光学信息技术原理及应用
《光学信息处理》习题解答
第 2 页 共 61 页
Q
a
<
1 L
,
b
<
1 W
《光学信息技术原理及应用》习题解答
∴ 1 > L, 1 > W ab
Q
1 a
是
H(
fx,
fy)
在
fx
方向的宽度,
1 b
是
H(
fx,
fy)
在
fy
方向的宽度,
L
、W
分别是输入函数
f ( x, y) 在频域上的频带宽。
∴ H( fx, fy) 在 fx 、 fy 方向的宽度大于 F( fx, fy) ,即 F( fx, fy) 能完全通过系统传递函数为
解:对于线性空间不变系统,设系统的脉冲响应为 h( x) ,输入函数表示式为 g( x) ,输出函数表示式为
g ' ( x) ,则
g'(x) = g(x) ∗h(x) 或 G'( f ) = G( f ) ⋅ H ( f )
+∞
∑ 由 g(x) = comb(x) 知, G( f ) = comb( f ) = δ ( f − n) ,所以 n=−∞
第 6 页 共 61 页
《光学信息技术原理及应用》习题解答
图 1.4(a)
(1)由 H 1 (
f
)
=
rect
(
f 2
)
得 h1 ( x )
=
2 sin
c(2 x)
,函数图形如图
1.4(b)所示
图 1.4(b)
+16
∑ g1(x) = gi (x) ∗ h1(x) = Λ( x − 3n) * h1( x) ,函数图形如图 1.4(c)所示。 n=−16 +16 ∑ 如果考虑到系统为线性不变系统,对上式的卷积可以先计算 Λ(x) * 2sinc(2x) 。 Λ(x − 3n) 表 n=−16
《光学信息处理技术》课件
光学信息处理技术在理论和实践 中得到了广泛研究和应用。
光学信息处理技术的发展 趋势
光学信息处理技术将更加智能化、 高效化和便捷化,推动科技进步 和应用创新。
结语
通过本课程,我们总结了光学信息处理技术的基本原理和应用,并展望了未 来光学信息处理技术的发展可能性。
快速傅里叶变换是一种高效计算傅里叶变换的算法,可用于图像频谱分析和滤波。
数字图像处理技术
1 像素图像处理方法
像素图像处理方法以像素为基本处理单元,包括增强、滤波和分割等处理操作。
2 处理方法
数字图像处理方法包括变换、编码和压缩等技术,可用于图像编辑和图像信号分析。
3 区域处理方法
区域处理方法将图像分成不同区域,进行分割、特征提取和对象识别等操作。
光学信息处理技术广泛应用于图像处理、光学光学信息处理技术具有高速、高精度和免疫干扰等优点,但对环境光和噪声敏感。
基本光学信息处理技术
光学显微镜
光学显微镜是一种基于光学原理 的图像放大装置,可观察细小物 体及其结构。
光学干涉仪
光学衍射仪
光学干涉仪是一种利用干涉现象 测量物体形状和表面特性的仪器。
《光学信息处理技术》 PPT课件
本课程介绍了光学信息处理技术的基本原理和应用。通过本课程,你将了解 到光学信息处理技术的概述、基本方法、图像计算方法、数字图像处理技术、 光学识别技术以及其发展前景。
光学信息处理技术概述
定义
光学信息处理技术涉及使用光学原理和技术处理和传输信息的一系列方法和技术。
应用领域
光学衍射仪利用光的衍射现象处 理和分析光的信息,包括干涉、 衍射和散射。
光学信息处理的图像计算方法
1
赫尔曼-默里变换
光学作用的原理和应用
光学作用的原理和应用1. 光学作用的原理光学作用是指光在物质中传播时所发生的各种现象和效应。
光的主要作用有折射、反射、散射、吸收和干涉等。
下面将逐一介绍这些光学作用的原理。
1.1 折射当光从一种介质传播到另一种介质时,由于介质的光密度不同,光线的传播方向会发生偏折。
这种现象称为折射。
折射的原理基于光在不同介质中传播速度不同的性质。
根据斯涅尔定律,折射角和入射角之间有一个固定的关系。
1.2 反射当光从一种介质传播到另一种介质表面时,部分光束发生了偏折,其余光束则被物体表面反射。
这种现象称为反射。
反射的原理是光在物体表面发生边界效应,使光线发生反方向传播。
1.3 散射散射是指光在通过介质时,与介质中的微粒或分子相互作用并改变传播方向。
散射的原理是光与物质粒子发生的弹性散射和非弹性散射。
1.4 吸收当光穿过某种物质时,物质中的原子或分子对光能量的一部分进行吸收。
吸收的原理是物质中的原子或分子吸收光能量,使其电子激发到一个较高的能级。
1.5 干涉干涉是指两束或多束光线相遇时,互相干扰产生的现象。
干涉的原理基于光的波动性质,光波的相位差决定了干涉效应的强弱和形态。
2. 光学作用的应用2.1 光学透镜光学透镜是一种利用折射原理的装置,广泛应用于光学仪器和成像设备中。
它可以将光线汇聚或发散,用于矫正视力、摄影、望远镜、显微镜等领域。
2.2 光纤通信光纤通信利用光的折射原理和全内反射原理,将信息通过光信号的传输来实现远距离的通信。
光纤通信具有高带宽、低损耗、抗干扰等优点,广泛应用于电话、网络和电视信号的传输。
2.3 光电子器件光电子器件利用光的散射、吸收和干涉等作用,将光信号转化为电信号或将电信号转化为光信号。
光电二极管、光电传感器、激光器等都是光电子器件的典型应用。
2.4 光学测量光学测量是利用光的反射、折射和干涉等作用进行测量的一种方法。
例如激光测距仪、光干涉仪、光谱仪等都是利用光学作用进行测量的设备。
2.5 光学机器视觉光学机器视觉利用光的反射、折射和散射等作用,通过光学相机或传感器获取图像信息,并通过图像处理算法进行分析和识别。
陈家璧版_光学信息技术原理及应用习题解答(1-3章)
第一章习题1.1 已知不变线性系统的输入为()()x x g com b = 系统的传递函数⎪⎭⎫⎝⎛b f Λ。
若b 取(1)50=.b (2)51=.b ,求系统的输出()x g '。
并画出输出函数及其频谱的图形。
答:(1)()(){}1==x x g δF 图形从略,(2)()()()()()x s co f f δf δx g x x x πδ232+1=⎭⎬⎫⎩⎨⎧1+31+1-31+=F 图形从略。
1.2若限带函数()y x,f 的傅里叶变换在长度L 为宽度W 的矩形之外恒为零, (1)如果La 1<,Wb 1<,试证明()()y x f y x f bx a x ab ,,sinc sinc =*⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛1证明:(){}(){}(){}()()(){}(){}()y x,f bxsinc a x sinc ab bf afrect y x f y x,f bfaf rect y x f W f L f rect y x f y x,f yxyx y x *⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛1==∴=⎪⎪⎭⎫⎝⎛=,,F F,,F ,,F F 1-(2)如果La 1>, Wb 1>,还能得出以上结论吗?答:不能。
因为这时(){}(){}()yx yx bf af rect y x f Wf L f rect y x f ,,F ,,F ≠⎪⎪⎭⎫ ⎝⎛。
