广东省江门、佛山市2013届高三普通高考教学质量检测(二)数学理试题(WORD解析版)

合集下载

【VIP专享】2013年佛山市普通高中高三教学质量检测(二)

【VIP专享】2013年佛山市普通高中高三教学质量检测(二)

2013年佛山市普通高中高三教学质量检测(二)地理试题2013.4本试卷共11页,41小题,满分300分。

考试时间150分钟。

注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考号填写在答题卡上,用2B铅笔将答题卡试卷类型(A)填涂在答题卡上,并在答题卡右上角的“试室号”和“座位号”栏填写试室号、座位号,将相应的试室号、座位号信息点涂黑。

2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案答在试题卷上无效。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答卷上各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效。

4.考试结束后,将答卷和答题卡一并交回。

一、单选题:本大题共35小题,每小题4分。

共140分。

在每题给出的四个选项中,只有一个项符合题目要求的。

1.2013年2月15日,俄罗斯车里雅宾斯克州发生陨石坠落事件。

闯入地球低层大气并发生爆炸的陨石雨,可能引发A.高山雪线上升B.卫星导航失灵C.地面建筑受损D.太阳辐射增强2.下图为福建省南碇岛“规则多边形玄武岩石柱群”景观,它形成的主要地质作用是A.变质作用B.岩浆活动C.海浪侵蚀D.风化作用3.2013年1月一2月,我国京津冀地区多次遭受严重的雾霾天气。

此季节,能使雾霾迅速消散的天气系统最可能是A.冷锋B.暖锋C.热带气旋D.弱高压读“塔里木河多年平均输沙量和径流量沿程变化”图,回答4—5题。

4.塔里木河的源流区水源主要来自A.雨水B.冰雪融水C.地下水D.湖泊水5.影响塔里木河下游输沙量变化的主要因素是A.地势B.植被C.流量D.降水读我国东南某市辖区1978—2002年农业内部各业用地数量变化图,回答6—7题。

6.由图可知,用地面积增加数量最多的是A.粮食种植B.蔬菜种植C.水果种植D.水产养殖7.导致该市辖区农业各业用地发生变化的最主要因素为A.热量B.土壤C.城市化D.生产技术8.读下图,美国南部地区和东北部地区的人口增长差异大,其主要原因是南部地区A.人口净迁入多B.人口死亡率低C.人口老龄化严重D.人口生育率高地理集中度表示产业在区域空间的集聚程度,数值越小,集中度越低,反之越高。

2013年高考真题理科数学(广东卷)及答案(word精校版)

2013年高考真题理科数学(广东卷)及答案(word精校版)

绝密★启用前 试卷类型:A2013年普通高等学校招生全国统一考试(广东卷)数学(理科)本试卷共4页,21小题,满分150分,考试用时120分钟。

注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。

用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上。

将条形码横贴在答题卡右上角“条形码粘贴处”。

2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。

3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

4.作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再作答。

漏涂、错涂、多涂的,答案无效。

5.考生必须保持答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

参考公式:台体的体积公式121()3V S S h =,其中1S ,2S 分别表示台体的上、下底面积,h 表示台体的高.一、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合2{|20,}M x x x x =+=∈R ,2{|20,}N x x x x =-=∈R ,则M N =A .{0}B .{0,2}C .{2,0}-D .{2,0,2}-2. 定义域为R 的四个函数3y x =,2x y =,21y x =+,2sin y x =中,奇函数的个数是A .4B .3C .2D .13. 若复数z 满足24iz i =+,则在复平面内,z 对应的点的坐标是A .(2,4)B .(2,4)-C .(4,2)-D .(4,2)4. 已知离散型随机变量X 的分布列为则X 的数学期望A .32B .2C .52D .3图1 正视图俯视图侧视图2 图3DABCO EA .若α⊥β,m ⊂α,n ⊂β,则m ⊥nB .若α∥β,m ⊂α,n ⊂β,则m ∥nC .若m ⊥n ,m ⊂α,n ⊂β,则α⊥βD .若m ⊥α,m ∥n ,n ∥β,则α⊥β7. 已知中心在原点的双曲线C 的右焦点为F (3,0),离心率 等于32,则C 的方程是 A .2214x = B .22145x y -= C .22125x y -= D .2212x =8. 设整数4n ≥,集合{1,2,3,,}X n = . 令集合{(,,)|,,,S x y z x y z X =∈且三条件x y z <<,y z x <<,z x y <<恰有一个成立}. 若(,,)x y z 和(,,)z w x 都在S 中,则下列选项正确的是 A .(,,)y z w ∈S ,(,,)x y w ∉S B .(,,)y z w ∈S ,(,,)x y w ∈S C .(,,)y z w ∉S ,(,,)x y w ∈S D .(,,)y z w ∉S ,(,,)x y w ∉S二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9 ~ 13题)9. 不等式220x x +-<的解集为 .10. 若曲线ln y kx x =+在点(1,)k处的切线平行于x 轴,则k = . 11. 执行如图2所示的程序框图,若输入n 的值为4,则输出s 的值 为 .12. 在等差数列{}n a 中,已知3810a a +=,则573a a += .13. 给定区域D :4440x y x y x +⎧⎪+⎨⎪⎩≥≤≥. 令点集0000{(,)|,T x y D x y =∈∈Z ,00(,)x y 是z x y =+在D 上取得最大值或最小值的点},则T 中的点共确定 条不同的直线.(二)选做题(14 ~ 15题,考生只能从中选做一题)14.(坐标系与参数方程选做题)已知曲线C 的参数方程为x ty t⎧=⎪⎨=⎪⎩(t 为参数),C 在点(1,1)处的切线为l ,以坐标原点为极点,x 轴的正 半轴为极轴建立极坐标系,则l 的极坐标方程为 .15.(几何证明选讲选做题)如图3,AB 是圆O 的直径,点C 在圆O 上, 延长BC 到D 使BC CD =,过C 作圆O 的切线交AD 于E . 若6AB =, 2ED =,则BC = .图41 7 92 0 1 53 0图6A 'BC 图5OCDEB三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)已知函数())12f x x π=-,x ∈R .(1)求()6f π-的值;(2)若3cos 5θ=,3(,2)2πθπ∈,求(2)3f πθ+.17.(本小题满分12分)某车间共有12名工人,随机抽取6名,他们某日加工零件个数的茎叶图如图4所示,其中茎为十位数,叶为个位数.(1)根据茎叶图计算样本均值;(2)日加工零件个数大于样本均值的工人为优秀工人. 根据茎叶图推断该车间12名工人中有几名优秀工人?其中A O '=(1)证明:A O '⊥平面BCDE ;(2)求二面角A CD B '--的平面角的余弦值.19.(本小题满分14分)设数列{}n a 的前n 项和为n S ,已知11a =,2121233n n S a n n n +=---,*n ∈N . (1)求2a 的值;(2)求数列{}n a 的通项公式; (3)证明:对一切正整数n ,有1211174n a a a +++< .20.(本小题满分14分)已知抛物线C 的顶点为原点,其焦点(0,)F c (0)c >到直线:20l x y --=的距离为2,设P 为直线l 上的点,过点P 作抛物线C 的两条切线PA ,PB ,其中A ,B 为切点.(1)求抛物线C 的方程;(2)当点00(,)P x y 为直线l 上的定点时,求直线AB 的方程; (3)当点P 在直线l 上移动时,求||||AF BF ⋅的最小值.21.(本小题满分14分)设函数2()(1)x f x x e kx =--()k ∈R .(1)当1k =时,求函数()f x 的单调区间;(2)当1(,1]2k ∈时,求函数()f x 在[0,]k 上的最大值M .图41 7 92 0 1 53 02013年普通高等学校招生全国统一考试(广东卷)数学(理科)参考答案一、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的.二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9 ~ 13题)9. (2,1)- 10. 1-11. 7 12. 20 13.5 (二)选做题(14 ~ 15题,考生只能从中选做一题) 14.cos sin 20ρθρθ+-=(填sin()4πρθ+=cos(4πρθ-=15.三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(本小题满分12分)已知函数())12f x x π=-,x ∈R .(1)求()6f π-的值;(2)若3cos 5θ=,3(,2)2πθπ∈,求(23f πθ+. 16. 解:(1)())1661242f ππππ-=--=-==(2)因为3cos 5θ=,3(,2)2πθπ∈ 所以4sin 5θ==-所以4324sin 22sin cos 2()5525θθθ==⨯-⨯=-2222347cos 2cos sin ()()5525θθθ=-=--=-所以(2)))cos 2sin 233124f ππππθθθθθ+=+-=+=-72417(252525=---=17.(本小题满分12分)某车间共有12名工人,随机抽取6名,他们某日加工零件个数的茎叶图如图4所示,其中茎为十位数,叶为个位数.(1)根据茎叶图计算样本均值;(2)日加工零件个数大于样本均值的工人为优秀工人. 根据茎叶图推断该车间12名工人中有几名优秀工人?图6A 'A B C 图5OC D EBA 'OC DEBFC其中A O '=(1)证明:A O '⊥平面BCDE ;(2)求二面角A CD B '--的平面角的余弦值.18. 解:(1)连结OD ,OE因为在等腰直角三角形ABC 中,45B C ∠=∠=,CD BE ==3CO BO ==所以在△COD 中,OD ==OE = 因为AD A D A E AE ''====A O '= 所以222A OOD A D ''+=,222A O OE A E ''+=所以90A OD A OE ''∠=∠=所以A O OD '⊥,A O OE '⊥,OD OE O = 所以A O '⊥平面BCDE(2)方法一:过点O 作OF CD ⊥的延长线于F ,连接A F ' 因为A O '⊥平面BCDE根据三垂线定理,有A F CD '⊥所以A FO '∠为二面角A CD B '--的平面角在Rt △COF 中,cos 45OF CO ==在Rt △A OF '中,A F '== 所以cos OF A FO A F '∠==' 所以二面角A CD B '--方法二: 取DE 中点H ,则OH OB ⊥以O 为坐标原点,OH 、OB 、OA '分别为x 、y 、z 轴建立空间直角坐标系则(0,0,0),(0,3,0),(1,2,0)O A C D '--(0,3)OA '=是平面BCDE 的一个法向量 设平面A CD '的法向量为(,,)x y z =nCA '= ,(1,1,0)CD =所以30CA y CD x y ⎧'⋅=+=⎪⎨⋅=+=⎪⎩n n ,令1x =,则1y =-,z =所以(1,1=-n 是平面A CD '的一个法向量设二面角A CD B '--的平面角为θ,且(0,)2πθ∈所以cos 5OA OA θ'⋅==='⋅ n n所以二面角A CD B '--的平面角的余弦值为519.(本小题满分14分)设数列{}n a 的前n 项和为n S ,已知11a =,2121233n n S a n n n +=---,*n ∈N . (1)求2a 的值;(2)求数列{}n a 的通项公式;(3)证明:对一切正整数n ,有1211174n a a a +++< .19. 解:(1)当1n =时,11221221133S a a ==---,解得24a =(2)32112233n n S na n n n +=--- ①当2n ≥时,321122(1)(1)(1)(1)33n n S n a n n n -=------- ②①-②得212(1)n n n a na n a n n +=----整理得1(1)(1)n n na n a n n +=+++,即111n n a a n n +=++,111n n a an n+-=+ 当1n =时,2121121a a -=-= 所以数列{}n a 是以1为首项,1为公差的等差数列 所以na n n=,即2n a n = 所以数列{}n a 的通项公式为2n a n =,*n ∈N (3)因为211111(1)1n a n n n n n=<=---(2n ≥) 所以222212111111111111111()()()123423341n a a a n n n+++=++++<++-+-++-- 11171714244n n =++-=-<20.(本小题满分14分)已知抛物线C 的顶点为原点,其焦点(0,)F c (0)c >到直线:20l x y --=的距离为2,设P 为直线l 上的点,过点P 作抛物线C 的两条切线PA ,PB ,其中A ,B 为切点. (1)求抛物线C 的方程;(2)当点00(,)P x y 为直线l 上的定点时,求直线AB 的方程;(3)当点P 在直线l 上移动时,求||||AF BF ⋅的最小值. 20. 解:(1)焦点(0,)F c (0)c >到直线:20l x y --=的距离2d ===,解得1c = 所以抛物线C 的方程为24x y =(2)设2111(,)4A x x ,2221(,)4B x x 由(1)得抛物线C 的方程为214y x =,12y x '=,所以切线PA ,PB 的斜率分别为112x ,212x所以PA :211111()42y x x x x -=- ①PB :222211()42y x x x x -=- ②联立①②可得点P 的坐标为1212(,)24x x x x +,即1202x x x +=,1204x xy = 又因为切线PA 的斜率为2011011142y x x x x -=-,整理得201011124y x x x =- 直线AB 的斜率221201212114442x x x x x k x x -+===- 所以直线AB 的方程为210111()42y x x x x -=-整理得20101111224y x x x x x =-+,即0012y x x y =-因为点00(,)P x y 为直线:20l x y --=上的点,所以0020x y --=,即002y x =-所以直线AB 的方程为00122y x x x =-+(3)根据抛物线的定义,有21114AF x =+,22114BF x =+所以2222221212121111||||(1)(1)()144164AF BF x x x x x x ⋅=++=+++ 22212121211[()2]1164x x x x x x =++-+ 由(2)得1202x x x +=,1204x x y =,002x y =+所以2222220000000001||||(48)121(2)214AF BF y x y x y y y y y ⋅=+-+=+-+=++-+22000192252()22y y y =++=++所以当012y =-时,||||AF BF ⋅的最小值为9221.(本小题满分14分)设函数2()(1)x f x x e kx =--()k ∈R . (1)当1k =时,求函数()f x 的单调区间;(2)当1(,1]2k ∈时,求函数()f x 在[0,]k 上的最大值M . 21. 解:(1)当1k =时,2()(1)x f x x e x =--()(1)2(2)x x x f x e x e x x e '=+--=-令()0f x '=,解得10x =,2ln 20x => 所以(),()f x f x '随x 的变化情况如下表:所以函数()f x 的单调增区间为(,0)-∞和(ln 2,)+∞,单调减区间为(0,ln 2)(2)2()(1)x f x x e kx =--,[0,]x k ∈,1(,1]2k ∈()2(2)x x f x xe kx x e k '=-=-()0f x '=,解得10x =,2ln(2)x k =令()ln(2)k k k ϕ=-,1(,1]2k ∈11()10k k k k ϕ-'=-=≤ 所以()k ϕ在1(,1]2上是增函数所以11()()022k ϕϕ>=>,即0ln(2)k k <<所以(),()f x f x '随x 的变化情况如下表:(0)1f =-,3()(1)k f k k e k =--()(0)f k f -=332(1)1(1)(1)(1)(1)(1)k k k k e k k e k k e k k k --+=---=---++2(1)[(1)]k k e k k =--++因为1(,1]2k ∈,所以10k -≤对任意的1(,1]2k ∈,x y e =的图象恒在21y k k =++下方,所以2(1)0k e k k -++≤ 所以()(0)0f k f -≥,即()(0)f k f ≥所以函数()f x 在[0,]k 上的最大值3()(1)k M f k k e k ==--。

