漯河市第二高级中学2018-2019学年高三上学期11月月考数学试卷含答案
漯河市第二高级中学2018-2019学年高三上学期11月月考数学试卷含答案
漯河市第二高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 在平面直角坐标系中,若不等式组(为常数)表示的区域面积等于, 则的值为( )A .B .C .D .2. 若P 是以F 1,F 2为焦点的椭圆=1(a >b >0)上的一点,且=0,tan ∠PF 1F 2=,则此椭圆的离心率为( ) A.B.C.D.3. 两圆C 1:x 2+y 2﹣4x+3=0和C 2:的位置关系是( )A .相离B .相交C .内切D .外切4. 下列各组表示同一函数的是( )A .y=与y=()2B .y=lgx 2与y=2lgxC .y=1+与y=1+D .y=x 2﹣1(x ∈R )与y=x 2﹣1(x ∈N )5. 边长为2的正方形ABCD 的定点都在同一球面上,球心到平面ABCD 的距离为1,则此球的表面积为( ) A .3π B .5π C .12π D .20π 6. 设全集U={1,3,5,7,9},集合A={1,|a ﹣5|,9},∁U A={5,7},则实数a 的值是( )A .2B .8C .﹣2或8D .2或87. 若变量x y ,满足约束条件22024010x y x y x +-≥⎧⎪-+≥⎨⎪-≤⎩,则目标函数32z x y =-的最小值为( )A .-5B .-4 C.-2 D .3 8. 函数()log 1xa f x a x =-有两个不同的零点,则实数的取值范围是( )A .()1,10B .()1,+∞C .()0,1D .()10,+∞ 9. 若直线y=kx ﹣k 交抛物线y 2=4x 于A ,B 两点,且线段AB 中点到y 轴的距离为3,则|AB|=( ) A .12 B .10C .8D .610.若函数21,1,()ln ,1,x x f x x x ⎧-≤=⎨>⎩则函数1()2y f x x =+的零点个数为( ) A .1 B .2 C .3 D .4 11.为了得到函数y=cos (2x+1)的图象,只需将函数y=cos2x 的图象上所有的点( )班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A .向左平移个单位长度B .向右平移个单位长度C .向左平移1个单位长度D .向右平移1个单位长度12.利用独立性检验来考虑两个分类变量X 和Y 是否有关系时,通过查阅下表来确定断言“X 和Y 有关系”的可信度,如果k >5.024,那么就有把握认为“X 和Y 有关系”的百分比为( )P (K 2>k ) 0.50 0.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001 k 0.455 0.7081.3232.072 2.7063.8415.0246.6357.879 10.828A .25%B .75%C .2.5%D .97.5%二、填空题13.已知函数22tan ()1tan x f x x =-,则()3f π的值是_______,()f x 的最小正周期是______.【命题意图】本题考查三角恒等变换,三角函数的性质等基础知识,意在考查运算求解能力. 14.已知圆C 的方程为22230x y y +--=,过点()1,2P -的直线与圆C 交于,A B 两点,若使AB 最小则直线的方程是 .15.设变量x ,y 满足约束条件,则的最小值为 .16.设p :∃x ∈使函数有意义,若¬p 为假命题,则t 的取值范围为 .17.(x ﹣)6的展开式的常数项是 (应用数字作答).18.函数)(x f (R x ∈)满足2)1(=f 且)(x f 在R 上的导数)('x f 满足03)('>-x f ,则不等式1log 3)(log 33-<x x f 的解集为 .【命题意图】本题考查利用函数的单调性解抽象不等式问题,本题对运算能力、化归能力及构造能力都有较高要求,难度大.三、解答题19.已知椭圆x 2+4y 2=4,直线l :y=x+m (1)若l 与椭圆有一个公共点,求m 的值;(2)若l 与椭圆相交于P 、Q 两点,且|PQ|等于椭圆的短轴长,求m 的值.20.如图1,圆O 的半径为2,AB ,CE 均为该圆的直径,弦CD 垂直平分半径OA ,垂足为F ,沿直径AB 将半圆ACB 所在平面折起,使两个半圆所在的平面互相垂直(如图2)(Ⅰ)求四棱锥C﹣FDEO的体积(Ⅱ)如图2,在劣弧BC上是否存在一点P(异于B,C两点),使得PE∥平面CDO?若存在,请加以证明;若不存在,请说明理由.21.已知函数f(x)=lnx﹣kx+1(k∈R).(Ⅰ)若x轴是曲线f(x)=lnx﹣kx+1一条切线,求k的值;(Ⅱ)若f(x)≤0恒成立,试确定实数k的取值范围.22.(本小题满分12分)已知点M为圆22:4+=上一个动点,点D是M在x轴上的投影,P为线段MD上一点,且与点Q关C x y=+.于原点O对称,满足QP OM OD(1)求动点P的轨迹E的方程;∆的面积最大时,求直线l的方程.(2)过点P作E的切线l与圆相交于,A B两点,当QAB23.已知函数f(x)=x2﹣mx在[1,+∞)上是单调函数.(1)求实数m的取值范围;(2)设向量,求满足不等式的α的取值范围.24.(本小题满分10分)如图⊙O经过△ABC的点B,C与AB交于E,与AC交于F,且AE=AF.(1)求证EF∥BC;(2)过E作⊙O的切线交AC于D,若∠B=60°,EB=EF=2,求ED的长.漯河市第二高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1.【答案】B【解析】【知识点】线性规划【试题解析】作可行域:由题知:所以故答案为:B2.【答案】A【解析】解:∵∴,即△PF1F2是P为直角顶点的直角三角形.∵Rt△PF1F2中,,∴=,设PF2=t,则PF1=2t∴=2c,又∵根据椭圆的定义,得2a=PF1+PF2=3t∴此椭圆的离心率为e====故选A【点评】本题给出椭圆的一个焦点三角形为直角三角形,根据一个内角的正切值,求椭圆的离心率,着重考查了椭圆的基本概念和简单几何性质,属于基础题.3.【答案】D【解析】解:由题意可得,圆C2:x2+y2﹣4x+3=0可化为(x﹣2)2+y2=1,C2:的x2+(y+2)2=9两圆的圆心距C1C2==4=1+3,∴两圆相外切.故选:D.【点评】本题主要考查圆的标准方程,两个圆的位置关系的判定方法,属于中档题.4.【答案】C【解析】解:A.y=|x|,定义域为R,y=()2=x,定义域为{x|x≥0},定义域不同,不能表示同一函数.B.y=lgx2,的定义域为{x|x≠0},y=2lgx的定义域为{x|x>0},所以两个函数的定义域不同,所以不能表示同一函数.C.两个函数的定义域都为{x|x≠0},对应法则相同,能表示同一函数.D.