七年级数学相交线同步练习2
北师大版七年级数学下册第二章相交线与平行线同步测试试题(含答案及详细解析)
北师大版七年级数学下册第二章相交线与平行线同步测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,直线b、c被直线a所截,则1∠与2∠是()A.对顶角B.同位角C.内错角D.同旁内角2、如图,射线AB的方向是北偏东70°,射线AC的方向是南偏西30°,则∠BAC的度数是()A.100°B.140°C.160°D.105°3、以下3个说法中:①连接两点间的线段叫做这两点的距离;②经过两点有一条直线,并且只有一条直线;③同一个锐角的补角一定大于它的余角.正确的是()A .①B .③C .①②D .②③4、下列关于画图的语句正确的是( ).A .画直线8cm AB =B .画射线8cm OA =C .已知A 、B 、C 三点,过这三点画一条直线D .过直线AB 外一点画一直线与AB 平行5、若α∠的补角是125°24',则α∠的余角是( )A .90°B .54°36'C .36°24'D .35°24'6、下列说法中,正确的是( )A .从直线外一点到这条直线的垂线段,叫做这个点到这条直线的距离B .互相垂直的两条直线不一定相交C .直线AB 外一点P 与直线上各点连接而成的所有线段中最短线段的长是7cm ,则点P 到直线AB 的距离是7cmD .过一点有且只有一条直线垂直于已知直线7、若α∠的补角是150°,则α∠的余角是( )A .30°B .60°C .120°D .150°8、已知∠A =37°,则∠A 的补角等于( )A .53°B .37°C .63°D .143°9、在如图中,∠1和∠2不是同位角的是( )A .B .C .D .10、如图,若AB ∥CD ,CD ∥EF ,那么∠BCE =( )A .180°-∠2+∠1B .180°-∠1-∠2C .∠2=2∠1D .∠1+∠2第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,AD 是∠EAC 的平分线,AD ∥BC ,∠B =40°,则∠DAC 的度数为____.2、(1)已知α∠与β∠互余,且3518α'∠=︒,则β∠=________.(2)82325'''︒+________=180°.(3)若27m n a b -+与443a b -是同类项,则m +n =________.3、如图,点O 在直线AB 上,OD ⊥OE ,垂足为O .OC 是∠DOB 的平分线,若∠AOD =70°,则∠COE =__________度.4、已知∠1=71°,则∠1的补角等于__________度.5、已知一个角的补角是这个角的余角的3倍,则这个角是______度.三、解答题(5小题,每小题10分,共计50分)1、如图,直线AB,CD相交于点O,90∠.∠=︒,OF平分AOEFOD(1)写出图中所有与AOD∠互补的角;(2)若120∠的度数.AOE∠=︒,求BOD2、如图,直线AB,CD,EF相交于点O,(1)指出∠AOC,∠EOB的对顶角及∠AOC的邻补角.(2)图中一共有几对对顶角?指出它们.3、如图,已知AB CD∠,求证1290∠,CE平分BCD∥,BE平分ABC∠+∠=︒.证明:∵BE平分ABC∠(已知),∴2∠=(),同理1∠=,∴1122∠+∠=,又∵AB CD∥(已知)∴ABC BCD∠+∠=(),∴1290∠+∠=︒.4、(感知)已知:如图①,点E在AB上,且CE平分ACD∠,12∠=∠.求证:AB CD∥.将下列证明过程补充完整:证明:∵CE平分ACD∠(已知),∴2∠=∠__________(角平分线的定义),∵12∠=∠(已知),∴1∠=∠___________(等量代换),∴AB CD ∥(______________).(探究)已知:如图②,点E 在AB 上,且CE 平分ACD ∠,AB CD ∥.求证:12∠=∠.(应用)如图③,BE 平分DBC ∠,点A 是BD 上一点,过点A 作AE BC ∥交BE 于点E ,:4:5ABC BAE ∠∠=,直接写出E ∠的度数.5、如图,直线AB 、CD 相交于点O ,∠EOC =90°,OF 是∠AOE 的角平分线,∠COF =34°,求∠BOD 的度数.-参考答案-一、单选题1、B【分析】根据对顶角、同位角、内错角、同旁内角的特征去判断即可.【详解】∠1与∠2是同位角故选:B【点睛】本题考查了同位角的含义,理解同位角的含义并正确判断同位角是关键.2、B【分析】BAD CAE DAE再利用角的和差关系可得答案. 根据方位角的含义先求解,,,【详解】解:如图,标注字母,射线AB的方向是北偏东70°,射线AC的方向是南偏西30°,907020,30,BAD CAE而90,DAE ∠=︒309020140,BAC CAE DAE BAD故选B【点睛】本题考查的是角的和差关系,垂直的定义,方位角的含义,掌握“角的和差与方位角的含义”是解本题的关键.3、D【分析】由题意根据线段的性质,余、补角的概念,两点间的距离以及直线的性质逐一进行分析即可.【详解】解:连接两点间的线段的长度,叫做这两点的距离,故①不符合题意;经过两点有一条直线,并且只有一条直线,故②符合题意;同一个锐角的补角一定大于它的余角,故③符合题意.故选:D.【点睛】本题考查线段的性质,余、补角的概念和两点间的距离以及直线的性质,主要考查学生的理解能力和判断能力.4、D【分析】直接利用直线、射线的定义分析得出答案.【详解】解:A 、画直线AB =8cm ,直线没有长度,故此选项错误;B 、画射线OA =8cm ,射线没有长度,故此选项错误;C 、已知A 、B 、C 三点,过这三点画一条直线或2条、三条直线,故此选项错误;D 、过直线AB 外一点画一直线与AB 平行,正确.故选:D .【点睛】此题主要考查了直线、射线的定义及画平行线,正确把握相关定义是解题关键.5、D【分析】根据题意,得α∠=180°-125°24',α∠的余角是90°-(180°-125°24')=125°24'-90°,选择即可.【详解】∵α∠的补角是125°24',∴α∠=180°-125°24',∴α∠的余角是90°-(180°-125°24')=125°24'-90°=35°24',故选D .【点睛】本题考查了补角,余角的计算,正确列出算式是解题的关键.6、C【分析】根据点到直线距离的定义分析,可判断选项A 和C ;根据相交线的定义分析,可判断选项B ,根据垂线的定义分析,可判断选项D ,从而完成求解.【详解】从直线外一点到这条直线的垂线段的长度,叫做这个点到这条直线的距离,即选项A 错误;在同一平面内,互相垂直的两条直线一定相交,即选项B错误;直线AB外一点P与直线上各点连接而成的所有线段中最短线段的长是7cm,则点P到直线AB的距离是7cm,即选项C正确;在同一平面内,过一点有且只有一条直线垂直于已知直线,即选项D错误;故选:C.【点睛】本题考查了点和直线的知识;解题的关键是熟练掌握点到直线距离、相交线、垂线的性质,从而完成求解.7、B【分析】根据补角、余角的定义即可求解.【详解】∠的补角是150°∵α∠=180°-150°=30°∴α∠的余角是90°-30°=60°∴α故选B.【点睛】此题主要考查余角、补角的求解,解题的关键是熟知如果两个角的和为90度,这两个角就互为余角;补角是指如果两个角的和是一个平角,那么这两个角叫互为补角,其中一个角叫做另一个角的补角8、D【分析】根据补角的定义:如果两个角的度数和为180度,那么这两个角互为补角,进行求解即可.【详解】解:∵∠A=37°,∴∠A的补角的度数为180°-∠A=143°,故选D.【点睛】本题主要考查了求一个角的补角,熟知补角的定义是解题的关键.9、D【分析】同位角的定义:两条直线a,b被第三条直线c所截,在截线c的同侧,被截两直线a,b的同一方向的两个角,我们把这样的两个角称为同位角,依此即可求解.【详解】解:A、∠1与∠2有一条边在同一条直线上,另一条边在被截线的同一方,是同位角,不符合题意;B、∠1与∠2有一条边在同一条直线上,另一条边在被截线的同一方,是同位角,不符合题意;C、∠1与∠2有一条边在同一条直线上,另一条边在被截线的同一方,是同位角,不符合题意;D、∠1与∠2的一边不在同一条直线上,不是同位角,符合题意.故选:D.【点睛】本题题考查三线八角中的同位角识别,解题关键在于掌握判断是否是同位角,必须符合三线八角中,在截线的同侧,并且在被截线的同一方的两个角是同位角.10、A【分析】根据两直线平行,内错角相等,同旁内角互补,这两条性质解答.【详解】∵AB∥CD,CD∥EF,∴∠1=∠BCD ,∠ECD +∠2=180°,∴∠BCE =∠BCD +∠ECD =180°-∠2+∠1,故选A .【点睛】本题考查了平行线的性质,正确选择合适的平行线性质是解题的关键.二、填空题1、40°【分析】根据平行线的性质可得∠EAD =∠B ,根据角平分线的定义可得∠DAC =∠EAD ,即可得答案.【详解】∵AD ∥BC ,∠B =40°,∴∠EAD =∠B =40°,∵AD 是∠EAC 的平分线,∴∠DAC =∠EAD =40°,故答案为:40°【点睛】本题考查平行线的性质及角平分线的定义,两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补;熟练掌握平行线的性质是解题关键.2、5442'︒ 972755'''︒ 3【分析】(1)根据余角的定义和角度的四则运算法则进行求解即可;(2)根据角度的四则运算法则求解即可;(3)根据同类项的定义,先求出m 、n 的值,然后代值计算即可.【详解】解:(1)α∠与β∠互余,且3518α'∠=︒,∴90=903518=5442βα'∠=︒-︒-︒'︒∠;故答案为:5442'︒;(2)18082325=972755''''''︒-︒︒;故答案为:972755'''︒;(3)∵27m n a b -+与443a b -是同类项,∴2474m n -=⎧⎨+=⎩, ∴63m n =⎧⎨=-⎩, ∴()633m n +=+-=.故答案为:3.【点睛】本题主要考查了求一个角的余角,角度的四则运算,同类项的定义,代数式求值,解一元一次方程,熟知相关知识是解题的关键.3、35【分析】根据补角的性质,可得∠BOD =110°,再由OC 是∠DOB 的平分线,可得1552COD BOC BOD ∠=∠=∠=︒ ,又由OD ⊥OE ,可得到∠BOE =20°,即可求解. 【详解】解:∵∠AOD=70°,∠AOD+∠BOD=180°,∴∠BOD=110°,∵OC是∠DOB的平分线,∴1552COD BOC BOD∠=∠=∠=︒,∵OD⊥OE,∴∠DOE=90°,∴∠BOE=∠BOD-∠DOE=20°,∴∠COE=∠BOC-∠BOE=35°.故答案为:35【点睛】本题主要考查了补角的性质,角平分线的定义,角的和与差,熟练掌握补角的性质,角平分线的定义,角的和与差运算是解题的关键.4、109【分析】两角互为补角,和为180°,那么计算180°-∠1可求补角.【详解】解:设所求角为∠α,∵∠α+∠1=180°,∠1=71,∴∠α=180°-71=109°.故答案为:109【点睛】此题考查的是角的性质,两角互余和为90°,互补和为180°.5、45︒【分析】设这个角为,x ︒ 则这个角的补角为:()180,x -︒ 这个角的余角为:()90,x -︒ 根据等量关系一个角的补角是这个角的余角的3倍,列方程()180390x x -=-,解方程可得.【详解】解:设这个角为,x ︒ 则这个角的补角为:()180,x -︒ 这个角的余角为:()90,x -︒()180390x x ∴-=-,1802703x x ∴-=- ,290x ∴=,45x ∴=,答:这个角为45︒.故答案为:45︒.【点睛】本题考查的是余角与补角的含义,一元一次方程的应用,掌握以上知识是解题的关键.三、解答题1、(1)AOC ∠,BOD ∠,DOE ∠;(2)30°【分析】(1)根据邻补角的定义确定出∠AOC 和∠BOD ,再根据角平分线的定义可得∠AOF =∠EOF ,根据垂直的定义可得∠COF =∠DOF =90°,然后根据等角的余角相等求出∠DOE =∠AOC ,从而最后得解;(2)根据角平分线的定义求出∠AOF ,再根据余角的定义求出∠AOC ,然后根据对顶角相等解答.【详解】解:(1)因为直线AB ,CD 相交于点O ,所以AOC ∠和BOD ∠与AOD ∠互补.因为OF 平分AOE ∠,所以AOF EOF ∠=∠.因为90FOD ∠=︒,所以18090COF FOD ∠=︒-∠=︒.因为90AOC COF AOF EOF ∠=∠-∠=︒-∠,90DOE FOD EOF EOF ∠=∠-∠=︒-∠,所以AOC DOE ∠=∠,所以与AOD ∠互补的角有AOC ∠,BOD ∠,DOE ∠.(2)因为OF 平分AOE ∠,所以111206022AOF AOE ∠=∠=⨯︒=︒,由(1)知,90COF ∠=︒,所以906030AOC COF AOF ∠=∠-∠=︒-︒=︒,由(1)知,AOC ∠和BOD ∠与AOD ∠互补,所以30BOD AOC ∠=∠=︒(同角的补角相等).【点睛】本题考查了余角和补角,对顶角相等的性质,角平分线的定义,难点在于(1)根据等角的余角相等确定出与∠AOD 互补的第三个角.2、(1)∠AOC 的对顶角是∠BOD ,∠EOB 的对顶角是∠AOF ,.∠AOC 的邻补角是∠AOD ,∠BOC ;(2)共有6对对顶角,它们分别是∠AOC 与∠BOD ,∠AOE 与∠BOF ,∠AOF 与∠BOE ,∠AOD 与∠BOC ,∠EOD 与∠COF ,∠EOC 与∠FOD【分析】根据对顶角的定义:两个角有一个公共点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角叫做对顶角;邻补角的定义:两个角有一条公共边,它们的另一边互为反向延长线,具有这种位置关系的两个角叫做邻补角,进行求解即可.【详解】解:(1)由题意得:∠AOC 的对顶角是∠BOD ,∠EOB的对顶角是∠AOF.∠AOC的邻补角是∠AOD,∠BOC.(2)图中共有6对对顶角,它们分别是∠AOC与∠BOD,∠AOE与∠BOF,∠AOF与∠BOE,∠AOD与∠BOC,∠EOD与∠COF,∠EOC与∠FOD.【点睛】本题主要考查了对顶角和邻补角的定义,熟知定义是解题的关键.3、12∠ABC;角平分线的定义;12∠BCD;(∠ABC+∠BCD);180°;两直线平行,同旁内角互补【分析】由平行线的性质可得到∠BAC+∠ACD=180°,再结合角平分线的定义可求得∠1+∠2=90°,可得出结论,据此填空即可.【详解】证明:∵BE平分∠ABC(已知),∴∠2=12∠ABC(角平分线的定义),同理∠1=12∠BCD,∴∠1+∠2=12(∠ABC+∠BCD),又∵AB∥CD(已知)∴∠ABC+∠BCD=180°(两直线平行,同旁内角互补),∴∠1+∠2=90°.故答案为:12∠ABC;角平分线的定义;12∠BCD;(∠ABC+∠BCD);180°;两直线平行,同旁内角互补.【点睛】本题考查了平行线的性质,角平分线的定义,是基础题,熟记性质是解题的关键.4、【感知】ECD;ECD;内错角相等,两直线平行;【探究】见解析;【应用】40°【分析】感知:读懂每一步证明过程及证明的依据,即可完成解答;探究:利用角平分线的性质得∠2=∠DCE,由平行线性质可得∠DCE=∠1,等量代换即可解决;应用:利用角平分线的性质得∠ABE=∠CBE,由平行线性质可得∠CBE=∠E,等量代换得∠E=∠ABE,由∠∠=即可求得∠ABC的度数,从而可求得∠E的度数.ABC BAE:4:5【详解】感知∵CE平分ACD∠(已知),∴2=ECD(角平分线的定义),∵12∠=∠(已知),∴1∠=∠ECD(等量代换),∴AB CD∥(内错角相等,两直线平行).故答案为:ECD;ECD;内错角相等,两直线平行探究∵CE平分ACD∠,∴2ECD∠=∠,∵AB CD∥,∴l ECD∠=∠,∵12∠=∠.应用∵BE 平分∠DBC , ∴12ABE CBE ABC ∠=∠=∠,∵AE ∥BC ,∴∠CBE =∠E ,∠BAE +∠ABC =180゜,∴∠E =∠ABE ,∵:4:5ABC BAE ∠∠=,∴∠ABC =80゜∴40ABE ∠=︒∴40E ∠=︒【点睛】本题考查平行线的判定与性质,角平分线的性质,掌握平行线的性质与判定是关键. 5、22︒【分析】根据90EOC ∠=︒、34COF ∠=︒可得56EOF ∠=︒,OF 是∠AOE 的角平分线,可得56AOF EOF ∠=∠=︒,所以22AOC AOF COF ∠=∠-∠=︒,再根据对顶角相等,即可求解.【详解】解:∵90EOC ∠=︒、34COF ∠=︒,∴56EOF ∠=︒,∵OF 是∠AOE 的角平分线,∴56AOF EOF ∠=∠=︒,∴22AOC AOF COF ∠=∠-∠=︒,∴22BOD AOC ∠=∠=︒,【点睛】此题考查了角平分线的有关计算,解题的关键是掌握角平分线的定义以及角之间的和差关系.。
七年级下数学相交线练习题含答案
9.如图,与 是同旁内角的角有()
A. 个B. 个C. 个D. 个
10.如图,直线 、 被直线 所截,则 与 是()
A.同位角B.同旁内角C.内错角D.对顶角
11.如图, , ,若 ,则 ________.
12.如图, , 为垂足, , 为垂足,那么点 到 的距离是线段________的长,点 到 的距离是线段________的长,点 到 的距离是线段________的长, 的依据是________.
【解答】
此题暂无解答
24.
【答案】
解: , ,
.
与 是对顶角,
.
, ,
,
,
,
.
,
.
【考点】
邻补角
对顶角
【解析】
此题暂无解析
【解答】
此题暂无解答
25.
【答案】
解:如图:
【考点】
同位角、内错角、同旁内角
【解析】
此题暂无解析
【解答】
此题暂无解答
26.
【答案】
∵ = , = ,
∴ = = ,
∴ = = ,
∴ = = .
(1)当五条直线相交时交点最多会有多少个?
(2)猜想 条直线相交时最多有几个交点?(用含 的代数式表示)
(3)算一算,同一平面内 条直线最多有多少个?
(4)平面上有 条直线,无任何 条交于一点( 条以上交于一点也无),也无重合,它们会出现 个交点吗?如果能给出一个画法;如果不能请说明理由.
39.如图所示,某自来水厂计划把河流 中的水引到蓄水池 中,问从河岸 的何处开渠,才能使所开的渠道最短?画图表示,并说明设计的理由.
【考点】
人教版初中七年级数学下册第五章《相交线与平行线》经典习题(含答案解析)(2)
一、选择题1.如图,//AB CD ,EC 分别交,AB CD 于点,F C ,链接DF ,点G 是线段CD 上的点,连接FG ,若13∠=∠,24∠∠=,则结论① C D ∠=∠,②FG CD ⊥,③EC FD ⊥,正确的是( )A .①②B .②③C .①③D .①②③B解析:B【分析】 由平行线的性质和垂直的定义,逐个判断得结论.【详解】∵∠1=∠3,∠2=∠4,又∵∠1+∠2+∠3+∠4=180°,∴∠1+∠2=∠3+∠4=∠1+∠4=90°,∴∠EFD=∠1+∠2=90°,∴EC ⊥FD ,故③正确;∵AB ∥CD ,∴∠1=∠C ,∴∠FGD=∠4+∠C=∠4+∠1=90°,∴FG ⊥CD ,故②正确;∵∠1不一定等于∠2,∴∠C≠∠D ,故①不正确.故选:B .【点睛】本题考查了平行线的性质,三角形的外角性质及垂直的定义,由相等的角和平角的定义得到互余的角是解决本题的关键.2.下列命题中是真命题的有( )①两个角的和等于平角时,这两个角互为邻补角;②过一点有且只有一条直线与已知直线平行;③两条平行线被第三条直线所截,所得的一对内错角的角平分线互相平行;④图形B由图形A平移得到,则图形B与图形A中的对应点所连线段平行(或在同一条直线上)且相等;A.1个B.2个C.3个D.4个B解析:B【分析】根据补角和邻补角的定义可判断①,根据平行公理可判断②,根据平行线的性质和判定可判断③,根据平移的性质可判断④,进而可得答案.【详解】解:两个角的和等于平角时,这两个角互为补角,故命题①是假命题;过直线外一点有且只有一条直线与已知直线平行,故命题②是假命题;两条平行线被第三条直线所截,所得的一对内错角的角平分线互相平行,故命题③是真命题;图形B由图形A平移得到,则图形B与图形A中的对应点所连线段平行(或在同一条直线上)且相等,故命题④是真命题.综上,真命题有2个.故选:B.【点睛】本题考查了真假命题、平行线的判定和性质以及平移的性质等知识,属于基础题型,熟练掌握上述知识是解题的关键.3.下列说法正确的是()A.命题一定是正确的B.定理都是真命题C.不正确的判断就不是命题D.基本事实不一定是真命题B解析:B【分析】根据命题的定义、真命题与假命题的定义逐项判断即可得.【详解】A、命题有真命题和假命题,此项说法错误;B、定理都是经过推论、论证的真命题,此项说法正确;C、不正确的判断是假命题,此项说法错误;D、基本事实是真命题,此项说法错误;故选:B.【点睛】本题考查了命题、真命题与假命题,熟练掌握理解各概念是解题关键.4.下列所示的四个图形中,∠1和∠2是同位角的是()A .②③B .①②③C .①②④D .①④C解析:C【分析】 根据同位角的定义逐一判断即得答案.【详解】图①中的∠1与∠2是同位角,图②中的∠1与∠2是同位角,图③中的∠1与∠2不是同位角,图④中的∠1与∠2是同位角,所以在如图所示的四个图形中,图①②④中的∠1和∠2是同位角.故选:C .【点睛】本题考查了同位角的定义,属于基础概念题型,熟知概念是关键.5.如图,A 是直线l 外一点,过点A 作AB l ⊥于点B ,在直线l 上取一点C ,连接AC ,使2AC AB =,P 在线段BC 上,连接AP .若3AB =,则线段AP 的长不可能是( )A .4B .5C .2D .5.5C解析:C【分析】 根据题意计算出AC 的长度,由垂线段最短得出AP 的范围,选出AP 的长度不可能的选项即可.【详解】3AB =,26AC AB cm ∴==,结合垂线段最短,得:36AP ≤≤.故选:C .【点睛】本题主要考查直线外一点与直线上各点连接的所有线段中,垂线段最短,熟记概念并求出对应线段的范围是解题关键.6.下面命题中是真命题的有()①相等的角是对顶角②直角三角形两锐角互余③三角形内角和等于180°④两直线平行内错角相等A.1个B.2个C.3个D.4个C解析:C【分析】利用平行线的性质、三角形的内角和、直角三角形的性质、对顶角的性质分别判断后即可确定正确的选项.【详解】解:①相等的角不一定是对顶角,故不符合题意;②直角三角形两锐角互余,故符合题意;③三角形内角和等于180°,故符合题意;④两直线平行内错角相等,故符合题意;故选:C.【点睛】此题考查了命题与定理,解题的关键是了解平行线的性质、对顶角的定义、直角三角形的性质及三角形的内角和等知识,难度不大.7.如图,直线a∥b,则∠A的度数是()A.28°B.31°C.39°D.42°C解析:C【解析】试题分析:根据平行线的性质可得∠1=70°,再根据三角形的一个外角等于和它不相邻的两个内角的和可得∠A=70°-31°=39°.故选C.考点:平行线的性质8.如图是郝老师的某次行车路线,总共拐了三次弯,最后行车路线与开始的路线是平行的,已知第一次转过的角度120︒,第三次转过的角度135︒,则第二次拐弯的角度是()A .75︒B .120︒C .135︒D .无法确定A解析:A【解析】 分析:根据两直线平行,内错角相等,得到∠BFD 的度数,进而得出∠CFD 的度数,再由三角形外角的性质即可得到结论.详解:如图,延长ED 交BC 于F .∵DE ∥AB ,∴∠DFB =∠ABF =120°,∴∠CFD =60°.∵∠CDE =∠C +∠CFD ,∴∠C =∠CDE -∠CFD =135°-60°=75°.故选A .点睛:本题考查了平行线的性质及三角形外角的性质.解题的关键是理解题意,灵活应用平行线的性质解决问题,属于中考常考题型.9.如图,一副直角三角板图示放置,点C 在DF 的延长线上,点A 在边EF 上,//AB CD ,90ACB EDF ∠=∠=︒,则CAF ∠=( )A .10︒B .15︒C .20︒D .25︒B解析:B【分析】 根据平行线的性质可知,BAF=EFD=45∠∠ ,由BAC=30∠ 即可得出答案。
人教版七年级下数学《5.1相交线》同步练习含试卷分析答题技巧
七年级下册5.1相交线同步练习一、选择题1.邻补角是( D )A.和为180°的两个角B.有公共顶点且互补的两个角C.有一条公共边且互补的两个角D.有一条公共边,另一边互为反向延长线的两个角2.如图,OA⊥OB,若∠1=35°,则∠2的度数为( C )A.35 °B.45°C.55°D.70°3.如图,直线a,b被直线c所截,那么∠1的同位角是( C )A.∠2B.∠3C.∠4D.∠54.下列说法正确的是( C )A.一个角的补角一定比这个角大B.一个角的余角一定比这个角小C.一对对顶角的两条角平分线必在同一条直线上D.有公共顶点并且相等的两个角是对顶角5.如图,经过直线l外一点A画l的垂线,能画出( A )A.1条B.2条C.3条D.4条6.下列图形中,∠1和∠2是同旁内角的是( A )7.如图,三条直线相交于点O,则∠1+∠2+∠3等于( C )A.90°B.120°C.180°D.36008.点到直线的距离是指( D )A.直线外一点到这条直线的垂线段B.直线外一点与这条直线上任意一点之间的距离C.直线外一点到这条直线的垂线的长度D.直线外一点到这条直线的垂线段的长度9.如图,直线AD,BE被直线BF和AC所截,则∠1的同位角和∠5的内错角分别是( B )A.∠4,∠2B.∠2,∠6C.∠5,∠4D.∠2,∠410.已知点P是直线l外一点,A,B,C是直线l上三点,PA=4cm, PB=5cm,PC=2cm,则点P到直线l的距离( C )A.小于2 cmB.等于2 cmC.不大于2 cmD.等于4 cm二、填空题11.如图所示,AB交CD于点O,已知∠AOC=60°,则∠AOD的度数为_______.【答案】120°12.图所示,一个破损的扇形零件,利用图中的量角器可以量出这个扇形零件的圆心角的度数,测量的根据是_________.【答案】对顶角相等13.如图,直线AB、CD相交于点O,若∠1+∠2=100°,则∠BOC等于______.【答案】130°14.如图,直线a,b被直线c所截,互为同旁内角的是 .【答案】∠4与∠5,∠3与∠615.如图,剪刀在使用的过程中,随着两个把手之间的夹角(∠DOC)逐渐变大,剪刀刀刃之间的夹角(∠AOB)也相应理由是 .【答案】变大对顶角相等三、计算题16.如图,三条直线AB,CD,EF交于一点,若∠1=30°,∠2=70°,求∠3的度数.解:如图,∵∠4=∠2=70°(对顶角相等),∴∠3=180°-∠1-∠4=180°-30°-70°=80°.17.如图,直线AB,CD相交于点O,P是CD上一点.(1)过点P画AB的垂线段PE;(2)过点P画CD的垂线,与AB相交于点F;(3)说明线段PE,PO,FO三者的大小关系,其依据是什么?解析:(1)如图所示.(2)如图所示.(3)PE<PO<FO,其依据是垂线段最短.18.如图,BE是AB的延长线,下面各组角是哪两条直线被哪一条直线所截而成的?它们各是什么位置关系的角?(1)∠A 与∠D;(2)∠A 与∠CBE;(3)∠C与∠CBE.【答案】(1)∠A与∠D与是直线AB和直线CD被直线AD所截而成的同旁内角.(2)∠A与∠CBE是直线AD和直线BC被直线AE所截而成的同位角.(3)∠C与∠CBE是直线AE和直线CD被直线BC所截而成的内错角.。