2013年广东高考理科数学试题及答案解析(图片版)

2013年广东高考理科数学试题及答案解析(图片版)

2013年广东高考理科数学试题与答案解析2013年普通高等学校招生全国统一考试〔广东卷〕数学〔理科〕参考答案一、选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的. DC CA BD BB二、填空题:本题共7小题,考生作答6小题,每小题5分,共30分9. (-2,1) 10.k =-1 11. 7 12.20 13.614.sin 4πρθ⎛⎫+= ⎪⎝⎭15.三、解答题:本大题共6小题,满分80分,解答须写出文字说明、证明过程或演算步骤.16.〔本小题满分12分〕[解析](Ⅰ)1661244f πππππ⎛⎫⎛⎫⎛⎫-=--=-== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;(Ⅱ) 222cos 2sin 233124f ππππθθθθθ⎛⎫⎛⎫⎛⎫+=+-=+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 因为3cos 5θ=,3,22πθπ⎛⎫∈ ⎪⎝⎭,所以4sin 5θ=-, 所以24sin 22sin cos 25θθθ==-,227cos 2cos sin 25θθθ=-=- 所以23f πθ⎛⎫+ ⎪⎝⎭cos2sin 2θθ=-72417252525⎛⎫=---=⎪⎝⎭. 17.〔本小题满分12分〕[解析](Ⅰ) 样本均值为1719202125301322266+++++==;(Ⅱ) 由(Ⅰ)知样本中优秀工人占的比例为2163=,故推断该车间12名工人中有11243⨯=名优秀工人.向量法图(Ⅲ) 设事件A:从该车间12名工人中,任取2人,恰有1名优秀工人,则()P A=1148212C CC 1633=.18.〔本小题满分14分〕[解析](Ⅰ) 在图1中,易得3,OC AC AD===连结,OD OE,在OCD∆中,由余弦定理可得OD==由翻折不变性可知A D'=,所以222A O OD A D''+=,所以A O OD'⊥,理可证A O OE'⊥, 又OD OE O=,所以A O'⊥平面BCDE.(Ⅱ) 传统法:过O作OH CD⊥交CD的延长线于H,连结A H',因为A O'⊥平面BCDE,所以A H CD'⊥,所以A HO'∠为二面角A CD B'--的平面角.结合图1可知,H为AC中点,故2OH=,从而2A H'==所以cos5OHA HOA H'∠==',所以二面角A'的平面角的余弦值为.向量法:以O点为原点,建立空间直角坐标系O-则()0,0,3A',()0,3,0C-,()1,2,0D-所以(CA'=,(1,DA'=-设(),,n x y z=为平面A CD'的法向量,则n CAn DA⎧'⋅=⎪⎨'⋅=⎪⎩,即3020yx y⎧=⎪⎨-+=⎪⎩,解得yz=⎧⎪⎨=⎪⎩,令1x=,得(1,1,n=-由(Ⅰ) 知,()0,0,3OA'=为平面CDB的一个法向量,所以3cos,3n OAn OAn OA'⋅'==⋅'即二面角A CD B'--19.〔本小题满分14分〕[解析](Ⅰ) 依题意,12122133S a=---,又111S a==,所以24a=;(Ⅱ) 当2n≥时,32112233n nS na n n n+=---,()()()()321122111133n nS n a n n n-=-------两式相减得()()()2112213312133n n na na n a n n n+=----+---整理得()()111n nn a na n n++=-+,即111n na an n+-=+,又21121a a-=故数列nan⎧⎫⎨⎬⎩⎭是首项为111a=,公差为1的等差数列,所以()111n a n n n=+-⨯=,所以2n a n =. (Ⅲ) 当1n =时,11714a =<;当2n =时,12111571444a a +=+=<;当3n ≥时,()21111111n a n n n n n=<=---,此时222121111111111111111434423341n a a a n n n ⎛⎫⎛⎫⎛⎫+++=+++++<++-+-++- ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭11171714244n n =++-=-< 综上,对一切正整数n ,有1211174n a a a +++<.20.〔本小题满分14分〕[解析](Ⅰ) 依题意,设抛物线C 的方程为24x cy =,2=0c >,解得1c =. 所以抛物线C 的方程为24x y =. (Ⅱ) 抛物线C 的方程为24x y =,即214y x =,求导得12y x '= 设A (x 1,y 1), B (x 2,y 2) (其中221212,44x x y y ==),则切线,PA PB 的斜率分别为112x ,212x , 所以切线PA 的方程为()1112x y y x x -=-,即211122x x y x y =-+,即11220x x y y --= 同理可得切线PB 的方程为22220x x y y --=因为切线,PA PB 均过点P (x 0,y 0),所以1001220x x y y --=,2002220x x y y --= 所以(x 1,y 1),(x 2,y 2)为方程00220x x y y --=的两组解. 所以直线AB 的方程为00220x x y y --=.(Ⅲ) 由抛物线定义可知11AF y =+,21BF y =+, 所以()()()121212111AF BF y y y y y y ⋅=++=+++联立方程0022204x x y y x y--=⎧⎨=⎩,消去x 整理得()22200020y y x y y +-+=由一元二次方程根与系数的关系可得212002y y x y +=-,2120y y y =所以()221212000121AF BF y y y y y x y ⋅=+++=+-+又点P (x 0,y 0)在直线l 上,所以002x y =+,所以22220000001921225222y x y y y y ⎛⎫+-+=++=++ ⎪⎝⎭ 所以当012y =-时, AF BF ⋅取得最小值,且最小值为92. 21.〔本小题满分14分〕 [解析](Ⅰ) 当1k =时,()()21x f x x e x =--,()()()1222x x x x f x e x e x xe x x e '=+--=-=-令f'(x )=0,得0x =,ln 2x = 当x 变化时, f'(x ), f (x )的变化如下表:f (x ) 极大值极小值右表可知,函数f (x )的递减区间为(0,ln2),递增区间为(-∞,0), (ln2,+∞). (Ⅱ)()()()1222x x x x f x e x e kx xe kx x e k '=+--=-=-, 令f'(x )=0,得10x =,()2ln 2x k =,令()()ln 2g k k k =-,则()1110k g k k k -'=-=>,所以()g k 在1,12⎛⎤ ⎥⎝⎦上递增,所以()ln 21ln 2ln 0g k e ≤-=-<,从而()ln 2k k <,所以()[]ln 20,k k ∈所以当()()0,ln 2x k ∈时, f'(x )<0;当()()ln 2,x k ∈+∞时, f'(x )>0;所以()(){}(){}3max 0,max 1,1kM f f k k e k ==--- 令()()311kh k k e k =--+,则()()3kh k k e k '=-,令()3kk e k ϕ=-,则()330kk e e ϕ'=-<-<所以φ(k )在1,12⎛⎤ ⎥⎝⎦上递减,而()()1313022e e ϕϕ⎛⎫⎛⎫⋅=--< ⎪ ⎪⎝⎭⎝⎭ 所以存在01,12x ⎛⎤∈ ⎥⎝⎦使得()00x ϕ=,且当01,2k x ⎛⎫∈ ⎪⎝⎭时, φ(k )>0, 当()0,1k x ∈时, φ(k )<0, 所以φ(k )在01,2x ⎛⎫⎪⎝⎭上单调递增,在()0,1x 上单调递减. 因为1170228h e ⎛⎫=-+> ⎪⎝⎭,()10h =, 所以()0h k ≥在1,12⎛⎤⎥⎝⎦上恒成立,当且仅当1k =时取得“=〞.综上,函数f (x )在[0,k ]上的最大值()31kM k e k =--.。

2013届广东佛山高三4月理科综合及答案教学质量检测(二)试题

2013届广东佛山高三4月理科综合及答案教学质量检测(二)试题

2013届广东佛山高三4月理科综合及答案教学质量检测(二)试题广东省佛山市2013届高三4月教学质量检测(二)理科综合一、单项选择题:本大题共6小题,每小题4分。