1.3 对一个空间不变线性系统,脉冲响应为()()()y x y x h δ77=sinc ,试用频域方法对下面每一个输入()y x f i ,,求其输出()y x g i ,。
(必要时,可取合理近似) (1)()x y x f π4=1cos ,答:()(){}(){}{}{}()(){}{}{}{}{}xcos x cos f rect x cos y 7x sin x cos y x h y x fy x g x πππδπ4=4=⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛74=74==1-1-1-11-1F F F FF F F ,F ,F F,(2)()()⎪⎭⎫ ⎝⎛75⎪⎭⎫ ⎝⎛754=2y rect x rect x cos y x f π, 答:()(){}(){}{}()()(){}{}()()()()⎪⎭⎫⎝⎛75⎪⎭⎫⎝⎛754≅⎭⎬⎫⎩⎨⎧⎪⎭⎫⎝⎛77575⋅75*4=⎭⎬⎫⎩⎨⎧7⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛75⎪⎭⎫ ⎝⎛754==1-1-11-2y rect xrect x cos f rect f sinc 75f sinc x cos y 7x sin y rect xrect x cos y x h y x fy x g x yxππδπF FF F F ,F ,F F,(3)()()[]⎪⎭⎫⎝⎛758+1=3x rect x cos y x f π, 答:()()[]()(){}(){}()()()()()()()()()()()(){}⎪⎭⎫⎝⎛75=75≅⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛775≅⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛7⎪⎭⎫ ⎝⎛75*⎪⎭⎫⎝⎛4+81+4-81+=⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛775*8+1=⎭⎬⎫⎩⎨⎧7⎭⎬⎫⎩⎨⎧⎪⎭⎫⎝⎛758+1=1-1-1-1-1-3x rect f 75f sinc f rect f 75f sinc f rect f δ75fsinc f f x f rect f δ75f sinc x cos y 7x sin x rect x cos y x g yxx y xx y xx x x y xδδδδδπδπF FFF FF F F,(4)()()()()()y rect x rect x comb y x f 22*=4, 答:()()()()(){}()(){}{}()()()()()()()()()()()()(){}()()x π6cos x π2cos f f f f f f f f f ff rect f f δf f δf f δf f δf rect f sinc 2f sinc f f comb y 7x sin y rect x rect x comby x g y x y x y x y x y xx y x y x y x y x xy x y x 1060-3180+250=3+0530-3-0530-1+1590+1-1590+=⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛7⎪⎭⎫⎝⎛-3-2120-1+6370+1-6370+41=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎫ ⎝⎛7⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛2⎪⎭⎫ ⎝⎛41=722*=1-1-1-1-2...,.,.,.,.,F,.,.,.,F FF F F,δδδδ0.25δδδ1.4 给定一个不变线性系统,输入函数为有限延伸的三角波 ()()x x rect x comb x g i Λ*⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛50⎪⎭⎫⎝⎛331=对下述传递函数利用图解方法确定系统的输出。
光学在生活的应用及其原理是什么
光学在生活的应用及其原理是什么引言光学是研究光的传播、发射、捕获和操控的科学领域。
在我们日常生活中,光学技术已经普及到很多领域,为我们提供了方便和乐趣。
本文将介绍光学技术在生活中的应用,并解释其背后的原理。
光学在通信领域的应用•光纤通信:光纤通信是一种利用光纤作为传输介质传递信息的技术。
它比传统的电信技术具有更高的带宽和更低的衰减率。
其原理是利用光纤中的光对信号进行传输,而光纤中的光是通过内部反射实现的。
•光传感器:光传感器使用光感应原理来测量光强度、颜色、方向等。
它在汽车、智能手机、工业自动化等领域得到广泛应用。
光传感器的工作原理是将光转换为电信号,并通过电路进行处理和分析。
光学在医疗领域的应用•扫描和成像技术:光学扫描和成像技术在医疗领域广泛应用于检测和诊断。
例如,光学相干断层扫描(OCT)可以提供高分辨率的组织图像,用于眼科、皮肤科和牙科等疾病的诊断。
其原理是利用光的散射和反射来获取组织内部的图像信息。
•激光治疗:激光在医疗领域被广泛用于手术和治疗。
例如,激光手术可以用于近视矫正和眼底病变的治疗。
激光治疗的原理是利用激光的高能量和高聚焦性来切割、焊接或破坏组织。
光学在能源领域的应用•太阳能光伏:太阳能光伏是利用太阳能将光能转化为电能的技术。
太阳能电池板使用光生电效应将光能转化为电能,从而实现能源的转换和储存。
其原理是通过光的能量将半导体中的电子从价带激发到导带,形成电流流动。
•光伏热发电:光伏热发电是一种将光能转化为热能,并利用热能发电的技术。
光伏热发电利用光伏器件吸收太阳光并将其转化为热能,然后利用热能产生蒸汽驱动涡轮机发电。
光学在娱乐领域的应用•光学投影:光学投影技术在娱乐领域广泛应用于电影院、演唱会和家庭影院等场合。
它使用光学系统将影像投射到幕布上,实现画面的放大和放映。
其原理是利用光的传播和聚焦来形成清晰的影像。
•光学游戏:光学游戏是一种使用光学技术创建交互式游戏体验的技术。
例如,虚拟现实游戏和增强现实游戏使用头部追踪和光学传感器来追踪用户的动作和位置,并将其反映到游戏中。
光学在生活中的应用和原理
光学在生活中的应用和原理引言光学是物理学的一个分支,研究光的性质和行为。
光是一种电磁波,对人类生活产生了深远的影响。
在我们的日常生活中,我们经常遇到光学的应用。
本文将介绍光学在生活中的应用和原理,并以列点的方式进行阐述。
光学在通信中的应用•光纤通信: 光纤通信是一种传输信息的方法,利用光的全反射原理来传送信号。
它具有传输速度快、带宽大、抗干扰能力强等优点,广泛应用于电话、互联网和电视等领域。
•激光通信: 激光通信利用激光的高纯度和方向性,实现高速、稳定的通信。
它可以用于卫星通信、无线电通信和地面通信等场景。
•光电耦合器件: 光电耦合器件是将光信号转换成电信号或将电信号转换成光信号的器件。