人教版七年级数学下册第五章5.1.1相交线同步检测试题合集(共4套)
5.1.1 相交线班级:___________ 姓名:___________ 得分:___________一、填空题(每小题6分,共30分)1.下面四个图形中,∠1与∠2是对顶角的图形()A.甲B.乙C.丙D.丁2.已知∠α和∠β是对顶角,若∠α=30°,则∠β的度数为()A.30°B.60°C.70°D.150°3.下列说法中:①对顶角相等;②相等的角是对顶角;③互补的两个角是邻补角;④邻补角一定互补;⑤两条相交直线形成的四个角中,同一角的两邻补角一定是对顶角.其中说法正确的个数是()A. 2个B. 3个C. 4个D. 5个4.如图所示,三条直线AB、CD、EF相交于一点O,则∠AOE+∠DOB+∠COF等于()A. 150°B. 180°C. 210°D. 120°第4题图第5题图5.如图,直线AB,CD交于点O.射线OM平分∠AOC,若∠BOD=76°,则∠BOM等于()A.38°B.104°C.142°D.144°二、填空题(每小题6分,共30分)6.如图,A、B、O在同一条直线上,如果OA的方向是北偏西24030',那么OB的方向是东偏南.第6题图第7题图7.如图,直线AB、CD交于点O,射线OM平分∠AOC,若∠BOC=1040,,则∠COM =.8.如图所示,其中共有________对对顶角.甲21丙12丁21乙12第8题图第10题图9.三条直线两两相交,则交点有_________个.10.如图,直线AB、CD相交于点O,∠EOC=70°,OA平分∠EOC,则∠BOD=.三、解答题(每小题20分,共40分)11.如图所示,三条直线AB、CD、EF相交于点O,∠AOF=3∠FOB,∠AOC=90°,求∠EOC 的度数.12.如图,直线AB、CD相交于O,OE⊥CD,且∠BOD的度数是∠AOD的4倍.求:(1)∠AOD、∠BOD的度数;(2)∠BOE的度数.参考答案【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。
2020-2021学年人教版七年级数学下册第五章 相交线与平行线 解答题常考题训练(二)
人教版七年级数学下册第五章《相交线与平行线》解答题常考题训练(二)1.如图,BC⊥AE于点C,∠A+∠BCD=90°,∠B=55°,求∠ECD的度数.2.将一副三角板中的两块直角三角尺的直角顶点C按如图方式叠放在一起(其中,∠A=60°,∠D=30°;∠E=∠B=45°).(1)如图1,①若∠DCE=40°,求∠ACB的度数;②若∠ACB=150°,直接写出∠DCE的度数是度.(2)由(1)猜想∠ACB与∠DCE满足的数量关系是.(3)若固定△ACD,将△BCE绕点C旋转,①当旋转至BE∥AC(如图2)时,直接写出∠ACE的度数是度.②继续旋转至BC∥DA(如图3)时,求∠ACE的度数.3.如图,已知AB∥DE.∠ABC=70°,∠CDE=140°,求∠C的度数.4.如图,EF∥AD,AD∥BC,CE平分∠BCF,∠DAC=120°,∠ACF=20°,求∠FEC的度数.5.已知:如图EF∥CD,∠1+∠2=180°.(1)试说明GD∥CA;(2)若CD平分∠ACB,DG平分∠CDB,且∠A=40°,求∠ACB的度数.6.如图,已知AB∥CD∥PN,∠ABC=50°,∠CPN=150°,求∠BCP的度数.7.如图,AC∥BD,BC平分∠ABD,设∠ACB为α,点E是射线BC上的一个动点.(1)若α=30°时,且∠BAE=∠CAE,求∠CAE的度数;上方,且满足∠BAE=100°,∠BAE:∠CAE=5:1,求a的值;(2)若点E运动到l1(3)若∠BAE:∠CAE=n(n>1),求∠CAE的度数(用含n和α的代数式表示).8.已知:直线GH分别与直线AB,CD交于点E,F.EM平分∠BEF,FN平分∠CFE,并且EM ∥FN.(1)如图1,求证:AB∥CD;(2)如图2,∠AEF=2∠CFN,在不添加任何辅助线的情况下,请直接写出图2中四个角,使写出的每个角的度数都为135°.9.如图,直线MN分别与直线AC、DG交于点B、F,且∠1=∠2.∠ABF的角平分线BE交直线DG于点E,∠BFG的角平分线FC交直线AC于点C.(1)求证:BE∥CF;(2)若∠C=35°,求∠BED的度数.10.如图,D是BC上一点,DE∥AB,交AC于点E,DF∥AC,交AB点F.(1)直接写出图中与∠BAC构成的同旁内角.(2)请说明∠A与∠EDF相等的理由.(3)若∠BDE+∠CDF=234°,求∠BAC的度数.11.如图,AB∥DG,AD∥EF.(1)试说明:∠1+∠2=180°;(2)若DG是∠ADC的平分线,∠2=138°,求∠B的度数.12.探究:如图①,AB∥CD∥EF,试说明∠BCF=∠B+∠F.下面给出了这道题的解题过程,请在下列解答中,填上适当的理由.解:∵AB∥CD,(已知)∴∠B=∠1.()同理可证,∠F=∠2.∵∠BCF=∠1+∠2,∴∠BCF=∠B+∠F.()应用:如图②,AB∥CD,点F在AB、CD之间,FE与AB交于点M,FG与CD交于点N.若∠EFG=115°,∠EMB=55°,则∠DNG的大小为度.拓展:如图③,直线CD在直线AB、EF之间,且AB∥CD∥EF,点G、H分别在直线AB、EF上,点Q是直线CD上的一个动点,且不在直线GH上,连结QG、QH.若∠GQH=70°,则∠AGQ+∠EHQ=度.13.如图,已知∠1+∠2=180°,∠3=∠B.(1)试判断DE与BC的位置关系,并说明理由.(2)若DE平分∠ADC,∠2=3∠B,求∠1的度数.14.如图1,AB∥CD,E是AB、CD之间的一点.(1)判定∠BAE,∠CDE与∠AED之间的数量关系,并证明你的结论;(2)如图2,若∠BAE、∠CDE的两条平分线交于点F.直接写出∠AFD与∠AED之间的数量关系;(3)将图2中的射线DC沿DE翻折交AF于点G得图3,若∠AGD的余角等于2∠E的补角,求∠BAE的大小.15.已知:点A在射线CE上,∠C=∠D.(1)如图1,若AC∥BD,求证:AD∥BC;(2)如图2,若∠BAC=∠BAD,BD⊥BC,请探究∠DAE与∠C的数量关系,写出你的探究结论,并加以证明;(3)如图3,在(2)的条件下,过点D作DF∥BC交射线于点F,当∠DFE=8∠DAE时,求∠BAD的度数.16.已知:MN∥PQ,点A,B分别在MN,PQ上,点C为MN,PQ之间的一点,连接CA,CB.(1)如图1,求证:∠C=∠MAC+∠PBC;(2)如图2,AD,BD,AE,BE分别为∠MAC,∠PBC,∠CAN,∠CBQ的角平分线,求证∠D与∠E互补;(3)在(2)的条件下,如图3,过点D作DA的垂线交PQ于点G,点F在PQ上,∠FDA =2∠FDB,FD的延长线交EA的延长线于点H,若3∠C=4∠E,猜想∠H与∠GDB的倍数关系并证明.17.综合与探究如图,已知AM∥BN,∠A=60°,点P是射线AM上一动点(与点A不重合).BC,BD分别平分∠ABP和∠PBN,分别交射线AM于点C,D.(1)求∠ABN、∠CBD的度数;根据下列求解过程填空.解:∵AM∥BN,∴∠ABN+∠A=180°∵∠A=60°,∴∠ABN=,∴∠ABP+∠PBN=120°,∵BC平分∠ABP,BD平分∠PBN,∴∠ABP=2∠CBP、∠PBN=,()∴2∠CBP+2∠DBP=120°,∴∠CBD=∠CBP+∠DBP=.(2)当点P运动时,∠APB与∠ADB之间的数量关系是否随之发生变化?若不变化,请写出它们之间的关系,并说明理由;若变化,请写出变化规律.(3)当点P运动到使∠ACB=∠ABD时,直接写出∠ABC的度数.18.已知,如图,∠ABC=∠ADC,BF,DE分别平分∠ABC与∠ADC,且∠1=∠3.求证:∠1+∠4=180°.请根据条件进行推理,得出结论,并在括号内注明理由.证明:∵BF,DE分别平分∠ABC与∠ADC,(已知)∴∠1=∠ABC,∠2=∠ADC.().∵∠ABC=∠ADC,()∴∠1=∠2().∵∠1=∠3(已知)∴∠2=∠.(等量代换)∴AB∥CD,().∴∠1+∠4=180°.()19.如图,已知AD⊥BC于点D,E是延长线BA上一点,且EC⊥BC于点C,若∠ACE=∠E.求证:AD平分∠BAC.参考答案1.解:因为BC⊥AE,所以∠BCE=∠BCD+∠ECD=90°,因为∠BCD+∠A=90°,所以∠DCE=∠A,所以CD∥AB,所以∠BCD=∠B,因为∠B=55°,所以∠BCD=55°,所以∠ECD=90°﹣55°=35°.2.解:(1)①∵∠DCE=40°,∴∠ACE=∠ACD﹣∠DCE=50°,∴∠ACB=∠ACE+∠ECB=50°+90°=140°;②∵∠ACB=150°,∠ACD=90°,∴∠ACE=150°﹣90°=60°,∴∠DCE=∠ACD﹣∠ACE=90°﹣60°=30°,故答案为:30;(2)∵∠ACB=∠ACD+∠BCE﹣∠DCE=90°+90°﹣∠DCE,∴∠ACB+∠DCE=180°,故答案为:∠ACB+∠DCE=180°;(3)①∵BE∥AC,∴∠ACE=∠E=45°,故答案为:45°;②∵BC∥DA,∴∠A+∠ACB=180°,又∵∠A=60°,∴∠ACB=180°﹣60°=120°,∵∠BCE=90°,∴∠BCD=∠ACB﹣∠ECB=120°﹣90°=30°.3.解:如图,延长ED到M,交BC于F,∵AB∥DE,∠ABC=70°,∴∠MFC=∠B=70°,∵∠CDE=140°,∴∠FDC=180°﹣140°=40°,∴∠C=∠MFC﹣∠MDC=70°﹣40°=30°.4.解:∵EF∥AD,AD∥BC,∴EF∥BC,∴∠ACB+∠DAC=180°,∵∠DAC=120°,∴∠ACB=60°,又∵∠ACF=20°,∴∠FCB=∠ACB﹣∠ACF=40°,∵CE平分∠BCF,∴∠BCE=20°,∵EF∥BC,∴∠FEC=∠ECB,∴∠FEC=20°.5.解:(1)∵EF∥CD∴∠1+∠ECD=180°又∵∠1+∠2=180°∴∠2=∠ECD∴GD∥CA(2)由(1)得:GD∥CA,∴∠BDG=∠A=40°,∠ACD=∠2,∵DG平分∠CDB,∴∠2=∠BDG=40°,∴∠ACD=∠2=40°,∵CD平分∠ACB,∴∠ACB=2∠ACD=80°.6.解:∵AB∥CD∥PN,∴∠BCD=∠ABC=50°,∠DCP=180°﹣∠CPN=180°﹣150°=30°,∴∠BCP=∠BCD﹣∠DCP=50°﹣30°=20°.7.解:(1)∵α=30°,AC∥BD,∴∠CBD=30°,∵BC平分∠ABD,∴∠ABE=∠CBD=30°,∴∠BAC=180°﹣∠ABE﹣α=180°﹣30°﹣30°=120°,又∵∠BAE=∠CAE,∴∠CAE=∠BAC==60°;(2)根据题意画图,如图1所示,∵∠BAE=100°,∠BAE:∠CAE=5:1,∴∠CAE=20°,∴∠BAC=∠BAE﹣∠CAE=100°﹣20°=80°,∵AC∥BD,∴∠ABD=180°﹣∠BAC=100°,又∵BC平分∠ABD,∴∠CBD=∠ABD=×100°=50°,∴α=∠CBD=50°;(3)①如图2所示,∵AC∥BD,∴∠CBD=∠ACB=α,∵BC平分∠ABD,∴∠ABD=2∠CBD=2α,∴∠BAC=180°﹣∠ABD=180°﹣2α,又∵∠BAE:∠CAE=n,∴(∠BAC+∠CAE):∠CAE=n,(180°﹣2α+∠CAE):∠CAE=n,解得∠CAE=;②如图3所示,∵AC∥BD,∴∠CBD=∠ACB=α,∵BC平分∠ABD,∴∠ABD=2∠CBD=2α,∴∠BAC=180°﹣∠ABD=180°﹣2α,又∵∠BAE:∠CAE=n,∴(∠BAC﹣∠CAE):∠CAE=n,(180°﹣2α﹣∠CAE):∠CAE=n,解得∠CAE=.综上∠CAE的度数为或.8.(1)证明:∵EM∥FN,∴∠EFN=∠FEM.∵EM平分∠BEF,FN平分∠CFE,∴∠CFE=2∠EFN,∠BEF=2∠FEM.∴∠CFE=∠BEF.∴AB∥CD.(2)∠AEM,∠GEM,∠DFN,∠HFN度数都为135°.理由如下:∵AB∥CD,∴∠AEF+∠CFE=180°,∵FN平分∠CFE,∴∠CFE=2∠CFN,∵∠AEF=2∠CFN,∴∠AEF=∠CFE=90°,∴∠CFN=∠EFN=45°,∴∠DFN=∠HFN=180°﹣45°=135°,同理:∠AEM=∠GEM=135°.∴∠AEM,∠GEM,∠DFN,∠HFN度数都为135°.9.(1)证明:方法一:∵∠1=∠2,∠2=∠BFG,∴∠1=∠BFG,∴AC∥DG,∴∠ABF=∠BFG,∵∠ABF的角平分线BE交直线DG于点E,∠BFG的角平分线FC交直线AC于点C,∴∠EBF=∠ABF, BFG,∴∠EBF=∠CFB,∴BE∥CF;方法二:∵∠1=∠2,∠1=∠ABF,∠2=∠BFG,∴∠ABF=∠BFG,∵∠ABF的平分线是BE,∠BFG的平分线是FC,∴∠EBF=∠ABF, BFG,∴∠EBF=∠CFB,∴BE∥CF;(2)解:∵AC∥DG,BE∥CF,∠C=35°,∴∠C=∠CFG=35°,∴∠CFG=∠BEG=35°,∴∠BED=180°﹣∠BEG=145°.10.解:(1)∠BAC的同旁内角有:∠AFD,∠AED,∠C,∠B;(2)∵DE∥AB,∴∠BAC=∠DEC,∵DF∥AC,∴∠EDF=∠DEC,∴∠BAC=∠EDF;(3)∵∠BDE+∠CDF=234°,∴∠BDE+∠EDC+∠EDF=234°,即180°+∠EDF=234°,∴∠EDF=54°,∴∠BAC=54°.11.解:(1)∵AD∥EF,∴∠BAD+∠2=180°,∵AB∥DG,∴∠BAD=∠1,∴∠1+∠2=180°.(2)∵∠1+∠2=180°且∠2=138°,∴∠1=42°,∵DG是∠ADC的平分线,∴∠CDG=∠1=42°,∵AB∥DG,∴∠B=∠CDG=42°.12.解:探究:∵AB∥CD,∴∠B=∠1.(两直线平行内错角相等)同理可证,∠F=∠2.∵∠BCF=∠1+∠2,∴∠BCF=∠B+∠F.(等量代换)故答案为:两直线平行,内错角相等,等量代换.应用:由探究可知:∠MFN=∠AMF+∠CNF,∴∠CNF=∠DNG=115°﹣55°=60°.故答案为60.拓展:如图③中,当的Q在直线GH的右侧时,∠AGQ+∠EHQ=360°﹣70°=290°,当点Q′在直线GH的左侧时,∠AGQ′+∠EHQ′=∠GQ′H=70°.故答案为70或290.13.解:(1)DE∥BC,理由如下:∵∠1+∠4=180°,∠1+∠2=180°,∴∠2=∠4,∴AB∥EF,∴∠3=∠5,∵∠3=∠B,∴∠5=∠B,∴DE∥BC,(2)∵DE平分∠ADC,∴∠5=∠6,∵DE∥BC,∴∠5=∠B,∵∠2=3∠B,∴∠2+∠5+∠6=3∠B+∠B+∠B=180°,∴∠B=36°,∴∠2=108°,∵∠1+∠2=180°,∴∠1=72°.14.解:(1)∠BAE+∠CDE=∠AED.理由如下:作EF∥AB,如图1,∵AB∥CD,∴EF∥CD,∴∠1=∠BAE,∠2=∠CDE,∴∠BAE+∠CDE=∠AED;(2)如图2,由(1)的结论得∠AFD=∠BAF+∠CDF,∵∠BAE、∠CDE的两条平分线交于点F,∴∠BAF=∠BAE,∠CDF=∠CDE,∴∠AFD=(∠BAE+∠CDE),∵∠BAE+∠CDE=∠AED,∴∠AFD=∠AED;(3)由(1)的结论得∠AGD=∠BAF+∠CDG,而射线DC沿DE翻折交AF于点G,∴∠CDG=4∠CDF,∴∠AGD=∠BAF+4∠CDF=∠BAE+2∠CDE=∠BAE+2(∠AED﹣∠BAE)=2∠AED﹣∠BAE,∵90°﹣∠AGD=180°﹣2∠AED,∴90°﹣2∠AED+∠BAE=180°﹣2∠AED,∴∠BAE=60°.15.解:(1)如图1,∵AD∥BC,∴∠DAE=∠C,又∵∠C=∠D,∴∠DAE=∠D,∴AD∥BC;(2)∠EAD+2∠C=90°.证明:如图2,设CE与BD交点为G,∵∠CGB是△ADG是外角,∴∠CGB=∠D+∠DAE,∵BD⊥BC,∴∠CBD=90°,∴△BCG中,∠CGB+∠C=90°,∴∠D+∠DAE+∠C=90°,又∵∠D=∠C,∴2∠C+∠DAE=90°;(3)如图3,设∠DAE=α,则∠DFE=8α,∵∠DFE+∠AFD=180°,∴∠AFD=180°﹣8α,∵DF∥BC,∴∠C=∠AFD=180°﹣8α,又∵2∠C+∠DAE=90°,∴2(180°﹣8α)+α=90°,∴α=18°,∴∠C=180°﹣8α=36°=∠ADB,又∵∠C=∠BDA,∠BAC=∠BAD,∴∠ABC=∠ABD=∠CBD=45°,∴△ABD中,∠BAD=180°﹣45°﹣36°=99°.16.证明:(1)如图1,过C作EF∥MN,∵MN∥PQ,∴MN∥EF∥PQ,∴∠MAC=∠ACF,∠BCF=∠PBC,∴∠ACF+∠BCF=∠MAC+∠PBC,即∠ACB=∠MAC+∠PBC;(2)如图2,∵AD,AE分别为∠MAC,∠CAN的角平分线,∴∠DAC=,∠EAC=∠NAC,∴∠DAE===90°,同理可得:∠DBE=90°,∵∠D+∠E+∠DAE+∠DBE=360°,∴∠D+∠E=180°,即∠D与∠E互补;(3)猜想:∠H=3∠GDB,理由:由(1)可知:∠C=2∠ADB,∵3∠C=4∠E,∴6∠ADB=4∠E,∴3∠ADB=2∠E,∵∠ADB+∠E=180°,∴∠ADB=72°,∠E=108°,∵DG⊥DA,∴∠GDB=18°,∵∠FDA=2∠FDB,∴∠ADF=144°,∴∠HDA=36°,∵DA⊥AE,∴∠H=54°,∴∠H=3∠GDB.17.解:(1)∵AM∥BN,∴∠ABN+∠A=180°,∵∠A=60°,∴∠ABN=120°∴∠ABP+∠PBN=120°,∵BC平分∠ABP,BD平分∠PBN,∴∠ABP=2∠CBP、∠PBN=2∠PBD,(角平分线的定义),∴2∠CBP+2∠DBP=120°,∴∠CBD=∠CBP+∠DBP=60°.故答案为120°,2∠PBD,角平分线的定义,60°.(2)∠APB与∠ADB之间数量关系是:∠APB=2∠ADB.不随点P运动变化.理由是:∵AM∥BN,∴∠APB=∠PBN,∠ADB=∠DBN(两直线平行内错角相等),∵BD平分∠PBN(已知),∴∠PBN=2∠DBN(角平分线的定义),∴∠APB=∠PBN═2∠DBN=2∠ADB(等量代换),即∠APB=2∠ADB.(3)结论:∠ABC=30°.理由:∵AM∥BN,∴∠ACB=∠CBN,当∠ACB=∠ABD时,则有∠CBN=∠ABD,∴∠ABC+∠CBD=∠CBD+∠DBN,∴∠ABC=∠DBN,由(1)可知∠ABN=120°,∠CBD=60°,∴∠ABC+∠DBN=60°,∴∠ABC=30°18.证明:∵BF,DE分别平分∠ABC与∠ADC(已知),∴∠1=∠ABC,∠2=∠ADC(角平分线的定义),∵∠ABC=∠ADC(已知),∴∠1=∠2(等量代换),∵∠1=∠3(已知),∴∠2=∠3,(等量代换),∴AB∥CD,(内错角相等,两直线平行),∴∠1+∠4=180°(两直线平行,同旁内角互补),故答案为:角平分线的定义,已知,等量代换,3,内错角相等,两直线平行,两直线平行,同旁内角互补.19.证明:∵AD⊥BC于点D,EC⊥BC于点C,∴AD∥EC,∴∠BAD=∠E,∠DAC=∠ACE,∵∠ACE=∠E,∴∠BAD=∠DAC,即AD平分∠BAC.第21页(共21页)。
北师大版七年级数学下册第二章《相交线与平行线》单元同步练习题(含答案)
北师大版七年级数学下册第二章《相交线与平行线》同步练习题(含答案)一、选择题1、如图,将一张长方形纸条折叠,如果∠2比∠1大6°,则∠2的度数为( ) A .108°B .114°C .118°D .122°2、如图,将一块长方形纸条折成如图的形状,若已知∠1=α,则∠2的度数为( ) A .90°-αB .90°+αC .90°-α2D .90°+α23、如图,在长方形纸片ABCD 中,在AD 边上取一点E ,沿BE 折叠,使点C ,D 分别落在点C 1,D 1处,且点A 刚好落在C 1D 1上.若∠ABC 1=45°,则∠BED =( ) A .112.5°B .135°C .125°D .100.5°4、如图,将一条对边互相平行的纸带进行两次折叠,折痕分别为AB ,CD ,若CD ∥BE ,∠1=40°,则∠2的度数是( ) A .90°B .100°C .105°D .110°5、如图,已知AB ∥DE ,∠1=30°,∠2=35°,则∠BCE 的度数为( ) A .70°B .65°C .35°D .5°6、如图,直线AB ∥CD ,AE ⊥CE 于点E.若∠EAB =120°,则∠ECD 的度数是( ) A .120°B .100°C .150°D .160°二、填空题7、如图,将长方形ABCD沿EF折叠,点D落在AB边上的H点处,点C落在点G处.若∠AEH =30°,则∠EFC等于______.8、如图a是长方形纸带,∠DEF=15°,将纸带沿EF折叠成图b,则∠AEG=______.度,再沿BF折叠成图c.则图中的∠CFE=______度.9、已知:如图,AB∥EF,∠ABC=75°,∠CDF=135°,则∠BCD=______度.10、如图,直线l1∥l2,∠α=∠β,∠1=40°,则∠2=______.11、如图,AB∥CD,∠BED=110°,BF平分∠ABE,DF平分∠CDE,则∠BFD=______.12、如图是我们生活中经常接触的小刀,刀片的外壳是一个直角梯形,刀片上、下是平行的,转动刀片时会形成∠1和∠2,则∠1+∠2=______.三、解答题13、如图,在Rt△AOB和Rt△COD中,∠AOB=∠COD=90°,∠B=40°,∠C=60°.点D 在边OA上,将图中的△COD绕点O按每秒10°的速度沿顺时针方向旋转一周,当旋转了多少秒时,边CD恰好与边AB平行?14、问题情境:如图1,AB∥CD,∠PAB=130°,∠PCD=120°,求∠APC的度数.小明的思路是:过P作PE∥AB,通过平行线性质来求∠APC.(1)按小明的思路,易求得∠APC的度数为______度;(2)问题迁移:如图2,AB∥CD,点P在射线OM上运动,记∠PAB=α,∠PCD=β,当点P 在B,D两点之间运动时,问∠APC与α,β之间有何数量关系?请说明理由;(3)在(2)的条件下,如果点P在B,D两点外侧运动时(点P与点O,B,D三点不重合),请直接写出∠APC与α,β之间的数量关系.15、已知AM∥CN,点B为平面内一点,AB⊥BC于点B.(1)如图1,直接写出∠A和∠C之间的数量关系;(2)如图2,过点B作BD⊥AM于点D,∠BAD与∠C有何数量关系,并说明理由;(3)如图3,在(2)问的条件下,点E,F在DM上,连接BE,BF,CF,BF平分∠DBC,BE平分∠ABD.若∠FCB+∠NCF=180°,∠BFC=5∠DBE,求∠EBC的度数.参考答案一、选择题1、如图,将一张长方形纸条折叠,如果∠2比∠1大6°,则∠2的度数为(D) A .108°B .114°C .118°D .122°2、如图,将一块长方形纸条折成如图的形状,若已知∠1=α,则∠2的度数为(C) A .90°-αB .90°+αC .90°-α2D .90°+α23、如图,在长方形纸片ABCD 中,在AD 边上取一点E ,沿BE 折叠,使点C ,D 分别落在点C 1,D 1处,且点A 刚好落在C 1D 1上.若∠ABC 1=45°,则∠BED =(A) A .112.5°B .135°C .125°D .100.5°4、如图,将一条对边互相平行的纸带进行两次折叠,折痕分别为AB ,CD ,若CD ∥BE ,∠1=40°,则∠2的度数是(B) A .90°B .100°C .105°D .110°5、如图,已知AB ∥DE ,∠1=30°,∠2=35°,则∠BCE 的度数为(B) A .70°B .65°C .35°D .5°6、如图,直线AB ∥CD ,AE ⊥CE 于点E.若∠EAB =120°,则∠ECD 的度数是(C) A .120°B .100°C .150°D .160°二、填空题7、如图,将长方形ABCD沿EF折叠,点D落在AB边上的H点处,点C落在点G处.若∠AEH =30°,则∠EFC等于105°.8、如图a是长方形纸带,∠DEF=15°,将纸带沿EF折叠成图b,则∠AEG=150度,再沿BF折叠成图c.则图中的∠CFE=135度.9、已知:如图,AB∥EF,∠ABC=75°,∠CDF=135°,则∠BCD=30度.10、如图,直线l1∥l2,∠α=∠β,∠1=40°,则∠2=140°.11、如图,AB∥CD,∠BED=110°,BF平分∠ABE,DF平分∠CDE,则∠BFD=125°.12、如图是我们生活中经常接触的小刀,刀片的外壳是一个直角梯形,刀片上、下是平行的,转动刀片时会形成∠1和∠2,则∠1+∠2=90°.三、解答题13、如图,在Rt△AOB和Rt△COD中,∠AOB=∠COD=90°,∠B=40°,∠C=60°.点D 在边OA上,将图中的△COD绕点O按每秒10°的速度沿顺时针方向旋转一周,当旋转了多少秒时,边CD恰好与边AB平行?解:分两种情况:当两三角形在点O的同侧时,如图1,设CD与OB相交于点E.∵AB∥CD,∴∠CEO=∠B=40°.∵∠C=60°,∴∠OOE=180°-60°-40°-80°.∴∠DOE=∠COD-∠COE=10°.∴旋转角∠AOD=∠AOB+∠DOE=90°+10°=100°.∵每秒旋转10°,∴旋转的时间为100÷10=10(秒).当两三角形在点O的异侧时,如图2,延长BO与CD相交于点E.∵AB∥CD,∴∠CEO=∠B=40°.∵∠C=60°,∴∠COE=180°-60°-40°=80°.∴旋转角为360°-∠COE=360°-80°=280°.∵每秒旋转10°,∴旋转的时间为280÷10=28(秒).综上所述,当旋转了10秒或28秒时,边CD恰好与边AB平行.14、问题情境:如图1,AB∥CD,∠PAB=130°,∠PCD=120°,求∠APC的度数.小明的思路是:过P作PE∥AB,通过平行线性质来求∠APC.(1)按小明的思路,易求得∠APC的度数为110度;(2)问题迁移:如图2,AB∥CD,点P在射线OM上运动,记∠PAB=α,∠PCD=β,当点P 在B,D两点之间运动时,问∠APC与α,β之间有何数量关系?请说明理由;(3)在(2)的条件下,如果点P在B,D两点外侧运动时(点P与点O,B,D三点不重合),请直接写出∠APC与α,β之间的数量关系.图1 图2解:∠APC=α+β.理由:过点P作PE∥AB交AC于点E,∵AB∥CD,∴AB∥PE∥CD.∴α=∠APE,β=∠CPE.∴∠APC=∠APE+∠CPE=α+β.(3)如图3,当P在BD延长线上时,∠CPA=α-β;如图4,当P在DB延长线上时,∠CPA=β-α.图3 图415、已知AM∥CN,点B为平面内一点,AB⊥BC于点B.(1)如图1,直接写出∠A和∠C之间的数量关系;(2)如图2,过点B作BD⊥AM于点D,∠BAD与∠C有何数量关系,并说明理由;(3)如图3,在(2)问的条件下,点E,F在DM上,连接BE,BF,CF,BF平分∠DBC,BE平分∠ABD.若∠FCB+∠NCF=180°,∠BFC=5∠DBE,求∠EBC的度数.解:(1)∠A+∠C=90°(2)过点B作BG∥DM,∵BD⊥AM,∴∠ABD+∠BAD=90°,DB⊥BG,即∠ABD+∠ABG=90°.又∵AB⊥BC,∴∠CBG+∠ABG=90°.∴∠ABD=∠CBG.∵AM∥CN,BG∥AM,∴CN∥BG.∴∠C=∠CBG.∴∠ABD=∠C.∴∠C+∠BAD=90°.(3)过点B作BG∥DM,∵BF平分∠DBC,BE平分∠ABD,∴∠DBF=∠CBF,∠DBE=∠ABE,由(2)可得∠ABD=∠CBG.∴∠ABF=∠GBF.设∠DBE=α,∠ABF=β,则∠ABE=α,∠ABD=2α=∠CBG,∠GBF=β=∠AFB,∠BFC =5∠DBE=5α,∴∠AFC=5α+β.∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°,∴∠FCB=∠AFC=5α+β.在△BCF中,由∠CBF+∠BFC+∠BCF=180°,可得(2α+β)+5α+(5α+β)=180°.①由AB⊥BC,可得β+β+2α=90°.②由①②联立方程组,解得α=9°.∴∠ABE=9°.∴∠EBC=∠ABE+∠ABC=9°+90°=99°.。