共24分。

在每小题给出的四个选项中,只有一个选项符合题目要求,选对的得4分,选错或不答的得0分。

1. 下列哪种物质是用右图所示的运输方式进入细胞的?()A.CO2B.甘油C.氨基酸D.胰岛素2. 关于组成细胞的有机物,下列叙述正确的是()A.盘曲和折叠的肽链被解开时,蛋白质的特定功能可能会发生改变B.RNA与DNA的分子结构很相似,由四种核苷酸组成,但不能储存遗传信息C.葡萄糖和蔗糖都可以被细胞直接用于呼吸作用D.组成细胞膜的脂质是磷脂,不含胆固醇3. 甲至丁为二倍体生物卵巢中的一些细胞分裂图,有关判断正确的是()A.若图中所示细胞分裂具有连续性,则顺序依次为乙→丙→甲→丁B.甲、乙、丙细胞中含有的染色体组数目依次为4、2、1C.若乙的基因组成为AAaaBBbb,则丁的基因组成为AaBbD.乙是次级卵母细胞,丁可能为卵细胞4. 下列有关种群和群落的叙述不.正确的是()A.种间关系属于群落水平的研究内容B.随着时间的推移,弃耕的农田可能演替成森林C.群落中动物的垂直分层现象与植物有关D.出生率和死亡率是种群最基本的数量特征5. 某同学绘制的生态系统概念图如下,下列叙述不.正确的是()A.①表示生态系统的组成成分B.③越复杂,生态系统的抵抗力稳定性越强C.④中可能有微生物D.该图漏写了生态系统的某项功能6. 下列有关实验的叙述正确的是()A.经甲基绿染色的口腔上皮细胞,可在高倍镜下观察到蓝绿色的线粒体B.在噬菌体侵染细菌的实验中,用35S 标记噬菌体的蛋白质C.用于观察质壁分离与复原的洋葱表皮细胞也可以用来观察有丝分裂D.可用标志重捕法精确地得到某地野驴的种群密度7.下列说法不正确...的是A.天然气的主要成分是甲烷B.蛋白质、糖类物质都能发生水解反应C.煤的干馏是化学变化,石油的分馏是物理变化D.乙醇、乙烯、乙醛都可被酸性高锰酸钾溶液氧化8.下列离子反应方程式正确的是A.氨水吸收过量的SO2:OH-+SO2=HSO3-B.FeSO4溶液被氧气氧化:4Fe2++O2+2H2O=4Fe3++4OH-C.NaAlO2溶液中加入过量稀硫酸:AlO2-+H++H2O=Al(OH)3↓D.Cl2与稀NaOH溶液反应:Cl2+2OH-=Cl-+ClO-+ H2O9.N A为阿伏加德罗常数,下列叙述正确的是A.22.4L NH3中含氮原子数为N AB.1 mol Na2O2与水完全反应时转移的电子数为N AC.1 L 0.1mol·L-1碳酸钠溶液的阴离子总数小于0.1 N AD.1 mol O2和2 mol SO2在密闭容器中充分反应后的分子数等于2N A10.下列说法正确的是A.用盐析法分离NaCl溶液和淀粉胶体B.工业制硫酸的吸收塔中用水吸收SO3C.加足量的稀盐酸可除去BaCO3固体中少量的BaSO4D.向硝酸银稀溶液中逐滴加入稀氨水至白色沉淀恰好溶解,即得银氨溶液11.A、B、C为短周期元素,A的最外层电子数是次外层的3倍,B是最活泼的非金属元素,C的氯化物是氯碱工业的原料,下列叙述正确的是A.A是O,B是ClB.A、B、C的原子半径大小关系是:A>C >BC.B的气态氢化物比A的稳定D.向AlCl3溶液中加过量C的最高价氧化物对应水化物可得白色沉淀12.有关右图的说法正确的是A.构成原电池时溶液中SO 2移向4Cu极B.构成原电池时Cu极反应为:Cu﹣2e-=Cu2+C.构成电解池时Fe极质量既可增也可减D.a和b分别接直流电源正、负极,Fe极会产生气体13.夏天将密闭有空气的矿泉水瓶放进低温的冰箱中会变扁,此过程中瓶内空气(可看成理想气体)A .内能减小,外界对其做功B .内能减小,吸收热量C .内能增加,对外界做功D .内能增加,放出热量14.下列说法正确的是A .布朗运动就是液体分子的无规则运动B .单晶体和多晶体都有规则的几何外形C .当两分子间距离的增大时,分子引力增大,分子斥力减小D .热量不会自动地从低温物体传给高温物体而不引起其他变化15竖直方向成θ物所受的空气阻力与浮力,则此时 A .悬绳拉力一定大于重物的重力B .重物所受合外力一定小于重物的重力C .重物所受的合外力水平向后D .重物此时受到重力、悬绳拉力及水平向后的拉力等三个力的作用16.如图,将两个等量正点电荷Q 后试探电荷q 在它们连线垂直平分线上的P 点由静止释放,仅在电场力作用下向下运动,则A .q 带负电B .q 带正电C .q 在运动过程中电势能不断增大D .q 在运动过程中动能先增大后减小二. 双项选择题:本大题共2小题,每小题6分,共12分。

广东省江门市、佛山市2013届普通高中高三教学质量检测(二)数学理试题及答案-推荐下载

广东省江门市、佛山市2013届普通高中高三教学质量检测(二)数学理试题及答案-推荐下载
(2)求平面 BEFC 与平面 A1EFD1 所成二面角的余弦值.
A
E
B
图甲
D
F
C
第 18 题

E
BG
第3页
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电通,力1根保过据护管生高线产中0不工资仅艺料可高试以中卷解资配决料置吊试技顶卷术层要是配求指置,机不对组规电在范气进高设行中备继资进电料行保试空护卷载高问与中题带资2负料2,荷试而下卷且高总可中体保资配障料置各试时类卷,管调需路控要习试在题验最到;大位对限。设度在备内管进来路行确敷调保设整机过使组程其高1在中正资,常料要工试加况卷强下安看与全22过,22度并22工且22作尽22下可护都能1关可地于以缩管正小路常故高工障中作高资;中料对资试于料卷继试连电卷接保破管护坏口进范处行围理整,高核或中对者资定对料值某试,些卷审异弯核常扁与高度校中固对资定图料盒纸试位,卷置编工.写况保复进护杂行层设自防备动腐与处跨装理接置,地高尤线中其弯资要曲料避半试免径卷错标调误高试高等方中,案资要,料求编试技5写、卷术重电保交要气护底设设装。备备置管4高调、动线中试电作敷资高气,设料中课并技3试资件且、术卷料中拒管试试调绝路包验卷试动敷含方技作设线案术,技槽以来术、及避管系免架统不等启必多动要项方高方案中式;资,对料为整试解套卷决启突高动然中过停语程机文中。电高因气中此课资,件料电中试力管卷高壁电中薄气资、设料接备试口进卷不行保严调护等试装问工置题作调,并试合且技理进术利行,用过要管关求线运电敷行力设高保技中护术资装。料置线试做缆卷到敷技准设术确原指灵则导活:。。在对对分于于线调差盒试动处过保,程护当中装不高置同中高电资中压料资回试料路卷试交技卷叉术调时问试,题技应,术采作是用为指金调发属试电隔人机板员一进,变行需压隔要器开在组处事在理前发;掌生同握内一图部线纸故槽资障内料时,、,强设需电备要回制进路造行须厂外同家部时出电切具源断高高习中中题资资电料料源试试,卷卷线试切缆验除敷报从设告而完与采毕相用,关高要技中进术资行资料检料试查,卷和并主检且要测了保处解护理现装。场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

【解析版】广东省江门、佛山市2013年高考数学二模试卷(理科)

【解析版】广东省江门、佛山市2013年高考数学二模试卷(理科)
解:设复数z的虚部是为b,∵已知复数z的实部为1,且|z|=2,
故有1+b2=4,解得b=± ,
故选D.
点评:
本题主要考查复数的基本概念,求复数的模,属于基础题.
3.(5分)(2013•江门二模)已知数列{an}是等差数列,若a3+a11=24,a4=3,则{an}的公差是( )
A.
1
B.
3
C.
5
D.
(法二)设等差数列的公差为d
∵a3+a11=24,a4=3

解得a1=﹣6,d=3
故选B.
点评:
本题法一:主要考查等差数列的性质:若m+n=p+q,则am+an=ap+aq,灵活运用该性质可以简化基本运算.
法二:主要是运用等差数列的通项公式,利用等差数列的基本量a1,d表示an,及基本运算.
4.(5分)(2013•江门二模)为了解一片经济林的生长情况,随机测量了其中100株树木的底部周长(单位:cm).根据所得数据画出样本的频率分布直方图,那么在这100株树木中,底部周长小于110cm的株数是( )
③f(﹣1.9)<f(π)<f(2013);
④ .
其中正确的说法个数为( )
A.
0
B.
1
C.
2
D.3考点:Fra bibliotek命题的真假判断与应用.
专题:
函数的性质及应用.
分析:
先根据题意画出顶点P(x,y)的轨迹,如图所示.轨迹是一段一段的圆弧组成的图形.从图形中可以看出,关于函数y=f(x)的说法的正确性.
6
考点:
等差数列的性质.
专题:
计算题.
分析:
(法一)利用等差数列的性质把已知条件转化可得a7=12,利用公式 求解.

广东省江门、佛山市2013届高三普通高考教学质量检测(二)数学文试题(WORD解析版)

广东省江门、佛山市2013届高三普通高考教学质量检测(二)数学文试题(WORD解析版)

2013年广东省江门、佛山市高考数学二模试卷(文科)一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2013•江门二模)设集合A={x|﹣1≤x≤2,x∈N},集合B={2,3},则A∪B=()A.{1,2,3} B.{0,1,2,3} C.{2} D.{﹣1,0,1,2,3}考点:并集及其运算.专题:计算题.分析:把集合A的所有元素和集合B的所有元素合并到一起,得到集合A∪B.由此根据集合A={x|﹣1≤x≤2,x∈N},集合B={2,3},能求出A∪B.解答:解:∵集合A={x|﹣1≤x≤2,x∈N}={0,1,2},集合B={2,3},∴A∪B={0,1,2,3}.故选B.点评:本题考查集合的并集的定义及其运算,解题时要认真审题,仔细解答,注意并集中相同的元素只写一个.2.(5分)(2013•江门二模)已知复数z的实部为1,且|z|=2,则复数z的虚部是()A.B.C.D.考点:复数求模.专题:计算题.分析:设复数z的虚部是为b,根据已知复数z的实部为1,且|z|=2,可得1+b2=4,由此解得b的值,即为所求.解答:解:设复数z的虚部是为b,∵已知复数z的实部为1,且|z|=2,故有1+b2=4,解得b=±,故选D.点评:本题主要考查复数的基本概念,求复数的模,属于基础题.3.(5分)(2013•江门二模)已知命题p:∃x>1,x2﹣1>0,那么¬p是()A.∀x>1,x2﹣1>0 B.∀x>1,x2﹣1≤0 C.∃x>1,x2﹣1≤0 D.∃x≤1,x2﹣1≤0考点:命题的否定.专题:常规题型.分析:将量词“∃”变为“∀”,结论否定即可.解答:解:∵命题p:∃x>1,x2﹣1>0∴¬p:∀x>1,x2﹣1≤0故选B点评:本题考查含量词的命题的否定形式:将量词“∀”与“∃”互换,结论同时否定.4.(5分)(2013•江门二模)为了解一片经济林的生长情况,随机测量了其中100株树木的底部周长(单位:cm).根据所得数据画出样本的频率分布直方图,那么在这100株树木中,底部周长小于110cm的株数是()A.30 B.60 C.70 D.80考点:频率分布直方图.专题:计算题.分析:由图分析,易得底部周长小于110cm段的频率,根据频率与频数的关系可得频数.解答:解:由图可知:则底部周长小于110cm段的频率为(0.01+0.02+0.04)×10=0.7,则频数为100×0.7=70人.故选C.点评:本题考查读图的能力,读图时要全面细致,同时,解题方法要灵活多样,切忌死记硬背,要充分运用数形结合思想来解决由统计图形式给出的数学实际问题.5.(5分)(2013•江门二模)函数f(x)=sin,x∈[﹣1,1],则()A.f(x)为偶函数,且在[0,1]上单调递减B.f(x)为偶函数,且在[0,1]上单调递增C.f(x)为奇函数,且在[﹣1,0]上单调递增D.f(x)为奇函数,且在[﹣1,0]上单调递减.考点:复合三角函数的单调性;正弦函数的奇偶性.专题:三角函数的图像与性质.分析:利用诱导公式化简函数f(x)的解析式为cosπx,故函数为偶函数.再由当x∈[0,1]时,可得函数y=cosπx 是减函数,从而得出结论.解答:解:∵函数f(x)=sin=cosπx,故函数为偶函数,故排除C、D.当x∈[0,1]时,πx∈[0,π],函数y=cosπx 是减函数,故选A.点评:本题主要考查诱导公式、余弦函数的奇偶性和单调性,属于中档题.6.(5分)(2013•江门二模)设等比数列{a n}的前n项和为S n.则“a1>0”是“S3>S2”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分又不必要条件考点:必要条件、充分条件与充要条件的判断.专题:综合题;点列、递归数列与数学归纳法.分析:分公比q=1和q≠1两种情况,分别由a1>0推出S3>S2成立,再由S3>S2也分q=1和q≠1两种情况推出a1>0,从而得出结论.解答:解:当公比q=1时,由a1>0可得s3=3a1>2a1=s2,即S3>S2成立.当q≠1时,由于=q2+q+1>1+q=,再由a1>0可得>,即S3>S2成立.故“a1>0”是“S3>S2”的充分条件.当公比q=1时,由S3>S2成立,可得a1>0.当q≠1时,由S3>S2成立可得>,再由>,可得a1>0.故“a1>0”是“S3>S2”的必要条件.综上可得,“a1>0”是“S3>S2”的充要条件,故选C.点评:本题主要考查充分条件、必要条件、充要条件的定义和判断,不等式性质的应用,属于基础题.7.(5分)(2013•江门二模)已知幂函数f(x)=x a,当x>1时,恒有f(x)<x,则a的取值范围是()A.0<a<1 B.a<1 C.a>0 D.a<0考点:利用导数求闭区间上函数的最值.专题:导数的概念及应用.分析:x>1时,f(x)<x恒成立转化为x a﹣1<x0恒成立,借助指数函数单调性可求a的取值范围.解答:解:当x>1时,f(x)<x恒成立,即x a﹣1<1=x0恒成立,因为x>1,所以a﹣1<0,解得a<1,故选B.点评:本题考查幂函数的性质,考查函数恒成立问题,考查转化思想,解决本题关键是把不等式进行合理转化,利用指数函数性质解决.8.(5分)(2013•江门二模)设m、n是不同的直线,α、β、γ是不同的平面,有以下四个命题:①若α∥β,α∥γ,则β∥γ②若α⊥β,m∥α,则m⊥β③若m⊥α,m∥β,则α⊥β④若m∥n,n⊂α,则m∥α其中真命题的序号是()A.①④B.②③C.②④D.①③考点:平面与平面之间的位置关系;空间中直线与平面之间的位置关系.分析:对每一选支进行逐一判定,不正确的只需取出反例,正确的证明一下即可.解答:解:对于①利用平面与平面平行的性质定理可证α∥β,α∥γ,则β∥γ,正确对于②面BD⊥面D1C,A1B1∥面BD,此时A1B1∥面D1C,不正确。

