上海市静安区2017届高三上学期期质量检测(一模)数学试题+答案
【真题】17年上海市静安区高三(上)数学期中试卷含答案
2016-2017学年上海市静安区高三(上)期中数学试卷一、填空题(55分)本大题共有11题,要求在答题纸相应题序的空格内直接填写结果,每个空格填对得5分,否则一律得零分.1.(5分)已知集合A={x|lnx>0},B={x|2x<3},则A∩B=.2.(5分)若实数x,y满足约束条件则z=x+3y的最大值等于.3.(5分)已知展开式中x3的系数为84,则正实数a的值为.4.(5分)盒中装有形状、大小完全相同的5个球,其中红色球3个,黄色球2个.若从中随机取出2个球,则所取出的2个球颜色不同的概率等于.5.(5分)设f(x)为R上的奇函数.当x≥0时,f(x)=2x+2x+b(b为常数),则f(﹣1)的值为.6.(5分)设P,Q分别为直线(t为参数)和曲线C:(θ为参数)的点,则|PQ|的最小值为.7.(5分)各项均不为零的数列{a n}的前n项和为S n.对任意n∈N*,都是直线y=kx的法向量.若存在,则实数k的取值范围是.8.(5分)已知正四棱锥P﹣ABCD的棱长都相等,侧棱PB、PD的中点分别为M、N,则截面AMN与底面ABCD所成的二面角的余弦值是.9.(5分)设a>0,若对于任意的x>0,都有,则a的取值范围是.10.(5分)若适合不等式|x2﹣4x+k|+|x﹣3|≤5的x的最大值为3,则实数k的值为.11.(5分)已知,数列{a n}满足,对于任意n∈N*都满足a n+2=f (a n),且a n>0,若a20=a18,则a2016+a2017的值为.二、选择题(20分)本大题共有4题,每题都给出四个结论,其中有且只有一个结论是正确的,必须把答题纸上相应题序内的正确结论代号涂黑,选对得5分,否则一律得零分.12.(5分)已知a,b∈R,则“log3a>log3b”是“()a<()b”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件13.(5分)已知复数z满足(i是虚数单位),则z的虚部为()A.i B.﹣1 C.1 D.﹣i14.(5分)当时,方程的根的个数是()A.1 B.2 C.3 D.415.(5分)曲线C为:到两定点M(﹣2,0)、N(2,0)距离乘积为常数16的动点P的轨迹.以下结论正确的个数为()(1)曲线C一定经过原点;(2)曲线C关于x轴对称,但不关于y轴对称;(3)△MPN的面积不大于8;(4)曲线C在一个面积为60的矩形范围内.A.0 B.1 C.2 D.3三、解答题(本题满分75分)本大题共有5题,解答下列各题必须在答题纸的规定区域(对应的题号)内写出必要的步骤.16.(12分)如图,等腰Rt△AOB,OA=OB=2,点C是OB的中点,△AOB绕BO 所在的边逆时针旋转一周.(1)求△ABC旋转一周所得旋转体的体积V和表面积S;(2)设OA逆时针旋转至OD,旋转角为θ,且满足AC⊥BD,求θ.17.(14分)设函数.(1)求函数y=f(x)的最大值和最小正周期;(2)设A、B、C为△ABC的三个内角,若,,求sinA.18.(15分)某化工厂从今年一月起,若不改善生产环境,按生产现状,每月收入为70万元,同时将受到环保部门的处罚,第一个月罚3万元,以后每月增加2万元.如果从今年一月起投资500万元添加回收净化设备(改造设备时间不计),一方面可以改善环境,另一方面也可以大大降低原料成本.据测算,添加回收净化设备并投产后的前5个月中的累计生产净收入g(n)是生产时间n个月的二次函数g(n)=n2+kn(k是常数),且前3个月的累计生产净收入可达309万,从第6个月开始,每个月的生产净收入都与第5个月相同.同时,该厂不但不受处罚,而且还将得到环保部门的一次性奖励100万元.(1)求前8个月的累计生产净收入g(8)的值;(2)问经过多少个月,投资开始见效,即投资改造后的纯收入多于不改造时的纯收入.19.(16分)设点F1、F2是平面上左、右两个不同的定点,|F1F2|=2m,动点P 满足:.(1)求证:动点P的轨迹Γ为椭圆;(2)抛物线C满足:①顶点在椭圆Γ的中心;②焦点与椭圆Γ的右焦点重合.设抛物线C与椭圆Γ的一个交点为A.问:是否存在正实数m,使得△AF1F2的边长为连续自然数.若存在,求出m的值;若不存在,说明理由.20.(18分)已知等差数列{a n}的前n项和为S n,a1=﹣9,a2为整数,且对任意n∈N*都有S n≥S5.(1)求{a n}的通项公式;(2)设,(n∈N*),求{b n}的前n项和T n;(3)在(2)的条件下,若数列{c n}满足.是否存在实数λ,使得数列{c n}是单调递增数列.若存在,求出λ的取值范围;若不存在,说明理由.2016-2017学年上海市静安区高三(上)期中数学试卷参考答案与试题解析一、填空题(55分)本大题共有11题,要求在答题纸相应题序的空格内直接填写结果,每个空格填对得5分,否则一律得零分.1.(5分)已知集合A={x|lnx>0},B={x|2x<3},则A∩B=(1,log23).【解答】解:A={x|lnx>0}={x|x>1},B={x|2x<3}={x|x<log23},则A∩B=(1,log23);故答案为:(1,log23).2.(5分)若实数x,y满足约束条件则z=x+3y的最大值等于12.【解答】解:由约束条件,作出可行域如图,联立方程组,解得:A(3,3),化目标函数z=x+3y为y=﹣+,由图可知,当直线y=﹣+过A时,直线在y轴上的截距最大,对应z最大;此时z=3+3×3=12.故答案为:12.3.(5分)已知展开式中x3的系数为84,则正实数a的值为2.=x7﹣r=(﹣a)r x7﹣2r,【解答】解:通项公式T r+1令7﹣2r=3,解得r=2.∴84=(﹣a)2,a>0,解得a=2.故答案为:2.4.(5分)盒中装有形状、大小完全相同的5个球,其中红色球3个,黄色球2个.若从中随机取出2个球,则所取出的2个球颜色不同的概率等于.【解答】解:从中随机取出2个球,每个球被取到的可能性相同,是古典概型从中随机取出2个球,所有的取法共有C52=10所取出的2个球颜色不同,所有的取法有C31•C21=6由古典概型概率公式知P=故答案为5.(5分)设f(x)为R上的奇函数.当x≥0时,f(x)=2x+2x+b(b为常数),则f(﹣1)的值为﹣3.【解答】解:根据题意,f(x)为R上的奇函数.则有f(0)=0,又由当x≥0时,f(x)=2x+2x+b,则f(0)=20+b=0,解可得b=﹣1,则x≥0时,f(x)=2x+2x﹣1,则f(1)=21+2﹣1=3,又由函数为奇函数,则f(﹣1)=﹣f(1)=﹣3;故答案为:﹣3.6.(5分)设P,Q分别为直线(t为参数)和曲线C:(θ为参数)的点,则|PQ|的最小值为.【解答】解:由题意,曲线C:,消去参数θ:可得曲线C的普通方程为:(x﹣1)2+(y+2)2=5.直线(t为参数),消去参数t,可得直线的普通方程为:2x+y﹣6=0.由曲线C的普通方程为:(x﹣1)2+(y+2)2=5.可知圆心为(1,﹣2),半径r=.那么:圆心到直线的距离d==可得|PQ|的最小值为:d﹣r==;故答案为:7.(5分)各项均不为零的数列{a n}的前n项和为S n.对任意n∈N*,都是直线y=kx的法向量.若存在,则实数k的取值范围是(﹣∞,﹣1)∪(0,+∞).【解答】解:由题意,数列的公比q满足0<|q|<1,∵对任意n∈N*,都是直线y=kx的法向量,∴k=﹣=﹣+•,∴k∈(﹣∞,﹣1)∪(0,+∞),故答案为(﹣∞,﹣1)∪(0,+∞).8.(5分)已知正四棱锥P﹣ABCD的棱长都相等,侧棱PB、PD的中点分别为M、N,则截面AMN与底面ABCD所成的二面角的余弦值是.【解答】解:如图,正四棱锥P﹣ABCD中,O为正方形ABCD的两对角线的交点,则PO⊥面ABCD,PO交MN于E,则PE=EO,又BD⊥AC,∴BD⊥面PAC,过A作直线l∥BD,则l⊥EA,l⊥AO,∴∠EAO为所求二面角的平面角.又EO=AO=a,AO=a,∴AE=a∴cos∠EAO=.∴截面AMN与底面ABCD所成的二面角的余弦值是.9.(5分)设a>0,若对于任意的x>0,都有,则a的取值范围是[).【解答】解:对于任意的x>0,都有,得到,因为,所以,解得a;故答案为:[).10.(5分)若适合不等式|x2﹣4x+k|+|x﹣3|≤5的x的最大值为3,则实数k的值为8.【解答】解:因为x的最大值为3,故x﹣3<0,原不等式等价于|x2﹣4x+k|﹣x+3≤5,即﹣x﹣2≤x2﹣4x+k≤x+2,则x2﹣5x+k﹣2≤0且x2﹣3x+k+2≥0解的最大值为3,设x2﹣5x+k﹣2=0 的根分别为x1和x2,x1<x2,x2﹣3x+k+2=0的根分别为x3和x4,x3<x4.则x2=3,或x4=3.若x2=3,则9﹣15+k﹣2=0,k=8,若x4=3,则9﹣9+k+2=0,k=﹣2.当k=﹣2时,原不等式无解,检验得:k=8 符合题意,故答案为:8.11.(5分)已知,数列{a n}满足,对于任意n∈N*都满足a n+2=f(a n),且a n>0,若a20=a18,则a2016+a2017的值为.=f(a n),且a n>0,【解答】解:由题意,,a n+2∴a3=,a5=,a7=,a9=,…,∴a2017=,=f(a n),∴a n+4=f(a n+2),∴a n+4==a n,即数列的周期为4∵a n+2a20=a18=t,则t=,∴t2+2t﹣1=0,∵t>0,∴t=﹣1,∴a2016=﹣1,∴a2016+a2017==,故答案为:.二、选择题(20分)本大题共有4题,每题都给出四个结论,其中有且只有一个结论是正确的,必须把答题纸上相应题序内的正确结论代号涂黑,选对得5分,否则一律得零分.12.(5分)已知a,b∈R,则“log3a>log3b”是“()a<()b”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件【解答】解:∵a,b∈R,则“log3a>log3b”∴a>b>0,∵“()a<()b,∴a>b,∴“log3a>log3b”⇒“()a<()b,反之则不成立,∴“log3a>log3b”是“()a<()b的充分不必要条件,故选:A.13.(5分)已知复数z满足(i是虚数单位),则z的虚部为()A.i B.﹣1 C.1 D.﹣i【解答】解:复数z满足(i是虚数单位),∴1+z=i﹣iz,∴z====i.则z的虚部为1.故选:C.14.(5分)当时,方程的根的个数是()A.1 B.2 C.3 D.4【解答】解:作出y=与y=k(x+1)的函数图象,如图所示:显然当k>0时,两图象在(﹣∞,0)上必有一交点,设y=k(x+1)与y=相切,切点坐标为(x0,y0),则,解得k=,x0=1,y0=1.∴当0时,直线y=k(x+1)与y=有两个交点,∴直线y=k(x+1)与y=有三个交点.故选:C.15.(5分)曲线C为:到两定点M(﹣2,0)、N(2,0)距离乘积为常数16的动点P的轨迹.以下结论正确的个数为()(1)曲线C一定经过原点;(2)曲线C关于x轴对称,但不关于y轴对称;(3)△MPN的面积不大于8;(4)曲线C在一个面积为60的矩形范围内.A.0 B.1 C.2 D.3【解答】解:设P(x,y),则•=16,(1)(0,0)代入,方程不成立,即曲线C一定经过原点,不正确;(2)以﹣x代替x,﹣y代替y,方程成立,即曲线C关于x、y轴对称,不正确;(3)x=0,y=,△MPN的最大面积==4<8,故正确;(4)令y=0,可得x=±2,曲线C在一个面积为4=16的矩形范围内,不正确.故选:B.三、解答题(本题满分75分)本大题共有5题,解答下列各题必须在答题纸的规定区域(对应的题号)内写出必要的步骤.16.(12分)如图,等腰Rt△AOB,OA=OB=2,点C是OB的中点,△AOB绕BO 所在的边逆时针旋转一周.(1)求△ABC旋转一周所得旋转体的体积V和表面积S;(2)设OA逆时针旋转至OD,旋转角为θ,且满足AC⊥BD,求θ.【解答】解:(1);(3分)S==2π(2)(3分)(2)如图建立空间直角坐标系,得A(2,0,0),C(0,0,1),B(0,0,2)由三角比定义,得D(2cosθ,2sinθ,0),(1分)则,,,(2分),得,θ∈[0,2π),(2分)所以,.﹒﹒(1分)17.(14分)设函数.(1)求函数y=f(x)的最大值和最小正周期;(2)设A、B、C为△ABC的三个内角,若,,求sinA.【解答】解:(1)函数.化简可得:==.∴函数y=f(x)的最大值为,最小正周期T==π;(2)由,得,∵0<C<π,∴0<C<∴解得,.∴△ABC是直角三角形.因此,.18.(15分)某化工厂从今年一月起,若不改善生产环境,按生产现状,每月收入为70万元,同时将受到环保部门的处罚,第一个月罚3万元,以后每月增加2万元.如果从今年一月起投资500万元添加回收净化设备(改造设备时间不计),一方面可以改善环境,另一方面也可以大大降低原料成本.据测算,添加回收净化设备并投产后的前5个月中的累计生产净收入g(n)是生产时间n个月的二次函数g(n)=n2+kn(k是常数),且前3个月的累计生产净收入可达309万,从第6个月开始,每个月的生产净收入都与第5个月相同.同时,该厂不但不受处罚,而且还将得到环保部门的一次性奖励100万元.(1)求前8个月的累计生产净收入g(8)的值;(2)问经过多少个月,投资开始见效,即投资改造后的纯收入多于不改造时的纯收入.【解答】解:(1)据题意g(3)=32+3k=309,解得k=100,∴g(n)=n2+100n,(n≤5)第5个月的净收入为g(5)﹣g(4)=109万元,所以,g(8)=g(5)+3×109=852万元.(2)g(n)=即﹒若不投资改造,则前n个月的总罚款3n+=n2+2n,令g(n)﹣500+100>70n﹣(n2+2n),得:g(n)+n2﹣68n﹣400>0.显然当n≤5时,上式不成立;当n>5时,109n﹣20+n2﹣68n﹣400>0,即n(n+41)>420,又n∈N,解得n≥9.所以,经过9个月投资开始见效.19.(16分)设点F1、F2是平面上左、右两个不同的定点,|F1F2|=2m,动点P 满足:.(1)求证:动点P的轨迹Γ为椭圆;(2)抛物线C满足:①顶点在椭圆Γ的中心;②焦点与椭圆Γ的右焦点重合.设抛物线C与椭圆Γ的一个交点为A.问:是否存在正实数m,使得△AF1F2的边长为连续自然数.若存在,求出m的值;若不存在,说明理由.【解答】解:(1)证明:根据题意,分2种情况讨论:若点P、F1、F2构成三角形,又由,则.整理得,即|PF1|+|PF2|=4m(4m>2m>0).若点P、F1、F2不构成三角形,即P、F1、F2三点共线;也满足|PF1|+|PF2|=4m(4m>2m>0).所以动点P的轨迹为椭圆.(2)根据题意,由(1)可得,动点P的轨迹方程为.抛物线的焦点坐标为(m,0)与椭圆的右焦点F2重合.假设存在实数m,使得△AF1F2的边长为连续自然数.因为|PF1|+|PF2|=4m=2|F1F2|,不妨设||AF1|=2m+1,.由抛物线的定义可知|AF2|=2m﹣1=x A+m,解得x A=m﹣1,设点A的坐标为(m﹣1,y A),整理得7m2﹣22m+3=0,解得或m=3.所以存在实数m=3,使得△AF1F2的边长为连续自然数.20.(18分)已知等差数列{a n}的前n项和为S n,a1=﹣9,a2为整数,且对任意n∈N*都有S n≥S5.(1)求{a n}的通项公式;(2)设,(n∈N*),求{b n}的前n项和T n;(3)在(2)的条件下,若数列{c n}满足.是否存在实数λ,使得数列{c n}是单调递增数列.若存在,求出λ的取值范围;若不存在,说明理由.【解答】解:(1)设{a n}的公差为d,由题意得,∴,∵a2∈Z,即﹣9+d是整数,∴d=2﹒∴a n=﹣9+2(n﹣1)=2n﹣11.(2)当n为偶数时,.①当n为奇数时(n≥3),T n=b1+(b2+b3)+(b4+b5)+…+(b n﹣1+b n)==.当n=1时也符合上式.②当n为偶数时,﹒∴﹒(3),假设{c n}是单调递增数列,则对任意n∈N*都成立,当n 为奇数时,,令f(n)=﹣•42n,则f(n)单调递减,∴f(n)≤f(1)=﹣,∴﹒当n 为偶数时,,令g(n)=•42n,则g(n)单调递增,∴g(n)≥g(2)=,∴λ<.综上:.赠送—高中数学知识点【1.3.1】单调性与最大(小)值(1)函数的单调性②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.③对于复合函数[()]y f g x =,令()u g x =,若()y f u =为增,()u g x =为增,则[()]y f g x =为增;若()y f u =为减,()u g x =为减,则[()]y f g x =为增;若()y f u =为增,()u g x =为减,则[()]y f g x =为减;若()y f u =为减,()u g x =为增,则[()]y f g x =为减. (2)打“√”函数()(0)af x x a x=+>的图象与性质 ()f x分别在(,-∞、)+∞上为增函数,分别在[,0)a -、]a 上为减函数.(3)最大(小)值定义①一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足:(1)对于任意的x I ∈,都有()f x M ≤; (2)存在0x I ∈,使得0()f x M =.那么,我们称M 是函数()f x 的最大值,记作max ()f x M =.②一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最小值,记作max ()f x m =.【1.3.2】奇偶性(4)函数的奇偶性①定义及判定方法yxo②若函数()f x 为奇函数,且在0x =处有定义,则(0)0f =.③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相反.④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.。
上海静安区高中教学质量检测高三数学
静安区2016-2017学年度第一学期高中教学质量检测高三数学试卷本试卷共有20道试题,满分150分.考试时间120分钟.一、填空题(50分)本大题共有10题,要求在答题纸相应题序的空格内直接填写结果,每个空格填对得5分,否则一律得零分. 1.“0<x ”是“a x <”的充分非必要条件,则a 的取值范围是 . 2.函数⎪⎭⎫⎝⎛+-=4sin 31)(2πx x f 的最小正周期为 . 3.若复数z 为纯虚数, 且满足i )i 2(+=-a z (i 为虚数单位),则实数a 的值为 .4.二项式521⎪⎭⎫ ⎝⎛+x x 的展开式中,x 的系数为 .5.用半径1米的半圆形薄铁皮制作圆锥型无盖容器,其容积为 立方米. 6.已知α为锐角,且3cos()45πα+=,则sin α=________ . 7.根据相关规定,机动车驾驶人血液中的酒精含量大于(等于)20毫克/100毫升的行为属于饮酒驾车. 假设饮酒后,血液中的酒精含量为0p 毫克/100毫升,经过x 个小时,酒精含量降为p 毫克/100毫升,且满足关系式0r x p p e =⋅(r 为常数).若某人饮酒后血液中的酒精含量为89毫克/100毫升,2小时后,测得其血液中酒精含量降为61毫克/100毫升,则此人饮酒后需经过 小时方可驾车.(精确到小时) 8.已知奇函数)(x f 是定义在R 上的增函数,数列{}n x 是一个公差为2的等差数列,满足0)()(87=+x f x f ,则2017x 的值为 .9.直角三角形ABC 中,3AB =,4AC =,5BC =,点M 是三角形ABC 外接圆上任意一点,则AB AM ⋅的最大值为________.10.已知b a x f x -=)( 0(>a 且1≠a ,R ∈b ),1)(+=x x g ,若对任意实数x 均有0)()(≤⋅x g x f ,则ba 41+的最小值为________. 二、选择题(25分)本大题共有5题,每题都给出四个结论,其中有且只有一个结论是正确的,必须把答题纸上相应题序内的正确结论代号涂黑,选对得5分,否则一律得零分. 11.若空间三条直线a 、b 、c 满足c b b a ⊥⊥,,则直线a 与c 【 】A .一定平行;B .一定相交;C .一定是异面直线;D .平行、相交、是异面直线都有可能.12.在无穷等比数列{}n a 中,21)(lim 21=+⋅⋅⋅++∞→n n a a a ,则1a 的取值范围是【 】 A .⎪⎭⎫ ⎝⎛210,;B .⎪⎭⎫⎝⎛121,;C .()10,;D . ⎪⎭⎫ ⎝⎛210,⎪⎭⎫ ⎝⎛121,.13.某班班会准备从含甲、乙的6名学生中选取4人发言,要求甲、乙两人至少有一人参加,那么不同的发言顺序有 【 】 A .336种; B .320种; C .192种; D .144种. 14.已知椭圆1C ,抛物线2C 焦点均在x 轴上,1C 的中心和2C 顶点均为原点O ,从每条曲线上各取 两个点,将其坐标记录于表中,则1C 的左焦点到2C 的准线之间的距离为 【 】A .12-;B1;C .1;D .2.15.已知)(x g y =与)(x h y =都是定义在),0()0,(+∞-∞ 上的奇函数,且当0>x 时,⎩⎨⎧>-≤<=.1),1(,10,)(2x x g x x x g ,x k x h 2log )(=(0>x ),若)()(x h x g y -=恰有4个零点,则正实数k 的取值范围是 【 】A .]1,21[;B .]1,21(;C .]2log ,21(3;D .]2log ,21[3.三、解答题(本题满分75分)本大题共有5题,解答下列各题必须在答题纸的规定区域(对应的题号)内写出必要的步骤. 16.(本题满分11分,第1小题6分,第2小题5分)已知正四棱柱1111ABCD A BC D -,a AA a AB 2,1==,,E F 分别是棱,AD CD 的中点. (1) 求异面直线1BC EF 与所成角的大小; (2) 求四面体EF CA 1的体积.17.(本题满分14分,第1小题7分,第2小题7分)设双曲线C :22123x y -=, 12,F F 为其左右两个焦点. (1) 设O 为坐标原点,M 为双曲线C 右支上任意一点,求M F OM 1⋅的取值范围; (2) 若动点P 与双曲线C 的两个焦点12,F F 的距离之和为定值,且12cos F PF ∠的最小值为19-,求动点P 的轨迹方程.18.(本题满分14分,第1小题7分,第2小题7分)在某海滨城市附近海面有一台风,据监测,当前台风中心位于城市A (看做一点)的东偏南θ角方向cos θ⎛=⎝⎭,300 km 的海面P 处,并以20km / h 的速度向西偏北45°方向移动.台风侵袭的范围为圆形区域,当前半径为60 km ,并以10km / h 的速度不断增大.(1) 问10小时后,该台风是否开始侵袭城市A ,并说明理由; (2) 城市A 受到该台风侵袭的持续时间为多久?19.(本题满分18分,第1小题4分,第2小题6分,第3小题8分)设集合|)({x f M a =存在正实数a ,使得定义域内任意x 都有)}()(x f a x f >+.(1) 若22)(x x f x -=,试判断)(x f 是否为1M 中的元素,并说明理由;(2) 若341)(3+-=x x x g ,且a M x g ∈)(,求a 的取值范围; (3) 若),1[),(log )(3+∞∈+=x xkx x h (R ∈k ),且2)(M x h ∈,求)(x h 的最小值.20.(本题满分18分,第1小题4分,第2小题7分,第3小题7分)由)2(≥n n 个不同的数构成的数列12,,n a a a 中,若1i j n ≤<≤时,i j a a <(即后面的项j a 小于前面项i a ),则称i a 与j a 构成一个逆序,一个有穷数列的全部逆序的总数称为该数列的逆序数.如对于数列3,2,1,由于在第一项3后面比3小的项有2个,在第二项2后面比2小的项有1个,在第三项1后面比1小的项没有,因此,数列3,2,1的逆序数为3012=++;同理,等比数列81,41,21,1--的逆序数为4. (1) 计算数列*219(1100,N )n a n n n =-+≤≤∈的逆序数;(2) 计算数列1,3,1nn n a n n n ⎧⎛⎫⎪ ⎪⎪⎝⎭=⎨⎪-⎪+⎩为奇数为偶数(*1,N n k n ≤≤∈)的逆序数;(3) 已知数列12,,n a a a 的逆序数为a ,求11,,n n a a a - 的逆序数.静安区2016-2017学年度第一学期高中教学质量检测高三数学试卷答案与评分标准一、1.()∞+,0; 2.π; 3.21; 4.10; 5.243π; 6.102; 7.8; 8.4019; 9.12; 10.4 二、11. D; 12. D; 13. A; 14.B; 15.C. 16.解:(1)连接11C A ,……………………………….1分则B C A 11∠为异面直线1BC EF 与所成角 …………….1分 在B C A 11∆中,可求得a B A B C 511==,a C A 211=11cos 1010AC B ∠==∴异面直线所成角的大小arccos …………………….4分 (2)113112322212C A EF A EFCa a a V V a --==⋅⋅⋅⋅= ……………………………….5分 17.(1)设(),M x y,x ≥1(F ,1(,)()OM FM x y x y ⋅=⋅2222332x x y x =+=+-……………………………4分2532x =+-(x ≥5x =-≤)12OM F M ⎡⋅∈+∞⎣……………………………3分(2)由椭圆定义得:P 点轨迹为椭圆22221x y a b+=,12F F =122PF PF a +=2221212121212204220cos 22PF PF a PF PF F PF PF PF PF PF +--⋅-∠==⋅⋅21242012a PF PF -=-⋅……………………………4分由基本不等式得122a PF PF =+≥当且仅当12PF PF =时等号成立212PF PF a ⋅≤221224201cos 1929a F PF a a -⇒∠≥-=-⇒=,24b = 所求动点P 的轨迹方程为22194x y +=……………………………3分 18.解:(1)如图建立直角坐标系,……………………………1分则城市()0,0A ,当前台风中心(P -,设t小时后台风中心P 的坐标为(),x y,则x y ⎧=⎪⎨=-⎪⎩,此时台风的半径为6010t +,10小时后,4.184PA ≈km ,台风的半径为=r 160km,PA <r , ……………………………5分故,10小时后,该台风还没有开始侵袭城市A . ………1分 (2)因此,t 小时后台风侵袭的范围可视为以()P -为圆心,6010t +为半径的圆,若城市A 受到台风侵袭,则210800864000300t t -+≤⇒,即2362880t t -+≤,……………………………5分解得1224t ≤≤ ……………………………1分 答:该城市受台风侵袭的持续时间为12小时. ……………………………1分19.解:(1)∵1)0()1(==f f , ∴1)(M x f ∉. ……………………………4分(2)由0413341)(41)()()(32233>-++=++--+=-+a a x a ax x a x x a x x g a x g …2分 ∴0)41(12934<--=∆a a a a , ……………………………3分 故 1>a . ……………………………1分(3)由0)(log ]2)2[(log )()2(33>+-+++=-+xkx x k x x h x h , ………………1分 即:)(log ]2)2[(log 33xk x x k x +>+++ ∴ 022>+>+++xkx x k x 对任意),1[+∞∈x 都成立 ∴ 3113)2(2<<-⇒⎩⎨⎧-><⇒⎩⎨⎧->+<k k k x k x x k ……………………………3分 当01≤<-k 时,)1(log )1()(3min k h x h +==; ……………………………1分 当10<<k 时,)1(log )1()(3min k h x h +==; ……………………………1分 当31<≤k 时,)2(log )()(3min k k h x h ==. ……………………………1分 综上:⎪⎩⎪⎨⎧<≤<<-+=.31),2(log ,11),1(log )(33mink k k k x h ……………………………1分 20.(1)因为{}n a 为单调递减数列,所以逆序数为(991)999998149502+⨯+++== ; ……………………………4分(2)当n 为奇数时,13210n a a a ->>>> .……………………………1分 当n 为偶数时,222(4)112120(1)(1)n n n n a a n n n n n n ---=-+≥+--=--=<+-所以2420n a a a >>>> . ……………………………2分 当k 为奇数时,逆序数为235341(1)(3)21228k k k k k k ---+-+-++++++= ……………2分当k 为偶数时,逆序数为22432(1)(3)11228k k k kk k ----+-++++++= …………………2分(3)在数列12,,n a a a 中,若1a 与后面1n -个数构成1p 个逆序对,则有1(1)n p --不构成逆序对,所以在数列11,,n n a a a - 中, 逆序数为12(1)(1)(2)()2n n n n p n p n n p a ---+--++--=- .…7分。