2019-2020年人教版七年级数学下册 5.1 相交线 同步训练(解析版)
2019-2020学年人教版七年级数学下册5.1 相交线同步训练一.选择题(共8小题)1.平面上4条直线两两相交,交点的个数是()A.1个或4个B.3个或4个C.1个、4个或6个D.1个、3个、4个或6个2.如图,直线a,b相交于点O,若∠1等于30°,则∠2等于()A.60°B.70°C.150°D.170°3.下列各图中,∠1=∠2一定成立的是()A.B.C.D.4.如图,OA⊥OB,若∠1=55°30′,则∠2的度数是()A.34°B.34°30′C.35°D.35°30′5.能解释:“用两个钉子就可以把木条固定在墙上”,这实际问题的数学知识是()A.两点之间线段最短B.两点确定一条直线C.垂线段最短D.在同一平面内,过一点有且只有一条直线与已知直线垂直6.若直线l上一点P和直线l外一点Q的距离为8cm,则点Q到直线l的距离是()A.等于8cm B.小于或等于8cmC.大于8cm D.以上三种都有可能7.如图,下列说法正确的是()A.∠A与∠B是同旁内角B.∠1与∠2是对顶角C.∠2与∠A是内错角D.∠2与∠3是同位角8.如图,与∠B互为同旁内角的角有()个A.2B.3C.4D.5二.填空题(共6小题)9.观察图形,并阅读相关的文字,回答:如有9条直线相交,最多有交点.10.如图,直线AB、CD相交于点O,OE平分∠BOD;OF平分∠COE,若∠AOC=82°,则∠BOF =°.11.如图,已知直线AB和CD相交于点O,射线OE在∠COB内部,OE⊥OC,OF平分∠AOE,若∠BOD=40°,则∠COF=度.12.如图所示,想在河的两岸搭建一座桥,搭建方式最短的是(用字母表示).13.如图,AH⊥BC,若AB=3cm、AC=4.5cm、AH=2cm,则点A到直线BC的距离为.14.如图,图中,∠B的同旁内角除了∠A还有.三.解答题(共4小题)15.如图,直线AB,CD相交于点O,OA平分∠EOC;(1)请你数一数,图中有个小于平角的角;(2)若∠EOC=80°,求∠BOD的度数.16.如图,直线AB与CD相交于点O,OE是∠COB的平分线,OE⊥OF.(1)图中∠BOE的补角是;(2)若∠COF=2∠COE,求∠BOE的度数;(3)试判断OF是否平分∠AOC,并说明理由;请说明理由.17.如图,AB、CD、NE相交于点O,OM平分∠BOD,∠MON=90°,∠AOC=50°(1)线段的长度表示点M到NE的距离;(2)比较MN与MO的大小(用“<”号连接):,并说明理由:;(3)求∠AON的度数.18.如图所示,把一根筷子一端放在水里,一端露出水面,筷子变弯了,它真的弯了吗?其实没有,这是光的折射现象,光从空气中射入水中,光的传播方向发生了改变.(1)请指出与∠1是同旁内角的有哪些角?请指出与∠2是内错角的有哪些角?(2)若∠1=115°,测得∠BOM=145°,从水面上看斜插入水中的筷子,水下部分向上折弯了多少度?请说明理由.2019-2020学年人教版七年级数学下册5.1 相交线同步训练参考答案与试题解析一.选择题(共8小题)1.平面上4条直线两两相交,交点的个数是()A.1个或4个B.3个或4个C.1个、4个或6个D.1个、3个、4个或6个【分析】4条直线相交,有3种位置关系,画出图形,进行解答.【解答】解:若4条直线相交,其位置关系有3种,如图所示:则交点的个数有1个,或4个,或6个.故选:C.【点评】本题主要考查了直线相交时交点的情况,关键是画出图形.2.如图,直线a,b相交于点O,若∠1等于30°,则∠2等于()A.60°B.70°C.150°D.170°【分析】因∠1和∠2是邻补角,且∠1=30°,由邻补角的定义可得∠2=180°﹣∠1=180°﹣30°=150°.【解答】解:∵∠1+∠2=180°,且∠1=30°,∴∠2=150°.故选:C.【点评】此题主要考查了对顶角和邻补角的特征和应用,要熟练掌握,解答此题的关键是要明确:①有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角,互为对顶角.②邻补角互补,即和为180°.3.下列各图中,∠1=∠2一定成立的是()A.B.C.D.【分析】根据对顶角相等,判断C组中的两个角是对顶角,前提均不是对顶角,而D只有两直线平行同位角相等,当两条直线不平行时,这两个不相等.【解答】解:根据对顶角相等可知,C选项是正确的,故选:C.【点评】考查对顶角的意义及性质,正确判断对顶角是判断的关键.4.如图,OA⊥OB,若∠1=55°30′,则∠2的度数是()A.34°B.34°30′C.35°D.35°30′【分析】由图象可知,∠1与∠2互余,根据∠1的度数,可求出∠2得度数,做出选择.【解答】解:∵OA⊥OB,∴∠AOB=90°∵∠1=55°30′,∴∠2=90°﹣55°30′=34°30′,故选:B.【点评】考查互相垂直、互为余角的意义以及角度的计算,掌握互余的意义是前提.5.能解释:“用两个钉子就可以把木条固定在墙上”,这实际问题的数学知识是()A.两点之间线段最短B.两点确定一条直线C.垂线段最短D.在同一平面内,过一点有且只有一条直线与已知直线垂直【分析】根据直线的性质解答即可.【解答】解:用两个钉子就可以把木条固定在墙上”,这实际问题的数学知识是两点确定一条直线,故选:B.【点评】此题主要考查了直线的性质,关键是掌握两点确定一条直线.6.若直线l上一点P和直线l外一点Q的距离为8cm,则点Q到直线l的距离是()A.等于8cm B.小于或等于8cmC.大于8cm D.以上三种都有可能【分析】根据点到直线的距离的定义与垂线段最短的性质,易得答案.【解答】解:根据题意,点P到l的距离为P到直线l的垂线段的长度,其垂足是P到直线l上所有点中距离最小的点;而不能明确PQ与l是否垂直,则点P到l的距离应小于等于PQ的长度,即不大于8cm.故选:B.【点评】本题考查了点到直线的距离,关键是根据点到直线的距离的定义及垂线段最短的性质解答.7.如图,下列说法正确的是()A.∠A与∠B是同旁内角B.∠1与∠2是对顶角C.∠2与∠A是内错角D.∠2与∠3是同位角【分析】根据同位角、内错角以及同旁内角的定义进行解答.【解答】解:A、∠A与∠B是同旁内角,故说法正确;B、∠2与∠1是邻补角,故说法错误;C、∠A与∠2是同位角,故说法错误;D、∠2与∠3是内错角,故说法错误;故选:A.【点评】本题考查了同位角、内错角以及同旁内角的定义.同位角的边构成“F“形,内错角的边构成“Z“形,同旁内角的边构成“U”形.8.如图,与∠B互为同旁内角的角有()个A.2B.3C.4D.5【分析】根据同旁内角的定义,结合图形进行寻找即可.【解答】解:与∠B互为同旁内角的角有∠AOB,∠BAO,∠BCD,∠BAD共4个.故选:C.【点评】此题考查了同旁内角的定义,属于基础题,关键是掌握互为同旁内角的两个角的位置特点.二.填空题(共6小题)9.观察图形,并阅读相关的文字,回答:如有9条直线相交,最多有交点36.【分析】根据题意,结合图形可猜想,n条直线相交,最多有1+2+3+…+(n﹣1)=n(n﹣1)个交点.【解答】解:∵3条直线相交最多有3个交点,4条直线相交最多有6个交点,5条直线相交最多有10个交点,而3=×2×3,6=×3×4,10=1+2+3+4=×4×5,∴n条直线相交,最多有1+2+3+…+(n﹣1)=n(n﹣1)个交点,∴当n=9时,n(n﹣1)=×8×9=36.故答案为:36.【点评】此题主要考查了相交线,着重培养学生的观察、实验和猜想、归纳能力,掌握从特殊向一般猜想的方法.10.如图,直线AB、CD相交于点O,OE平分∠BOD;OF平分∠COE,若∠AOC=82°,则∠BOF =28.5°.【分析】根据对顶角相等求得∠BOD的度数,然后根据角的平分线的定义求得∠EOD的度数,则∠COE即可求得,再根据角平分线的定义求得∠EOF,最后根据∠BOF=∠EOF﹣∠BOF求解.【解答】解:∵∠BOD=∠AOC=82°,又∵OE平分∠BOD,∴∠DOE=∠BOD=×82°=41°.∴∠COE=180°﹣∠DOE=180°﹣41°=139°,∵OF平分∠COE,∴∠EOF=∠COE=×139°=69.5°,∴∠BOF=∠EOF﹣∠BOF=69.5°﹣41°=28.5°.故答案是:28.5.【点评】本题考查了角平分线的定义,以及对顶角的性质,理解角平分线的定义是关键.11.如图,已知直线AB和CD相交于点O,射线OE在∠COB内部,OE⊥OC,OF平分∠AOE,若∠BOD=40°,则∠COF=25度.【分析】根据对顶角相等的性质可得∠AOC=∠BOD=40°,根据垂直的定义可得∠COE=90°,根据角的和差关系得出∠AOE的度数,再根据角平分线的定义求出∠AOF的度数,再根据角的和差关系计算即可.【解答】解:∠AOC=∠BOD=40°,∵OE⊥OC,∴∠COE=90°,∴∠AOE=∠AOC+∠COE=130°,∵OF平分∠AOE,∴∠AOF=,∴∠COF=∠AOF﹣∠AOC=65°﹣40°=25°.故答案为:25【点评】此题主要考查了对顶角的性质,角平分线的性质以及垂直的定义,正确利用角平分线的性质分析是解题关键.12.如图所示,想在河的两岸搭建一座桥,搭建方式最短的是PM(用字母表示).【分析】根据垂线段最短的性质填写即可.【解答】解:∵PM⊥MN,∴由垂线段最短可知PM是最短的,故答案为:PM.【点评】本题主要考查垂线段的性质,掌握垂线段最短是解题的关键.13.如图,AH⊥BC,若AB=3cm、AC=4.5cm、AH=2cm,则点A到直线BC的距离为2cm.【分析】根据点到直线的距离的定义解答即可.【解答】解:点A到直线BC的距离是线段AH的长度,AH=2,∴点A到直线BC的距离为2cm.故答案为:2cm【点评】此题考查点到直线的距离,关键是根据点到直线的距离的概念解答.14.如图,图中,∠B的同旁内角除了∠A还有∠ACB,∠ECB.【分析】直接利用同旁内角的定义化简得出答案.【解答】解:∠B的同旁内角除了∠A还有:∠ACB,∠ECB.故答案为:∠ACB,∠ECB.【点评】此题主要考查了同旁内角的定义,正确掌握定义是解题关键.三.解答题(共4小题)15.如图,直线AB,CD相交于点O,OA平分∠EOC;(1)请你数一数,图中有8个小于平角的角;(2)若∠EOC=80°,求∠BOD的度数.【分析】(1)根据角的定义,平角的定义得到;(2)根据角平分线定义得到∠AOC=∠EOC=×80°=40°,然后根据对顶角相等得到∠BOD=∠AOC=40°.【解答】解:(1)小于平角的角有:∠AOC,∠AOE,∠EOD,∠BOD,∠BOC,∠EOC,∠AOD,∠EOB,共有8个,故答案为:8;(2)∵OA平分∠EOC,∴∠AOC=∠EOC=×80°=40°,∴∠BOD=∠AOC=40°.【点评】考查了角的计算,角平分线的定义和对顶角的性质.解题的关键是明确角平分线的定义和对顶角的性质,1直角=90°;1平角=180°.16.如图,直线AB与CD相交于点O,OE是∠COB的平分线,OE⊥OF.(1)图中∠BOE的补角是∠AOE;(2)若∠COF=2∠COE,求∠BOE的度数;(3)试判断OF是否平分∠AOC,并说明理由;请说明理由.【分析】(1)根据平角的意义,依据图形可直接得出答案;(2)根据互余和∠COF=2∠COE,可求出∠COF、∠COE,再根据角平分线的意义可求答案;(3)根据互余,互补、角平分线的意义,证明∠FOA=∠COF即可.【解答】解:(1)∵∠AOE+∠BOE=∠AOB=180°,∴∠BOE的补角是∠AOE,故答案为:∠AOE;(2)∵OE⊥OF.∠COF=2∠COE,∴∠COF=×90°=60°,∠COE=×90°=30°,∵OE是∠COB的平分线,∴∠BOE=∠COE=30°;(3)OF平分∠AOC,∵OE是∠COB的平分线,OE⊥OF.∴∠BOE=∠COE,∠COE+∠COF=90°,∵∠BOE+∠EOC+∠COF+∠FOA=180°,∴∠COE+∠FOA=90°,∴∠FOA=∠COF,即,OF平分∠AOC.【点评】考查互为余角、互为补角、角平分线的意义,通过图形直观,得到各个角之间的关系式解决问题的关键.17.如图,AB、CD、NE相交于点O,OM平分∠BOD,∠MON=90°,∠AOC=50°(1)线段MO的长度表示点M到NE的距离;(2)比较MN与MO的大小(用“<”号连接):MO<MN,并说明理由:垂线段最短;(3)求∠AON的度数.【分析】(1)根据点到直线的距离解答即可;(2)根据垂线段最短解答即可;(3)根据垂直的定义和角之间的关系解答即可.【解答】解:(1)线段MO的长度表示点M到NE的距离;(2)比较MN与MO的大小为:MO<MN,是因为垂线段最短;(3)∵∠BOD=∠AOC=50°,OM平分∠BOD,∴∠BOM=25°,∴∠AON=180°﹣∠BOM﹣∠MON=180°﹣25°﹣90°=65°.故答案为:MO;MO<MN;垂线段最短.【点评】本题考查的是点到直线的距离,掌握点到直线的距离是解题的关键18.如图所示,把一根筷子一端放在水里,一端露出水面,筷子变弯了,它真的弯了吗?其实没有,这是光的折射现象,光从空气中射入水中,光的传播方向发生了改变.(1)请指出与∠1是同旁内角的有哪些角?请指出与∠2是内错角的有哪些角?(2)若∠1=115°,测得∠BOM=145°,从水面上看斜插入水中的筷子,水下部分向上折弯了多少度?请说明理由.【分析】(1)根据同位角、内错角的定义(两条直线被第三条直线所截,处于两条直线的同旁,位于第三条直线的一侧的两个角叫同位角,处于两条直线之间,处于第三条直线两侧的两个角叫内错角)逐个判断即可.(2)根据平行线的性质解答即可.【解答】解:(1)与∠1是同旁内角的有∠AOE,∠MOE,∠ADE;与∠2是内错角的有∠MOE,∠AOE;(2)∵AB∥CD,∴∠BOE=∠1=115°,∵∠BOM=145°,∴∠MOE=∠BOM﹣∠BOE=145°﹣115°=30°,∴向上折弯了30°.【点评】本题考查了对同位角定义,内错角定义的应用,主要考查学生的理解能力,题目是一道比较好的题目,难度适中.。
北师大版初中数学七年级下册《第2章 相交线与平行线:2.3 平行线的性质》同步练习卷2020.2
北师大新版七年级下学期《2.3 平行线的性质》2020年同步练习卷一.解答题(共60小题)1.已知AB∥CD,点M、N分别是AB、CD上两点,点G在AB、CD之间,连接MG、NG.(1)如图1,若GM⊥GN,求∠AMG+∠CNG的度数;(2)如图2,若点P是CD下方一点,MG平分∠BMP,ND平分∠GNP,已知∠BMG =30°,求∠MGN+∠MPN的度数;(3)如图3,若点E是AB上方一点,连接EM、EN,且GM的延长线MF平分∠AME,NE平分∠CNG,2∠MEN+∠MGN=105°,求∠AME的度数.2.如图1,MN∥EF,C为两直线之间一点.(1)如图1,若∠MAC与∠EBC的平分线相交于点D,若∠ACB=100°,求∠ADB的度数.(2)如图2,若∠CAM与∠CBE的平分线相交于点D,∠ACB与∠ADB有何数量关系?并证明你的结论.(3)如图3,若∠CAM的平分线与∠CBF的平分线所在的直线相交于点D,请直接写出∠ACB与∠ADB之间的数量关系:.3.如图1,直线AB∥CD,直线EF交AB于点E,交CD于点F,点G和点H分别是直线AB和CD上的动点,作直线GH,EI平分∠AEF,HI平分∠CHG,EI与HI交于点I.(1)如图1,点G在点E的左侧,点H在点F的右侧,若∠AEF=70°,∠CHG=60°,求∠EIH的度数.(2)如图2,点G在点E的右侧,点H也在点F的右侧,若∠AEF=α,∠CHG=β,其他条件不变,求∠EIH的度数.(3)如图3,点G在点E的右侧,点H也在点F的右侧,∠GHC的平分线HJ交∠KEG 的平分线EJ于点J.其他条件不变,若∠AEF=α,∠CHG=β,求∠EJH的度数.4.如图,已知直线AB∥射线CD,∠CEB=100°.P是射线EB上一动点,过点P作PQ ∥EC交射线CD于点Q,连结CP.作∠PCF=∠PCQ,交直线AB于点F,CG平分∠ECF.(1)若点P,F,G都在点E的右侧.①求∠PCG的度数;②若∠EGC﹣∠ECG=40°,求∠CPQ的度数.(2)在点P的运动过程中,是否存在这样的情形,使?若存在,求出∠CPQ 的度数;若不存在,请说明理由.5.已知点D,E,F分别是△ABC的边AB,AC,BC上的点,DE∥BC,DF∥AC.(1)如图1,点G是线段FD延长线上一点,连接EG,∠CEG的平分线EM交AB于点M,交FD于点N.则∠A,∠AME,∠CEG之间存在怎样的数量关系?请写出证明过程;(2)如图2,在(1)的条件下,若EG平分∠AED,∠AME=35°,且∠EDF﹣∠A=30°,求∠C的度数.6.如图1,已知直线EF分别与直线AB,CD相交于点E,F,AB∥CD,EM平分∠BEF,FM平分∠EFD(1)求证:∠EMF=90°.(2)如图2,若FN平分∠MFD交EM的延长线于点N,且∠BEN与∠EFN的比为4:3,求∠N的度数.(3)如图3,若点H是射线EA之间一动点,FG平分∠HFE,过点G作GQ⊥FM于点Q,请猜想∠EHF与∠FGQ的关系,并证明你的结论.7.已知直线AB∥CD,直线EF分别交AB、CD于A、C,CM是∠ACD的平分线,CM交AB于H,过A作AG⊥AC交CM于G.(1)如图1,点G在CH的延长线上时,①若∠GAB=36°,则∠MCD=.②猜想:∠GAB与∠MCD之间的数量关系是.(2)如图2,点G在CH上时,(1)②猜想的∠GAB与∠MCD之间的数量关系还成立吗?如果成立,请给出证明;如果不成立,请写出∠GAB与∠MCD之间的数量关系,并说明理由.8.如图1,AB∥CD,P为AB、CD之间一点(1)若AP平分∠CAB,CP平分∠ACD.求证:AP⊥CP;(2)如图(2),若∠BAP=∠BAC,∠DCP=∠ACD,且AE平分∠BAP,CF平分∠DCP,猜想∠E+∠F的结果并且证明你的结论;(3)在(1)的条件下,当∠BAQ=∠BAP,∠DCQ=∠DCP,H为AB上一动点,连HQ并延长至K,使∠QKA=∠QAK,再过点Q作∠CQH的平分线交直线AK于M,问当点H在射线AB上移动时,∠QMK的大小是否变化?若不变,求其值;若变化,求其取值范围.9.如图,已知直线AB∥CD.(1)在图1中,点E在直线AB上,点F在直线CD上,点G在AB、CD之间,若∠1=30°,∠3=75°,则∠2=;(2)如图2,若FN平分∠CFG,延长GE交FN于点M,EM平分∠AEN,当∠N+∠FGE=54°时,求∠AEN的度数;(3)如图3,直线MF平分∠CFG,直线NE平分∠AEG相交于点H,试猜想∠G与∠H的数量关系,并说明理由.10.已知:如图,点A、B、C、D在同一直线上,BE∥CG,CG平分∠DCF,若∠1=50°,求∠ABE的度数.11.如图1,AM∥CN,点B为平面内一点,AB⊥BC于B,过B作BD⊥AM.(1)求证:∠ABD=∠C;(2)如图2,在(1)问的条件下,分别作∠ABD、∠DBC的平分线交DM于E、F,若∠BFC=1.5∠ABF,∠FCB=2.5∠BCN,①求证:∠ABF=∠AFB;②求∠CBE的度数.12.问题情境在综合与实践课上,老师让同学们以“两条平行线AB,CD和一块含60°角的直角三角尺EFG(∠EFG=90°,∠EGF=60°)”为主题开展数学活动.操作发现(1)如图(1),小明把三角尺的60°角的顶点G放在CD上,若∠2=2∠1,求∠1的度数;(2)如图(2),小颖把三角尺的两个锐角的顶点E、G分别放在AB和CD上,请你探索并说明∠AEF与∠FGC之间的数量关系;结论应用(3)如图(3),小亮把三角尺的直角顶点F放在CD上,30°角的顶点E落在AB上.若∠AEG=α,则∠CFG等于(用含α的式子表示).13.如图,AB∥CD,∠1=∠B,∠2=∠D,试说明BE⊥DE.14.已知直线AB∥CD.(1)如图1,直接写出∠BME、∠E、∠END的数量关系为;(2)如图2,∠BME与∠CNE的角平分线所在的直线相交于点P,试探究∠P与∠E之间的数量关系,并证明你的结论;(3)如图3,∠ABM=∠MBE,∠CDN=∠NDE,直线MB、ND交于点F,则=.15.已知:AB∥CD,点E在直线AB上,点F在直线CD上.(1)如图(1),∠1=∠2,∠3=∠4.①若∠4=36°,求∠2的度数;②试判断EM与FN的位置关系,并说明理由;(2)如图(2),EG平分∠MEF,EH平分∠AEM,试探究∠GEH与∠EFD的数量关系,并说明理由.16.已知:∠MON=48°,OE平分∠MON,点A、B、C分别是射线OM、OE、ON上的动点(A、B、C不与点O重合),连接AC交射线OE于点D.设∠OAC=x°(1)如图1,若AB∥ON,则:①∠ABO的度数是°;②当∠BAD=∠ABD时,x=°;③当∠BAD=∠BDA时,x=°.(2)如图2,若AB⊥OM,则是否存在这样的x的值,使得△ADB中有两个相等的角?若存在,求出x的值;若不存在,说明理由.17.如图,两条射线AM∥BN,线段CD的两个端点C、D分别在射线BN、AM上,且∠A =∠BCD=108°.E是线段AD上一点(不与点A、D重合),且BD平分∠EBC.(1)求∠ABC的度数.(2)请在图中找出与∠ABC相等的角,并说明理由.(3)若平行移动CD,且AD>CD,则∠ADB与∠AEB的度数之比是否随着CD位置的变化而发生变化?若变化,找出变化规律;若不变,求出这个比值.18.如图,已知AM∥BN,∠A=60°,点P是射线AM上一动点(与点A不重合),BC,BD分别平分∠ABP和∠PBN,分别交射线AM于点C,D.(1)求∠CBD的度数;(2)当点P运动时,∠APB:∠ADB的比值是否随之变化?若不变,请求出这个比值;若变化,请找出变化规律;(3)当点P运动到某处时,∠ACB=∠ABD,求此时∠ABC的度数.19.如图,点C在∠AOB的边OA上,过点C的直线DE∥OB,CF平分∠ACD,CG⊥CF 于C.(1)若∠O=40°,求∠ECF的度数;(2)试说明CG平分∠OCD;(3)当∠O为多少度时,CD平分∠OCF?并说明理由.20.如图,已知CD∥AB,OE平分∠BOD,OE⊥OF,∠CDO=62°,分别求出∠BOE,∠DOF的度数.21.生活中处处有数字,只要同学们学会数学的眼光观察生活,就会有许多意想不到的收获,如图两幅图都是由同一副三角板拼凑得到的.(1)图1中的∠ABC的度数是多少?(2)图2中已知AE∥BC,则∠AFD的度数是多少?22.P是三角形ABC内一点,射线PD∥AC,射线PE∥AB.(1)当点D,E分别在AB,BC上时,①补全图1;②猜想∠DPE与∠A的数量关系,并证明;(2)当点D,E都在线段BC上时,你在(1)中所得结论是否仍然成立?若成立,请证明;若不成立,请说明理由.23.已知:如图,直线a∥b,直线c与直线a、b分别相交于C、D两点,直线d与直线a、b分别相交于A、B两点,点P在直线AB上运动(不与A、B两点重合).(1)如图1,当点P在线段AB上运动时,总有:∠CPD=∠PCA+∠PDB,请说明理由;(2)如图2,当点P在线段AB的延长线上运动时,∠CPD、∠PCA、∠PDB之间有怎样的数量关系,并说明理由;(3)如图3,当点P在线段BA的延长线上运动时,∠CPD、∠PCA、∠PDB之间又有怎样的数量关系(只需直接给出结论)?24.如图,已知BC∥AD,BE∥AF.(1)请说明∠A=∠B.(2)若∠DOB=135°,求∠A的度数.25.已知:如图,AD∥BC,∠B=∠D,求证:∠E=∠F.26.如图,AB∥CD,直线PQ分别交AB、CD于E、F,FG⊥PQ,若∠PEB=130°,求∠CFG的度数.27.如图,∠ACD是△ABC的外角,∠ABC与∠ACD的角平分线交于点O.(1)若∠ABC=66°,∠ACB=34°,则∠A=°,∠O=°;(2)探索∠A与∠O的数量关系,并说明理由;(3)若AB∥CO,AC⊥BO,求∠ACB的度数.28.如图,已知平面内有两条直线AB、CD,且AB∥CD,P为一动点.(1)当点P移动到AB、CD之间时,如图(1),这时∠P与∠A、∠C有怎样的关系?证明你的结论.(2)当点P移动到如图(2)的位置时,∠P与∠A、∠C又有怎样的关系?请证明你的结论.29.已知△ABC中,∠A=60°,∠ACB=40°,D为BC边延长线上一点,BM平分∠ABC,E为射线BM上一点.(1)如图1,连接CE,①若CE∥AB,求∠BEC的度数;②若CE平分∠ACD,求∠BEC的度数.(2)若直线CE垂直于△ABC的一边,请直接写出∠BEC的度数.30.如图,EF∥AD,AD∥BC,CE平分∠BCF,∠DAC=116°,∠ACF=25°,求∠FEC 的度数.31.如图,已知AB∥CD,∠B=96°,EF平分∠BEC,EG⊥EF,求∠BEG和∠DEG的度数.32.如图,已知直线a∥b,∠3=131°,求∠1、∠2的度数(填理由或数学式)解:∵∠3=131°()又∵∠3=∠1 ()∴∠1=()∵a∥b()∴∠1+∠2=180°()∴∠2=().33.