在计算机、手机和电视等设备中,光电耦合器件广泛应用于传输和接收信号的过程中。
光学在视觉中的应用•眼镜: 眼镜是一种用来矫正视觉问题的光学工具。
近视眼镜和远视眼镜利用凸透镜原理来改变光的聚焦点,使得视力得到正常的恢复。
•显微镜: 显微镜是一种用来放大微小物体的光学仪器。
它利用物体对光的反射、折射和散射来获取放大的图像。
显微镜广泛应用于生物学、医学和材料科学等领域。
•照相机: 照相机利用镜头将光线聚焦在感光材料上,记录下光的信息,从而得到图像。
照相机是摄影爱好者和专业摄影师的重要工具。
光学在传感器中的应用•光电传感器: 光电传感器是一种将光信号转换成电信号的传感器。
光电传感器在自动化控制、反光测距和物体检测等领域起着重要的作用。
•光学遥感: 光学遥感是利用航空器和卫星等远距离感测技术获取地球表面信息的一种方法。
它广泛应用于地质勘探、环境监测和军事侦察等领域。
•光学传感器: 光学传感器利用光的散射、吸收和透射等特性来检测目标物体的信息。
光学传感器在测量和检测领域有着广泛的应用。
光学在显示技术中的应用•液晶显示器: 液晶显示器利用光的偏振和透射原理来显示图像。
它在电视、计算机显示器和智能手机等设备中得到了广泛的应用。
•有机发光二极管(OLED): OLED是一种通过电致发光原理来显示图像的技术。
光学信息处理技术
利用光学信息处理技术对物质成分、结构、含量等方面进行光谱分 析,提供快速、准确的分析结果。
光学仪器中的应用
光学显微镜
01
通过光学信息处理技术提高显微镜的成像质量和分辨率,应用
于生物学、医学、材料科学等领域。
光学望远镜
02
利用光学信息处理技术对天体进行观测和分析,推动天文学的
发展。
光学干涉仪
光学信息处理技术
汇报人: 202X-01-04
目录
• 光学信息处理技术概述 • 光学信息处理技术的基本原理 • 光学信息处理技术的主要方法 • 光学信息处理技术的实际应用 • 光学信息处理技术的未来展望 • 光学信息处理技术的挑战与解决方
案
01 光学信息处理技术概述
定义与特点
定义
光学信息处理技术是指利用光学 原理和光学器件对信息进行获取 、传输、处理、存储和显示的技 术。
特点
高速度、高精度、大容量、并行 处理、非接触、非破坏性等。
光学信息处理技术的发展历程
01
19世纪
光学显微镜和望远镜的发明,奠定了光学信息处理的基 础。
02
20世纪
全息摄影技术的出现,实现了三维信息的存储与再现。
03
21世纪
光子晶体、光子计算机等新型光学器件的出现,推动了 光学信息处理技术的发展。
光的干涉与衍射
光的干涉
当两束或多束相干光波在空间某一点叠加时,光波的振幅会 因相位差而发生变化,产生明暗相间的干涉现象。干涉现象 在光学信息处理中可用于实现图像增强、图像恢复等功能。
光的衍射
光波在传播过程中遇到障碍物时,会绕过障碍物的边缘继续 传播的现象。衍射现象在光学信息处理中可用于实现光束控 制、光束合成等功能。
光学信息技术原理及应用_26840
;
x f f ff a , y f 0
;
x f f ff a , y f 0
另一解法续六
1 9 0 6
(2)使像平面出现条纹时,物体透射光场的频谱中至少要有两项能 够通过透镜的出瞳,射到物面上成像。显然要求
x f f , y f 0
;
x f f ff a , y f 0
在非相干照明条件下,系统的截止频率2ρ c大于物的基频2/b,所 以零频和基频均能通过系统参与成像。于是在像面上仍有图像存在 非相干照明比相干照明好
第(2)小题比较结果
x
1 9 0 6
对于相干照明,理想像的复振幅分布为 cos2 i ,其频率为 b a 1/b 。按题设系统的截止频率为 c ,且1/b<ρ c 。因此这 d i 个呈余弦分布的复振幅能不受影响地通过此系统成像。
1 9 0 6
解答续四
在达到前面给出的最大值,即 时,几何像的傅氏变 换中的三项只剩下两项,这两个 函数与光瞳函数的乘积还是 函数,而且因为光瞳函数在光瞳范围内取值为一,两个 函数前 的系数也不变 进一步作反变换可以得到像面上的光场分布为
aK2 d i2 U i xi , yi F F U i xi , yi F 2
t1 ( x) cos2
1 9 0 6
(2)物体的复振幅透过率为 式中
d i d i a b b
t 2 ( x) cos 2
b
x b
第(1)小题比较结果
采用相干照明,对于半径为a的圆形出瞳,其截止频率为 a c d i 题设条件λ di/b<a<2λ di/b可得
1 9 0 6
解答
光学信息处理技术
光学信息处理技术光学信息处理技术是一种基于光学的信息处理方式,它利用光的干涉、衍射、偏振等特性,实现对信息的获取、转换、加工和存储等操作。
这种技术具有高速度、高精度、高可靠性等优点,因此在现代通信、传感、生物医学等领域得到了广泛应用。
一、光学信息处理技术的基本原理光学信息处理技术主要基于两个基本原理:干涉和衍射。
干涉是指两个或多个光波叠加时,光强分布发生改变的现象。
通过控制干涉的相干性,可以实现信息的叠加、增强或抵消等操作。
衍射是指光波遇到障碍物时产生的空间频率变化现象。
通过控制衍射的图案,可以实现信息的滤波、变换等操作。
二、光学信息处理技术的应用1、光学计算:光学计算利用光的干涉和衍射原理,可以实现高速数学运算和数据处理。
例如,利用光学干涉仪可以实现傅里叶变换等复杂计算。
2、光学传感:光学传感利用光的干涉和偏振原理,可以实现高灵敏度的传感和测量。
例如,利用光学传感技术可以实现生物分子和环境参数的检测。
3、光学通信:光学通信利用光的相干性和偏振原理,可以实现高速、大容量的数据传输。
例如,利用光学通信技术可以实现城域网和长途通信。
4、光学存储:光学存储利用光的干涉和衍射原理,可以实现高密度、高速度的信息存储。
例如,利用光学存储技术可以实现光盘、蓝光等存储介质。
三、光学信息处理技术的未来趋势随着科技的不断发展,光学信息处理技术也在不断创新和进步。
未来,光学信息处理技术将朝着以下几个方向发展:1、高速度、大容量:随着数据量的不断增加,对光学信息处理技术的速度和容量要求也越来越高。
未来的光学信息处理技术将更加注重提高处理速度和扩大存储容量。
2、微型化、集成化:随着微纳加工技术的不断发展,未来的光学信息处理技术将更加注重微型化和集成化。
例如,利用微纳加工技术可以实现光学器件的集成和封装,提高系统的可靠性和稳定性。
3、智能化、自动化:未来的光学信息处理技术将更加注重智能化和自动化。
例如,利用人工智能技术可以实现光学系统的自适应和优化,提高系统的智能化水平。
光学在生活中的应用及原理
光学在生活中的应用及原理1. 光学的基本原理光学是研究光的传播、反射、折射、干涉、衍射等现象和规律的科学。
其基本原理主要包括:•光的传播:光是电磁波的一种,通过电磁场相互作用的方式传播。
•光的反射:光在与介质边界相交时,一部分光会发生反射现象,根据反射定律可以计算出反射光的入射角和反射角之间的关系。
•光的折射:光在从一种介质传播到另一种介质时,会发生折射现象,根据斯涅尔定律可以计算出入射角和折射角之间的关系。
•光的干涉:当两束光相交时,根据干涉原理可以计算出干涉条纹的分布情况。
