2006年山东省泰安市数学试卷(课改区)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
泰安市二〇〇六年中等学校招生考试
数学试题(课改区用)
注意事项: 1.本试题分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷3页为选择题,36分;第Ⅱ卷8页为非选择题,84分;共120分.考试时间120分钟.
2.答第Ⅰ卷前务必将自己的姓名、考号、考试科目涂写在答题卡上.考试结束,试题和答题卡一并收回.
3.第Ⅰ卷每题选出答案后,都必须用2B 铅笔把答题卡上对应题目的答案标号( ABCD )涂黑,如需改动,必须先用橡皮擦干净,再改涂其他答案,不能答在试卷上.
第Ⅰ卷(选择题 共36分)
一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个,均记零分) 1.我国对农村义务教育阶段贫困家庭的学生实行“两免一补”政策,2005年至2007年三年内国家财政将安排约227亿元资金用于“两免一补”,这项资金用科学记数法表示为( ) A.9
2.2710⨯元
B.8
22710⨯元
C.9
22.710⨯元
D.
10
2.2710⨯元 2.下列运算正确的是( ) A.()()22a b a b a b +--=- B.()2
2
39a a +=+
C.2
2
4
2a a a +=
D.(
)
2
2424a
a -=
3.下列轴对称图形中,对称轴最多的是( ) 4.如图,是跷跷板示意图,横板AB 绕中点O 上下转动,立柱OC 与地面垂直,当横板AB 的A 端着地时,测得OAC α=∠,则在玩跷跷板时,上下最大可以转动的角度为( ) A.α B.2α
C.90α-
D.90
+
5.如图,是一同学骑自行车出行时所行路程s (km )与时间t (min )的函数关系图象,从中得到的正确信息是( ) A.整个行程的平均速度为
7
km/h 60
B.前二十分钟的速度比后半小时的速度慢
A. B.
C. D.
(第4题)
C.前二十分钟的速度比后半小时的速度快 D.从起点到达终点,该同学共用了50min
6.若1m <-,则下列函数①()0m
y x x
=
>,②1y m x =-+,③y m x =,④()1y m x =+中,y 的值随x 的值增大而增大的函数共有( )
A.1个 B.2个 C.3个 D.4个 7.如图是某一立方体的侧面展开图,则该立方体是( )
8.下列图形:
其中,阴影部分的面积相等的是( ) A.①② B.②③ C.③④ D.④①
9.如果在正八边形硬纸板上剪下一个三角形(如图①中的阴影部分),那么图②,图③,图④中的阴影部分,均可由这个三角形通过一次平移、对称或旋转而得到.要得到图②,图③,图④中的阴影部分,依次进行的变换不可行...的是( )
A.平移、对称、旋转 B.平移、旋转、对称 C.平移、旋转、旋转 D.旋转、对称、旋转
10.观察由等腰梯形组成的下图和所给表中数据的规律后回答问题:
A. B. C. D.
2
1-
图① 图② 图③
图④
(第5题)
当等腰梯形个数为2006时,图形的周长为( ) A.6020 B.8026 C.6017 D.2007
11.用甲、乙两种原料配制成某种饮料,已知这两种原料的维生素C 含量及购买这两种原料的价格如下表:
现配制这种饮料10kg
,要求至少含有4200单位的维生素C ,若所需甲种原料的质量为
kg x ,则x 应满足的不等式为( )
A.()600100104200x x +-≥ B.()
841004200x x +-≤ C.()600100104200x x +-≤
D.()841004200x x +-≥
12.如图,在梯形ABCD 中,AD BC ∥,M ,N 分别是AD ,BC 的中点,若B ∠与C
∠互余,则MN 与BC AD -的关系是( ) A.2MN BC AD <- B.2MN BC AD >- C.2MN BC AD =- D.()2MN BC AD =-
第Ⅱ卷(非选择题 共84分)
注意事项:
1.答卷前将密封线内的项目填写清楚.
2.第Ⅱ卷共8页,用蓝黑钢笔或圆珠笔直接答在试卷上.
二、填空题(本大题共7小题,满分21分.只要求填写最后结果,每小题填对得3分) 13.已知点P 在第四象限,它的横坐标与纵坐标的和为3-,则点P 的坐标是_________(写出符合条件的一个点即可).
