),∵AD=BD,∴BD+CD=12cm.故选:C.7.(3分)如果两个三角形的两条边和其中一条边上的高对应相等,那么这两个三角形的第三条边所对的角的关系是()A.相等B.互余C.互补或相等D.不相等【解答】解:第一种情况,当两个三角形全等时,是相等关系,第二种情况,如图,AC=AC′,高CD=C′D′,∴∠ADC=∠AD′C′,在Rt△ACD和Rt△AC′D′中,Rt△ACD≌Rt△AC′D′(HL),∴∠CAD=∠C′AD′,此时,∠CAB+∠C′AB=180°,是互补关系,所以选“相等或互补”.故选:C.8.(3分)如图,AD是△ABC的角平分线,点O在AD上,且OE⊥BC于点E,∠BAC=60°,∠C=80°,则∠EOD的度数为()A.20°B.30°C.10°D.15°【解答】解:∵∠BAC=60°,∠C=80°,∴∠B=40°.又∵AD是∠BAC的角平分线,∴∠BAD=∠BAC=30°,∴∠ADE=70°,又∵OE⊥BC,∴∠EOD=20°.故选:A.9.(3分)如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正三角形ABC和正三角形CDE,AD与BE交与点O,AD与BC交与点P,BE与CD交与点Q,连接PQ.有下列结论:①AD=BE;②AP=BQ;③∠AOB=60°;④DC=DP;⑤△CPQ为正三角形.其中正确的结论有()A.①②③⑤B.①③④⑤C.①②⑤D.②③④【解答】解:∵△ABC和△DCE是正三角形,∴AC=BC,DC=CE,∠BCA=∠DCE=60°,∴∠BCA+∠BCD=∠DCE+∠BCD,∴∠ACD=∠BCE,在△ACD和△BCE中∴△ACD≌△BCE(SAS),∴AD=BE,∴①正确;∵△ACD≌△BCE,∴∠CBE=∠CAD,∵∠ACB=∠DCE=60°,∴∠BCD=60°=∠ACB,在△ACP和△BCQ中∴△ACP≌△BCQ(ASA),∴AP=BQ,∴②正确;PC=QC,∴△CPQ为正三角形∴⑤正确∵△ACD≌△BCE,∴∠ADC=∠BEC,∠DCE=60°=∠CAD+∠ADC,∴∠CAD+∠BEC=60°,∴∠AOB=∠CAD+∠BEC=60°,∴③正确;∵△DCE是正三角形,∴DE=DC,∵∠AOB=60°,∠DCP=60°,∠DPC>∠AOB,∴∠DPC>∠DCP,∴DP<DC,即DP<DE,∴④错误;所以正确的有①②③⑤,故选:A.10.(3分)将一个正方形纸片依次按图a,b的方式对折,然后沿图c中的虚线裁剪,成图d样式,将纸展开铺平,所得到的图形是图中的()A.B.C.D.【解答】解:严格按照图中的顺序向上对折,向右对折,从右下角剪去一个四分之一圆,从左上角和左下角各剪去一个直角三角形,展开得到结论.故选:D.二、填空题(6小题,每小题3分,共18分)11.(3分)点(2,b)与(a,﹣4)关于y轴对称,则a+b=﹣6.【解答】解:∵点(2,b)与(a,﹣4)关于y轴对称,∴a=﹣2,b=﹣4,则a+b=﹣6,故答案为:﹣6.12.(3分)如果一个正多边形的一个内角等于135°,则这个正多边形一共有28条对角线.【解答】解:∵正多边形的一个内角是135°,∴该正多边形的一个外角为45°,∵多边形的外角之和为360°,∴边数n=360÷45=8,∴该正多边形的边数是8.∴这个正多边形一共有=28条对角线,故答案为:28.13.(3分)等腰三角形一腰上的高与另一腰的夹角为60°,则这个等腰三角形的顶角为30°或150°.【解答】解:①当为锐角三角形时可以画图,高与右边腰成60°夹角,由三角形内角和为180°可得,顶角为30°,②当为钝角三角形时可画图,此时垂足落到三角形外面,因为三角形内角和为180°,由图可以看出等腰三角形的顶角的补角为30°,∴三角形的顶角为150°,故答案为30°或150°.14.(3分)如图,在△ABC中,∠ABC与∠ACB的平分线交于点O,过点O作DE∥BC,分别交AB、AC于点D、E.