自动控制原理7-2频率域中的无源串联超前校正
自动控制原理7-2频率域中的无源串联超前校正

可能引入噪声
由于无源元件的局限性, 无源串联超前校正器可能 会引入额外的噪声,影响 系统性能。
未来研究方向与展望
新型无源元件研究
随着科技的发展,新型的无源元件不断涌现,如薄膜电阻、 高温超导材料等,为无源串联超前校正器的设计提供了新 的可能性。
集成化与微型化研究
随着微电子技术的发展,无源串联超前校正器的集成化与 微型化成为可能,这将有助于减小系统体积和重量,提高 系统的便携性和可靠性。
提高系统性能的实例
温度控制系统
在温度控制系统中,通过串联超 前校正器,可以减小系统的调节 时间和超调量,提高温度控制的 稳定性和准确性。
伺服控制系统
在伺服控制系统中,串联超前校 正器能够提高系统的跟踪性能和 抗干扰能力,减小误差并提高控 制精度。
串联超前校正器的比较与选择
参数选择
串联超前校正器的参数选择需要根据具体的应用场景和控制要求进 行优化,以达到最佳的系统性能。
03
无源串联超前校正器具有结构简单、易于实现的特点,适用于各种线 性控制系统。
ቤተ መጻሕፍቲ ባይዱ04
频率域中的无源串联超前校正方法可以与其他控制策略相结合,进一 步优化系统的性能。
对实际应用的指导意义
在实际应用中,可以根据系统的具体需求,选择合适 的无源串联超前校正器参数,以获得更好的系统性能。
输标02入题
对于一些具有特定要求的控制系统,如快速响应、高 精度和高稳定性的系统,可以采用频率域中的无源串 联超前校正方法来改善其动态性能。
04 无源串联超前校正器的应 用实例
在控制系统中的应用
控制系统稳定性增强
抑制高频噪声
通过串联超前校正器,可以改善控制 系统的相位裕度,提高系统稳定性。
控制工程(自动控制)超前校正与滞后校正

例:
单位负反馈系统的开环传递函数为: 单位负反馈系统的开环传递函数为: K G0 ( s ) = s ( s + 1) 设计指标: 设计指标: 系统在单位速度输入作用下的稳态误差≤ (1)系统在单位速度输入作用下的稳态误差≤0.1 ; 开环系统截止频率ω (2)开环系统截止频率ωc"≥4.4rad/s ; 相位裕量γ"≥45 γ"≥45° (3)相位裕量γ"≥45°; 幅值裕量h"≥10dB (4)幅值裕量h"≥10dB ; 试设计串联无源校正装置。 试设计串联无源校正装置。
单位负反馈系统的开环传递函数为: 单位负反馈系统的开环传递函数为: 例: K
G0 ( s 计指标: 设计指标: 校正后系统的静态速度误差系数 系统的静态速度误差系数K (1)校正后系统的静态速度误差系数Kv=30 ; 开环系统截止频率 截止频率ω (2)开环系统截止频率ωc"≥2.3rad/s ; 相位裕量γ ≥40° (3)相位裕量γ"≥40°; 幅值裕量h (4)幅值裕量h"≥10dB ; 试设计串联校正装置。 试设计串联校正装置。
αTs + 1
ω
γ'
γ ''
验证已校正系统的相角 4)验证已校正系统的相角 裕度和幅值裕度是否满 足要求
G ( s ) = G0 ( s )Gc ( s )
= 10(0.456s + 1) s( s + 1)(0.114 s + 1)
L(ω )(dB )
ωc ' = 3.16rad / s
40 20 0
[-20]
ωc' '
10
G (s) c
自动控制原理02常用串联校正装置及其特性

6.2
常用串联校正装置及其特性
L ( )
20lg K
-20dB/dec 20dB/dec
1 T1
1 T2
说明:PID控制器兼顾放 大器的作用,可以给系统 补一个位于零极点,提高
0
了系统的型别,有益于系
统的稳态精度的提高,但 其缺点是高频段为微分效 果,易引入高频干扰
( )
900 0 -900
图6-22 PID控制器频率特性
R1 R2 C ,T R1 R2
,
_
Ui
R1
R2
Uo
_
U o ( s ) 1 1 aTs 则: U i ( s ) a 1 Ts
说明:
(6-16)
图6-9 无源超前网络
① (6-16)是在未考虑无源超前网络的负载效应的条件下推导出来;
②
③
无源超前网络对信号有衰减作用( a 1 );
(6-30)
6.2.3 串联滞后超前校正装置
(2)串联滞后超前校正装置 的有源网络实现
U 0 ( s) U 0 ( s) U n ( s) U i ( s) U n ( s) U i ( s) ( R1 R2 )(
令: K
C1 n
R1
R2
C2 R4
R0
_
R3
Ui
图6-20 有源滞后超前网络
自动控制原理7-2频率域中的无源串联超前校正..