14.某商场为了解本商场服务质量,随机调查了
来本商场的200名顾客,调查的结果如图所示,根据图中给出的信息,这200名顾客中对该商场
的服务质量表示不满意...的有_________名. 2 2 1 1 (第10题) A D
C
B M N
(第12题)
:很满意 :满意 :基本满意
:不满意
题)
15.三个袋中各装有2个球,其中第一个袋和第二个袋中各有一个红球和一个黄球,第三个袋中有一个黄球和一个黑球,现从三个袋中各摸出一个球,则摸出的三个球中有2个黄球和一个红球的概率为_________.
16.如图,大楼高30m ,远处有一塔BC ,某人在楼底A 处测得塔顶的仰角为60,爬到楼顶D 测得塔顶的仰角为30.则塔高
BC 为_________m .
17
.已知等腰三角形一条腰上的高与腰之比为等腰三角形的顶角等于_________.
18.抛物线2y ax bx c =++上部分点的横坐标x ,纵坐标y 的对应值如下表:
容易看出,()20-,是它与x 轴的一个交点,则它与x 轴的另一个交点的坐标为_________. 19.将矩形纸片ABCD 如图那样折叠,使顶点B 与顶点D 重合,折痕为EF .若AB =
3AD =,则DEF △的周长为_________.
三、解答题(本大题共7小题,满分63分.解答应写出必要的文字说明、证明过程或推演步骤) 20.(本小题满分11分)
(1)解不等式组:()31
122225x x x -⎧+⎪
⎨⎪--<⎩
, . ≤①②
(2)化简:2224
2442a a a a a a a a ⎛⎫----÷
⎪++++⎝⎭
.
(第16题)
D
C F A B E A ' (第19题)
为了让学生了解环保知识,增强环保意识.某中学举办了一次“环保知识竞赛”活动,共有750名学生参加了竞赛.为了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分取正整数,满分为100分)进行统计,其中成绩在60.5~70.5分范围内的频率是0.12.请你根据下面尚未完成的频数分布表,解答下列问题: (1)补全频数分布表;
(2)成绩的中位数落在哪一组内?
(3
22.(本小题满分8分)
已知:如图,以ABC △的边AB 为直径的O 交边AC 于点D ,且过点D 的切线DE 平
分边BC .
(1)BC 与O 是否相切?请说明理由;
(2)当ABC △满足什么条件时,以点O ,B ,E ,D 为顶点的四边形是平行四边形?并说明理由.
23.(本小题满分8分) 某商场销售某种商品,第一个月将此商品的进价提高25%作为销售价,共获利6000元.第二个月商场搞促销活动,将商品的进价提高10%作为销售价,第二个月的销售量比第一个月增加了80件,并且商场第二个月比第一个月多获利400元.问此商品的进价是多少元?商场第二个月共销售多少件?
C E B A (第22题)
(1)已知:如图①,在AOB △和COD △中,OA OB =,OC OD =,
60AOB COD ==∠∠,求证:①AC BD =;②
60APB =∠.
(2)如图②,在
AOB △和COD △中,若OA OB =,OC OD =,
AOB COD α==∠∠,则AC 与BD 间的等量关系式为________________;APB ∠的大小为__________________. (3)如图③,在AOB △和COD △中,若OA k OB =,()1OC k OD k =>,
AOB COD α==∠∠,则AC 与BD 间的等量关系式为___________;APB ∠的大小为
____________.
25.(本小题满分10分)
如图,Rt AOB △是一张放在平面直角坐标系中的直角三角形纸片,点O 与原点重合,点A
在x 轴上,点B 在y 轴上,OB =30BAO =∠.将Rt AOB △折叠,使BO 边落在BA 边上,点O 与点D 重合,折痕为BC . (1)求直线BC 的解析式;
(2)求经过B ,C ,A 三点的抛物线2
y ax bx c =++的解析式;若抛物线的顶点为M ,试判断点M 是否在直线BC 上,并说明理由.
A O
D B C P 图① α α
O A P C D B 图② α α D O
B A P C
图③ (第24题)
如图,点D ,E 分别在ABC △的边BC ,BA 上,四边形CDEF 是等腰梯形,EF CD ∥.EF 与AC 交于点G ,且BDE A =∠∠. (1)试问:AB FG CF CA =成立吗?说明理由; (2)若BD FC =,求证:ABC △是等腰三角形.
泰安市二〇〇六年中等学校招生考试
数学试题(A)(课改区用)参考答案及评分标准
13.如()14-,等;
14.14;
15.
1
4
;
16.45;
17.45或135;
18.()30,;
19.6.