如图,已知AB∥CD,现将一直角三角形PMN放入图中,其中∠P=90°,PM交AB 于点E,PN交CD于点F(1)当△PMN所放位置如图①所示时,则∠PFD与∠AEM的数量关系为;(2)当△PMN所放位置如图②所示时,求证:∠PFD﹣∠AEM=90°;(3)在(2)的条件下,若MN与CD交于点O,且∠DON=30°,∠PEB=15°,求∠N的度数.34.如图,已知AB∥CD,∠1:∠2:∠3=1:2:3,那么BA是否平分∠EBF,试说明理由.35.已知AD∥BC,AB∥CD,E为射线BC上一点,AE平分∠BAD.(1)如图1,当点E在线段BC上时,求证:∠BAE=∠BEA.(2)如图2,当点E在线段BC延长线上时,连接DE,若∠ADE=3∠CDE,∠AED=60°.①求证:∠ABC=∠ADC;②求∠CED的度数.36.如图,某工程队从A点出发,沿北偏西67度方向修一条公路AD,在BD路段出现塌陷区,就改变方向,由B点沿北偏东23度的方向继续修建BC段,到达C点又改变方向,使所修路段CE∥AB,此时∠ECB有多少度?试说明理由.37.(1)①如图1,已知AB∥CD,∠ABC=60°,根据可得∠BCD=°;②如图2,在①的条件下,如果CM平分∠BCD,则∠BCM=°;③如图3,在①、②的条件下,如果CN⊥CM,则∠BCN=°.(2)尝试解决下面问题:已知如图4,AB∥CD,∠B=40°,CN是∠BCE的平分线,CN⊥CM,求∠BCM的度数.38.阅读理解如图1,已知点A是BC外一点,连接AB,AC,求∠BAC+∠B+∠C的度数.(1)阅读并补充下面推理过程解:过点A作ED∥BC∴∠B=∠,∠C=∠.又∵∠EAB+∠BAC+∠DAC=180°(平角定义)∴∠B+∠BAC+∠C=180°从上面的推理过程中,我们发现平行线具有“等角转化”的功能,将∠BAC,∠B,∠C “凑”在一起,得出角之间的关系,使问题得以解决(2)如图2,已知AB∥ED,求∠B+∠BCD+∠D的度数.小明受到启发,过点C作CF∥AB如图所示,请你帮助小明完成解答:(3)已知AB∥CD,点C在点D的右侧,∠ADC=70°.BE平分∠ABC,DE平分∠ADC,BE,DE所在的直线交于点E,点E在AB与CD两条平行线之间.①如图3,点B在点A的左侧,若∠ABC=60°,则∠BED的度数为°.②如图4,点B在点A的右侧,且AB<CD,AD<BC.若∠ABC=n°,则∠BED的度数为°(用含n的代数式表示)39.如图,已知AB∥CD,C在D的右侧,BE平分∠ABC,DE平分∠ADC,BE、DE所在直线交于点E.∠ADC=70°.(1)求∠EDC的度数;(2)若∠ABC=n°,求∠BED的度数(用含n的式子表示);(3)将线段BC沿DC方向平移,使得点B在点A的右侧,其他条件不变,画出图形并判断∠BED的度数是否改变,若改变,求出它的度数(用含n的式子表示),不改变,请说明理由.40.如图,已知AD∥BC,∠1=∠2,求证:∠3+∠4=180°.41.如图所示,把三角板的直角顶点放在直尺的一边上,若∠1=30°,求∠2的度数.42.如图,已知DE∥BC,BE平分∠ABC,∠C=65°,∠ABC=50°.(1)求∠BED的度数;(2)判断BE与AC的位置关系,并说明理由.43.如图,是我们生活中经常接触的小刀,由刀片和刀柄组成,在刀柄ABCD中,∠A和∠B都是直角,在刀片EFGH中,EF∥GH.转动刀片时会形成∠1、∠2,试判断∠1与∠2的度数和是一个定值吗?若是,请求出∠1与∠2的度数和;若不是,请说明理由44.如图1,对于直线MN同侧的两个点A,B,若直线MN上的点P满足∠APM=∠BPN,则称点P为A,B在直线MN上的反射点.已知如图2,MN∥HG,AP∥BQ,点P为A,B在直线MN上的反射点,判断点B是否为P,Q在直线HG上的反射点,如果是请证明,如果不是,请说明理由.45.如图,MN∥OP,点A为直线MN上一定点,B为直线OP上的动点,在直线MN与OP之间且在线段AB的右方作点D,使得AD⊥BD.设∠DAB=α(α为锐角).(1)求∠NAD与∠PBD的和;(提示过点D作EF∥MN)(2)当点B在直线OP上运动时,试说明∠OBD﹣∠NAD=90°;(3)当点B在直线OP上运动的过程中,若AD平分∠NAB,AB也恰好平分∠OBD,请求出此时α的值46.(1)如图1,AB∥CD,点E是在AB、CD之间,且在BD的左侧平面区域内一点,连结BE、DE.求证:∠E=∠ABE+∠CDE.(2)如图2,在(1)的条件下,作出∠EBD和∠EDB的平分线,两线交于点F,猜想∠F、∠ABE、∠CDE之间的关系,并证明你的猜想.(3)如图3,在(1)的条件下,作出∠EBD的平分线和△EDB的外角平分线,两线交于点G,猜想∠G、∠ABE、∠CDE之间的关系,并证明你的猜想.47.如图,直线AB∥CD,直线EF分别交直线AB、CD于点E、F,FH平分∠EFD,若∠FEH=110°,求∠EHF的度数.48.如图,已知AB∥CD∥EF,∠CMA=30°,∠CNE=80°,CO平分∠MCN.求∠MCN,∠DCO的度数(要求有简要的推理说明).49.如图,∠AOB=40°,OC平分∠AOB,点D,E在射线OA,OC上,点P是射线OB 上的一个动点,连接DP交射线OC于点F,设∠ODP=x°.(1)如图1,若DE∥OB.①∠DEO的度数是°,当DP⊥OE时,x=;②若∠EDF=∠EFD,求x的值;(2)如图2,若DE⊥OA,是否存在这样的x的值,使得∠EFD=4∠EDF?若存在,求出x的值;若不存在,说明理由.50.如图,已知AB∥DE,∠ABC、∠CED的平分线交于点F.探究∠BFE与∠BCE之间的数量关系,并证明你的结论.51.如图,点C在∠AOB的一边OA上,过点C的直线DE平行直线OB,CF平分∠ACD,CG⊥CF于点C.(Ⅰ)若∠O=50°,求∠ACE的度数;(Ⅱ)求证:CG平分∠OCD;(Ⅲ)当∠O为多少度时,CD平分∠OCF,并说明理由.52.已知AB∥CD,解决下列问题:(1)如图①,BP、DP分别平分∠ABE、∠CDE,若∠E=100°,求∠P的度数.(2)如图②,若∠ABP=∠ABE,∠CDP=∠CDE,试写出∠P与∠E的数量关系并说明理由.(3)如图③,若∠ABP=∠ABE,∠CDP=∠CDE,设∠E=m°,求∠P的度数(直接用含n、m的代数式表示,不需说明理由).53.如图,AB∥CD,∠B=120°,EF是∠CEB的平分线,FG∥HD,求∠EDH的度数.54.如图,已知直线11∥12,且13和11、12分别交于A、B两点,点P在直线AB上.(1)试说明∠1,∠2,∠3之间的关系式;(要求写出推理过程)(2)如果点P在A、B两点之间(点P和A、B不重合)运动时,试探究∠1,∠2,∠3之间的关系是否发生变化?(只回答)(3)如果点P在A、B两点外侧(点P和A、B不重合)运动时,试探究∠1,∠2,∠3之间的关系.(要求写出推理过程)55.已知,两直线AB,CD,且AB∥CD,点M,N分别在直线AB,CD上,放置一个足够大的直角三角尺,使得三角尺的两边EP,EQ分别经过点M,N,过点N作射线NF,使得∠ENF=∠ENC.(1)转动三角尺,如图①所示,当射线NF与NM重合,∠FND=45°时,求∠AME 的度数;(2)转动三角尺,如图②所示,当射线NF与NM不重合,∠FND=60°时,求∠AME 的度数.(3)转动直角三角尺的过程中,请直接写出∠FND与∠AME之间的数量关系.56.问题情境:如图1,AB∥CD,∠P AB=130°,∠PCD=120°,求∠APC的度数.小明的思路是过点P作PE∥AB,通过平行线的性质来求∠APC.(1)按照小明的思路,求∠APC的度数;(2)问题迁移:如图2,AB∥CD,点P在射线ON上运动,记∠P AB=α,∠PCD=β,当点P在B、D两点之间运动时,问∠APC与α、β之间有何数量关系?请说明理由;(3)在(2)的条件下,如果点P不在B、D两点之间运动时(点P与点O、B、D三点不重合),请直接写出∠APC与α、β之间的数量关系.57.如图,已知直线l1∥l2,直线l3和直线l1、l2交于点C和D,在直线l3上有点P(点P 与点C、D不重合),点A在直线l1上,点B在直线l2上.(1)如果点P在C、D之间运动时,试说明∠1+∠3=∠2;(2)如果点P在直线l1的上方运动时,试探索∠1,∠2,∠3之间的关系又是如何?(3)如果点P在直线l2的下方运动时,试探索∠P AC,∠PBD,∠APB之间的关系又是如何?(直接写出结论)58.模型与应用.【模型】(1)如图①,已知AB∥CD,求证∠1+∠MEN+∠2=360°.【应用】(2)如图②,已知AB∥CD,则∠1+∠2+∠3+∠4+∠5+∠6的度数为.如图③,已知AB∥CD,则∠1+∠2+∠3+∠4+∠5+∠6+…+∠n的度数为.(3)如图④,已知AB∥CD,∠AM1M2的角平分线M1O与∠CM n M n﹣1的角平分线M n O 交于点O,若∠M1OM n=m°.在(2)的基础上,求∠2+∠3+∠4+∠5+∠6+……+∠n ﹣1的度数.(用含m、n的代数式表示)59.如图,已知BC∥GE,AF∥DE,点D、F分别在直线BC、GE上,∠1=50°.(1)求∠AFG的度数;(2)若AQ平分∠F AC,交BC于点Q,且∠Q=15°,求∠ACB的度数.60.①如图1,O是直线AB上一点,OE平分∠AOC,OF平分∠BOC,求证:OE⊥OF.②如图2,AB∥CD,∠1=∠B,∠2=∠D.求证:BE⊥DE北师大新版七年级下学期《2.3 平行线的性质》2020年同步练习卷参考答案与试题解析一.解答题(共60小题)1.已知AB∥CD,点M、N分别是AB、CD上两点,点G在AB、CD之间,连接MG、NG.(1)如图1,若GM⊥GN,求∠AMG+∠CNG的度数;(2)如图2,若点P是CD下方一点,MG平分∠BMP,ND平分∠GNP,已知∠BMG =30°,求∠MGN+∠MPN的度数;(3)如图3,若点E是AB上方一点,连接EM、EN,且GM的延长线MF平分∠AME,NE平分∠CNG,2∠MEN+∠MGN=105°,求∠AME的度数.【分析】(1)过G作GH∥AB,依据两直线平行,内错角相等,即可得到∠AMG+∠CNG 的度数;(2)过G作GK∥AB,过点P作PQ∥AB,设∠GND=α,利用平行线的性质以及角平分线的定义,求得∠MGN=30°+α,∠MPN=60°﹣α,即可得到∠MGN+∠MPN=30°+α+60°﹣α=90°;(3)过G作GK∥AB,过E作ET∥AB,设∠AMF=x,∠GND=y,利用平行线的性质以及角平分线的定义,可得∠MEN=∠TEN﹣∠TEM=90°﹣y﹣2x,∠MGN=x+y,再根据2∠MEN+∠G=105°,即可得到2(90°﹣y﹣2x)+x+y=105°,求得x=25°,即可得出∠AME=2x=50°.【解答】解:(1)如图1,过G作GH∥AB,∵AB∥CD,∴GH∥AB∥CD,∴∠AMG=∠HGM,∠CNG=∠HGN,∵MG⊥NG,∴∠MGN=∠MGH+∠NGH=∠AMG+∠CNG=90°;(2)如图2,过G作GK∥AB,过点P作PQ∥AB,设∠GND=α,∵GK∥AB,AB∥CD,∴GK∥CD,∴∠KGN=∠GND=α,∵GK∥AB,∠BMG=30°,∴∠MGK=∠BMG=30°,∵MG平分∠BMP,ND平分∠GNP,∴∠GMP=∠BMG=30°,∴∠BMP=60°,∵PQ∥AB,∴∠MPQ=∠BMP=60°,∵ND平分∠GNP,∴∠DNP=∠GND=α,∵AB∥CD,∴PQ∥CD,∴∠QPN=∠DNP=α,∴∠MGN=30°+α,∠MPN=60°﹣α,∴∠MGN+∠MPN=30°+α+60°﹣α=90°;(3)如图3,过G作GK∥AB,过E作ET∥AB,设∠AMF=x,∠GND=y,∵AB,FG交于M,MF平分∠AME,∴∠FME=∠FMA=∠BMG=x,∴∠AME=2x,∵GK∥AB,∴∠MGK=∠BMG=x,∵ET∥AB,∴∠TEM=∠EMA=2x,∵CD∥AB∥KG,∴GK∥CD,∴∠KGN=∠GND=y,∴∠MGN=x+y,∵∠CND=180°,NE平分∠CNG,∴∠CNG=180°﹣y,∠CNE=∠CNG=90°﹣y,∵ET∥AB∥CD,∴ET∥CD,∴∠TEN=∠CNE=90°﹣y,∴∠MEN=∠TEN﹣∠TEM=90°﹣y﹣2x,∠MGN=x+y,∵2∠MEN+∠G=105°,∴2(90°﹣y﹣2x)+x+y=105°,∴x=25°,∴∠AME=2x=50°.【点评】本题主要考查了平行线的性质与判定的综合运用,解决问题的关键是作辅助线构造内错角,利用平行线的性质以及角的和差关系进行推算.2.如图1,MN∥EF,C为两直线之间一点.(1)如图1,若∠MAC与∠EBC的平分线相交于点D,若∠ACB=100°,求∠ADB的度数.(2)如图2,若∠CAM与∠CBE的平分线相交于点D,∠ACB与∠ADB有何数量关系?并证明你的结论.(3)如图3,若∠CAM的平分线与∠CBF的平分线所在的直线相交于点D,请直接写出∠ACB与∠ADB之间的数量关系:∠ADB=90°﹣ACB.【分析】(1)如图1,根据平行线的性质得到∠1=∠ADH,∠2=∠BDH,∠MAC=∠ACG,∠EBC=∠BCG,根据角平分线的定义得到∠1=ACG,∠2=,即可得到结论;(2)根据平行线的性质得到∠1=∠ADH,∠2=∠BDH,∠NAC=∠ACG,∠FBC=∠BCG,根据角平分线的定义得到∠1=ACG,∠2=,根据平角的定义即可得到结论;(3)根据平行线的性质得到∠1=∠ADH,∠2=∠BDH,∠NAC=∠ACG,∠FBC=∠BCG,根据平行线的定义得到∠1=MAC,∠2=∠CBF,根据四边形的内角和和角的和差即可得到结论.【解答】解:(1)如图1,过C作CG∥MN,DH∥MN,∵MN∥EF,∴MN∥CG∥DH∥EF,∴∠1=∠ADH,∠2=∠BDH,∠MAC=∠ACG,∠EBC=∠BCG,∵∠MAC与∠EBC的平分线相交于点D,∴∠1=ACG,∠2=,∴∠ADB=(∠ACG+∠BCG)=∠ACB;∵∠ACB=100°,∴∠ADB=50°;(2)如图2,过C作CG∥MN,DH∥MN,∵MN∥EF,∴MN∥CG∥DH∥EF,∴∠1=∠ADH,∠2=∠BDH,∠NAC=∠ACG,∠FBC=∠BCG,∵∠MAC与∠EBC的平分线相交于点D,∴∠1=ACG,∠2=,∴∠ADB=∠1+∠2=(∠MAC+∠EBC)=(180°﹣∠NAC+180°﹣∠FBC)=(360°﹣∠ACB),∴∠ADB=180°﹣∠ACB;(3)如图3,过C作CG∥MN,DH∥MN,∵MN∥EF,∴MN∥CG∥DH∥EF,∴∠1=∠ADH,∠2=∠BDH,∠NAC=∠ACG,∠FBC=∠BCG,∵∠MAC与∠FBC的平分线相交于点D,∴∠1=MAC,∠2=∠CBF,∵∠ADB=360°﹣∠1﹣(180°﹣∠2)﹣∠ACB=360°﹣∠MAC﹣(180°﹣∠CBF)﹣∠ACB=360°﹣(180°﹣∠ACG)﹣(180°﹣∠BCG)=90°﹣∠ACB.∴∠ADB=90°﹣ACB.故答案为:∠ADB=90°﹣ACB.【点评】本题考查了平行线的性质,角平分线的定义,正确的作出辅助线是解题的关键.3.如图1,直线AB∥CD,直线EF交AB于点E,交CD于点F,点G和点H分别是直线AB和CD上的动点,作直线GH,EI平分∠AEF,HI平分∠CHG,EI与HI交于点I.(1)如图1,点G在点E的左侧,点H在点F的右侧,若∠AEF=70°,∠CHG=60°,求∠EIH的度数.(2)如图2,点G在点E的右侧,点H也在点F的右侧,若∠AEF=α,∠CHG=β,其他条件不变,求∠EIH的度数.(3)如图3,点G在点E的右侧,点H也在点F的右侧,∠GHC的平分线HJ交∠KEG 的平分线EJ于点J.其他条件不变,若∠AEF=α,∠CHG=β,求∠EJH的度数.【分析】(1)过点I作IM∥AB,依据平行线的性质以及角平分线的定义,即可得到∠EIH 的度数.(2)过点I作IM∥AB,依据平行线的性质以及角平分线的定义,即可得到∠EIH的度数.(3)过点J作MN∥AB,依据平行线的性质、对顶角相等以及角平分线的定义,即可得到∠EJH的度数.【解答】(1)解:如图1,过点I作IM∥AB,∵EI平分∠AEF,HI平分∠CHG,∠AEF=70°,∠CHG=60°,∴∠AEI=35°,∠CHI=30°,∵IM∥AB,∴∠MIE=∠AEI=35°,∵AB∥CD,IM∥AB,∴IM∥CD,∴∠MIH=∠CHI=30°,∴∠EIH=∠MIE+∠MIH=35°+30°=65°;(2)解:如图2,过点I作IM∥AB,∵EI平分∠AEF,HI平分∠CHG,∠AEF=α,∠CHG=β,∴∠AEI=,∠CHI=,∵IM∥AB,∴∠MIE=∠AEI=,∵AB∥CD,IM∥AB,∴IM∥CD,∴∠MIH=∠CHI=,∴∠EIH=∠MIE+∠MIH=+;(3)解:如图3,过点J作MN∥AB,∵∠AEF=α,∴∠KEB=α,∵EJ平分∠KEB,HJ平分∠CHG,∠KEB=α,∠CHG=β,∴∠JEG=,∠JHF=,∵MN∥AB,∴∠MJE=∠JEG=,∵AB∥CD,MN∥AB,∴MN∥CD,∴∠NJH=∠CHJ=,∴∠EJH=180°﹣∠MJE﹣∠NJH=180°﹣﹣.【点评】本题主要考查了平行线的判定与性质的综合运用,用到的知识点为:两直线平行,内错角相等.4.如图,已知直线AB∥射线CD,∠CEB=100°.P是射线EB上一动点,过点P作PQ ∥EC交射线CD于点Q,连结CP.作∠PCF=∠PCQ,交直线AB于点F,CG平分∠ECF.(1)若点P,F,G都在点E的右侧.①求∠PCG的度数;②若∠EGC﹣∠ECG=40°,求∠CPQ的度数.(2)在点P的运动过程中,是否存在这样的情形,使?若存在,求出∠CPQ 的度数;若不存在,请说明理由.【分析】(1)①依据平行线的性质以及角平分线的定义,即可得到∠PCG的度数;②依据平行线的性质以及角平分线的定义,即可得到∠ECG=∠GCF=20°,再根据PQ∥CE,即可得出∠CPQ=∠ECP=60°;(2)设∠EGC=3x,∠EFC=2x,则∠GCF=3x﹣2x=x,分两种情况讨论:①当点G、F在点E的右侧时,②当点G、F在点E的左侧时,依据等量关系列方程求解即可.【解答】解:(1)①∵∠CEB=100°,AB∥CD,∴∠ECQ=80°,∵∠PCF=∠PCQ,CG平分∠ECF,∴=;②∵AB∥CD∴∠QCG=∠EGC,∠QCG+∠ECG=∠ECQ=80°,∴∠EGC+∠ECG=80°又∵∠EGC﹣∠ECG=40°,∴∠EGC=60°,∠ECG=20°∴∠ECG=∠GCF=20°,,∵PQ∥CE,∴∠CPQ=∠ECP=60°;(2)设∠EGC=3x,∠EFC=2x,则∠GCF=3x﹣2x=x,①当点G、F在点E的右侧时,则∠ECG=∠PCF=∠PCD=x,∵∠ECD=80°,∴4x=80°,解得x=20°,∴∠CPQ=3x=60°;②当点G、F在点E的左侧时,则∠ECG=∠GCF=x,∵∠CGF=180°﹣3x,∠GCQ=80°+x,∴180°﹣3x=80°+x,解得x=25°,∴∠FCQ=∠ECF+∠ECQ=50°+80°=130°,∴,∴∠CPQ=∠ECP=65°﹣50°=15°.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,同旁内角互补;两直线平行,内错角相等.5.已知点D,E,F分别是△ABC的边AB,AC,BC上的点,DE∥BC,DF∥AC.(1)如图1,点G是线段FD延长线上一点,连接EG,∠CEG的平分线EM交AB于点M,交FD于点N.则∠A,∠AME,∠CEG之间存在怎样的数量关系?请写出证明过程;(2)如图2,在(1)的条件下,若EG平分∠AED,∠AME=35°,且∠EDF﹣∠A=30°,求∠C的度数.【分析】(1)利用外角定理即可求解;(2)由平角AEC得:∠CEM+∠MED+∠DEA=180°,即:2α+γ+α+γ=180°;利用∠EDF﹣∠A=30°,得:2α﹣∠A=30°;利用∠CEM=∠AME=∠A,即可求解.【解答】解:(1)∠CEM=∠A+∠AME,而∠CEG=2∠CEM=2∠A+2∠AME;(2)EG平分∠AED,设:∠GEA=∠GED=α,DF∥AC,则∠EDF=2α,由平角AEC得:∠CEM+∠MED+∠DEA=180°,即:2α+γ+α+γ=180°…①,∠EDF﹣∠A=30°,则2α﹣∠A=30°…②,∠CEM=∠AME=∠A,即:35°+∠A=α+γ…③,联立①②③并解得:α=34°,∠C=2α=68°.【点评】本题考查的是平行线的性质,涉及到三角形内角和定理、外角定理、角平分线的性质等,综合性较强,难度较大.6.如图1,已知直线EF分别与直线AB,CD相交于点E,F,AB∥CD,EM平分∠BEF,FM平分∠EFD(1)求证:∠EMF=90°.(2)如图2,若FN平分∠MFD交EM的延长线于点N,且∠BEN与∠EFN的比为4:3,求∠N的度数.(3)如图3,若点H是射线EA之间一动点,FG平分∠HFE,过点G作GQ⊥FM于点Q,请猜想∠EHF与∠FGQ的关系,并证明你的结论.【分析】(1)根据两直线平行,同旁内角互补,以及角平分线定义进行判断即可;(2)如图2中,由题意可以假设:∠BEN=4x,∠EFN=3x,(3)先根据题意得到∠GFQ=90°﹣∠FGQ,再根据FG平分∠HFE,FM平分∠EFD,即可得出∠HFD=2∠GFQ,最后根据∠EHF+∠HFD=180°,即可得出∠EHF=2∠FGQ.【解答】解:(1)如图1中,∵AB∥CD,∴∠BEF+∠DFE=180°,∵EM平分∠BEF,FM平分∠EFD,∴∠FEM=∠BEF,∠EFM=∠DFE,∴∠FEM+∠EFM=×180°=90°,∴∠EMF=90°.(2)如图2中,由题意可以假设:∠BEN=4x,∠EFN=3x,∵∠EMF=90°,∠FEM=∠MEB=4x,∴∠EFM=90°﹣4x,∴NFM=∠NFD=3x﹣(90°﹣4x)=7x﹣90°,∵∠MFE=∠MFD,∴90°﹣4x=2(7x﹣90°),∴x=15°,∴∠MFN=15°,∴∠N=90°﹣15°=75°(3)如图3,∵GQ⊥FM,∴∠GFQ+∠FGQ=180°﹣90°=90°(三角形的内角和等于180°).∴∠GFQ=90°﹣∠FGQ.∵FG平分∠HFE,FM平分∠EFD,又∵∠GFQ=∠GFE+∠QFE=(∠HFE+∠EFD)=∠HFD,∴∠HFD=2∠GFQ.又∵AB∥CD,∴∠EHF+∠HFD=180°,∴∠EHF=180°﹣∠HFD=180°﹣2∠GFQ=180°﹣2(90°﹣∠FGQ)=2∠FGQ,即无论点H在何处都有∠EHF=2∠FGQ.【点评】本题主要考查了平行线的性质与判定,角平分线的定义,三角形内角和定理等知识,解决问题的关键是掌握:两直线平行,内错角相等;两直线平行,同旁内角互补.7.已知直线AB∥CD,直线EF分别交AB、CD于A、C,CM是∠ACD的平分线,CM交AB于H,过A作AG⊥AC交CM于G.(1)如图1,点G在CH的延长线上时,①若∠GAB=36°,则∠MCD=63°.②猜想:∠GAB与∠MCD之间的数量关系是2∠MCD﹣∠GAB=90°.(2)如图2,点G在CH上时,(1)②猜想的∠GAB与∠MCD之间的数量关系还成立吗?如果成立,请给出证明;如果不成立,请写出∠GAB与∠MCD之间的数量关系,并说明理由.【分析】(1)①依据AG⊥AC,∠GAB=36°,可得∠CAH的度数,依据角平分线的定义以及平行线的性质,即可得到∠MCD的度数;②设∠ACH=∠AHC=∠MCD=α,∠GAB=β,则∠AGC=∠AHC﹣∠GAB=α﹣β,依据Rt△ACG中,∠ACH+∠AGC=90°,即可得出∠GAB与∠MCD之间的数量关系;(2)设∠ACH=∠AHC=∠MCD=α,∠GAB=β,则∠AGC=∠AHC+∠GAB=α+β,依据Rt△ACG中,∠ACH+∠AGC=90°,即可得出∠GAB与∠MCD之间的数量关系.【解答】解:(1)①∵AG⊥AC,∠GAB=36°,∴∠CAH=90°﹣36°=54°,∵CM是∠ACD的平分线,∴∠ACH=∠DCH,∵AB∥CD,∴∠AHC=∠DCH,∴∠ACH=∠AHC=(180°﹣∠CAH)=×126°=63°,故答案为:63°;②∠GAB与∠MCD之间的数量关系是2∠MCD﹣∠GAB=90°;理由:∵CM是∠ACD的平分线,∴∠ACH=∠DCH,∵AB∥CD,∴∠AHC=∠DCH,∴∠ACH=∠AHC,设∠ACH=∠AHC=∠MCD=α,∠GAB=β,则∠AGC=∠AHC﹣∠GAB=α﹣β,∵GA⊥AC,∴Rt△ACG中,∠ACH+∠AGC=90°,即α+α﹣β=90°,∴2α﹣β=90°,即2∠MCD﹣∠GAB=90°;故答案为:2∠MCD﹣∠GAB=90°;(2)上述∠GAB与∠MCD之间的数量关系不成立,应该为2∠MCD+∠GAB=90°,理由:∵CM是∠ACD的平分线,∴∠ACH=∠DCH,∵AB∥CD,∴∠AHC=∠DCH,∴∠ACH=∠AHC,设∠ACH=∠AHC=∠MCD=α,∠GAB=β,则∠AGC=∠AHC+∠GAB=α+β,∵GA⊥AC,∴Rt△ACG中,∠ACH+∠AGC=90°,即α+α+β=90°,∴2α+β=90°,即2∠MCD+∠GAB=90°.【点评】本题主要考查了平行线的性质以及三角形外角性质和三角形内角和定理的运用,利用直角三角形两个锐角互余是解决问题的关键.8.如图1,AB∥CD,P为AB、CD之间一点(1)若AP平分∠CAB,CP平分∠ACD.求证:AP⊥CP;(2)如图(2),若∠BAP=∠BAC,∠DCP=∠ACD,且AE平分∠BAP,CF平分∠DCP,猜想∠E+∠F的结果并且证明你的结论;(3)在(1)的条件下,当∠BAQ=∠BAP,∠DCQ=∠DCP,H为AB上一动点,连HQ并延长至K,使∠QKA=∠QAK,再过点Q作∠CQH的平分线交直线AK于M,问当点H在射线AB上移动时,∠QMK的大小是否变化?若不变,求其值;若变化,求其取值范围.【分析】(1)依据平行线的性质,以及角平分线的定义,即可得到∠P=180°﹣90°=90°,进而得到AP⊥CP;(2)过E作EG∥AB,过F作FH∥CD,依据平行线的性质即可得到∠AEC=∠BAE+∠DCE,∠AFC=∠BAF+∠DCF,再根据∠BAP=∠BAC,∠DCP=∠ACD,AE平分∠BAP,CF平分∠DCP,即可得到∠E+∠F=108°;(3)过Q作QE∥AB,依据平行线的性质可得∠AQC=∠AQE+∠CQE=∠BAQ+∠DCQ,依据∠BAQ=∠BAP,∠DCQ=∠DCP,即可得出∠AQC=30°,再根据∠M=∠MQH﹣∠K进行计算,即可得出∠QMK的大小不变,是定值15°.【解答】解:(1)∵AB∥CD,∴∠BAC+∠ACD=180°,又∵AP平分∠CAB,CP平分∠ACD,∴∠CAP=∠CAB,∠ACP=∠ACD,∴∠CAP+∠ACP=(∠BAC+∠ACD)=×180°=90°,∴△ACP中,∠P=180°﹣90°=90°,即AP⊥CP;(2)∠E+∠F=108°.证明:如图2,过E作EG∥AB,过F作FH∥CD,∵AB∥CD,∴EG∥AB∥FH∥CD,∠BAC+∠DCA=180°,∴∠BAE=∠AEG,∠DCE=∠CEG,∠BAF=∠AFH,∠DCF=∠CFH,∴∠AEC=∠BAE+∠DCE,∠AFC=∠BAF+∠DCF,∵∠BAP=∠BAC,∠DCP=∠ACD,AE平分∠BAP,CF平分∠DCP,∴∠BAE=∠BAC,∠DCF=∠DCA,∴∠AEC=∠BAC+∠ACD,∠AFC=∠BAC+∠DCA,∴∠AEC+∠AFC=∠BAC+∠ACD+∠BAC+∠DCA=∠ACD+∠BAC=(∠BAC+∠DCA)=×180°=108°;(3)如图,过Q作QE∥AB,∵AB∥CD,QE∥CD,∴∠BAQ=∠AQE,∠DCQ=∠CQE,∴∠AQC=∠AQE+∠CQE=∠BAQ+∠DCQ,由(1)可得∠BAP+∠DCP=180°﹣90°=90°,又∵∠BAQ=∠BAP,∠DCQ=∠DCP,∴∠AQC=∠BAQ+∠DCQ=∠BAP+∠DCP=(∠BAP+∠DCP)=30°,∵∠AQH是△AQK的外角,QA=QK,∴∠K=∠AQH,∵QM是∠CQH的平分线,∴∠MQH=∠CQH,∵∠MQH是△MQK的外角,∴∠M=∠MQH﹣∠K=∠CQH﹣∠AQH=(∠CQH﹣∠AQH)=∠AQC=30°=15°,即∠QMK的大小不变,是定值15°.【点评】本题主要考查了平行线的性质、三角形外角性质以及角平分线的定义的综合运用,解题时注意:两直线平行,同旁内角互补;两直线平行,内错角相等.解决问题的关键是过拐点作平行线.9.如图,已知直线AB∥CD.(1)在图1中,点E在直线AB上,点F在直线CD上,点G在AB、CD之间,若∠1=30°,∠3=75°,则∠2=45°;(2)如图2,若FN平分∠CFG,延长GE交FN于点M,EM平分∠AEN,当∠N+∠FGE=54°时,求∠AEN的度数;(3)如图3,直线MF平分∠CFG,直线NE平分∠AEG相交于点H,试猜想∠G与∠H的数量关系,并说明理由.【分析】(1)过G作GH∥AB,依据AB∥CD∥GH,即可得到∠1=∠EGH,∠2=∠FGH,进而得出∠2的度数;(2)过G作GP∥CD,过N作NQ∥AB,依据平行线的性质以及角的和差关系,即可得到∠AEN的度数;(3)过H作HP∥CD,过G作GQ∥AB,依据平行线的性质以及角的和差关系,即可得到∠G与∠H的数量关系.【解答】解:(1)如图1所示,过G作GH∥AB,∵AB∥CD,∴AB∥CD∥GH,∴∠1=∠EGH,∠2=∠FGH,∴∠1+∠2=∠EGF,即30°+∠2=75°,∴∠2=45°,故答案为:45°;(2)∵FN平分∠CFG,EM平分∠AEN,∴可设∠AEM=∠NEM=α,∠CFN=∠GFN=β,如图2所示,过G作GP∥CD,过N作NQ∥AB,∵AB∥CD,∴NQ∥AB∥CD∥PG,∴∠QNF=∠CFN=β,∠QNE=∠AEN=2α,∠PGE=∠AEM=α,∠PGF=∠DFG=180°﹣2β,∴∠FNE=∠QNF﹣∠QNE=β﹣2α,∠FGE=∠PGE+∠PGF=α+180°﹣2β,又∵∠FNE+∠FGE=54°,∴β﹣2α+(α+180°﹣2β)=54°,∴α=24°,∴∠AEN=2α=48°;(3)猜想:∠G=2∠H.理由:∵MF平分∠CFG,NE平分∠AEG,∴可设∠AEN=∠NEG=α,∠CFM=∠GFM=β,如图3所示,过H作HP∥CD,过G作GQ∥AB,∵AB∥CD,∴GQ∥AB∥CD∥PH,∴∠QGE=∠AEG=2α,∠QGF=∠CFG=2β,∠PHM=∠CFM=β,∠PHN=∠AEN =α,。