3. 最大负相移发生在转折 1 频率 T 与 β1T 的几何中点。
m arc sin
β 1 β 1 arc sin 1 β 1β
0
T
m
1
T
20
20 lg
( )
0
β
1 sin (- m ) 1 - sin (- m )
m
90
9
例1 若单位反馈系统开环传递函数为
1
α 1 2 α
1 sin m 1 - sin m
α 1
α
12
10lg
50
10
8 6 10lg(dB)
m
40
30
20
10
4
2
0
1 3 5 7 9
0
11 13 15 17
19
当α大于15以后, m的变化很小,α一般取115之间。
6
例1 若单位反馈系统开环传递函数为
0
90
180
0 20
12
(2) 确定校正后系统的增益剪切频率c。 在此频率上,系统要求的相位裕量应等于要求的相 位裕量再加上(50120)---补偿迟后校正网络本身在c 处的相位迟后。 确定c。 原系统在 c0 处的相角衰减得很快,采用超前校正作 用不明显,故考虑采用迟后校正。现要求校正后系统 的 γ 40 0 ,为了补偿迟后校正网络本身的相位迟后, 需再加上50120的补偿角,所以取 Δγ=400+(50—120)=520 (补偿角取120) 在伯德图上可找得,在=0.5s-1附近的相位角等于 -128 0 ( 即相位裕量为 52 0 ) ,故取此频率为校正后系统 的增益剪切频率。即: ωc=0.5s-1
自动控制原理第六章第三讲超前网络及其串联校正

根据截止频率
的要求,计算超前网络参数a和T;
求出T;
即可得超前网络的传递函数:
则已校正系统的传递函数为:
绘出校正后的对数幅频特性:
验证已校系统的相角裕度 ,若不满足 要求,应重选 ,一般使其增大。
步骤:
确定开环增益K(根据稳态误差的要求);
(
s
E
)
(
1
s
G
)
(
s
G
)
(
2
s
G
)
(
s
C
)
(
s
G
r
+
系统输出:
系统误差:
当:
时,
对输入的 误差全补偿条件
说明: 以上结论仅在理想条件下成立:
无论是输出响应完全复现输入或是完全不受扰动影响, 都是在传递函数零、极点对消能够完全实现的基础上得到的。
由于控制器和对象都是惯性的装置, 故G1(s)和G2(s)的分母多项式的s阶数比分子多项式的s阶数高。 据补偿式可见, 要求选择前馈装置的传递函数是它们的倒数, 即Gr(s)或Gn(s)的分子多项式的s阶数应高于其分母多项式的s阶数, 这就要求前馈装置是一个理想的(甚至是高阶的)微分环节。
滞后-超前网络贡献的幅值衰减的最大值
由相角裕度要求,估算网络滞后部分的交接频率 , 得:
01
结束
02
绘制已校正系统Bode图,校验性能指标
03
反馈校正
开环传函为:
工作原理 设图中局部反馈回路为G2c(s), 其频率特性为 :
反馈校正、复合校正基本原理
整个反馈回路的 传递函数等效为:
理想的微分环节实际不存在, 所以完全实现传递函数的零、极点对消在实际上也是做不到的。
7-2 超前校正

m = arc sin
α 1 α +1
α =
1 + sin m 1 - sin m
α值越大,则超前网络的微分效应越强。
60
50
40
m
° 30
20
10
0 1
3 5
7
9
11
13
15
17
19
当α大于20以后, m的变化很小,α一般取120之间。
8
2. 超前校正应用举例 k G 0 (s) = s(s + 1) 例: 设一系统的开环传递函数: 若要使系统的稳态速度误差系数Kv=12s-1,相位裕量 γ ≥400,试设计一个校正装置。 根据稳态误差要求,确定开环增益K 解: (1) 根据稳态误差要求,确定开环增益K。 画出校正前系统的伯德图,求出相角裕量 γ 0 和增益剪 切频率ωc0
14
通过超前校正分析可知: (1)提高了控制系统的相对稳定性 提高了控制系统的相对稳定性——使系统的稳定 提高了控制系统的相对稳定性 裕量增加,超调量下降。 工业上常取α=10,此时校正装置可提供约550的超前相 角。为了保证系统具有300600的相角裕量,要求校正后 系统ωc处的幅频斜率应为-20dB/dec,并占有一定的带 宽。 (2) 加快了控制系统的反应速度 加快了控制系统的反应速度——过渡过程时间减 过渡过程时间减 小。由于串联超前校正的存在,使校正后系统的ωc、ωr 及ωb均变大了。带宽的增加,会使系统响应速度变快。 系统的抗干扰能力下降了—— 高频段抬高了。 (3)系统的抗干扰能力下降了 (4)控制系统的稳态性能是通过步骤一中选择校正后 系统的开环增益来保证的。 系统的开环增益来保证的。
证明:超前网络相角计算式是 证明:
自动控制原理实验七 基于MATLAB控制系统频域法串联校正设计