07.2017年上海高三数学一模分类汇编:解析几何
2(2017徐汇一模). 已知抛物线C 的顶点在平面直角坐标系原点,焦点在x 轴上,若C 经过点(1,3)M ,则其焦点到准线的距离为4(2017青浦一模). 等轴双曲线222x y a -=与抛物线216y x =的准线交于A 、B 两点,且||AB =,则该双曲线的实轴长等于4(2017崇明一模). 抛物线2y x =上一点M 到焦点的距离为1,则点M 的纵坐标为4(2017宝山一模). 椭圆5cos 4sin x y θθ=⎧⎨=⎩(θ为参数)的焦距为5(2017普陀一模). 设k R ∈,2212y x k k -=-表示焦点在y 轴上的双曲线,则半焦距的取值范围是6(2017浦东一模). 已知直线:0l x y b -+=被圆22:25C x y +=所截得的弦长为6, 则b =6(2017金山一模). 点(1,0)到双曲线2214x y -=的渐近线的距离是 6(2017奉贤一模). 若抛物线22y px =的焦点与椭圆2215x y +=的右焦点重合,则p =7(2017虹口一模). 若双曲线2221y x b-=的一个焦点到其渐近线距离为线焦距等于8(2017普陀一模). 已知圆222:220C x y kx y k ++++=(k R ∈)和定点(1,1)P -,若过P 可以作两条直线与圆C 相切,则k 的取值范围是9(2017浦东一模). 过双曲线222:14x y C a -=的右焦点F 作一条垂直于x 轴的垂线交 双曲线C 的两条渐近线于A 、B 两点,O 为坐标原点,则△OAB 的面积的最小值为9(2017金山一模). 方程22242340x y tx ty t +--+-=(t 为参数)所表示的圆的圆心轨迹方程是 (结果化为普通方程)9(2017杨浦一模). 已知直线l 经过点(且方向向量为(2,1)-,则原点O 到直线l 的距离为10(2017松江一模). 设(,)P x y 是曲线1C =上的点,1(4,0)F -,2(4,0)F , 则12||||PF PF +的最大值为10(2017闵行一模). 已知x 、y 满足曲线方程2212x y +=,则22x y +的取值范围是10(2017杨浦一模). 若双曲线的一条渐近线为20x y +=,且双曲线与抛物线2y x =的准线仅有一个公共点,则此双曲线的标准方程为11(2017虹口一模). 点(20,40)M ,抛物线22y px =(0p >)的焦点为F ,若对于 抛物线上的任意点P ,||||PM PF +的最小值为41,则p 的值等于11(2017杨浦一模).平面直角坐标系中,给出点(1,0)A 、(4,0)B ,若直线10x my +-=上存在点P ,使得||2||PA PB =,则实数m 的取值范围是12(2017虹口一模). 当实数x 、y 满足221x y +=时,|2||32|x y a x y +++--的取 值与x 、y 均无关,则实数a 的取值范围是12(2017金山一模). 曲线C 是平面内到直线1:1l x =-和直线2:1l y =的距离之积等于常数2k (0k >)的点的轨迹,下列四个结论:① 曲线C 过点(1,1)-;② 曲线C 关于点(1,1)-成中心对称;③ 若点P 在曲线C 上,点A 、B 分别在直线1l 、2l 上,则||||PA PB +不小于2k ;④ 设0P 为曲线C 上任意一点,则点0P 关于直线1:1l x =-,点(1,1)-及直线2:1l y =对称的点分别为1P 、2P 、3P ,则四边形0123P PP P 的面积为定值24k ;其中,所有正确结论的序号是13(2017奉贤一模). 对于常数m 、n ,“0mn <”是“方程221mx ny +=表示的曲线 是双曲线”的( )A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 既非充分又非必要条件14(2017静安一模). 已知椭圆1C ,抛物线2C 焦点均在x 轴上,1C 的中心和2C 顶点均 为原点O ,从每条曲线上各取两个点,将其坐标记录于表中,则1C 的左焦点到2C 的准线之 间的距离为( )A.1 B. 1 C. 1 D. 215(2017崇明一模). 如图,已知椭圆C 的中心为原点O ,(F -为C 的左焦点,P 为C 上一点,满足||||OP OF =且||4PF =,则椭圆C 的方程为( )A.221255x y += B. 2213010x y += C.2213616x y += D. 2214525x y +=16(2017杨浦一模). 若直线1x ya b+=通过点(cos ,sin )P θθ,则下列不等式正确的是( ) A. 221a b +≤ B. 221a b +≥ C. 22111a b +≤ D. 22111a b+≥16(2017闵行一模). 曲线1:sin C y x =,曲线22221:()2C x y r r ++-=(0r >),它们交点的个数( )A. 恒为偶数B. 恒为奇数C. 不超过2017D. 可超过201716(2017徐汇一模). 如图,两个椭圆221259y x +=、221259y x+=内部重叠区域的边界记为曲线C ,P 是曲线C 上的任意一点,给出下列三个判断:(1)P 到1(4,0)F -、2(4,0)F 、1(0,4)E -、2(0,4)E 四点的距离之和为定值(2)曲线C 关于直线y x =、y x =-均对称 (3)曲线C 所围区域面积必小于36 上述判断中正确命题的个数为( )A. 0个B. 1个C. 2个D. 3个17(20172017静安一模). 设双曲线22:123x y C -=,1F 、2F 为其左右两个焦点; (1)设O 为坐标原点,M 为双曲线C 右支上任意一点,求1OM F M ⋅的取值范围; (2)若动点P 与双曲线C 的两个焦点1F 、2F 的距离之和为定值,且12cos F PF ∠的最小值 为19-,求动点P 的轨迹方程; 18(2017普陀一模). 已知椭圆2222:1x y a bΓ+=(0a b >>)的左、右两个焦点分别为1F 、2F ,P 是椭圆上位于第一象限内的点,PQ x ⊥轴,垂足为Q ,且12||6F F =,12arccos 9PF F ∠=,12PF F ∆的面积为(1)求椭圆Γ的方程;(2)若M 是椭圆上的动点,求||MQ 的最大值, 并求出||MQ 取得最大值时M 的坐标;18(2017宝山一模). 已知椭圆C 的长轴长为26,左焦点的坐标为(2,0)-;(1)求C 的标准方程;(2)设与x 轴不垂直的直线l 过C 的右焦点,并与C 交于A 、B 两点,且||AB =试求直线l 的倾斜角;18(2017杨浦一模). 如图所示,1l 、2l 是互相垂直的异面直线,MN 是它们的公垂线段,点A 、B 在1l 上,且位于M 点的两侧,C 在2l 上,AM BM NM CN ===; (1)求证:异面直线AC 与BN 垂直;(2)若四面体ABCN 的体积9ABCN V =,求异面直线1l 、2l 之间的距离;19(2017青浦一模). 如图,1F 、2F 分别是椭圆2222:1x y C a b+=(0a b >>)的左、右焦点,且焦距为AB 平行于x 轴,且11||||4F A F B +=; (1)求椭圆C 的方程;(2)若点P 是椭圆C 上异于点A 、B 的任意一点,且直线PA 、PB 分别与y 轴交于点M 、N ,若2MF 、2NF 的斜率分别为1k 、2k ,求证:12k k ⋅是定值;19(2017浦东一模). 已知椭圆2222:1x y C a b+=(0)a b >>的左、右焦点分别为1F 、2F ,过2F 的一条直线交椭圆于P 、Q 两点,若△12PF F 的周长为4+,且长轴长与短轴长; (1)求椭圆C 的方程;(2)若12||||F P F Q PQ +=,求直线PQ 的方程;19(2017金山一模). 已知椭圆C 以原点为中心,左焦点F 的坐标是(1,0)-,长轴长是短倍,直线l 与椭圆C 交于点A 与B ,且A 、B 都在x 轴上方,满足180OFA OFB ︒∠+∠=; (1)求椭圆C 的标准方程;(2)对于动直线l ,是否存在一个定点,无论OFA ∠如何变化,直线l 总经过此定点?若 存在,求出该定点的坐标;若不存在,请说明理由;19(2017崇明一模). 已知点1F 、2F 为双曲线222:1y C x b-=(0)b >的左、右焦点,过2F 作垂直于x 轴的直线,在x 轴上方交双曲线C 于点M ,且1230MF F ︒∠=;(1)求双曲线C 的方程;(2)过双曲线C 上任意一点P 作该双曲线两条渐近线的垂线,垂足分别为1P 、2P ,求12PP PP ⋅的值;19(2017杨浦一模). 如图所示,椭圆22:14x C y +=,左右焦点分别记作1F 、2F ,过1F 、2F 分别作直线1l 、2l 交椭圆于AB 、CD ,且1l ∥2l ;(1)当直线1l 的斜率1k 与直线BC 的斜率2k 都存在时,求证:12k k ⋅为定值; (2)求四边形ABCD 面积的最大值;20(2017闵行一模). 如图,椭圆2214y x +=的左、右顶点分别为A 、B ,双曲线Γ以A 、B 为顶点,焦距为P 是Γ上在第一象限内的动点,直线AP 与椭圆相交于另一点Q ,线段AQ 中点为M ,记直线AP 的斜率为k ,O 为坐标原点; (1)求双曲线Γ的方程;(2)求点M 的纵坐标M y 的取值范围;(3)是否存在定直线l ,使得直线BP 与直线OM 关于直线l 对称?若存在,求直线l 方程,若不存在,请说明理由;20(2017奉贤一模). 过双曲线2214y x -=的右支上的一点P 作一直线l 与两渐近线交于A 、B 两点,其中P 是AB 的中点;(1)求双曲线的渐近线方程;(2)当P 坐标为0(,2)x 时,求直线l 的方程; (3)求证:||||OA OB ⋅是一个定值;20(2017虹口一模). 椭圆2222:1x y C a b+=(0a b >>)过点(2,0)M ,且右焦点为(1,0)F ,过F 的直线l 与椭圆C 相交于A 、B 两点,设点(4,3)P ,记PA 、PB 的斜率分别为1k 和2k ;(1)求椭圆C 的方程;(2)如果直线l 的斜率等于1-,求出12k k ⋅的值; (3)探讨12k k +是否为定值?如果是,求出该定 值,如果不是,求出12k k +的取值范围;20(2017松江一模). 已知双曲线2222:1x y C a b-=经过点(2,3),两条渐近线的夹角为60︒,直线l 交双曲线于A 、B 两点;(1)求双曲线C 的方程;(2)若l 过原点,P 为双曲线上异于A 、B 的一点,且直线PA 、PB 的斜率PA k 、PB k 均 存在,求证:PA PB k k ⋅为定值;(3)若l 过双曲线的右焦点1F ,是否存在x 轴上的点(,0)M m ,使得直线l 绕点1F 无论怎 样转动,都有0MA MB ⋅=成立?若存在,求出M 的坐标;若不存在,请说明理由;20(2017徐汇一模). 如图,双曲线22:13x y Γ-=的左、右焦点1F 、2F ,过2F 作直线l 交y 轴于点Q ;(1)当直线l 平行于Γ的一条渐近线时,求点1F 到直线l 的距离;(2)当直线l 的斜率为1时,在Γ的右支上是否存在点P ,满足110F P FQ ⋅=?,若存在, 求点P 的坐标,若不存在,说明理由;(3)若直线l 与Γ交于不同两点A 、B ,且Γ上存在一点M ,满足40OA OB OM ++= (其中O 为坐标原点),求直线l 的方程;。
2017高考上海各区数学一模(含答案)
上海市宝山区2017届高三一模数学试卷一. 填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分) 1. 23lim1n n n →∞+=+2. 设全集U R =,集合{1,0,1,2,3}A =-,{|2}B x x =≥,则U AC B =3. 不等式102x x +<+的解集为 4. 椭圆5cos 4sin x y θθ=⎧⎨=⎩(θ为参数)的焦距为5. 设复数z 满足23z z i +=-(i 为虚数单位),则z =6. 若函数cos sin sin cos x xy x x=的最小正周期为a π,则实数a 的值为7. 若点(8,4)在函数()1log a f x x =+图像上,则()f x 的反函数为 8. 已知向量(1,2)a =,(0,3)b =,则b 在a 的方向上的投影为9. 已知一个底面置于水平面上的圆锥,其左视图是边长为6的正三角形,则该圆锥的侧面 积为10. 某班级要从5名男生和2名女生中选出3人参加公益活动,则在选出的3人中男、女生 均有的概率为 (结果用最简分数表示)11. 设常数0a >,若9()a x x+的二项展开式中5x 的系数为144,则a =12. 如果一个数列由有限个连续的正整数组成(数列的项数大于2),且所有项之和为N , 那么称该数列为N 型标准数列,例如,数列2,3,4,5,6为20型标准数列,则2668型 标准数列的个数为二. 选择题(本大题共4题,每题5分,共20分)13. 设a R ∈,则“1a =”是“复数(1)(2)(3)a a a i -+++为纯虚数”的( ) A. 充分非必要条件 B. 必要非充分条件 C. 充要条件 D. 既非充分又非必要条件14. 某中学的高一、高二、高三共有学生1350人,其中高一500人,高三比高二少50人, 为了解该校学生健康状况,现采用分层抽样方法进行调查,在抽取的样本中有高一学生120 人,则该样本中的高二学生人数为( )A. 80B. 96C. 108D. 110 15. 设M 、N 为两个随机事件,给出以下命题:(1)若M 、N 为互斥事件,且1()5P M =,1()4P N =,则9()20P M N =; (2)若1()2P M =,1()3P N =,1()6P MN =,则M 、N 为相互独立事件; (3)若1()2P M =,1()3P N =,1()6P MN =,则M 、N 为相互独立事件; (4)若1()2P M =,1()3P N =,1()6P MN =,则M 、N 为相互独立事件; (5)若1()2P M =,1()3P N =,5()6P MN =,则M 、N 为相互独立事件;其中正确命题的个数为( )A. 1B. 2C. 3D. 416. 在平面直角坐标系中,把位于直线y k =与直线y l =(k 、l 均为常数,且k l <)之 间的点所组成区域(含直线y k =,直线y l =)称为“k l ⊕型带状区域”,设()f x 为二次 函数,三点(2,(2)2)f --+、(0,(0)2)f +、(2,(2)2)f +均位于“04⊕型带状区域”,如 果点(,1)t t +位于“13-⊕型带状区域”,那么,函数|()|y f t =的最大值为( ) A. 72 B. 3 C. 52D. 2三. 解答题(本大题共5题,共14+14+14+16+18=76分) 17. 如图,已知正三棱柱111ABC A B C -的底面积为934,侧面积为36;(1)求正三棱柱111ABC A B C -的体积;(2)求异面直线1AC 与AB 所成的角的大小;18. 已知椭圆C 的长轴长为26,左焦点的坐标为(2,0)-; (1)求C 的标准方程;(2)设与x 轴不垂直的直线l 过C 的右焦点,并与C 交于A 、B 两点,且||6AB =, 试求直线l 的倾斜角;19. 设数列{}n x 的前n 项和为n S ,且430n n x S --=(*n N ∈); (1)求数列{}n x 的通项公式;(2)若数列{}n y 满足1n n n y y x +-=(*n N ∈),且12y =,求满足不等式559n y >的最小 正整数n 的值;20. 设函数()lg()f x x m =+(m R ∈); (1)当2m =时,解不等式1()1f x >; (2)若(0)1f =,且1()()2x f x λ=+在闭区间[2,3]上有实数解,求实数λ的范围;(3)如果函数()f x 的图像过点(98,2),且不等式[cos(2)]lg2n f x <对任意n N ∈均成立, 求实数x 的取值集合;21. 设集合A 、B 均为实数集R 的子集,记:{|,}A B a b a A b B +=+∈∈; (1)已知{0,1,2}A =,{1,3}B =-,试用列举法表示A B +;(2)设123a =,当*n N ∈,且2n ≥时,曲线2221119x y n n n +=-+-的焦距为n a ,如果 12{,,,}n A a a a =⋅⋅⋅,122{,,}993B =---,设A B +中的所有元素之和为n S ,对于满足3m n k +=,且m n ≠的任意正整数m 、n 、k ,不等式0m n k S S S λ+->恒成立,求实数λ的最大值;(3)若整数集合111A A A ⊆+,则称1A 为“自生集”,若任意一个正整数均为整数集合2A 的 某个非空有限子集中所有元素的和,则称2A 为“*N 的基底集”,问:是否存在一个整数集 合既是自生集又是*N 的基底集?请说明理由;上海市宝山区2017届高三一模数学试卷一. 填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分) 1. 23lim1n n n →∞+=+2. 设全集U R =,集合{1,0,1,2,3}A =-,{|2}B x x =≥,则U AC B =3. 不等式102x x +<+的解集为 4. 椭圆5cos 4sin x y θθ=⎧⎨=⎩(θ为参数)的焦距为5. 设复数z 满足23z z i +=-(i 为虚数单位),则z =6. 若函数cos sin sin cos x xy x x=的最小正周期为a π,则实数a 的值为7. 若点(8,4)在函数()1log a f x x =+图像上,则()f x 的反函数为 8. 已知向量(1,2)a =,(0,3)b =,则b 在a 的方向上的投影为9. 已知一个底面置于水平面上的圆锥,其左视图是边长为6的正三角形,则该圆锥的侧面 积为10. 某班级要从5名男生和2名女生中选出3人参加公益活动,则在选出的3人中男、女生 均有的概率为 (结果用最简分数表示)11. 设常数0a >,若9()a x x+的二项展开式中5x 的系数为144,则a =12. 如果一个数列由有限个连续的正整数组成(数列的项数大于2),且所有项之和为N , 那么称该数列为N 型标准数列,例如,数列2,3,4,5,6为20型标准数列,则2668型 标准数列的个数为二. 选择题(本大题共4题,每题5分,共20分)13. 设a R ∈,则“1a =”是“复数(1)(2)(3)a a a i -+++为纯虚数”的( ) A. 充分非必要条件 B. 必要非充分条件 C. 充要条件 D. 既非充分又非必要条件14. 某中学的高一、高二、高三共有学生1350人,其中高一500人,高三比高二少50人, 为了解该校学生健康状况,现采用分层抽样方法进行调查,在抽取的样本中有高一学生120 人,则该样本中的高二学生人数为( )A. 80B. 96C. 108D. 110 15. 设M 、N 为两个随机事件,给出以下命题:(1)若M 、N 为互斥事件,且1()5P M =,1()4P N =,则9()20P M N =; (2)若1()2P M =,1()3P N =,1()6P MN =,则M 、N 为相互独立事件; (3)若1()2P M =,1()3P N =,1()6P MN =,则M 、N 为相互独立事件; (4)若1()2P M =,1()3P N =,1()6P MN =,则M 、N 为相互独立事件; (5)若1()2P M =,1()3P N =,5()6P MN =,则M 、N 为相互独立事件;其中正确命题的个数为( )A. 1B. 2C. 3D. 416. 在平面直角坐标系中,把位于直线y k =与直线y l =(k 、l 均为常数,且k l <)之 间的点所组成区域(含直线y k =,直线y l =)称为“k l ⊕型带状区域”,设()f x 为二次 函数,三点(2,(2)2)f --+、(0,(0)2)f +、(2,(2)2)f +均位于“04⊕型带状区域”,如 果点(,1)t t +位于“13-⊕型带状区域”,那么,函数|()|y f t =的最大值为( ) A. 72 B. 3 C. 52D. 2三. 解答题(本大题共5题,共14+14+14+16+18=76分) 17. 如图,已知正三棱柱111ABC A B C -的底面积为934,侧面积为36;(1)求正三棱柱111ABC A B C -的体积;(2)求异面直线1AC 与AB 所成的角的大小;18. 已知椭圆C 的长轴长为26,左焦点的坐标为(2,0)-; (1)求C 的标准方程;(2)设与x 轴不垂直的直线l 过C 的右焦点,并与C 交于A 、B 两点,且||6AB =, 试求直线l 的倾斜角;19. 设数列{}n x 的前n 项和为n S ,且430n n x S --=(*n N ∈); (1)求数列{}n x 的通项公式;(2)若数列{}n y 满足1n n n y y x +-=(*n N ∈),且12y =,求满足不等式559n y >的最小 正整数n 的值;20. 设函数()lg()f x x m =+(m R ∈); (1)当2m =时,解不等式1()1f x >; (2)若(0)1f =,且1()()2x f x λ=+在闭区间[2,3]上有实数解,求实数λ的范围;(3)如果函数()f x 的图像过点(98,2),且不等式[cos(2)]lg2n f x <对任意n N ∈均成立, 求实数x 的取值集合;21. 设集合A 、B 均为实数集R 的子集,记:{|,}A B a b a A b B +=+∈∈; (1)已知{0,1,2}A =,{1,3}B =-,试用列举法表示A B +;(2)设123a =,当*n N ∈,且2n ≥时,曲线2221119x y n n n +=-+-的焦距为n a ,如果 12{,,,}n A a a a =⋅⋅⋅,122{,,}993B =---,设A B +中的所有元素之和为n S ,对于满足3m n k +=,且m n ≠的任意正整数m 、n 、k ,不等式0m n k S S S λ+->恒成立,求实数λ的最大值;(3)若整数集合111A A A ⊆+,则称1A 为“自生集”,若任意一个正整数均为整数集合2A 的 某个非空有限子集中所有元素的和,则称2A 为“*N 的基底集”,问:是否存在一个整数集 合既是自生集又是*N 的基底集?请说明理由;上海市崇明县2017届高三一模数学试卷2016.12一. 填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分) 1. 复数(2)i i +的虚部为 2. 设函数2log ,0()4,0xx x f x x >⎧=⎨≤⎩,则((1))f f -=3. 已知{||1|2,}M x x x R =-≤∈,1{|0,}2xP x x R x -=≥∈+,则M P =4. 抛物线2y x =上一点M 到焦点的距离为1,则点M 的纵坐标为5. 已知无穷数列{}n a 满足112n n a a +=*()n N ∈,且21a =,记n S 为数列{}n a 的前n 项和, 则lim n n S →∞=6. 已知,x y R +∈,且21x y +=,则xy 的最大值为7. 已知圆锥的母线10l =,母线与旋转轴的夹角30α︒=,则圆锥的表面积为8. 若21(2)nx x+*()n N ∈的二项展开式中的第9项是常数项,则n =9. 已知,A B 分别是函数()2sin f x x ω=(0)ω>在y 轴右侧图像上的第一个最高点和第一 个最低点,且2AOB π∠=,则该函数的最小正周期是10. 将序号分别为1、2、3、4、5的5张参观券全部分给4人,每人至少一张,如果分给同 一人的2张参观券连号,那么不同的分法种数是11. 在平面直角坐标系中,横、纵坐标均为整数的点叫做格点,若函数()y f x =的图像恰好经过k 个格点,则称函数()y f x =为k 阶格点函数,已知函数:①2y x =;②2sin y x =;③1xy π=-;④cos()3y x π=+;其中为一阶格点函数的序号为 (注:把你认为正确的序号都填上)12. 已知AB 为单位圆O 的一条弦,P 为单位圆O 上的点,若()||f AP AB λλ=-()R λ∈ 的最小值为m ,当点P 在单位圆上运动时,m 的最大值为43,则线段AB 长度为二. 选择题(本大题共4题,每题5分,共20分)13. 下列函数在其定义域内既是奇函数又是增函数的是( )A. tan y x =B. 3xy = C. 13y x = D. lg ||y x =14. 设,a b R ∈,则“21a b ab +>⎧⎨>⎩”是“1a >且1b >”的( )条件A. 充分非必要B. 必要非充分C. 充要D. 既非充分也非必要 15. 如图,已知椭圆C 的中心为原点O ,(25,0)F -为C 的左焦点,P 为C 上一点,满 足||||OP OF =且||4PF =,则椭圆C 的方程为( )A.221255x y += B. 2213010x y += C.2213616x y += D. 2214525x y += 16. 实数a 、b 满足0ab >且a b ≠,由a 、b 、2a b+、ab 按一定顺序构成的数列( ) A. 可能是等差数列,也可能是等比数列 B. 可能是等差数列,但不可能是等比数列 C. 不可能是等差数列,但可能是等比数列 D. 不可能是等差数列,也不可能是等比数列三. 解答题(本大题共5题,共14+14+14+16+18=76分)17. 在正三棱柱111ABC A B C -中,1AB =,12BB =,求: (1)异面直线11B C 与1AC 所成角的大小; (2)四棱锥111A B BCC -的体积;18. 在一个特定时段内,以点E 为中心的7海里以内海域被设为警戒水域,点E 正北55海 里处有一个雷达观测站A ,某时刻测得一艘匀速直线行驶的船只位于点A 北偏东45°且与 点A 相距402海里的位置B 处,经过40分钟又测得该船已行驶到点A 北偏东45θ︒+ (其中26sin 26θ=,090θ︒︒<<)且与点A 相距1013海里的位置C 处; (1)求该船的行驶速度;(单位:海里/小时)(2)若该船不改变航行方向继续行驶,判断 它是否会进入警戒水域,并说明理由;19. 已知点1F 、2F 为双曲线222:1y C x b-=(0)b >的左、右焦点,过2F 作垂直于x 轴的直线,在x 轴上方交双曲线C 于点M ,且1230MF F ︒∠=;(1)求双曲线C 的方程;(2)过双曲线C 上任意一点P 作该双曲线两条渐近线的垂线,垂足分别为1P 、2P ,求12PP PP ⋅的值;20. 设12()2x x a f x b+-+=+,,a b 为实常数;(1)当1a b ==时,证明:()f x 不是奇函数; (2)若()f x 是奇函数,求a 与b 的值;(3)当()f x 是奇函数时,研究是否存在这样的实数集的子集D ,对任何属于D 的x 、c , 都有2()33f x c c <-+成立?若存在,试找出所有这样的D ;若不存在,说明理由;21. 已知数列{}n a 、{}n b 满足2(2)n n n S a b =+,其中n S 是数列{}n a 的前n 项和; (1)若数列{}n a 是首项为23,公比为13-的等比数列,求数列{}n b 的通项公式; (2)若n b n =,23a =,求证:数列{}n a 满足212n n n a a a +++=,并写出{}n a 通项公式; (3)在(2)的条件下,设nn na cb =,求证:数列{}nc 中的任意一项总可以表示成该数列 其他两项之积;参考答案一. 填空题1. 22. 2-3. [1,1]-4.34 5. 4 6. 187. 75π 8. 12 9. 833 10. 96 11. ②③ 12. 423二. 选择题13. C 14. B 15. C 16. D三. 解答题 17.(1)5arccos10;(2)33;18.(1)155;(2)357d =<,会进入警戒水域;19.(1)2212y x -=;(2)29;20.(1)(1)(1)f f -≠-;(2)12a b =⎧⎨=⎩,12a b =-⎧⎨=-⎩;(3)当121()22x x f x +-+=+,D R =;当121()22x x f x +--=-,(0,)D =+∞,25(,log ]7D =-∞;21.