三、解答题
20.(本小题满分11分) (1)解:解①得:3x ≤ ···························································································· 2分
解②得:1
2
x >
····························································································· 4分 ∴原不等式组的解集为1
32
x <≤ ······························································ 5分
(2)解:原式()2222
24
2a a a a a a a ⎡⎤--+=-⎢⎥+-+⎢⎥⎣⎦ ································································· 7分 A E
G C D
B F (第26题)
()()()
2
22
42
42a
a a a a a ---+=
-+ ································································ 9分 ()
2
4
24
2a a a a -+=
-+ ·················································································· 10分 12
a =
+ ································································································· 11分 21.(本小题满分6分) 解:(1)14;50 ·········································································································· 2分 (2)第三小组 ········································································································· 4分 (3)该校成绩优秀的学生约有480人. ······························································· 6分 22.(本题满分8分)
(1)BC 与O 相切
理由:连结OD ,BD ,
DE 切O 于D ,AB 为直径, 90EDO ADB ∴==∠∠, 又DE 平分CB , 1
2
D E B C B E ∴=
=, ················································ 2分
E D B E B ∴=∠∠.又ODB OBD =∠∠,90ODB EDB +=∠∠;
90OBD DBE ∴+=∠∠,即90ABC =∠. BC ∴与
O 相切. ······························································································ 4分
(2)当ABC △为等腰直角三角形()90ABC =∠时,四边形OBED 是平行四边形.
ABC △是等腰直角三角形()90ABC =∠,
A B B C ∴=. ······································································································· 6分
B D A
C ⊥于
D ,D ∴为AC 中点. 1
2
O D B C B E ∴=
=,OD BC ∥. ∴四边形OBED 是平行四边形. ········································································· 8分
23.(本小题满分8分) 解:设此商品进价为x 元, 根据题意,得:
60006400
8025%10%x x
=-, ······························································· 4分
解之,500x =. ··································································································· 6分 经检验之500x =是原方程的根.
64006400
12810%50010%
x ==⨯(件).
答:此商品进价是500元,第二个月共销售128件. ·········································
8分
C
E B
A (第22题)
24.(本小题满分10分) (1)证明:
①60AOB COD ==∠∠,
AOB BOC COD BOC ∴+=+∠∠∠∠,
即:AOC BOD =∠∠. ····················· 2分 又OA OB =,OC OD =, A O C B O ∴
△≌△. A C B D ∴=. ··································································································· 3分
②由①得:OAC OBD =∠∠,
又AEO PEB =∠∠, ······················································································· 4分
()180APB BEP OBD =-+∠∠∠,()180AOB OAC AEO =-+∠∠∠, 60APB AOB ∴==∠∠. ·············································································· 6分 (2)AC BD =,α····································································································· 8分 (3)AC k BD =,180α- ····················································································· 10分 25.(本小题满分10分) 解:(1)()11
90303022
OBC DBC OBA ==
=⨯-=∠∠∠, ∴在Rt COB △
中,tan 3031OC OB ===. ∴点C 的坐标为()10,. ················································································ 2分
又点B 的坐标为(0
,∴设直线BC 的解析式为y kx =
. 0
k ∴=+k ∴=
则直线BC
的解析式为:y =················································· 4分
(2)
在Rt AOB △
中,33tan 30OB OA =
==.
()30A ∴,, ····································································································
5分 又(0B ,()10
C ,
0930a b c c a b c =++⎧∴==++⎩
,
,. ························································································ 7分
A
O
D
B C P (第24题)
E
解之得:3
a =
,b =
c = ∴
所求抛物线的解析式为23y x =
+ ·
································ 8分
配方得:
)2
2y x =
-∴
顶点为23M ⎛- ⎝
⎭,. ····················· 9分 把2x =
代入y =
y =. ∴顶点M 不在直线BC 上. ········································································· 10分 26.(本小题满分10分) (1)成立.
理由:四边形CDEF 是等腰梯形,EF CD ∥,
F DEF ∴=∠∠,DEF BDE =∠∠,FGC ACB =∠∠. ··············· 2分
又BDE A =∠∠,
A F ∴=∠∠.
FGC ACB ∴△∽△ ····················· 4分 FG CF
AC AB
∴= AB FG CF CA ∴= ····················· 5分 (2)证明:BD FC =,ED FC =,
BD ED ∴=.
B BED ∴=∠∠. ····················································································· 7分 B B =∠∠,BDE A =∠∠, BED BCA ∴=∠∠, ················································································ 8分 B BCA ∴=∠∠, AB A
C ∴=.
则ABC △是等腰三角形. ········································································ 10分
A E G C
B F。