实验七基于MATLAB控制系统频域法串联校正设计一、实验目的(1)对给定系统设计满足频域或时域指标的串联校正装置;(2)掌握频域法设计串联校正的方法;(3)掌握串联校正环节对系统稳定性及过渡过程的影响。
二、实验原理及内容利用MATLAB可以方便的画出Bode图并求出幅值裕量和相角裕量。
将MATLAB应用到经典理论的校正方法中,可以方便的校验系统校正前后的性能指标。
通过反复试探不同校正参数对应的不同性能指标,能够设计出最佳的校正装置。
1、串联超前校正用频域法对系统进行超前校正的基本原理,是利用超前校正网络的相位超前特性来增大系统的相位裕量,以达到改善系统瞬态响应的目标。
为此,要求校正网络最大的相位超前角出现在系统的截止频率(剪切频率)处。
串联超前校正的特点:主要对未校正系统中频段进行校正,使校正后中频段幅值的斜率为-20dB/dec,且有足够大的相位裕度;超前校正会使系统瞬态响应的速度变快,校正后系统的截止频率增大。
这表明校正后,系统的频带变宽,瞬态响应速度变快,相当于微分效应;但系统抗高频噪声的能力变差。
用频率法对系统进行串联超前校正的一般步骤为:1)根据稳态误差的要求,确定开环增益K。
2)根据所确定的开环增益K,画出未校正系统的波特图,计算未校正系统的相位裕度。
3)计算超前网络参数a和T。
4)确定校正网络的转折频率。
5)画出校正后系统的波特图,验证已校正系统的相位裕度。
【7-1】给定系统如图7-1所示,试设计一个串联校正装置,使系统满足幅值裕量大于10分贝,相位裕量≥45o为了满足上述要求,试探地采用超前校正装置G c(s),使系统变为图7-2的结构。
图7-1 校正前系统用下面地MATLAB语句得出原系统的幅值裕量与相位裕量。
>> G=tf(100, [0.04, 1, 0]);[Gw, Pw, Wcg, Wcp]=margin(G);Gw =InfPw =28.0243Wcg=InfWcp=46.9701可以看出,这个系统有无穷大的幅值裕量,并且其相位裕量γ=28o,幅值穿越频率Wcp=47rad/sec。
自动控制原理频率法串联校正

自动控制原理
电子信息学院
14 / 37
串联滞后校正
串联滞后校正:滞后校正分析
(1) 幅频高频衰减特性,使原系统截止频率 ωc 左移减小,相角裕度提 高。适用于 ωc 有余,相角裕度不足时; (2) 相位滞后,会减小原系统相角裕度,应附加相角 5 ∼ 12◦ ,并力求 避免 ωm 出现在 ωc 附近,一般取
2
3
4
5
6
第六章 频率法串联校正
自动控制原理
电子信息学院
2 / 37
引言
引言
控制目标——性能指标 时域 性能指标 { 频域 超调量σ % 调节时间ts 稳态误差ess 稳定裕量(h, γ ), 截止频率ωc 谐振峰值Mr , 频带宽ωb
. . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
第六章 频率法串联校正
自动控制原理
电子信息学院
9 / 37
串联超前校正
串联超前校正:超前网络特性
{
−1 ψm = arctan a a+1 sin ψm a = 1+ 1−sin ψm
sin ψm (3) 确定 ψm = γ ∗ − γ0 + (5◦ ∼ 10◦ ){a = 1+ 1−sin ψm , 10 log a} √ (4) 作图确定 ωc (ωm ) → ω1 (ωm a) → ω2 (aω1 ) → Gc (s)
(5) G(s) = Gc (s) · G0 (s) 验算 {ωc , γ } 是否满足要求
ω2 = 1/bT = (0.1 ∼ 0.2)ωc { 相角迟后:是不利因素,应当避免 幅值衰减:是有利因素,应当利用
自控实验报告_频率法串联超前校正

频率法串联超前校正一.实验目的1.了解和掌握二阶系统中的闭环和开环对数幅频特性和相频特性(波德图)的构造及绘制方法。
2.了解和掌握超前校正的原理,及超前校正网络的参数的计算。
3.熟练掌握使用本实验机的二阶系统开环对数幅频特性和相频特性的测试方法。
4.观察和分析系统未校正和串联超前校正后的开环对数幅频特性和相频特性,幅值穿越频率处ωc′,相位裕度γ,并与理论计算值作比对。
二.实验内容及步骤本实验用于观察和分析引入频域法串联超前校正网络后的二阶系统瞬态响应和稳定性。
超前校正的原理是利用超前校正网络的相角超前特性,使中频段斜率由-40dB/dec变为-20dB/dec并占据较大的频率范围,从而使系统相角裕度增大,动态过程超调量下降;并使系统开环截止频率增大,从而使闭环系统带宽也增大,响应速度也加快.1.未校正系统的时域特性的测试未校正系统模拟电路图见图1。
本实验将函数发生器(B5)单元作为信号发生器,OUT输出施加于被测系统的输入端Ui,观察OUT从0V 阶跃+2.5V时被测系统的时域特性。
图1未校正系统模拟电路图未校正系统的开环传递函数为:0.3S)0.2S(16)S(G模拟电路的各环节参数:积分环节(A5单元)的积分时间常数Ti=R1*C1=0.2S,惯性环节(A6单元)的惯性时间常数T=R2*C2=0.3S,开环增益K=R2/R3=6。
实验步骤:注:‘S ST’用“短路套”短接!(1)将函数发生器(B5)单元的矩形波输出作为系统输入R。
(连续的正输出宽度足够大的阶跃信号)①在显示与功能选择(D1)单元中,通过波形选择按键选中‘矩形波’(矩形波指示灯亮)。
②量程选择开关S2置下档,调节“设定电位器1”,使之矩形波宽度≥3秒(D1单元左显示)。
③调节B5单元的“矩形波调幅”电位器使矩形波输出电压=2.5V(D1单元右显示)。
(1)构造模拟电路:按图3-3-2安置短路套及测孔联线,表如下。
(3)运行、观察、记录:A6(OUT)接CH1×1档,B5(OUT)接CH2×1档。
自动控制原理与应用第7章自动控制系统的校正