(1)12n b =;(2)1n a n =+;(3)略;上海市金山区2017届高三一模数学试卷2016.12一. 填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分) 1. 若集合2{|20}M x x x =-<,{|||1}N x x =>,则MN =2. 若复数z 满足232z z i +=-,其中i 为虚数单位,则z =3. 如果5sin 13α=-,且α为第四象限角,则tan α的值是 4. 函数cos sin ()sin cos x xf x x x=的最小正周期是5. 函数()2x f x m =+的反函数为1()y f x -=,且1()y f x -=的图像过点(5,2)Q ,那么m =6. 点(1,0)到双曲线2214x y -=的渐近线的距离是 7. 如果实数x 、y 满足2030x y x y x -≤⎧⎪+≤⎨⎪≥⎩,则2x y +的最大值是8. 从5名学生中任选3人分别担任语文、数学、英语课代表,其中学生甲不能担任数学课 代表,共有 种不同的选法(结果用数值表示) 9. 方程22242340x y tx ty t +--+-=(t 为参数)所表示 的圆的圆心轨迹方程是 (结果化为普通方程) 10. 若n a 是(2)nx +(*n N ∈,2n ≥,x R ∈)展开式中2x 项的二项式系数,则23111lim()n na a a →∞++⋅⋅⋅+= 11. 设数列{}n a 是集合{|33,stx x s t =+<且,}s t N ∈中所有的数从小到大排列成的数列, 即14a =,210a =,312a =,428a =,530a =,636a =,,将数列{}n a 中各项按 照上小下大,左小右大的原则排成如图的等腰直角三角形数表,则15a 的值为12. 曲线C 是平面内到直线1:1l x =-和直线2:1l y =的距离之积等于常数2k (0k >)的点的轨迹,下列四个结论:① 曲线C 过点(1,1)-;② 曲线C 关于点(1,1)-成中心对称; ③ 若点P 在曲线C 上,点A 、B 分别在直线1l 、2l 上,则||||PA PB +不小于2k ;④ 设0P 为曲线C 上任意一点,则点0P 关于直线1:1l x =-,点(1,1)-及直线2:1l y =对称的点分别为1P 、2P 、3P ,则四边形0123P PP P 的面积为定值24k ; 其中,所有正确结论的序号是41012283036⋅⋅⋅二. 选择题(本大题共4题,每题5分,共20分)13. 给定空间中的直线l 与平面α,则“直线l 与平面α垂直”是“直线l 垂直于平面α上 无数条直线”的( )条件A. 充分非必要B. 必要非充分C. 充要D. 既不充分也不必要 14. 已知x 、y R ∈,且0x y >>,则( ) A.110x y-> B. 11()()022x y -<C. 22log log 0x y +>D. sin sin 0x y -> 15. 某几何体的三视图如图所示,则它的体积是( )A. 283π-B. 83π- C. 82π- D. 23π16. 已知函数2(43)30()log (1)10a x a x a x f x x x ⎧+-+<=⎨++≥⎩(0a >且1a ≠)在R 上单调递减,且关于x 的方程|()|2f x x =-恰好有两个不相等的实数解,则a 的取值范围是( )A. 2(0,]3B. 23[,]34C. 123[,]{}334D. 123[,){}334三. 解答题(本大题共5题,共14+14+14+16+18=76分)17. 如图,在四棱锥P ABCD -中,底面ABCD 是矩形,PA ⊥平面ABCD ,PB 、PD 与 平面ABCD 所成的角依次是4π和1arctan 2,2AP =,E 、F 依次是PB 、PC 的中点;(1)求异面直线EC 与PD 所成角的大小;(结果用反三角函数值表示) (2)求三棱锥P AFD -的体积;18. 已知△ABC 中,1AC =,23ABC π∠=,设BAC x ∠=,记()f x AB BC =⋅; (1)求函数()f x 的解析式及定义域;(2)试写出函数()f x 的单调递增区间,并求方程1()6f x =的解;19. 已知椭圆C 以原点为中心,左焦点F 的坐标是(1,0)-,长轴长是短轴长的2倍,直 线l 与椭圆C 交于点A 与B ,且A 、B 都在x 轴上方,满足180OFA OFB ︒∠+∠=; (1)求椭圆C 的标准方程;(2)对于动直线l ,是否存在一个定点,无论OFA ∠如何变化,直线l 总经过此定点?若 存在,求出该定点的坐标;若不存在,请说明理由;20. 已知函数2()21g x ax ax b =-++(0)a >在区间[2,3]上的最大值为4,最小值为1, 记()(||)f x g x =,x R ∈; (1)求实数a 、b 的值;(2)若不等式222()()log 2log 3f x g x k k +≥--对任意x R ∈恒成立,求实数k 的范围; (3)对于定义在[,]p q 上的函数()m x ,设0x p =,n x q =,用任意i x (1,2,,1)i n =⋅⋅⋅- 将[,]p q 划分成n 个小区间,其中11i i i x x x -+<<,若存在一个常数0M >,使得不等式01121|()()||()()||()()|n n m x m x m x m x m x m x M --+-+⋅⋅⋅+-≤恒成立,则称函数()m x为在[,]p q 上的有界变差函数,试证明函数()f x 是在[1,3]上的有界变差函数,并求出M 的最小值;21. 数列{}n b 的前n 项和为n S ,且对任意正整数n ,都有(1)2n n n S +=; (1)试证明数列{}n b 是等差数列,并求其通项公式;(2)如果等比数列{}n a 共有2017项,其首项与公比均为2,在数列{}n a 的每相邻两项i a 与1i a +之间插入i 个(1)i i b -*()i N ∈后,得到一个新数列{}n c ,求数列{}n c 中所有项的和; (3)如果存在*n N ∈,使不等式11820(1)()(1)n n n n n b n b b b λ++++≤+≤+成立,若存在, 求实数λ的范围,若不存在,请说明理由;参考答案一. 填空题1. (1,2)2. 12i -3. 512-4. π5. 16. 557. 4 8. 48 9. 20x y -= 10. 2 11. 324 12. ②③④二. 选择题13. A 14. B 15. A 16. C三. 解答题 17.(1)310arccos 10;(2)43;18.(1)2211()sin sin()sin(2)33366f x x x x ππ=+=+-,(0,)3x π∈; (2)递增区间(0,]6π,6x π=;19.(1)2212x y +=;(2)(2,0)-; 20.(1)0b =,1a =;(2)1[,8]2;(3)min 4M =;21.(1)n b n =;(2)201822033134+;(3)不存在;上海市虹口区2017届高三一模数学试卷2016.12一. 填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分) 1. 已知集合{1,2,4,6,8}A =,{|2,}B x x k k A ==∈,则A B =2. 已知21zi i=+-,则复数z 的虚部为 3. 设函数()sin cos f x x x =-,且()1f a =,则sin 2a =4. 已知二元一次方程111222a xb yc a x b y c +=⎧⎨+=⎩的增广矩阵是111113-⎛⎫⎪⎝⎭,则此方程组的解是5. 数列{}n a 是首项为1,公差为2的等差数列,n S 是它前n 项和,则2lim n n nSa →∞=6. 已知角A 是ABC ∆的内角,则“1cos 2A =”是“3sin 2A =”的 条件(填“充 分非必要”、“必要非充分”、“充要条件”、“既非充分又非必要”之一)7. 若双曲线2221y x b-=的一个焦点到其渐近线距离为22,则该双曲线焦距等于8. 若正项等比数列{}n a 满足:354a a +=,则4a 的最大值为 9. 一个底面半径为2的圆柱被与其底面所成角是60°的平 面所截,截面是一个椭圆,则该椭圆的焦距等于10. 设函数61()211x x f x x x ⎧≥=⎨--≤-⎩,则当1x ≤-时,则[()]f f x 表达式的展开式中含2x 项的系数是11. 点(20,40)M ,抛物线22y px =(0p >)的焦点为F ,若对于抛物线上的任意点P ,||||PM PF +的最小值为41,则p 的值等于12. 当实数x 、y 满足221x y +=时,|2||32|x y a x y +++--的取值与x 、y 均无关, 则实数a 的取值范围是二. 选择题(本大题共4题,每题5分,共20分)13. 在空间,α表示平面,m 、n 表示二条直线,则下列命题中错误的是( ) A. 若m ∥α,m 、n 不平行,则n 与α不平行 B. 若m ∥α,m 、n 不垂直,则n 与α不垂直 C. 若m α⊥,m 、n 不平行,则n 与α不垂直 D. 若m α⊥,m 、n 不垂直,则n 与α不平行14. 已知函数()sin(2)3f x x π=+在区间[0,]a (其中0a >)上单调递增,则实数a 的取值范围是( ) A. 02a π<≤B. 012a π<≤C. 12a k ππ=+,*k N ∈ D. 2212k a k πππ<≤+,k N ∈15. 如图,在圆C 中,点A 、B 在圆上,则AB AC ⋅的值( )A. 只与圆C 的半径有关B. 既与圆C 的半径有关,又与弦AB 的长度有关C. 只与弦AB 的长度有关D. 是与圆C 的半径和弦AB 的长度均无关的定值16. 定义(){}f x x =(其中{}x 表示不小于x 的最小整数)为“取上整函数”,例如{2.1}3=,{4}4=,以下关于“取上整函数”性质的描述,正确的是( )①(2)2()f x f x =;② 若12()()f x f x =,则121x x -<;③ 任意1x 、2x R ∈,1212()()()f x x f x f x +≤+;④1()()(2)2f x f x f x ++=; A. ①② B. ①③ C. ②③ D. ②④三. 解答题(本大题共5题,共14+14+14+16+18=76分)17. 在正三棱锥P ABC -中,已知底面等边三角形的边长为6,侧棱长为4; (1)求证:PA BC ⊥;(2)求此三棱锥的全面积和体积;18. 如图,我海蓝船在D 岛海域例行维权巡航,某时刻航行至A 处,此时测得其北偏东30° 方向与它相距20海里的B 处有一外国船只,且D 岛位于海蓝船正东18海里处; (1)求此时该外国船只与D 岛的距离;(2)观测中发现,此外国船只正以每小时4海里的速度沿正南方航行,为了将该船拦截在 离D 岛12海里的E 处(E 在B 的正南方向),不让其进入D 岛12海里内的海域,试确定 海蓝船的航向,并求其速度的最小值(角度精确到0.1°,速度精确到0.1海里/小时);19. 已知二次函数2()4f x ax x c =-+的值域为[0,)+∞; (1)判断此函数的奇偶性,并说明理由;(2)判断此函数在2[,)a+∞的单调性,并用单调性的定义证明你的结论;(3)求出()f x 在[1,)+∞上的最小值()g a ,并求()g a 的值域;20. 椭圆2222:1x y C a b+=(0a b >>)过点(2,0)M ,且右焦点为(1,0)F ,过F 的直线l 与椭圆C 相交于A 、B 两点,设点(4,3)P ,记PA 、PB 的斜率分别为1k 和2k ;(1)求椭圆C 的方程;(2)如果直线l 的斜率等于1-,求出12k k ⋅的值; (3)探讨12k k +是否为定值?如果是,求出该定 值,如果不是,求出12k k +的取值范围;21. 已知函数()2|2||1|f x x x =+-+,无穷数列{}n a 的首项1a a =; (1)若()n a f n =(*n N ∈),写出数列{}n a 的通项公式;(2)若1()n n a f a -=(*n N ∈且2n ≥),要使数列{}n a 是等差数列,求首项a 取值范围; (3)如果1()n n a f a -=(*n N ∈且2n ≥),求出数列{}n a 的前n 项和n S ;参考答案一. 填空题1. {2,4,8}2. 13. 04. 21x y =⎧⎨=⎩ 5. 146. 充分非必要7. 68. 29. 43 10. 6011. 22或42 12. [5,)+∞二. 选择题13. A 14. B 15. C 16. C三. 解答题17.(1)略;(2)9793S =+,63V =; 18.(1)291;(2)东偏北41.8︒, 6.4v =海里/小时; 19.(1)非奇非偶函数;(2)单调递增;(3)当02a <<,()0g a =;当2a ≥,4()4g a a a=+-;值域[0,)+∞; 20.(1)22143x y +=;(2)12;(3)2;21.(1)3n a n =+;(2){3}[1,)a ∈--+∞;(3)当2a ≤-,3(1)(2)(1)(3)2n n n S a n a --=+---+;当21a -<≤-,3(1)(2)(1)(35)2n n n S a n a --=+-++;当1a >-,3(1)2n n n S na -=+;上海市闵行区2017届高三一模数学试卷2016.12一. 填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分) 1. 方程lg(34)1x +=的解x = 2. 若关于x 的不等式0x ax b->-(,a b R ∈)的解集为(,1)(4,)-∞+∞,则a b += 3. 已知数列{}n a 的前n 项和为21n n S =-,则此数列的通项公式为4. 函数()1f x x =+的反函数是5. 6(12)x +展开式中3x 项的系数为 (用数字作答)6. 如图,已知正方形1111ABCD A BC D -,12AA =,E 为 棱1CC 的中点,则三棱锥1D ADE -的体积为 7. 从单词“shadow ”中任意选取4个不同的字母排成一排, 则其中含有“a ”的共有 种排法(用数字作答)8. 集合{|cos(cos )0,[0,]}x x x ππ=∈= (用列举法表示) 9. 如图,已知半径为1的扇形AOB ,60AOB ∠=︒,P 为弧AB 上的一个动点,则OP AB ⋅取值范围是 10. 已知x 、y 满足曲线方程2212x y+=,则22x y +的 取值范围是11. 已知两个不相等的非零向量a 和b ,向量组1234(,,,)x x x x 和1234(,,,)y y y y 均由2个a 和2个b 排列而成,记11223344S x y x y x y x y =⋅+⋅+⋅+⋅,那么S 的所有可能取值中的最 小值是 (用向量a 、b 表示)12. 已知无穷数列{}n a ,11a =,22a =,对任意*n N ∈,有2n n a a +=,数列{}n b 满足 1n n n b b a +-=(*n N ∈),若数列2{}nnb a 中的任意一项都在该数列中重复出现无数次,则满 足要求的1b 的值为二. 选择题(本大题共4题,每题5分,共20分) 13. 若a 、b 为实数,则“1a <”是“11a>”的( )条件 A. 充要 B. 充分不必要 C. 必要不充分 D. 既不充分也不必要 14. 若a 为实数,(2)(2)4ai a i i +-=-(i 是虚数单位),则a =( )A. 1-B. 0C. 1D. 215. 函数2()||f x x a =-在区间[1,1]-上的最大值是a ,那么实数a 的取值范围是( ) A. [0,)+∞ B. 1[,1]2 C. 1[,)2+∞ D. [1,)+∞16. 曲线1:sin C y x =,曲线22221:()2C x y r r ++-=(0r >),它们交点的个数( )A. 恒为偶数B. 恒为奇数C. 不超过2017D. 可超过2017三. 解答题(本大题共5题,共14+14+14+16+18=76分) 17. 如图,在Rt AOB ∆中,6OAB π∠=,斜边4AB =,D 是AB 中点,现将Rt AOB ∆以直角边AO 为轴旋转一周得到一个圆锥,点C 为圆锥底面圆周上一点,且90BOC ∠=︒, (1)求圆锥的侧面积;(2)求直线CD 与平面BOC 所成的角的大小; (用反三角函数表示)18. 已知(23,1)m =,2(cos ,sin )2An A =,A 、B 、C 是ABC ∆的内角; (1)当2A π=时,求||n 的值;(2)若23C π=,||3AB =,当m n ⋅取最大值时,求A 的大小及边BC 的长;19. 如图所示,沿河有A 、B 两城镇,它们相距20千米,以前,两城镇的污水直接排入河 里,现为保护环境,污水需经处理才能排放,两城镇可以单独建污水处理厂,或者联合建污 水处理厂(在两城镇之间或其中一城镇建厂,用管道将污水从各城镇向污水处理厂输送), 依据经验公式,建厂的费用为0.7()25f m m=⋅(万元),m 表示污水流量,铺设管道的费用(包括管道费)() 3.2g x x =(万元),x 表示输送污水管道的长度(千米);已知城镇A 和城镇B 的污水流量分别为13m =、25m =,A 、B 两城镇连接污水处理 厂的管道总长为20千米;假定:经管道运输的污水流量不发生改变,污水经处理后直接排 入河中;请解答下列问题(结果精确到0.1)(1)若在城镇A 和城镇B 单独建厂,共需多少总费用? (2)考虑联合建厂可能节约总投资,设城镇A 到拟建厂 的距离为x 千米,求联合建厂的总费用y 与x 的函数关系 式,并求y 的取值范围;20. 如图,椭圆2214y x +=的左、右顶点分别为A 、B ,双曲线Γ以A 、B 为顶点,焦距 为25,点P 是Γ上在第一象限内的动点,直线AP 与椭圆相交于另一点Q ,线段AQ 的中点为M ,记直线AP 的斜率为k ,O 为坐标原点; (1)求双曲线Γ的方程;(2)求点M 的纵坐标M y 的取值范围; (3)是否存在定直线l ,使得直线BP 与直线OM 关于直线l 对称?若存在,求直线l 方程,若不存在,请说明理由;21. 在平面直角坐标系上,有一点列01231,,,,,,n n P P P P P P -⋅⋅⋅,设点k P 的坐标(,)k k x y (k N ∈,k n ≤),其中k x 、k y Z ∈,记1k k k x x x -∆=-,1k k k y y y -∆=-,且满足 ||||2k k x y ∆⋅∆=(*k N ∈,k n ≤); (1)已知点0(0,1)P ,点1P 满足110y x ∆>∆>,求1P 的坐标;(2)已知点0(0,1)P ,1k x ∆=(*k N ∈,k n ≤),且{}k y (k N ∈,k n ≤)是递增数列, 点n P 在直线:38l y x =-上,求n ;(3)若点0P 的坐标为(0,0),2016100y =,求0122016x x x x +++⋅⋅⋅+的最大值;上海市松江区2017届高三一模数学试卷2016.12一. 填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分) 1. 设集合2{|}M x x x ==,{|lg 0}N x x =≤,则MN =2. 已知a 、b R ∈,i 是虚数单位,若2a i bi +=-,则2()a bi +=3. 已知函数()1x f x a =-的图像经过(1,1)点,则1(3)f -=4. 不等式|1|0x x ->的解集为5. 已知(sin ,cos )a x x =,(sin ,sin )b x x =,则函数()f x a b =⋅的最小正周期为6. 里约奥运会游泳小组赛采用抽签方法决定运动员比赛的泳道,在由2名中国运动员和6 名外国运动员组成的小组中,2名中国运动员恰好抽在相邻泳道的概率为 7. 按下图所示的程序框图运算:若输入17x =,则输出的x 值是8. 设230123(1)n n n x a a x a x a x a x +=++++⋅⋅⋅+,若2313a a =,则n = 9. 已知圆锥底面半径与球的半径都是1cm ,如果圆锥的体积与球的体积恰好也相等,那么 这个圆锥的侧面积是 2cm10. 设(,)P x y 是曲线22:1259x y C +=上的点,1(4,0)F -,2(4,0)F ,则12||||PF PF +的最大值为11. 已知函数243,13()28,3xx x x f x x ⎧-+-≤≤⎪=⎨->⎪⎩,若()()F x f x kx =-在其定义域内有3个零点,则实数k ∈12. 已知数列{}n a 满足11a =,23a =,若1||2n n n a a +-=*()n N ∈,且21{}n a -是递增数 列,2{}n a 是递减数列,则212lim n n na a -→∞=二. 选择题(本大题共4题,每题5分,共20分) 13. 已知a 、b R ∈,则“0ab >”是“2b aa b+>”的( ) A. 充分非必要条件 B. 必要非充分条件 C. 充要条件 D. 既非充分又非必要条件14. 如图,在棱长为1的正方体1111ABCD A BC D -中,点P 在截面1A DB 上,则线段AP 的最小值为( ) A.13 B. 12 C. 33 D. 2215. 若矩阵11122122a a a a ⎛⎫⎪⎝⎭满足:11a 、12a 、21a 、22{0,1}a ∈,且111221220a a a a =,则这样的互不相等的矩阵共有( )A. 2个B. 6个C. 8个D. 10个 16. 解不等式11()022xx -+>时,可构造函数1()()2x f x x =-,由()f x 在x R ∈是减函数 及()(1)f x f >,可得1x <,用类似的方法可求得不等式263arcsin arcsin 0x x x x +++> 的解集为( )A. (0,1]B. (1,1)-C. (1,1]-D. (1,0)-三. 解答题(本大题共5题,共14+14+14+16+18=76分)17. 如图,在正四棱锥P ABCD -中,PA AB a ==,E 是棱PC 的中点; (1)求证:PC BD ⊥;(2)求直线BE 与PA 所成角的余弦值;18. 已知函数21()21x xa f x ⋅-=+(a 为实数); (1)根据a 的不同取值,讨论函数()y f x =的奇偶性,并说明理由;(2)若对任意的1x ≥,都有1()3f x ≤≤,求a 的取值范围;19. 松江天马山上的“护珠塔”因其倾斜度超过意大利的比萨斜塔而号称“世界第一斜塔”, 兴趣小组同学实施如下方案来测量塔的倾斜度和塔高,如图,记O 点为塔基、P 点为塔尖、 点P 在地面上的射影为点H ,在塔身OP 射影所在直线上选点A ,使仰角45HAP ︒∠=, 过O 点与OA 成120︒的地面上选B 点,使仰角45HBP ︒∠=(点A 、B 、O 都在同一水平 面上),此时测得27OAB ︒∠=,A 与B 之间距离为33.6米,试求:(1)塔高;(即线段PH 的长,精确到0.1米) (2)塔的倾斜度;(即OPH ∠的大小,精确到0.1︒)20. 已知双曲线2222:1x y C a b-=经过点(2,3),两条渐近线的夹角为60︒,直线l 交双曲线于A 、B 两点;(1)求双曲线C 的方程;(2)若l 过原点,P 为双曲线上异于A 、B 的一点,且直线PA 、PB 的斜率PA k 、PB k 均 存在,求证:PA PB k k ⋅为定值;(3)若l 过双曲线的右焦点1F ,是否存在x 轴上的点(,0)M m ,使得直线l 绕点1F 无论怎 样转动,都有0MA MB ⋅=成立?若存在,求出M 的坐标;若不存在,请说明理由;21. 如果一个数列从第2项起,每一项与它前一项的差都大于2,则称为“H 型数列”;(1)若数列{}n a 为“H 型数列”,且113a m =-,21a m=,34a =,求实数m 的范围; (2)是否存在首项为1的等差数列{}n a 为“H 型数列”,其前n 项和n S 满足2n S n n <+*()n N ∈?若存在,请求出{}n a 的通项公式;若不存在,请说明理由;(3)已知等比数列{}n a 的每一项均为正整数,且{}n a 为“H 型数列”; 若23n n b a =,n c =5(1)2n n a n -+⋅,当数列{}n b 不是“H 型数列”时, 试判断数列{}n c 是否为“H 型数列”,并说明理由;参考答案一. 填空题1. {1}2. 34i -3. 24. (0,1)(1,)+∞5. π6.147. 143 8. 11 9. 17π 10. 10 11. 3(0,)312. 12-二. 选择题13. B 14. C 15. D 16. A三. 解答题 17.(1)略;(2)33; 18.(1)1a =-,偶函数;1a =,奇函数;a R ∈且1a ≠±,非奇非偶函数; (2)[2,3];19.(1)18.9米;(2)6.9°;20.(1)2213y x -=;(2)3;(3)(1,0)-; 21.(1)1(,0)(,)2-∞+∞;(2)不存在;(3)132n n a -=⋅时,{}n c 不是“H 型数列”;14n n a -=时,{}n c 是“H 型数列”;上海市浦东新区2017届高三一模数学试卷2016.12一. 填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分) 1. 已知U R =,集合{|421}A x x x =-≥+,则U C A =2. 三阶行列式351236724---中元素5-的代数余子式的值为 3. 8(1)2x -的二项展开式中含2x 项的系数是4. 已知一个球的表面积为16π,则它的体积为5. 一个袋子中共有6个球,其中4个红色球,2个蓝色球,这些球的质地和形状一样,从中 任意抽取2个球,则所抽的球都是红色球的概率是6. 已知直线:0l x y b -+=被圆22:25C x y +=所截得的弦长为6,则b =7. 若复数(1)(2)ai i +-在复平面上所对应的点在直线y x =上,则实数a =8. 函数()(3sin cos )(3cos sin )f x x x x x =+-的最小正周期为9. 过双曲线222:14x y C a -=的右焦点F 作一条垂直于x 轴的垂线交双曲线C 的两条渐近线 于A 、B 两点,O 为坐标原点,则△OAB 的面积的最小值为10. 若关于x 的不等式1|2|02xx m --<在区间[0,1]内恒 成立,则实数m 的范围11. 如图,在正方形ABCD 中,2AB =,M 、N 分别是 边BC 、CD 上的两个动点,且2MN =,则AM AN ⋅的取值范围是12. 已知定义在*N 上的单调递增函数()y f x =,对于任意的*n N ∈,都有*()f n N ∈,且(())3f f n n =恒成立,则(2017)(1999)f f -=二. 选择题(本大题共4题,每题5分,共20分)13. 将cos 2y x =图像向左平移6π个单位,所得的函数为( ) A. cos(2)3y x π=+ B. cos(2)6y x π=+C. cos(2)3y x π=-D. cos(2)6y x π=-14. 已知函数()y f x =的反函数为1()y f x -=,则()y f x =-与1()y f x -=-图像( ) A. 关于y 轴对称 B. 关于原点对称 C. 关于直线0x y +=对称 D. 关于直线0x y -=对称 15. 设{}n a 是等差数列,下列命题中正确的是( )A. 若120a a +>,则230a a +>B. 若130a a +<,则120a a +<C. 若120a a <<,则213a a a >D. 若10a <,则2123()()0a a a a --> 16. 元旦将近,调查鲜花市场价格得知:购买2只玫瑰与1只康乃馨所需费用之和大于8元, 而购买4只玫瑰与5只康乃馨所需费用之和小于22元;设购买2只玫瑰花所需费用为A 元, 购买3只康乃馨所需费用为B 元,则A 、B 的大小关系是( )A. A B >B. A B <C. A B =D. A 、B 的大小关系不确定三. 解答题(本大题共5题,共14+14+14+16+18=76分)17. 在长方体1111ABCD A BC D -中(如图),11AD AA ==,2AB =,点E 是棱AB 中点; (1)求异面直线1AD 与EC 所成角的大小;(2)《九章算术》中,将四个面都是直角三角 形的四面体成为鳖臑,试问四面体1DCDE 是 否为鳖臑?并说明理由;18. 已知△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ; (1)若3B π=,7b =,△ABC 的面积332S =,求a c +的值; (2)若22cos ()C BA BC AB AC c ⋅+⋅=,求角C ;。
2017-2018上海静安区数学一模试卷与答案
bd3
bd
8.已知线段 AB 长是 2 厘米,P 是线段 AB 上的一点,且满足 AP 2 =AB ·BP,那么 AP 长
为 ▲ 厘米.