•光的衍射:当光通过一个孔或者经过缝隙时,会发生衍射现象,根据衍射原理可以计算出衍射的图样。
2. 光学在生活中的应用2.1 光学仪器光学仪器是指使用光学原理制成的用于观察、测量、检验光学现象和物体性质的设备。
常见的光学仪器有: - 显微镜:利用光的折射和放大原理观察微小物体。
- 望远镜:利用光的折射和聚焦原理观察遥远的物体。
- 照相机:利用光的反射和成像原理通过镜头将图像聚焦到感光材料上。
- 激光器:利用光的受激辐射原理产生高度聚焦的光束,用于切割、焊接、测距等应用。
- 光学投影仪:利用光的透射和投影原理将图像放大投射到屏幕上。
2.2 光学通信光学通信是利用纤维光缆传输光信号进行信息传输的一种通信方式。
其基本原理是利用光的全反射和调制原理,在光纤中传输光信号。
光学通信具有带宽大、传输距离远、抗干扰能力强的优点,被广泛应用于电话、互联网等通信领域。
2.3 光学该长光学改长指的是利用光学原理对眼睛进行矫正,消除视觉缺陷。
常见的光学改长应用有: - 眼镜:利用透镜原理校正眼球折光度异常,帮助视力正常的人看清远近物体。
- 隐形眼镜:利用透明材料制成的透镜贴在眼球上,进行近视或远视的矫正。
- 激光矫正手术:利用激光原理对角膜进行切削,改变眼球的折光度。
2.4 光学传感器光学传感器利用光敏元件对光信号进行检测和测量,转化为电信号,实现对光学特性的感知。
信息光学知识点总结
信息光学知识点总结一、光学原理1. 光的性质光是一种电磁波,具有波动和粒子两种性质。
光波的波长和频率决定了其颜色和能量,而光的粒子性质则体现在光子这一基本粒子上。
2. 光的衍射和干涉光在通过狭缝或障碍物时会发生衍射,而光波之间的叠加会产生干涉现象。
这些现象使得我们可以利用光进行信息的编码和解码,实现光学信息传输和处理。
3. 光的折射和反射折射和反射是光在与界面相交时发生的基本现象,它们是光学成像和光学器件设计的基础。
4. 光的偏振偏振是光波振动方向的特性,光的偏振性质被广泛应用于光学通信和图像传感器中。
5. 光的色散和色彩光通过介质时会发生色散现象,这一现象使得彩色成像、光谱分析等得以实现。
6. 光的相干性光的相干性决定了光波之间的干涉和衍射效应,而相干光更适用于携带信息和进行信息处理。
7. 光的传播光线传播的轨迹是光学成像和光学器件设计的基础,了解光在不同介质中的传播规律对于光学系统的设计是至关重要的。
二、信息光学应用1. 光学成像光学成像是信息光学的一个重要应用领域,其中包括摄影、摄像、显微镜、望远镜等。
光学成像技术的发展对于医学、生物学、天文学、地质学等领域产生了深远的影响。
2. 光学通信光学通信是一种利用光波进行信息传输的通信方式,它具有大带宽、低损耗、高安全性等优点,因此成为了现代通信系统中的重要组成部分。
3. 光存储技术光存储技术利用光对材料的改变来存储信息,包括光盘、光存储器件等。
光存储技术具有高密度、长寿命等优点,适用于大容量数据存储。
4. 光学传感器光学传感器利用光的特性来实现对信号的转换和处理,常见的光学传感器包括光电二极管、光电晶体管、CCD传感器等,它们在摄影、医学影像、安防监控等领域有着广泛的应用。
5. 光学信息处理光学信息处理是指利用光学原理进行信息的编码、解码、复制、加密等处理过程,包括光学数据处理、光学图像处理等。
6. 光学计算光学计算是一种利用光学原理进行计算和处理的技术,例如光学处理器、光学逻辑门等。
光学信息技术原理及应用
6.1光波作为信息载体具有特别显著的优点:一是光波的频率高达10 14Hz以上二是光波的并行性,光波是独立传播的,两束甚至于多束光在空间传播时相遇,可以互不干扰,这为光信息的多路并行传输和处理提供了可能性。
空间光调制器是由英语的spatial light modulator 直译过来的。
常缩写成SLM。
顾名思义,它是一种能对光波的空间分布进行调制的器件。
基本特点:它是由许多基本的独立单元组成的一维线阵或二维阵列,这些独立单元可以是物理上分割的小单元,也可以是无物理边界的连续的整体,只是由于器件材料的分辨率和输入图像或信号的空间分辨率有限,而形成的一个一个小单元。
把控制小单元的光电信号称为“写入光”或“写入电信号”,即有两种方式。
如果采用写入光实现寻址的过程,则称为“光寻址”,---- 光寻址时,所有像素的寻址同时完成,所以它是一种并行寻址。
---- 其特点是:寻址速度最快,而且像素的大小,原则上只受写入光成像光学系统分辨率的限制。
如果采用写入电信号实现寻址的过程,则称为“电寻址”,---- 电寻址时,因为电信号是一个时间序列,原则上只能依次地输送到调制器的各个像素上去,所以电寻址是一种串行寻址方式。
空间光调制器中能用于调制或变换的物理效应很多:泡克尔斯效应(即线性电光效应)、克尔效应(即二次电光效应)、声光效应、磁光效应、半导体的自电光效应、光折变效应。
空间光调制器的功能:作为输入器件---- 电—光转换和串行—并行转换---- 非相干光—相干光转换---- 波长转换6.2——液晶光阀从分子排列的有序性来区分液晶:---- 层状(近晶型)---- 丝状(向列型)---- 螺旋状(胆甾型)双折射与扭曲效应电控双折射效应动态散射效应磁光空间光调制器---- 法拉第效应---- 克尔磁光效应全息术最初是由英国科学家丹尼斯-盖伯提出全系照相与普通照相的区别:全息照相与普通照相的方法截然不同。
普通照相在胶片上记录的是物光的振幅信息,而全息照相在记录振幅信息的同时,还记录了物光的相位信息。
信息光学的发展及其应用
信息光学的发展及其应用《信息光学的发展及其应用》摘要:信息光学作为新兴的一种光学技术,具有多面向的应用优势,主要应用于广播电视通信、成像处理、计算机及其自动化等领域,为信息处理技术的发展提供了新的视野。
本文从信息光学的发展史、基础理论及其实际应用等角度,综述了信息光学的发展及其应用。
文章着重介绍了信息光学的基本概念及其技术原理,分析了信息光学的主要应用领域和应用系统,并介绍了信息光学及其在多个领域的应用情况,如广播电视通信、成像处理、计算机及其自动化等。
关键词:信息光学;基本概念;应用;广播电视通信;成像处理;计算机自动化1 引言信息光学是一种新兴的光学技术,它将光学技术与信息处理技术有机结合,将光学信号处理技术应用于信息处理领域中,以提高处理速度和处理精度,并为信息处理技术的发展提供新的视野。
信息光学主要应用于广播电视通信、成像处理、计算机及其自动化等领域,实现了信息处理的快速变化。
本文主要从信息光学的发展史、基础理论及其实际应用等方面,综述了信息光学的发展及其应用,并介绍了今后发展趋势。
2 信息光学的发展史信息光学的发展可以追溯到19世纪中叶,1836年,法国科学家埃蒙斯(A.D.Emmons)发明了“光笔”,并将其用于写字,1850年,埃蒙斯(A.D.Emmons)、库塔(G.V.Kutta)和曼斯特罗(R.M.Mestler)等科学家发明了第一台光学复制机,后来,有关信息光学的研究和发展得到进一步发展和推广。
20世纪50年代,信息光学受到进一步关注,随着微处理器技术的快速发展,信息光学技术被广泛应用于广播电视通信,电信系统以及成像处理等领域,信息光学技术得到了迅速的发展。