2013年佛山市普通高中高二教学质量检测

2013年佛山市普通高中高二教学质量检测

D1 A1 D B1
C1 M C
以D为坐标原点建立 如图所示坐标系。
则A(1, 0, 0), B(1,1, 0), 1 D1 (0, 0,1), M (0,1, ) 2
A
x
1 BD1 ( 1, 1,1), AM ( 1,1, ) 2 B 1 1 1 BD1 AM 3 2 cos 3 9 BD1 AM 3 2
(1)因为动圆C 过定点F (1, 0), 且与定直线x 1相切, 所以圆心C 到定点F (1, 0)的距离与到定直线x 1的距离 相等,由抛物线的定义可知, C的轨迹T 是以F (1, 0)为焦点, 直线x 1为准线的抛物线, 所以动员圆心C的轨迹方程 为y 4 x .
2
(Ⅱ)若轨迹T上有两个定点A、B分别在其对称轴的上、 下两侧,且|FA|=2,|FB|=5,在轨迹T位于A、B两点间的曲线 段上求一点P,使P到直线AB的距离最大,并求距离的最大值.
(1)取PA的中点E , 连接ME , BE ,
1 因为M 是PD的中点, 所以EM / / AD , 2 1 又BC / / AD, 所以EM / / BC , 2 所以四边形BCME为平行四边形 ,
P M
E A
所以CM / / BE , 所以四变成BCME D 为平行四边形, 所以CM / / BE , B C 又BE 平面PAB, CM 平面PAB, 所以CM //平面PAB.
(2) OA//BC , kBC kOA
所以直线BC的方程为 3 y2 3 x 2 , 3 即x 3 y 8 0
3 , 3
y C B
A O x
16.如图,在四棱锥P-ABCD中,四边形ABCD是直角梯 形,AD//BC,∠BAD=90°,PA⊥底面ABCD,且PA=AD=2, AB=BC=1,M为PD的中点. (1)求证:CM//平面PAB;(2)求证:CD⊥平面PAC。

2013年高考真题理科数学(广东卷)及答案(word精校版)

2013年高考真题理科数学(广东卷)及答案(word精校版)

绝密★启用前 试卷类型:A2013年普通高等学校招生全国统一考试【广东卷】数学【理科】本试卷共4页,21小题,满分150分,考试用时120分钟。

注意事项:1、答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。

用2B 铅笔将试卷类型【A 】填涂在答题卡相应位置上。

将条形码横贴在答题卡右上角“条形码粘贴处”。

2、选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。

3、非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

4、作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再作答。

漏涂、错涂、多涂的,答案无效。

5、考生必须保持答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

参考公式:台体的体积公式121()3V S S h =,其中1S ,2S 分别表示台体的上、下底面积,h 表示台体的高、一、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的、 1. 设集合2{|20,}M x x x x =+=∈R ,2{|20,}N x x x x =-=∈R ,则M N =A 、{0}B 、{0,2}C 、{2,0}-D 、{2,0,2}-2. 定义域为R 的四个函数3y x =,2x y =,21y x =+,2sin y x =中,奇函数的个数是A 、4B 、3C 、2D 、13. 若复数z 满足24iz i =+,则在复平面内,z 对应的点的坐标是A 、(2,4)B 、(2,4)-C 、(4,2)-D 、(4,2)4. 已知离散型随机变量X 的分布列为则X 的数学期望A 、32B 、2C 、52D 、3图1 正视图 俯视图侧视图21图3DABCO E5. 某四棱台的三视图如图1所示,则该四棱台的体积是 A 、4 B 、143 C 、163D 、6 6. 设m ,n 是两条不同的直线,α,β是两个不同的平面,下列命题中正确的是A 、若α⊥β,m ⊂α,n ⊂β,则m ⊥nB 、若α∥β,m ⊂α,n ⊂β,则m ∥nC 、若m⊥n ,m ⊂α,n ⊂β,则α⊥βD 、若m ⊥α,m ∥n ,n ∥β,则α⊥β7. 已知中心在原点的双曲线C 的右焦点为F (3,0),离心率 等于32,则C 的方程是 A 、2214x = B 、22145x y -= C 、22125x y -= D 、2212x =8. 设整数n ≥,集合{1,2,3,,}X n =. 令集合{(,,)|,,,S x y z x y z X =∈且三条件x y z <<,y z x <<,z x y <<恰有一个成立}. 若(,,)x y z 和(,,)z w x 都在S 中,则下列选项正确的是 A 、(,,)y z w ∈S ,(,,)x y w ∉S B 、(,,)y z w ∈S ,(,,)x y w ∈S C 、(,,)y z w ∉S ,(,,)x y w ∈S D 、(,,)y z w ∉S ,(,,)x y w ∉S二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分、 【一】必做题【9 ~ 13题】9. 不等式220x x +-<的解集为 .10. 若曲线ln y kx x =+在点(1,)k 处的切线平行于x 轴,则k = . 11. 执行如图2所示的程序框图,若输入n 的值为4,则输出s 的值 为 .12. 在等差数列{}n a 中,已知3810a a +=,则573a a += .13. 给定区域D :4440x y x y x +⎧⎪+⎨⎪⎩≥≤≥. 令点集0000{(,)|,T xy D x y=∈∈Z ,00(,)x y 是z x y =+在D 上取得最大值或最小值的点},则T 中的点共确定 条不同的直线.【二】选做题【14 ~ 15题,考生只能从中选做一题】14.【坐标系与参数方程选做题】已知曲线C 的参数方程为x ty t⎧=⎪⎨=⎪⎩【t 为参数】,C 在点【1,1】处的切线为l ,以坐标原点为极点,x 轴的正 半轴为极轴建立极坐标系,则l 的极坐标方程为 .15.【几何证明选讲选做题】如图3,AB 是圆O 的直径,点C 在圆O 上, 延长BC 到D 使BC CD =,过C 作圆O 的切线交AD 于E . 若6AB =, 2ED =,则BC = .图41 7 92 0 1 53 0图6A 'BC 图5OCD EB三、解答题:本大题共6小题,满分80分、解答须写出文字说明、证明过程和演算步骤、 16.【本小题满分12分】已知函数())12f x x π=-,x ∈R .【1】求()6f π-的值;【2】若3cos 5θ=,3(,2)2πθπ∈,求(2)3f πθ+.17.【本小题满分12分】某车间共有12名工人,随机抽取6名,他们某日加工零件个数的茎叶图如图4所示,其中茎为十位数,叶为个位数.【1】根据茎叶图计算样本均值;【2】日加工零件个数大于样本均值的工人为优秀工人. 根据茎叶图推断该车间12名工人中有几名优秀工人?90,BC =DE 折起,得到如图其中A O '=【1】证明:A O '⊥平面BCDE ;【2】求二面角A CD B '--的平面角的余弦值.19.【本小题满分14分】设数列{}n a 的前n 项和为n S ,已知11a =,2121233n n S a n n n +=---,*n ∈N . 【1】求2a 的值;【2】求数列{}n a 的通项公式; 【3】证明:对一切正整数n ,有1211174n a a a +++<.20.【本小题满分14分】已知抛物线C 的顶点为原点,其焦点(0,)F c (0)c >到直线:20l x y --=的距离为2,设P 为直线l 上的点,过点P 作抛物线C 的两条切线PA ,PB ,其中A ,B 为切点.【1】求抛物线C 的方程;【2】当点00(,)P x y 为直线l 上的定点时,求直线AB 的方程; 【3】当点P 在直线l 上移动时,求||||AF BF ⋅的最小值.21.【本小题满分14分】设函数2()(1)x f x x e kx =--()k ∈R . 【1】当1k =时,求函数()f x 的单调区间;【2】当1(,1]2k ∈时,求函数()f x 在[0,]k 上的最大值M .图41 7 92 0 1 53 02013年普通高等学校招生全国统一考试【广东卷】数学【理科】参考答案一、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的、二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分、 【一】必做题【9 ~ 13题】9. (2,1)- 10. 1-11. 7 12. 20 13.5 【二】选做题【14 ~ 15题,考生只能从中选做一题】 14.cos sin 20ρθρθ+-=【填sin()4πρθ+=cos(4πρθ-=15.三、解答题:本大题共6小题,满分80分、解答须写出文字说明、证明过程和演算步骤、16.【本小题满分12分】已知函数())12f x x π=-,x ∈R .【1】求()6f π-的值;【2】若3cos 5θ=,3(,2)2πθπ∈,求(23f πθ+. 16. 解:【1】())1661242f ππππ-=--=-==【2】因为3cos 5θ=,3(,2)2πθπ∈ 所以4sin 5θ==-所以4324sin 22sin cos 2()5525θθθ==⨯-⨯=-2222347cos 2cos sin ()()5525θθθ=-=--=-所以(2)))cos 2sin 233124f ππππθθθθθ+=+-=+=-72417(252525=---=17.【本小题满分12分】某车间共有12名工人,随机抽取6名,他们某日加工零件个数的茎叶图如图4所示,其中茎为十位数,叶为个位数.【1】根据茎叶图计算样本均值;【2】日加工零件个数大于样本均值的工人为优秀工人. 根据茎叶图推断该车间12名工人中有几名优秀工人?图6A 'A B C 图5OC D EBA 'OC DEBFC90,BC =DE 折起,得到如图其中A O '=【1】证明:A O '⊥平面BCDE ;【2】求二面角A CD B '--的平面角的余弦值.18. 解:【1】连结OD ,OE因为在等腰直角三角形ABC 中,45B C ∠=∠=,CD BE ==3CO BO ==所以在△COD 中,5OD ==,同理得OE =因为AD A D A EAE ''====A O '= 所以222A O OD A D ''+=,222A O OE A E ''+=所以90A OD A OE ''∠=∠=所以A O OD '⊥,A O OE '⊥,OD OE O = 所以AO '⊥平面BCDE【2】方法一:过点O 作OF CD ⊥的延长线于F ,连接A F ' 因为A O '⊥平面BCDE根据三垂线定理,有A F CD '⊥所以A FO '∠为二面角A CD B '--的平面角在Rt △COF 中,32cos 452OF CO == 在Rt △A OF '中,A F '== 所以cos 5OF A FO A F '∠==' 所以二面角A CD B '--的平面角的余弦值为5方法二: 取DE 中点H ,则OH OB ⊥以O 为坐标原点,OH 、OB 、OA '分别为x 、y 、z 轴建立空间直角坐标系则(0,0,0),(0,3,0),(1,2,0)O A C D '--(0,3)OA '=是平面BCDE 的一个法向量 设平面A CD '的法向量为(,,)x y z =n(0,3,3)CA '=,(1,1,0)CD =所以30CA y CD x y⎧'⋅=+=⎪⎨⋅=+=⎪⎩n n ,令1x =,则1y =-,z = 所以(1,1=-n 是平面A CD '的一个法向量设二面角A CD B '--的平面角为θ,且(0,)2πθ∈所以cos OA OA θ'⋅==='⋅n n所以二面角A CD B '-- 19.【本小题满分14分】设数列{}n a 的前n 项和为n S ,已知11a =,2121233n n S a n n n +=---,*n ∈N . 【1】求2a 的值;【2】求数列{}n a 的通项公式;【3】证明:对一切正整数n ,有1211174n a a a +++<.19. 解:【1】当1n =时,11221221133S a a ==---,解得24a =【2】32112233n n S na n n n +=--- ①当2n ≥时,321122(1)(1)(1)(1)33n n S n a n n n -=------- ②①-②得212(1)n n n a na n a n n +=----整理得1(1)(1)n n na n a n n +=+++,即111n n a a n n +=++,111n n a an n+-=+ 当1n =时,2121121a a -=-= 所以数列{}n a 是以1为首项,1为公差的等差数列 所以na n n=,即2n a n = 所以数列{}n a 的通项公式为2n a n =,*n ∈N 【3】因为211111(1)1n a n n n n n=<=---【2n ≥】 所以222212111111111111111()()()123423341n a a a n n n+++=++++<++-+-++-- 11171714244n n =++-=-<20.【本小题满分14分】已知抛物线C 的顶点为原点,其焦点(0,)F c (0)c >到直线:20l x y --=的距离为2,设P 为直线l 上的点,过点P 作抛物线C 的两条切线PA ,PB ,其中A ,B 为切点. 【1】求抛物线C 的方程;【2】当点00(,)P x y 为直线l 上的定点时,求直线AB 的方程;【3】当点P 在直线l 上移动时,求||||AF BF ⋅的最小值. 20. 解:【1】焦点(0,)F c (0)c >到直线:20l x y --=的距离d ===,解得1c = 所以抛物线C 的方程为24x y =【2】设2111(,)4A x x ,2221(,)4B x x 由【1】得抛物线C 的方程为214y x =,12y x '=,所以切线PA ,PB 的斜率分别为112x ,212x所以PA :211111()42y x x x x -=- ①PB :222211()42y x x x x -=- ②联立①②可得点P 的坐标为1212(,)24x x x x +,即1202x x x +=,1204x xy = 又因为切线PA 的斜率为2011011142y x x x x -=-,整理得201011124y x x x =- 直线AB 的斜率221201212114442x x x x x k x x -+===- 所以直线AB 的方程为210111()42y x x x x -=-整理得20101111224y x x x x x =-+,即0012y x x y =-因为点00(,)P x y 为直线:20l x y --=上的点,所以0020x y --=,即002y x =-所以直线AB 的方程为00122y x x x =-+【3】根据抛物线的定义,有21114AF x =+,22114BF x =+所以2222221212121111||||(1)(1)()144164AF BF x x x x x x ⋅=++=+++ 22212121211[()2]1164x x x x x x =++-+ 由【2】得1202x x x +=,1204x x y =,002x y =+所以2222220000000001||||(48)121(2)214AF BF y x y x y y y y y ⋅=+-+=+-+=++-+22000192252()22y y y =++=++所以当012y =-时,||||AF BF ⋅的最小值为9221.【本小题满分14分】设函数2()(1)x f x x e kx =--()k ∈R . 【1】当1k =时,求函数()f x 的单调区间;【2】当1(,1]2k ∈时,求函数()f x 在[0,]k 上的最大值M . 21. 解:【1】当1k =时,2()(1)x f x x e x =--()(1)2(2)x x x f x e x e x x e '=+--=-令()0f x '=,解得10x =,2ln 20x => 所以(),()f x f x '随x 的变化情况如下表:所以函数()f x 的单调增区间为(,0)-∞和(ln 2,)+∞,单调减区间为(0,ln 2) 【2】2()(1)x f x x e kx =--,[0,]x k ∈,1(,1]2k ∈()2(2)x x f x xe kx x e k '=-=-()0f x '=,解得10x =,2ln(2)x k =令()ln(2)k k k ϕ=-,1(,1]2k ∈11()10k k k k ϕ-'=-=≤ 所以()k ϕ在1(,1]2上是增函数所以11()()022k ϕϕ>=>,即0ln(2)k k <<所以(),()f x f x '随x 的变化情况如下表:(0)1f =-,3()(1)k f k k e k =--()(0)f k f -=332(1)1(1)(1)(1)(1)(1)k k k k e k k e k k e k k k --+=---=---++2(1)[(1)]k k e k k =--++因为1(,1]2k ∈,所以10k -≤对任意的1(,1]2k ∈,x y e =的图象恒在21y k k =++下方,所以2(1)0k e k k -++≤ 所以()(0)0f k f -≥,即()(0)f k f ≥所以函数()f x 在[0,]k 上的最大值3()(1)k M f k k e k ==--。