9.已知△ ABC 的三边长分别是 2 、 6 、2 ,△ DEF 的两边长分别是1和 3 ,如果△ ABC
与△ DEF 相似,那么△ DEF 的第三边长应该是 ▲ .
已知:如图,梯形 ABCD 中,DC∥AB,AD=BD ,AD⊥DB,点 E 是腰 AD 上一点, 作∠EBC=45°,联结 CE,交 DB 于点 F.
(1)求证:△ABE∽△DBC;
(2)如果 BC 5 ,求 SBCE 的值.
BD 6
S BDA
大力数学工作室 | 李老师
第 23 题图
4
24.(本题满分 12 分,其中第(1)小题 4 分,第(2)小题 8 分)
(D) a10 .
2.下列方程中,有实数根的是
(A) x 1 1 0 ; (B) x 1 1; (C) 2x4 3 0 ;(D) 2 1.
x
x 1
3.如图,比例规是一种画图工具,它由长度相等的两脚 AC 和 BD 交叉构成, D C
利用它可以把线段按一定的比例伸长或缩短.如果把比例规的两脚合上,
…………………………………(2 分)
又∵抛物线经过点 A(1,3),代入解析式 3 a(1 3)2 5 解得: a 1 ……(1 分) 2
∴此二次函数的解析式为 y 1 (x 3)2 5 即 y 1 x2 3x 1
2
,
2
2
……(1 分)
(2)∵B 点是点 A 关于该抛物线对称轴的对称点,∴B(5,3),AB= 5-1= 4,……(2 分)
上海市静安区高三数学上学期期末教学质量检测(一模)试题(含解析)
上海市静安区高三数学上学期期末教学质量检测(一模)试题(含解析)参考答案与试题解析一、填空题(本大题满分44分)本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1.计算:= .考点:极限及其运算.专题:导数的概念及应用.分析:利用数列极限的运算法则即可得出.解答:解:原式==.故答案为:.点评:本题考查了数列极限的运算法则,属于基础题.2.已知集合M={y|y=2x,x≥0},N={x|y=lg(2x﹣x2)},则M∩N=(0,2).考点:交集及其运算.专题:集合.分析:利用交集的定义和对数函数的性质求解.解答:解:∵集合M={y|y=2x,x≥0}={y|y≥0},N={x|y=lg(2x﹣x2)}={x|2x﹣x2>0}={x|0<x<2},∴M∩N=(0,2).故答案为:(0,2).点评:本题考查交集的求法,是基础题,解题时要注意对数函数的性质的合理运用.3.设(1﹣x)8=a0+a1x+…+a7x7+a8x8,则|a0|+|a1|+…+|a7|+|a8|= 256 .考点:二项式系数的性质.专题:二项式定理.分析:由题意可得(1+x)8=|a0|+|a1|x+…+|a7|x7+|a8|x8,在此等式中,令x=1,可得|a0|+|a1|+…+|a7|+|a8|的值.解答:解:由题意可得(1+x)8=|a0|+|a1|x+…+|a7|x7+|a8|x8,在此等式中,令x=1,可得|a0|+|a1|+…+|a7|+|a8|=28=256,故答案为:256.点评:本题主要考查二项式定理的应用,注意根据题意,分析所给代数式的特点,通过给二项式的x赋值,求展开式的系数和,可以简便的求出答案,属于基础题.4.已知等差数列{a n}的首项为3,公差为4,则该数列的前n项和S n= 2n2+n .考点:等差数列的前n项和.专题:等差数列与等比数列.分析:由题意代入等差数列的求和公式可得.解答:解:由题意可得a1=3,公差d=4,∴S n=na1+ d=3n+2n(n﹣1)=2n2+n故答案为:2n2+n.点评:本题考查等差数列的求和公式,属基础题.5.不等式1﹣<0的解集是(,4).考点:其他不等式的解法.专题:计算题;不等式的解法及应用.分析:原不等式即为或,分别解出它们,再求交集即可.解答:解:不等式1﹣<0即为<0,即为或,即有x∈∅或<x<4,则解集为(,4).故答案为:(,4).点评:本题考查分式不等式的解法,考查转化为一次不等式组求解,考查运算能力,属于基础题.6.一个不透明袋中有10个不同颜色的同样大小的球,从中任意摸出2个,共有45 种不同结果(用数值作答).考点:组合及组合数公式.专题:概率与统计.分析:由题意可得共有种不同结果.解答:解:一个不透明袋中有10个不同颜色的同样大小的球,从中任意摸出2个,共有=45种不同结果.故答案为:45.点评:本题考查了组合数的计算公式,属于基础题.7.(4分)理:如图,在四棱锥P﹣ABCD中,已知PA⊥底面ABCD,PA=1,底面ABCD是正方形,PC与底面ABCD所成角的大小为,则该四棱锥的体积是.考点:棱柱、棱锥、棱台的体积.专题:空间位置关系与距离.分析:根据几何体的性质得出Rt△PAC中,PA=1,∠PCA=,AC=,运用体积公式求解即可.解答:解:∵PA⊥底面ABCD,底面ABCD是正方形,PC与底面ABCD所成角的大小为,∴Rt△PAC中,PA=1,∠PCA=,AC=,∵底面ABCD是正方形,∴AB=,V=×1=故答案为:;点评:本题考查了空间直线平面的几何性质,夹角,体积计算问题,属于中档题.8.不等式的解集是(,4).考点:其他不等式的解法.专题:计算题;不等式的解法及应用.分析:不等式即为或,分别求出它们,再求并集即可.解答:解:不等式即为或,即x∈∅或<x<4,则解集为(,4).故答案为:(,4).点评:本题考查分式不等式的解法,考查转化为一次不等式组求解,考查运算能力,属于基础题.9.文:已知数列{a n}的通项公式a n=22﹣n+2n+1(其中n∈N*),则该数列的前n项和S n=.考点:数列的求和.专题:等差数列与等比数列.分析:首先把数列的通项公式进行转换,进一步利用等比数列的前n项和公式进行求解.解答:解:数列数列{a n}的通项公式:整理得:则:+2(21+22+…+2n)=4•+2==故答案为:点评:本题考查的知识要点:数列通项公式的应用,等比数列前n项和的应用.属于基础题型.10.(4分)已知两个向量,的夹角为30°,,为单位向量,,若,则t= ﹣2 .考点:平面向量数量积的运算.专题:计算题;平面向量及应用.分析:运用平面向量的数量积的定义和向量垂直的条件即为数量积为0,计算即可得到t.解答:解:两个向量,的夹角为30°,,为单位向量,则=||•||•cos30°==,由,若,则•(t+(1﹣t))=0,即t+(1﹣t)=0,即有t+1﹣t=0,解得,t=﹣2.故答案为:﹣2.点评:本题考查平面向量的数量积的定义和性质,考查运算能力,属于基础题.11.已知圆锥底面的半径为1,侧面展开图是一个圆心角为的扇形,则该圆锥的侧面积是3π.考点:旋转体(圆柱、圆锥、圆台).专题:空间位置关系与距离.分析:根据已知中圆锥底面的半径为1,侧面展开图是一个圆心角为的扇形,计算出圆锥母线的长度,进而可得该圆锥的侧面积.解答:解:∵圆锥底面的半径r=1,侧面展开图是一个圆心角为的扇形,故圆锥的母线l满足:,解得:l=3,∴该圆锥的侧面积S=πrl=3π.故答案为:3π点评:本题考查的知识点是旋转体,圆锥的侧面积,其中根据,求出圆锥的母线长度,是解答的关键.12.(4分)已知f(x)=x|x﹣1|+1,f(2x)=(其中x>0),则x= .考点:函数的值.专题:函数的性质及应用.分析:由已知得,由此能求出.解答:解:∵f(x)=x|x﹣1|+1,f(2x)=(其中x>0),∴,∴,∵x>0,∴(2x)2﹣2x﹣=0,解得2x=,∴.故答案为:.点评:本题考查函数值的求法及应用,是基础题,解题时要注意函数性质的合理运用.13.已知角α的顶点与直角坐标系的原点重合,始边在x轴的正半轴上,终边在射线y=﹣2x (x≤0)上,则sin2α=.考点:任意角的三角函数的定义.专题:三角函数的求值.分析:由题意根据任意角的三角函数定义求出sinα与cosα的值,进而确定出sin2α的值.解答:解:根据题意得:tanα=﹣2,sinα=,cosα=﹣,∴sin2α=2sinαcosα=﹣2××=.故答案为:.点评:此题考查了两角和与差的正弦函数公式,以及任意角的三角函数定义,熟练掌握公式是解本题的关键.14.(4分)理:已知△ABC的顶点A(2,6)、B(7,1)、C(﹣1,﹣3),则△ABC的内角∠BAC 的大小是arccos.(结果用反三角函数值表示)考点:余弦定理.专题:解三角形.分析:由三点坐标,利用两点间的距离公式求出a,b,c的值,利用余弦定理求出cos∠BAC 的值,即可确定出∠BAC的度数.解答:解:∵△ABC的顶点A(2,6)、B(7,1)、C(﹣1,﹣3),∴|AB|=c==5,|AC|=b==3,|BC|=a==4,∴cos∠BAC===,则∠BAC=arccos,故答案为:arccos点评:此题考查了余弦定理,两点间的距离公式,熟练掌握余弦定理是解本题的关键.15.(4分)若α,β是一二次方程2x2+x+3=0的两根,则= ﹣.考点:二次函数的性质.专题:函数的性质及应用.分析:由已知结合韦达定理,可得α+β=﹣,α•β=,进而根据=代入可得答案.解答:解:∵α,β是一二次方程2x2+x+3=0的两根,∴α+β=﹣,α•β=,∴===﹣,故答案为:﹣点评:本题考查的知识点是根与系数的关系(韦达定理),难度不大,属于基础题.16.已知两条直线的方程分别为l1:x﹣y+1=0和l2:2x﹣y+2=0,则这两条直线的夹角大小为arctan(结果用反三角函数值表示).考点:两直线的夹角与到角问题.专题:直线与圆.分析:这两条直线的斜率分别为1和2,设这两条直线的夹角大小为θ,再利用两条直线的夹角公式求得这两条直线的夹角大小.解答:解:这两条直线的斜率分别为1和2,设这两条直线的夹角大小为θ,则由tanθ=||=||=,∴θ=arctan,故答案为:.点评:本题主要考查两条直线的夹角公式的应用,反正切函数,属于基础题.17.(4分)(2012•绍兴一模)已知tanα,tanβ是方程x2+3x+4=0的两根,α,β∈(﹣,)则α+β=﹣.考点:一元二次方程的根的分布与系数的关系;两角和与差的正切函数.专题:计算题.分析:此题运用根与系数的关系求出tanα+tanβ的值和tanαtanβ的值,根据两角和与差的正切公式即可求出α+β,但一定要注意α,β的范围解答:解:tanα,tanβ是方程的两根,tanα+tanβ=﹣3,tanαtanβ=4,tan(α+β)==又∵α、β∈(﹣,),∴α+β∈(﹣π,π).又∵tanα+tanβ=﹣3,tanα•tanβ=4,∴α、β同为负角,∴α+β=﹣.故答案为﹣点评:此题考查根与系数的关系和两角和的正切,解题时一定要注意α,β的角度范围,这是本题容易出错的地方18.直线l经过点P(﹣2,1)且点A(﹣2,﹣1)到直线l的距离等于1,则直线l的方程是或.考点:点到直线的距离公式.专题:直线与圆.分析:当直线l的斜率不存在时,直线l的方程为x=﹣2,不成立;当直线l的斜率存在时,设直线l;kx﹣y+2k+1=0,则=1,由此能求出直线l的方程.解答:解:当直线l的斜率不存在时,直线l的方程为x=﹣2,不成立;当直线l的斜率存在时,设直线l;y﹣1=k(x+2),即kx﹣y+2k+1=0,∵点A(﹣2,﹣1)到直线l的距离等于1,∴=1,解得k=,∴直线l的方程为:或.故答案为:或.点评:本题考查直线方程的求法,是基础题,解题时要认真审题,注意点到直线的距离公式的合理运用.19.(4分)已知实数x、y满足|x|≥|y|+1,则的取值范围是[﹣2,2] .考点:简单线性规划.专题:不等式的解法及应用.分析:先画出满足条件的平面区域,设z=,则y=zx+2,将问题转化为求直线的斜率的范围,通过图象求出答案.解答:解:画出满足条件|x|≥|y|+1的平面区域,如图示:,设z=,则y=zx+2,当直线过(﹣1,0)时,z最小为:﹣2,当直线过(1,0)时,z最大为:2,∴﹣2≤z≤2,故答案为:[﹣2,2].点评:本题考查了线性规划问题,考查了数形结合思想,考查了转化思想,是一道中档题.21.一个无穷等比数列的首项为2,公比为负数,各项和为S,则S的取值范围是0<S<2 .考点:等比数列的前n项和.专题:计算题.分析:设等比数列的公比为q,则q<0,由题意可得S==,可得<0,从而可求S的范围解答:解:设等比数列的公比为q,则q<0∵S==∴<0∴0<S<2故答案为:0<S<2点评:本题主要考查了无穷等比数列的各项和公式的应用,属于基础试题22.(4分)理:两名高一年级的学生被允许参加高二年级的学生象棋比赛,每两名参赛选手之间都比赛一次,胜者得1分,和棋各得0.5分,输者得0分,即每场比赛双方的得分之和是1分.两名高一年级的学生共得8分,且每名高二年级的学生都得相同分数,则有7或14 名高二年级的学生参加比赛.(结果用数值作答)考点:组合及组合数公式.专题:概率与统计.分析:设高二学生有n名.则共比赛场,每名高二年级的学生都得相同分数为k.可得.化为n2+(3﹣2k)n﹣14=0,通过对﹣14分解质因数,利用根与系数的关系即可得出.解答:解:设高二学生有n名.则共比赛场,每名高二年级的学生都得相同分数为k.∴.化为n2+(3﹣2k)n﹣14=0,∵﹣14=﹣2×7=2×(﹣7)=﹣1×14=1×(﹣14).当2k﹣3=7﹣2时,可得k=4,此时n=7,当2k﹣3=14﹣1时,可得k=8,此时n=14.而2k﹣3=2﹣7或2k﹣3=1﹣14,k<0,舍去.综上可得:n=7或14.故答案为:7或14.点评:本题考查了组合的计算公式、分类讨论思想方法、一元二次方程的根与系数的关系,考查了推理能力与计算能力,属于难题.二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案.考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.23.(5分)在下列幂函数中,是偶函数且在(0,+∞)上是增函数的是()A.y=x﹣2B.C.D.考点:函数奇偶性的性质.专题:计算题;函数的性质及应用.分析:由幂函数的奇偶性和单调性,以及定义,对选项加以判断,即可得到是偶函数且在(0,+∞)上是增函数的函数.解答:解:对于A.有f(﹣x)=f(x),是偶函数,但在(0,+∞)上递减,则A不满足;对于B.定义域为[0,+∞),不关于原点对称,不具奇偶性,则B不满足;对于C.有f(﹣x)=﹣f(x),为奇函数,则C不满足;对于D.定义域R关于原点对称,f(﹣x)=f(x),则为偶函数,且在(0,+∞)上递增,则D满足.故选D.点评:本题考查幂函数的性质,考查函数的奇偶性和单调性的判断,注意运用定义和性质,属于基础题和易错题.24.(5分)已知直线l1:3x﹣(k+2)y+6=0与直线l2:kx+(2k﹣3)y+2=0,记.D=0是两条直线l1与直线l2平行的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件考点:必要条件、充分条件与充要条件的判断.专题:简易逻辑.分析:根据3(2k﹣3)+(k+2)k=0得出k=﹣9或k=1,分别判断当k=1时,直线l1:x﹣y+2=0,直线l2:x﹣y+2=0,l1l2重合,当k=9时,直线l1:3x+7y+6=0,直线l2:﹣9x﹣21y+2=0,l1∥l2,根据充分必要条件的定义判断即可.解答:解:∵直线l1:3x﹣(k+2)y+6=0与直线l2:kx+(2k﹣3)y+2=0,记.∴3(2k﹣3)+(k+2)k=0k2+8k﹣9=0,k=﹣9或k=1,当k=1时,直线l1:x﹣y+2=0,直线l2:x﹣y+2=0,∴l1l2重合,当k=9时,直线l1:3x+7y+6=0,直线l2:﹣9x﹣21y+2=0,∴l1∥l2,根据充分必要条件的定义得出:D=0是两条直线l1与直线l2平行的必要不充分条件.故选:B点评:本题考查了直线与直线平面的平行条件,充分必要条件的定义,属于中档题.25.(5分)已知i为虚数单位,图中复平面内的点A表示复数z,则表示复数的点是()A.M B.N C.P D.Q考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:由图可知:z=3+i.利用复数的运算法则、几何意义即可得出.解答:解:由图可知:z=3+i.∴复数====2﹣i表示的点是Q(2,﹣1).故选:D.点评:本题考查了复数的运算法则、几何意义,属于基础题.26.(5分)到空间不共面的四点距离相等的平面的个数为()A.1个B.4个C.7个D.8个考点:平面的基本性质及推论.专题:空间位置关系与距离.分析:对于四点不共面时,画出对应的几何体,根据几何体和在平面两侧的点的个数分两类,结合图形进行解.解答:解:当空间四点不共面时,则四点构成一个三棱锥,如图:①当平面一侧有一点,另一侧有三点时,令截面与四棱锥的四个面之一平行,第四个顶点到这个截面的距离与其相对的面到此截面的距离相等,这样的平面有四个,②当平面一侧有两点,另一侧有两点时,即构成的直线是三棱锥的相对棱,因三棱锥的相对棱有三对,则此时满足条件的平面个数是三个,所以满足条件的平面共有7个,故选:C点评:本题考查了空间四点问题,当不共面时构成三棱锥,由几何体的特征再分类讨论进行判断,考查了分类讨论思想和空间想象能力.三、解答题(本大题满分74分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.27.(14分)在锐角△ABC中,a、b、c分别为内角A、B、C所对的边长,且满足.(1)求∠B的大小;(2)若b=,△ABC的面积S△ABC=,求a+c的值.考点:正弦定理;余弦定理.专题:解三角形.分析:(1)由正弦定理列出关系式,结合已知等式求出sinB的值,即可确定出B的度数;(2)由三角形面积公式列出关系式,把已知面积与sinB的值代入求出ac的值,再利用余弦定理列出关系式,即可确定出a+c的值.解答:解:(1)由正弦定理:=,得==,∴sinB=,又由B为锐角,得B=;(2)∵S△ABC=acsinB=,sinB=,∴ac=3,根据余弦定理:b2=a2+c2﹣2accosB=7+3=10,∴(a+c)2=a2+c2+2ac=16,则a+c=4.点评:此题考查了正弦、余弦定理,三角形面积公式,以及特殊角的三角函数值,熟练掌握定理是解本题的关键.28.(14分)上海出租车的价格规定:起步费14元,可行3公里,3公里以后按每公里2.4元计算,可再行7公里;超过10公里按每公里3.6元计算,假设不考虑堵车和红绿灯等所引起的费用,也不考虑实际收取费用去掉不足一元的零头等实际情况,即每一次乘车的车费由行车里程唯一确定.(1)小明乘出租车从学校到家,共8公里,请问他应付出租车费多少元?(本小题只需要回答最后结果)(2)求车费y(元)与行车里程x(公里)之间的函数关系式y=f(x).考点:函数解析式的求解及常用方法;分段函数的应用.专题:函数的性质及应用.分析:(1)由题意可知,这8公里内的前3公里的收费是14元,超过3公里而10公里以内每公里按2.4元计价,则8﹣3=5公里的收费是5×2.4=12元,两者相加即是小明应付的车费;(2)分三种情况:前3公里、超过3公里而10公里以内、大于10公里,分别写出函数的表达式,最后用分段函数表示.解答:解:(1)由题意可知,起步(3公里以内)价是14元,则这8公里内的前3公里的收费是14元,超过3公里而10公里以内每公里按2.4元计价,则8﹣3=5公里的收费是5×2.4=12元,总共收费14+12=26(元)故他应付出出租车费26元.(2)3公里以内价是14元,即0<x≤3时,y=14(元);大于3公里而不超过10公里时,即3<x≤10时,收费y=14+(x﹣3)2.4=2.4x+6.8(元);大于10公里时,即x>10时,收费y=14+7×2.4+(x﹣10)3.6=3.6x﹣5.2(元).∴y=点评:本题考点是分段函数的应用,分段模型是解决实际问题的很重要的函数模型,其特点是在不同的自变量取值范围内,函数解析式不同.29.如图,正方体ABCD﹣A1B1C1D1的棱长为2,点P为面ADD1A1的对角线AD1的中点.PM⊥平面ABCD交AD与M,MN⊥BD于N.(1)求异面直线PN与A1C1所成角的大小;(结果可用反三角函数值表示)(2)求三棱锥P﹣BMN的体积.考点:棱柱、棱锥、棱台的体积;异面直线及其所成的角.专题:空间位置关系与距离;空间角.分析:(1)判断出∠PNM为异面直线PN与A1C1所成角,在△PMN中,∠PMN为直角,,求解得出异面直线PN与A1C1所成角的大小为.(2)BN=,运用,求解得出体积.解答:解:(1)∵点P为面ADD1A1的对角线AD1的中点,且PM⊥平面ABCD,∴PM为△ADD1的中位线,得PM=1,又∵MN⊥BD,∴,∵在底面ABCD中,MN⊥BD,AC⊥BD,∴MN∥AC,又∵A1C1∥AC,∠PNM为异面直线PN与A1C1所成角,在△PMN中,∠PMN为直角,,∴.即异面直线PN与A1C1所成角的大小为.(2),,点评:本题考查了空间直线的夹角问题,空间几何体的体积计算,属于中档题.30.(14分)理:如图,长方体ABCD﹣A1B1C1D1中,AB=AD=2,AA1=4,点P为面ADD1A1的对角线AD1上的动点(不包括端点).PM⊥平面ABCD交AD于点M,MN⊥BD于点N.(1)设AP=x,将PN长表示为x的函数;(2)当PN最小时,求异面直线PN与A1C1所成角的大小.(结果用反三角函数值表示)考点:异面直线及其所成的角;函数解析式的求解及常用方法.专题:计算题;函数的性质及应用;空间角.分析:(1)求出PM,AM,运用余弦定理,求得PN;(2)求出PN的最小值,由于MN∥AC,又A1C1∥AC,∠PNM为异面直线PN与A1C1所成角的平面角,通过解直角三角形PMN,即可得到.解答:解:(1)在△APM中,,;其中;在△MND中,,在△PMN中,,;(2)当时,PN最小,此时.因为在底面ABCD中,MN⊥BD,AC⊥BD,所以MN∥AC,又A1C1∥AC,∠PNM为异面直线PN与A1C1所成角的平面角,在△PMN中,∠PMN为直角,,所以,异面直线PN与A1C1所成角的大小.点评:本题考查空间异面直线所成的角的求法,考查二次函数的性质和运用:求最值,考查运算能力,属于中档题.31.(16分)已知函数(其中a>1).(1)判断函数y=f(x)的奇偶性,并说明理由;(2)求函数y=f(x)的反函数y=f﹣1(x);(3)若两个函数F(x)与G(x)在闭区间[p,q]上恒满足|F(x)﹣G(x)|>2,则称函数F(x)与G(x)在闭区间[p,q]上是分离的.试判断函数y=f﹣1(x)与g(x)=a x在闭区间[1,2]上是否分离?若分离,求出实数a的取值范围;若不分离,请说明理由.考点:函数奇偶性的性质;反函数.专题:函数的性质及应用.分析:(1)根据函数奇偶性的定义进行判断;(2)根据反函数的定义,反解x,主要x的取值范围;(3)根据两函数在闭区间上分离的概念课求得解答:解:(1)∵,∴函数y=f(x)的定义域为R,(1分)又∵,∴函数y=f(x)是奇函数.(4分)(2)由,且当x→﹣∞时,,当x→+∞时,,得的值域为实数集.解得,x∈R.(8分)(3)在区间[1,2]上恒成立,即,即a x+a﹣x>4在区间[1,2]上恒成立,(11分)令a x=t,∵a>1,∴t∈[a,a2],在t∈[a,a2]上单调递增,∴,解得,∴.(16分)点评:本题主要考查函数的奇偶性、反函数以及新概念的题目、32.(16分)在数列{a n}中,已知a2=1,前n项和为S n,且.(其中n∈N*)(1)文:求a1;理:求数列{a n}的通项公式;(2)文:求数列{a n}的通项公式;理:求;(3)设,问是否存在正整数p、q(其中1<p<q),使得b1,b p,b q成等比数列?若存在,求出所有满足条件的数组(p,q);否则,说明理由.考点:数列的求和;极限及其运算.专题:等差数列与等比数列.分析:(1)利用递推关系式求数列的通项公式,对首项进行验证.(2)利用(1)的结论直接求出极限.(3)首先假设存在p和q,进一步进行关系验证求出具体的值.解答:解:文(1)因为,令n=2,得,所以a1=0,当n≥2时,,,推得,又a2=1,a3=2a2=3,所以a n+1=n当n=1,2时也成立,所以a n=n﹣1.(2)直接利用(1)的结论:解得:=(3)文理相同:假设存在正整数p、q,使得b1,b p、b q成等比数列,则lgb1,lgb p、lgb q成等差数列,故,(1)由于右边大于,则,即.考查数列的单调性,因为,所以数列为单调递减数列.当p=2时,,代入(1)式得,解得q=3;当p≥3时,(舍).综上得:满足条件的正整数组(p,q)为(2,3).点评:本题考查的知识要点:利用递推关系式求数列的通项公式,极限的应用,存在性问题的应用.属于中等题型.。
上海市静安区2017届高三上学期期质量检测(一模)数学试题Word版含答案
静安区2016-2017学年度第一学期高中教学质量检测高三数学试卷本试卷共有20道试题,满分150分.考试时间120分钟.、填空题(50分)本大题共有10题,要求在答题纸相应题序的空格内直接填写结果,每个空格填对得5分,否则一律得零分.1•“ x :::0 ”是“ X :::a ”的充分非必要条件,贝y a的取值范围是.2•函数f(x)=1—3sin2 x+ i的最小正周期为__________ .I 4丿3. 若复数z为纯虚数,_________________________________________ 且满足(2-i)z二a i(i为虚数单位),则实数a的值为__________________________________________ .一 2 1 14. ______________________________________________ 二项式X +—[的展开式中,X的系数为_________________________________________________ .< X.丿5•用半径1米的半圆形薄铁皮制作圆锥型无盖容器,其容积为_____________ 立方米.兀3 .6. 已知a 为锐角,且cos(a + —)=—,则sin a = ____________ .4 57. 根据相关规定,机动车驾驶人血液中的酒精含量大于(等于) 20毫克/100毫升的行为属于饮酒驾车•假设饮酒后,血液中的酒精含量为p0毫克/100毫升,经过x个小时,酒精含量降为p毫克/100毫升,且满足关系式p = p0 e rx(r为常数).若某人饮酒后血液中的酒精含量为89毫克/100毫升,2小时后,测得其血液中酒精含量降为61毫克/100毫升,则此人饮酒后需经过___________ 小时方可驾车.(精确到小时)&已知奇函数f(x)是定义在R上的增函数,数列、Xn]是一个公差为2的等差数列,满足f(x7) - f(xD =0,贝U x2017的值为_____________ .9 .直角三角形ABC中,AB =3 , AC =4 , BC = 5,点M是三角形ABC外接圆上任意一点,则AB AM的最大值为__________ .10.已知f (x)二a x「b (a 0且a = 1 , b R ), g(x^ x 1,若对任意实数x均有1 4f (x) g(x)兰0 的最小值为 ________ .a b。
2017届上海市静安区高三上学期期末教学质量检测(一模)历史试题及答案
静安区2017学年高三年级第一学期教学质量检测历史试卷注意:1. 本检测设试卷和答题纸两部分,所有答题必须写在答题纸上,做在试卷上一律无效。
答题纸与试卷上的试题编号一一对应,答题时应特别注意,不能错位。
2. 检测时间120分钟,试卷满分150分。
一、选择题(本大题共35小题,第1-30题每小题2分,第31-35题每小题3分,共75分)1. 种姓制度是古代印度的一种政治制度。
它初创时的功能主要是区分A.征服者与被征服者B.平民与贵族C.本邦人与外邦人D.农民与农奴2.在希腊城邦的全盛时期,社会经济文化等各个方面全面发展。
下列事件或成果,属于这一时期的是A.《荷马史诗》 B.柏拉图的《理想国》C.梭伦改革 D.克利斯提尼改革3.下列政权中,具有政教合一特征的是A.罗马帝国 B.法兰克王国C.雅典城邦 D.奥斯曼帝国4.在中世纪西欧城市复兴过程中,最初的建城者是:①手工业者②封建领主③商人④农奴A.①②③ B.②③ C.①②D.①③5.‚山西襄汾县的陶寺遗址,距今约4000多年……分为大、中、小三类。
大墓……随葬品有100—200件不等;中墓……随葬品有几件至几十件不等;小墓……大都没有木棺,也没有随葬品。
‛据此可知,当时的社会状况是A.平均分配共同耕作 B.社会分化十分明显C.等级森严王位世袭 D.采集渔猎茹毛饮血6.‚吾辈生于今日,幸于纸上之材料外,更得地下之新材料……此二重证据法,唯在今日始得为之。
‛(王国维语)下列搭配与该说法吻合的是A.青铜器皿——《封神演义》 B.甲骨卜辞——《史记﹒殷本纪》C.甲骨卜辞——青铜器皿 D.《史记﹒殷本纪》——《封神演义》7.为了加强中央对地方的控制,从而实现‚封建亲戚,以藩屏周‛的目的,西周统治者将同姓诸侯A.分插到各地方国之间 B.布置在边疆要塞之地C.集中于王都之地附近 D.安置在殷商遗民周围8.春秋战国时期,面临着激烈变革、实力竞争的局面,‚士‛阶层中的有识之士纷纷提出了各自的治国救世的主张。
上海市各区2017届高三一模数学试卷
1 x P x ≥ 0, x R , x 1 ≤ 2, x R , 则 M ∩P 等于 x 2
.
.
4.抛物线 y x 2 上一点 M 到焦点的距离为 1,则点 M 的纵坐标为 5.已知无穷数列 {an } 满足 an 1
18.(本题满分 14 分)本题共有 2 个小题,第(1)小题满分 6 分,第(2)小题满分 8 分. 在一个特定时段内,以点 D 为中心的 7 海里以内海域被设为警戒水域.点 D 正北 55 海里处有一个雷达观测站 A. 某时刻测得一艘匀速直线行驶的船只位于点 A 北偏东 45 且与 点 A 相距 40 2 海里的位置 B 处, 经过 40 分钟又测得该船已行驶到点 A 北偏东 45 (其
你认为正确论断的序号都填上)
(注:把
12.已知 AB 为单位圆 O 的一条弦,P 为单位圆 O 上的点.若 f ( ) AP AB ( R) 的
最小值为 m ,当点 P 在单位圆上运动时, m 的最大值为 为 .
4 ,则线段 AB 的长度 3
二、选择题(本大题共有 4 题,满分 20 分)
x 1 0 的解集为 x2 x 5cos 4. 椭圆 ( 为参数)的焦距为 y 4sin
3. 不等式 5. 设复数 z 满足 z 2 z 3 i ( i 为虚数单位) ,则 z 6. 若函数 y
cos x sin x
sin x cos x
n
求实数 x 的取值集合;
21. 设集合 A 、 B 均为实数集 R 的子集,记: A B {a b | a A, b B} ; (1)已知 A {0,1, 2} , B {1,3} ,试用列举法表示 A B ;
静安区2017学年第一学期期末教学质量调研数学试卷及答案