03
非线性系统校正方法
非线性特性分析
描述函数法
通过描述函数将非线性环节近似为线性环节, 从而简化系统分析。
相平面法
在相平面上绘制系统状态轨迹,直观展示非线 性系统的动态特性。
谐波平衡法
通过谐波平衡方程求解非线性系统的稳态响应。
非线性校正策略
反馈线性化
通过引入适当的反馈,将非线性 系统转化为线性系统,从而应用 线性控制理论进行设计。
继电反馈
采用继电反馈方式,将非线性环节的输出作为反馈信 号,通过调整继电器参数实现对系统的校正。
04
数字控制系统校正技术
数字控制系统概述
数字控制系统的定义
通过数字计算机实现的控制系统,具有高精度、高灵活性和 易于实现复杂控制算法等优点。
数字控制系统的组成
包括被控对象、测量元件、数字控制器和执行机构等部分。
06
自动控制系统校正实验与仿真
实验目的与要求
01 掌握自动控制系统校正的基本原理和方法;
02 熟悉自动控制系统的性能指标及其评价方法 ;
03
学会利用仿真软件对自动控制系统进行建模 和仿真分析;
04
培养解决实际工程问题的能力。
实验内容与步骤
设计一个典型的自动控制系统 ,并对其进行数学建模;
对未校正的系统进行仿真分析 ,记录其性能指标;
校正方法
针对电机速度控制系统的非线性、参 数时变和负载扰动等特点,可采用自 适应控制算法进行校正。通过实时辨 识系统参数并调整控制器参数,实现 对电机速度的精确跟踪和控制。
校正效果
经过自适应控制校正后,电机速度控 制系统的动态响应性能和抗干扰能力 得到提高。系统能够快速适应电机参 数变化和负载扰动,保持稳定的转速 输出,提高控制精度和鲁棒性。
自动控制原理课程设计频率法的超前校正

目录一.目的 (2)二.容 (2)三.基于频率法的超前校正设计 (2)四.校正前、后系统的单位阶跃响应图及simulink框图、仿真曲线图 (5)五. 电路模拟实现原理 (7)六.思考题 (9)七.心得体会................................................. .10 八.参考文献................................................. .10题目一 连续定常系统的频率法超前校正一.目的1.了解串联超前校正环节对系统稳定性及过渡过程的影响;2.掌握用频率特性法分析自动控制系统动态特性的方法;3.掌握串联超前校正装置的设计方法和参数调试技术;4.掌握设计给定系统超前校正环节的方法,并用仿真技术验证校正环节理论设计的正确性。
5.掌握设计给定系统超前校正环节的方法,并模拟实验验证校正环节理论设计的正确性。
二.容已知单位反馈控制系统的开环传递函数为:()()100()0.110.011o G s s s s =++设计超前校正装置,使校正后系统满足:11100,50,%40%v c K s s ωσ--=≥≤三.基于频率法的超前校正设计1.根据稳态误差的要求,确定系统的开环增益K ;0s 0100lim ()lim (0.11)(0.011)v s K s s sK s s s G →→===++=1001s -未校正系统的开环频率特性为:()0100()(0.11)0.011G j j j j ωωωω=++2.根据所确定的开环增益K ,画出未校正系统的伯德图,并求出其相位裕1γ 由00()1c G j ω=得0c ω ≈30.84090arctan 0.1arctan 0.01ϕ(ω)=-ωω--又()001180+c ϕωγ=代入0c ω得1γ= 0.83o3.选取c ω=561s -,计算α的值()()()00c c c c L L L ωωω=+= ()()0110lg10lg c c c L L ωωαα=-=-=所以有 01|20lg ()|10lg c A ω=α即有 α=0.0754.确定校正网络的转折频率1ω和2ω和传递函数c G11115.34c s T-ω===21207.41Tω===α1s -所以超前校正网络的传递函数为:15.34()207.41c s G s s +=+为了补偿因超前校正网络的引入而造成系统开环增益的衰减,必须使附加放大器的放大倍数为1α=13.33 所以有115.3415.34()13.33207.41207.4113.3315.34(1)14.34207.41(1)207.41c s s G s s s s s++==⨯α++⨯+=+ 5.校正后系统的开环传递函数为:()()()()013.3315.34(1)10015.34()()0.110.011207.41(1)207.41100(1)15.340.110.011(1)207.41c sG s G G s s s s s s ss s s ⨯+==++++=+++6.对验证校正后的系统1190arctan 0.1arctan 0.01arctanarctan 207.4115.34o c c c c γωωωω=----+ = 40.44又110.160.4(1)0.160.4(1)37.740%sin sin 40.44oσ%=+⨯-=+⨯-=%<γ 所以符合系统的要求7.画校正前、校正后、校正系统的伯德图 在MATLAB 命令窗口键入以下命令: Go=zpk([ ],[0 -10 -100],100000); bode(Go) hold on margin(Go)求得校正前系统的伯德图如图1.1所示。
自动控制原理 串联超前校正方法2