此后,信息光学技术又经历了高精度激光扫描显示设备、数字图像处理设备、投影显示装置以及多媒体技术的发展,信息光学技术的应用不断拓展。
3 信息光学基本概念信息光学是指将光学技术与信息处理技术有机结合,将光学信号处理技术应用于信息处理领域中,以提高处理速度和处理精度,满足信息素质要求的一种新兴的光学技术。
信息光学中的光栅及其应用
信息光学中的光栅及其应用信息光学是一门关于光的传输、存储和处理的科学和技术领域。
在信息光学中,光栅是一种重要的光学元件,具有广泛的应用。
本文将介绍光栅的原理和结构,并探讨在信息光学中的一些应用。
一、光栅的原理和结构光栅是由许多平行的透明条纹组成,条纹之间的间距非常均匀。
光传递过光栅时,会发生光的衍射现象。
这是因为光栅上的透明条纹会改变光波的传播方向和相位,使光在不同方向上出现衍射。
一般来说,光栅可以分为振动光栅和位相光栅。
振动光栅是指通过周期性的机械结构引起光传播方向和相位的改变。
位相光栅则是通过材料的折射率差异来实现,是一种光学材料的微周期性组织结构。
二、光栅的应用1. 光栅衍射光栅衍射是光栅最基本的应用之一。
光栅能够将光按照一定的角度分离出不同的波长。
这在光谱分析和光学成像中非常有用。
例如,光栅可以用于分光计、光谱仪和显微镜等仪器中,有效地分离和测量光谱。
2. 光栅波前调制光栅波前调制是利用光栅的衍射特性来调节光的相位和振幅。
这可以用于激光传输、干涉成像和光学信息处理等方面。
通过光栅波前调制技术,可以实现光的相位调制、光的空间调制和光的波前成像等功能。
3. 光栅光纤传感器光栅在光纤传感器中也有重要的应用。
通过在光纤中引入周期性的折射率变化,形成光纤光栅传感器。
这种传感器可以实现对温度、压力、应变等参数的高灵敏度检测,广泛应用于航空航天、石油化工和生物医学等领域。
4. 光栅显示技术光栅在显示技术中也有广泛应用。
例如,液晶光栅可以用于显示器和投影仪中,可以实现高分辨率和真实色彩的图像显示。
光栅显示技术还在虚拟现实、增强现实和光学计算等领域有重要应用。
5. 光栅光学存储光栅光学存储是一种利用光强和光栅之间的关系来进行信息存储和读取的技术。
将光信息编码到光栅中后,可以通过光的衍射来解码和读取信息。
这种光学存储技术具有高速、大容量和非接触等优势,在光学存储器和光学信息处理中有广泛应用。
三、总结信息光学中的光栅是一种重要的光学元件,具有广泛的应用。
光学信息技术原理及应用(第二版)课后答案汇总
第一章 习题解答1.1 已知不变线性系统的输入为()()x x g c o m b =系统的传递函数⎪⎭⎫⎝⎛b f Λ。
若b 取(1)50=.b (2)51=.b ,求系统的输出()x g '。
并画出输出函数及其频谱的图形。
答:(1)()(){}1==x x g δF 图形从略, (2)()()()()()x s co f f δf δx g x x x πδ232+1=⎭⎬⎫⎩⎨⎧1+31+1-31+=F 图形从略。
1.2若限带函数()y x,f 的傅里叶变换在长度L 为宽度W 的矩形之外恒为零,(1) 如果L a 1<,Wb 1<,试证明()()y x f y x f b x a x ab ,,sinc sinc =*⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛1 证明:(){}(){}(){}()()(){}(){}()y x,f b x sinc a x sinc ab bf af rect y x f y x,f bf af rect y x f Wf L f rect y x f y x,f y x y x yx *⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛1==∴=⎪⎪⎭⎫⎝⎛=,,F F ,,F ,,F F 1-(2) 如果L a 1>, Wb 1>,还能得出以上结论吗?答:不能。
因为这时(){}(){}()y x yx bf af rect y x f W f L f rect y x f ,,F ,,F ≠⎪⎪⎭⎫⎝⎛。
1.3 对一个空间不变线性系统,脉冲响应为 ()()()y x y x h δ77=sinc ,试用频域方法对下面每一个输入()y x f i ,,求其输出()y x g i ,。
(必要时,可取合理近似) (1)()x y x f π4=1cos ,答:()(){}(){}{}{}()(){}{}{}{}{}xcos x cos f rect x cos y 7x sin x cos y x h y x f y x g x πππδπ4=4=⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛74=74==1-1-1-11-1F F F F F F F ,F ,F F ,(2)()()⎪⎭⎫ ⎝⎛75⎪⎭⎫⎝⎛754=2y rect x rect x cos y x f π, 答:()(){}(){}{}()()(){}{}()()()()⎪⎭⎫ ⎝⎛75⎪⎭⎫ ⎝⎛754≅⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛77575⋅75*4=⎭⎬⎫⎩⎨⎧7⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛75⎪⎭⎫ ⎝⎛754==1-1-11-2y rect x rect x cos f rect f sinc 75f sinc x cos y 7x sin y rect x rect x cos y x h y x f y x g x y x ππδπF F F F F ,F ,F F ,(3)()()[]⎪⎭⎫⎝⎛758+1=3x rect x cos y x f π, 答:()()[]()(){}(){}()()()()()()()()()()()(){}⎪⎭⎫ ⎝⎛75=75≅⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛775≅⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛7⎪⎭⎫ ⎝⎛75*⎪⎭⎫ ⎝⎛4+81+4-81+=⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛775*8+1=⎭⎬⎫⎩⎨⎧7⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛758+1=1-1-1-1-1-3x rect f 75f sinc f rect f 75f sinc f rect f δ75f sinc f f x f rect f δ75f sinc x cos y 7x sin x rect x cos y x g y x x y x x y x x x x y x δδδδδπδπF F F F F F F F ,(4)()()()()()y rect x rect x comby x f 