静安区2017学年第一学期期末教学质量调研九年级数学试卷 2018.1(完成时间:100分钟 满分:150分 )考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.3. 答题时可用函数型计算器.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1.化简52)(a a ⋅-所得的结果是(A )7a ; (B )7a -; (C )10a ; (D )10a -. 2.下列方程中,有实数根的是 (A )011=+-x ; (B )11=+x x ; (C )0324=+x ;(D )112-=-x .3.如图,比例规是一种画图工具,它由长度相等的两脚AC 和BD 交叉构成, 利用它可以把线段按一定的比例伸长或缩短.如果把比例规的两脚合上, 使螺丝钉固定在刻度3的地方(即同时使OA =3OC ,OB =3OD ),然后张开 两脚,使A ,B 两个尖端分别在线段a 的两个端点上,当CD =1.8cm 时, AB 的长是 (A )7.2 cm ; (B )5.4 cm ; (C )3.6 cm ; (D )0.6 cm .4.下列判断错误的是(A )如果0=k 或0=a ,那么0=a k ;(B )设m 为实数,则b m a m b a m+=+)(; (C )如果a ∥e ,那么e a a= ;(D )在平行四边形ABCD 中,=-BD . 5.在Rt △ABC 中,∠C =90°,如果sin A =31,那么sin B 的值是 (A )322; (B )22; (C )42; (D )3.aA B D C 第3题图A第15题图BCD6.将抛物线3221--=x x y 先向左平移1个单位,再向上平移4个单位后,与抛物线c bx ax y ++=22重合,现有一直线323+=x y 与抛物线c bx ax y ++=22相交,当2y ≤3y 时,利用图像写出此时x 的取值范围是(A )x ≤1-; (B )x ≥3; (C )1-≤x ≤3; (D )x ≥0.二、填空题:(本大题共12题,每题4分,满分48分) 【请将结果直接填入答题纸的相应位置上】7.已知31==d c b a ,那么db ca ++的值是 ▲ .8.已知线段AB 长是2厘米,P 是线段AB 上的一点,且满足AP 2 =AB · BP ,那么AP 长为 ▲ 厘米.9.已知△ABC 的三边长分别是2、6、2,△DEF 的两边长分别是1和3,如果△ABC 与△DEF 相似,那么△DEF 的第三边长应该是 ▲ .10.如果一个反比例函数图像与正比例函数x y 2=图像有一个公共点A (1,a ),那么这个反比例函数的解析式是 ▲ .11.如果抛物线c bx ax y ++=2(其中a 、b 、c 是常数,且a ≠0)在对称轴左侧的部分是上升的,那么a ▲ 0.(填“<”或“>”)12.将抛物线2)(m x y +=向右平移2个单位后,对称轴是y 轴,那么m 的值是 ▲ . 13.如图,斜坡AB 的坡度是1∶4,如果从点B 测得离地面的铅垂高度BC 是6米,那么斜坡AB 的长度是 ▲ 米.14.在等腰△AB C 中,已知AB =AC =5,BC =8,点G 是重心,联结BG ,那么∠CBG 的余切值是 ▲ .15.如图,△ABC 中,点D 在边AC 上,∠ABD =∠C ,AD =9,DC =7,那么AB = ▲ .C第13题图ABAB C MN第22题图NAM B16.已知梯形ABCD ,AD ∥BC ,点E 和F 分别在两腰AB 和DC 上,且EF 是梯形的中 位线,AD =3,BC =4.设a AD =,那么向量= ▲ .(用向量a表示)17.如图,△ABC 中,AB =AC ,∠A =90°,BC =6,直线MN ∥BC , 且分别交边AB 、AC 于点M 、N ,已知直线MN 将△ABC 分为面积 相等的两部分,如果将线段AM 绕着点A 旋转,使点M 落在边 BC 上的点D 处,那么BD = ▲ .18. 如图,矩形纸片ABCD ,AD =4,AB =3.如果点E 在边BC 将纸片沿AE 折叠,使点B 落在点F 处,联结FC ,当△直角三角形时,那么BE 的长为 ▲ .三、解答题:(本大题共7题,满分78分)19.(本题满分10分)计算:tan 160cos 2130cos 45cot 3-++ 20.(本题满分10分)解方程组: .21.(本题满分10分, 其中第(1)小题4分,第(2)小题6分) 已知:二次函数图像的顶点坐标是(3,5),且抛物线经过点A (1,3). (1)求此抛物线的表达式;(2)如果点A 关于该抛物线对称轴的对称点是B 点,且抛物线与y 轴的交点是C 点,求△ABC 的面积.22.(本题满分10分,其中第(1)小题5分,第(2)小题5分)如图,在一条河的北岸有两个目标M 、N ,现在位于它的对岸设定两个观测点A 、B ,已知AB ∥MN ,在A 点测得∠MAB =60°,在B 点测得∠MBA =45°,AB =600米.(1)求点M 到AB 的距离;(结果保留根号) (2)在B 点又测得∠NBA =53°,求MN 的长. (结果精确到1米)(参考数据:732.13≈,8.0 sin53o ≈,6.0 cos53o ≈,33.1 tan53o ≈,75.0 cot53o ≈.) ①② ⎩⎨⎧=----=+03)(2)(52y x y x y x第25题图①ADC B23.(本题满分12分,其中第(1)小题6分,第(2)小题6分)已知:如图,梯形ABCD 中,DC ∥AB ,AD =BD ,AD ⊥DB ,点E 是腰AD 上一点,作∠EBC =45°,联结CE ,交DB 于点F .(1)求证:△ABE ∽△DB C ; (2)如果65=BD BC ,求BDABCE S S ∆∆的值.24.(本题满分12分,其中第(1)小题4分,第(2)小题8分) 在平面直角坐标系xOy 中(如图),已知抛物线2+=bx ax y 经过点A (-1,0)、B (5,0). (1)求此抛物线顶点C 的坐标;(2)联结AC 交y 轴于点D ,联结BD 、BC ,过点C 作CH ⊥BD ,垂足为点H ,抛物线对称轴交x 轴于点G ,联结HG , 求HG 的长.25.(本题满分14分,其中第(1)小题4分,第(2)小题6分,第(3)小题4分) 已知:如图,四边形ABCD 中,0°<∠BAD ≤90°,AD =DC ,AB =BC ,AC 平分∠BAD . (1)求证:四边形ABCD 是菱形;(2)如果点E 在对角线AC 上,联结BE 并延长,交边DC 于点G ,交线段AD 的延长线于点F (点F 可与点D 重合),∠AFB =∠ACB ,设AB 长度是a (a 是常数,且0>a ),AC =x ,AF =y ,求y 关于x 的函数解析式,并写出定义域;(3)在第(2)小题的条件下,当△CGE 是等腰三角形时, 求AC 的长.(计算结果用含a 的代数式表示)F 第25题图②ABD CEG第24题图 第23题图静安区2017学年第一学期期末学习质量调研九年级数学试卷参考答案及评分说明2018.1 一、选择题: 1.B ; 2.D ; 3.B ; 4.C ; 5.A ; 6.C .二、填空题:7. ; 8.15-; 9.2; 10. ; 11.<; 12.2;13.176; 14. 4; 15.12; 16. ; 17.3; 18. 或3.三、解答题:19.解:原式= …………………………………(5分)=23212-+ ……………………………………………………(3分)=1 ……………………………………………………(2分)20.解:由②得0)1)(3(=+---y x y x , ……………………………………(2分)得03=--y x 或01=+-y x , ………………………………(2分)原方程组可化为⎩⎨⎧=-=+;3,5y x y x ⎩⎨⎧-=-=+;1,5y x y x…………………………………(2分) 解得,原方程组的解为⎩⎨⎧==;1,411y x ⎩⎨⎧==3222y x…………………………………(4分)∴原方程组的解为⎩⎨⎧==;1,411y x ⎩⎨⎧==3222y x.21.解:(1)∵二次函数图像的顶点坐标是(3,5),∴设二次函数的解析式为 …………………………………(2分) 又∵抛物线经过点A (1,3),代入解析式 解得:21-=a……(1分)∴此二次函数的解析式为5)3(212+--=x y ,即213212++-=x x y ……(1分)(2)∵B 点是点A 关于该抛物线对称轴的对称点,∴B (5,3),AB = 5-1= 4,……(2分)5)3(2+-=x a y 5)31(32+-=a 23a67xy 2=31233121212313⨯-+⨯+⨯∵2132122++-=x x y 与y 轴的交点是C 点,∴C (0, ),25213=-=h……(2分) ∴△ABC 的面积=525421=⨯⨯………………………………………………(2分)22.解:(1)过点M 作MC ⊥AB ,垂足是点C , 在Rt △AMC 和Rt △BMC 中,∠MAB =60°,∠MBA =45°,3tan ==∠AC MC MAC ,1tan ==∠BCMC MBC , ………………………………(2分) 设AC 是x 米,则MC =BC =米∵AB =600米,AC +BC =600,即6003=+x x , ……………………………………(1分) 解得x =3003300- ∴MC =3300900- (米) ……………………………………(2分)答:点M 到AB 的距离是(3300900-)米.(2)过点N 作ND ⊥AB ,垂足是点D , ………………………………………(1分) ∴∠NDC =∠MCD=90°,∴MC ∥ND ,又∵AB ∥MN ,∴四边形MDBE 是矩形. ∴MN=CD , ND =MC = CB =3300900-, …………………………………………(1分)在Rt △NBD 中,∠NBD =53°,cot ∠NBD =75.0≈ND BD∴3.285)3300900(75.075.0≈-⨯==ND BD 米 …………………………(1分) 951.953.285)3300900(≈≈--=-=BD BC CD 米,即MN =95米 …………(2分) 答:MN 的长约为95米.23.证明:(1)∵AD =BD ,AD ⊥DB ,∴∠A =∠DBA =45°………………………(1分) 又∵DC ∥AB ,∴∠CDB =∠DBA =45°, ∴∠CDB =∠A , ………………………(2分) ∵∠EBC =45°,∴∠EBC =∠DBA , ……………………………………………(1分) ∴∠EBC -∠DBE =∠DBA -∠DBE ,即∠DBC =∠ABE ………………………(1分)x 321∴△ABE ∽△DB C ……………………………………………………………………(1分) (2)∵△ABE ∽△DB C, ∴EB CBAB DB =………………………………………………(2分) ∴DBCBAB EB =,且∠EBC =∠DBA ,∴△BCE ∽△BDA ………………………………(2分) 又∵65=BD BC ,∴3625)(2==∆∆BD BC S S BDA BCE .……………………………………………(2分)24.解:(1)∵抛物线抛物线352-+=bx ax y 经过点A (-1,0)、B (5,0). ∴⎪⎩⎪⎨⎧-+=--=,355250,350b a b a ,解得⎪⎩⎪⎨⎧-==,34,31b a ……………………………………………(2分)∴此二次函数的解析式为3534312--=x x y∴3)2(3135343122--=--=x x x y ,∴C (2,-3)………………………………(2分) (2)由题意可知:抛物线对称轴交x 轴于点G , ∴CG ⊥AB , AB=5-(-1)=6,AG =BG =3,∴G (2,0),CG= AG =BG =3, AC =BC =23…(1分)222AB BC AC =+, ∴△ACB 是等腰直角三角形∵OD ⊥x 轴,∴∠AOD =∠AGC=90°,∴OD ∥CG , ∴31==AG AO CG OD ,∴OD=1,∴D (0,﹣1)…(1分)∴DA=2,DB=26在Rt △DCB 中,CH ⊥BD , ∴∠BHC =∠BCD=90°, 又∵∠HBC =∠CBD ,∴△B C H ∽△BDC ,……………………………………………(1分) ∴BC BD BH BC =,∴BD BH BC ⋅=2,26)23(2⋅=BH ,∴26139=BH…(1分)∵263626139=,∴BD BG AB BH = ………………………………………………(1分)又∵∠HBG =∠ABD ,∴△HBG ∽△ABD ………………………………………………(1分) ∴BD BG AD HG =,∴2632=HG ,∴13133=HG ……………………………………(2分) 答:HG 的长为13133. 25.(1)证明:∵四边形ABCD 中, AD =DC ,AB =BC , ∴∠DAC =∠DCA ,∠BAC =∠BCA ………………………………………………(1分)∵AC 平分∠BAD ,∴∠BAC =∠DAC ,∴∠DCA =∠BCA , ……………………………………………………………………(1分)在△ABC 和△AD C 中,⎪⎩⎪⎨⎧∠=∠=∠=∠BCA DCA ACAC BAC DAC ∴△ABC ≌△ADC …………(1分) ∴AB =AD ,BC =DC ,∴AB =AD =DC =BC , …(1分) ∴四边形ABCD 是菱形.(2)解:如图②,∵四边形ABCD 是菱形,∴AD ∥BC ,∴∠F AC =∠ACB ,∠AFB =∠FBC ,∵∠AFB =∠ACB ,∴∠F =∠F AC ,又∵AC 平分∠BAD ,∴∠ACB =∠FBC =∠CAB , ∵∠ECB =∠BCA ,∴△CEB ∽△CB A ,∴CE CBCB CA=,……………………………(2分) ∵AB 长度是a (a 是常数,且0>a ),AC =x ,AF =y ,∴CE a a x =, ∴2a CE x=, ∴222a x a AE x x x -=-=, ……………………………………………………………(1分) 又∵AF ∥BC ,∴A F A E B C E C = ∴222y x a a a -=…………………………………………(1分) ∴22x a y a-= . ………………………………………………………………………(1分)F第25题图②A BD CEG又∵0°<∠BAD ≤90°∴此函数定义域为(a x a 22<≤). ……………………(1分)(3)解:∵四边形ABCD 是菱形, DC ∥AB ,∴△CGE ∽△ABE ∴当△CGE 是等腰三角形时,△ABE 是等腰三角形.∵△CEB ∽△CBA ∴CB BE CA AB =, 即a BE x a =,∴BE =2a x ………………………(1分) ①当AE =AB 时,22x a a x-=,即220x ax a --=,解得x =25aa x +=是原方程的根且符合题意,负值舍去)∴AC =a 251+…………………………………………………………………………(1分) ②当AE =BE 时,222x a a x x-=,解得 x =(经检验a x 2=是原方程的根且符合题意,负值舍去)∴AC ……………………………………………………………………………(1分)③当AB =BE 时,2a a x=,解得x a =(经检验x a =不合题意,舍去)…………(1分)∴AC 的长为或a 251+ .。
上海市静安区高三数学上学期期末教学质量检测(一模)试题 理(含解析)
上海市静安区高三数学上学期期末教学质量检测(一模)试题 理(含解析)一、填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1.已知集合{}0,2>==x x y y M ,{})2lg(2x x y x N -==,则=N M . 答案:)2,0(考点:集合的描述法备考建议:强调,对集合描述法要区分集合的代表元。
2.设8877108)1(x a x a x a a x ++++=- ,则=++++8710a a a a . 答案:25628=考点:二项式定理解法:将1x =-代入式子中备考建议:让学生理解,二项式题型中的赋值法,并补充一些通过某一项系数判断二项式次数的题型。
3.不等式01271<--x 的解集是 . 答案:)4,21(考点:分式不等式的解法备考建议:分式不等式建议通分后再解不等式,易错点是:不等式性质中,若要两边同乘除,要注意所乘所除数的正负性。
4.如图,在四棱锥ABCD P -中,已知⊥PA 底面ABCD ,1=PA ,底面ABCD 是正方形,PC 与底面ABCD 所成角的大小为6π,则该四棱锥的体积是 . 答案:12考点:锥体体积的求法备考建议:让学生熟练掌握各简单几何体面积与体积的公式。
5.已知数列{}n a 的通项公式1222+-+=n nn a (其中*N n ∈),则该数列的前n 项和=n S . 答案:)212(4n n-考点:数列分组求和,等比数列求和。
备考建议:此类题型要让学生观察数列通项公式的结构,从而选择正确的求和方法。
同时,也可带领回忆一下倒序相加、错位相减、裂项相消的常用求和方法及其适用情况。
AB CDP6.已知两个向量a ,b 的夹角为30°,3=a ,b 为单位向量,b t a t c )1(-+=, 若c b ⋅=0,则t = .答案: 2考点:向量的数量积:解法:由于b 与c 、a 、b 的数量积都有联系,故等式两边同乘上一个b 。
静安区2017学年度第一学期高中教学质量检测高三数学试卷定用
静安区2017学年度第一学期教学质量检测高三数学试卷考生注意:1.本场考试时间120分钟.试卷共4页,满分150分.另附答题纸. 2.作答前,在答题纸正面填写姓名、准考证号等信息.3.所有作答务必填涂或书写在答题纸上与试卷题号相对应的区域,不得错位.在试卷上作答一律不得分.4.用2B 铅笔作答选择题,用黑色字迹钢笔、水笔或圆珠笔作答非选择题.一、填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分) 考生应在答题纸的相应位置直接填写结果. 1. 计算:+lim (1)=+1n nn →∞-__________. 2.计算行列式1i 23i 11i-++的结果是_________.(其中i 为虚数单位)3.与双曲线221916x y -=的渐近线相同,且经过点(A -的双曲线的方程是_________. 4.从5名志愿者中选出3名,分别从事布置、迎宾、策划三项不同的工作,每人承担一项工作,则不同的选派方案共有__________种.(结果用数值表示) 5.已知函数()23x f x a a =⋅+-(a R ∈)的反函数为1()y f x -=,则函数1()y f x -=的图像经过的定点的坐标为 .6.在10()x a -的展开式中,7x 的系数是15,则实数a =__________.7.已知点(2,3)A 到直线(1)30ax a y +-+=的距离不小于3,则实数a 的取值范围是 .8.类似平面直角坐标系,我们把平面内两条相交但不垂直的数轴构成的坐标系(两条数轴的原点重合于O 点且单位长度相同)称为斜坐标系.在斜坐标系xOy 中,若12OP xe ye =+ (其中12,e e分别为斜坐标系的x 轴、y 轴正方向上的单位向量,,x y R ∈),则点P 的坐标为(,)x y .若在斜坐标系xOy 中,60xoy ︒∠=,点M 的坐标为(1,2),则点M 到原点O 的距离为.9.已知圆锥的轴截面是等腰直角三角形,该圆锥的体积为83π,则该圆锥的侧面积等于.10.已知函数(5)1,(1)(),(1)xa x x f x a x -+<⎧=⎨≥⎩(0,1)a a >≠是实数集R 上的增函数,则实数a的取值范围为.11.已知函数231()sin cos()22f x x x x π=--,若将函数()y f x =的图像向左平移a 个单位(0)a π<<,所得图像关于y 轴对称,则实数a 的取值集合为.12.已知函数2()41f x ax x =++,若对任意x R ∈,都有(())0f f x ≥恒成立,则实数a 的取值范围为.二、选择题(本大题共有4题,满分20分,每题5分)每题有且只有一个正确选项.考 生应在答题纸的相应位置,将代表正确选项的小方格涂黑. 13. 已知无穷等比数列{}n a 的各项之和为32,首项112a =,则该数列的公比为【】A .13B .23C .13-D .13或23.14.设全集{}{}3,log (1),11UR A x y x B x x ===-=-<,则()UA B = ð【】A .(]0,1B .()0,1C .()1,2D .[)1,2.15.两条相交直线l 、m 都在平面α内,且都不在平面β内.若有甲:l 和m 中至少有一条直线与β相交;乙:平面α与平面β相交,则甲是乙的【】 A .充分非必要条件B .必要非充分条件 C .充要条件D .既非充分也非必要条件.16.若曲线2y x =+与曲线22:144x y C λ+=恰有两个不同交点,则实数λ的取值范围为 【】 A .(],11+-∞-⋃∞(,)B .(],1-∞-C .1+∞(,)D .()[1,0)1,-⋃+∞. 三、解答题(本大题共有5题,满分76分)解答下列各题必须在答题纸的相应位置写出必要的步骤. 17.(本题满分14分,第1小题满分6分,第2小题满分8分) 如图,在正三棱柱111ABC A B C -中, 41=AA ,异面直线1BC 与1AA 所成角的大小为3π.(1)求正三棱柱111ABC A B C -的体积;(2)求直线1BC 与平面11AAC C 所成角的大小.(结果用反三角函数值表示).18.(本题满分14分,第1小题满分6分,第2小题满分8分)在△ABC 中,角A B C 、、的对边分别是a b c 、、,设向量(,cos ),m a B =(,cos ),n b A = 且//,m n m n ≠ .(1)求证:2A B π+=; (2)若sin sin sin sin x A B A B ⋅=+,试确定实数x 的取值范围.19.(本题满分14分,第1小题满分6分,第2小题满分8分)如图,有一块边长为1(百米)的正方形区域ABCD ,在点A 处有一个可转动的探照灯,其照射角PAQ ∠始终为45(其中点P ,Q 分别在边BC ,CD 上),设,tan PAB t θθ∠==. (1) 当三点C P Q 、、不共线时,求直角△CPQ 的周长;(2) 设探照灯照射在正方形ABCD 内部区域PAQC 的面积为S (平方百米),试求S 的最大值.20.(本题满分16分,第1小题满分4分,第2小题满分6分,第3小题满分6分)如图,已知满足条件3i i z -=(其中i 为虚数单位)的复数z 在复平面xOy 对应点的轨迹为圆C (圆心为C ).设复平面xOy 上的复数i (,)z x y x R y R =+∈∈对应的点为(,)x y ,定直线m 的方程为360x y ++=,过)0,1(-A 的一条动直线l 与直线m 相交于N 点,与圆C 相交于P Q 、两点,M 是弦PQ 中点.B 1A 1C 1ACBDP(1)若直线l 经过圆心C ,求证:l 与m 垂直; (2)当PQ =时,求直线l 的方程;(3)设t =AN AM ⋅,试问t 是否为定值?若为定值,请求出t 的值;若t 不为定值,请说明理由.21.(本题满分18分,第1小题满分4分,第2小题满分7分,第3小题满分7分) 已知数列{}n a 的通项公式为an na n +=,(,n a ∈N *). (1) 若,2a ,4a 成等差数列,求a 的值;(2) 是否存在k (10k ≥且k ∈N*)与a ,使得,3a ,k a 成等比数列?若存在,求出k 的取值集合;若不存在,请说明理由;(3) 求证:数列{}n a 中的任意一项n a 总可以表示成数列{}n a 中的其它两项之积.1a 1a。
2017年静安区一模试卷
静安区2016学年第一学期期末教学质量调研九年级英语试卷(满分150分,考试时间100分钟)2017.1考生注意:本卷有7大题,共94小题。
试题均采用连续编号,所有答案务必按照规定在答题纸上完成,做在试卷上不给分。
Part 1 Listening (第一部分听力)I. Listening comprehension (听力理解) (共30分)A. Listen and choose the right picture (根据你听到的内容,选出相应的图片) (6分)A B C DE F G H1.______2. ______3. ______4. ______5.______6. ______B. Listen to the dialogue and choose the best answer to the question you hear (根据你听到的对话和问题,选出最恰当的答案) (8分)7. A) By bike. B) By taxi. C) By car. D) By bus.8. A) English. B) Chinese. C) Maths. D) Physics.9. A) Jim. B) Linda. C) Ben. D) Alice.10. A) At 3:00 p.m.. B) At 3:30 p.m.. C) At 4:00 p.m.. D) At 4:30 p.m..11. A) At the teachers’ office. B) At school.C) In a hospital. D) In a flower shop.12. A) Their hometown. B) Their grandparents.C) Their holiday plan. D) Their favorite cities.13. A) Because he didn’t know the way. B) Because he wasn’t interested in the class.C) Because there was a heavy snow. D) Because he didn’t want to attend the class.14. A) She doesn’t want to buy this camera. B) She wants this type of camera very much.C) She doesn’t have money for sightseeing. D) She has already wasted a lot of money. C. Listen to aletter written by Sally and tell whether the following statements are true orfalse (判断下列句子是否符合你听到的信的内容,符合的用“T”表示,不符合的用“F”表示) (共6分)15. Sally says she is a tall girl with short fair hair and glasses.16. Sally has Lingling’s photo but Lingling doesn’t have Sally’s.17. Besides playing the piano, Sally also loves dancing and playing tennis.18. Sally sometimes gets angry with herself when she doesn’t do well in subjects.19. Sally says that she seldom feels nervous when she speaks Chinese.20. Sally promises to provide Lingling a lot of help when she arrives in China.D. Listen to the passage and complete the following sentences (听短文,完成下列内容,每空格限填一词) (共10分)21. Instead of just using a computer _______ _______, laptops can be taken anywhere.22. There is _______ _______ with laptops: People can be burned by them.23. If people sit with laptops on the legs for hours, they will get _______ _______ on them.24. These small burns on your legs are not dangerous, but they _______ _______.25. Computer companies tell people not to let warm computers _______ ______ for a long time.Part 2 Phonetics,Vocabulary and Grammar(第二部分语音、词汇和语法)II. Choose the best answer (选择最恰当的答案) : (共20分)26. Which of the following words is pronounced /skri:n/?A) storm B) screen C) steam D) stone27. Last week I bought ______ USB flash disk to store my reading materials.A) a B) an C) the D) /28. In comic strips, there are usually bubbles ______ speech and thoughts in the pictures.A) of B) at C) with D) for29. Peter, welcome to be our new friend. Could you introduce ______ to us first?A) you B) your C) yourself D) yours30. The baby is ill in hospital. ______ of her parents stay there to take care of her.A) Neither B) All C) Both D) None31. Online courses like Chinese tea art attract ______ people from abroad every day.A) million B) millions C) millions of D) million of32. – ______ not take up watching the English movies as your hobby?– My English isn’t so good, you know.A) When B) What C) How D) Why33. The girl felt _______ when two of her friends sent her back from work yesterday evening.A) safe B) save C) safely D) safety34. To travel a short distance, mobik es (摩拜单车) help us go _______ than going on foot.A) fast B) faster C) fastest D) the fastest35. You’ll probably fail the P.E. exam again ________ you practise more.A) because B) after C) if D) unless36. Ted is a very confident student in school _______ he sometimes cries for his failure (失败).A) as soon as B) though C) until D) before37. You _______ think too much about your lessons. Take care, and we willhelp you.A) couldn’t B) needn’t C) can’t D) mustn’t38. TheShenzhou XI manned spacecraft______ to the earth on November 18, 2016.A) returns B) will return C) returned D) has returned39. Martin ______ German for almost two years before he went to work in Germany.A) will study B) was studying C) has studied D) had studied40. The story of “Fishing with birds” lets us _______ a lot about the traditional Chinese skills.A) know B) knew C) to know D) knowing41. People are looking forward to _______ big changes in this area in the near future.A) see B) saw C) seeing D) seen42. Please speak a bit louder so that everyone can hear you clearly, _______?A) do you B) will you C) are you D) have you43. ______ exciting speech Trump’s daughter has made to the American people!A) How B) How an C) What D) What an44. – I am terribly sorry for making the same mistake again in today’s contest.– ______ Be careful next time!A) Congratulations! B) Tha t’s all right. C) Best wishes! D) All right.45. – I think computers will be able to do much more things than human brains can do.– ______A) I think so, too. B) You are welcome. C) Not at all. D) Never mind.III. Complete the following passage with the words or phrases in the box. Each can only be used once (将下列单词或词组填入空格。
04.2017年上海高三数学一模分类汇编:三角