若△ADE的周长为9,△ABC的周长是14,则BC=5.【解答】解:∵BO平分∠ABC,CO平分∠ACB,∴∠ABO=∠OBC,∠ACO=∠OCB,∵DE∥BC,∴∠BOD=∠OBC,∠COE=∠OCB,∴∠ABO=∠BOD,∠ACO=∠COE,∴BD=OD,CE=OE,∵△ADE的周长为29,∴AD+DE+AE=AD+OD+OE+AE=AD+BD+CE+AE=AB+AC=9,∵△ABC的周长是14,∴AB+AC+BC=14,∴BC=5.故答案为:5.15.(3分)如图,在△ABC中,DE∥BC,DF∥AB,D,E,M分别为AC,AB,BE的中点,连接DM,以DM为边作△DMN,连接FN,且DM=DN.若∠B=∠C=∠MDN=60°,AB=6,则FN的长度为.【解答】解:∵ED为△ABC中位线,∴ED∥BC,ED=BC,∵DF∥AB,D为AC中点,∴F为BC中点,即DF为△ABC中位线,∴DF=AB,∵∠B=∠C=∠MDN=60°,∴△ABC为等边三角形,∠MDF+∠FDN=60°,∴AB=BC=6,即DE=DF=3,∵M为EB中点,∴EM=EB=,∵∠EDM+∠MDF=∠AED=∠B=60°,∴∠FDN=∠EDM,在△DEM和△DFN中,,∴△DEM≌△DFN(SAS),∴FN=EM=.故答案为:16.(3分)如图,已知△ABC的内角∠A=a,分别作内角∠ABC与外角∠ACD的平分线,两条平分线交于点A1,得∠A1;∠A1BC和∠A1CD的平分线交于点A2,得∠A2;…以此类推得到∠A2016,则∠A2016的度数是.【解答】解:∵A1B是∠ABC的平分线,A1C是∠ACD的平分线,∴∠A1BC=∠ABC,∠A1CD=∠ACD,又∵∠ACD=∠A+∠ABC,∠A1CD=∠A1BC+∠A1,∴(∠A+∠ABC)=∠ABC+∠A1,∴∠A1=∠A,∵∠A=α,∴∠A1=;同理可得∠A2=∠A1=•α=,∴∠A n=,∴∠A2016=.故答案为:三、解答题(共102分)17.(10分)如图所示,求∠A+∠B+∠C+∠D+∠E+∠F的度数.【解答】解:如图连接BE.∵∠1=∠C+∠D,∠1=∠CBE+∠DEB,∴∠C+∠D=∠CBE+∠DEB,∴∠A+∠ABC+∠C+∠D+∠DEF+∠F=∠A+∠ABC+∠CBE+∠DEB+∠DEF+∠F=∠A+∠ABE+∠BEF+∠F.又∵∠A+∠ABE+∠BEF+∠F=360°,∴∠A+∠ABC+∠C+∠D+∠DEF+∠F=360°.18.(10分)如图,点F、C在BE上,BF=CE,AB=DE,∠B=∠E.求证:∠A=∠D.【解答】证明:∵BF=CE,∴BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS),∴∠A=∠D.19.(10分)尺规作图:如图,要在公路MN旁修建一个货物中转站,分别向A、B两个开发区运货.(1)若要求货物中转站到A、B两个开发区的距离相等,那么货物中转站应建在哪里?(2)若要求货物中转站到A、B两个开发区的距离和最小,那么货物中转站应建在哪里?【解答】解:(1)如图所示:(2)如图所示:20.(10分)如图,AD是△ABC的外角平分线,交BC的延长线于D点,若∠B=30°,∠ACD=100°,求∠DAE的度数.【解答】解:∵∠B=30°,∠ACD=100°,∴∠BAC=100°﹣30°=70°,∴∠EAC=180°﹣70°=110°,∵AD是△ABC的外角平分线,∴∠DAE=EAC=55°.21.(12分)如图已知:E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,垂足分别为C、D.求证:(1)∠ECD=∠EDC;(2)OE是CD的垂直平分线.