22*=4, 答:()()()()(){}()(){}{}()()()()()()()()()()()()(){}()()x π6cos x π2cos f f f f f f f f f f f rect f f δf f δf f δf f δf rect f sinc 2f sinc f f com b y 7x sin y rect x rect x com by x g y x y x y x y x y x x yx y x y x y x x y x y x 1060-3180+250=3+0530-3-0530-1+1590+1-1590+=⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛7⎪⎭⎫ ⎝⎛-3-2120-1+6370+1-6370+41=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎫ ⎝⎛7⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛2⎪⎭⎫ ⎝⎛41=722*=1-1-1-1-2...,.,.,.,.,F ,.,.,.,F F F F F ,δδδδ0.25δδδ1.4 给定一个不变线性系统,输入函数为有限延伸的三角波()()x x rect x comb x g i Λ*⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛50⎪⎭⎫ ⎝⎛331= 对下述传递函数利用图解方法确定系统的输出。
陈家璧版光学信息技术原理及应用习题解答章
第一章习题1.1 不变线性系统的输入为系统的传递函数。
假设b 取〔1〕50=.b 〔2〕51=.b ,求系统的输出()x g '。
并画出输出函数及其频谱的图形。
答:〔1〕()(){}1==x x g δF 图形从略,〔2〕()()()()()x s co f f δf δx g x x x πδ232+1=⎭⎬⎫⎩⎨⎧1+31+1-31+=F 图形从略。
()y x,f 的傅里叶变换在长度L 为宽度W 的矩形之外恒为零,(1)如果,,试证明证明:(){}(){}(){}()()(){}(){}()y x,f b x sinc a x sinc ab bf af rect y x f y x,f bf af rect y x f W f L f rect y x f y x,f y x y x y x *⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛1==∴=⎪⎪⎭⎫ ⎝⎛=,,F F ,,F ,,F F 1- (2)如果, ,还能得出以上结论吗?答:不能。
因为这时(){}(){}()y x y x bf af rect y x f W f L f rect y x f ,,F ,,F ≠⎪⎪⎭⎫ ⎝⎛。
1.3 对一个空间不变线性系统,脉冲响应为试用频域方法对下面每一个输入()y x f i ,,求其输出()y x g i ,。
〔必要时,可取合理近似〕〔1〕()x y x f π4=1cos ,答:()(){}(){}{}{}()(){}{}{}{}{}x cos x cos f rect x cos y 7x sin x cos y x h y x f y x g x πππδπ4=4=⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛74=74==1-1-1-11-1F F F F F F F ,F ,F F ,〔2〕()()⎪⎭⎫ ⎝⎛75⎪⎭⎫⎝⎛754=2y rect x rect x cos y x f π, 答:()(){}(){}{}()()(){}{}()()()()⎪⎭⎫ ⎝⎛75⎪⎭⎫ ⎝⎛754≅⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛77575⋅75*4=⎭⎬⎫⎩⎨⎧7⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛75⎪⎭⎫ ⎝⎛754==1-1-11-2y rect x rect x cos f rect f sinc 75f sinc x cos y 7x sin y rect x rect x cos y x h y x f y x g x y x ππδπF F F F F ,F ,F F ,〔3〕()()[]⎪⎭⎫ ⎝⎛758+1=3x rect x cos y x f π, 答: ()()[]()(){}(){}()()()()()()()()()()()(){}⎪⎭⎫ ⎝⎛75=75≅⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛775≅⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛7⎪⎭⎫ ⎝⎛75*⎪⎭⎫ ⎝⎛4+81+4-81+=⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛775*8+1=⎭⎬⎫⎩⎨⎧7⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛758+1=1-1-1-1-1-3x rect f 75f sinc f rect f 75f sinc f rect f δ75f sinc f f x f rect f δ75f sinc x cos y 7x sin x rect x cos y x g y x x y x x y x x x x y x δδδδδπδπF F F F F F F F , 〔4〕()()()()()y rect x rect x comb y x f 22*=4,答:1.4 给定一个不变线性系统,输入函数为有限延伸的三角波 对下述传递函数利用图解方法确定系统的输出。
傅里叶光学金典试题及答案和重要知识点总结
因位置不同而引起的位相色散
x , y
z z
菲涅耳衍射可视为函数
U
0
(
x0
,
y0 ) exp[
j
k 2z
( x0 2
y
0
2
)]
的傅里叶变换在处的值
(3)频域(角谱)表达式: A(u,v) A0 (u,v)exp( jkz)exp[ jz(u2 v2 )]
A(u, v) A0 , • H , H(u,v) exp( jkz)exp[ jz(u2 v2 )] A(u, v) 衍射场角谱 A0 , 孔径后角谱
3、脉冲响应是孔径的傅里叶变换或夫朗和费衍射图样,中心在(-Mx0, -My0)点。 8. 衍射受限系统, 阿贝成像理论;
所谓衍射受限 是指仅仅考虑系统的衍射限制, 不考虑系统的几何像差。
在衍射受限系统中,光的衍射仅受到系统孔径光阑尺寸的限制,因此在考察衍射受限系统时,实际上主要考察
孔径光阑的衍射作用。如果入(出)射光瞳无限大,则光的衍射不受系统的限制,点物应该成理想的点像。然而,
δ 函数的性质:①偶函数性质: (- x) (x) ②坐标缩放性质: (ax) 1 (x)