串联超前校正方法2超前网络的特性是相角超前,幅值增加。
串联超前校正的实质是将超前网络的最大超前角补在校正后系统开环频率特性的截止频率处,提高校正后系统的相角裕度和截止频率,从而改善系统的动态性能。
假设未校正系统的开环传递函数为)(0s G ,系统给定的稳态误差,截止频率,相角裕度和幅值裕度指标分别为***,,γωc ss e 和*h 。
设计超前校正装置的一般步骤可归纳如下:(1)根据给定稳态误差*ss e 的要求,确定系统的开环增益K 。
(2)根据已确定的开环增益K ,绘出未校正系统的对数幅频特性曲线,并求出截止频率0c ω和相角裕度0γ。
当*0cc ωω<,*0γγ<时可以考虑用超前校正。
(3)根据给定的相位裕度*γ,计算校正装置所应提供的最大相角超前量m ϕ,即)15~5(0︒︒+-=γγϕm(1)式中(5°~15°)是用于补偿引入超前校正装置,截止频率增大所导致的校正前系统的相角裕度的损失量。
若未校正系统的对数幅频特性在截止频率处的斜率为dec dB /40-,并不再向下转折时,可以取 8~5;若该频段斜率从dec dB /40-继续转折为dec dB /60-,甚至更负时,则补偿角应适当取大些。
注意:如果︒>60m ϕ,则用一级超前校正不能达到要求的*γ指标。
(4)根据所确定的最大超前相角m ϕ,求出相应的a 值,即mm a ϕϕsin 1sin 1-+=(2)(5)选定校正后系统的截止频率在a lg 10-处作水平线,与)(0ωL 相交于A '点,交点频率设为A 'ω。
取校正后系统的截止频率为{}*,max cA c ωωω'=(3)(6)确定校正装置的传递函数在选好的c ω处作垂直线,与)(0ωL 交于A 点;确定A 点关于dB 0线的镜像点B ,过点B 作dec dB /20+直线,与dB 0线交于C 点,对应频率为C ω;在CB 延长线上定D 点, 使C c cD ωωωω=,在D 点将曲线改平,则对应超前校正装置的传递函数为1()1C C DsG s sωω+=+ (4)(7)验算写出校正后系统的开环传递函数0()()()C G s G s G s =验算是否满足设计条件***hh c c ≥≥≥,,γγωω若不满足,返回(3),适当增加相角补偿量,重新设计直到达到要求。
串联超前校正系统分析自动控制原理课程设计

一、设计目的1、 通过课程设计进一步掌握自动控制原理课程的相关知识,加深对所学内容的理解,提高解决实际问题的能力。
2、 理解在自动控制系统中对不同的系统选用不同的校正方式,以保证得到最佳的系统;3、 理解相角裕量、稳态误差、穿越频率等参数的含义;4、 学习MATLAB 在自动控制中的应用,会利用MATLAB 提供的函数求出所需要得到的实验结果;5、 从总体上把握对系统进行校正的思路,能够将理论与实际相结合。
二、设计内容与要求 设计内容:1、阅读有关资料。
2、对系统进行稳定性分析、稳态误差分析以及动态特性分析。
3、绘制根轨迹图、Bode 图。
4、设计校正系统,满足工作要求。
设计条件:⊗则已知单位负反馈系统被控制对象的开环传递函数为:()()0.110.011S kG s s s =⨯++对系统进行串联校正任务: (1)()r t t=时,0.004ss e ≤;(2)校正后,相角裕量45r >; (3)30/c w rad s>。
sR设计要求1、能用MATLAB 解复杂的自动控制理论题目;2、能用MATLAB 设计控制系统以满足具体的性能指标;3、能灵活应用MATLAB 的SIMULINK 仿真软件,分析系统的性能。
三、设计原理校正方式的选择,按照校正装置在系统中的链接方式,控制系统校正方式分为串联校正、反馈校正、前馈校正、和复合校正4种。
串联校正是最常见的一种校正方式。
串联校正方式是校正器与受控对象进行串联连接的。
可分为串联超前校正、串联滞后校正和滞后-超前校正。
其一般设计步骤如下:(1)根据静态性能指标,计算开环系统的增益。
之后求取校正前系统的频率特性指标,并与设计要求进行比较;(2)确定校正后期望的穿越频率,具体值得选取与所选择的校正方式相适应; (3)根据待设计的校正环节的形式和转折频率,计算相关参数,进而确定校正环节; (4)得出校正后系统。
检验系统满足设计要求。
四、设计步骤1、校正前的系统分析 时域分析: 其中已知21()R s s =---------------------------------------------------------------------------------①()1H s = ---------------------------------------------------------------------------------②()()()0.110.011kG s s s s =⨯⨯+⨯+ --------------------------------------------------------③根据稳态误差公式1lim ()1()()ss s e R s s G s H s →=⨯⨯+⨯ -------------------------------------------------------④③将①②③带入④式得()211lim1(0.11)0.011ss s e s ks s s s →=⨯⨯+⨯⨯+⨯+化简得出1ss e k =又有题目0.004ss e ≤最后得250k ≥此时取250k =进行分析。
自动控制原理课程设计串联超前滞后校正装置