2(2017静安一模). 函数2()13sin ()4f x x π=-+的最小正周期为2(2017长宁/嘉定一模). 函数sin()3y x πω=-(0ω>)的最小正周期是π,则ω= 2(2017普陀一模). 若22ππα-<<,3sin 5α=,则cot 2α= 3(2017金山一模). 如果5sin 13α=-,且α为第四象限角,则tan α的值是 3(2017虹口一模). 设函数()sin cos f x x x =-,且()1f a =,则sin 2a =4(2017金山一模). 函数cos sin ()sin cos x x f x x x=的最小正周期是4(2017杨浦一模). 若△ABC 中,4a b +=,30C ︒∠=,则△ABC 面积的最大值是 5(2017松江一模). 已知(sin ,cos )a x x =,(sin ,sin )b x x =,则函数()f x a b =⋅的最 小正周期为6(2017静安一模). 已知α为锐角,且3cos()45πα+=,则sin α=6(2017虹口一模). 已知角A 是ABC ∆的内角,则“1cos 2A =”是“sin A =”的条件(填“充分非必要”、“必要非充分”、“充要条件”、“既非充分又非必要”之一) 6(2017宝山一模). 若函数cos sin sin cos x x y x x=的最小正周期为a π,则实数a 的值为8(2017闵行一模). 集合{|cos(cos )0,[0,]}x x x ππ=∈= (用列举法表示)8(2017青浦一模). 函数()cos sin )f x x x x x =+-的最小正周期为 9(2017长宁/嘉定一模). 如图,在ABC ∆中,45B ∠=︒,D是BC 边上的一点,5AD =,7AC =,3DC =,则AB 的长为9(2017崇明一模). 已知,A B 分别是函数()2sin f x x ω=(0)ω>在y 轴右侧图像上的第一个最高点和第一个最低点,且2AOB π∠=,则该函数的最小正周期是11(2017崇明一模). 在平面直角坐标系中,横、纵坐标均为整数的点叫做格点,若函数()y f x =的图像恰好经过k 个格点,则称函数()y f x =为k 阶格点函数,已知函数:①2y x =;②2sin y x =;③1xy π=-;④cos()3y x π=+;其中为一阶格点函数的序号为 (注:把你认为正确的序号都填上)12(2017奉贤一模). 已知函数()sin cos f x x x ωω=+(0)ω>,x R ∈,若函数()f x 在区间(,)ωω-内单调递增,且函数()f x 的图像关于直线x ω=对称,则ω的值为13(2017浦东一模). 将cos 2y x =图像向左平移6π个单位,所得的函数为( ) A. cos(2)3y x π=+ B. cos(2)6y x π=+C. cos(2)3y x π=-D. cos(2)6y x π=-13(2017青浦一模). 已知()sin3f x x π=,{1,2,3,4,5,6,7,8}A =,现从集合A 中任取两个不同元素s 、t ,则使得()()0f s f t ⋅=的可能情况为( )A. 12种B. 13种C. 14种D. 15种 13(2017徐汇一模). “4x k ππ=+()k Z ∈”是“tan 1x =”的( )条件A. 充分不必要B. 必要不充分C. 充分必要D. 既不充分也不必要 13(2017崇明一模). 下列函数在其定义域内既是奇函数又是增函数的是( )A. tan y x =B. 3xy = C. 13y x = D. lg ||y x =14(2017虹口一模). 已知函数()sin(2)3f x x π=+在区间[0,]a (其中0a >)上单调递增,则实数a 的取值范围是( ) A. 02a π<≤B. 012a π<≤C. 12a k ππ=+,*k N ∈ D. 2212k a k πππ<≤+,k N ∈15(2017长宁/嘉定一模). 给出下列命题:① 存在实数α使3sin cos 2αα+=;② 直线2x π=-是函数sin y x =图像的一条对称轴;③ cos(cos )y x =(x R ∈)的值域是[cos1,1];④ 若α、β都是第一象限角,且αβ>,则tan tan αβ>;其中正确命题的题号为( )A. ①②B. ②③C. ③④D. ①④18(20172017长宁/嘉定一模). 在ABC ∆中,a 、b 、c 分别是角A 、B 、C 的对边,且28sin 2cos 272B CA +-=; (1)求角A 的大小;(2)若a =3b c +=,求b 和c 的值;18(20172017闵行一模). 已知(23,1)m =,2(cos,sin )2An A =,A 、B 、C 是ABC ∆的内角; (1)当2A π=时,求||n 的值;(2)若23C π=,||3AB =,当m n ⋅取最大值时,求A 的大小及边BC 的长; 18(2017金山一模). 已知△ABC 中,1AC =,23ABC π∠=,设BAC x ∠=,记()f x AB BC =⋅;(1)求函数()f x 的解析式及定义域;(2)试写出函数()f x 的单调递增区间,并求方程1()6f x =的解; 18(2017浦东一模). 已知△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ;(1)若3B π=,b =,△ABC 的面积2S =,求a c +的值; (2)若22cos ()C BA BC AB AC c ⋅+⋅=,求角C ;18(2017虹口一模). 如图,我海蓝船在D 岛海域例行维权巡航,某时刻航行至A 处,此时测得其北偏东30°方向与它相距20海里的B 处有一外国船只,且D 岛位于海蓝船正东18海里处;(1)求此时该外国船只与D 岛的距离;(2)观测中发现,此外国船只正以每小时4海里的速度沿正南方航行,为了将该船拦截在 离D 岛12海里的E 处(E 在B 的正南方向),不让其进入D 岛12海里内的海域,试确定 海蓝船的航向,并求其速度的最小值(角度精确到0.1°,速度精确到0.1海里/小时);18(2017静安一模). 在某海滨城市附近海面有一台风,据监测,当前台风中心位于城市A (看做一点)的东偏南θ角方向(2cos θ=),300km 的海面P 处,并以20/km h 的速度向西偏北45︒方向移动,台风侵袭的范围为圆形区域,当前半径为60km ,并以10/km h 的速度不断增大;(1)问10小时后,该台风是否开始侵袭城市A ,并说明理由; (2)城市A 受到该台风侵袭的持续时间为多久?18(2017青浦一模). 已知函数221()cos ()42f x x x π=+--(x R ∈); (1)求函数()f x 在区间[0,]2π上的最大值;(2)在ABC ∆中,若A B <,且1()()2f A f B ==,求BC AB的值; 18(2017崇明一模). 在一个特定时段内,以点E 为中心的7海里以内海域被设为警戒水域,点E 正北55海里处有一个雷达观测站A ,某时刻测得一艘匀速直线行驶的船只位于点A 北偏东45°且与点A 相距B 处,经过40分钟又测得该船已行驶到点A北偏东45θ︒+(其中sin θ=,090θ︒︒<<)且与点A 相距C 处; (1)求该船的行驶速度;(单位:海里/小时) (2)若该船不改变航行方向继续行驶,判断 它是否会进入警戒水域,并说明理由;19(2017奉贤一模). 一艘轮船在江中向正东方向航行,在点P 观测到灯塔A 、B 在一直线上,并与航线成角α(090)α︒︒<<,轮船沿航线前进b 米到达C 处,此时观测到灯塔A在北偏西45︒方向,灯塔B 在北偏东β(090)β︒︒<<方向,090αβ︒︒<+<,求CB ;(结果用,,b αβ表示)19(2017松江一模). 松江天马山上的“护珠塔”因其倾斜度超过意大利的比萨斜塔而号称“世界第一斜塔”,兴趣小组同学实施如下方案来测量塔的倾斜度和塔高,如图,记O 点为塔基、P 点为塔尖、点P 在地面上的射影为点H ,在塔身OP 射影所在直线上选点A ,使仰角45HAP ︒∠=,过O 点与OA 成120︒的地面上选B 点,使仰角45HBP ︒∠=(点A 、B 、O 都在同一水平面上),此时测得27OAB ︒∠=,A 与B 之间距离为33.6米,试求: (1)塔高;(即线段PH 的长,精确到0.1米) (2)塔的倾斜度;(即OPH ∠的大小,精确到0.1︒)。
上海市静安区高三数学上学期期末考试试题(上海静安一模一模)文(含解析)苏教版
上海市静安区高三数学上学期期末考试试题(上海静安一模一模)文(含解析)苏教版(试卷满分150分考试时间120分钟) 2014.1一、填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1.已知集合,,则.4.关于未知数的实系数一元二次方程的一个根是(其中为虚数单位),写出一个一元二次方程为.【答案】6.. 不等式2210x x +->的解集为8.函数sincos22y x x ππ=的周期是.10.设某抛物线的准线与直线之间的距离为3,则该抛物线的方程为.11.椭圆C 的焦点在x 轴上,焦距为2,直线n:x-y-1=0与椭圆C 交于A 、B 两点,F 1是左焦点,且11F A F B ,则椭圆C 的标准方程是12.已知数列{}n a (n *N )的公差为3,从{}n a 中取出部分项(不改变顺序)a 1,a 4,a 10,…组成等比数列,则该等比数列的公比是14.设与圆(x-1)2+(y-1)2=1相切的直线n:经过两点A (a,0),B(0,b),其中a>2,b>2,O 为坐标原点,则△AOB 面积的最小值为考点:.二、选择题:本大题共4个小题,每小题5分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的.15. 设a,b R,i 是虚数单位,则“ab=0”是“复数a+ib为纯虚数”的 ( ) A 、充要条件 B 、充分不必要条件 C 、必要不充分条件 D 、既不充分也不必要条件16.已知命题:如果,那么;命题:如果,那么;命题:如果,那么.关于这三个命题之间的关系,下列三种说法正确的是( )①命题是命题的否命题,且命题是命题的逆命题.②命题是命题的逆命题,且命题是命题的否命题.③命题是命题的否命题,且命题是命题的逆否命题.A .①③;B .②;C .②③D .①②③17.已知函数的值域是,则实数的取值范围是( )A.; B.; C.; D..三、解答题(本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.)19.(本题满分12分) 本题共有2个小题,第1小题满分7分,第2小题满分5分.《九章算术》是我国古代数学成就的杰出代表.其中《方田》章给出计算弧田面积所用的经验公式为:弧田面积=(弦 矢+矢2).弧田(如图),由圆弧和其所对弦所围成,公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差.按照上述经验公式计算所得弧田面积与其实际面积之间存在误差.现有圆心角为,弦长等于9米的弧田.(1)计算弧田的实际面积;(2)按照《九章算术》中弧田面积的经验公式计算所得结果与(1)中计算的弧田实际面积相差多少平方米?(结果保留两位小数)考点:(1)扇形面积公式;(2)弧田面积的经验计算公式.20.(本题满分14分) 本题共有2个小题,第1小题满分6分,第2小题满分8分.求证: (1)βαβαβαtan tan cos cos )(sin -=-(2)020000000001sin 1cos 89cos 88cos 13cos 2cos 12cos 1cos 11cos 0cos 1=++++21.(本题满分14分) 本题共有2个小题,第1小题满分6分,第2小题满分8分.已知双曲线x 2-y 2=2(1)若直线n 的斜率为2 ,直线n 与双曲线相交于A 、B 两点,线段AB 的中点为P ,求点P 的坐标(x,y)满足的方程(不要求写出变量的取值范围);(2)过双曲线的左焦点F 1,作倾斜角为α的直线m 交双曲线于M 、N 两点,期中),(43,4ππα∈,F 2是双曲线的右焦点,求△F 2MN 的面积S 关于倾斜角α的表达式。
高考数学《函数》专题复习
函数一、17届 一模一、填空、选择题1、(宝山区2017届高三上学期期末) 若点(8,4)在函数()1log a f x x =+图像上,则()f x 的反函数为2、(崇明县2017届高三第一次模拟)设函数2log ,0()4,0x x x f x x >⎧⎪=⎨⎪⎩≤,则((1))f f -= .3、(虹口区2017届高三一模)定义{}()f x x =(其中{}x 表示不小于x 的最小整数)为“取上整函数”,例如{}2.13=,{}44=.以下关于“取上整函数”性质的描述,正确的是( ).①(2)2()f x f x =; ②若12()()f x f x =,则121x x -<; ③任意12,x x R ∈,1212()()()f x x f x f x +≤+;④1()()(2)2f x f x f x ++=..A ①② .B ①③ .C ②③ .D ②④4、(黄浦区2017届高三上学期期终调研)已知函数()y f x =是奇函数,且当0x ≥时,2()log (1)f x x =+.若函数()y g x =是()y f x =的反函数,则(3)g -= .5、(静安区2017届向三上学期期质量检测)已知)(x g y =与)(x h y =都是定义在),0()0,(+∞-∞ 上的奇函数,且当0>x 时,⎩⎨⎧>-≤<=.1),1(,10,)(2x x g x x x g ,x k x h 2log )(=(0>x ),若)()(x h x g y -=恰有4个零点,则正实数k 的取值范围是 【 】A .]1,21[;B .]1,21(;C .]2log ,21(3;D .]2log ,21[3.6、(闵行区2017届高三上学期质量调研)函数()1f x =的反函数是_____________.7、(浦东新区2017届高三上学期教学质量检测)已知定义在*N 上的单调递增函数()y f x =,对于任意的*n N ∈,都有()*f n N ∈,且()()3f f n n =恒成立,则()()20171999f f -=____________.8、(普陀区2017届高三上学期质量调研)函数x x f 2log 1)(+=(1≥x )的反函数=-)(1x f .9、(青浦区2017届高三上学期期末质量调研)如图,有一直角墙角,两边的长度足够长,若P 处有一棵树与两墙的距离分别是4m 和(012)am a <<,不考虑树的粗细.现用16m 长的篱笆,借助墙角围成一个矩形花圃ABCD .设此矩形花圃的最大面积为u ,若将这棵树围在矩形花圃内,则函数()u f a =(单位2m )的图像大致是……………………( ).A .B .C .D .10、(松江区2017届高三上学期期末质量监控)已知函数()1xf x a =-的图像经过(1,1)点,则1(3)f -=▲ .11、(徐汇区2017届高三上学期学习能力诊断)若函数22,0(),0xx f x x m x ⎧≤⎪=⎨-+>⎪⎩的值域为(],1-∞,则实数m 的取值范围是____________12、(杨浦区2017届高三上学期期末等级考质量调研)若函数2()log 1x af x x -=+的反函数的图像过点(2,3)-,则a =________.13、(长宁、嘉定区2017届高三上学期期末质量调研)若函数a x x f ++=)1(log )(2的反函数的图像经过点)1,4(,则实数=a __________.14、(崇明县2017届高三第一次模拟)下列函数在其定义域内既是奇函数又是增函数的是A .tan y x =B .3xy =C .13y x =D .lg y x =15、(浦东新区2017届高三上学期教学质量检测)已知函数()y f x =的反函数为()1y f x -=,则函数()y f x =-与()1y f x -=-的图像( ). A .关于y 轴对称 B .关于原点对称C .关于直线0x y +=对称D .关于直线0x y -=对称16、(普陀区2017届高三上学期质量调研)设∈m R ,若函数()11)(32+++=mx x m x f 是偶函数,则)(x f 的单调递增区间是 .17、(普陀区2017届高三上学期质量调研)方程()()23log 259log 22-+=-x x 的解=x .18、(普陀区2017届高三上学期质量调研)已知定义域为R 的函数)(x f y =满足)()2(x f x f =+,且11<≤-x 时,21)(x x f -=;函数⎩⎨⎧=≠=.0,1,0,lg )(x x x x g ,若)()()(x g x f x F -=,则[]10,5-∈x ,函数)(x F 零点的个数是 .19、(奉贤区2017届高三上学期期末)方程1lg )3lg(=+-x x 的解=x ____________ 20、(金山区2017届高三上学期期末)函数()2xf x m =+的反函数为1()y fx -=,且1()y f x -=的图像过点(5,2)Q ,那么m =二、解答题1、(崇明县2017届高三第一次模拟)设12()2x x af x b+-+=+(,a b 为实常数).(1)当1a b ==时,证明:()f x 不是奇函数;(2)若()f x 是奇函数,求a 与b 的值;(3)当()f x 是奇函数时,研究是否存在这样的实数集的子集D ,对任何属于D 的x 、c ,都有2()33f x c c <-+成立?若存在试找出所有这样的D ;若不存在,请说明理由.2、(虹口区2017届高三一模)已知二次函数2()4f x ax x c =-+的值域为[)0,+∞.(1)判断此函数的奇偶性,并说明理由; (2)判断此函数在2,a⎡⎫+∞⎪⎢⎣⎭的单调性,并用单调性的定义证明你的结论;(3)求出()f x 在[1,)+∞上的最小值()g a ,并求()g a 的值域.3、(黄浦区2017届高三上学期期终调研)已知集合M 是满足下列性质的函数()f x 的全体:在定义域内存在实数t ,使得(2)f t +()(2)f t f =+.(1)判断()32f x x =+是否属于集合M ,并说明理由; (2)若2()lg2af x x =+属于集合M ,求实数a 的取值范围;(3)若2()2x f x bx =+,求证:对任意实数b ,都有()f x M ∈.4、(静安区2017届向三上学期期质量检测)设集合|)({x f M a =存在正实数a ,使得定义域内任意x 都有)}()(x f a x f >+.(1) 若22)(x x f x-=,试判断)(x f 是否为1M 中的元素,并说明理由;(2) 若341)(3+-=x x x g ,且a M x g ∈)(,求a 的取值范围; (3) 若),1[),(log )(3+∞∈+=x xkx x h (R ∈k ),且2)(M x h ∈,求)(x h 的最小值.5、(普陀区2017届高三上学期质量调研)已知∈a R ,函数||1)(x a x f += (1)当1=a 时,解不等式x x f 2)(≤;(2)若关于x 的方程02)(=-x x f 在区间[]1,2--上有解,求实数a 的取值范围.6、(青浦区2017届高三上学期期末质量调研)已知函数2()2(0)f x x ax a =->. (1)当2a =时,解关于x 的不等式3()5f x -<<;(2)对于给定的正数a ,有一个最大的正数()M a ,使得在整个区间[0 ()]M a ,上,不等式|()|5f x ≤恒成立. 求出()M a 的解析式;(3)函数()y f x =在[ 2]t t +,的最大值为0,最小值是4-,求实数a 和t 的值.7、(松江区2017届高三上学期期末质量监控)已知函数21()(21x xa f x a ⋅-=+为实数) . (1)根据a 的不同取值,讨论函数)(x f y =的奇偶性,并说明理由; (2)若对任意的1x ≥ ,都有1()3f x ≤≤,求a 的取值范围.8、(徐汇区2017届高三上学期学习能力诊断)某创业团队拟生产A 、B 两种产品,根据市场预测,A 产品的利润与投资额成正比(如图1),B 产品的利润与投资额的算术平方根成正比(如图2).(注:利润与投资额的单位均为万元)(1)分别将A 、B 两种产品的利润()f x 、()g x 表示为投资额x 的函数;(2)该团队已筹集到10万元资金,并打算全部投入A 、B 两种产品的生产,问:当B 产品的投资额为多少万元时,生产A 、B 两种产品能获得最大利润,最大利润为多少?参考答案:一、填空、选择题1、解析:1+log 8a =4,log 8a =3,化为指数:3a =8,所以,a =221log y x =+,即:12y x -=,所以反函数为12x y -=2、-23、C4、-75、C6、()()211(1)fx x x -=-≥ 7、548、【解析】∵x ≥1,∴y=1+2log x ≥1,由y=1+2log x ,解得x=2y ﹣1,故f ﹣1(x )=2x ﹣1(x ≥1).故答案为:2x ﹣1(x ≥1). 9、B 10、211、01m <≤ 12、2a =13、【解析】函数a x x f ++=)1(log )(2的反函数的图象经过点(4,1), 即函数a x x f ++=)1(log )(2的图象经过点(1,4), ∴4=log 2(1+1)+a ∴4=1+a , a=3.故答案为:3. 14、C 15、D16、【解析】由题意:函数()11)(32+++=mx x m x f 是偶函数,则mx=0,故得m=0, 那么:f (x )=23x +1,根据幂函数的性质可知:函数f (x )的单点增区间为(0,+∞). 故答案为:(0,+∞). 17、【解析】由题意可知:方程log 2(9x ﹣5)=2+log 2(3x ﹣2)化为:log 2(9x ﹣5)=log 24(3x ﹣2) 即9x ﹣5=4×3x ﹣8 解得x=0或x=1;x=0时方程无意义,所以方程的解为x=1. 故答案为1. 18、【解析】定义域为R 的函数y=f (x )满足f (x +2)=f (x ), 可得f (x )的周期为2, F (x )=f (x )﹣g (x ),则令F (x )=0,即f (x )=g (x ), 分别作出y=f (x )和y=g (x )的图象, 观察图象在[﹣5,10]的交点个数为14.x =0时,函数值均为1,则函数F (x )零点的个数是15. 故答案为:15.19、5 20、1二、解答题1、解:(1)证明:511212)1(2-=++-=f ,412121)1(=+-=-f ,所以)1()1(f f -≠-,所以)(x f 不是奇函数............................3分(2))(x f 是奇函数时,)()(x f x f -=-,即bab a x x x x ++--=++-++--112222对定义域内任意实数x 都成立即0)2(2)42(2)2(2=-+⋅-+⋅-b a ab b a x x ,对定义域内任意实数x 都成立...........................................5分所以⎩⎨⎧=-=-042,02ab b a 所以⎩⎨⎧-=-=21b a 或⎩⎨⎧==21b a .经检验都符合题意........................................8分(2)当⎩⎨⎧==21b a 时,121212212)(1++-=++-=+x x x x f ,因为02>x ,所以112>+x ,11210<+<x, 所以21)(21<<-x f .......................................10分 而4343)23(3322≥+-=+-c c c 对任何实数c 成立;所以可取D =R 对任何x 、c 属于D ,都有33)(2+-<c c x f 成立........12分当⎩⎨⎧-=-=21b a 时,)0211212212)(1≠-+-=---=+x x f xx x (, 所以当0>x 时,21)(-<x f ;当0<x 时,21)(>x f .............14分1)因此取),0(+∞=D ,对任何x 、c 属于D ,都有33)(2+-<c c x f 成立. 2)当0<c 时,3332>+-c c ,解不等式321121≤-+-x 得:75log 2≤x .所以取]75log ,(2-∞=D ,对任何属于D 的x 、c ,都有33)(2+-<c c x f 成立.....16分2、解:(1)由二次函数2()4f x ax x c =-+的值域为[)0,+∞,得0a >且41604ac a-=,解得4ac =.……………………2分(1)4f a c =+-,(1)4f a c -=++,0a >且0c >,从而(1)(1)f f -≠,(1)(1)f f -≠-,∴此函数是非奇非偶函数.……………………6分(2)函数的单调递增区间是2,a ⎡⎫+∞⎪⎢⎣⎭.设1x 、2x 是满足212x x a >≥的任意两个数,从而有21220x x a a->-≥,∴222122()()x x a a ->-.又0a >,∴222122()()a x a x a a ->-,从而22212424()()a x c a x c a a a a-+->-+-,即22221144ax x c ax x c -+>-+,从而21()()f x f x >,∴函数在2,a ⎡⎫+∞⎪⎢⎣⎭上是单调递增.……………………10分(3)2()4f x ax x c =-+,又0a >,02x a=,[)1,x ∈+∞ 当021x a =≥,即02a <≤时,最小值0()()0g a f x == 当021x a =<,即2a >时,最小值4()(1)44g a f a c a a==+-=+-综上,最小值002()442a g a a a a <≤⎧⎪=⎨+->⎪⎩……………………14分 当02a <≤时,最小值()0g a = 当2a >时,最小值4()4(0,)g a a a=+-∈+∞ 综上()y g a =的值域为[0,)+∞……………………16分3、解:(1)当()32f x x =+时,方程(2)()(2)38310f t f t f t t +=+⇔+=+ ……2分 此方程无解,所以不存在实数t ,使得(2)()(2)f t f t f +=+,故()32f x x =+不属于集合M . ……………………………4分(2)由2()lg2af x x =+属于集合M ,可得 方程22lg lg lg (2)226a a ax x =++++有实解22[(2)2]6(2)a x x ⇔++=+有实解2(6)46(2)0a x ax a ⇔-++-=有实解,………7分若6a =时,上述方程有实解;若6a ≠时,有21624(6)(2)0a a a ∆=---≥,解得1212a -≤+故所求a的取值范围是[1212-+. ……………………………10分 (3)当2()2x f x bx =+时,方程(2)()(2)f x f x f +=+⇔+2222(2)244x x b x bx b ++=+++⇔32440x bx ⨯+-=, ………………12分令()3244x g x bx =⨯+-,则()g x 在R 上的图像是连续的,当0b ≥时,(0)10g =-<,(1)240g b =+>,故()g x 在(0,1)内至少有一个零点;当0b <时,(0)10g =-<,11()320bg b =⨯>,故()g x 在1(,0)b内至少有一个零点;故对任意的实数b ,()g x 在R 上都有零点,即方程(2)()(2)f x f x f +=+总有解, 所以对任意实数b ,都有()f x M ∈. ………………………16分 4、解:(1)∵1)0()1(==f f , ∴1)(M x f ∉. ……………………………4分(2)由0413341)(41)()()(32233>-++=++--+=-+a a x a ax x a x x a x x g a x g …2分 ∴0)41(12934<--=∆a a a a , ……………………………3分 故 1>a . ……………………………1分(3)由0)(log ]2)2[(log )()2(33>+-+++=-+xkx x k x x h x h , ………………1分 即:)(log ]2)2[(log 33xkx x k x +>+++∴ 022>+>+++xkx x k x 对任意),1[+∞∈x 都成立∴ 3113)2(2<<-⇒⎩⎨⎧-><⇒⎩⎨⎧->+<k k k xk x x k ……………………………3分 当01≤<-k 时,)1(log )1()(3min k h x h +==; ……………………………1分 当10<<k 时,)1(log )1()(3min k h x h +==; ……………………………1分 当31<≤k 时,)2(log )()(3min k k h x h ==. ……………………………1分 综上:⎪⎩⎪⎨⎧<≤<<-+=.31),2(log ,11),1(log )(33min k k k k x h ……………………………1分5、【解】(1)当1=a 时,||11)(x x f +=,所以x x f 2)(≤x x 2||11≤+⇔……(*) ①若0>x ,则(*)变为,0)1)(12(≥-+x x x 021<≤-⇔x 或1≥x ,所以1≥x ;②若0<x ,则(*)变为,0122≥+-xx x 0>⇔x ,所以φ∈x 由①②可得,(*)的解集为[)+∞,1。
11 上海市静安区2017届高三一模
静安区2016学年第一学期教学质量检测高三年级英语试卷2016. 12I.Listening ComprehensionSection ADirections:In Section A, you will hear ten short conversations between two speakers. At the end of each conversation, a question will be asked about what was said. The conversations and the questions will be spoken only once. After you hear a conversation and the question about it, read the four possible answers on your paper, and decide which one is the best answer to the question you have heard.1. A. In a library. B. In a bookstore. C. In a hospital. D. In a laboratory.2. A. A clerk. B. A banker. C. An operator. D. A salesperson.3. A. 5:00. B. 5:15. C. 5:30. D. 5:45.4. A. She lost her way. B. She lost her keys.C. She lost her car.D. She lost her handbag.5. A. The woman would understand if she did Mary’s job.B. The woman should do the typing for Mary.C. The woman should work as hard as Mary.D. The woman isn’t a skillful typist.6. A. He gets nervous very easily. B. He hasn’t prepared his speech well.C. He is an awful speaker.D. He is an inexperienced speaker.7. A. This apple pie tastes very nice. B. His mother likes the apple pie very much.C. The apple pie can’t match his mother’s.D. His mother can’t make apple pies.8. A. She is not interested in the article.B. She has given the man much trouble.C. She would like to have a copy of the article.D. She doesn’t want to take the trouble to read the article.9. A. He is not very enthusiastic about his English lessons.B. He has made great progress in his English.C. He is a student of the music department.D. He is not very interested in English songs.10. A. The man went to a wrong check-in counter.B. The man has just missed the flight.C. The plane will leave at 9:14.D. The plane’s departure time remains unknown.Section BDirections: In Section B, you will hear two short passages and one longer conversation, and you will be asked several questions on each of the passages and the longer conversation. The passagesand the longer conversation will be read twice, but the questions will be spoken only once. When you hear a question, read the four possible answers on your paper and decide which one would be the best answer to the question you have heard. Questions 11 through 13 are based on the following passage.11. A. A basket. B. An egg. C. A cup. D. An oven.12. A. To let in the sunshine. B. To serve as its door.C. To keep the nest cool.D. For the bird to lay eggs.13. A. Some are built underground. B. Some use pears as their nests.C. Most are sewed with grasses.D. Most are dried by the sun.Questions 14 through 16 are based on the following passage.14. A. South Africa. B. Asia. C. Europe. D. South America.15. A. It’s a trade that is driven by customer appetites.B. The latest trick seems to be promoting business.C. You can hardly resist the temptation when seeing the pictures of food.D. People have no idea in buying things.16. A. Young people. B. Foreigners. C. Local people. D. Old people.Questions 17 through 20 are based on the following conversation.17. A. It is nice. B. It is safe and reliable.C. It is totally silent.D. It is noisy.18. A. They are available on the last Saturday of the month.B. They could work at night this month.C. They have to be paid overtime if working this month.D. They could work at weekends at normal pay.19. A. The engineer. B. The mechanic.C. The repairman.D. The electrician.20. A. They charge a fixed fee for this service.B. They provide free maintenance for 24 hours.C. They provide free maintenance for a year.D. They provide automatic