a
③筛选性质: f (x) (x x0 )dx f (x0 )
④乘积性质: f x• x x0 f x0 • x x0
⑤卷积性质: f x x f x
f x x x0 f x x0
成像过程包含了两次衍射过程:由物面到后焦面,物体衍射光波分解为各种频率的角谱分量,即不同方向传播
的平面波分量,在后焦面上得到物体的频谱。这是一次傅里叶变换过程。由后焦面到像面,各角谱分量又合成为
像,这是一次傅里叶变换逆过程。
9. 相干成像系统的点扩展函数, 相干传递函数; 相干照明系统中,脉冲响应是点物产生的衍射斑的振幅分布。
陈家璧版-光学信息技术原理及应用习题解答(4-7章)
第四章习题4.1 若光波的波长宽度为λΔ,频率宽度为νΔ,试证明:λλννΔΔ=。
设光波波长为nm 8632=.λ,nm 8-10⨯2=λΔ,试计算它的频宽νΔ。
若把光谱分布看成是矩形线型,那么相干长度?=c l证明:参阅苏显渝,李继陶《信息光学》P349,第4.1题答案。
421.510c λνλ∆∆==⨯赫,32010()c c cl ct m ν===⨯∆4.2 设迈克尔逊干涉仪所用的光源为nm 0589=1.λ,nm 6589=.2λ的钠双线,每一谱线的宽度为nm 010.。
(1)试求光场的复自相干度的模。
(2)当移动一臂时,可见到的条纹总数大约为多少?(3)可见度有几个变化周期?每个周期有多少条纹? 答:参阅苏显渝,李继陶《信息光学》P349,第4.2题答案。
假设每一根谱线的线型为矩形,光源的归一化功率谱为 ()^1212rect rect νννννδνδνδν⎡--⎤⎛⎫⎛⎫=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦G (1)光场的复相干度为^1()()exp(2)1sin ()exp(2)[1exp(2)]2r j d c j j τνπντνδντπντπντ∞==+∆⎰G式中12ννν-=∆,复相干度的模为ντπδνττ∆=cos )(sin )(c r 由于νδν∆,故第一个因子是τ的慢变化非周期函数,第二个因子是τ的快变化周期函数。
相干时间由第一个因子决定,它的第一个零点出现在δντ1=c 的地方,c τ为相干时间,故相干长度δλλδλλδντ22≈===cc l c c 。
(2)可见到的条纹总数589301.05893====δλλλcl N (3)复相干度的模中第二个因子的变化周期ντ∆=1,故可见度的变化周期数601.06==∆=∆==δλλδννττc n 每个周期内的条纹数9826058930===n N4.3假定气体激光器以N 个等强度的纵模振荡,其归一化功率谱密度可表示为()()()()∑21-21--=+-1=N N n n NνννδνΔgˆ 式中,νΔ是纵模间隔,ν为中心频率并假定N 为奇数。
光学原理及应用
光学的基本原理及应用人类很早就开始了对光的观察研究,逐渐积累了丰富的知识。
远在2400多年前,我国的墨翟(公元前468—前376)及其弟子们所著的《墨经》一书,就记载了光的直线传播、影的形成、光的反射、平面镜和球面镜成像等现象,可以说是世界上最早的光学著作。
现在,光学已成为物理学的一个重要分支,并在实际中有广泛应用.光学既是物理学中一门古老的基础学科,又是现代科学领域中最活跃的前沿科学之一,具有强大的生命力和不可估量的发展前景。
按研究目的的不同,光学知识可以粗略地分为两大类.一类利用光线的概念研究光的传播规律,但不研究光的本质属性,这类光学称为几何光学;另一类主要研究光的本性(包括光的波动性和粒子性)以及光和物质的相互作用规律,通常称为物理光学。
一、光学现象原理光的传播速度很快,地球上的光源发出的光,到达我们眼睛所用的时间很短,根本无法觉察,所以历史上很长一段时间里,大家都认为光的传播是不需要时间的.直到17世纪,人们才认识到光是以有限的速度传播的。
光速是物理学中一个非常重要的基本常量,科学家们一直努力更精确地测定光速.目前认为真空中光速的最可靠的值为c=299 792 458 m/s在通常的计算中可取c=3.00×108m/s玻璃、水、空气等各种物质中的光速都比真空中的光速小.(一)直线传播光能够在空气、水、玻璃透明物质中传播,这些物质叫做介质.在小学自然和初中物理中我们已经学过,光在一种均匀介质中是沿直线传播的.自然界的许多现象,如影、日食、月食、小孔成像等,都是光沿直线传播产生的.由于光沿直线传播,因此可以沿光的传播方向作直线,并在直线上标出箭头,表示光的传播方向,这样的直线叫做光线。
物理学中常常用光线表示光的传播方向。
有的光源,例如白炽灯泡,它发出的光是向四面八方传播的;但是有的光源,例如激光器,它产生的光束可以射得很远,宽度却没有明显的增加.在每束激光中都可以作出许多条光线,这些光线互相平行,所以叫做平行光线.做简单实验的时候,太阳光线也可以看做平行光线.(二)反射与折射阳光能够照亮水中的鱼和水草,同时我们也能通过水面看到烈日的倒影;这说明光从空气射到水面时,一部分光射进水中,另一部分光被反射,回到空气中.一般说来,光从一种介质射到它和另一种介质的分界面时,一部分光又回到这种介质中的现象叫做光的反射;而斜着射向界面的光进入第二种介质的现象,叫做光的折射。
光学科技领域各方面介绍
光学科技领域各方面介绍光学科技是一门研究光的产生、传播、相互作用和控制的学科,广泛应用于多个领域,如通信、医疗、材料科学等。
本文将从光的特性、光学器件、光学成像和光学通信等方面介绍光学科技的各个方面。
一、光的特性光是电磁辐射的一种,具有波粒二象性。
光的波动性表现为光的传播具有波长、频率和振幅等特性,可以被反射、折射和干涉。
光的粒子性表现为光子,是一种离散的能量量子。
光的特性使得光学科技能够实现折射、干涉和衍射等现象,为后续的应用奠定基础。
二、光学器件光学器件是用于产生、操控和探测光的设备。
常见的光学器件包括透镜、棱镜、偏振片等。
透镜是最基本的光学器件之一,通过改变光线的传播方向和焦距来实现光的聚焦或发散。
棱镜则可以将光线折射和分散,使不同波长的光呈现出不同的色散效果。
偏振片则可以选择性地通过或阻挡特定方向的光振动方向。
这些光学器件的应用广泛,例如在相机镜头、眼镜和激光器等领域均有重要作用。
三、光学成像光学成像是利用光学原理实现对物体形象的获取和显示。
常见的光学成像装置包括显微镜、望远镜、照相机等。
显微镜通过透镜将物体放大,使得人眼能够观察到微小的细节。
望远镜则利用透镜和反射镜将远处的物体放大,使其看起来更近。
照相机则通过光学系统将光线聚焦在感光材料上,记录下物体的图像。
这些光学成像装置在科研、医学和摄影等领域发挥着重要作用。
四、光学通信光学通信是利用光的特性进行信息传输的技术。
光纤作为光学通信的核心组成部分,能够将信息以光的形式在纤维中传输。
光纤具有低损耗、大带宽和抗干扰等优点,使得光学通信具有高速、远距离传输和大容量传输的能力。
光学通信广泛应用于互联网、电话网络和有线电视等领域,成为现代通信领域的重要技术。
光学科技是一门研究光的产生、传播、相互作用和控制的学科。
光学科技的各个方面都在不同领域发挥着重要作用。