北师大版七年级数学下册第2章相交线与平行线同步达标测试(Word版含答案)
北师大版七年级数学下册《第2章相交线与平行线》同步达标测试(附答案)一.选择题(共10小题,满分40分)1.三条直线相交,交点最多有()A.1个B.2个C.3个D.4个2.如图,测量运动员跳远成绩选取的是AB的长度,其依据是()A.两点确定一条直线B.两点之间直线最短C.两点之间线段最短D.垂线段最短3.如图所示,直线AB与CD相交于O点,∠1=∠2.若∠AOE=140°,则∠AOC的度数为()A.40°B.60°C.80°D.100°4.下列说法不正确的是()A.过任意一点可作已知直线的一条平行线B.同一平面内两条不相交的直线是平行线C.在同一平面内,过直线外一点只能画一条直线与已知直线垂直D.平行于同一直线的两直线平行5.将一副三角板按如图所示位置摆放,其中∠α与∠β一定互余的是()A.B.C.D.6.下列关于几何画图的语句,正确的是()A.延长射线AB到点C,使BC=2ABB.点P在线段AB上,点Q在直线AB的反向延长线上C.将射线OA绕点O旋转180°,终止位置OB与起始位置OA形成平角D.已知线段a、b,若在同一直线上作线段AB=a,BC=b,则线段AC=a+b7.如图,下列条件:①∠1=∠2,②∠3+∠4=180°,③∠5+∠6=180°,④∠2=∠3,⑤∠7=∠2+∠3,⑥∠7+∠4﹣∠1=180°中能判断直线a∥b的有()A.3个B.4个C.5个D.6个8.已知:如图,直线BO⊥AO于点O,OB平分∠COD,∠BOD=22°.则∠AOC的度数是()A.22°B.46°C.68°D.78°9.如图,将长方形ABCD沿线段EF折叠到EB'C'F的位置,若∠EFC'=100°,则∠DFC'的度数为()A.20°B.30°C.40°D.50°10.下列画图的语句中,正确的为()A.画直线AB=10cmB.画射线OB=10cmC.延长射线BA到C,使BA=BCD.过直线AB外一点画一条直线和直线AB相交二.填空题(共8小题,满分40分)11.如图,∠B的内错角是.12.如图,直线AB与CD相交于点O,且∠1+∠2=60°,∠AOD的度数为.13.如图,将一张长方形的纸条折叠,若∠1=70°,则∠2的度数为.14.将一副三角板如图放置,若AE∥BC,则∠AFD=度.15.如图,直线m∥n,Rt△ABC的顶点A在直线n上,∠C=90°,若∠1=25°,∠2=75°,则∠B=.16.若一个角的补角等于它的余角4倍,则这个角的度数是度.17.小张同学观察如图1所示的北斗七星图,小张同学把北斗七星:摇光、开阳、玉衡、天权、天玑、天璇、天枢按图2分别标为点A,B,C,D,E,F,G,然后将点A,B,C,D,E,F,G顺次首尾连接,发现AG恰好经过点C,且∠B﹣∠DCG=115°,∠B﹣∠D=10°,若AG∥EF,则∠E=m°,这里的m=.18.如果两个角的两边分别平行,其中一个角为45°,则另一个角的度数为.三.解答题(共5小题,满分40分)19.如图,在直线AD上任取一点O,过点O做射线OB,OE平分∠DOB,OC平分∠AOB,∠BOC =26°时,求∠BOE的度数.20.如图,∠BAP+∠APD=180°,∠BAE=∠CPF,求证:AE∥PF.21.如图所示,已知∠1+∠2=180°,∠3=∠B,试判断∠AED与∠C的大小关系,并对结论进行说理.22.如图,AB∥CD,若∠ABE=120°,∠DCE=35°,求∠BEC的度数.23.如图,已知AB∥CD,现将一直角三角形PMN放入图中,其中∠P=90°,PM交AB于点E,PN 交CD于点F(1)当△PMN所放位置如图①所示时,则∠PFD与∠AEM的数量关系为;(2)当△PMN所放位置如图②所示时,求证:∠PFD﹣∠AEM=90°;(3)在(2)的条件下,若MN与CD交于点O,且∠DON=30°,∠PEB=15°,求∠N的度数.参考答案一.选择题(共10小题,满分40分)1.解:如图:,交点最多3个,故选:C.2.解:该运动员跳远成绩的依据是:垂线段最短;故选:D.3.解:∵∠AOE+∠BOE=180°,∠AOE=140°,∴∠2=40°,∵∠1=∠2,∴∠BOD=2∠2=80°,∴∠AOC=∠BOD=80°.故选:C.4.解:A中,若点在直线上,则不可以作出已知直线的平行线,而是与已知直线重合,错误.B、C、D正确.故选:A.5.解:A、∠α与∠β不互余,故本选项错误;B、∠α与∠β不互余,故本选项错误;C、∠α与∠β互余,故本选项正确;D、∠α与∠β不互余,∠α和∠β互补,故本选项错误;故选:C.6.解:A.延长射线AB到点C,使BC=2AB,因为射线不能延长,所以A选项错误,不符合题意;B.因为直线不能反向延长,所以B选项错误,不符合题意;C.将射线OA绕点O旋转180°,终止位置OB与起始位置OA形成平角,C选项正确,符合题意;D.已知线段a、b,若在同一直线上作线段AB=a,BC=b,则线段AC=a+b或=a﹣b.所以D选项错误,不符合题意.故选:C.7.解:①由∠1=∠2,可得a∥b;②由∠3+∠4=180°,可得a∥b;③由∠5+∠6=180°,∠3+∠6=180°,可得∠5=∠3,即可得到a∥b;④由∠2=∠3,不能得到a∥b;⑤由∠7=∠2+∠3,∠7=∠1+∠3可得∠1=∠2,即可得到a∥b;⑥由∠7+∠4﹣∠1=180°,∠7﹣∠1=∠3,可得∠3+∠4=180°,即可得到a∥b;故选:C.8.解:∵OB平分∠COD,∠BOD=22°,∴∠BOC=22°,∵BO⊥AO,∴∠BOA=90°,∴∠AOC=∠BOA﹣∠BOC=90°﹣22°=68°;故选:C.9.解:由翻折知,∠EFC=∠EFC'=100°,∴∠EFC+∠EFC'=200°,∴∠DFC'=∠EFC+∠EFC'﹣180°=200°﹣180°=20°,故选:A.10.解:A、错误.直线没有长度;B、错误.射线没有长度;C、错误.射线有无限延伸性,不需要延长;D、正确.故选:D.二.填空题(共8小题,满分40分)11.解:∠B的内错角是∠BAD;故答案为:∠BAD.12.解:∵∠1+∠2=60°,∠1=∠2,∴∠1=×60°=30°,∴∠AOD=180°﹣30°=150°.故答案为:150°.13.解:由题意可得,∠3=∠1+∠2,∵∠3+∠1=180°,∠1=70°,∴∠3=110°,∴∠1+∠2=110°,∴∠2=110°﹣∠1=110°﹣70°=40°,故答案为:40°.14.解:因为AE∥BC,∠B=60°,所以∠BAE=180°﹣60°=120°;因为两角重叠,则∠DAF=90°+45°﹣120°=15°,∠AFD=90°﹣15°=75°.故∠AFD的度数是75度.故答案为:75.15.解:∵m∥n,∴∠3=∠2=75°,∴∠BAC=∠3﹣∠1=75°﹣25°=50°,∵∠C=90°,∴∠B=90°﹣∠BAC=90°﹣50°=40°.故答案为:40°16.解:设这个角为x度,则:180﹣x=4(90﹣x).解得:x=60.故这个角的度数为60度.17.解:延长ED交AG于点H,∵AG∥EF,∴∠E=∠CHD,∴∠CHD=∠CDE﹣∠DCG,∵∠B﹣∠DCG=115°,∠B﹣∠CDE=10°,∴∠CDE=∠B﹣10°,∠DCG=∠B﹣115°,∴∠E=∠CHD=∠B﹣10°﹣(∠B﹣115°)=105°,故答案为:105.18.解:如图1,∵AB∥EF,∴∠3=∠2,∵BC∥DE,∴∠3=∠1,∴∠1=∠2.如图2,∵AB∥EF,∴∠3+∠2=180°,∵BC∥DE,∴∠3=∠1,∴∠1+∠2=180°∴如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补.其中一个角为45°,若两角相等,则另一个角的度数为45°;若两角互补,则另一个角的度数为180°﹣45°=135°;故答案为:45°或135°.三.解答题(共5小题,满分40分)19.解:∵OC平分∠AOB,∠BOC=26°,∴∠AOB=2∠BOC=52°.∴∠BOD=180°﹣52°=128°.∵OE平分∠DOB,∴∠BOE=∠DOB=×128°=64°.20.证明:∵∠BAP+∠APD=180°,∴AB∥CD,∴∠BAP=∠CP A,∵∠BAE=∠CPF,∴∠P AE=∠APF,∴AE∥PF.21.∠AED=∠C.证明:∵∠1+∠4=180°(邻补角定义)∠1+∠2=180°(已知)∴∠2=∠4(同角的补角相等)∴EF∥AB(内错角相等,两直线平行)∴∠3=∠ADE(两直线平行,内错角相等)又∵∠B=∠3(已知),∴∠ADE=∠B(等量代换),∴DE∥BC(同位角相等,两直线平行)∴∠AED=∠C(两直线平行,同位角相等).22.解:如图,过点E作EF∥AB,∵AB∥CD,∴EF∥CD,∵EF∥AB,∴∠FEB+∠ABE=180°.∵∠ABE=120°,∴∠FEB=180°﹣∠ABE=60°,∵EF∥CD,∠DCE=35°,∴∠FEC=∠DCE=35°,∴∠BEC=∠FEB+∠FEC=95°.23.解:(1)作PG∥AB,如图①所示:则PG∥CD,∴∠PFD=∠1,∠2=∠AEM,∵∠1+∠2=∠P=90°,∴∠PFD+∠AEM=∠1+∠2=90°,故答案为:∠PFD+∠AEM=90°;(2)证明:如图②所示:∵AB∥CD,∴∠PFD+∠BHF=180°,∵∠P=90°,∴∠BHF+∠2=90°,∵∠2=∠AEM,∴∠BHF=∠PHE=90°﹣∠AEM,∴∠PFD+90°﹣∠AEM=180°,∴∠PFD﹣∠AEM=90°;(3)如图③所示:∵∠P=90°,∴∠PHE=90°﹣∠FEB=90°﹣15°=75°,∵AB∥CD,∴∠PFC=∠PHE=75°,∵∠PFC=∠N+∠DON,∴∠N=75°﹣30°=45°.。
人教版七年级初一数学下册 第五章 相交线与平行线单元复习(二)及答案
第五章相交线与平行线单元复习巩固(2)班级姓名座号月日主要内容:掌握命题的概念及平行线的性质和判定的综合运用和利用平移设计图案一、课堂练习:1.已知命题:(1)对顶角的角平分线构成一条直线;(2)两条直线相交构成的两组对顶角的角平分线互相垂直;(3)邻补角的角平分线互相垂直;(4)如果两条直线平行,那么同位角的角平分线也互相平行.这四个命题中,真命题的个数是( )A.1个B.2个C.3个D.4个2.一个台球桌的桌面如图所示,一个球在桌面上的点A滚向桌边PQ,碰着PQ上的点B后便反弹而滚向桌边RS,碰着RS上的点C便反弹而滚向点D.如果PQ∥RS,AB、BC、CD都是直线,且∠ABC的平分线BN垂直于PQ,∠BCD的平分线CM垂直于RS,那么,球经过两次反弹后所滚的路径CD是否平行于原来的路径AB?C3.如图,MN ∥PQ ,∠M =∠P .试说明MQ ∥NP .(请用三种方法加以说明)4.在方格纸上,利用平移画出正方形ABCD 的立体图,其中点D '是D 的对应点.(要求在立体图中,看不到的线条用虚线表示)二、课后作业: 5.选择题(1)如图,点E 在AC 的延长线上,下列条件能判断AB ∥CD 的是( ) A.∠3=∠4 B.∠1=∠2 C.∠D =∠DCE D.∠D +∠ACD =180 (2)如图,∠1+∠2=180,∠3=108,则∠4的度数是( ) A.72 B.80 C.82 D.1086.图中所示为一组护网的示意图,它可看成由两组平行线组成,你能通过检验一些角的大小来判断它们是否平行吗?说出你的理由.ABCDE1342abcd1234ABCDD '7.指出下列命题的题设和结论,并判断它们是真命题还是假命题.如果是假命题,请举出一个反例.(1)两个角的和等于平角时,这两个角互为补角;(2)相等的角是对顶角;(3)两条平行线被第三条直线所截,内错角相等.8.如图,∠1+∠2=180,∠DAE=∠BCF,DA平分∠BDF.(1)AE与FC会平行吗?说明理由.(2)AD与BC的位置关系如何?为什么?(3)BC平分∠DBE吗?为什么?AB CDE F1 2参考答案一、课堂练习:1.已知命题:(1)对顶角的角平分线构成一条直线;(2)两条直线相交构成的两组对顶角的角平分线互相垂直;(3)邻补角的角平分线互相垂直;(4)如果两条直线平行,那么同位角的角平分线也互相平行.这四个命题中,真命题的个数是( D )A.1个B.2个C.3个D.4个 2.一个台球桌的桌面如图所示,一个球在桌面上的点A 滚向桌边PQ ,碰着PQ 上的点B 后便反弹而滚向桌边RS ,碰着RS 上的点C 便反弹而滚向点D .如果PQ ∥RS ,AB 、BC 、CD 都是直线,且∠ABC 的平分线BN 垂直于PQ ,∠BCD 的平分线CM 垂直于RS ,那么,球经过两次反弹后所滚的路径CD 是否平行于原来的路径AB ? 解:球经过两次反弹后所滚的路径CD 平行于原来的路径AB. 理由:∵CM ⊥RS∴∠2+∠5=90° 同理∠3+∠6=90° ∵PQ ∥RS∴∠5=∠6(两直线平行,内错角相等)∴∠2=∠3(等角的余角相等)∵BN 是∠ABC 的平分线∴∠ABC =2∠3 同理∠BCD =2∠2 ∴∠ABC =∠BCD∴CD ∥AB3.如图,MN ∥PQ ,∠M =∠P .试说明MQ ∥NP .(请用三种方法加以说明)C解法一:∵MN ∥PQ∴∠M +∠Q =180 ∵∠M =∠P∴∠P +∠Q =180 ∴MQ ∥NP解法二:延长MQ∵MN ∥PQ ∴∠M =∠1∵∠M =∠P ∴∠P =∠1 ∴MQ ∥NP解法三:连接MP ∵MN ∥PQ ∴∠1=∠2 ∵∠NMQ =∠NPQ ∴∠3=∠4∴MQ ∥NP4.在方格纸上,利用平移画出正方形ABCD 的立体图,其中点D '是D 的对应点.(要求在立体图中,看不到的线条用虚线表示)二、课后作业: 5.选择题(1)如图,点E 在AC 的延长线上,下列条件能判断AB ∥CD 的是( B ) A.∠3=∠4 B.∠1=∠2 C.∠D =∠DCE D.∠D +∠ACD =180(2)如图,∠1+∠2=180,∠3=108,则∠4的度数是( A ) A.72 B.80 C.82 D.1086.图中所示为一组护网的示意图,它可看成由两组平行线组成,你能通过检验一些角的大小来判断它们是否平行吗?说出你的理由.解:可检验它们的同旁内角是否互补,若同旁内角互补, 则两直线平行,否则两直线不平行.7.指出下列命题的题设和结论,并判断它们是真命题还是假命题.如果是假命题,请举出一个反例.(1)两个角的和等于平角时,这两个角互为补角; (2)相等的角是对顶角; (3)两条平行线被第三条直线所截,内错角相等.ABCDE1342abcd1234ABCDA 'C 'D 'B '答:(1)题设是两个角的和等于平角,结论是这两个角互为补角.这是真命题.(2)题设是两个角相等,结论是这两个角是对顶角.这是假命题.反例:长方形的邻角相等,但它们不是对顶角.(3)题设是两条平行线被第三条直线所截,结论是内错角相等.这是真命题.8.如图,∠1+∠2=180,∠DAE=∠BCF,DA平分∠BDF.(1)AE与FC会平行吗?说明理由.(2)AD与BC的位置关系如何?为什么?(3)BC平分∠DBE吗?为什么?解:(1)答:AE∥FC理由:∵∠1+∠2=180,∠2+∠CDB=180(邻补角定义) ∴∠1=∠CDB∴AE∥FC(同位角相等,两直线平行)(2)答: AD∥BC理由:∵AE∥CF∴∠C=∠CBE(两直线平行,内错角相等)又∵∠A=∠C∴∠A=∠CBE∴AD∥BC(同位角相等,两直线平行)(3)答:BC平分∠DBE理由:∵DA平分∠BDF∴∠FDA=∠ADB∵AE∥CF∴∠FDA=∠A∴∠A=∠ADB∵AD∥BC∴∠EBC=∠A,∠CBD=∠ADB∴∠EBC=∠CBD即BC平分∠DBE A BC DEF1 2。
人教版七年级数学下册《5.1相交线》同步练习(含答案)
人教版七年级数学下册第五章相交线与平行线 5.1 相交线同步练习一、单选题(共10题;共30分)1.如图所示,∠1和∠2是对顶角的图形有( )A. 1个B. 2个C. 3个D. 4个2.如图,下列说法不正确的是()A. ∠1和∠2是同旁内角B. ∠1和∠3是对顶角C. ∠3和∠4是同位角D. ∠1和∠4是内错角3.如图所示,∠1和∠2是对顶角的是()A. B. C. D.4.下列说法中正确的个数为()①两条直线相交成四个角,如果有两个角相等,那么这两条直线垂直;②两条直线相交成四个角,如果有一个角是直角,那么这两条直线垂直;③一条直线的垂线可以画无数条;④在同一平面内,经过一个已知点能画一条且只能画一条直线和已知直线垂直.A. 1B. 2C. 3D. 45.如图,∠1=15°,∠AOC=90°,点B,O,D在同一直线上,则∠2的度数为()A. 75°B. 15°C. 105°D. 165°6.如图所示,下列说法错误的是()A. ∠A和∠B是同旁内角B. ∠A和∠3是内错角C. ∠1和∠3是内错角D. ∠C和∠3是同位角7.如图,三条直线相交于点O.若CO⊥AB,∠1=56°,则∠2等于()A. 30°B. 34°C. 45°D. 56°8.在下列语句中,正确的是().A. 在平面上,一条直线只有一条垂线;B. 过直线上一点的直线只有一条;C. 过直线上一点且垂直于这条直线的直线有且只有一条;D. 垂线段就是点到直线的距离9.如图,下列6种说法:①∠1与∠4是内错角;②∠1与∠2是同位角;③∠2与∠4是内错角;④∠4与∠5是同旁内角;⑤∠2与∠4是同位角;⑥∠2与∠5是内错角.其中正确的有( )A. 1个B. 2个C. 3个D. 4个10.如图所示,OA⊥OC,OB⊥OD,下面结论中,其中说法正确的是()①∠AOB=∠COD;②∠AOB+∠COD=90°;③∠BOC+∠AOD=180°;④∠AOC-∠COD=∠BOC.A. ①②③B. ①②④C. ①③④D. ②③④二、填空题(共10题;共30分)11.如图,直线AB,CD相交于点O,EO⊥AB,垂足为点O,若∠AOD=132°,则∠EOC=________12.如图,已知直线AB与CD相交于点O,OA平分∠COE,若∠DOE=70°,则∠BOD=________.13.如图,∠1和∠2是________角,∠2和∠3 是________角。
人教版七年级数学下册全册同步练习随堂练习一课一练精编版
《相交线》同步练习如图,已知AB 是线1.如图1所示,AB 与CD 相交所成的四个角中,∠1的邻补角是______,∠1的对顶角___.(1) (2) (3)2.如图1所示,若∠1=25°,则∠2=_______,∠3=______,∠4=_______.3.如图2所示,直线AB,CD,EF 相交于点O,则∠AOD 的对顶角是_____,∠AOC 的邻补角是_______;若∠AOC=50°,则∠BOD=______,∠COB=_______.4.如图3所示,已知直线AB,CD 相交于O,OA 平分∠EOC,∠EOC=70°,则∠BOD=•______.5.对顶角的性质是______________________.6.如图4所示,直线AB,CD 相交于点O,若∠1-∠2=70,则∠BOD=_____,∠2=____.(4) (5) (6)7.如图5所示,直线AB,CD 相交于点O,OE 平分∠AOC,若∠AOD-∠DOB=50°,•则∠EOB=______________. 8.如图6所示,直线AB,CD 相交于点O,已知∠AOC=70°,OE 把∠BOD 分成两部分,• 且∠BOE:∠EOD=2:3,则∠EOD=________.1.如图所示,∠1和∠2是对顶角的图形有( )34D CBA 12OFE D CB A OE D CBA ODC BA 12OE D CBAOE DCBAA.1个B.2个C.3个D.4个2.如图7所示,三条直线AB,CD,EF 相交于一点O,则∠AOE+∠DOB+∠COF 等于( • )A.150°B.180°C.210°D.120°(7) (8) (9)3.下列说法正确的有( )①对顶角相等;②相等的角是对顶角;③若两个角不相等,则这两个角一定不是对顶角;④若两个角不是对顶角,则这两个角不相等. A.1个 B.2个 C.3个 D.4个4.如图8所示,直线AB 和CD 相交于点O,若∠AOD 与∠BOC 的和为236°,则∠AOC •的度数为( ) A.62° B.118° C.72° D.59°5.如图9所示,直线L 1,L 2,L 3相交于一点,则下列答案中,全对的一组是( ) A.∠1=90°,∠2=30°,∠3=∠4=60°; B.∠1=∠3=90°,∠2=∠4=30 C.∠1=∠3=90°,∠2=∠4=60°; D.∠1=∠3=90°,∠2=60°,∠4=30°1. 如图所示,AB,CD,EF 交于点O,∠1=20°,∠BOC=80°,求∠2的度数.12121221OFE D CB A O DCBA 60︒30︒34l 3l 2l 112OF EDCBA 122. 如图所示,L 1,L 2,L 3交于点O,∠1=∠2,∠3:∠1=8:1,求∠4的度数.3. 如图所示,AB,CD 相交于点O,OE 平分∠AOD,∠AOC=120°,求∠BOD,∠AOE •的 度数.4. 如图所示,直线AB 与CD 相交于点O,∠AOC:∠AOD=2:3,求∠BOD 的度数.5. 如图所示,直线a,b,c 两两相交,∠1=2∠3,∠2=65°,求∠4的度数.34l 3l 2l 112OE DCBA ODCBAcba3412答案和解析一、填一填1、∠2和∠4 ∠32、155° 25° 155°3、∠BOC ∠AOD和∠COB 50° 130°4、 35°5、对顶角相等1,46、125° 55°7、147.5°8、42°二、选择1、A2、B3、B4、A5、D三、解答题1、∠2=60°2、∠4=36°3、∠BOD=120°,∠AOE=30°4、∠BOD=72°5、∠4=32.5°《垂线》同步练习如图,已知AB 是线1.如图所示,直线AB 与直线CD 的位置关系是_______,记作_______,此时,•∠AOD=∠_____=∠______=∠______=90°.2.过一点有且只有________直线与已知直线垂直.3.画一条线段或射线的垂线,就是画它们________的垂线. 叫做点到直线的距离.1.如图1所示,下列说法不正确的是( )A.点B 到AC 的垂线段是线段AB;B.点C 到AB 的垂线段是线段ACC.线段AD 是点D 到BC 的垂线段;D.线段BD 是点B 到AD 的垂线段(1) (2)2.如图1所示,能表示点到直线(线段)的距离的线段有( ) A.2条 B.3条 C.4条 D.5条3.下列说法正确的有( )①在平面内,过直线上一点有且只有一条直线垂直于已知直线; ②在平面内,过直线外一点有且只有一条直线垂直于已知直线; ③在平面内,过一点可以任意画一条直线垂直于已知直线; ④在平面内,有且只有一条直线垂直于已知直线.O DCBADCBADCBAA.1个B.2个C.3个D.4个4.如图2所示,AD⊥BD,BC⊥CD,AB=acm,BC=bcm,则BD的范围是( )A.大于acmB.小于bcmC.大于acm或小于bcmD.大于bcm且小于acm5.到直线L的距离等于2cm的点有( )A.0个B.1个C.无数个D.无法确定6.点P为直线m外一点,点A,B,C为直线m上三点,PA=4cm,PB=5cm,PC=2cm,则点P到直线m的距离为( )A.4cmB.2cm;C.小于2cmD.不大于2cm1如图所示,直线AB,CD,EF交于点O,OG平分∠BOF,且CD⊥EF,∠AOE=70°,•求∠DOG的度数.2如图所示,村庄A要从河流L引水入庄,需修筑一水渠,请你画出修筑水渠的路线图.3.如图6所示,O为直线AB上一点,∠AOC=13∠BOC,OC是∠AOD的平分线.