maintenance service.II.Grammar and vocabularySection ADirections: After reading the passage below, fill in the blanks to make the passage coherent and grammatically correct. For the blanks with a given word, fill in each blank with the proper form of the given word; for the other blanks, use one word that best fits each blank.iPhone 7 being investigated after surfer claims it set his car on fire Apple is investigating a report from an Australian man who claimed his iPhone 7 caught fire and destroyed his car, the company said on Friday.Surfer Mat Jones told Channel 7 News that he (21)________________ ( go ) into water off a New South Wales beach and left his new iPhone 7, bought last week, (22) ________________ ( wrap) in a pair of trousers in his car on the beach.He said that (23)________________ he returned from the water he saw smoke rising from the car. “As I looked into my car, I could not see inside the car, like all the windows were just black.”A video footage(影像) taken from another phone showed the front seats, dash board and stick melted and charred, and Jones said that he felt “pretty much like a big heat wave just came out of the car”.Eventually the surfer was able to remove (24)________________ was left of his clothes. “Ash was just coming from inside the pants. Once the pants were unwrapped,the phone was just melting inside.”Jones said that he had not dropped the phone or physically damaged it, (25)________________ happened toa Sydney man who fell off his bike and suffered burns from an iPhone. He also said that he had not used(26)________________ non-Apple charging device.A spokeswoman for Apple said the company was investigating the complaint. “We’re in touch with the customer and we’re looking into it,” she said.Lithium-ion(锂离子) batteries (27)________________ burst into flames because of physical damage or overheating. Apple’s(28) ________________( big )smartphone competitor, Samsung, has begun an international recall of 2.5m Galaxy Note 7 devices after more than 100 devices started smoking, sparking or caught fire—in some cases (29)________________ ( cause ) fire damage and injury.Several other companies, including Hewlett Packard, Tesla and the makers of so-called “hoverboards”, have also experienced problems (30)________________ their lithium-ion batteries, though the vast majority work without problems.Section BDirections:Complete the following passage by using the words in the box. Each word can only be used once. Note that there is one word more than you need.In late February, a mainland tourist caused a disturbance on a Hong Kong subway. The reason?Eating in public. In Hong Kong it is __31__ to eat on the subway, and when the tourist was scolded by a Hong Kong local, the situation escalated (升级) into a verbal slinging match.In New York City, eating on the subway is also controversial. No law bans the practice, but a Democratic state senator (参议员) introduced one last week. The __32__ law would ban eating on the subway system and __33__ first time violators $250 (1,579 yuan), according to the New York Times. Proponents of the bill argue that eating on the subway attracts rats. Others say the broader target should be litterbugs, rather than those who carefully sip their coffee and eat their bread on the way to wo rk. They also argue that “street food” is an important part of New York’s culture and history. Banning its __34__in public areas such as the subway would have negative effects.Street food, and eating in public places is a deep-rooted cultural practice in cities as diverse as New York, Beijing and Paris. But while __35__, it has been traditionally thought of as the behavior of the lower classes. Eating in public was (and in some places, still is) associated with __36__, poorer people. In the 19th century, eating in public was seen as a threat to morality and public health. Putnam’s (a popular magazine at the time) stated: “Eating in public may cause a certain __37__ of manner and disinterest in little ladies and gentlemen.” It was something people in the Victorian era did not want to __38__. A recent New York Times article drew a link between this moral __39__ about street food and concern over the growing populations of Irish, German, Italian and Jewish __40__ who ran food carts in the 1800s.Whether you l ove eating street food, or have to eat your breakfast on the run, it’s best to be considerate when enjoying a bite in public.III.Reading ComprehensionSection ADirections: For each blank in the following passage there are four words or phrases marked A, B, C and D. Fill in each blank with the word or phrase that best fits the context.The two most common organizational patterns of the family are the nuclear family and the extended family. To a large extent, these patterns __41__ a society’s primary subsistence (存在) strategy.American social scientists have generally agreed that families everywhere fulfill four crucial social __42__: (a) reproduction of new members, (b) child care, (c) socialization of children to values, traditions, and norms of the society, and (d) intimacy and support for members. Although we can define the family __43__ its functions, the emphasis given to each of them varies widely both geographically and __44__. For example, in nineteenth-century America, people married mainly to have children. Today, emotional support among family members has now become the dominant function of the family, and the family has become an economic unit for consumption rather than for __45__.In recent years, social scientists have discovered important __46__ in family types, such as the single-parent family and the nuclear family fixed within a network of kin (亲戚). American families also __47__ according to social class. A couple’s social class affects the number of children they will decide to have, if any, and also the likelihood of __48__ to the family because of illness, death, or divorce. Social class also influences the amount of stress a marriage is likely to undergo and the way parents raise their children.__49__, the extent to which American families now differ by __50__ appears to be much less than it was fifty years ago.The American family has been __51__ in a number of ways over the past few decades. Many people are marrying later, having children later, and having fewer children or none at all. These social changes have __52__ diverse household patterns, including single-person households and childless couples. Role changes are also occurring as both partners pursue __53__ and share family responsibilities.Many innovative family arrangements are attempts to enhance the commitment of marriage while increasing individual freedom and fulfillment. In this way, families are __54__ such broad social trends as delayed marriage, greater participation of women in the job market, and a rising rate of divorce. Undoubtedly, the American family will continue to be subjected to such pressures, but how __55__ will these future adaptations be?41.A. reflect B. change C. confirm D. replace42.A. performances B. activities C. relations D. functions43.A. with regard to B. in terms of C. in combination with D. for the purpose of44.A. racially B. financially C. historically D. spiritually45.A. inhabitation B. competition C. connection D. production46.A. variations B. units C. arrangements D. characteristics47.A. develop B. extend C. differ D. evolve48.A. contribution B. destruction C. combination D. application49.A. Therefore B. Also C. Contrarily D. However50.A. family size B.work pressure C. economic status D. social class51.A. expanding B. divided C. valued D. changing52.A. focused on B. resulted in C. appealed to D. called for53.A. trends B. study C. careers D. goals54.A. adapting to B. dealing with C. worrying about D. getting rid of55.A. sociable B. available C. extensive D. naturalSection BDirections:Read the following three passages. Each passage is followed by several questions or unfinished statements. For each of them there are four choices marked A, B, C and D. Choose the one that fits best according to the information given in the passage you have just read.(A)The Hawthorne experiment was conducted in the late 1920s and early 1930s. The management of Western Electric’s Hawthorne plant, located near Chicago, wanted to find out if environmental factors, such as lighting, could affect workers’ pro ductivity and morale. A team of social scientists experimented with a small group of employees who were set apart from their coworkers. The environmental conditions of this group’s work area were controlled, and the subjects themselves were closely observed. To the great surprise of the researchers, the productivity of these workers increased in response to any change in their environmental conditions. The rate of work increased even when the changes (such as a sharp decrease in the level of light in the workplace) seemed unlikely to have such an effect.It was concluded that the presence of the observers had caused the workers in the experimental group to feel special. As a result, the employees came to know and trust one another, and they developed a strong belief in the importance of their job. The researchers believed that this, not the changes in the work environment, accounted for the increased productivity.A later reanalysis of the study data challenged the Hawthorne conclusions on the grounds that the changes in patterns of human relations, considered so important by the original researchers, were never measured. However, even if the original conclusions must be revised, they nonetheless raise a problem for social scientists: Research subjects who know they are being studied can change their behavior. Throughout the social sciences, this phenomenon has come to be called the Hawthorne effect.56.The author implies that a sharp decrease in light increased workers’ output because ________________.A.the workers experienced less eyestrain in a dark working placeB.the workers had to pay more attention to what they were doingC. the workers knew they were being observed, and this motivated themD. the workers in the experiment were paid more than other workers57.The pattern of organization of the second paragraph is________________.A. list of itemsB. time orderC. definition and exampleD. cause and effect58.The Hawthorne experiment suggests that________________.A.workers’ attitudes are more important than their environmentB.social scientists are good workersC.productivity in electric plants tends to be lowD.even those who were not in the experiment improved their productivity59.The author’s main purpose is________________.A.to explain the Hawthorne effectB.to prove the importance of researchC.to amuse with a surprising experimentD.to suggest ideas for future research(B)Join IMDb and Become a Founding Supporter of the Academy Museum of Motion PicturesThe Academy of Motion Pictures Arts &Sciences is build ing the world’s leading moviemuseum in the heart of Los Angeles. TheAcademy Museum of Motion Pictures, scheduledto open in 2017, will contain six stories ofstate-of-the-art galleries, exhibition spaces, movietheaters and educational areas. Throughgroundbreaking exhibitions and innovativeprogramming, the Museum will explore how Hollywood and the film industry have shaped culture and creativity around the world. Designed by Renzo Piano, the Academy Museum will be located next to the Los Angeles County Museum of Art ( LACMA ) campus in the landmarked Wilshire May Company Building.To help ensure this long-held dream of the Academy becomes a reality, the Academy has launched a $300 million fundraising campaign, led by Bob Iger, Annette Bening and Tom Hanks. We hope you can join IMDb and the Academy Museum’s community of early supporters by making a gift to the campaign today. Or, sign up for the Academy Museum mailing list to hear about upcoming museum events and developments.Donate NowHelp make movie history and join in elite group of supporters, including IMDb, by making your contribution today.To see a full list of the Academy Museum founding supporters, click here. If you would like to make a donation or learn more about naming opportunities, please contact Christine Joyce Rodriguez, Manager of Annual Giving, at Christine.Rodriguez@ or 310 247 3040.60.The Academy Museum of Motion Pictures is located________________ .A. in the downtown area of Los AngelesB. in the suburb of the city of Los AngelesC. in the Los Angeles County Museum of ArtD. in the centre of Wilshire May Company61. The Academy Museum of Motion Pictures will focus on________________ .A. the exhibition of film equipmentB. the impact of film industry on world cultureC. the popularity of Hollywood movie cultureD. the achievements of American galleries and theatres62. The passage is intended to________________ .A. promote the Academy Museum and make movie historyB. arouse people’s interest in the Academy MuseumC. raise enough money for the Academy MuseumD. help realize the Academy Museum founding supporters’ dreams(C)To live in the United States today is to gain an appreciation for Dahrendorf’s declaration that social change exists everywhere. Technology, the application of knowledge for practical ends, is a major source of social change.Yet we would do well to remind ourselves that technology is human creation; it does not exist naturally. A spear or a robot is as much a cultural as a physical object. Until humans use a spear to hunt game or a robot to produce machine parts, neither is much more than a solid mass of matter. For a bird looking for an object on which to rest, a spear or robot serves the purpose equally well. The explosion of the Challenger space shuttle and the Russian nuclear accident at Chernobyl drive home the human quality of technology; they provide cases in which well-planned systems suddenly went haywire and there was no ready hand to set them right. Since technology is a human creation, we are responsible for what is done with it. Pessimists worry that we will use our technology eventually to blow our world and ourselves to pieces. But they have been saying this for decades, and so far we have managed to survive and even flourish. Whether we will continue to do so in the years ahead remains uncertain. Clearly, the impact of technology on our lives deserves a closer examination.Few technological developments have had a greater impact on our lives than the computer revolution. Scientists and engineers have designed specialized machines that can do the tasks that once only people could do. There are those who declare that the switch to an information-based economy is in the same camp as other great historical milestones, particularly the Industrial Revolution. Yet when we ask why the Industrial Revolution was a revolution, we find that it was not the machines. The primary reason why it was revolutionary is that it led to great social change. It gave rise to mass production