两个函数的定义域不同,不能表示同一函数.故选:C.【点评】本题主要考查判断两个函数是否为同一函数,判断的标准就是判断两个函数的定义域和对应法则是否一致,否则不是同一函数.5.【答案】C【解析】解:∵正方形的边长为2,∴正方形的对角线长为=2,∵球心到平面ABCD的距离为1,∴球的半径R==,则此球的表面积为S=4πR2=12π.故选:C.【点评】此题考查了球的体积和表面积,求出球的半径是解本题的关键.6.【答案】D【解析】解:由题意可得3∈A,|a﹣5|=3,∴a=2,或a=8,故选D.7.【答案】B【解析】试题分析:根据不等式组作出可行域如图所示阴影部分,目标函数可转化直线系31y 22x z =+,直线系在可行域内的两个临界点分别为)2,0(A 和)0,1(C ,当直线过A 点时,32224z x y =-=-⨯=-,当直线过C 点时,32313z x y =-=⨯=,即的取值范围为]3,4[-,所以Z 的最小值为4-.故本题正确答案为B.考点:线性规划约束条件中关于最值的计算. 8. 【答案】B 【解析】试题分析:函数()f x 有两个零点等价于1xy a ⎛⎫= ⎪⎝⎭与log a y x =的图象有两个交点,当01a <<时同一坐标系中做出两函数图象如图(2),由图知有一个交点,符合题意;当1a >时同一坐标系中做出两函数图象如图(1),由图知有两个交点,不符合题意,故选B.(1) (2)考点:1、指数函数与对数函数的图象;2、函数的零点与函数交点之间的关系.【方法点睛】本题主要考查指数函数与对数函数的图象、函数的零点与函数交点之间的关系.属于难题.判断方程()y f x =零点个数的常用方法:①直接法:可利用判别式的正负直接判定一元二次方程根的个数;②转化法:函数()y f x =零点个数就是方程()0f x =根的个数,结合函数的图象与性质(如单调性、奇偶性、周期性、对称性) 可确定函数的零点个数;③数形结合法:一是转化为两个函数()(),y g x y h x ==的图象的交点个数问题,画出两个函数的图象,其交点的个数就是函数零点的个数,二是转化为(),y a y g x ==的交点个数的图象的交点个数问题.本题的解答就利用了方法③.9. 【答案】C【解析】解:直线y=kx ﹣k 恒过(1,0),恰好是抛物线y 2=4x 的焦点坐标, 设A (x 1,y 1) B (x 2,y 2)抛物y 2=4x 的线准线x=﹣1,线段AB 中点到y 轴的距离为3,x 1+x 2=6,∴|AB|=|AF|+|BF|=x 1+x 2+2=8, 故选:C .【点评】本题的考点是函数的最值及其几何意义,主要解决抛物线上的点到焦点的距离问题,利用抛物线的定义将到焦点的距离转化为到准线的距离.10.【答案】D 【解析】考点:函数的零点.【易错点睛】函数零点个数的判断方法:(1)直接求零点:令0)(=x f ,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理法:要求函数在],[b a 上是连续的曲线,且0)()(<b f a f .还必须结合函数的图象和性质(如单调性)才能确定函数有多少个零点.(3)图象法:先把所求函数分解为两个简单函数,再画两个函数图象,看其交点的个数有几个,其中交点的横坐标有几个不同的值,就有几个不同的零点.11.【答案】A【解析】解:∵,故将函数y=cos2x 的图象上所有的点向左平移个单位长度,可得函数y=cos (2x+1)的图象, 故选:A .【点评】本题主要考查函数y=Asin (ωx+φ)的图象变换规律,属于基础题.12.【答案】D【解析】解:∵k >5、024,而在观测值表中对应于5.024的是0.025, ∴有1﹣0.025=97.5%的把握认为“X 和Y 有关系”,故选D . 【点评】本题考查独立性检验的应用,是一个基础题,这种题目出现的机会比较小,但是一旦出现,就是我们必得分的题目.二、填空题13.【答案】π.【解析】∵22tan ()tan 21tan x f x x x ==-,∴2()tan 33f ππ==221tan 0x k x ππ⎧≠+⎪⎨⎪-≠⎩,∴()f x 的定义域为(,)(,)(,)244442k k k k k k ππππππππππππ-+-+-++++,k Z ∈,将()f x 的图象如下图画出,从而可知其最小正周期为π,故填:π.14.【答案】30x y -+= 【解析】试题分析:由圆C 的方程为22230x y y +--=,表示圆心在(0,1)C ,半径为的圆,点()1,2P -到圆心的距()1,2P -在圆内,所以当AB CP ⊥时,AB 最小,此时11,1CP k k =-=,由点斜式方程可得,直线的方程为21y x -=+,即30x y -+=.考点:直线与圆的位置关系的应用. 15.【答案】 4 .【解析】解:作出不等式组对应的平面区域,则的几何意义为区域内的点到原点的斜率,由图象可知,OC的斜率最小,由,解得,即C(4,1),此时=4,故的最小值为4,故答案为:4【点评】本题主要考查线性规划的应用,利用直线斜率的定义以及数形结合是解决本题的关键.16.【答案】.【解析】解:若¬P为假命题,则p为真命题.不等式tx2+2x﹣2>0有属于(1,)的解,即有属于(1,)的解,又时,,所以.故t>﹣.故答案为t>﹣.17.【答案】﹣160【解析】解:由于(x﹣)6展开式的通项公式为T r+1=•(﹣2)r•x6﹣2r,令6﹣2r=0,求得r=3,可得(x﹣)6展开式的常数项为﹣8=﹣160,故答案为:﹣160.【点评】本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,求展开式中某项的系数,属于基础题.18.【答案】)3,0(【解析】构造函数x x f x F 3)()(-=,则03)(')('>-=x f x F ,说明)(x F 在R 上是增函数,且13)1()1(-=-=f F .又不等式1log 3)(log 33-<x x f 可化为1l o g 3)(l o g 33-<-x x f ,即)1()(l o g 3F x F <,∴1log 3<x ,解得30<<x .∴不等式1log 3)(log 33-<x x f 的解集为)3,0(. 三、解答题19.【答案】【解析】解:(1)把直线y=x+m 代入椭圆方程得:x 2+4(x+m )2=4,即:5x 2+8mx+4m 2﹣4=0, △=(8m )2﹣4×5×(4m 2﹣4)=﹣16m 2+80=0 解得:m=.(2)设该直线与椭圆相交于两点A (x 1,y 1),B (x 2,y 2), 则x 1,x 2是方程5x 2+8mx+4m 2﹣4=0的两根, 由韦达定理可得:x1+x 2=﹣,x 1•x 2=,∴|AB|====2;∴m=±.【点评】本题考查直线与圆锥曲线的位置关系与弦长问题,难点在于弦长公式的灵活应用,属于中档题.20.