【解答】证明:(1)∵E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,∴EC=DE,∴∠ECD=∠EDC;(2)在Rt△OCE和Rt△ODE中,,∴Rt△OCE≌Rt△ODE(HL),∴OC=OD,又∵OE是∠AOB的平分线,∴OE是CD的垂直平分线.22.(10分)如图,△ABC的三条角平分线AD、BE、CF交于点O.(1)试判断∠AOE和∠1之间的关系,并写出推理过程.(2)过点O作BC的垂线段,交BC于点H,求证:∠BOD=∠COH.【解答】解:(1)∠AOE和∠1之间的关系:∠AOE+∠1=90°.理由:∵AD、BE、CF都是△ABC的角平分线,∴∠2=∠ABC,∠3=∠BAC,∠1=∠ACB,∵∠AOE是△AOB的外角,∴∠AOE=∠2+∠3=∠ABC+∠BAC=(∠ABC+∠BAC)=(180°﹣∠ACB)=90°﹣∠ACB=90°﹣∠1,∴∠AOE+∠1=90°;(2)证明:过点O作BC的垂线段,交BC于点H,∵∠AEO=∠EBC+∠ACB=∠ABC+∠ACB,∴∠AOE=180°﹣(∠DAC+∠AEO)=180°﹣[∠BAC+∠ABC+∠ACB]=180°﹣[(∠BAC+∠ABC)+∠ACB]=180°﹣[(180°﹣∠ACB)+∠ACB]=180°﹣[90°+∠ACB]=90°﹣∠ACB,∴∠BOD=∠AOE=90°﹣∠ACB,又∵在Rt△OCH中,∠COH=90°﹣∠OCD=90°﹣∠ACB,∴∠BOD=∠COH.23.(12分)如图,在等边△ABC中,点D、E分别在边BC、AC上,且AE=CD,BE与AD相交于点P,BQ⊥AD于点Q.(1)求证:BE=AD;(2)求证:PQ=BP.【解答】(1)证明:∵△ABC为等边三角形.∴AB=AC,∠BAC=∠ACB=60°,在△BAE和△ACD中,,∴△BAE≌△ACD,∴BE=AD;(2)答:PQ=BP.证明:∵△BAE≌△ACD,∴∠ABE=∠CAD.∵∠BPQ为△ABP外角,∴∠BPQ=∠ABE+∠BAD.∴∠BPQ=∠CAD+∠BAD=∠BAC=60°∵BQ⊥AD,∴∠PBQ=30°,∴PQ=BP.24.(14分)如图1,CA=CB,CD=CE,∠ACB=∠DCE=a,AD、BE交于点H,连CH.(1)求∠AHE的度数;(用a表示)(2)如图2,连接CH,求证:CH平分∠AHE;(3)如图3,若a=60°,P,Q 分别是AD,BE的中点,连接CP,PQ,CQ.请判断三角形PQC的形状,并证明.【解答】(1)解:∵∠ACB=∠DCE=α,∴∠ACD=∠BCE,在△ACD和△BCE中∴△ACD≌△BCE(SAS),∴∠CAD=∠CBE,∵∠AMC=∠AMC,∴∠AHB=∠ACB=α,∴∠AHE=180°﹣α,;(2)证明:过点C作CM⊥AD于M,CN⊥BE于N,∵△ACD≌△BCE,∴∠CAM=∠CBN,在△ACM和△BCN中∴△ACM≌△BCN(AAS),∴CM=CN,∴CH平分∠AHE;(3)解:△CPQ是等边三角形,理由如下:∵△ACD≌△BCE,∴AD=BE,∠PAC=∠QBC,∵P、Q分别是AD、BE的中点,∴AP=BQ,在△APC和△BQC中∴△APC≌△BQC(SAS),∴CP=CQ,∠PCA=∠QCB,∴∠PCQ=∠ACB=60°,∴△CPQ是正三角形.25.(14分)已知:在等腰三角形ABC中,AB=AC,AD⊥BC于点D,以AC为边作等边三角形ACE,直线BE交直线AD于点F,连接FC.(1)如图1,120°<∠BAC<180°,△ACE与△ABC在直线AC的异侧,且FC交AE于点M.①求证:∠FEA=∠FCA;②猜想线段FE,FA,FD之间的数量关系,并证明你的结论:(2)当60°<∠BAC<120°,且△ACE与△ABC在直线AC的同侧时,利用图2画出图形探究线段FE,FA,FD之间的数量关系,并直接写出你的结论.