自动控制原理课程设计报告一、设计目的(1)掌握控制系统设计与校正的步骤和方法。
(2)掌握对控制系统相角裕度、稳态误差、剪切频率、相角穿越频率以及增益裕度的求取方法。
(3)掌握利用Matlab对控制系统分析的技能。
熟悉MATLAB这一解决具体工程问题的标准软件,能熟练地应用MATLAB软件解决控制理论中的复杂和工程实际问题,并给以后的模糊控制理论、最优控制理论和多变量控制理论等奠定基础。
(4)提高控制系统设计和分析能力。
(5)所谓校正就是在系统不可变部分的基础上,加入适当的校正元部件,使系统满足给定的性能指标。
校正方案主要有串联校正、并联校正、反馈校正和前馈校正。
确定校正装置的结构和参数的方法主要有两类,分析法和综合法。
分析法是针对被校正系统的性能和给定的性能指标,首先选择合适的校正环节的结构,然后用校正方法确定校正环节的参数。
在用分析法进行串联校正时,校正环节的结构通常采用超前校正、滞后校正和滞后-超前校正这三种类型。
超前校正通常可以改善控制系统的快速性和超调量,但增加了带宽,而滞后校正可以改善超调量及相对稳定度,但往往会因带宽减小而使快速性下降。
滞后-超前校正兼用两者优点,并在结构设计时设法限制它们的缺点。
二、设计要求(姬松)1.前期基础知识,主要包括MATLAB系统要素,MATLAB语言的变量与语句,MATLAB的矩阵和矩阵元素,数值输入与输出格式,MATLAB系统工作空间信息,以及MATLAB的在线帮助功能等。
2.控制系统模型,主要包括模型建立、模型变换、模型简化,Laplace变换等等。
3.控制系统的时域分析,主要包括系统的各种响应、性能指标的获取、零极点对系统性能的影响、高阶系统的近似研究,控制系统的稳定性分析,控制系统的稳态误差的求取。
4.控制系统的根轨迹分析,主要包括多回路系统的根轨迹、零度根轨迹、纯迟延系统根轨迹和控制系统的根轨迹分析。
5.控制系统的频域分析,主要包括系统Bode 图、Nyquist 图、稳定性判据和系统的频域响应。
自动控制原理 相位超前校正

其Bode图为
采用超前网络对系统作 串联校正时,校正后系统的 开环放大倍数要下降 倍, 这就导致稳态误差的增加, 可能满足不了对系统稳态性 能的要求。
为使系统在校正前后的开环放大倍数保持不变,需由提 高放大器的放大倍数来补偿。校正后网络放大倍数衰减 倍, 放大器的放大倍数就得增大 倍。 1 补偿后相当于在系统中串入
1 10lg 10lg 5.6dB 0.27
1
在原系统 L0 ( ) 曲线上查得幅值为-5.6dB时所对应的频率为 4.3rad/s,故选校正后系统的截止频率 c 4.3rad/s,且有
m c 4.3rad/s
(4)确定校正网络的传递函数
T
1
m
1 0.45s 4.3 0.27
(7)校正网络的实现。
R2 0.27 R1 R2
T R1C 0.45s
选 C 2.2 F ,可得 R1 205KΩ , 2 75.8KΩ 。 R 选用标准值 R1 200KΩ , 2 75KΩ 。 R 串联超前校正是利用超前校正装臵的相位超前特性,增大 系统的相角裕度,使系统的超调量减小;同时,还增大了系统 的截止频率,从而使系统的调节时间减小。但对提高系统的稳 态精度作用不大,而且还使系统的抗高频干扰能力有所降低。 一般地,串联超前校正适合于稳态精度已满足要求,而且噪声 信号也很小,但超调量和调节时间不能满足要求的系统。
确定开环增益K 画出未补偿系统的Bode图,并求 0 , Lg 0
稳态误差的要求
m 0
1 sin m 1 sin m
5~ 10
求未补偿系统幅值为 10 lg(1 ) 处的频率, m c
自控超前校正