【答案】【解析】解:(Ⅰ)如图1,∵弦CD 垂直平分半径OA ,半径为2, ∴CF=DF ,OF=,∴在Rt △COF 中有∠COF=60°,CF=DF=,∵CE 为直径,∴DE ⊥CD , ∴OF ∥DE ,DE=2OF=2,∴,图2中,平面ACB ⊥平面ADE ,平面ACB ∩平面ADE=AB , 又CF ⊥AB ,CF ⊂平面ACB ,∴CF ⊥平面ADE ,则CF 是四棱锥C ﹣FDEO 的高,∴.(Ⅱ)在劣弧BC上是存在一点P(劣弧BC的中点),使得PE∥平面CDO.证明:分别连接PE,CP,OP,∵点P为劣弧BC弧的中点,∴,∵∠COF=60°,∴∠COP=60°,则△COP为等边三角形,∴CP∥AB,且,又∵DE∥AB且DE=,∴CP∥DE且CP=DE,∴四边形CDEP为平行四边形,∴PE∥CD,又PE⊄面CDO,CD⊂面CDO,∴PE∥平面CDO.【点评】本题以空间几何体的翻折为背景,考查空间几何体的体积,考查空间点、线、面的位置关系、线面平行及线面垂直等基础知识,考查空间想象能力,求解运算能力和推理论证能力,考查数形结合,化归与数学转化等思想方法,是中档题.21.【答案】【解析】解:(1)函数f(x)的定义域为(0,+∞),f′(x)=﹣k=0,∴x=,由ln﹣1+1=0,可得k=1;(2)当k≤0时,f′(x)=﹣k>0,f(x)在(0,+∞)上是增函数;当k>0时,若x∈(0,)时,有f′(x)>0,若x∈(,+∞)时,有f′(x)<0,则f(x)在(0,)上是增函数,在(,+∞)上是减函数.k≤0时,f(x)在(0,+∞)上是增函数,而f(1)=1﹣k>0,f(x)≤0不成立,故k>0,∵f(x)的最大值为f(),要使f(x)≤0恒成立,则f()≤0即可,即﹣lnk≤0,得k≥1.【点评】本题考查导数的几何意义,考查函数单调区间的求法,确定实数的取值范围,渗透了分类与整合的数学思想,培养学生的抽象概括能力、推理论证能力、运算求解能力和创新意识.22.【答案】【解析】(1)设(,)P x y ,00(,)M x y ,则0(,0)D x . ∵点P 与点Q 关于原点O 对称,∴2QP OP =. ∵QP OM OD =+,∴2OP OM OD =+,∴0002(,)(,)(,0)x y x y x =+,∴002x xy y =⎧⎨=⎩,∵22004x y +=,∴2244x y +=,∴动点P 的轨迹方程:2214x y +=. (2)当直线l 的斜率不存在时,显然不符合题意, ∴设直线l 的方程为y km m =+,由2244y km mx y =+⎧⎨+=⎩,得222(41)8440k x kmx m +++-=.∵直线l 与椭圆相切,∴2222644(41)(44)0k m k m ∆=-+-=,∴2241m k =+.原点O 到直线l的距离d =,则AB =,∴1222QAB S AB d ∆=⋅=4==≤,当22d =,即d =QAB ∆的面积取得最大值4.此时d ==2222m k =+,由22222241m k m k ⎧=+⎪⎨=+⎪⎩,解得m k ⎧=⎪⎨=⎪⎩ ∴直线l的方程为2y x =+2y x =2y x =-或2y x =--23.【答案】【解析】解:(1)∵函数f (x )=x 2﹣mx 在[1,+∞)上是单调函数∴x=≤1 ∴m ≤2∴实数m 的取值范围为(﹣∞,2];(2)由(1)知,函数f(x)=x2﹣mx在[1,+∞)上是单调增函数∵,∵∴2﹣cos2α>cos2α+3∴cos2α<∴∴α的取值范围为.【点评】本题考查函数的单调性,考查求解不等式,解题的关键是利用单调性确定参数的范围,将抽象不等式转化为具体不等式.24.【答案】【解析】解:(1)证明:∵AE=AF,∴∠AEF=∠AFE.又B,C,F,E四点共圆,∴∠ABC=∠AFE,∴∠AEF=∠ACB,又∠AEF=∠AFE,∴EF∥BC.(2)由(1)与∠B=60°知△ABC为正三角形,又EB=EF=2,∴AF=FC=2,设DE=x,DF=y,则AD=2-y,在△AED中,由余弦定理得DE2=AE2+AD2-2AD·AE cos A.即x2=(2-y)2+22-2(2-y)·2×1,2∴x2-y2=4-2y,①由切割线定理得DE2=DF·DC,即x2=y(y+2),∴x2-y2=2y,②由①②联解得y=1,x=3,∴ED= 3.。
漯河市高级中学2018-2019学年高三上学期11月月考数学试卷含答案
漯河市高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 已知函数f (x )=a x (a >0且a ≠1)在(0,2)内的值域是(1,a 2),则函数y=f (x )的图象大致是( )A .B .C .D .2. 函数f (x ﹣)=x 2+,则f (3)=( )A .8B .9C .11D .103. 已知双曲线,分别在其左、右焦点,点为双曲线的右支上2222:1(0,0)x y C a b a b-=>>12,F F P 的一点,圆为三角形的内切圆,所在直线与轴的交点坐标为,与双曲线的一条渐M 12PF F PM (1,0),则双曲线的离心率是( )C AB .2CD4. 过点(0,﹣2)的直线l 与圆x 2+y 2=1有公共点,则直线l 的倾斜角的取值范围是( )A .B .C .D .5. 已知实数x ,y 满足有不等式组,且z=2x+y 的最大值是最小值的2倍,则实数a 的值是()A .2B .C .D .6. 已知函数f (x )=是R 上的增函数,则a 的取值范围是( )A .﹣3≤a <0B .﹣3≤a ≤﹣2C .a ≤﹣2D .a <07. 已知抛物线x 2=﹣2y 的一条弦AB 的中点坐标为(﹣1,﹣5),则这条弦AB 所在的直线方程是( )A .y=x ﹣4B .y=2x ﹣3C .y=﹣x ﹣6D .y=3x ﹣28. 复数满足=i z ,则z 等于( )2+2z1-iA .1+iB .-1+iC .1-iD .-1-i9. 计算log 25log 53log 32的值为()A .1B .2C .4D .8班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________10.下列函数在其定义域内既是奇函数又是增函数的是( )A .B .C .D .11.已知、、的球面上,且,,球心到平面的距离为A B C AC BC ⊥30ABC ∠=oO ABC 1,点是线段的中点,过点作球的截面,则截面面积的最小值为( )M BC MO A B .CD .34π3π12.若P 是以F 1,F 2为焦点的椭圆=1(a>b >0)上的一点,且=0,tan ∠PF 1F 2=,则此椭圆的离心率为( )A .B .C .D .二、填空题13.已知2弧度的圆心角所对的弦长为2,那么这个圆心角所对弧长为 . 14.设复数z 满足z (2﹣3i )=6+4i (i 为虚数单位),则z 的模为 .15.