广东省江门佛山两市2013届高三4月教学质量检测物理试题(带答案)

广东省江门佛山两市2013届高三4月教学质量检测物理试题(带答案)

2013年江门佛山两市普通高中高三教学质量检测物理能力测试2013.4本试卷共12页,满分300分.考试时间150分钟.注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考号填写在答题卡上.用2B铅笔将答题卡试卷类型(A)填涂在答题卡上,并在答题卡右上角的“试室号”和“座位号”栏填写试室号、座位号,将相应的试室号、座位号信息点涂黑.2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案答在试题卷上无效.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答卷上各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.考试结束后,将答卷和答题卡一并交回.第一部分选择题(共118分)一、单项选择题:本大题共16小题,每小题4分。

共64分。

在每小题给出的四个选项中,只有一个选项符合题目要求,选对的得4分,选错或不答的得0分。

13.热水瓶中的热水未灌满就盖紧瓶塞,第二天,你会感到将瓶塞拔出来很吃力.下列有关瓶内气体(视为理想气体)说法正确的是A.温度降低,压强减小B.体积减小,压强增大C.对外做功,内能减小D.释放热量,内能不变14.将冰块放入微波炉中加热,变为40℃的水。

下列说法正确的是A.冰变为40℃的水,每个分子热运动的速率都增大B.冰变为40℃的水,分子热运动的平均动能增大C.冰块不一定有规则的几何外形,故不是晶体D.冰变为水的过程中需不断释放出能量15.氢原子的能级如右图。

某光电管的阴极由金属钾制成,钾的逸出功为2.25ev。

处于n=4激发态的一群氢原子,它们向各较低能级跃迁时,哪两能级间跃迁产生的光子不能..使光电管产生光电子A.从n=4向n=3跃迁B.从n=3向n=1跃迁C.从n=4向n=1跃迁D .从n =2向n =1跃迁16.若战机从航母上起飞滑行的距离相同,牵引力相同,则A .携带弹药越多,加速度越大B .加速度相同,与携带弹药的多少无关C .携带燃油越多,获得的起飞速度越大D .携带弹药越多,滑行时间越长二、双项选择题:本大题共9小题,每小题6分,共54分。

2013年佛山市普通高中高三教学质量检测(二)理科数学试题答案

2013年佛山市普通高中高三教学质量检测(二)理科数学试题答案

2013年佛山二模数学试题(理科)参考答案和评分标准9.∀x ∈R ,xe >0 10.4π 11.8 12.()()22115x y -+-= 13.80 14.sin 42πρθ⎛⎫+= ⎪⎝⎭ 15.13 三、解答题:本大题共6小题,满分80分,解答须写出文字说明、证明过程或演算步骤.16.(本题满分12分)(1)解法1、 由题可知:(1,3)A -, (cos ,sin )B αα即(1,3)OA =- ,(cos ,sin )OB αα=…………2分OA OB ⊥,得0OA OB ⋅=…………3分∴ cos 3sin0αα-+=则1tan 3α= …………4分解法2、由题可知:(1,3)A -, (cos ,sin )B αα …………1分3OA k =-,tan OB k α= …………2分 ∵OA OB ⊥,∴1OA OB K K ⋅=- …………3分3tan 1α-=-, 得1tan 3α= …………4分(2)解法1、由(1)OA == 记AOx β∠=, (,)2πβπ∈∴sin β==,cosβ==…………6分 ∵1OB = 4cos 5α=,得3sin 5α== …………8分43sin sin()55AOB βα∠=-=+=…………10分∴11sin 12210AOB S AO BO AOB ∆=∠=⨯32= …………12分 解法2、由题意得:AO 的直线方程为30x y +=, …………6分则3sin 5α== 即43(,)55B …………8分则点B 到直线AO 的距离为d ==…………10分 又OA ==∴11322102AOB S AO d ∆=⨯== …………12分解法3、3sin5α==即43(,)55B…………6分即:(1,3)OA=-,43(,)55OB=,…………7分OA==1OB=4313cosOA OBAOBOA OB-⨯+⨯⋅∠===…………9分∴sin AOB∠==…………10分则113sin1222AOBS AO BO AOB∆=∠==…………12分17.(本题满分12分)解:(1) 因为道路D、E上班时间往返出现拥堵的概率分别是110和15,因此从甲到丙遇到拥堵的概率是111130.152102520⋅+⋅==,…………2分所以李生小孩能够按时到校的概率是10.1585%-=;…………3分(2)甲到丙没有遇到拥堵的概率是1720,…………4分丙到甲没有遇到拥堵的概率也是17 20,甲到乙遇到拥堵的概率也是11111123103103515⋅+⋅+⋅=,…………6分甲到乙没有遇到拥堵的概率也是21311515 -=,李生上班途中均没有遇到拥堵的概率是17171337570.7 2020156000⋅⋅=<,所以李生没有七成把握能够按时上班;…………8分(3)依题意ξ可以取0,1,2.(0) Pξ==13172211520300⋅=, (1)Pξ==21713373152********⋅+⋅=,(2) Pξ==2361520300⋅=, …………11分85170+1+2=30030030030060Eξ=⨯⨯⨯=. …………12分A B E C D F 图甲 1A E F C 1D 图乙 G MH H 18.(本题满分14分)(Ⅰ)证明:在图甲中,易知//AE DF ,从而在图乙中有11//A E D F ,………………………………1分 注意到1A E ⊄平面1CD F ,1D F ⊂平面1CD F ,所以1//A E 平面1CD F ; ………………………………4分 (Ⅱ)解法1、如图,在图乙中作GH EF ⊥,垂足为H ,连接1A H ,由于1AG ⊥平面EBCF ,则1AG EF ⊥, ………………………………5分 所以EF ⊥平面1AGH ,则1EF A H ⊥, ………………………………6分 所以1A HG ∠平面BEFC 与平面11A EFD 所成二面角的平面角, ………………………………8分 图甲中有EF AH ⊥,又GH EF ⊥,则A G H 、、三点共线,………………………………9分设CF 的中点为M ,则1MF =,易证ABG EMF ∆≅∆,所以,1BG MF ==,则AG =………………………………11分 又由ABG AHE ∆∆,得1AB AE A H AH AG === , ………………………………12分 于是,HG AG AH =-=………………………………13分 在1Rt AGH ∆中,112cos 3HG AGH A H ∠==,即所求二面角的余弦值为23. ……………14分 解法2、如图,在图乙中作GH EF ⊥,垂足为H ,连接1A H ,由于1AG ⊥平面EBCF ,则1AG EF ⊥, ………………………………5分 所以EF ⊥平面1AGH ,则1EF A H ⊥, 图甲中有EF AH ⊥,又GH EF ⊥,则A G H 、、三点共线, …………………………6分 设CF 的中点为M ,则1MF =,易证ABG EMF ∆≅∆,所以1BG MF ==,则AG =又由ABG AHE ∆∆ ,得1AB AE A H AH AG ===………………………………7分于是,HG AG AH =-= 在1Rt AGH ∆中, 1AG === ………………………………8分作//GT BE 交EF 于点T ,则TG GC ⊥,以点G 为原点,分别以1GC GT GA 、、所在直线为x y z 、、轴,建立如图丙所示的空间直角坐标系,则(0,0,0)G 、(1,1,0)E -、(2,2,0)F 、1A ,则1(1,3,0)(1,1EF EA ==- ,. 11分显然,1GA =是平面BEFC 的 一个法向量, ………………………………12设(,,)n x y z =是平面11A EFD 的一个法向量,则130,0n EF x y n EA x y ⎧=+=⎪⎨=-++=⎪⎩ ,即3,x y z =-⎧⎪⎨=-⎪⎩不妨取1y =-,则(3,1n =-, ……………………………13分 设平面BEFC 与平面11A EFD 所成二面角为θ,可以看出,θ为锐角,所以,112cos 3||||GA n GA n θ=== ,所以,平面BEFC 与平面11A EFD 所成二面角的余弦值为23. …………………………14分 19.(本题满分14分)解:(1)由题可知,圆心C 到定点()1,0F 的距离与到定直线1x =-的距离相等, ………………2分 由抛物线定义可知,C 的轨迹2C 是以()1,0F 为焦点,直线1x =-为准线的抛物线,………………4分 所以动圆圆心C 的轨迹2C 的方程为24y x =. …………………………………5分(2)方法一、设(,)P m n ,则OP 中点为(,)22m n , 因为O P 、两点关于直线(4)y k x =-对称,所以(4)221nm k n k m ⎧=-⎪⎪⎨⎪⋅=-⎪⎩,即80km n k m nk -=⎧⎨+=⎩,解之得2228181k m k k n k ⎧=⎪⎪+⎨⎪=-⎪+⎩,…………………………………8分 将其代入抛物线方程,得:222288()411k k k k -=⋅++,所以21k =. ………………9分联立 2222(4)1y k x x y a b =-⎧⎪⎨+=⎪⎩,消去y ,得: 2222222()8160b a x a x a a b +-+-=.由2222222(8)4()(16)0a b a a a b ∆=--+-≥,得2216a b +≥, ………………12分 注意到221b a =-,即2217a ≥,所以a ≥,即2a ≥ ………………13分 因此,椭圆1C .此时椭圆的方程为22+1171522x y =. ………………14分 方法二、设2,4m P m ⎛⎫⎪⎝⎭,因为O P 、两点关于直线l 则=4OM MP =, 5分E 图丙4=,解之得4m =± …………………………………6分即(4,4)P ±,根据对称性,不妨设点P 在第四象限,且直线与抛物线交于,A B 如图.则11AB OPk k =-=,于是直线l 方程为4y x =- …………………………………9分联立 222241y x x y ab =-⎧⎪⎨+=⎪⎩,消去y ,得:2222222()8160b a x a x a a b +-+-=.由2222222(8)4()(16)0a b a a a b ∆=--+-≥,得2216a b +≥, ………………12分 注意到221b a =-,即2217a ≥,所以a ≥,即2a ≥ ………………13分 因此,椭圆1C.此时椭圆的方程为22+1171522x y =. ………………14分 20.(本题满分14分)解:(1)由题意知03612 633x x x ≤<⎧⎪⎨--≥⎪+⎩或 3611 63x x ≤≤⎧⎪⎨-≥⎪⎩ ………………1分解得13x ≤<或34x ≤≤,即14x ≤≤ ………………3分 能够维持有效的抑制作用的时间:413-=小时. ………………4分 (2)由(1)知,4x =时第二次投入1单位固体碱,显然()g x 的定义域为410x ≤≤, 当46x ≤≤时,第一次投放1单位固体碱还有残留,故()g x =1 6x ⎛⎫- ⎪⎝⎭+(4)626(4)3x x ⎡⎤---⎢⎥-+⎣⎦=116331x x ---; ………………6分 当610x <≤时,第一次投放1单位固体碱已无残留,故当67x <≤时, (4)6()26(4)3x g x x -=---+ =86361x x ---; ………………7分 当710x <≤时, 45()1636x xg x -=-=- ; ………………8分 所以1164633186()67361571036xx x xg x x x xx ⎧--≤≤⎪-⎪⎪=--<≤⎨-⎪⎪-<≤⎪⎩………………9分 当46x ≤≤时,116()331x g x x =---=101610()3313x x --+≤--103-当且仅当1631x x -=-时取“=”,即1[4,6]x =+ ………………11分 当610x <≤时,第一次投放1单位固体碱已无残留,当67x <≤时, 2261(5)(7)()0(1)66(1)x x g x x x +-'=-=>--,所以()g x 为增函数;当710x <≤时,()g x 为减函数;故 max ()g x =1(7)2g =, ………………12分又10117(0326---=>,所以当1x =+103-………………13分 答: (1)第一次投放1单位固体碱能够维持有效的抑制作用的时间为3小时; (2)第一次投放1+小时后,水中碱浓度的达到最大值为103-……………14分 21.(本题满分14分)解:(1)易得,()1221122xf x x x e -⎛⎫=-+ ⎪⎝⎭, ………………1分()12221224xf x x x e -⎛⎫=-+ ⎪⎝⎭………………2分()122313382xf x x x e -⎛⎫=-+- ⎪⎝⎭,所以3(0)3f =- ………………3分 (2)不失一般性,设函数()21111()xn n n n f x a x b x c e λ----=++⋅的导函数为()2()x n n n n f x a x b x c e λ=++⋅,其中1,2,n = ,常数0λ≠,0001,0a b c ===.对1()n f x -求导得:2111111()[(2)()]x n n n n n n f x a x a b x b c e λλλλ------'=⋅++⋅++⋅⋅ ………………4分 故由1()()n n f x f x -'=得:1nn a a λ-=⋅ ①, 112n n n b a b λ--=+⋅ ②, 11n n n c b c λ--=+⋅ ③ 由①得:,n n a n N λ=∈ , ………………6分代入②得:112n n n b b λλ--=⋅+⋅,即112n n nn b b λλλ--=+,其中1,2,n = 故得:12,n n b n n N λ-=⋅∈. ………………7分 代入③得:212n n n c n c λλ--=⋅+⋅,即1212nn nn c c nλλλ--=+,其中1,2,n = .故得:2(1),n n c n n n N λ-=-⋅∈, ………………8分因此(0)n f =2(1),n n c n n n N λ-=-⋅∈.将12λ=-代入得:21(0)(1)()2n n f n n -=--,其中n N ∈. ………………9分 (3)由(2)知111(0)(1)()2n n f n n -+=+-,当2(1,2,)n k k == 时,21221211(0)2(21)()02k k k k S S f k k --+-==+⋅-<,2212210,k k k k S S S S --∴-<<,故当n S 最大时,n 为奇数. ………………10分⎧⎪⎨⎪⎩当21(2)n k k =+≥时,21212221(0)(0)k k k k S S f f +-++-=+又2221(0)(21)(22)()2kk f k k +=++-,21211(0)2(21)()2k k f k k -+=+- 221222111(0)(0)(21)(22)()2(21)()22k k k k f f k k k k -++∴+=++-++-211(21)(1)()02k k k -=+--<,2121k k S S +-∴<,因此数列{}21(1,2,)k S k += 是递减数列.又12(0)2S f ==,3234(0)(0)(0)2S f f f =++=, ………………13分 故当1n =或3n =时,n S 取最大值132S S ==. ………………14分。