1 设计目的学会如何应用MATLAB 的计算功能进行理论与实际相结合。
通过该课程设计,可以使学生更深入理解控制系统的基本理论和基本方法,掌握控制系统的分析与综合的方法。
此次课程设计可以很好的培养和提高学生运用理论分析和解决实际问题的能力和水平,掌握MATLAB 的模拟和仿真。
本次课程设计的题目是连续定常系统的频率法超前校,校正的目的是为了在调整放大器增益后仍然不能全面满足设计要求的性能指标的情况下,通过加入的校正装置,使系统性能全面满足设计要求超前校正装置具有相位超前作用,它可以补偿原系统过大的滞后相角,从而增加系统的相角裕度和带宽,提高系统的相对稳定性和响应速度。
超前校正通常用来改善系统的动态性能,在系统的稳态性能较好而动态性能较差时,采用超前校正可以得到较好的效果。
并且通过实验了解串联超前校正环节对系统稳定性及过渡过程的影响,掌握频率特性法分析自动控制系统动态特性的方法和串联校正装置的设计方法与参数调试技术,能够根据题目给定的数据设计出相应的超前校正环节,并且能够应用仿真技术验证校正环节理论设计的正确性,熟练掌握MATLAB 的模拟和仿真。
2 设计内容已知单位反馈控制系统的开环传递函数为:)1015.0)(11.0(50)(0++=s s s s G 设计超前校正装置,使校正后系统满足:3 设计过程3.1确定开环增益K使开环增益K 满足静态速度误差系数的要求。
1050)1015.0)(11.0(50lim -→=++==s s s s s K K s v 3.2确定待校正系统的相位裕量和剪切频率未校正系统的开环频率特性为:)1015.0)(11.0(50)(++=ωωωωj j j j G O %30%,40,501≤≥=-σωc v s K幅频特性为:在MATLAB 命令窗口输入程序,运行结果如图1所示。
校正前系统伯德图程序:num=[50];den=[0.0015,0.115,1,0];[mag,phase,w]=bode(num,den);margin(mag,phase,w)运行程序后系统伯德图如图1所示图1 校正前系统的伯德图由图1可看出其校正前系统的剪切频率为:s rad c /7.20=ω1000225.0101.050lg 20)(22++=ωωωωL相位裕量为: o 535.81=γ3.3确定校正装置的传递函数由于给定的剪切频率40≥c ω,可以令45=c ω,由相频特性式可得出:dB L 99.13-)50(=所以校正装置在m ω处的幅值为:dB 99.131lg 10=α解得 0339.0=α再由 mm φφαsin 1sin 1+-= 可得相角 o m 408.67=φ又因为 εγγφ+-=1m 可得相角裕度 o 94.70=γ(时o 5=ε)然后由高阶系统的频域指标 )1(4.016.0%-+=r M σ与 γsin 1=r M 因为o 6.48=γ则 058.1=r M所以超调量 %30%32.18%≤=σ符合性能指标的要求,因此校正装置的传递函数为:TsTs s G c αα++=11)( 代入数值得: ss s G c 0044897.011125.010399.0)(++= 为了补偿因超前校正网络的引入而造成系统开环增益的衰减,必须使附加放大器的放大倍数为0627.251=α。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
R1 R 2 1 R2
8
特点: 1. 幅频特性小于或等于0dB。是一个低通滤波器。 2. ()小于等于零。可看作是一阶微分环节与惯性环
节的串联,但惯性环节时间常数T大于一阶微分环节时间 常数T(分母的时间常数大于分子的时间常数),即积分效 应大于微分效应,相角表现为一种迟后效应。
L ( )
1
α 1 2 α
1 sin m 1 - sin m
α 1
α
12
10lg
50
10
8 6 10lg(dB)
m
40
30
20
10
4
2
0
1 3 5 7 9
0
11 13 15 17
19
当α大于15以后, m的变化很小,α一般取115之间。
6
例1 若单位反馈系统开环传递函数为
13
L ( )
.
dB
60 40 20
20 40
L0
L
20
1
40
2 .1
0.01 20 20
0.1
Lc
0.5
40
10
( )
0
60
60
c
0
90
180
40
0 20
14
(3) 求值。确定原系统频率特性在=c处幅值下降 到0dB时所必需的衰减量ΔL。由等式 ΔL=20lg求取值。 由图得原系统在c处的幅频增益为20dB,为了 保证系统的增益剪切频率在ωc处,迟后校正装置应 产生20dB的衰减量:ΔL=20dB,即 20=20lgβ β=10 (4) 选取T值。为了使迟后校正装置产生的相位迟后 对校正后系统的增益剪切频率c处的影响足够小,应 满足,一般取 ωc=(5—10) 1/T 取
2
一、超前校正装置与超前校正
1. 超前校正装置 具有相位超前特性(即相频特性>0)的校正装置叫超 前校正装置,有的地方又称为微分校正装置。 超前网络的传递函数可写为
C
R1
R(s)
C(s) 1 α Ts 1 G c (s) R(s) α Ts 1
C ( s)
R2
T
R 1R 2 C R1 R 2 R1 R 2 1 R2
7-2 频率域中的无源串联超前校正
三个频段的概念
L() dB
15
c
15
低频段
中频段
高频段
1