自圆:外一点引该圆的一条切线,切点为,切线的长度等于点到C 22(3)(4)4x y -++=(,)P x y Q P 原点的长,则的最小值为( )O PQ A .B .3C .4D .13102110【命题意图】本题考查直线与圆的位置关系、点到直线的距离,意在考查逻辑思维能力、转化能力、运算求解能力、数形结合的思想.16.方程(x+y ﹣1)=0所表示的曲线是 .17.= .-23311+log 6-log 42()18.将全体正整数排成一个三角形数阵:按照以上排列的规律,第n 行(n ≥3)从左向右的第3个数为 .三、解答题19.(本小题满分12分)如图,在四棱锥中,底面为菱形,分别是棱的中点,且ABCD S -ABCD Q P E 、、AB SC AD 、、⊥SE 平面.ABCD ADOC B(1)求证:平面;//PQ SAD (2)求证:平面平面.SAC SEQ 20.已知数列{a n }的首项a 1=2,且满足a n+1=2a n +3•2n+1,(n ∈N *).(1)设b n =,证明数列{b n }是等差数列;(2)求数列{a n }的前n 项和S n .21.在平面直角坐标系xOy 中,点P (x ,y )满足=3,其中=(2x+3,y ),=(2x ﹣﹣3,3y ).(1)求点P 的轨迹方程;(2)过点F (0,1)的直线l 交点P 的轨迹于A ,B 两点,若|AB|=,求直线l 的方程.22.如图1,圆O 的半径为2,AB ,CE 均为该圆的直径,弦CD 垂直平分半径OA ,垂足为F ,沿直径AB 将半圆ACB 所在平面折起,使两个半圆所在的平面互相垂直(如图2)(Ⅰ)求四棱锥C ﹣FDEO 的体积(Ⅱ)如图2,在劣弧BC 上是否存在一点P (异于B ,C 两点),使得PE ∥平面CDO ?若存在,请加以证明;若不存在,请说明理由.23.【盐城中学2018届高三上第一次阶段性考试】已知函数f (x )=(2﹣a )(x ﹣1)﹣2lnx ,g (x )=(a 1x xe -.∈R ,e 为自然对数的底数)(Ⅰ)当a=1时,求f (x )的单调区间;(Ⅱ)若函数f (x )在上无零点,求a 的最小值;10,2⎛⎫⎪⎝⎭(Ⅲ)若对任意给定的x 0∈(0,e],在(0,e]上总存在两个不同的x i (i=1,2),使得f (x i )=g (x 0)成立,求a 的取值范围.24.现有5名男生和3名女生.(1)若3名女生必须相邻排在一起,则这8人站成一排,共有多少种不同的排法?(2)若从中选5人,且要求女生只有2名,站成一排,共有多少种不同的排法? 漯河市高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题题号12345678910答案B C CABBAAB题号1112答案BA二、填空题13. .14. 2 . 15.D16. 两条射线和一个圆 . 17.33218. 3+ .三、解答题19.(1)详见解析;(2)详见解析.20. 21. 22.23.(1) f (x )的单调减区间为(0,2],单调增区间为[2,+∞);(2) 函数f (x )在 上无零点,10,2⎛⎫⎪⎝⎭则a 的最小值为2﹣4ln2;(3)a 的范围是.3,21e ⎛⎤-∞- ⎥-⎝⎦24.。
漯河市二中2018-2019学年高三上学期11月月考数学试卷含答案
漯河市二中2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 若多项式 x 2+x 10=a 0+a 1(x+1)+…+a 8(x+1)8+a 9(x+1)9+a 10(x+1)10,则 a 8=( ) A .45 B .9 C .﹣45 D .﹣92. 设l ,m ,n 表示不同的直线,α,β,γ表示不同的平面,给出下列四个命题: ①若m ∥l ,m ⊥α,则l ⊥α; ②若m ∥l ,m ∥α,则l ∥α;③若α∩β=l ,β∩γ=m ,γ∩α=n ,则l ∥m ∥n ; ④若α∩β=l ,β∩γ=m ,γ∩α=n ,n ∥β,则l ∥m . 其中正确命题的个数是( )A .1B .2C .3D .43. 若函数f (x )=3﹣|x ﹣1|+m 的图象与x 轴没有交点,则实数m 的取值范围是( ) A .m ≥0或m <﹣1B .m >0或m <﹣1C .m >1或m ≤0D .m >1或m <04. 已知△ABC 是锐角三角形,则点P (cosC ﹣sinA ,sinA ﹣cosB )在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限5. 函数f (x )=Asin (ωx+θ)(A >0,ω>0)的部分图象如图所示,则f()的值为()A. B .0 C. D.6. 函数y=2sin 2x+sin2x 的最小正周期( ) A.B.C .πD .2π7. 已知向量=(1,2),=(x ,﹣4),若∥,则x=( ) A . 4 B . ﹣4 C . 2 D . ﹣28. 过点(﹣1,3)且平行于直线x ﹣2y+3=0的直线方程为( )A .x ﹣2y+7=0B .2x+y ﹣1=0C .x ﹣2y ﹣5=0D .2x+y ﹣5=09.如图给出的是计算的值的一个流程图,其中判断框内应填入的条件是( )班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A .i ≤21B .i ≤11C .i ≥21D .i ≥1110.已知圆C :x 2+y 2=4,若点P (x 0,y 0)在圆C 外,则直线l :x 0x+y 0y=4与圆C 的位置关系为( ) A .相离 B .相切 C .相交 D .不能确定11.等比数列{a n }中,a 3,a 9是方程3x 2﹣11x+9=0的两个根,则a 6=( )A .3B .C .±D .以上皆非12.已知椭圆Γ:22221(0)x y a b a b+=>>的焦距为2c ,左焦点为F ,若直线y x c =+与椭圆交于,A B 两点,且3AF FB =,则该椭圆的离心率是( )A .14B .12C .2D .2二、填空题13.i 是虚数单位,若复数(1﹣2i )(a+i )是纯虚数,则实数a 的值为 .14.已知z ,ω为复数,i 为虚数单位,(1+3i )z 为纯虚数,ω=,且|ω|=5,则复数ω= .15.设椭圆E :+=1(a >b >0)的右顶点为A 、右焦点为F ,B 为椭圆E 在第二象限上的点,直线BO交椭圆E 于点C ,若直线BF 平分线段AC ,则椭圆E 的离心率是 .16.函数()y f x =图象上不同两点()()1122,,,A x y B x y 处的切线的斜率分别是A B k k ,,规定(),A Bk k A B ABϕ-=(AB 为线段AB 的长度)叫做曲线()y f x =在点A 与点B 之间的“弯曲度”,给 出以下命题:①函数321y x x =-+图象上两点A 与B 的横坐标分别为1和2,则(),A B ϕ> ②存在这样的函数,图象上任意两点之间的“弯曲度”为常数;③设点A,B 是抛物线21y x =+上不同的两点,则(),2A B ϕ≤;④设曲线xy e =(e 是自然对数的底数)上不同两点()()112212,,,,1A x y B x y x x -=且,若(),1t A B ϕ⋅<恒成立,则实数t 的取值范围是(),1-∞.