(1)求∠COD的度数;(2)判断OD与AB的位置关系,并说明理由.GOFEDCBAODCBA答案和解析一、填一填1、垂直 AB ⊥CD DOB BOC COA2、一条3、所在直线4、 35°5、垂线段的长度 二、选择6、C7、D8、C9、D 10、C 11、D 三、解答题1、∠DOG=55°2、解:如图3所示.3、解:(1)∵∠AOC+∠BOC=∠AOB=180°,∴13∠BOC+∠BOC=180°, ∴43∠BOC=•1 80°, ∴∠BOC=135°,∠AOC=45°, 又∵OC 是∠AOD 的平分线, ∴∠COD=∠AOC=45°.• (2)∵∠AOD=∠AOC+∠COD=90°,∴OD ⊥AB.l《同位角内错角同旁内角》同步练习如图,已知AB是线1.如图,根据图形填空.(1)∠A和_________是同位角;(2)∠B和_________是内错角;(3)∠A和_________是同旁内角.2.如图所示,与∠C构成同旁内角的有个.3.如图,与图中的∠1成内错角的角是.4.如图:△ABC中,∠A的同旁内角是.5.如图,直线MN分别交直线AB,CD于E,F,其中,∠AEF的对顶角是∠,∠BEF的同位角是∠____.6.如图:图中的∠1,∠2,∠3,∠4,∠5,∠6,∠7 中同位角有对.1.如图,∠1与∠2是()A.对顶角B.同位角C.内错角D.同旁内角2.如图,已知AB∥CD,与∠1是同位角的角是()A.∠2 B.∠3 C.∠4 D.∠5 3.如图,与∠1是同位角的是()A.∠2 B.∠3 C.∠4 D.∠54.如图,下列各语句中,错误的语句是()A.∠ADE与∠B是同位角 B.∠BDE与∠C是同旁内角C.∠BDE与∠AED是内错角D.∠BDE与∠DEC是同旁内角5.如图,在所标识的角中,同位角是()A.∠1和∠2 B.∠1和∠3 C.∠1和∠4 D.∠2和∠36.已知:如图,直线AB、CD被直线EF所截,则∠EMB的同位角是()A.∠AMF B.∠BMF C.∠ENC D.∠END7.如图,若直线MN与△ABC的边AB、AC分别交于E、F,则图中的内错角有()A.2对B.4对C.6对D.8对8.如图,下列说法中错误的是()A.∠3和∠5是同位角B.∠4和∠5是同旁内角C.∠2和∠4是对顶角D.∠1和∠4是内错角1 如图所示,∠1与∠2,∠3与∠4之间各是哪两条直线被哪一条直线所截而形成的什么角?2.如图所示,BF、DE相交于点A,BG交BF于点B,交AC于点C.(1)指出ED、BC被BF所截的同位角,内错角,同旁内角;(2)指出ED、BC被AC所截的内错角,同旁内角;(3)指出FB、BC被AC所截的内错角,同旁内角.答案和解析一、填一填1、(1)∠A和∠ECD,∠BCD是同位角;(2)∠B和∠BCE是内错角;(3)∠A和∠ECA,∠BCA是同旁内角;2、33、∠BDC4、∠B和∠C5、∠BEM ∠DFN6、3二、选择12、B13、D14、C15、B16、C17、D18、C19、D三、解答题1解:左图:∠1与∠2是AB与CD被直线BD所截形成的内错角,∠3与∠4是直线AD与直线BC被直线BD所截形成的内错角;右图:∠1与∠2是AB与CD被直线BD所截形成的同旁内角,∠3与∠4是直线AD与直线BC被直线AB所截形成的同位角.2、解:(1)同位角:∠FAE和∠B;内错角:∠B和∠DAB;同旁内角:∠EAB和∠B;(2)内错角:∠EAC和∠BCA,∠DAC和∠ACG;同旁内角:∠EAC和∠ACG,∠DAC和∠BCA;(3)内错角:∠BAC和∠ACG,∠FAC和∠BCA;同旁内角:∠BAC和∠BCA,∠BAC和∠ABC,∠B和∠ACB,∠FAC和∠ACG.《平行线》同步练习如图,已知AB 是线1.在同一平面内,不重合的两条直线的位置关系有_______种,分别是________. 2.设a ,b ,c 为平面内三条不同直线:(1)若a ∥b ,c ⊥a ,则b 与c 的位置关系是______;(2)若a ∥b ,b ∥c ,则a 与c 的位置关系是______. 3.在同一平面内L 1与L 2没有公共点,则L 1______L 2. 4.在同一平面内L 1和L 2有一个公共点,则L 1与L 2______.1.下列说法不正确的是( ) A .过马路的斑马线是平行线 B .100米跑道的跑道线是平行线 C .若a ∥b ,b ∥d ,则a ⊥dD .过直线外一点有且只有一条直线与已知直线平行 2.下列说法正确的是( )A .同一平面内不相交的两线段必平行B .同一平面内不相交的两射线必平行C .同一平面内不相交的一条线段与一条直线必平行D .同一平面内不相交的两条直线必平行3.如图所示,在这些四边形AB 不平行于CD 的是( )A . ∠1和∠2B .∠1和∠3C .∠1和∠4D .∠2和∠31.在同一平面内三条直线交点有多少个?甲:同一平面三直线相交交点的个数为0个,因为a ∥b ∥c ,如图(1)所示. 乙:同一平面内三条直线交点个数只有1个,因为a ,b ,c 交于同一点O ,如图(2)所示.以上说法谁对谁错?为什么?2.如图所示,在5×5的网格中,AC是网格中最长的线段,请画出两条线段与AC平行并且过网格的格点.3.如图所示,在书写艺术字时,常常运用画“平行线段”这种基本作图方法,此图是在书写字“M”:(1)请从正面,上面,右侧三个不同方向上各找出一组平行线段,并用字母表示出来;(2)EF与A′B′有何位置关系?CC′与DH有何位置关系?答案和解析一、填一填1、2,相交,平行2、(1)b⊥C (2)a∥c3、∥4、相交二、选择20、C21、D22、D三、解答题1甲,乙说法都不对,各自少了三种情况.a∥b,c与a,b相交如图(1),a,b,•c两两相交如图(2),所以三条直线互不重合,交点有0个或1个或2个或3个,共四种情况.2、如图所示:EF∥AC,PQ∥AC,MN∥AC,且它们都过格点.3、(1)正面:AB∥EF,AE∥MF等等;上面:A′B′∥AB,C′D′∥CD等等;右侧:•DD′∥HR,DH∥D′R(2)EF∥A′B′,CC′⊥DH《平行线的判定》同步练习如图,已知AB是线1.已知三条不同的直线a,b,c在同一平面内,下列四个推理:①∵∥,∥,∴⊥;②∵∥,∥,∴∥;③∵⊥,⊥,∴⊥;④∵⊥,⊥,∴∥.其中正确的是.(填写所有正确的序号)2.在同一平面内,直线a,b相交于P,若a∥c,则b与c的位置关系是______.3.在同一平面内,若直线a,b,c满足a⊥b,a⊥c,则b与c的位置关系是______.4.如图所示,BE是AB的延长线,量得∠CBE=∠A=∠C.(1)由∠CBE=∠A可以判断______∥______,根据是_________.(2)由∠CBE=∠C可以判断______∥______,根据是_________.1.下列四幅图中都有∠1=∠2,其中能说明AB∥CD的是( ).A B C D2.如图,下列推理错误的是( ).A.∵∠1=∠2,∴∥B.∵∠1=∠4,∴∥C.∵∠2+∠3=180?,∴∥D.∵∠1=∠5,∴∥ED CBA3.如图,下列条件不能判断AD ∥EF 的是( ). A.∠D=∠EFC B.∠D+∠EFD=180? C.EF ∥BC ,AD ∥BC D.∠A+∠B=180?A . ∠1和∠2B .∠1和∠3C .∠1和∠4D .∠2和∠31.如图, ,. 说明:AB ∥CD.2.如图,AD 是一条直线, . .说明:BE ∥CF.3. ①如图,哪两个角相等能判定直线AB ∥CD? ②如果∠1=∠2,能判定哪两条直线平行?③如果∠3=∠4,能判定哪两条直线平行?A BCD E FG H123 4 5答案和解析一、填一填1、②④2、相交3、互相平行4、(1)AD BC 同位角相等,两直线平行(2)CD AB 内错角相等,两直线平行二、选择23、C24、B25、D三、解答题1、∵∠1=70°∴∠3=∠1=70°∴∠1=∠2=70°∴ AB ∥CD2、∵∠2=115°∴∠BCF=65°∴∠1=∠BCF∴BE ∥CF3、①∠2=∠3 或∠4=∠5或∠1=∠2②AB ∥CD③EF∥ GD《平行线的性质》同步练习如图,已知AB是线1.如图1所示,直线a∥b,且a,b被c所截,若∠1=40°,则∠2=______.图1 图2 图32.如图2所示,直线a∥b,且a,b被c所截,若∠1=60°,则∠2=_______,•∠3=________.3.如图3所示,若AB∥CD,∠DEF=120°,则∠B=_______.4.如图4所示,砌墙师傅用重锤线检验砌的墙体是否与地面垂直,•墙体坚直线用a 表示,重锤线用b表示,地平线用c表示,当a∥b时,因为b⊥c,则a______c,•这里运用了平行线的性质是_______.图4 图55.如图5所示,一块木板,AB∥CD,木工师傅量得∠B=80°,∠C=65°,则∠A=______,∠D=______.1.如图6所示,DE∥BC,DF∥AC,下列结论正确的个数为()①∠C=∠AED ②∠EDF=∠BFD ③∠A=∠BDF ④∠AED=∠DFBA.1个 B.2个 C.3个 D.4个图6 图72.如图7,在甲,乙两地之间修一条笔直公路,从甲地测得公路的走向是北偏东50°,甲,乙两地同时开工,若干天后,公路准确接通,则乙地所修公路走向是()A.北偏45° B.南北方向 C.南偏西50° D.以上都不对3.家住湖边的小海,帮爸爸用铁丝用网箱如图8所示,若AB∥CD,AC∥BD,•若∠1=α,则:①∠3=α;②∠2=180°-α;③∠4=α,其中正确的个数有()A.0个 B.1个 C.2个 D.3个4.如图9所示,AM平分∠BAC,AM∥EN,则与∠E•相等的角下列说法不正确的是() A.∠BAM B.∠ABC C.∠NDC D.∠MAC图8 图91.如图,已知∠AED=60°,∠2=30°,EF 平分∠AED ,可以判断EF ∥BD 吗?为什么?2.如图所示,若∠1+∠2=180°,∠3=110°,求∠4.3.(探究题)如图所示,若AB ∥CD ,且∠1=∠2,试判断AM 与CN 位置关系,•并说明理由.答案和解析一、填一填1、 40°2、60°,120°3、60°4、⊥,两直线平行,同位角相等(同旁内角互补).5、115°,100°二、选择26、D27、C28、C29、B三、解答题1.可以,∵∠AED=60°,EF平分∠AED∴∠FED=30°又∵∠EDB=∠2=30°∴EF∥BD解题规律:证两直线平行,找内错角相等.2.设∠2对顶角为∠5,则∠2=∠5∵∠1+∠2=180°∴∠1+∠5=180°∴AB∥CD,∴∠3=∠4又∵∠3=110°∴∠4=110°解题规律:先判断AB∥CD,再运用平行线的性质定理. 3.因为AB∥CD所以∠EAB=∠ECD又因为∠1=∠2而∠EAM=∠EAB-∠1∠ACN=∠ACD-∠2即∠EAM=∠ACN所以AM∥CN(同位角相等,两直线平行).解题技巧:判断AM∥CN,①可证∠EAM=∠ECN,②证∠MAC+∠ACN=180°,都能达到目的.《命题 定理 证明》同步练习如图,已知AB 是线1、每个命题都由__ __和 两部分组成。
人教版七年级下册数学第五章《相交线与平行线》尖子生练习题2(含答案)
人教版七年级下册数学第五章《相交线与平行线》尖子生练习题21.已知直线BC∥ED.(1)如图1,若点A在直线DE上,且∠B=44°,∠EAC=57°,求∠BAC的度数;(2)如图2,若点A是直线DE的上方一点,点G在BC的延长线上,求证:∠ACG =∠BAC+∠ABC;(3)如图3,FH平分∠AFE,CH平分∠ACG,且∠FHC比∠A的2倍少60°,直接写出∠A的度数.2.如图,已知AM∥BN,∠A=80°,点P是射线AM上一动点(与点A不重合),BC,BD分别平分∠ABP和∠PBN,分别交射线AM于点C,D.(1)∠ABN=;∠CBD=;(2)当点P运动到某处时,∠ACB=∠ABD,求此时∠ABC的度数.(3)当点P运动时,∠APB:∠ADB的比值是否随之变化?若不变,请求出这个比值;若变化,请找出变化规律.3.如图,已知AB∥CD,现将一直角三角形PMN放入图中,其中∠P=90°,PM交AB于点E,PN交CD于点F.(1)当△PMN所放位置如图①所示时,则∠PFD与∠AEM的数量关系为.请说明理由.(2)当△PMN所放位置如图②所示时,∠PFD与∠AEM的数量关系为.(3)在(2)的条件下,若MN与CD交于点O,且∠DON=30°,∠PEB=15°,求∠N的度数.4.直线AB、CD相交于点O,∠EOF在∠AOD的内部.(1)如图①,当∠AOD=150°,∠EOF=30°时,求∠AOF与∠EOD的度数和;(2)在(1)的条件下,请直接写出图中与∠BOC互补的角;(3)如图②,若射线OM平分∠AOD(OM在∠EOD内部),且满足∠EOD=2∠FOM,请判断∠AOF与∠EOF的大小关系并说明理由.5.如图1,在△ABC的AB边的异侧作△ABD,并使∠C=∠D,点E在射线CA上.(1)如图,若AC∥BD,求证:AD∥BC;(2)若BD⊥BC,试解决下面两个问题:①如图2,∠DAE=20°,求∠C的度数;②如图3,若∠BAC=∠BAD,过点B作BF∥AD交射线CA于点F,当∠EFB=7∠DBF时,求∠BAD的度数.6.如图,EF∥AD,∠1=∠2,∠BAC=70°,求∠AGD的大小.解:∵EF∥AD,∴∠2=(两直线平行,同位角相等),又∵∠1=∠2(已知),∴∠1=∠3(等量代换),∴AB∥()∴∠BAC+ =180°()∵∠BAC=70°,∴∠AGD=110°.7.在解答一道课本习题时,两位同学呈现了不同的做法.题目:如图,AB∥CD,要使∠ABE=∠DCF,还需要添加什么条件?证明你的结论.(1)小明添加的条件是“CF∥BE”.根据这一条件完成以下分析过程.(2)小刚添加的条件是“CF平分∠DCB,BE平分∠ABC”,根据这一条件请你完成证明过程.8.把下面的说理过程补充完整.已知:如图,∠1+∠2=180°,∠3=∠B.试判断∠AED与∠4的关系,并说明理由.结论:∠AED=∠4.理由:∵∠1+∠BDF=180°(),∠1+∠2=180°(已知)∴∠2=∠BDF.()∴EF∥AB.()∴∠3=∠ADE.()∵∠3=∠B,(已知)∴∠B=.∴DE∥BC.()∴∠AED=∠ACB.()又∵∠ACB=∠4,()∴∠AED=∠4.9.如图,AB∥CD,点E、F分别在直线AB、CD上,点O在直线AB、CD之间,∠EOF =100°.(1)求∠BEO+∠DFO的值;(2)如图2,直线MN交∠BEO、∠CFO的角平分线分别于点M、N,求∠EMN﹣∠FNM的值;(3)如图3,EG在∠AEO内,∠AEG=n∠OEG,FK在∠DFO内,∠DFK=n∠OFK.直线MN交FK、EG分别于点M、N,若∠FMN﹣∠ENM=50°,则n的值是.10.如图,已知AF分别与BD、CE交于点G、H,∠1=55°,∠2=125°.若∠A=∠F,求证:∠C=∠D.下面是某同学根据已知条件推断∠C=∠D的过程,请在括号中补充理由.证明:因为∠2+∠AHC=180°(互为邻补角),所以∠AHC=180°﹣∠2=180°﹣125°=55°.所以∠AHC=∠1=55°.所以BD∥CE().所以∠ABD=∠C().因为∠A=∠F(已知),所以AC∥DF().所以().所以∠C=∠D(等量代换).参考答案1.解:(1)∵BC∥ED,∠B=44°,∴∠DAB=∠B=44°,∵∠BAC=180°﹣∠DAB﹣∠EAC∴∠BAC=180°﹣44°﹣57°=79°.(2)过点A作MN∥BG,∴∠ACG=∠MAC,∠ABC=∠MAB而∠MAC=∠MAB+∠BAC∴∠ACG=∠MAB+∠BAC=∠ABC+∠BAC.(3)如图,设AC与FH交于点P∵FH平分∠AFE,CH平分∠ACG∴∠AFH=∠EFH=∠AFE,∠ACH=∠HCG=∠ACG ∵BC∥ED∴∠AFE=∠B∴∠AFH=∠B∵∠A+∠B=∠ACG∴∠ACH=∠ACG=∠A+∠B在△APF和△CPH中∵∠APF=∠CPH∴∠A+∠B=∠A+∠B+∠FHC∴∠FHC=∠A∵∠FCH=2∠A﹣60°∴∠A=2∠A﹣60°∴∠A=40°.2.解:(1)∵AM∥BN,∠A=80°,∴∠ABN=100°,∵BC,BD分别平分∠ABP和∠PBN,∴∠CBD=∠CBP+∠DBP=∠ABP+∠NBP=∠ABN=50°.故答案为:100°,50°;(2)∵AD∥BN,∴∠ACB=∠CBN,又∵∠ACB=∠ABD,∴∠CBN=∠ABD,∴∠ABC=∠DBN,由(1)可得,∠CBD=50°,∠ABN=100°,∴∠ABC=×(100°﹣50°)=25°;(3)不变化,∠APB=2∠ADB,证明:∵AM∥BN,∴∠APB=∠PBN,∠ADB=∠DBN,又∵BD平分∠PBN,∴∠PBN=2∠DBN,∴∠APB=2∠ADB.3.解:(1)作PG∥AB,如图①所示:则PG∥CD,∴∠PFD=∠1,∠2=∠AEM,∵∠1+∠2=∠P=90°,∴∠PFD+∠AEM=∠1+∠2=90°,故答案为:∠PFD+∠AEM=90°;(2)证明:如图②所示:∵AB∥CD,∴∠PFD+∠BHF=180°,∵∠P=90°,∴∠BHF+∠2=90°,∵∠2=∠AEM,∴∠BHF=∠PHE=90°﹣∠AEM,∴∠PFD+90°﹣∠AEM=180°,∴∠PFD﹣∠AEM=90°,故答案为∠PFD﹣∠AEM=90°;(3)如图③所示:∵∠P=90°,∴∠PHE=90°﹣∠FEB=90°﹣15°=75°,∵AB∥CD,∴∠PFC=∠PHE=75°,∵∠PFC=∠N+∠DON,∴∠N=75°﹣30°=45°.4.解:(1)∵∠DOE+∠EOF+∠AOF=∠AOD=150°且∠EOF=30°,∴∠DOE+∠AOF=∠150°﹣30°=120°;(2)根据补角的定义可知图中与∠BOC互补的角有∠BOD、∠AOC、∠EOF;(3)∠AOF=∠EOF,理由如下:∵OM平分∠AOD,∴∠DOM=∠AOM,∴∠AOF=∠AOM﹣∠FOM=∠DOM﹣∠FOM=∠EOD﹣∠MOE﹣∠FOM=2∠FOM﹣∠MOE﹣∠FOM=∠FOM﹣∠MOE=∠EOF,∴∠AOF=∠EOF.5.解:(1)如图1所示:∵AC∥BD,∴∠D=∠DAE,又∵∠C=∠D,∴∠DAE=∠C,∴AD∥BC;(2)①如图2所示:∵BD⊥BC,∴∠HBC=90°,∴∠C+∠BHC=90°,又∵∠BHC=∠DAE+∠D,∠C=∠D,∠DAE=20°,∴20°+2∠C=90°,∴∠C=35°;②如图3所示:∵BF∥AD,∴∠D=∠DBF,又∵∠C=∠D,∴∠C=∠D=∠DBF,又∵BD⊥BC,∴∠DBC=90°,又∵∠D+∠DBA+∠BAD=180°,∠C+∠CBA+∠BAC=180°.∠BAC=∠BAD,∴∠DBA=∠CBA=45°,又∵∠EFB=7∠DBF,∠EFB=∠FBC+∠C,∴7∠DBF=2∠DBF+∠DBC,解得:∠DBF=18°,∴∠BAD=180°﹣45°﹣18°=117°.6.解:∵EF∥AD,∴∠2=∠3(两直线平行,同位角相等),又∵∠1=∠2(已知),∴∠1=∠3(等量代换),∴AB∥DG(内错角相等,两直线平行)∴∠BAC+∠AGD=180°(两直线平行,同旁内角互补)∵∠BAC=70°,∴∠AGD=110°.故答案为:∠3;DG;内错角相等,两直线平行;∠AGD;两直线平行,同旁内角互补.7.解:(1)由CF∥BE,得到∠FCB=∠EBC,依据的是平行线的性质:两直线平行,内错角相等.故答案为:两直线平行,内错角相等;∠FCB=∠EBC,(2)∵AB∥CD,∴∠DCB=∠ABC.∵CF平分∠DCB,BE平分∠ABC,∴∠DCB=2∠DCF,∠ABC=2∠ABE.∴∠ABE=∠DCF.8.解:∵∠1+∠BDF=180°(邻补角的定义),∠1+∠2=180°(已知)∴∠2=∠BDF.(同角的补角相等)∴EF∥AB.(内错角相等,两直线平行)∴∠3=∠ADE.(两直线平行,内错角相等)∵∠3=∠B,(已知)∴∠B=∠ADE.∴DE∥BC.(同位角相等,两直线平行)∴∠AED=∠ACB.(两直线平行,同位角相等)又∵∠ACB=∠4,(对顶角相等)∴∠AED=∠4.故答案为:邻补角的定义;同角的补角相等;内错角相等,两直线平行;两直线平行,内错角相等;∠ADE;同位角相等,两直线平行;两直线平行,同位角相等;对顶角相等.9.(1)证明:过点O作OG∥AB,∵AB∥CD,∴AB∥OG∥CD,∴∠BEO+∠EOG=180°,∠DFO+∠FOG=180°,∴∠BEO+∠EOG+∠DFO+∠FOG=360°,即∠BEO+∠EOF+∠DFO=360°,∵∠EOF=100°,∴∠BEO+∠DFO=260°;(2)解:过点M作MK∥AB,过点N作NH∥CD,∵EM平分∠BEO,FN平分∠CFO,设∠BEM=∠OEM=x,∠CFN=∠OFN=y,∵∠BEO+∠DFO=260°∴∠BEO+∠DFO=2x+180°﹣2y=260°,∴x﹣y=40°,∵MK∥AB,NH∥CD,AB∥CD,∴AB∥MK∥NH∥CD,∴∠EMK=∠BEM=x,∠HNF=∠CFN=y,∠KMN=∠HNM,∴∠EMN+∠FNM=∠EMK+∠KMN﹣(∠HNM+∠HNF)=x+∠KMN﹣∠HNM﹣y=x﹣y=40°,故∠EMN﹣∠FNM的值为40°;(3)如图,设直线FK与EG交于点H,FK与AB交于点K,∵AB∥CD,∴∠AKF=∠KFD,∵∠AKF=∠∠EHK+∠HEK=∠EHK+∠AEG,∴∠KFD=∠EHK+∠AEG,∵∠EHK=∠NMF﹣∠ENM=50°,∴∠KFD=50°+∠AEG,即∠KFD﹣∠AEG=50°,∵∠AEG=n∠OEG,FK在∠DFO内,∠DFK=n∠OFK.∴∠CFO=180°﹣∠DFK﹣∠OFK=180°﹣∠KFD﹣∠KFD,∠AEO=∠AEG+∠OEG=∠AEG+∠AEG,∵∠BEO+∠DFO=260°,∴∠AEO+∠CFO=100°,∴∠AEG+∠AEG+180°﹣∠KFD﹣∠KFD=100°,即,∴,解得n=.故答案为.10.解:因为∠2+∠AHC=180°,所以∠AHC=180°﹣∠2=180°﹣125°=55°,所以∠AHC=∠1=55°,所以BD∥CE(同位角相等,两直线平行),所以∠ABD=∠C(两直线平行,同位角相等),因为∠A=∠F(已知),所以AC∥DF(内错角相等,两直线平行),所以∠ABD=∠D(两直线平行,内错角相等),所以∠C=∠D(等量代换);故答案为:同位角相等,两直线平行;两直线平行,同位角相等;内错角相等,两直线平行;∠ABD=∠D;两直线平行,内错角相等.。
最新人教版七年级数学下册相交线与平行线试题(带答案)(二)解析
一、选择题1.为了亮化某景点,石家庄市在两条笔直且互相平行的景观道MN 、QP 上分别放置A 、B 两盏激光灯,如图所示.A 灯发出的光束自AM 逆时针旋转至AN 便立即回转,B 灯发出的光束自BP 逆时针旋转至BQ 便立即回转,两灯不间断照射,A 灯每秒转动30°,B 灯每秒转动10°,B 灯先转动2秒,A 灯才开始转动,当B 灯光束第一次到达BQ 之前,两灯的光束互相平行时A 灯旋转的时间是( )A .1或6秒B .8.5秒C .1或8.5秒D .2或6秒 2.如图,//AB CD ,PF CD ⊥于F ,40AEP ∠=︒,则EPF ∠的度数是( )A .120︒B .130︒C .140︒D .150︒3.给出下列说法: (1)两条直线被第三条直线所截,同位角相等;(2)不相等的两个角不是同位角;(3)平面内的一条直线和两条平行线中的一条相交,则它与另一条也相交;(4)从直线外一点到这条直线的垂线段,叫做该点到直线的距离;(5)过一点作已知直线的平行线,有且只有一条.其中真命题的有( )A .0个B .1个C .2个D .3个4.如下图,在“A ”字型图中,AB 、AC 被DE 所截,则A ∠与4∠是( )A .同位角B .内错角C .同旁内角D .邻补角 5.如图,直线12//l l ,23216∠+∠=°,则1∠的度数为( )A .216︒B .36︒C .44︒D .18︒6.如图,两个直角三角形重叠在一起,将ABC 沿AB 方向平移2cm 得到DEF ,CH =2cm ,EF =4cm ,下列结论:①BH //EF ;②AD =BE ;③DH =CH ;④∠C =∠BHD ;⑤阴影部分的面积为6cm 2.其中正确的是( )A .①②③④⑤B .②③④⑤C .①②③⑤D .①②④⑤ 7.如果,直线//AB CD ,65A ∠=︒,则EFC ∠等于( )A .105︒B .115︒C .125︒D .135︒8.如图,//AB CD ,AC 平分BAD ∠,B CDA ∠=∠,点E 在AD 的延长线上,连接EC ,2B CED ∠=∠,下列结论:①//BC AD ;②CA 平分BCD ∠;③AC EC ⊥;④ECD CED ∠=∠.其中正确的个数为( )A .1个B .2个C .3个D .4个 9.如图,////AF BE CD ,若140∠=︒,250∠=︒,3120∠=︒,则下列说法正确的是( )A .100F ∠=︒B .140C ∠=︒ C .130A ∠=︒D .60D ∠=︒ 10.如图,已知AB ∥CD ,BE 和DF 分别平分∠ABF 和∠CDE ,2∠E-∠F=48°,则∠CDE 的度数为( ).A .16°B .32°C .48°D .64°二、填空题11.如图,//AC BD ,BC 平分ABD ∠,设ACB ∠为α,点E 是射线BC 上的一个动点,若:5:2BAE CAE ∠∠=,则CAE ∠的度数为__________.(用含α的代数式表示).12.一副三角尺按如图所示叠放在一起,其中点,B D 重合,若固定三角形AOB ,将三角形ACD 绕点A 顺时针旋转一周,共有 _________次 出现三角形ACD 的一边与三角形AOB 的某一边平行.13.如图,已知AB CD ∥,CE 、BE 的交点为E ,现作如下操作:第一次操作,分别作ABE ∠和DCE ∠的平分线,交点为1E ,第二次操作,分别作1ABE ∠和1DCE ∠的平分线,交点为2E ,第三次操作,分别作2ABE ∠和2DCE ∠的平分线,交点为3E ,…第n 次操作,分别作1n ABE -∠和1n DCE -∠的平分线,交点为n E .若1n E ∠=度,那BEC ∠等于__________度.14.小明将一副三角板中的两块直角三角尺的直角顶点C按如图所示的方式叠放在一起,当∠ACE<180°且点E在直线AC的上方时,他发现若∠ACE=_____,则三角板BCE有一条边与斜边AD平行.15.如图,有两个正方形夹在AB与CD中,且AB//CD,若∠FEC=10°,两个正方形临边夹角为150°,则∠1的度数为________度(正方形的每个内角为90°)16.如图,已知直线l1∥l2,∠A=125°,∠B=85°,且∠1比∠2大4°,那么∠1=______.17.一副三角板按如图所示(共定点A)叠放在一起,若固定三角板ABC,改变三角板ADE的位置(其中A点位置始终不变),当∠BAD=___°时,DE∥AB.18.把一张对边互相平行的纸条,折成如图所示,EF 是折痕,若32EFB ∠=︒,则下列结论:(1)'32C EF ∠=︒;(2)148AEC ∠=︒;(3)64BGE ∠=︒;(4)116BFD ∠=︒.正确的有________个.19.