控制系统的校正方法通常有两种: 1. 分析法。分析法是一种试探的方法,可归结为: 原系统频率特性+校正装置频率特性=希望频率特性 G0(jω) Gc(jω) G(jω) 从原有的系统频率特性出发,根据分析和经验,选 取合适的校正装置,使校正后的系统满足性能要求。 2. 综合法。可归结为: 希望频率特性原系统频率特性=校正装置频率特性 G(j) G0(j) Gc(j) 根据对系统品质指标要求,求出能满足性能的系统 开环频率特性,即希望频率特性。再将希望频率特性与 原系统频率特性相比较,确定校正装置的频率特性。
1
3. 最大负相移发生在转折 1 频率 T 与 β 1T 的几何中点。
m arc sin
β 1 β 1 arc sin 1 β 1β
0
T
m
1
T
20
20 lg
( )
0
β
1 sin (- m ) 1 - sin (- m )
m
90
9
例1 若单位反馈系统开环传递函数为
17
超前校正和迟后校正的区别与联系
原 理 超 前 校 正 利用超前网络的相角超前特性,改善系统的 动态性能。 (1)在ω c 附近,原系统的对数幅频特性的斜 率变小,相角裕量γ 与幅值裕量 Kg 变大。 (2)系统的频带宽度增加。 (3)由于γ 增加,超调量下降。 (4)不影响系统的稳态特性,即校正前后 ess 不变。 (1)频带加宽,对高频抗干扰能力下降。 (2)用无源网络时,为了补偿校正装置的幅 值衰减,需附加一个放大器。 (1)ω c 附近,原系统的相位迟后变化缓慢, 超前相位一般要求小于 550 ,对于多级串联 超前校正则无此要求。 (2)要求有大的频宽和快的瞬态响应。 (3)高频干扰不是主要问题。 迟 后 校 正 利用迟后网络的高频幅值衰减特性,改善 系统的稳态性能。 (1)在相对稳定性不变的情况下,系统的稳 态精度提高了。 (2)系统的增益剪切频率ω c 下降,闭环带 宽减小。 (3)对于给定的开环放大系数,由于ω c 附 近幅值衰减,使γ 、Kg 及谐振峰值 M r 均 得到改善。 频带变窄,使动态响应时间变大。
效 果
缺 点 应 用 范 围
(1)ω c 附近,原系统的相位变化急剧,以 致难于采用串联超前校正。 (2)适于频宽与瞬态响应要求不高的情况。 (3)对高频抗干扰有一定的要求。 (4)低频段能找到所需要的相位裕量。
18
1 1 ωc 0.1s1 T 5
1 0.01s1 β T
15
(5)确定迟后校正装置的传递函数。
10s 1 1 s 0.1 G c (s) 100s 1 10 s 0.01
校正后系统的开环传递函数
5(10s 1) G(s) G 0 (s) G c (s) s(100s 1)(s 1)(0.5s 1)
0
90
180
0 20
12
(2) 确定校正后系统的增益剪切频率c。 在此频率上,系统要求的相位裕量应等于要求的相 位裕量再加上(50120)---补偿迟后校正网络本身在c 处的相位迟后。 确定c。 原系统在 c0 处的相角衰减得很快,采用超前校正作 用不明显,故考虑采用迟后校正。现要求校正后系统 的 γ 40 0 ,为了补偿迟后校正网络本身的相位迟后, 需再加上50120的补偿角,所以取 Δγ=400+(50—120)=520 (补偿角取120) 在伯德图上可找得,在=0.5s-1附近的相位角等于 -128 0 ( 即相位裕量为 52 0 ) ,故取此频率为校正后系统 的增益剪切频率。即: ωc=0.5s-1
(6) 检验。 作出校正后系统的伯德图,求得=400,KV=5。所 以,系统满足要求。
16
由上分析可知:在迟后校正中,我们利用的是迟 后校正网络在高频段的衰减特性,而不是其相位的 迟后特性。对系统迟后校正后: ① 改善了系统的稳态性能。 迟后校正网络实质上是一个低通滤波器,对低由于迟后校正在高频段的衰减作用,使增益剪 切频率移到较低的频率上,保证了系统的稳定性。 ② 响应速度变慢。 迟后校正装置使系统的频带变窄,导致动态响应 时间增大。
7
7-3
迟后校正装置与迟后校正
1. 迟后校正装置 具有迟后相位特性(即相频特性()小于零)的校 正装置叫迟后校正装置,又称之为积分校正装置。 介绍一个无源迟后网络的电路图。
R1
R2
R (s)
C (s)
G c (s)
Ts 1 β Ts 1
C
β
式中:T=R2C 此校正网络的对数频率特性:
3
α
(a)
如果对无源超前网络传递函数的衰减由放大器增益 所补偿,则 α Ts 1
G c (s)
Ts 1
称为超前校正装置传递函数 无源超前校正网络对数频率特性
L( )
0 20lg
1
T
1
T
20
( )
m
0
m
(b)
4
校正网络有下面一些特点: 1. 幅频特性小于或等于0dB。 2. 大于或等于零。 3. 最大的超前相角 m 发生的转折频率1/αT与1/T的几 何中点ωm处。证明如下: 超前网络相角计算式是
(ω ) arc tg α Tω arc tg Tω
( )
根据两角和的三角函数公式,可得
(ω ) arc tg
(α 1)Tω 1 α T 2ω2
将上式求导并令其为零,得最大超前角频率
ω
m
1 T α
5
得最大超前相角 或写为 α
m arc sin
60
m arc tg
例: 设一系统的开环传递函数为: 要求校正后,稳态速度误差系数KV=5秒-1,γ400。 解: (1) 根据稳态误差要求确定开环增益K。绘制未校正 系统的伯德图,并求出其相位裕量和增益裕量。 确定K值。因为
K v lim sG 0 (s) lim
s 0
G 0 (s)
k s(s 1)(0.5s 1)
sk K s 0 s(s 1)(0.5s 1)
所以 Kv=K=5 作出原系统的伯德图,见图6-13。求得原系统的相位裕 量: 0 = - 200,系统不稳定。
11
.
L ( )
60 40 20
dB
20
L0
20 0.01 40
1
2 .1
0.1
0.5
10
( )
0
60