其中真命题的序号为________.(将所有真命题的序号都填上) 17.【泰州中学2018届高三10月月考】设函数()()21xf x ex ax a =--+,其中1a <,若存在唯一的整数0x ,使得()00f x <,则a 的取值范围是18.已知函数21,0()1,0x x f x x x ⎧-≤=⎨->⎩,()21x g x =-,则((2))f g = ,[()]f g x 的值域为 .【命题意图】本题考查分段函数的函数值与值域等基础知识,意在考查分类讨论的数学思想与运算求解能力.三、解答题19.已知直线l 1:(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立直角坐标系,圆C 1:ρ2﹣2ρcos θ﹣4ρsin θ+6=0.(1)求圆C 1的直角坐标方程,直线l 1的极坐标方程; (2)设l 1与C 1的交点为M ,N ,求△C 1MN 的面积.20.(本小题满分13分)在四棱锥P ABCD -中,底面ABCD 是梯形,//AB DC ,2ABD π∠=,AD =22AB DC ==,F为PA 的中点.(Ⅰ)在棱PB 上确定一点E ,使得//CE 平面PAD ;(Ⅱ)若PA PB PD ===P BDF -的体积.ABCDPF21.(本小题满分12分)某媒体对“男女延迟退休”这一公众关注的问题进行名意调查,下表是在某单位(Ⅱ)从赞同“男女延迟退休”的80人中,利用分层抽样的方法抽出8人,然后从中选出2人进行陈述 发言,求事件“选出的2人中,至少有一名女士”的概率.参考公式:22()K ()()()()n ad bc a b c d a c b d -=++++,()n a b c d =+++【命题意图】本题考查统计案例、抽样方法、古典概型等基础知识,意在考查统计的思想和基本运算能力22.【2017-2018第一学期东台安丰中学高三第一次月考】已知函数()2ln f x ax x =+,()21145ln 639f x x x x =++,()22122f x x ax =+,a R ∈ (1)求证:函数()f x 在点()(),e f e 处的切线恒过定点,并求出定点的坐标; (2)若()()2f x f x <在区间()1,+∞上恒成立,求a 的取值范围; (3)当23a =时,求证:在区间()0,+∞上,满足()()()12f x g x f x <<恒成立的函数()g x 有无穷多个.(记ln5 1.61,6 1.79ln ==)23.已知函数f(x)是定义在R上的奇函数,当x≥0时,.若,f(x-1)≤f(x),则实数a的取值范围为A[]B[]C[]D[]24.如图,菱形ABCD的边长为2,现将△ACD沿对角线AC折起至△ACP位置,并使平面PAC⊥平面ABC.(Ⅰ)求证:AC⊥PB;(Ⅱ)在菱形ABCD中,若∠ABC=60°,求直线AB与平面PBC所成角的正弦值;(Ⅲ)求四面体PABC体积的最大值.漯河市二中2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1.【答案】A【解析】解:a8 是x10=[﹣1+(x+1)]10的展开式中第九项(x+1)8的系数,∴a8==45,故选:A.【点评】本题主要考查二项展开式的通项公式,二项展开式系数的性质以及多项恒等式系数相等的性质,属于基础题.2.【答案】B【解析】解:∵①若m∥l,m⊥α,则由直线与平面垂直的判定定理,得l⊥α,故①正确;②若m∥l,m∥α,则l∥α或l⊂α,故②错误;③如图,在正方体ABCD﹣A1B1C1D1中,平面ABB1A1∩平面ABCD=AB,平面ABB1A1∩平面BCC1B1=BB1,平面ABCD∩平面BCC1B1=BC,由AB、BC、BB1两两相交,得:若α∩β=l,β∩γ=m,γ∩α=n,则l∥m∥n不成立,故③是假命题;④若α∩β=l,β∩γ=m,γ∩α=n,n∥β,则由α∩γ=n知,n⊂α且n⊂γ,由n⊂α及n∥β,α∩β=m,得n∥m,同理n∥l,故m∥l,故命题④正确.故选:B.【点评】本题考查命题真假的判断,是中档题,解题时要认真审题,注意空间思维能力的培养.3.【答案】A【解析】解:∵函数f(x)=3﹣|x﹣1|+m的图象与x轴没有交点,∴﹣m=3﹣|x﹣1|无解,∵﹣|x﹣1|≤0,∴0<3﹣|x﹣1|≤1,∴﹣m≤0或﹣m>1,解得m≥0或m>﹣1故选:A.4.【答案】B【解析】解:∵△ABC是锐角三角形,∴A+B>,∴A>﹣B,∴sinA>sin(﹣B)=cosB,∴sinA﹣cosB>0,同理可得sinA﹣cosC>0,∴点P在第二象限.故选:B5.【答案】C【解析】解:由图象可得A=,=﹣(﹣),解得T=π,ω==2.再由五点法作图可得2×(﹣)+θ=﹣π,解得:θ=﹣,故f(x)=sin(2x﹣),故f()=sin(﹣)=sin=,故选:C.【点评】本题主要考查由函数y=Asin(ωx+θ)的部分图象求函数的解析式,属于中档题.6.【答案】C【解析】解:函数y=2sin2x+sin2x=2×+sin2x=sin(2x﹣)+1,则函数的最小正周期为=π,故选:C.【点评】本题主要考查三角恒等变换,函数y=Asin(ωx+φ)的周期性,利用了函数y=Asin(ωx+φ)的周期为,属于基础题.7.【答案】D【解析】:解:∵∥,∴﹣4﹣2x=0,解得x=﹣2.故选:D.8.【答案】A【解析】解:由题意可设所求的直线方程为x ﹣2y+c=0∵过点(﹣1,3) 代入可得﹣1﹣6+c=0 则c=7∴x ﹣2y+7=0 故选A . 【点评】本题主要考查了直线方程的求解,解决本题的关键根据直线平行的条件设出所求的直线方程x ﹣2y+c=0.9. 【答案】D【解析】解:∵S=并由流程图中S=S+ 故循环的初值为1 终值为10、步长为1故经过10次循环才能算出S=的值,故i ≤10,应不满足条件,继续循环 ∴当i ≥11,应满足条件,退出循环 填入“i ≥11”. 故选D .10.【答案】C【解析】解:由点P (x 0,y 0)在圆C :x 2+y 2=4外,可得x 02+y 02>4,求得圆心C (0,0)到直线l :x 0x+y 0y=4的距离d=<=2,故直线和圆C 相交, 故选:C .【点评】本题主要考查点和圆的位置关系、直线和圆的位置关系,点到直线的距离公式的应用,属于基础题.11.【答案】C【解析】解:∵a 3,a 9是方程3x 2﹣11x+9=0的两个根, ∴a 3a 9=3,又数列{a n }是等比数列,则a62=a 3a 9=3,即a 6=±.故选C12.