2013年广东高考理科数学试题及答案(word版)-推荐下载

2013年广东高考理科数学试题及答案(word版)-推荐下载

在圆 O 上,延长 BC 到 D,使 BC CD,过 C 作圆 O 的切线交
AD 于 E,若 AB 6,DE 2,则 BC
三、解答题:本大题共 6 小题,满分 80 分.解答须写出文字说明、证明过程和演算步骤.
16.(本小题满分 12 分)
已知函数 f (x) 2 cos(x ), x R 12
2
3
10
D. 2,0,2
D.1
D. (4,2)
3
1
10
试卷类型:A
3 A. 2
B.2
5 C. 2
5.某四棱台的三视图如图 1 所示,则该四棱台的体积是( )
A.4
16
C.
3
6.设
m,
n
是两条不同的直线, ,
A.若 ,m,, n 则 m n
C.若 m n,m,, n 则
(一)必做题(9-13 题)
9.不等式 x 2 x 2 0 的解集为
10.若曲线 y kx ln x 在点 (1, k) 处的切线平行于
x 轴,则 k
11.执行图 2 所示的流程框图,若输入 n 的值为 4,
则输出 s 的值为



数学(理科)试卷 A 第 2 页(共 8 页)i i 1
2.定义域为 R 的四个函数 y x3 , y 2 x , y x 2 1 , y 2 sin x 中,奇函数的个数是
()
A.4
B.3
3.若复数 z 满足 iz 2 4i ,则在复平面内, z 对应的点的坐标是( )
A. (2,4)
4.已知离散型随机变量 X 的分布列为
则 X 的数学期望 E( X ) ( )

2013广东高考数学(理科)试题答案(word)完整官方版-推荐下载

2013广东高考数学(理科)试题答案(word)完整官方版-推荐下载

或: 3a5 a7 2a3 a8 20
y
x 4y 4
x y 4
4
13. 给定区域 D : x 0
,令点集T {x0, y0 D | x0, y0 Z ,x0, y0
是 z x y 在 D 上取得最大值或最小值的点} ,则T 中的点共确定____1__
()
x2 y2 1 A. 4 5
x2 y2 1 B. 4 5
x2 y2 1 C. 2 5
D.
x2 y2 1 25
【解析】B;依题意 c

e 3,

3 2
,所以 a

2 ,从而
a2

4 ,b2

c2

a2

5
,故选
B.
8.设整数 n 4 ,集合 X 1, 2,3,, n.令集合
A . 若 , m , n ,则 m n B.若 // , m , n ,则 m // n
C.若 m n , m , n ,则 D.若 m , m // n , n // ,则
第1页共9页
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电通,力1根保过据护管生高线产中0不工资仅艺料可高试以中卷解资配决料置吊试技顶卷术层要是配求指置,机不对组规电在范气进高设行中备继资进电料行保试空护卷载高问与中题带资2负料2,荷试而下卷且高总可中体保资配障料置各试时类卷,管调需路控要习试在题验最到;大位对限。设度在备内管进来路行确敷调保设整机过使组程其高1在中正资,常料要工试加况卷强下安看与全22过,22度并22工且22作尽22下可护都能1关可地于以缩管正小路常故高工障中作高资;中料对资试于料卷继试连电卷接保破管护坏口进范处行围理整,高核或中对者资定对料值某试,些卷审异弯核常扁与高度校中固对资定图料盒纸试位,卷置编工.写况保复进护杂行层设自防备动腐与处跨装理接置,地高尤线中其弯资要曲料避半试免径卷错标调误高试高等方中,案资要,料求编试技5写、卷术重电保交要气护底设设装。备备置管4高调、动线中试电作敷资高气,设料中课并技3试资件且、术卷料中拒管试试调绝路包验卷试动敷含方技作设线案术,技槽以来术、及避管系免架统不等启必多动要项方高方案中式;资,对料为整试解套卷决启突高动然中过停语程机文中。电高因气中此课资,件料电中试力管卷高壁电中薄气资、设料接备试口进卷不行保严调护等试装问工置题作调,并试合且技理进术利行,用过要管关求线运电敷行力设高保技中护术资装。料置线试做缆卷到敷技准设术确原指灵则导活:。。在对对分于于线调差盒试动处过保,程护当中装不高置同中高电资中压料资回试料路卷试交技卷叉术调时问试,题技应,术采作是用为指金调发属试电隔人机板员一进,变行需压隔要器开在组处事在理前发;掌生同握内一图部线纸故槽资障内料时,、,强设需电备要回制进路造行须厂外同家部时出电切具源断高高习中中题资资电料料源试试,卷卷线试切缆验除敷报从设告而完与采毕相用,关高要技中进术资行资料检料试查,卷和并主检且要测了保处解护理现装。场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