光的特性为光学器件的设计和应用提供了基础,光学成像技术使我们能够观察到微小的细节,光学通信技术实现了高速、远距离的信息传输。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4
傅里叶变换定理(2)
1 9 0 6
(4)帕色伐(Parseval)定理:如果 有: Fg xexp j 2f a x G f x f a
Fg x G f x
则
g x dx G f x dx
2 2
该定理表明信号在空域和时域的能量守恒。
ab rect(af )rect(bf )
由|b|<|a|可知
1 1
b
a
,故上式
ab rectafy
x x x 1 sin c sin c F ab rect af x b sin c b a a
20
1 9 0 6
解:由于物函数的最高空间频率为5线/mm,即其最大带
宽。
根据抽样定理,若限带函数在频域中 f x Bx , f y B y 以外恒为0,函数在空域中 x X , y Y 范围内抽样 数至少为
2 X 2Y 4 XY 4 Bx By 16XYBx By 1 2 Bx数及其傅里叶变换(4)
1 9 0 6
(7)梳状函数
combx
n
x n
用来表示光栅,抽样
Fcomb x comb f x
(8)高斯函数
exp x 2
用于表示激光光束光强分布
F exp x2 exp f x
x x x sinc * sinc b sinc b a a
15
1 9 0 6
证明: (1)对等式左边取傅里叶变换得:
1 1 x x F sin c * cos 2f 0x F sin c F cos 2f 0x b b b b 1 rect(bf ) F(cos 2f 0x ) rect(bf ) f f 0 f f 0 2
F g 0(x ) f g 0 x 1
当b=3时,
F g 0(x ) f f 1 f 1
g 0 x 1 2 cos2x
19
1 9 0 6
3.一个二维的物函数f(x,y),在空域中尺寸为 10*10mm2,最高空间频率为5线/mm, 若要制作一张傅里叶变换计算全息图,物面上最少的 抽样点数为多少?
2
(4)正弦函数 sin 2f 0 x
1 F sin 2f 0 x f x f 0 f x f 0 2i
7
常用函数及其傅里叶变换(3)
1 9 0 6
(5)矩形函数
x 1, rect a 0 ,
a 2 其它 x
1 f f 0 f f 0 在频谱面上一个有限的区域中不 2 为0,包围该区域的最小矩形在f方向上的宽度为2f0,
1 1 滤波函数的宽度为 ,由题意可知2f0< b b
故满足采样定理,能够准确恢复原函数 cos 2f 0x 命题得证。
16
1 9 0 6
(2) F sin c x sin c x F sin c x F sin c x b a b a
• 任意函数和位于 x0 处的脉冲函数的卷积得到
f x * ( x x0 ) f x x0 d f x x0
• 这个性质有助于对于重复的物理结构的描述,如光栅、 双缝等
12
线性空不变系统的传递函数(理解计算
1 9 0 6
2
9
卷积的定义及计算(掌握)
1 9 0 6
• 对于两个复值函数 f (x) 和 h(x) , 其卷积定义为
g ( x)
f hx d
f ( x) * h( x)
• 式中*表示卷积运算。
10
卷积过程图示(1)
1 9 0 6
原函数 折叠 位移 相乘—得到被积函数
F fx , f y
13
抽样定理(理解掌握)
1 9 0 6
假如函数 g ( x, y )是限带函数,即它的频谱仅在频率平面上一个 有限区域内不为零 若包围该区域的最小矩形在 f x 和 f y 方向上的宽度分别为 B 和 B y
x
欲使图中周期性复现的函数频谱不会相互混叠,必须使 1 1 2B x 2B y X Y 或者说抽样间隔必须满足
X 2Bx
Y 2By
式中表示的两方向上的最大抽样间距和通常称作奈奎斯特 (Nyquist)抽样间隔
14
习题1
1 9 0 6
1.给定正实常数f0和实常数a与b,求证:
1 (1)若| b | ,则 2f 0
(2)若
,
ba
,则
1 x sinc * cos2f 0 x cos2f 0 x b b
1 f ( x) 0 1 h x 2 0 (0 x 1) (其它) (0 x 1) (其它)
11
包含δ函数的卷积----函数的移位
1 9 0 6
原点处的篩选性质有
f x * ( x) f x d f x
Fg x G f x
3
傅里叶变换定理(2)
1 9 0 6
(3)位移定理:如果
Fg x G f x
则有,函数在空域中的平移,带来频域中的相移
Fg x a G f x exp j 2f x a
同时,函数在空域中的相移,带来频域中的平移
Fg xexp j 2f a x G f x f a
2
傅里叶变换定理(1)(运用)
1 9 0 6
(1)线性定理:如果
Fg x G f x , Fhx H f x
则有
F g x hx G f x H f x
(2)相似性定理:如果 则有
1 fx F g ax G a a
17
1 9 0 6
2. 已知线性不变系统的输入为 g x combx ,系统的传
f 递函数为 rect b
,若b取下列数值,求系统的输出。
并画出输出函数及其频谱的图形。
(1)b=1
(2)b=3
18
1 9 0 6
解:
f F g 0(x ) G f H f comb(f ) rect b 当b=1时,
光学信息技术原理及应用
(五)
总结与习题 1
9 0 6
傅里叶变换(熟练掌握)
1 9 0 6
G f F g x
g xexp- j2f xdx
(傅立叶变换)
g x F 1 G f G f exp j2πf x df (傅立叶逆变换)
表示狭缝
sin af x x F rect a sincafx a af x a
(6)三角形函数
x x 1 , tri a a 0 ,
x a 其它
表示矩形光 瞳OTF
x sin 2 af x 2 F tri a sinc afx a af x 2 a
根据卷积定理有
Hfx, fy
hx, y exp j f
x
x fy
y xdy d
即
G f x , f y H f x , f y F f x , f y
Hfx, fy
G f x , f y
称做不变线性系统的的传递函数
5
δ函数的基本性质和物理意义(重点理解)
1 9 0 6
6
常用函数及其傅里叶变换(1)
1 9 0 6
(1)常数c
(2) 函数
F c c f x
F x x0 exp j 2f x x0
(3)余弦函数 cos2f 0 x
cos 2f 0 x 1 f x f 0 f x f 0 F
如果不变线性系统的输入是空域函数,其傅里叶变换为
F f x , f y f x, y exp j f x x f y y d xdy
同时输出函数和脉冲响应函数的傅里叶变换分别为
G f x , f y g x, y exp j f x x f y y d xdy
由题意可知,X=Y=5mm, Bx By 5 线/mm
n 16 5 5 5 5 10000
21