如图,将一条对边互相平行的纸带进行两次折叠,折痕分别为AB ,CD .若CD ∥BE ,∠1=28°,则∠2的度数是______.20.如图//AB CD ,分别作AEF ∠和CFE ∠的角平分线交于点1P ,称为第一次操作,则1P ∠=_______;接着作1AEP ∠和1CFP ∠的角平分线交于2P ,称为第二次操作,继续作2AEP ∠和2CFP ∠的角平分线交于2P ,称方第三次操作,如此一直操作下去,则n P ∠=______.三、解答题21.如图1,MN ∥PQ ,点C 、B 分别在直线MN 、PQ 上,点A 在直线MN 、PQ 之间. (1)求证:∠CAB =∠MCA +∠PBA ;(2)如图2,CD ∥AB ,点E 在PQ 上,∠ECN =∠CAB ,求证:∠MCA =∠DCE ;(3)如图3,BF 平分∠ABP ,CG 平分∠ACN ,AF ∥CG .若∠CAB =60°,求∠AFB 的度数.22.已知//AM CN ,点B 为平面内一点,AB BC ⊥于B .(1)如图1,求证:90A C ∠+∠=︒;(2)如图2,过点B 作BD MA ⊥的延长线于点D ,求证:ABD C ∠=∠;(3)如图3,在(2)问的条件下,点E 、F 在DM 上,连接BE 、BF 、CF ,且BF 平分DBC ∠,BE 平分ABD ∠,若AFC BCF ∠=∠,3BFC DBE ∠=∠,求EBC ∠的度数. 23.如图,已知直线//AB 射线CD ,100CEB ∠=︒.P 是射线EB 上一动点,过点P 作PQ //EC 交射线CD 于点Q ,连接CP .作PCF PCQ ∠=∠,交直线AB 于点F ,CG 平分ECF ∠.(1)若点P ,F ,G 都在点E 的右侧,求PCG ∠的度数;(2)若点P ,F ,G 都在点E 的右侧,30EGC ECG ∠-∠=︒,求CPQ ∠的度数;(3)在点P 的运动过程中,是否存在这样的情形,使:4:3EGC EFC ∠∠=?若存在,求出CPQ ∠的度数;若不存在,请说明理由.24.如图1,已知直线CD ∥EF ,点A ,B 分别在直线CD 与EF 上.P 为两平行线间一点.(1)若∠DAP =40°,∠FBP =70°,则∠APB =(2)猜想∠DAP ,∠FBP ,∠APB 之间有什么关系?并说明理由;(3)利用(2)的结论解答:①如图2,AP 1,BP 1分别平分∠DAP ,∠FBP ,请你写出∠P 与∠P 1的数量关系,并说明理由;②如图3,AP 2,BP 2分别平分∠CAP ,∠EBP ,若∠APB =β,求∠AP 2B .(用含β的代数式表示)25.如图1,点E 在直线AB 、DC 之间,且180DEB ABE CDE ∠+∠-∠=︒.(1)求证://AB DC ;(2)若点F 是直线BA 上的一点,且BEF BFE ∠=∠,EG 平分DEB ∠交直线AB 于点G ,若20D ∠=︒,求FEG ∠的度数;(3)如图3,点N 是直线AB 、DC 外一点,且满足14CDM CDE ∠=∠,14ABN ABE ∠=∠,ND 与BE 交于点M .已知()012CDM αα∠=︒<<︒,且//BN DE ,则NMB ∠的度数为______(请直接写出答案,用含α的式子表示).【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】设A 灯旋转的时间为t 秒,求出t 的取值范围为016t <≤,再分①06t <≤,②612t <≤和③1216t <≤三种情况,先分别求出MAM '∠和PBP '∠的度数,再根据平行线的性质可得MAM PBP ''∠=∠,由此建立方程,解方程即可得.【详解】解:设A 灯旋转的时间为t 秒,A 灯光束第一次到达AN 所需时间为180630︒=︒秒,B 灯光束第一次到达BQ 所需时间为1801810︒=︒秒, B 灯先转动2秒,A 灯才开始转动,0182t ∴<≤-,即016t <≤,由题意,分以下三种情况:①如图,当06t <≤时,//AM BP '',30,10(2)MAM t PBP t ''∴∠=︒∠=︒+,//,//MN PQ AM BP '',1,1MAM PBP ''∴∠=∠∠=∠,MAM PBP ''∴∠=∠,即3010(2)t t ︒=︒+,解得1t =,符合题设;②如图,当612t <≤时,//AM BP '',18030(6)36030,10(2)MAM t t PBP t ''∴∠=︒-︒-=︒-︒∠=︒+,//,//MN PQ AM BP '',2180,2180MAM PBP ''∴∠+∠=︒∠+∠=︒,MAM PBP ''∴∠=∠,即3603010(2)t t ︒-︒=︒+,解得8.5t =符合题设;③如图,当1216t <≤时,//AM BP '',30(12)30360,10(2)MAM t t PBP t ''∴∠=︒-=︒-︒∠=︒+,同理可得:MAM PBP ''∠=∠,即3036010(2)t t ︒-︒=︒+,解得1916t =>,不符题设,舍去;综上,A 灯旋转的时间为1秒或8.5秒,故选:C .【点睛】本题考查了平行线的性质、一元一次方程的几何应用等知识点,正确求出时间t 的取值范围,并据此分三种情况讨论是解题关键.2.B解析:B【分析】过点P 作MN ∥AB ,结合垂直的定义和平行线的性质求∠EPF 的度数.【详解】解:如图,过点P作MN∥AB,∵∠AEP=40°,∴∠EPN=∠AEP=40°∵AB∥CD,PF⊥CD于F,∴PF⊥MN,∴∠NPF=90∴∠EPF=∠EPN+∠NPF=40°+90°=130°故答案为B【点睛】本题考查了平行线的判定定理和性质,作出辅助线构造平行线是解答本题的关键.3.B解析:B【详解】试题分析:根据两平行线被第三条直线所截,同位角相等,故(1)不正确;同位角不一定相等,只有在两直线平行时,同位角相等,故(2)不正确;平面内的一条直线和两条平行线中的一条相交,则它与另一条也相交,故(3)正确;从直线外一点到这条直线的垂线段的长度,叫做该点到直线的距离,故(4)不正确;过直线外一点作已知直线的平行线,有且只有一条,故(5)不正确.故选B.4.A解析:A【分析】根据同位角,内错角,同旁内角和邻补角的定义判断即可.【详解】解:在“A”字型图中,两条直线AB、AC被DE所截形成的角中,∠A与∠4都在直线AB、DE的同侧,并且在第三条直线(截线)AC的同旁,则∠A与∠4是同位角.故选:A.【点睛】本题主要考查了同位角,内错角,同旁内角和邻补角的定义,正确理解定义是解题的关键.5.B解析:B【分析】记∠1顶点为A ,∠2顶点为B ,∠3顶点为C ,过点B 作BD ∥l 1,由平行线的性质可得∠3+∠DBC =180°,∠ABD +(180°-∠1)=180°,由此得到∠3+∠2+(180°-∠1)=360°,再结合已知条件即可求出结果.【详解】如图,过点B 作BD ∥l 1,∵12//l l ,∴BD ∥l 1∥l 2,∴∠3+∠DBC =180°,∠ABD +(180°-∠1)=180°,∴∠3+∠DBC +∠ABD +(180°-∠1)=360°,即∠3+∠2+(180°-∠1)=360°,又∵∠2+∠3=216°,∴216°+(180°-∠1)=360°,∴∠1=36°.故选:B .【点睛】本题考查了平行线的性质,正确作出辅助线,熟练掌握平行线性质是解题的关键. 6.D解析:D【分析】根据平移的性质直接可判断①②;先根据线段的和差可得2cm BH =,再根据直角三角形的斜边大于直角边即可判断③;根据平行线的性质可判断④;根据阴影部分的面积等于直角梯形BEFH 的面积即可判断⑤.【详解】解:由题意得:90ABC ∠=︒,由平移的性质得:,4cm,2cm AB DE BC EF AD BE =====,//,//,90BH EF AC DF E ABC ∠=∠=︒,则结论①②正确;2cm CH =,2cm BH BC CH CH ∴=-==,在Rt BDH 中,斜边DH 大于直角边BH ,DH CH ∴>,即结论③错误;//AC DF ,C BHD ∴∠=∠,即结论④正确;由平移的性质得:ABC 的面积等于DEF 的面积,则阴影部分的面积为ABC BDH DEF BDH S S S S -=-,BEFH S =直角梯形,2BH EF BE +=⋅, 2422+=⨯, 26(cm )=,即结论⑤正确;综上,结论正确的是①②④⑤,故选:D .【点睛】本题考查了平移的性质、平行线的性质等知识点,熟练掌握平移的性质是解题关键. 7.B解析:B【分析】先求∠DFE 的度数,再利用平角的定义计算求解即可.【详解】∵AB ∥CD ,∴∠DFE =∠A =65°,∴∠EFC =180°-∠DFE =115°,故选B .【点睛】本题考查了平行线的性质,平角的定义,熟练掌握平行线的性质是解题的关键. 8.D解析:D【分析】结合平行线性质和平分线判断出①②正确,再结合平行线和平分线根据等量代换判断出③④正确即可.【详解】解:∵AB //CD ,∴∠1=∠2,∵AC 平分∠BAD ,∴∠2=∠3,∴∠1=∠3,∵∠B =∠CDA ,∴∠1=∠4,∴∠3=∠4,∴BC //AD ,∴①正确;∴CA 平分∠BCD ,∴②正确;∵∠B=2∠CED,∴∠CDA=2∠CED,∵∠CDA=∠DCE+∠CED,∴∠ECD=∠CED,∴④正确;∵BC//AD,∴∠BCE+∠AEC= 180°,∴∠1+∠4+∠DCE+∠CED= 180°,∴∠1+∠DCE = 90°,∴∠ACE= 90°,∴AC⊥EC,∴③正确故其中正确的有①②③④,4个,故选:D.【点睛】此题考查平行线的性质和角平分线的性质,难度一般,利用性质定理判断是关键.9.D解析:D【分析】根据平行线的性质进行求解即可得到答案.【详解】解:∵BE∥CD∴∠ 2+∠C=180°,∠ 3+∠D=180°∵∠ 2=50°,∠ 3=120°∴∠C=130°,∠D=60°又∵BE∥AF,∠ 1=40°∴∠A=180°-∠ 1=140°,∠F=∠ 3=120°故选D.【点睛】本题主要考查了平行线的性质,熟练掌握平行线的性质是解题的关键.10.B解析:B【分析】已知BE和DF分别平分∠ABF和∠CDE,根据角平分线分定义可得∠ABE=12∠ABF,∠CDF=12∠CDE;过点E作EM//AB,点F作FN//AB,即可得////AB CD EM//FN,由平行线的性质可得∠ABE=∠BEM,∠MED=∠EDC,∠ABF=∠BFN,∠CDF=∠DFN,由此可得∠BED=∠BEM+∠DEM=∠ABE+∠CDE=12∠ABF+∠CDE,∠BFD=∠BFN+∠DFN=∠ABF+∠CDF=∠ABF +12∠CDE,又因2∠BED-∠BFD=48°,即可得2(12∠ABF+∠CDE)-(∠ABF +12∠CDE)=48°,由此即可求得∠CDE=32°.【详解】∵BE和DF分别平分∠ABF和∠CDE,∴∠ABE=12∠ABF,∠CDF=12∠CDE,过点E作EM//AB,点F作FN//AB,∵//AB CD,∴////AB CD EM//FN,∴∠ABE=∠BEM,∠MED=∠EDC,∠ABF=∠BFN,∠CDF=∠DFN,∴∠BED=∠BEM+∠DEM=∠ABE+∠CDE=12∠ABF+∠CDE,∠BFD=∠BFN+∠DFN=∠ABF+∠CDF=∠ABF +12∠CDE,∵2∠BED-∠BFD=48°,∴2(12∠ABF+∠CDE)-(∠ABF +12∠CDE)=48°,∴∠CDE=32°.故选B.【点睛】本题考查了平行线的性质,根据平行线的性质确定有关角之间的关系是解决问题的关键.二、填空题11.或【分析】根据题意可分两种情况,①若点运动到上方,根据平行线的性质由可计算出的度数,再根据角平分线的性质和平行线的性质,计算出的度数,再由,,列出等量关系求解即可得出结论;②若点运动到下方,根据 解析:41203α︒-或36047α︒-【分析】根据题意可分两种情况,①若点E 运动到1l 上方,根据平行线的性质由α可计算出CBD ∠的度数,再根据角平分线的性质和平行线的性质,计算出BAC ∠的度数,再由5:2BAE CAE ∠∠=,BAE BAC CAE ∠=∠+∠,列出等量关系求解即可得出结论;②若点E 运动到1l 下方,根据平行线的性质由α可计算出CBD ∠的度数,再根据角平分线的性质和平行线的性质,计算出BAC ∠的度数,再由5:2BAE CAE ∠∠=,BAE BAC CAE ∠=∠-∠列出等量关系求解即可得出结论.【详解】解:如图,若点E 运动到l 1上方,//AC BD ,CBD ACB α∴∠=∠=,BC 平分ABD ∠,22ABD CBD α∴∠=∠=,1801802BAC ABD α∴∠=︒-∠=︒-,又5:2BAE CAE ∠∠=,5():2BAC CAE CAE ∴∠+∠∠=, 5(1802):2CAE CAE α︒-+∠∠=, 解得180241205312CAE αα︒-∠==︒--; 如图,若点E 运动到l 1下方,//AC BD ,CBD ACB α∴∠=∠=, BC 平分ABD ∠,22ABD CBD α∴∠=∠=,1801802BAC ABD α∴∠=︒-∠=︒-, 又5:2BAE CAE ∠∠=,5():2BAC CAE CAE ∴∠-∠∠=, 5(1802):2CAE CAE α︒--∠∠=, 解得180236045712CAE αα︒-︒-∠==+. 综上CAE ∠的度数为41203α︒-或36047α︒-. 故答案为:41203α︒-或36047α︒-. 【点睛】 本题主要考查平行线的性质和角平分线的性质,两直线平行,同位角相等.两直线平行,同旁内角互补.两直线平行,内错角相等,合理应用平行线的性质是解决本题的关键. 12.【分析】要分类讨论,不要漏掉任何一种情况,也可实际用三角板操作找到它们之间的关系,再计算.【详解】解:分10种情况讨论:(1)如图1,AD 边与OB 边平行时,∠BAD =45°或135°;;解析:8【分析】要分类讨论,不要漏掉任何一种情况,也可实际用三角板操作找到它们之间的关系,再计算.【详解】解:分10种情况讨论:(1)如图1,AD 边与OB 边平行时,∠BAD =45°或135°;;(2)如图2,当AC 边与OB 平行时,∠BAD =90°+45°=135°或45°;(3)如图3,DC 边与AB 边平行时,∠BAD =60°+90°=150°,(4)如图4,DC 边与OB 边平行时,∠BAD =135°+30°=165°,(5)如图5,DC 边与OB 边平行时,∠BAD =45°﹣30°=15°;(6)如图6,DC 边与AO 边平行时,∠BAD =15°+90°=105°(7)如图7,DC 边与AB 边平行时,∠BAD =30°,(8)如图8,DC 边与AO 边平行时,∠BAD =30°+45°=75°;综上所述:∠BAD 的所有可能的值为:15°,30°,45°,75°,105°,135°,150°,165°.故答案为:8.【点睛】本题考查了平行线的性质及判定,画出所有符合题意的示意图是解决本题的关键.13.【分析】先过E作EF∥AB,根据AB∥CD,得出AB∥EF∥CD,再根据平行线的性质,得出∠B=∠1,∠C=∠2,进而得到∠BEC=∠ABE+∠DCE;根据∠ABE和∠DCE的平分线交点为E1,解析:2n【分析】先过E作EF∥AB,根据AB∥CD,得出AB∥EF∥CD,再根据平行线的性质,得出∠B=∠1,∠C=∠2,进而得到∠BEC=∠ABE+∠DCE;根据∠ABE和∠DCE的平分线交点为E1,则可得出∠CE1B=∠ABE1+∠DCE112=∠ABE12+∠DCE12=∠BEC;同理可得∠BE 2C =∠ABE 2+∠DCE 212=∠ABE 112+∠DCE 112=∠CE 1B 14=∠BEC ;根据∠ABE 2和∠DCE 2的平分线,交点为E 3,得出∠BE 3C 18=∠BEC ;…据此得到规律∠E n 12n =∠BEC ,最后求得∠BEC 的度数.【详解】如图1,过E 作EF ∥AB .∵AB ∥CD ,∴AB ∥EF ∥CD ,∴∠B =∠1,∠C =∠2.∵∠BEC =∠1+∠2,∴∠BEC =∠ABE +∠DCE ;如图2.∵∠ABE 和∠DCE 的平分线交点为E 1,∴∠CE 1B =∠ABE 1+∠DCE 112=∠ABE 12+∠DCE 12=∠BEC . ∵∠ABE 1和∠DCE 1的平分线交点为E 2, ∴∠BE 2C =∠ABE 2+∠DCE 212=∠ABE 112+∠DCE 112=∠CE 1B 14=∠BEC ; ∵∠ABE 2和∠DCE 2的平分线,交点为E 3, ∴∠BE 3C =∠ABE 3+∠DCE 312=∠ABE 212+∠DCE 212=∠CE 2B 18=∠BEC ; …以此类推,∠E n 12n=∠BEC , ∴当∠E n =1度时,∠BEC 等于2n 度.故答案为:2n .【点睛】本题考查了角平分线的定义以及平行线性质:两直线平行,内错角相等的运用.解决问题的关键是作平行线构造内错角,解题时注意:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.14.或或【分析】分三种情形画出图形分别建立好几何模型求解,即可解决问题.【详解】解:有三种情形:①如图1中,当AD∥BC时.∵AD∥BC,∴∠D=∠BCD=30°,∵∠ACE+∠E解析:30或120︒或165︒【分析】分三种情形画出图形分别建立好几何模型求解,即可解决问题.【详解】解:有三种情形:①如图1中,当AD∥BC时.∵AD∥BC,∴∠D=∠BCD=30°,∵∠ACE+∠ECD=∠ECD+∠DCB=90°,∴∠ACE=∠DCB=30°.②如图2中,当AD∥CE时,∠DCE=∠D=30°,可得∠ACE=90°+30°=120°.③如图2中,当AD∥BE时,延长BC交AD于M.∵AD∥BE,∴∠AMC=∠B=45°,∴∠ACM=180°-60°-45°=75°,∴∠ACE=75°+90=165°,综上所述,满足条件的∠ACE的度数为30°或120°或165°.故答案为30°或120°或165°.【点睛】本题考查旋转变换、平行线的判定和性质、三角形内角和定理等知识,解题的关键是学会用分类讨论的首先思考问题,属于中考常考题型.15.【详解】作IF∥AB,GK∥AB,JH∥AB因为AB∥CD所以,AB∥CD∥ IF∥GK∥JH所以,∠IFG=∠FEC=10°所以,∠GFI=90°-∠IFG=80°所以,∠KGF=∠解析:【详解】作IF∥AB,GK∥AB,JH∥AB因为AB∥CD所以,AB∥CD∥ IF∥GK∥JH所以,∠IFG=∠FEC=10°所以,∠GFI=90°-∠IFG=80°所以,∠KGF=∠GFI=80°所以,∠HGK=150°-∠KGF=70°所以,∠JHG=∠HGK=70°同理,∠2=90°-∠JHG=20°所以,∠1=90°-∠2=70°故答案为70【点睛】本题考查了平行线的性质,正确作出辅助线是关键,注意掌握平行线的性质:两直线平行,内错角相等.16.【分析】延长AB ,交两平行线与C 、D ,根据平行线的性质和领补角的性质计算即可;【详解】延长AB ,交两平行线与C 、D ,∵直线l1∥l2,∠A =125°,∠B =85°,∴,,,∴,∴,解析:17︒【分析】延长AB ,交两平行线与C 、D ,根据平行线的性质和领补角的性质计算即可;【详解】延长AB ,交两平行线与C 、D ,∵直线l 1∥l 2,∠A =125°,∠B =85°,∴4285∠+∠=︒,13125∠+∠=︒,34180∠+∠=︒,∴852*******︒-∠+︒-∠=︒,∴1230∠+∠=︒,又∵∠1比∠2大4°,∴2=14∠∠-︒,∴2134∠=︒,∴117∠=︒;故答案是17 .【点睛】本题主要考查了平行线的性质应用,准确计算是解题的关键.17.30或150【分析】分两种情况,根据ED∥AB,利用平行线的性质,即可得到∠BAD的度数.【详解】解:如图1所示:当ED∥AB时,∠BAD=∠D=30°;如图2所示,当ED∥AB时,∠D解析:30或150【分析】分两种情况,根据ED∥AB,利用平行线的性质,即可得到∠BAD的度数.【详解】解:如图1所示:当ED∥AB时,∠BAD=∠D=30°;如图2所示,当ED∥AB时,∠D=∠BAD=180°,∵∠D=30°∴∠BAD=180°-30°=150°;故答案为:30°或150°.【点睛】本题主要考查了平行线的判定,平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由直线的平行关系来寻找角的数量关系.18.3【分析】(1)根据平行线的性质即可得到答案;(2)根据平行线的性质得到:∠AEF=180°-∠EFB=180°-32°=148°,又因为∠AEF=∠AEC+∠GEF,可得∠AEC<148°,解析:3【分析】(1)根据平行线的性质即可得到答案;(2)根据平行线的性质得到:∠AEF=180°-∠EFB=180°-32°=148°,又因为∠AEF=∠AEC+∠GEF,可得∠AEC<148°,即可判断是否正确;(3)根据翻转的性质可得∠GEF=∠C′EF,又因为∠C′EG=64°,根据平行线性质即可得到∠BGE=∠C′EG=64°,即可判断是否正确;(4)根据对顶角的性质得:∠CGF=∠BGE=64°,根据平行线得性质即可得:∠BFD=180°-∠CGF即可得到结果.【详解】AE BG,∠EFB=32°,解:(1)∵//∴∠C′EF=∠EFB=32°,故本小题正确;(2)∵AE∥BG,∠EFB=32°,∴∠AEF=180°-∠EFB=180°-32°=148°,∵∠AEF=∠AEC+∠GEF,∴∠AEC<148°,故本小题错误;(3)∵∠C′EF=32°,∴∠GEF=∠C′EF=32°,∴∠C′EG=∠C′EF+∠GEF=32°+32°=64°,∵AC′∥BD′,∴∠BGE=∠C′EG=64°,故本小题正确;(4)∵∠BGE=64°,∴∠CGF=∠BGE=64°,DF CG,∵//∴∠BFD=180°-∠CGF=180°-64°=116°,故本小题正确.故正确的为:(1)(3)(4)共3个,故答案为:3.【点睛】本题考查的是平行线的性质及翻折变换的性质,熟知图形翻折不变性的性质是解答此题的关键.19.56°【分析】由折叠的性质可得∠3=∠1=28°,从而求得∠4=56°,再根据平行线的性质定理求出∠EBD =180°﹣∠4=124°,最后再根据平行线性质定理求出∠2=56°.【详解】解:如解析:56°【分析】由折叠的性质可得∠3=∠1=28°,从而求得∠4=56°,再根据平行线的性质定理求出∠EBD =180°﹣∠4=124°,最后再根据平行线性质定理求出∠2=56°.【详解】解:如图,由折叠的性质,可得∠3=∠1=28°,∴∠4=∠1+∠3=56°,∵CD ∥BE ,AC ∥BD ,∴∠EBD =180°﹣∠4=124°,又∵CD ∥BE ,∴∠2=180°﹣∠CBD =180°﹣124°=56°.故答案为:56°.【点睛】本题考查了平行线的性质,解题的关键是根据平行线的性质找出图中角度之间的关系. 20.90°【分析】过P1作P1Q ∥AB ,则P1Q ∥CD ,根据平行线的性质得到∠AEF+∠CFE=180°,∠AEP1=∠EP1Q ,∠CFP1=∠FP1Q ,结合角平分线的定义可计算∠E解析:90°902n︒ 【分析】过P 1作P 1Q ∥AB ,则P 1Q ∥CD ,根据平行线的性质得到∠AEF +∠CFE =180°,∠AEP 1=∠EP 1Q ,∠CFP 1=∠FP 1Q ,结合角平分线的定义可计算∠EP 1F ,再同理求出∠P 2,∠P 3,总结规律可得n P ∠.【详解】解:过P 1作P 1Q ∥AB ,则P 1Q ∥CD ,∵AB ∥CD ,∴∠AEF +∠CFE =180°,∠AEP 1=∠EP 1Q ,∠CFP 1=∠FP 1Q ,∵AEF ∠和CFE ∠的角平分线交于点1P ,∴∠EP 1F =∠EP 1Q +∠FP 1Q =∠AEP 1+∠CFP 1=12(∠AEF +∠CFE )=90°;同理可得:∠P 2=14(∠AEF +∠CFE )=45°, ∠P 3=18(∠AEF +∠CFE )=22.5°, ...,∴902n nP ︒∠=, 故答案为:90°,902n ︒.【点睛】本题主要考查了平行线的性质,角平分线的定义,规律性问题,解决问题的关键是作辅助线构造内错角,依据两直线平行,内错角相等进行计算求解.三、解答题21.(1)证明见解析;(2)证明见解析;(3)120°.【分析】(1)过点A 作AD ∥MN ,根据两直线平行,内错角相等得到∠MCA =∠DAC ,∠PBA =∠DAB ,根据角的和差等量代换即可得解;(2)由两直线平行,同旁内角互补得到∴、∠CAB +∠ACD =180°,由邻补角定义得到∠ECM +∠ECN =180°,再等量代换即可得解;(3)由平行线的性质得到,∠FAB =120°﹣∠GCA ,再由角平分线的定义及平行线的性质得到∠GCA ﹣∠ABF =60°,最后根据三角形的内角和是180°即可求解.【详解】解:(1)证明:如图1,过点A 作AD ∥MN ,∵MN ∥PQ ,AD ∥MN ,∴AD ∥MN ∥PQ ,∴∠MCA =∠DAC ,∠PBA =∠DAB ,∴∠CAB =∠DAC +∠DAB =∠MCA +∠PBA ,即:∠CAB =∠MCA +∠PBA ;(2)如图2,∵CD ∥AB ,∴∠CAB +∠ACD =180°,∵∠ECM +∠ECN =180°,∵∠ECN =∠CAB∴∠ECM =∠ACD ,即∠MCA +∠ACE =∠DCE +∠ACE ,∴∠MCA =∠DCE ;(3)∵AF ∥CG ,∴∠GCA +∠FAC =180°,∵∠CAB =60°即∠GCA +∠CAB +∠FAB =180°,∴∠FAB =180°﹣60°﹣∠GCA =120°﹣∠GCA ,由(1)可知,∠CAB =∠MCA +∠ABP ,∵BF 平分∠ABP ,CG 平分∠ACN ,∴∠ACN =2∠GCA ,∠ABP =2∠ABF ,又∵∠MCA =180°﹣∠ACN ,∴∠CAB =180°﹣2∠GCA +2∠ABF =60°,∴∠GCA ﹣∠ABF =60°,∵∠AFB +∠ABF +∠FAB =180°,∴∠AFB =180°﹣∠FAB ﹣∠FBA=180°﹣(120°﹣∠GCA )﹣∠ABF=180°﹣120°+∠GCA ﹣∠ABF=120°.【点睛】本题主要考查了平行线的性质,线段、角、相交线与平行线,准确的推导是解决本题的关键.22.(1)见解析;(2)见解析;(3)︒=∠105EBC .【分析】(1)先根据平行线的性质得到C BDA ∠=∠,然后结合AB BC ⊥即可证明;(2)过B 作//BH DM ,先说明ABD CBH ∠=∠,然后再说明//BH NC 得到CBH C ∠=∠,最后运用等量代换解答即可;(3)设∠DBE =a ,则∠BFC =3a ,根据角平分线的定义可得∠ABD =∠C =2a ,∠FBC =12∠DBC =a +45°,根据三角形内角和可得∠BFC +∠FBC +∠BCF =180°,可得∠AFC =∠BCF 的度数表达式,再根据平行的性质可得∠AFC +∠NCF =180°,代入即可算出a 的度数,进而完成解答.