2013年高考理科数学广东卷word解析版

2013年高考理科数学广东卷word解析版

2013年普通高等学校夏季招生全国统一考试数学理工农医类(广东卷)本试卷共4页,21小题,满分150分。

考试用时120分钟。

注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、考场号、座位号填写在答题卡上。

用2B 铅笔将试卷类型(A)填涂在答题卡相应位置上。

将条形码横贴在答题卡右上角“条形码粘贴处”。

2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。

3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

4.作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再作答。

漏涂、错涂、多涂的,答案无效。

5.考生必须保持答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

参考公式:台体的体积公式V =13(S 1+S 2)h ,其中S 1,S 2分别表示台体的上、下底面积,h 表示台体的高.一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2013广东,理1)设集合M ={x |x 2+2x =0,x ∈R },N ={x |x 2-2x =0,x ∈R },则M ∪N =( ).A .{0}B .{0,2}C .{-2,0}D .{-2,0,2} 答案:D解析:∵M ={-2,0},N ={0,2},∴M ∪N ={-2,0,2}.2.(2013广东,理2)定义域为R 的四个函数y =x 3,y =2x ,y =x 2+1,y =2sin x 中,奇函数的个数是( ).A .4B .3C .2D .1 答案:C解析:y =x 3,y =2sin x 为奇函数;y =x 2+1为偶函数;y =2x 为非奇非偶函数.所以共有2个奇函数,故选C .3.(2013广东,理3)若复数z 满足i z =2+4i ,则在复平面内,z 对应的点的坐标是( ).A .(2,4)B .(2,-4)C .(4,-2)D .(4,2) 答案:C解析:由i z =2+4i ,得z =24i (24i)(i)i i (i)++⋅-=⋅-=4-2i , 故z 对应点的坐标为(4,-2).4.(2013广东,理4)则X 的数学期望E (X )=( ). A .32 B .2 C .52D .3 答案:A 解析:E (X )=1×35+2×310+3×110=1510=32. 5.(2013广东,理5)某四棱台的三视图如图所示,则该四棱台的体积是( ).A .4B .143C .163D .6 答案:B解析:方法一:由三视图可知,原四棱台的直观图如图所示,其中上、下底面分别是边长为1,2的正方形,且DD 1⊥面ABCD ,上底面面积S 1=12=1,下底面面积S 2=22=4.又∵DD 1=2,∴V 台=13(S 1+S 2)h=13(14)×2=143. 方法二:由四棱台的三视图,可知原四棱台的直观图如图所示.在四棱台ABCD -A 1B 1C 1D 1中,四边形ABCD 与四边形A 1B 1C 1D 1都为正方形, AB =2,A 1B 1=1,且D 1D ⊥平面ABCD ,D 1D =2. 分别延长四棱台各个侧棱交于点O , 设OD 1=x ,因为△OD 1C 1∽△ODC , 所以111OD D C OD DC =,即122x x =+,解得x =2.1111ABCD A B C D V -=V 棱锥O -ABCD -1111O A B C D V -棱锥=13×2×2×4-13×1×1×2=143. 6.(2013广东,理6)设m ,n 是两条不同的直线,α,β是两个不同的平面.下列命题中正确的是( ). A .若α⊥β,m ⊂α,n ⊂β,则m ⊥n B .若α∥β,m ⊂α,n ⊂β,则m ∥n C .若m ⊥n ,m ⊂α,n ⊂β,则α⊥β D .若m ⊥α,m ∥n ,n ∥β,则α⊥β 答案:D解析:选项A 中,m 与n 还可能平行或异面,故不正确; 选项B 中,m 与n 还可能异面,故不正确; 选项C 中,α与β还可能平行或相交,故不正确; 选项D 中,∵m ⊥α,m ∥n ,∴n ⊥α. 又n ∥β,∴α⊥β.故选D .7.(2013广东,理7)已知中心在原点的双曲线C 的右焦点为F (3,0),离心率等于32,则C 的方程是( ). A .2214x -= B .22145x y -= C .22125x y -= D .2212x -= 答案:B解析:由曲线C 的右焦点为F (3,0),知c =3.由离心率32e =,知32c a =,则a =2,故b 2=c 2-a 2=9-4=5, 所以双曲线C 的方程为22145x y -=. 8.(2013广东,理8)设整数n ≥4,集合X ={1,2,3,…,n },令集合S ={(x ,y ,z )|x ,y ,z ∈X ,且三条件x <y <z ,y <z <x ,z <x <y 恰有一个成立}.若(x ,y ,z )和(z ,w ,x )都在S 中,则下列选项正确的是( ).A .(y ,z ,w )∈S ,(x ,y ,w )∉SB .(y ,z ,w )∈S ,(x ,y ,w )∈SC .(y ,z ,w )∉S ,(x ,y ,w )∈SD .(y ,z ,w )∉S ,(x ,y ,w )∉S 答案:B解析:由(x ,y ,z )∈S ,不妨取x <y <z , 要使(z ,w ,x )∈S ,则w <x <z 或x <z <w . 当w <x <z 时,w <x <y <z , 故(y ,z ,w )∈S ,(x ,y ,w )∈S .当x <z <w 时,x <y <z <w ,故(y ,z ,w )∈S ,(x ,y ,w )∈S . 综上可知,(y ,z ,w )∈S ,(x ,y ,w )∈S .二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分.(一)必做题(9~13题)9.(2013广东,理9)不等式x2+x-2<0的解集为__________.答案:{x|-2<x<1}解析:x2+x-2<0即(x+2)(x-1)<0,解得-2<x<1,故原不等式的解集为{x|-2<x<1}.10.(2013广东,理10)若曲线y=kx+ln x在点(1,k)处的切线平行于x轴,则k=__________.答案:-1解析:y′=k+1 x .因为曲线在点(1,k)处的切线平行于x轴,所以切线斜率为零,由导数的几何意义得y′|x=1=0,故k+1=0,即k=-1.11.(2013广东,理11)执行如图所示的程序框图,若输入n的值为4,则输出s的值为__________.答案:7解析:i=1,s=1,i≤4,s=1+0=1;i=2,s=1,i≤4,s=1+1=2;i=3,s=2,i≤4,s=2+2=4;i=4,s=4,i≤4,s=4+3=7;i=5,此时i>4,故s=7.12.(2013广东,理12)在等差数列{a n}中,已知a3+a8=10,则3a5+a7=__________.答案:20解析:因为数列{a n}的等差数列,所以由等差数列的性质得a3+a8=a5+a6=a4+a7=10.所以3a5+a7=a5+2a5+a7=a5+a4+a6+a7=2×10=20.13.(2013广东,理13)给定区域D:44,4,0.x yx yx+≥⎧⎪+≤⎨⎪≥⎩令点集T={(x0,y0)∈D|x0,y0∈Z,(x0,y0)是z=x+y在D上取得最大值或最小值的点},则T中的点共确定__________条不同的直线.答案:6解析:由区域D:44,4,0,x yx yx+≥⎧⎪+≤⎨⎪≥⎩画出可行域如图所示.满足条件的(x 0,y 0)有(0,1),(0,4),(1,3),(2,2),(3,1),(4,0), 故T 中的点共确定6条不同的直线.(二)选择题(14~15题,考生只能从中选做一题)14.(2013广东,理14)(坐标系与参数方程选做题)已知曲线C的参数方程为,,x t y t ⎧=⎪⎨=⎪⎩(t 为参数),C在点(1,1)处的切线为l ,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,则l 的极坐标方程为__________.答案:πsin 4ρθ⎛⎫+= ⎪⎝⎭解析:∵曲线C的参数方程为,x t y t⎧=⎪⎨=⎪⎩(t 为参数),∴其普通方程为x 2+y 2=2.又点(1,1)在曲线C 上,∴切线l 的斜率k =-1.故l 的方程为x +y -2=0,化为极坐标方程为ρcos θ+ρsin θ=2,即πsin 4ρθ⎛⎫+= ⎪⎝⎭15.(2013广东,理15)(几何证明选讲选做题)如图,AB 是圆O 的直径,点C 在圆O 上.延长BC 到D 使BC =CD ,过C 作圆O 的切线交AD 于E .若AB =6,ED =2,则BC =__________.答案:解析:连接OC .∵AB 为圆O 的直径,∴AC ⊥BC .又BC =CD ,∴AB =AD =6,∠BAC =∠CAD . 又CE 为圆O 的切线,则OC ⊥CE .∵∠ACE 为弦切角,∴∠ACE =∠B . ∴∠ACE +∠CAD =90°.∴CE ⊥AD . 又AC ⊥CD ,∴CD 2=ED ·AD =2×6=12,即CD=∴BC=三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(2013广东,理16)(本小题满分12分)已知函数π()12f x x ⎛⎫=- ⎪⎝⎭,x ∈R .(1)求π6f ⎛⎫-⎪⎝⎭的值; (2)若cos θ=35,θ∈3π,2π2⎛⎫⎪⎝⎭,求π23f θ⎛⎫+ ⎪⎝⎭. 解:(1)πππ6612f ⎛⎫⎛⎫-=-- ⎪ ⎪⎝⎭⎝⎭ππ144⎛⎫-== ⎪⎝⎭.(2)πππ223312f θθ⎛⎫⎛⎫+=+- ⎪ ⎪⎝⎭⎝⎭π24θ⎛⎫+ ⎪⎝⎭=cos 2θ-sin 2θ.因为cos θ=35,θ∈3π,2π2⎛⎫⎪⎝⎭,所以sin θ=45-. 所以sin 2θ=2sin θcos θ=2425-,cos 2θ=cos 2θ-sin 2θ=725-.所以π23f θ⎛⎫+ ⎪⎝⎭=cos 2θ-sin 2θ=72417252525⎛⎫---= ⎪⎝⎭. 17.(2013广东,理17)(本小题满分12分)某车间共有12名工人,随机抽取6名,他们某日加工零件个数的茎叶图如图所示,其中茎为十位数,叶为个位数.(1)根据茎叶图计算样本均值;(2)日加工零件个数大于样本均值的工人为优秀工人.根据茎叶图推断该车间12名工人中有几名优秀工人?(3)从该车间12名工人中,任取2人,求恰有1名优秀工人的概率.解:(1)样本均值为171920212530132=2266+++++=.(2)由(1)知样本中优秀工人占的比例为2163=,故推断该车间12名工人中有12×13=4名优秀工人.(3)设事件A :从该车间12名工人中,任取2人,恰有1名优秀工人,则P (A )=1148212C C 16C 33=.18.(2013广东,理18)(本小题满分14分)如图(1),在等腰直角三角形ABC 中,∠A =90°,BC =6,D ,E分别是AC ,AB 上的点,CD =BE ,O 为BC 的中点.将△ADE 沿DE 折起,得到如图(2)所示的四棱锥A ′BCDE ,其中A ′O .图(1)图(2)(1)证明:A ′O ⊥平面BCDE ;(2)求二面角A ′CDB 的平面角的余弦值.解:(1)由题意,得OC =3,AC =AD =如图,连结OD ,OE ,在△OCD 中, 由余弦定理可得OD =.由翻折不变性可知A ′D =, 所以A ′O 2+OD 2=A ′D 2,所以A ′O ⊥OD . 同理可证A ′O ⊥OE ,又OD ∩OE =O , 所以A ′O ⊥平面BCDE .(2)传统法:过O 作OH ⊥CD 交CD 的延长线于H ,连结A ′H , 因为A ′O ⊥平面BCDE ,所以A ′H ⊥CD . 所以∠A ′HO 为二面角A ′CDB 的平面角.结合题图(1)可知,H 为AC 中点,故OH =2,从而A ′H 2=,所以cos ∠A ′HO =5OH A H ='所以二面角A ′-CD -B 的平面角的余弦值为5. 向量法:以O 点为原点,建立空间直角坐标系O -xyz 如图所示.则A ′(0,0,3),C (0,-3,0),D (1,-2,0), 所以CA '=(0,3),DA '=(-1,2). 设n =(x ,y ,z )为平面A ′CD 的法向量,则0,0,CA DA ⎧⋅'=⎪⎨⋅'=⎪⎩n n 即30,20,y xy ⎧+=⎪⎨-++=⎪⎩解得,.y x z =-⎧⎪⎨=⎪⎩令x =1,得n =(1,-1).由(1)知,OA '=(0,0为平面CDB 的一个法向量, 所以cos 〈n ,OA '〉=55OA OA ⋅'=='n n ,即二面角A ′-CD -B 的平面角的余弦值为5. 19.(2013广东,理19)(本小题满分14分)设数列{a n }的前n 项和为S n .已知a 1=1,2121233n n S a n n n +=---,n ∈N *.(1)求a 2的值;(2)求数列{a n }的通项公式;(3)证明:对一切正整数n ,有1211174n a a a +++<. 解:(1)依题意,2S 1=a 2-13-1-23,又S 1=a 1=1,所以a 2=4.(2)当n ≥2时,2S n =na n +1-13n 3-n 2-23n , 2S n -1=(n -1)a n -13(n -1)3-(n -1)2-23(n -1),两式相减得2a n =na n +1-(n -1)a n -13(3n 2-3n +1)-(2n -1)-23,整理得(n +1)a n =na n +1-n (n +1),即111n n a a n n +-=+.又21121a a-=, 故数列n a n ⎧⎫⎨⎬⎩⎭是首项为111a =,公差为1的等差数列,所以na n=1+(n -1)×1=n .所以a n =n 2. (3)当n =1时,1171<4a =;当n =2时,12111571444a a +=+=<; 当n ≥3时,21111111n a n n n n n =<=-(-)-, 此时12111na a a +++ =222111111111111+<1434423341n n n ⎛⎫⎛⎫⎛⎫++++++-+-++- ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭=1117171+4244n n +-=-<.综上,对一切正整数n,有1211174n a a a +++<. 20.(2013广东,理20)(本小题满分14分)已知抛物线C 的顶点为原点,其焦点F (0,c )(c >0)到直线l :x -y -2=0.设P 为直线l 上的点,过点P 作抛物线C 的两条切线P A ,PB ,其中A ,B 为切点.(1)求抛物线C 的方程;(2)当点P (x 0,y 0)为直线l 上的定点时,求直线AB 的方程; (3)当点P 在直线l 上移动时,求|AF |·|BF |的最小值.解:(1)依题意,设抛物线C 的方程为x 2=4cy , 2=,结合c >0,解得c =1. 所以抛物线C 的方程为x 2=4y .(2)抛物线C 的方程为x 2=4y ,即y =14x 2,求导得y ′=12x , 设A (x 1,y 1),B (x 2,y 2)221212,44x x y y ⎛⎫== ⎪⎝⎭其中,则切线P A ,PB 的斜率分别为12x 1,12x 2,所以切线P A 的方程为y -y 1=12x(x -x 1),即y =12x x -212x +y 1,即x 1x -2y -2y 1=0,同理可得切线PB 的方程为x 2x -2y -2y 2=0, 因为切线P A ,PB 均过点P (x 0,y 0), 所以x 1x 0-2y 0-2y 1=0,x 2x 0-2y 0-2y 2=0.所以(x 1,y 1),(x 2,y 2)为方程x 0x -2y 0-2y =0的两组解. 所以直线AB 的方程为x 0x -2y -2y 0=0. (3)由抛物线定义可知|AF |=y 1+1,|BF |=y 2+1,所以|AF |·|BF |=(y 1+1)(y 2+1)=y 1y 2+(y 1+y 2)+1.联立方程002220,4,x x y y x y --=⎧⎨=⎩消去x 整理得y 2+(2y 0-x 02)y +y 02=0.由一元二次方程根与系数的关系可得y 1+y 2=x 02-2y 0,y 1y 2=y 02, 所以|AF |·|BF |=y 1y 2+(y 1+y 2)+1=y 02+x 02-2y 0+1. 又点P (x 0,y 0)在直线l 上,所以x 0=y 0+2. 所以y 02+x 02-2y 0+1=2y 02+2y 0+5=2019222y ⎛⎫++ ⎪⎝⎭.所以当y 0=12-时,|AF |·|BF |取得最小值,且最小值为92.21.(2013广东,理21)(本小题满分14分)设函数f (x )=(x -1)e x -kx 2(k ∈R ).(1)当k =1时,求函数f (x )的单调区间;(2)当k ∈1,12⎛⎤⎥⎝⎦时,求函数f (x )在[0,k ]上的最大值M . 解:(1)当k =1时,f (x )=(x -1)e x -x 2,f ′(x )=e x +(x -1)e x -2x =x e x -2x =x (e x -2), 令f ′(x )=0,得x 1=0,x 2=ln 2,当x 变化时,f ′(x ),f (x )的变化如下表:由表可知,函数f (x )的递减区间为(0,ln 2),递增区间为(-∞,0),(ln 2,+∞). (2)f ′(x )=e x +(x -1)e x -2kx =x e x -2kx =x (e x -2k ), 令f ′(x )=0,得x 1=0,x 2=ln(2k ),令g (k )=ln(2k )-k ,k ∈1,12⎛⎤⎥⎝⎦, 则g ′(k )=1k -1=1kk -≥0,所以g (k )在1,12⎛⎤⎥⎝⎦上单调递增.所以g (k )≤ln 2-1=ln 2-ln e <0. 从而ln(2k )<k ,所以ln(2k )∈(0,k ). 所以当x ∈(0,ln(2k ))时,f ′(x )<0; 当x ∈(ln(2k ),+∞)时,f ′(x )>0; 所以M =max{f (0),f (k )} =max{-1,(k -1)e k -k 3}. 令h (k )=(k -1)e k -k 3+1, 则h ′(k )=k (e k -3k ),令φ(k )=e k -3k ,则φ′(k )=e k -3≤e -3<0.2013年高考理科数学广东卷word 解析版11 / 11 所以φ(k )在1,12⎛⎤⎥⎝⎦上单调递减, 而12ϕ⎛⎫ ⎪⎝⎭·φ(1)=32⎫-⎪⎭(e -3)<0, 所以存在x 0∈1,12⎛⎤ ⎥⎝⎦使得φ(x 0)=0,且当k ∈01,2x ⎛⎫ ⎪⎝⎭时,φ(k )>0, 当k ∈(x 0,1)时,φ(k )<0,所以φ(k )在01,2x ⎛⎫⎪⎝⎭上单调递增,在(x 0,1)上单调递减.因为17>028h ⎛⎫= ⎪⎝⎭,h (1)=0, 所以h (k )≥0在1,12⎛⎤ ⎥⎝⎦上恒成立,当且仅当k =1时取得“=”. 综上,函数f (x )在[0,k ]上的最大值M =(k -1)e k -k 3.。