【答案】C【解析】22221x y a b y x c ⎧+=⎪⎨⎪=+⎩,得22222222()20a b y b cy b c a b +-+-=,∴22224()20a b y b cy b +--=,设1122(,),(,)A x y B x y ,∴24121222222,b c b y y y y a b a b-+==++. ∵3AF FB =,∴123y y =-,∴24222222222,3b c b y y a b a b-==++,∴2223a b c +=, ∴222a c =,∴2212c a =,∴2e =二、填空题13.【答案】 ﹣2 .【解析】解:由(1﹣2i )(a+i )=(a+2)+(1﹣2a )i 为纯虚数,得,解得:a=﹣2.故答案为:﹣2.14.【答案】 ±(7﹣i ) .【解析】解:设z=a+bi (a ,b ∈R ),∵(1+3i )z=(1+3i )(a+bi )=a ﹣3b+(3a+b )i 为纯虚数,∴.又ω===,|ω|=,∴.把a=3b 代入化为b 2=25,解得b=±5,∴a=±15.∴ω=±=±(7﹣i ).故答案为±(7﹣i ).【点评】熟练掌握复数的运算法则、纯虚数的定义及其模的计算公式即可得出.15.【答案】.【解析】解:如图,设AC 中点为M ,连接OM , 则OM 为△ABC 的中位线, 于是△OFM ∽△AFB,且==,即=可得e==.故答案为:.【点评】本题考查椭圆的方程和性质,主要是离心率的求法,运用中位线定理和三角形相似的性质是解题的关键.16.【答案】②③ 【解析】试题分析:①错:(1,1),(2,5),|||7,A B A B AB k k -=(,)A B ϕ∴=<②对:如1y =;③对;(,)2A B ϕ==≤;④错;1212(,)x x x x A B ϕ==,1211,(,)A B ϕ==>因为1(,)t A B ϕ<恒成立,故1t ≤.故答案为②③.111] 考点:1、利用导数求曲线的切线斜率;2、两点间的距离公式、最值问题、不等式恒成立问题.【方法点晴】本题通过新定义“弯曲度”对多个命题真假的判断考查利用导数求曲线的切线斜率、两点间的距离公式、最值问题、不等式恒成立问题以及及数学化归思想,属于难题.该题型往往出现在在填空题最后两题,综合性较强,同学们往往因为某一点知识掌握不牢就导致本题“全盘皆输”,解答这类问题首先不能慌乱更不能因贪快而审题不清,其次先从最有把握的命题入手,最后集中力量攻坚最不好理解的命题. 17.【答案】【解析】试题分析:设,由题设可知存在唯一的整数0x,使得在直线的下方.因为,故当时,,函数单调递减;当时,,函数单调递增;故,而当时,,故当且,解之得,应填答案3,12e ⎡⎫⎪⎢⎣⎭. 考点:函数的图象和性质及导数知识的综合运用.【易错点晴】本题以函数存在唯一的整数零点0x ,使得()00f x <为背景,设置了一道求函数解析式中的参数的取值范围问题,目的是考查函数的图象和性质及导数在研究函数的单调性最值等有关知识的综合运用.同时也综合考查学生运用所学知识去分析问题解决问题的能力.求解时先运用等价转化得到数学思想将问题等价转化为存在唯一的整数0x ,使得在直线的下方.然后再借助导数的知识求出函数的最小值,依据题设建立不等式组求出解之得.18.【答案】2,[1,)-+∞. 【解析】三、解答题19.【答案】 【解析】解:(1)∵,将其代入C 1得:,∴圆C 1的直角坐标方程为:. 由直线l 1:(t 为参数),消去参数可得:y=x ,可得(ρ∈R ). ∴直线l 1的极坐标方程为:(ρ∈R ).(2),可得⇒,∴.【点评】本题考查了极坐标方程化为直角坐标方程、参数方程化为普通方程、三角形面积计算公式,考查了推理能力与计算能力,属于中档题.20.【答案】(本小题满分13分)解:(Ⅰ)当E 为PB 的中点时,//CE 平面PAD . (1分) 连结EF 、EC ,那么//EF AB ,12EF AB =.∵//DC AB ,12DC AB =,∴//EF DC ,EF DC =,∴//EC FD . (3分) 又∵CE ⊄平面PAD , FD ⊂平面PAD ,∴//CE 平面PAD . (5分)(Ⅱ)设O 为AD 的中点,连结OP 、OB ,∵PA PD =,∴OP AD ⊥, 在直角三角形ABD 中,12OB AD OA ==, 又∵PA PB =,∴PAO PBO ∆≅∆,∴POA POB ∠=∠,∴OP OB ⊥,∴OP ⊥平面ABD . (10分)2222(6)(2)2PO PA AO =-=-=,222BD AD AB =-=∴三棱锥P BDF -的体积1112222233P BDF P ABD V V --==⨯⨯⨯=. (13分)21.【答案】【解析】(Ⅰ)根据题中的数据计算:()224005017030150 6.2580320200200⨯⨯-⨯K ==⨯⨯⨯ 因为6.25>5.024,所以有97.5%的把握认为对这一问题的看法与性别有关 (Ⅱ)由已知得抽样比为81=8010,故抽出的8人中,男士有5人,女士有3人.分别设为,,,,,1,2,3a b c d e ,选取2人共有{},a b ,{},a c ,{},a d ,{},a e ,{},1a ,{},2a ,{},3a ,{},b c ,{},b d ,{},b e ,{},1b ,{},2b ,{},3b ,{},c d ,{},c e ,{},1c ,{},2c ,{},3c ,{},d e ,{},1d ,{},2d ,{},3d ,{},1e ,{},2e ,{},3e ,{}1,2,{}1,3,{}2,328个基本事件,其中事件“选出的2人中,至少有一名女士”包含18个基本事件,故所求概率为189=2814P =. 22.【答案】(1)切线恒过定点1,22e ⎛⎫⎪⎝⎭.(2) a 的范围是11,22⎡⎤-⎢⎥⎣⎦ (3) 在区间()1,+∞上,满足()()()12f x g x f x <<恒成立函数()g x 有无穷多个【解析】试题分析:(1)根据导数的几何意义求得切线方程为11222e y ae x e ⎛⎫⎛⎫-=+- ⎪⎪⎝⎭⎝⎭,故过定点1,22e ⎛⎫ ⎪⎝⎭;试题解析:ACDPOE F(1)因为()12f x ax x '=+,所以()f x 在点()(),e f e 处的切线的斜率为12k ae e=+, 所以()f x 在点()(),e f e 处的切线方程为()2121y ae x e ae e ⎛⎫=+-++ ⎪⎝⎭,整理得11222e y ae x e ⎛⎫⎛⎫-=+- ⎪⎪⎝⎭⎝⎭,所以切线恒过定点1,22e ⎛⎫⎪⎝⎭.