and, through mass production, to a society in which wealth was not restricted to the few.In somewhat similar fashion, computers promise to revolutionize the structure of American life particularly as they free the human mind and open new possibilities in knowledge and communication. The Industrial Revolution supplemented and replaced the muscles of humans and animals by mechanical methods. The computer extends this development to supplement and replace some aspects of the mind of human beings by electronic methods. It is the capacity of the computer for solving problems and making decisions that represents its greatest potential and that poses the greatest difficulties in predicting the impact on society.63. Why does the author give the examples of the Challenger and Chernobyl?A. To show that technology could be used to destroy our world.B. To stress the author’s concern about the safety of complex technology.C. To prove that technology usually goes wrong, if not controlled by man.D. To demonstrate that being a human creation, technology is likely to make an error.64. What does the phrase“went haywire” in paragraph 2 most probably mean?A. were out of rangeB. went out of dateC. fell out of useD. got out of control65. According to the author, the introduction of the computer is a revolution mainly because_________________.A. the computer has revolutionized the workings of the human mindB. the computer can do the tasks that could only be done by people beforeC. it has helped to switch to an information technologyD. it has a great potential impact on society66. In the passage, the author clearly shows his_________________.A. keen insight into the nature of technologyB. sharp criticism of the role of the Industrial RevolutionC. thorough analysis of the replacement of the human mind by computersD. comprehensive description of the negative consequences of technologySection CDirections: Read the following passage. Fill in each blank with a proper sentence given in the box. Each sentence can be used only once. Note that there are two more sentences than you need.How to Keep Your Digital Memories Safe?Do you value your digital stuff? Nearly everyone is creating things with computers, and some do it without any concern for its value. Others recognize its current value, but think little about what it could mean to them in the future, and either isn’t aware or doesn’t think that all of it could be destroyed tomorrow. But hard drives die all the time, and the online services into which people sink their time close with alarming regularity, taking the work of millions of people with it. __________67__________Steps1.Prepare to make a quick backup. If nothing else, get a cheap USB stick and drag-and-drop your documents folder onto it.Worry about the other things later.You should do more than this, but it’s most important to take the most valuable, irreplaceable information from your hard drive and put it on a second medium to guard against hard drive failure, theft or loss.2.Decide what you value. Some questions to ask yourself are:How replaceable is this data? How good are you at assessing the value of items?__________68__________For things like business accounts and documents, the answer is of course you would. This kind of thing should be your first priority.3.Start making backups.__________69__________Diminishing returns(效益递减) apply in backups as they do with everything else. The cheapest and simplest backup methods take care of an overwhelming majority of likely loss-of-stuff. Over-complicating your backup strategy is the biggest trap: the more complicated and expensive you insist on making it, the less likely you are to do it.4.__________70__________If one of your backup drives fails, replace it immediately. Remember that all storage devices eventually become obsolete(陈旧的). If you have valuable files on obsolete media, those files become increasingly difficult to access with every passing year. So in order to keep your files accessible, remember to migrate your collection to new storage media periodically.IV.Summary WritingDirections: Read the following passage. Summarize the main idea and the main point(s) of the passage in no more than 60 words. Use your own words as far as possible.Airline seats have been one-size-fits-all since the beginning. Today, those 16.5 to 18-inch wide seats are anything but.According to the World Health Organization (WHO), obesity(肥胖症)has more than doubled since 1980. In 2014, more than 1.9 billion adults were overweight, and over 600 million were obese.The unchanged seat size and increase of obese passengers highlight the conflict between airlines’ needs and basic passenger rights.Last month, lawyer Giorgio Destro,an Italian lawyer, sued Emirates, claiming his flight was disrupted by an obese passenger seated next to him. According to reports, Destro was not able to comfortably sit in his assigned seat, and spent much of the nine-hour flight standing or sitting in crew seats, because a 400-pound passenger took up half of his seat.Many airlines have responded to the growing obesity by insisting passengers of size buy two seats to ensure safety and comfort. Samoa Air, for example, is charging by weight (which has become known as a “fat tax”). At first glance, the fat tax issue sounds discriminatory (歧视的), but some argue that this is purely down to numbers.A kilo is a kilo. It has nothing to do with the condition of the weight.The heavier a plane is, the more fuel it burns through.In other words, the argument is whether it is fair that a 150-pound person is charged for their 50-pound bag, when a 300-pound person with a carry-on isn’t charged anything extra.However, Peggy Howell of NAAFA argues that obesity is an illness, and that obese people should be entitled to having certain rights protected.“We question the legality of the disc riminatory policy and whether it violates the Air Carrier Access Act governing the treatment of passengers with disabilities,” she says. “The American Medical Association (AMA) recently declared obesity a disease, which should make fat passengers a protect ed class.”Howell points out that the Canadian Transportation Agency (CTA) addressed this issue in 2009, and issued a ‘one-person, one-fare’ ruling covering passengers with disabilities. Those passengers include ones who are ‘clinically obese’ and who cann ot fit into a single seat.V.TranslationDirections: Translate the following sentences into English, using the words given in the brackets.72. 互联网经济在为中国的国内外贸易提供新的机遇。
上海市静安区2019年高三第一学期期末(一模)学科质量检测数学答案(word版)
静安区2018-2019年第一学期高三年级质量调研考试数学试卷参考答案一、填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分) 考生应在答题纸的相应位置直接填写结果. 1.)2,2(-. 2.),(32.3.10. 4.. 5.. 6..7.13795.16元 8.97. 9..10.12288π cm 3. 11.. 12. 24.二、选择题(本大题共有4题,满分20分,每题5分) 每题有且只有一个正确选项.考 生应在答题纸的相应位置,将代表正确选项的小方格涂黑. 13.~~~~16.ABBC三、解答题(本大题共有5题,满分76分) 解答下列各题必须在答题纸的相应位置写出 必要的步骤. 17.(本题满分14分) 解:根据题意,在△ABC 中,,∠BAC =66O 20/,由余弦定理,得计算得:..答:顶杆约长1.89米.18.(本题满分14分,第1小题满分6分,第2小题满分8分)解:(1)由题意,△ACD 是等边三角形,因为E 是CD 的中点,所以AE CD ⊥, 又⊥PA 平面ABCD ,所以CD PA ⊥,所以⊥CD 平面PAE .(2)取DE 中点G ,连结AG ,FG ,则FG ∥PE , 所以,AFG ∠为异面直线AF 与PE 所成角, 设a PA =,在△AFG 中,a AF 22=,a FG 47=, a AG 413=, 所以,FG AF AG FG AF AFG ⋅-+=∠2cos 222281447222161316721222=⋅⋅-+=aa a a a . 所以,异面直线AF 与PE 所成角的大小为2814arccos .19.(本题满分14分,第1小题满分6分,第2小题满分8分) 解:(1)设,因为,所以..(2)当时,,该函数当时递减,当时递增。
要使有意义且取得最大值,关于自变量的单调性必是当时增, 当时递减,所以根据题意得:,于是,得.所以存在,使得当时,的最大值是20.(本题满分16分,第1小题满分4分,第2小题满分6分,第3小题满分6分) 解:(1)由题意,122+=m m ,所以1=m .所以椭圆Γ的方程为1322=+y x ,双曲线C 的方程为.(2)双曲线C 的右顶点为)0,1(,因为,不妨设01>k ,则02<k ,设直线1l 的方程为)1(1-=x k y , 由,得,则,(),.同理,,,又,所以,.因为Q P y y =,所以直线PQ 与x 轴平行,即PQ k 为定值0,倾斜角为0. (3)设),(11y x A ,),(22y x B ,直线AB 的方程为n x y +-=,由⎪⎩⎪⎨⎧=++-=,13,22y x n x y 整理得0336432=-+-n nx x , △0)4(12)33(16)6(222>-=---=n n n ,故22<<-n .2321n x x =+,4)1(3221-=n x x ,设AB 的中点为),(00y x M ,则432210n x x x =+=,400nn x y =+-=,又),(00y x M 在直线:l b kx y +=上,所以b n n +=434,)1,1(2-∈-=n b . 因为)2,(11-=y x TA ,)2,(22-=y x TB ,所以)2,()2,()2,()2,(22112211-+-⋅-+-=-⋅-=⋅n x x n x x y x y x TB TA2222121)2(2)2(32)1(3)2())(2(2-+---=-++--=n n n n n x x n x x2525242522<++=+-=b b n n ,所以021<<-b .又,。
上海市静安区高三数学上学期教学质量检测 文
静安区第一学期期末教学质量检测高三年级数学试卷(文)(本试卷满分150分 考试时间120分钟) .1 学生注意:1. 本试卷包括试题纸和答题纸两部分.2. 在试题纸上答题无效,必须在答题纸上的规定位置按照要求答题. 3. 可使用符合规定的计算器答题.一、填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分. 1. 设i 为虚数单位,计算=+ii1 . 2.幂函数()x f 的图象过点()2,2,则其解析式()=x f .3. 621x x ⎛⎫+ ⎪⎝⎭的展开式中常数项是_________.(用数字作答)4. 若 02010221=--x x ,则=x .5. 若直线m my x m y mx 21=++=+与平行,则m =_____.6.已知*,21312111N n nn n n a n ∈+++++++=,那么+=+n n a a 1 . 7. 若实数x 满足对任意正数0>a ,均有a x +<12,则x 的取值范围是 . 8. 已知椭圆22221(0)y xa b a b +=>>的右顶点为(1,0)A ,过其焦点且垂直长轴的弦长为1.则椭圆方程为 .9.若直线2+=kx y 与抛物线x y 42=仅有一个公共点,则实数=k .10.如图,若框图所给的程序运行的输出结果为132=S ,那么判断框 中应填入的关于k 的判断条件是 . 11. 已知全集U ={1,2,3,4,5},集合{}321,,a a a A =,则满足21123+≥+≥a a a 的集合A 的个数是 .(用数字作答)12.在△ABC 中,∠C=90°,),1(k AB =,)1,2(=AC ,则k 的值是 .13.已知函数)32sin(2)(π+=x x f ,若对任意的R x ∈,都有)()()(21x f x f x f ≤≤,则||21x x -的最小值为 .14. 设双曲线)0,0(12222>>=-b a by a x 的左、右焦点分别为)0,(1c F -、)0,(2c F ,0>c ,若以1F 2F 为斜边的等腰直角三角形21AF F 的直角边的中点在双曲线上,则ac等于 .二、选择题(本大题满分16分)本大题共有4题,每题有且只有一个正确答案.考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得4分,否则一律得零分. 15.右图给出了某种豆类生长枝数y (枝)与时间t (月)的散点图,那么此种豆类生长枝数与时间的关系用下列函数模型近似刻画最好的是………………………………………………………………( )(A)22t y =; (B)t y 2log =; (C)3t y =; (D)ty 2=.16. 下列命题中正确的命题是……………………………( ) (A )若存在[]12,,x x a b ∈,当12x x <时,有()12()f x f x <,则说函数)(x f y =在区间[]b a ,上是增函数;(B )若存在],[b a x i ∈(),2,1*N n i n n i ∈≥≤≤、,当123n x x x x <<<<时,有()()()123()n f x f x f x f x <<<<,则说函数)(x f y =在区间[]b a ,上是增函数;(C )函数)(x f y =的定义域为),0[+∞,若对任意的0x >,都有()(0)f x f <,则函数)(x f y =在),0[+∞上一定是减函数;(D )若对任意[]12,,x x a b ∈,当21x x ≠时,有0)()(2121>--x x x f x f ,则说函数)(x f y =在区间[]b a ,上是增函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
静安区2016-2017学年度第一学期高中教学质量检测高三数学试卷本试卷共有20道试题,满分150分.考试时间120分钟.一、填空题(50分)本大题共有10题,要求在答题纸相应题序的空格内直接填写结果,每个空格填对得5分,否则一律得零分. 1.“0<x ”是“a x <”的充分非必要条件,则a 的取值范围是 . 2.函数⎪⎭⎫⎝⎛+-=4sin 31)(2πx x f 的最小正周期为 . 3.若复数z 为纯虚数, 且满足i )i 2(+=-a z (i 为虚数单位),则实数a 的值为 .4.二项式521⎪⎭⎫ ⎝⎛+x x 的展开式中,x 的系数为 .5.用半径1米的半圆形薄铁皮制作圆锥型无盖容器,其容积为 立方米. 6.已知α为锐角,且3cos()45πα+=,则sin α=________ . 7.根据相关规定,机动车驾驶人血液中的酒精含量大于(等于)20毫克/100毫升的行为属于饮酒驾车. 假设饮酒后,血液中的酒精含量为0p 毫克/100毫升,经过x 个小时,酒精含量降为p 毫克/100毫升,且满足关系式0r x p p e =⋅(r 为常数).若某人饮酒后血液中的酒精含量为89毫克/100毫升,2小时后,测得其血液中酒精含量降为61毫克/100毫升,则此人饮酒后需经过 小时方可驾车.(精确到小时) 8.已知奇函数)(x f 是定义在R 上的增函数,数列{}n x 是一个公差为2的等差数列,满足0)()(87=+x f x f ,则2017x 的值为 .9.直角三角形ABC 中,3AB =,4AC =,5BC =,点M 是三角形ABC 外接圆上任意一点,则AB AM ⋅的最大值为________.10.已知b a x f x-=)(0(>a 且1≠a ,R ∈b ),1)(+=x x g ,若对任意实数x 均有0)()(≤⋅x g x f ,则ba 41+的最小值为________. 二、选择题(25分)本大题共有5题,每题都给出四个结论,其中有且只有一个结论是正确的,必须把答题纸上相应题序内的正确结论代号涂黑,选对得5分,否则一律得零分. 11.若空间三条直线a 、b 、c 满足c b b a ⊥⊥,,则直线a 与c 【 】A .一定平行;B .一定相交;C .一定是异面直线;D .平行、相交、是异面直线都有可能.12.在无穷等比数列{}n a 中,21)(lim 21=+⋅⋅⋅++∞→n n a a a ,则1a 的取值范围是【 】 A .⎪⎭⎫ ⎝⎛210,;B .⎪⎭⎫⎝⎛121,;C .()10,;D . ⎪⎭⎫ ⎝⎛210,⎪⎭⎫ ⎝⎛121,.13.某班班会准备从含甲、乙的6名学生中选取4人发言,要求甲、乙两人至少有一人参加,那么不同的发言顺序有 【 】 A .336种; B .320种; C .192种; D .144种. 14.已知椭圆1C ,抛物线2C 焦点均在x 轴上,1C 的中心和2C 顶点均为原点O ,从每条曲线上各取 两个点,将其坐标记录于表中,则1C 的左焦点到2C 的准线之间的距离为 【 】A .12-;B .31-;C .1;D .2.15.已知)(x g y =与)(x h y =都是定义在),0()0,(+∞-∞ 上的奇函数,且当0>x 时,⎩⎨⎧>-≤<=.1),1(,10,)(2x x g x x x g ,x k x h 2log )(=(0>x ),若)()(x h x g y -=恰有4个零点,则正实数k 的取值范围是 【 】A .]1,21[;B .]1,21(;C .]2log ,21(3;D .]2log ,21[3.三、解答题(本题满分75分)本大题共有5题,解答下列各题必须在答题纸的规定区域(对应的题号)内写出必要的步骤. 16.(本题满分11分,第1小题6分,第2小题5分)已知正四棱柱1111ABCD A BC D -,a AA a AB 2,1==,,E F 分别是棱,AD CD 的中点. (1) 求异面直线1BC EF 与所成角的大小; (2) 求四面体EF CA 1的体积.x32-42y 23-4-2217.(本题满分14分,第1小题7分,第2小题7分)设双曲线C :22123x y -=, 12,F F 为其左右两个焦点. (1) 设O 为坐标原点,M 为双曲线C 右支上任意一点,求M F OM 1⋅的取值范围;(2) 若动点P 与双曲线C 的两个焦点12,F F 的距离之和为定值,且12cos F PF ∠的最小值为19-,求动点P 的轨迹方程.18.(本题满分14分,第1小题7分,第2小题7分)在某海滨城市附近海面有一台风,据监测,当前台风中心位于城市A (看做一点)的东偏南θ角方向2cos 10θ⎛⎫=⎪ ⎪⎝⎭,300 km 的海面P 处,并以20km / h 的速度向西偏北45°方向移动.台风侵袭的范围为圆形区域,当前半径为60 km ,并以10km / h 的速度不断增大.(1) 问10小时后,该台风是否开始侵袭城市A ,并说明理由; (2) 城市A 受到该台风侵袭的持续时间为多久?19.(本题满分18分,第1小题4分,第2小题6分,第3小题8分)设集合|)({x f M a =存在正实数a ,使得定义域内任意x 都有)}()(x f a x f >+.(1) 若22)(x x f x -=,试判断)(x f 是否为1M 中的元素,并说明理由;(2) 若341)(3+-=x x x g ,且a M x g ∈)(,求a 的取值范围; (3) 若),1[),(log )(3+∞∈+=x xkx x h (R ∈k ),且2)(M x h ∈,求)(x h 的最小值.20.(本题满分18分,第1小题4分,第2小题7分,第3小题7分)由)2(≥n n 个不同的数构成的数列12,,n a a a 中,若1i j n ≤<≤时,i j a a <(即后面的项j a 小于前面项i a ),则称i a 与j a 构成一个逆序,一个有穷数列的全部逆序的总数称为该数列的逆序数.如对于数列3,2,1,由于在第一项3后面比3小的项有2个,在第二项2后面比2小的项有1个,在第三项1后面比1小的项没有,因此,数列3,2,1的逆序数为3012=++;同理,等比数列81,41,21,1--的逆序数为4. (1) 计算数列*219(1100,N )n a n n n =-+≤≤∈的逆序数;(2) 计算数列1,3,1nn n a n n n ⎧⎛⎫⎪ ⎪⎪⎝⎭=⎨⎪-⎪+⎩为奇数为偶数(*1,N n k n ≤≤∈)的逆序数;(3) 已知数列12,,n a a a 的逆序数为a ,求11,,n n a a a - 的逆序数.静安区2016-2017学年度第一学期高中教学质量检测高三数学试卷答案与评分标准一、1.()∞+,0; 2.π; 3.21; 4.10; 5.243π; 6.102; 7.8; 8.4019; 9.12; 10.4 二、11. D; 12. D; 13. A; 14.B; 15.C.16.解:(1)连接11C A ,……………………………….1分 则B C A 11∠为异面直线1BC EF 与所成角 …………….1分 在B C A 11∆中,可求得a B A B C 511==,a C A 211=11210102cos 10105aAC B a∠==∴异面直线所成角的大小arccos …………………….4分 (2)113112322212C A EF A EFCa a a V V a --==⋅⋅⋅⋅= ……………………………….5分 17.(1)设(),M x y ,2x ≥,左焦点1(5,0)F -,1(,)(5,)OM FM x y x y ⋅=⋅+222235532x x x y x x =++=++-……………………………4分 25532x x =+- (2x ≥)对称轴525x =-≤ )1210,OM F M ⎡⋅∈++∞⎣……………………………3分(2)由椭圆定义得:P 点轨迹为椭圆22221x y a b+=,1225F F =,122PF PF a +=2221212121212204220cos 22PF PF a PF PF F PF PF PF PF PF +--⋅-∠==⋅⋅21242012a PF PF -=-⋅……………………………4分由基本不等式得121222a PF PF PF PF =+≥⋅, 当且仅当12PF PF =时等号成立212PF PF a ⋅≤221224201cos 1929a F PF a a -⇒∠≥-=-⇒=,24b = 所求动点P 的轨迹方程为22194x y +=……………………………3分 18.解:(1)如图建立直角坐标系, ……………………………1分则城市()0,0A ,当前台风中心()302,2102P -,设t 小时后台风中心P 的坐标为(),x y ,则3021022102102x ty t⎧=-⎪⎨=-+⎪⎩,此时台风的半径为6010t +,10小时后,4.184PA ≈km ,台风的半径为=r 160km,PA <r , ……………………………5分故,10小时后,该台风还没有开始侵袭城市A . ………1分 (2)因此,t 小时后台风侵袭的范围可视为以()302102,2102102P t t --+为圆心,6010t +为半径的圆,若城市A 受到台风侵袭,则()()()223021020210210260010t t t ⎡⎤⎡⎤--+-+-≤⎦+⎣⎦⎣ 210800864000300t t -+≤⇒,即2362880t t -+≤,……………………………5分解得1224t ≤≤ ……………………………1分 答:该城市受台风侵袭的持续时间为12小时. ……………………………1分19.解:(1)∵1)0()1(==f f , ∴1)(M x f ∉. ……………………………4分(2)由0413341)(41)()()(32233>-++=++--+=-+a a x a ax x a x x a x x g a x g …2分 ∴0)41(12934<--=∆a a a a , ……………………………3分 故 1>a . ……………………………1分 (3)由0)(log ]2)2[(log )()2(33>+-+++=-+xkx x k x x h x h , ………………1分 即:)(log ]2)2[(log 33xk x x k x +>+++∴ 022>+>+++xkx x k x 对任意),1[+∞∈x 都成立 ∴ 3113)2(2<<-⇒⎩⎨⎧-><⇒⎩⎨⎧->+<k k k xk x x k ……………………………3分 当01≤<-k 时,)1(log )1()(3min k h x h +==; ……………………………1分 当10<<k 时,)1(log )1()(3min k h x h +==; ……………………………1分 当31<≤k 时,)2(log )()(3min k k h x h ==. ……………………………1分 综上:⎪⎩⎪⎨⎧<≤<<-+=.31),2(log ,11),1(log )(33mink k k k x h ……………………………1分 20.(1)因为{}n a 为单调递减数列,所以逆序数为(991)999998149502+⨯+++== ; ……………………………4分(2)当n 为奇数时,13210n a a a ->>>> .……………………………1分 当n 为偶数时,222(4)112120(1)(1)n n n n a a n n n n n n ---=-+≥+--=--=<+-所以2420n a a a >>>> . ……………………………2分 当k 为奇数时,逆序数为235341(1)(3)21228k k k k k k ---+-+-++++++= ……………2分当k 为偶数时,逆序数为22432(1)(3)11228k k k kk k ----+-++++++= …………………2分(3)在数列12,,n a a a 中,若1a 与后面1n -个数构成1p 个逆序对,则有1(1)n p --不构成逆序对,所以在数列11,,n n a a a - 中,逆序数为12(1)(1)(2)()2n n n n p n p n n p a ---+--++--=- .…7分。