2013年广东高考理科数学试题及答案(纯word版)

2013年广东高考理科数学试题及答案(纯word版)

绝密★启用前试卷类型:A2013年普通高等学校招生全国统一考试(广东卷)数学(理科)本试卷共4页,21题,满分150分。

考试用时120分钟。

注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、考场号、座位号填写在答题卡上。

用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上。

将条形码横贴在答题卡右上角“条形码粘贴处”。

2.选择题每小题选出答案后,用2B 铅笔把答题卡对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。

3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔盒涂改液。

不按以上要求作答的答案无效。

4.作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再作答。

漏涂、错涂、多涂的,答案无效。

5.考生必须保持答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

参考公式:台体的体积公式121(3V S S h =++,其中1S ,2S 分别表示台体的上、下底面积,h 表示台体的高.一、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合2{|20,}M x x x x =+=∈R ,2{|20,}N x x x x =-=∈R ,则M N = A .{0} B .{0,2} C .{2,0}- D .{2,0,2}-2. 定义域为R 的四个函数3y x =,2x y =,21y x =+,2sin y x =中,奇函数的个数是 A .4B .3C .2D .13. 若复数z 满足24iz i =+,则在复平面内,z 对应的点的坐标是 A .(2,4)B .(2,4)-C .(4,2)-D .(4,2)4. 已知离散型随机变量X 的分布列为则X 的数学期望()E X = A .32B .2C .52D .3俯视图侧视图图15. 某四棱台的三视图如图1所示,则该四棱台的体积是 A .4 B .143 C .163D .6 6. 设m ,n 是两条不同的直线,α,β是两个不同的平面, 下列命题中正确的是A .若α⊥β,m ⊂α,n ⊂β,则m ⊥nB .若α∥β,m ⊂α,n ⊂β,则m ∥n C .若m ⊥n ,m ⊂α,n ⊂β,则α⊥β D .若m ⊥α,m ∥n ,n ∥β,则α⊥β7. 已知中心在原点的双曲线C 的右焦点为F (3,0),离心率 等于32,则C 的方程是 A.2214x -= B .22145x y -= C .22125x y -= D .2212x =8. 设整数4n ≥,集合{1,2,3,,}X n = . 令集合{(,,)|,,,S x y z x y zX =∈且三条件x y z <<,y z x <<,z x y <<恰有一个成立}. 若(,,)x y z 和(,,)z w x 都在S 中,则下列选项正确的是A .(,,)y z w ∈S ,(,,)x y w ∉SB .(,,)y z w ∈S ,(,,)x y w ∈SC .(,,)y z w ∉S ,(,,)x y w ∈SD .(,,)y z w ∉S ,(,,)x y w ∉S 二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分. (一)必做题(9 ~ 13题)9. 不等式220x x +-<的解集为 .10. 若曲线ln y kx x =+在点(1,)k 处的切线平行于x 轴,则k = .11. 执行如图2所示的程序框图,若输入n 的值为4,则输出s 的 值为 .12. 在等差数列{}n a 中,已知3810a a +=,则573a a += .13. 给定区域D :4440x y x y x +⎧⎪+⎨⎪⎩≥≤≥. 令点集0000{(,)|,T x y D x y =∈∈Z ,00(,)x y 是z x y =+在D 上取得最大值或最小值的点},则T 中的点共确定 条不同的直线.(二)选做题(14 ~ 15题,考生只能从中选做一题)14.(坐标系与参数方程选做题)已知曲线C 的参数方程为x ty t⎧=⎪⎨=⎪⎩(t 为参数),C 在点(1,1)处的切线为l ,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,则l 的极坐标方程为 .D图6A 'BC 图5OCD EB15.(几何证明选讲选做题)如图3,AB 是圆O 的直径,点C 在圆O 上,延长BC 到D 使BC CD =,过C 作圆O 的切线交AD 于E .若6AB =,2ED =,则BC =.三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)已知函数()),12f x x π=-x R ∈(1)求()6f π-的值;(2)若33cos ,(,2)52πθθπ=∈,求(2)3f πθ+17.(本小题满分12分)某车间共有12名工人,随机抽取6名,他们某日加工零件个数的茎叶图如图4所示,其中茎为十位数,叶为个位数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013年广东省江门、佛山市高考数学二模试卷(理科)
参考答案与试题解析
一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.(5分)(2013•江门二模)已知M={x|﹣2≤x≤4,x∈Z},N={x|﹣1<x<3},则M∩N=()A.(﹣1,3)B.[﹣2,1)C.{0,1,2} D.{﹣2,﹣1,0}
考点:交集及其运算.
专题:计算题.
分析:由列举法写出集合M,然后直接取符合集合N的元素构成集合即可.
解答:解:由M={x|﹣2≤x≤4,x∈Z}={﹣2,﹣1,0,1,2,3,4},N={x|﹣1<x<3},所以M∩N={0,1,2}.
故选C.
点评:本题考查了交集及其运算,是基础的会考题型.
2.(5分)(2013•江门二模)已知复数z的实部为1,且|z|=2,则复数z的虚部是()A.B.C.D.
考点:复数求模.
专题:计算题.
分析:设复数z的虚部是为b,根据已知复数z的实部为1,且|z|=2,可得1+b2=4,由此解得b的值,即为所求.
解答:解:设复数z的虚部是为b,∵已知复数z的实部为1,且|z|=2,
故有1+b2=4,解得b=±,
故选D.
点评:本题主要考查复数的基本概念,求复数的模,属于基础题.
3.(5分)(2013•江门二模)已知数列{a n}是等差数列,若a3+a11=24,a4=3,则{a n}的公差是()A.1B.3C.5D.6
考点:等差数列的性质.
专题:计算题.
分析:
(法一)利用等差数列的性质把已知条件转化可得a7=12,利用公式求解.
(法二)把已知条件用等差数列的首项a1、公差d表示,联立解d.
解答:解:(法一)因为数列{a n}是等差数列,a3+a11=24,a4=3
利用等差数列的性质可得2a7=24
所以a7=12,
(法二)设等差数列的公差为d
∵a3+a11=24,a4=3

解得a1=﹣6,d=3
故选B.
点评:本题法一:主要考查等差数列的性质:若m+n=p+q,则a m+a n=a p+a q,灵活运用该性质可以简化基本运算.
法二:主要是运用等差数列的通项公式,利用等差数列的基本量a1,d表示a n,及基本运算.
4.(5分)(2013•江门二模)为了解一片经济林的生长情况,随机测量了其中100株树木的底部周长(单位:cm).根据所得数据画出样本的频率分布直方图,那么在这100株树木中,底部周长小于110cm的株数是()
A.30 B.60 C.70 D.80
考点:频率分布直方图.
专题:计算题.
分析:由图分析,易得底部周长小于110cm段的频率,根据频率与频数的关系可得频数.
解答:解:由图可知:则底部周长小于110cm段的频率为(0.01+0.02+0.04)×10=0.7,则频数为100×0.7=70人.
故选C.
点评:本题考查读图的能力,读图时要全面细致,同时,解题方法要灵活多样,切忌死记硬背,要充分运用数形结合思想来解决由统计图形式给出的数学实际问题.
5.(5分)(2013•江门二模)函数f(x)=sin,x∈[﹣1,1],则()
A.f(x)为偶函数,且在[0,1]上单调递减B.f(x)为偶函数,且在[0,1]上单调递增
C.f(x)为奇函数,且在[﹣1,0]上单调递增D.f(x)为奇函数,且在[﹣1,0]上单调递减.
考点:复合三角函数的单调性;正弦函数的奇偶性.
专题:三角函数的图像与性质.
分析:利用诱导公式化简函数f(x)的解析式为cosπx,故函数为偶函数.再由当x∈[0,1]时,可得函数y=cosπx 是减函数,从而得出结论.
解答:
解:∵函数f(x)=sin=cosπx,故函数为偶函数,故排除C、D.
当x∈[0,1]时,πx∈[0,π],函数y=cosπx 是减函数,
故选A.
点评:本题主要考查诱导公式、余弦函数的奇偶性和单调性,属于中档题.
6.(5分)(2013•江门二模)下列命题中假命题是()
A.若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行
B.垂直于同一条直线的两条直线相互垂直
C.若一个平面经过另一个平面的垂线,那么这两个平面相互垂直
D.若一个平面内的两条相交直线与另一个平面内的相交直线分别平行,那么这两个平面相互平行
考点:命题的真假判断与应用.
专题:阅读型.
分析:对A选项,利用线面平行的判定与性质判断即可;
根据垂直于同一直线的二直线位置关系不确定来判断B是否正确;
利用面面垂直的判定定理判断C是否正确;
利用面面平行的判定定理判断D是否正确.
解答:解:如图,∵a∥α,a⊂γ,γ∩α=b,∴a∥b;同理a∥c,∴b∥c,∴b∥β,又b⊂α,α∩β=l,∴b∥l,∴a∥l,故A选项正确;
∵垂直于同一直线的两条直线,位置关系是相交、平行或异面,∴B为假命题;
根据面面垂直的判定定理,C正确;
根据面面平行的判定定理,D正确.
故选B.
点评:本题借助考查命题的真假判断,考查线线、线面、面面平行,垂直关系.
7.(5分)(2011•湖北)直线2x+y﹣10=0与不等式组表示的平面区域的公共点有()A.0个B.1个C.2个D.无数个
考点:二元一次不等式(组)与平面区域.
专题:作图题;数形结合.
分析:画出不等式组表示的平面区域、画出直线2x+y﹣10=0;由图判断出直线与平面区域的公共点.解答:解:画出不等式组表示的平面区域如下。

相关文档
最新文档