(2)令()()()2p x f x f x =-=212ln 02a x ax x ⎛⎫--+< ⎪⎝⎭,对()1,x ∈+∞恒成立,因为()()1212p x a x a x =--+'()22121a x ax x --+=()()()1211*x a x x⎡⎤---⎣⎦= 令()0p x '=,得极值点11x =,2121x a =-,①当112a <<时,有211x x >=,即112a <<时,在()2,x +∞上有()0p x '>,此时()p x 在区间()2,x +∞上是增函数,并且在该区间上有()()()2,p x p x ∈+∞,不合题意;②当1a ≥时,有211x x <=,同理可知,()p x 在区间()1,+∞上,有()()()1,p x p ∈+∞,也不合题意; ③当12a ≤时,有210a -≤,此时在区间()1,+∞上恒有()0p x '<, 从而()p x 在区间()1,+∞上是减函数;要使()0p x <在此区间上恒成立,只须满足()111022p a a =--≤⇒≥-, 所以1122a -≤≤. 综上可知a 的范围是11,22⎡⎤-⎢⎥⎣⎦. (利用参数分离得正确答案扣2分)(3)当23a =时,()21145ln 639f x x x x =++,()221423f x x x =+ 记()()22115ln 39y f x f x x x =-=-,()1,x ∈+∞.因为22565399x x y x x='-=-,令0y '=,得x =所以()()21y f x f x =-在⎛ ⎝为减函数,在⎫+∞⎪⎪⎭上为增函数,所以当x =时,min 59180y =设()()()15901180R x f x λλ=+<<,则()()()12f x R x f x <<,所以在区间()1,+∞上,满足()()()12f x g x f x <<恒成立函数()g x 有无穷多个 23.【答案】B 【解析】当x ≥0时,f (x )=,由f (x )=x ﹣3a 2,x >2a 2,得f (x )>﹣a 2; 当a 2<x <2a 2时,f (x )=﹣a 2;由f (x )=﹣x ,0≤x ≤a 2,得f (x )≥﹣a 2。
漯河市第三高级中学2018-2019学年高三上学期11月月考数学试卷含答案
漯河市第三高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 在等差数列{}n a 中,11a =,公差0d ,n S 为{}n a 的前n 项和.若向量13(,)m a a =,133(,)n a a =-, 且0m n ?,则2163n n S a ++的最小值为( )A .4B .3 C.2 D .92【命题意图】本题考查等差数列的性质,等差数列的前n 项和,向量的数量积,基本不等式等基础知识,意在考查学生的学生运算能力,观察分析,解决问题的能力. 2. 把函数y=cos (2x+φ)(|φ|<)的图象向左平移个单位,得到函数y=f (x )的图象关于直线x=对称,则φ的值为( ) A.﹣B.﹣C.D.3. 三个数a=0.52,b=log 20.5,c=20.5之间的大小关系是( ) A .b <a <c B .a <c <b C .a <b <c D .b <c <a 4. 已知x ,y满足,且目标函数z=2x+y 的最小值为1,则实数a 的值是( ) A .1B.C.D.5. 已知函数f (x )=a x ﹣1+log a x 在区间[1,2]上的最大值和最小值之和为a ,则实数a 为( ) A. B.C .2D .4 6.=( ) A .2B .4C .πD .2π7. 抛物线y 2=2x 的焦点到直线x﹣y=0的距离是( )A.B.C.D.8. 定义在R 上的奇函数f (x )满足f (x+3)=f (x ),当0<x ≤1时,f (x )=2x ,则f (2015)=( ) A .2B .﹣2C.﹣D.9. 如图所示,程序执行后的输出结果为( )班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A .﹣1B .0C .1D .2 10.sin45°sin105°+sin45°sin15°=( )A .0B .C .D .111.如果点P (sin θcos θ,2cos θ)位于第二象限,那么角θ所在象限是( )A .第一象限B .第二象限C .第三象限D .第四象限12.单位正方体(棱长为1)被切去一部分,剩下部分几何体的三视图如图所示,则( )A .该几何体体积为B .该几何体体积可能为C .该几何体表面积应为+D .该几何体唯一二、填空题13.在ABC ∆中,有等式:①sin sin a A b B =;②sin sin a B b A =;③cos cos a B b A =;④sin sin sin a b cA B C+=+.其中恒成立的等式序号为_________. 14.数列{a n }是等差数列,a 4=7,S 7= .15.在ABC ∆中,已知sin :sin :sin 3:5:7A B C =,则此三角形的最大内角的度数等 于__________.16.若6()mx y +展开式中33x y 的系数为160-,则m =__________.【命题意图】本题考查二项式定理的应用,意在考查逆向思维能力、方程思想.17.已知圆C 1:(x ﹣2)2+(y ﹣3)2=1,圆C 2:(x ﹣3)2+(y ﹣4)2=9,M ,N 分别是圆C 1,C 2上的动点,P 为x 轴上的动点,则|PM|+|PN|的最小值 .18.已知函数()f x 23(2)5x =-+,且12|2||2|x x ->-,则1()f x ,2()f x 的大小关系 是 .三、解答题19.(本小题满分12分)两个人在进行一项掷骰子放球游戏中,规定:若掷出1点,甲盒中放一球;若掷出2点或3点,乙盒中 放一球;若掷出4点或5点或6点,丙盒中放一球,前后共掷3次,设,,x y z 分别表示甲,乙,丙3个 盒中的球数.(1)求0x =,1y =,2z =的概率;(2)记x y ξ=+,求随机变量ξ的概率分布列和数学期望.【命题意图】本题考查频离散型随机变量及其分布列等基础知识,意在考查学生的统计思想和基本的运算能力.20.【无锡市2018届高三上期中基础性检测】在一块杂草地上有一条小路AB,现在小路的一边围出一个三角形(如图)区域,在三角形ABC 内种植花卉.已知AB 长为1千米,设角,C θ=AC 边长为BC 边长的()1a a >倍,三角形ABC 的面积为S (千米2). 试用θ和a 表示S ;(2)若恰好当60θ=时,S 取得最大值,求a 的值.21.已知A 、B 、C 为△ABC 的三个内角,他们的对边分别为a 、b 、c ,且.(1)求A ;(2)若,求bc 的值,并求△ABC 的面积.22.如图,在四棱锥P ﹣ABCD 中,PD ⊥平面ABCD ,PD=DC=BC=1,AB=2,AB ∥DC ,∠BCD=90°. (1)求证:PC ⊥BC ;(2)求点A 到平面PBC 的距离.23.(本题满分15分)如图,已知长方形ABCD 中,2AB =,1AD =,M 为DC 的中点,将ADM ∆沿AM 折起,使得平面⊥ADM 平面ABCM .(1)求证:BM AD ⊥;(2)若)10(<<=λλDB DE ,当二面角D AM E --大小为3π时,求λ的值.【命题意图】本题考查空间点、线、面位置关系,二面角等基础知识,意在考查空间想象能力和运算求解能力.24.