【解答】解:(1)①∵AD⊥BC,AB=AC,∴BD=DC,∴FB=FC,∴∠FBC=∠FCB,∴AB=AC,∴∠ABC=∠ACB,∵∠FBA=∠FCA,∵以AC为边作等边三角形ACE,∴AE=AC=AB,∴∠ABF=∠AEF,∴∠ACF=∠AEF,即:∠FEA=∠FCA;②结论:EF=2FD﹣AF,∵以AC为边作等边三角形ACE,∴∠EAC=60°,由①有,∠ACF=∠AEF,∴∠EFC=∠EAC=60°,由①得,BF=CF,FD⊥BC,∴∠BFD=∠CFD,∵∠BFD+∠CFD+∠EFC=180°,∴∠BFD=∠CFD==60°,∴∠FCD=90°﹣∠CFD=30°,∴∠ACD+∠ACF=30°,∴∠ECF=∠ECA﹣∠ACF=60°﹣∠ACF=60°﹣(30°﹣∠ACD)=30°+∠ACD,如图1,延长AD,在AD上截取AD=DK,连接CK,∵AD⊥BC,∴∠ACD=∠KCD,CA=CK∴∠FCK=∠FCD+∠KCD=∠ACF+∠ACD+∠KCD=30°+∠KCD=30°+∠ACD,∴∠FCK=∠ECF,∵AC=CE,AC=CK,∴CK=CE,在△CFE和△CFK中,,∴△CFE≌△CFK,∴FE=FK=FD+DK,∵AD=DK,∴FE=2FD﹣AF;(2)②结论:EF=FA﹣2FD,如图2,延长AD至K,使DK=AD,∵AB=AC,AD⊥BC,∴点F在线段BC的垂直平分线上,∴AF=CF,∴∠CBF=∠BCF,∴∠ABF=∠ACF,∵△ACE是等边三角形,∴AE=AC,∵AB=AC,∴AB=AE,∴∠ABF=∠AEB,∴∠ACF=∠AEB,∴A,E,F,C四点共圆,∴∠EAF=∠ECF,∵∠FCK=∠ACK﹣∠ACF=2∠ACD﹣∠ACF=2(90°﹣∠CAD)﹣∠ACF=180°﹣2∠CAD﹣∠ACF=180°﹣2(∠EAC﹣∠EAF)﹣∠ACF=180°﹣2(60°﹣2∠EAF)﹣∠ACF=60°+2∠EAF﹣∠ACF=60°+2∠ECF﹣(∠ACE+∠ECF)=60°+2∠ECF﹣(60°+∠ECF)=∠ECF∵AC=CE,AC=CK,∴CK=CE,在△CFE和△CFK中,,∴△CFE≌△CFK,∴FE=FK=FD+DK,∵AD=DK,∴FE=FA﹣2FD;赠送初中数学几何模型【模型二】半角型:图形特征:AB正方形ABCD 中,∠EAF =45° ∠1=12∠BAD 推导说明:1.1在正方形ABCD 中,点E 、F 分别在BC 、CD 上,且∠FAE =45°,求证:EF =BE +DF45°DEa +b-a45°A1.2在正方形ABCD 中,点E 、F 分别在BC、CD 上,且EF =BE +DF ,求证:∠FAE =45°E-aaBE挖掘图形特征:x-a a-a运用举例:1.正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°.将△DAE绕点D逆时针旋转90°,得到△DCM.(1)求证:EF=FM(2)当AE=1时,求EF的长.DE2.如图,△ABC是边长为3的等边三角形,△BDC是等腰三角形,且∠BDC=120°.以D为顶点3.如图,梯形ABCD 中,AD ∥BC ,∠C =90°,BC =CD =2AD =4,E 为线段CD 上一点,∠ABE =45°.(1)求线段AB 的长;(2)动点P 从B 出发,沿射线..BE 运动,速度为1单位/秒,设运动时间为t ,则t 为何值时,△ABP 为等腰三角形; (3)求AE -CE 的值.变式及结论:4.在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.(1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图1),求证:△AEG≌△AEF;(2)若直线EF与AB,AD的延长线分别交于点M,N(如图2),求证:EF2=ME2+NF2;(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图3),请你直接写出线段EF,BE,DF之间的数量关系.F。