【详解】(1)证明:∵//AM CN ,∴C BDA ∠=∠,∵AB BC ⊥于B , ∴90B ∠=︒,∴90A BDA ∠+∠=︒,∴90A C ∠+∠=︒;(2)证明:过B 作//BH DM ,∵BD MA ⊥,∴90ABD ABH ∠+∠=︒,又∵AB BC ⊥,∴90ABH CBH ∠+∠=︒,∴ABD CBH ∠=∠,∵//BH DM ,//AM CN∴//BH NC ,∴CBH C ∠=∠,∴ABD C ∠=∠;(3)设∠DBE =a ,则∠BFC =3a ,∵BE 平分∠ABD ,∴∠ABD =∠C =2a ,又∵AB ⊥BC ,BF 平分∠DBC ,∴∠DBC =∠ABD +∠ABC =2a +90,即:∠FBC =12∠DBC =a +45°又∵∠BFC+∠FBC+∠BCF=180°,即:3a+a+45°+∠BCF=180°∴∠BCF=135°-4a,∴∠AFC=∠BCF=135°-4a,又∵AM//CN,∴∠AFC+∠NCF=180°,即:∠AFC+∠BCN+∠BCF=180°,∴135°-4a+135°-4a+2a=180,解得a=15°,∴∠ABE=15°,∴∠EBC=∠ABE+∠ABC=15°+90°=105°.【点睛】本题主要考查了平行线的性质、角平分线的性质及角的计算,熟练应用平行线的性质、角平分线的性质是解答本题的关键.23.(1)40°;(2)65°;(3)存在,56°或20°【分析】(1)依据平行线的性质以及角平分线的定义,即可得到∠PCG的度数;(2)依据平行线的性质以及角平分线的定义,即可得到∠ECG=∠GCF=25°,再根据PQ∥CE,即可得出∠CPQ=∠ECP=65°;(3)设∠EGC=4x,∠EFC=3x,则∠GCF=4x-3x=x,分两种情况讨论:①当点G、F在点E 的右侧时,②当点G、F在点E的左侧时,依据等量关系列方程求解即可.【详解】解:(1)∵∠CEB=100°,AB∥CD,∴∠ECQ=80°,∵∠PCF=∠PCQ,CG平分∠ECF,∴∠PCG=∠PCF+∠FCG=12∠QCF+12∠FCE=12∠ECQ=40°;(2)∵AB∥CD∴∠QCG=∠EGC,∠QCG+∠ECG=∠ECQ=80°,∴∠EGC+∠ECG=80°,又∵∠EGC-∠ECG=30°,∴∠EGC=55°,∠ECG=25°,∴∠ECG=∠GCF=25°,∠PCF=∠PCQ=12(80°-50°)=15°,∵PQ∥CE,∴∠CPQ=∠ECP=65°;(3)设∠EGC=4x,∠EFC=3x,则∠GCF=∠FCD=4x-3x=x,①当点G、F在点E的右侧时,则∠ECG=x,∠PCF=∠PCD=32 x,∵∠ECD=80°,∴x+x+32x+32x=80°,解得x=16°,∴∠CPQ=∠ECP=x+x+32x=56°;②当点G、F在点E的左侧时,则∠ECG=∠GCF=x,∵∠CGF=180°-4x,∠GCQ=80°+x,∴180°-4x=80°+x,解得x=20°,∴∠FCQ=∠ECF+∠ECQ=40°+80°=120°,∴∠PCQ=12∠FCQ=60°,∴∠CPQ=∠ECP=80°-60°=20°.【点睛】本题主要考查了平行线的性质,解题时注意:两直线平行,同旁内角互补;两直线平行,内错角相等.24.(1)110°;(2)猜想:∠APB=∠DAP+∠FBP,理由见解析;(3)①∠P=2∠P1,理由见解析;②∠AP2B=1 1802β︒-.【分析】(1)过P作PM∥CD,根据两直线平行,内错角相等可得∠APM=∠DAP,再根据平行公理求出CD∥EF然后根据两直线平行,内错角相等可得∠MPB=∠FBP,最后根据∠APM+∠MPB=∠DAP+∠FBP等量代换即可得证;(2)结论:∠APB=∠DAP+∠FBP.(3)①根据(2)的规律和角平分线定义解答;②根据①的规律可得∠APB =∠DAP +∠FBP ,∠AP 2B =∠CAP 2+∠EBP 2,然后根据角平分线的定义和平角等于180°列式整理即可得解.【详解】(1)证明:过P 作PM ∥CD ,∴∠APM =∠DAP .(两直线平行,内错角相等),∵CD ∥EF (已知),∴PM ∥CD (平行于同一条直线的两条直线互相平行),∴∠MPB =∠FBP .(两直线平行,内错角相等),∴∠APM +∠MPB =∠DAP +∠FBP .(等式性质) 即∠APB =∠DAP +∠FBP =40°+70°=110°. (2)结论:∠APB=∠DAP +∠FBP .理由:见(1)中证明.(3)①结论:∠P=2∠P 1;理由:由(2)可知:∠P =∠DAP +∠FBP ,∠P 1=∠DAP 1+∠FBP 1,∵∠DAP =2∠DAP 1,∠FBP =2∠FBP 1,∴∠P =2∠P 1.②由①得∠APB =∠DAP +∠FBP ,∠AP 2B =∠CAP 2+∠EBP 2,∵AP 2、BP 2分别平分∠CAP 、∠EBP ,∴∠CAP 2=12∠CAP ,∠EBP 2=12∠EBP ,∴∠AP 2B =12∠CAP +12∠EBP , = 12(180°-∠DAP )+ 12(180°-∠FBP ),=180°- 12(∠DAP +∠FBP ),=180°- 12∠APB ,=180°- 12β.【点睛】本题考查了平行线的性质,角平分线的定义,熟记性质与概念是解题的关键,此类题目,难点在于过拐点作平行线.25.(1)见解析;(2)10°;(3)18015α︒-【分析】(1)过点E 作EF ∥CD ,根据平行线的性质,两直线平行,内错角相等,得出,CDE DEF ∠=∠结合已知条件180DEB ABE CDE ∠+∠-∠=︒,得出180,FEB ABE ∠+∠=︒即可证明;(2)过点E 作HE ∥CD ,设,,GEF x FEB EFB y ∠=∠=∠= 由(1)得AB ∥CD ,则AB ∥CD ∥HE ,由平行线的性质,得出20,DEF D EFB y ∠=∠+∠=︒+再由EG 平分DEB ∠,得出,DEG GEB GEF FEB x y ∠=∠=∠+∠=+则2DEF DEG GEF x y ∠=∠+∠=+,则可列出关于x 和y 的方程,即可求得x ,即GEF ∠的度数;(3)过点N 作NP ∥CD ,过点M 作QM ∥CD ,由(1)得AB ∥CD ,则NP ∥CD ∥AB ∥QM ,根据14CDM CDE ∠=∠和CDM α∠=,得出3,MDE α∠=根据CD ∥PN ∥QM ,DE ∥NB ,得出,PND CDM DMQ α∠=∠=∠=3,EDM BNM α∠=∠=即4,BNP α∠=根据NP ∥AB ,得出4,PNB ABN α∠=∠=再由14ABN ABE ∠=∠,得出16,ABM α∠=由AB ∥QM ,得出18016,QMB α∠=︒-因为NMB NMQ QMB ∠=∠+∠,代入α的式子即可求出BMN ∠.【详解】(1)过点E 作EF ∥CD ,如图,∵EF ∥CD ,∴,CDE DEF ∠=∠∴,DEB CDE DEB DEF FEB ∠-∠=∠-∠=∠∵180DEB ABE CDE ∠+∠-∠=︒,∴180,FEB ABE ∠+∠=︒∴EF ∥AB ,∴CD ∥AB ;(2)过点E 作HE ∥CD ,如图,设,,GEF x FEB EFB y ∠=∠=∠=由(1)得AB ∥CD ,则AB ∥CD ∥HE ,∴20,,D DEH HEF EFB y ∠=∠=︒∠=∠=∴20,DEF DEH HEF D EFB y ∠=∠+∠=∠+∠=︒+又∵EG 平分DEB ∠,∴,DEG GEB GEF FEB x y ∠=∠=∠+∠=+∴2,DEF DEG GEF x y x x y ∠=∠+∠=++=+即220,x y y +=︒+解得:10,x =︒即10GEF ∠=︒;(3)过点N 作NP ∥CD ,过点M 作QM ∥CD ,如图,由(1)得AB ∥CD ,则NP ∥CD ∥AB ∥QM ,∵NP ∥CD ,CD ∥QM ,,CDM α∠=∴PND CDM DMQ α∠=∠=∠=,又∵14CDM CDE ∠=∠, ∴33,MDE CDM α∠=∠=∵//BN DE ,∴3,MDE BNM α∠=∠=∴34,PNB PND BNM ααα∠=∠+∠=+=又∵PN ∥AB ,∴4,PNB NBA α∠=∠= ∵14ABN ABE ∠=∠, ∴44416,ABM ABN αα∠=∠=⨯=又∵AB ∥QM ,∴180,ABM QMB ∠+∠=︒∴18018016,QMB ABM α∠=︒-∠=︒-∴1801618015NMB NMQ QMB ααα∠=∠+∠=+︒-=-.【点睛】本题考查平行线的性质,角平分线的定义,解决问题的关键是作平行线构造相等的角,利用两直线平行,内错角相等,同位角相等来计算和推导角之间的关系.。
七年级下册数学相交线练习题
七年级下册数学相交线练习题课堂学习检测一、填空题1.如果两个角有一条______边,并且它们的另一边互为____________,那么具有这种关系的两个角叫做互为邻补角.2.如果两个角有______顶点,并且其中一个角的两边分别是另一个角两边的___________________,那么具有这种位置关系的两个角叫做对顶角.3.对顶角的重要性质是_________________.4.如图,直线AB、CD相交于O点,∠AOE=90°.(1)∠1和∠2叫做______角;∠1和∠4互为______角;∠2和∠3互为_______角;∠1和∠3互为______角;∠2和∠4互为______角.(2)若∠1=20°,那么∠2=______;∠3=∠BOE-∠______=______°-______°=______°;∠4=∠______-∠1=______°-______°=______°.5.如图,直线AB与CD相交于O点,且∠COE=90°,则(1)与∠BOD互补的角有________________________;(2)与∠BOD互余的角有________________________;(3)与∠EOA互余的角有________________________;(4)若∠BOD=42°17′,则∠AOD=__________;∠EOD=______;∠AOE=______.二、选择题6.图中是对顶角的是( ).7.如图,∠1的邻补角是( ).(A)∠BOC (B)∠BOC 和∠AOF (C)∠AOF(D)∠BOE 和∠AOF8.如图,直线AB 与CD 相交于点O ,若AOD AOC ∠=∠31,则∠BOD 的度数为( ). (A)30° (B)45° (C)60°(D)135°9.如图所示,直线l 1,l 2,l 3相交于一点,则下列答案中,全对的一组是( ).(A)∠1=90°,∠2=30°,∠3=∠4=60° (B)∠1=∠3=90°,∠2=∠4=30° (C)∠1=∠3=90°,∠2=∠4=60° (D)∠1=∠3=90°,∠2=60°,∠4=30° 三、判断正误10.如果两个角相等,那么这两个角是对顶角.( ) 11.如果两个角有公共顶点且没有公共边,那么这两个角是对顶角. ( ) 12.有一条公共边的两个角是邻补角.( ) 13.如果两个角是邻补角,那么它们一定互为补角. ( ) 14.对顶角的角平分线在同一直线上.( ) 15.有一条公共边和公共顶点,且互为补角的两个角是邻补角.( )综合、运用、诊断一、解答题16.如图所示,AB ,CD ,EF 交于点O ,∠1=20°,∠BOC =80°,求∠2的度数.17.已知:如图,直线a,b,c两两相交,∠1=2∠3,∠2=86°.求∠4的度数.18.已知:如图,直线AB,CD相交于点O,OE平分∠BOD,OF平分∠COB,∠AOD∶∠DOE=4∶1.求∠AOF的度数.19.如图,有两堵围墙,有人想测量地面上两堵围墙内所形成的∠AOB的度数,但人又不能进入围墙,只能站在墙外,请问该如何测量?拓展、探究、思考20.如图,O是直线CD上一点,射线OA,OB在直线CD的两侧,且使∠AOC=∠BOD,试确定∠AOC与∠BOD是否为对顶角,并说明你的理由.21.回答下列问题:(1)三条直线AB,CD,EF两两相交,图形中共有几对对顶角(平角除外)?几对邻补角?(2)四条直线AB,CD,EF,GH两两相交,图形中共有几对对顶角(平角除外)?几对邻补角?(3)m条直线a1,a2,a3,…,a m-1,a m相交于点O,则图中一共有几对对顶角(平角除外)?几对邻补角?。
2022年人教版数学七下《相交线2》同步练习(附答案)
5.1.1 相交线1.如图,两条直线AB,CD 相交于点O,图中小于180°的角有______个,其中互为邻补角的有,它们之间的数量关系是________________,互为对顶角的有______________,它们之间的数量关系是_______________.第1题图第2题图2.如图,O 是直线AB 上任意一点,∠AOC 与∠BOC 互为________角,它们之间的位置关系是__________,数量关系是_______________.3.如图,直线AB、CD、EF 都经过点O,且∠AOC=35°,∠EOB=99°,那么∠FOD=_____ .4.如图,直线AB、CD 相交于点O,OE 平分∠AOD,∠DOF =90°,∠1=40°,那么∠2= ______,∠3=_______.第3题图第4题图第5题图5.如图,当剪子口∠AOB 增大15°时,∠COD 增大_____________________.二、选择题6.如图,直线AB、CD、EF 相交于点O,∠1的邻补角是 ( ) A.∠BOC B.∠BOC 和∠AOFC.∠AOF D.∠BOE 和∠AOF(第6题图第7题图第8题图7.如图,直线a 与直线c 相交于点O,那么∠1的度数是 ( ) A.60° B.50° C.40° D.30°,直线AB、CD 相交于点O,射线OM 平分∠AOC.假设∠BOD=76°,那么∠BOM 等于( )A.38° B.104° C.142° D.144°9.如图,将长方形ABCD 沿EF 折叠,使点B 落在点G 处,点C 落在点H 处.假设∠EFD=80°,那么∠DFH 的度数为 ( ) A.80° B.100° C.20° D.60°三、解答题10.如图,直线a,b 相交.(1)假设∠1=40°,求∠2,∠3,∠4的度数;(2)假设∠1+∠3=90°,求各角的度数;(3)假设∠1∶∠2=2∶7,求各角的度数.11.如图,∠ABC 和∠CBD 互为邻补角,BE 平分∠ABC,BF 平分∠CBD.你能求∠EBF 的大小吗? 并说明理由.第2课时平行线判定方法的综合运用班别:_______姓名:______成绩:_____一、根底练习1.在同一平面内,直线a,b相交于P,假设a∥c,那么b与c的位置关系是 .2.不相邻的两个直角,如果它们有一边在同一直线上,那么另一边的位置关系是 .3.如下列图,BE是AB的延长线,量得∠CBE=∠A=∠ C.(1)由∠CBE=∠A可以判断___∥___,根据是_________________.(2)由∠CBE=∠C可以判断___∥___,根据是_________________.4.如图1所示,以下条件中,能判断AB∥CD的是( )A.∠BAD=∠BCDB.∠1=∠2C.∠3=∠ 4D.∠BAC=∠ACD ED CBA34D CB A21FEDCBAEDCBA(图1) (图2) (图3)5.如图2所示,如果∠D=∠EFC,那么( )A.AD ∥BCB.EF ∥BCC.AB ∥DCD.AD ∥EF 6.如图3所示,能判断AB ∥CE 的条件是( )A.∠A=∠ACEB.∠A=∠EC DC.∠B=∠BCAD.∠B=∠A CE 7.如图,直线AB 、CD 被直线EF 所截,∠1=∠2,直线AB 和CD 平行吗?为什么?二、拓展探究8.如下列图,直线a,b,c,d,e,且∠1=∠2,∠3+∠4=180°,那么a 与c 平行吗?•为什么?9.如下列图,BE 平分∠ABD ,DE 平分∠BDC ,∠1+∠2=90°,那么,直线AB 、CD 的位置关系如何?说明你的理由.三、难点透释“三线八角〞;2.判定两条直线平行的方法有六种:①平行线的定义;②平行线的传递性;③平行线的判定公理;④平行线的判定定理1;⑤平行线的判定定理2;⑥平行线的判定推论.d ecb a 3412。
七年级数学下相交线练习题
10756894321(1)相交线练习题一、判断(每题1分,共10分)1.顶点相同并且相等的两个角是对顶角.( )2.相交直线构成的四个角中若有一个角是直角,就称这两条直线互相垂直.( )3.直线外一点到这条直线的垂线段叫做这点到这条直线的距离.( )4.如图1,∠2和∠8是对顶角.( )5.如图1,∠2和∠4是同位角.( )6.如图1,∠1和∠3是同位角.( )7.如图1,∠9和∠10是同旁内角,∠1和∠7也是同旁内角.( ) 8.如图1,∠2和∠10是内错角.( )9.O 是直线AB 上一点,D 分别在AB 的两侧,且∠DOB=∠AOC, 则C,O,D•三点在同一条直线上.( )D C A B NM P(2)Qla75684321b(3)564321AB NM P(4)OQ421D AB (5)OFE10.如图2,其中共有4对同位角,4对内错角,4对同旁内角.( )二、填空(每空1分,共29分)11.如图3,直线L 截直线a,b 所得的同位角有______对,它们是_ _____;•内错有___对,它们是_____ _;同旁内角有______对,•它们 是_____ _;•对顶角_____•对,•它们是_____ _. 12.如图4,∠1的同位角是________,∠1的内错角是________,∠1•的同旁内角是_______. 13.如图5,直线AB,CD 相交于O,OE 平分∠AOD,FO ⊥OD 于O,∠1=40°,则∠2=•___ __,∠4=______. 14.如图6,AB ⊥CD 于O,EF 为过点O 的直线,MN 平分∠AOC,若∠EON=100•°,•那么∠EOB=_____ ,∠BOM=_____ .15.如图7,AB 是一直线,OM 为∠AOC 的角平分线,ON 为∠BOC 的角平分线,则OM,ON 的位置关系是_______.16.直线外一点与直线上各点连结的线段中,以_________为最短.17.从直线外一点到这条直线的____ ____叫做这点到直线的距离.D C A B NM (6)O FE C ABN M (7)D C AB(8)O18.经过直线外或直线上一点,有且只有______直线与已知直线垂直.19.如图8,要证BO ⊥OD,请完善证明过程,并在括号内填上相应依据:∵AO ⊥CO,∴∠AOC=__________(___________).又∵∠COD=40°(已知),∴∠AOD=_______.•∵∠BOC=∠AOD=50°(已知),∴∠BOD=_______, ∴_______⊥_______(__________).20.如图9,直线AB,CD 被EF 所截,∠1=∠2,要证∠2+∠4=180°,请完善证明过程,•并在括号内填上相应依据.∵直线AB 与EF 相交,∴∠1=∠3=(__________),又∵∠1+•∠4=180°(___________),∠1=∠2(已知), ∴∠2=∠3,∠2+∠4=180°(____________________)三、选择(每题3分,共30分).21.下列语句正确的是( )A.相等的角为对顶角B.不相等的角一定不是对顶角C.不是对顶角的角都不相等D.有公共顶点且和为180°的两个角为邻补角 22.两条相交直线与另外一条直线在同一平面内,它们的交点个数是( ) A.1 B.2 C.3或2 D.1或2或3 23.如图10,PO ⊥OR,OQ ⊥PR,能表示点到直线(或线段)的距离的线段有( ) A.1条 B.2条 C.3条 D.5条(10)PQD CAB(11)OD CAB(12)FE24.如图,OA ⊥OB,OC ⊥OD,则( )A.∠AOC=∠AODB.∠AOD=∠DOBC.∠AOC=∠BODD.以上结论都不对25.下列说法正确的是( )A.在同一平面内,过已知直线外一点作这条直线的垂线有且只有一条B.连结直线外一点和直线上任一点,使这条线段垂直于已知直线C.作出点P 到直线的距离D.连结直线外一点和直线上任一点的线段长是点到直线的距离 26.如图12,与∠C 是同旁内角的有( ). A.2 B.3 C.4 D.5 27.下列说法正确的是( ).A.两条直线相交成四个角,如果有三个角相等,那么这两条直线垂直.B.两条直线相交成四个角,如果有两个角相等,那么这两条直线垂直.C.两条直线相交成四个角,如果有一对对顶角互余,那么这两条直线垂直.D.两条直线相交成四个角,如果有两个角互补,那么这两条直线垂直. 28.如果∠1与∠2互为补角,且∠1>∠2,那么∠2的余角是( ) A. 12(∠1+∠2) B. 12∠1 C. 12(∠1-∠2) D.12∠229.已知OA ⊥OC,∠AOB:∠AOC=2:3,则∠BOC 的度数是( )A.30°B.150°C.30°或150°D.以上答案都不对下图中共有30.右图共有几对对顶角( ) A.18对 B.16对C.20对D.22 对四、作图题(4+3=7分)31、如图,按要求作出:(1)AE ⊥BC 于E;(2)AF ⊥CD 于F;(3)连结BD,作AG ⊥BD 于G.32、如下左图,一辆汽车在直线形的公路AB 上由A 向B 行驶,M 、N 分别是位于公路AB 两侧的村庄,(1)现在公路AB 上修建一个超市C ,使得到M 、N 两村庄距离最短,请在图中画出点C (2)设汽车行驶到点P 位置时离村庄M 最近;行驶到点Q 位置时,距离村庄N 最近,请在图中公路AB 上分别画出P 、Q 两点的位置。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.1.1 相交线
检测时间50分钟 满分100分)
班级_________________ 姓名_____________得分___________
一、选择题:(每小题3分,共15分)
1.如图所示,∠1和∠2是对顶角的图形有( )
1
21
21
2
2
1
A.1个
B.2个
C.3个
D.4个
2.如图1所示,三条直线AB,CD,EF 相交于一点O,则∠AOE+∠DOB+∠COF 等于( • )
A.150°
B.180°
C.210°
D.120°
O
F
E D C
B A O D
C
B
A 60︒30︒
34
l 3
l 2
l 1
12
(1) (2) (3) 3.下列说法正确的有( )
①对顶角相等;②相等的角是对顶角;③若两个角不相等,则这两个角一定不是对顶角;
④若两个角不是对顶角,则这两个角不相等. A.1个 B.2个 C.3个 D.4个
4.如图2所示,直线AB 和CD 相交于点O,若∠AOD 与∠BOC 的和为236°,则∠AOC•的度数
为( ) A.62° B.118° C.72° D.59°
5.如图3所示,直线L 1,L 2,L 3相交于一点,则下列答案中,全对的一组是( ) A.∠1=90°,∠2=30°,∠3=∠4=60°; B.∠1=∠3=90°,∠2=∠4=30
C.∠1=∠3=90°,∠2=∠4=60°;
D.∠1=∠3=90°,∠2=60°,∠4=30° 二、填空题:(每小题2分,共16分)
1. 如图4所示,AB 与CD 相交所成的四个角中,∠1的邻补角是______,∠1的对顶角___.
3
4
D C
B
A 1
2O
F
E D C
B A O
E
D C
B
A
(4) (5) (6) 2.如图4所示,若∠1=25°,则∠2=_______,∠3=______,∠4=_______.
3.如图5所示,直线AB,CD,EF 相交于点O,则∠AOD 的对顶角是_____,∠AOC 的邻补角是
_______;若∠AOC=50°,则∠BOD=______,∠COB=_______.
4.如图6所示,已知直线AB,CD 相交于O,OA 平分∠EOC,∠EOC=70°,则∠BOD=•______.
5.对顶角的性质是______________________.
6.如图7所示,直线AB,CD 相交于点O,若∠1-∠2=70,则∠BOD=_____,∠2=____.
O
D
C B
A 1
2
O
E D C
B
A O
E D
C
B
A
(7) (8) (9)
7.如图8所示,直线AB,CD 相交于点O,OE 平分∠AOC,若∠AOD-∠DOB=50°,•则∠
EOB=______________.
8.如图9所示,直线AB,CD 相交于点O,已知∠AOC=70°,OE 把∠BOD 分成两部分,• 且∠BOE:
∠EOD=2:3,则∠EOD=________. 三、训练平台:(每小题10分,共20分)
1. 如图所示,AB,CD,EF 交于点O,∠1=20°,∠BOC=80°,求∠2的度数.
O
F E
D
C
B
A 1
2
2. 如图所示,L 1,L 2,L 3交于点O,∠1=∠2,∠3:∠1=8:1,求∠4的度数.
34
l 3
l 2l 1
1
2
四、提高训练:(每小题6分,共18分)
1. 如图所示,AB,CD 相交于点O,OE 平分∠AOD,∠AOC=120°,求∠BOD,∠AOE•的 度数.
O
E D
C
B
A
2. 如图所示,直线AB 与CD 相交于点O,∠AOC:∠AOD=2:3,求∠BOD 的度数.
O
D
C
B
A
3. 如图所示,直线a,b,c 两两相交,∠1=2∠3,∠2=65°,求∠4的度数.
c
b
a
3
4
1
2
五、探索发现:(每小题8分,共16分)
1. 若4条不同的直线相交于一点,则图中共有几对对顶角?若n 条不同的直线相交 于一
点呢?
2. 在一个平面内任意画出6条直线,最多可以把平面分成几个部分?n 条直线呢?•
六、能力提高:(共10分)
已知点O 是直线AB 上一点,OC,OD 是两条射线,且∠AOC=∠BOD,则∠AOC 与∠BOD 是 对
顶角吗?为什么?
七、中考题与竞赛题:(共5分)
(2001.南通)如图16所示,直线AB,CD 相交于O,若∠1=40°,则∠2•的度数为____
O
D
C
B
A 1
2
答案:
一、1.A 2.B 3.B 4.A 5.D
二、1.∠2和∠4 ∠3 2.155° 25° 155° 4.35° 5.对顶角相等 •6 .125° 55° 7.147.5° 8.42° 三、1.∠2=60° 2.∠4=36°
四、1.∠BOD=120°,∠AOE=30° 2.∠BOD=72° 3.∠4=32.5° 五、
1.4条不同的直线相交于一点,图中共有12对对顶角(平角除外),n 条不同的直线相交于一点,
图中共有(n 2
-n)对对顶角(平角除外).
2.6条直线最多可以把平面分成22个部分,n 条直线最多可以把平面分成(1)12n n +⎡⎤
+⎢
⎥⎣⎦
个部
分.
六、∠AOC 与∠BOD 不一定是对顶角.如图1所示,当射线OC,OD 位于直线AB 的一侧 时,不是对顶角;如图2所示,当射线OC,OD 位于直线AB 的两侧时,是对顶角.
(1)
O D C B
A
2
1
(2)
O C
B
A
七、140°.。