在直角坐标系xOy中,圆C的参数方程(φ为参数).以O为极点,x轴的非负半轴为极轴建立极坐标系.(Ⅰ)求圆C的极坐标方程;(Ⅱ)直线l的极坐标方程是ρ(sinθ+)=3,射线OM:θ=与圆C的交点为O,P,与直线l的交点为Q,求线段PQ的长.漯河市第三高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1.【答案】A【解析】2.【答案】B【解析】解:把函数y=cos(2x+φ)(|φ|<)的图象向左平移个单位,得到函数y=f(x)=cos[2(x+)+φ]=cos(2x+φ+)的图象关于直线x=对称,则2×+φ+=kπ,求得φ=kπ﹣,k∈Z,故φ=﹣,故选:B.3.【答案】A【解析】解:∵a=0.52=0.25,b=log20.5<log21=0,c=20.5>20=1,∴b<a<c.故选:A.【点评】本题考查三个数的大小的比较,是基础题,解题时要认真审题,注意指数函数、对数函数的单调性的合理运用.4.【答案】B【解析】解:由约束条件作出可行域如图,由图可知A(a,a),化目标函数z=2x+y为y=﹣2x+z,由图可知,当直线y=﹣2x+z过A(a,a)时直线在y轴上的截距最小,z最小,z的最小值为2a+a=3a=1,解得:a=.故选:B.【点评】本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.5.【答案】A【解析】解:分两类讨论,过程如下:①当a>1时,函数y=a x﹣1和y=log a x在[1,2]上都是增函数,∴f(x)=a x﹣1+log a x在[1,2]上递增,∴f(x)max+f(x)min=f(2)+f(1)=a+log a2+1=a,∴log a2=﹣1,得a=,舍去;②当0<a<1时,函数y=a x﹣1和y=log a x在[1,2]上都是减函数,∴f(x)=a x﹣1+log a x在[1,2]上递减,∴f(x)max+f(x)min=f(2)+f(1)=a+log a2+1=a,∴log a2=﹣1,得a=,符合题意;故选A.6.【答案】A【解析】解:∵(﹣cosx﹣sinx)′=sinx﹣cosx,∴==2.故选A.7.【答案】C【解析】解:抛物线y2=2x的焦点F(,0),由点到直线的距离公式可知:F到直线x﹣y=0的距离d==,故答案选:C.8.【答案】B【解析】解:因为f(x+3)=f(x),函数f(x)的周期是3,所以f(2015)=f(3×672﹣1)=f(﹣1);又因为函数f(x)是定义R上的奇函数,当0<x≤1时,f(x)=2x,所以f(﹣1)=﹣f(1)=﹣2,即f(2015)=﹣2.故选:B.【点评】本题主要考查了函数的周期性、奇偶性的运用,属于基础题,解答此题的关键是分析出f(2015)=f (3×672﹣1)=f(﹣1).9.【答案】B【解析】解:执行程序框图,可得n=5,s=0满足条件s<15,s=5,n=4满足条件s<15,s=9,n=3满足条件s<15,s=12,n=2满足条件s<15,s=14,n=1满足条件s<15,s=15,n=0不满足条件s<15,退出循环,输出n的值为0.故选:B.【点评】本题主要考查了程序框图和算法,正确判断退出循环时n的值是解题的关键,属于基础题.10.【答案】C【解析】解:sin45°sin105°+sin45°sin15°=cos45°cos15°+sin45°sin15°=cos(45°﹣15°)=cos30°=.故选:C.【点评】本题主要考查了诱导公式,两角差的余弦函数公式,特殊角的三角函数值在三角函数化简求值中的应用,考查了转化思想,属于基础题.11.【答案】D 【解析】解:∵P (sin θcos θ,2cos θ)位于第二象限,∴sin θcos θ<0,cos θ>0,∴sin θ<0, ∴θ是第四象限角. 故选:D .【点评】本题考查了象限角的三角函数符号,属于基础题.12.【答案】C【解析】解:由已知中三视图可得该几何体是由一个边长为1的正方体,截掉一个角(三棱锥)得到 且该三棱锥有条过同一顶点且互相垂直的棱长均为1该几何体的表面积由三个正方形,有三个两直角边为1的等腰直角三角形和一个边长为的正三角形组成故其表面积S=3•(1×1)+3•(×1×1)+•()2=.故选:C .【点评】本题考查的知识点是由三视图求表面积,其中根据三视图分析出该几何的形状及各边边长是解答本题的关键.二、填空题13.【答案】②④ 【解析】试题分析:对于①中,由正弦定理可知sin sin a A b B =,推出A B =或2A B π+=,所以三角形为等腰三角形或直角三角形,所以不正确;对于②中,sin sin a B b A =,即sin sin sin sin A B B A =恒成立,所以是正确的;对于③中,cos cos a B b A =,可得sin()0B A -=,不满足一般三角形,所以不正确;对于④中,由正弦定理以及合分比定理可知sin sin sin a b cA B C+=+是正确,故选选②④.1 考点:正弦定理;三角恒等变换. 14.【答案】49【解析】解:==7a 4 =49. 故答案:49.【点评】本题考查等差数列的性质和应用,解题时要认真审题,仔细求解.15.【答案】120 【解析】考点:解三角形.【方法点晴】本题主要考查了解三角形问题,其中解答中涉及到三角形的正弦定理、余弦定理的综合应用,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,属于基础题,本题的解答中根据sin :sin :sin 3:5:7A B C =,根据正弦定理,可设3,5,7a b ===,即可利用余弦定理求解最大角的余弦,熟记正弦、余弦定理的公式是解答的关键.16.【答案】2-【解析】由题意,得336160C m =-,即38m =-,所以2m =-.17.【答案】 5﹣4 .【解析】解:如图,圆C 1关于x 轴的对称圆的圆心坐标A (2,﹣3),半径为1,圆C 2的圆心坐标(3,4),半径为3,|PM|+|PN|的最小值为圆A 与圆C 2的圆心距减去两个圆的半径和,即:﹣4=5﹣4.故答案为:5﹣4.【点评】本题考查圆的对称圆的方程的求法,考查两个圆的位置关系,两点距离公式的应用,考查转化思想与计算能力,考查数形结合的数学思想,属于中档题.18.【答案】12()()f x f x >] 【解析】考点:不等式,比较大小.【思路点晴】本题主要考查二次函数与一元二次方程及一元二次不等式三者的综合应用. 分析二次函数的图象,主要有两个要点:一个是看二次项系数的符号,它确定二次函数图象的开口方向;二是看对称轴和最值,它确定二次函数的具体位置.对于函数图象判断类似题要会根据图象上的一些特殊点进行判断,如函数图象与正半轴的交点,函数图象的最高点与最低点等.三、解答题19.【答案】【解析】(1)由0x =,1y =,2z =知,甲、乙、丙3个盒中的球数分别为0,1,2, 此时的概率213111324P C ⎛⎫=⨯⨯= ⎪⎝⎭. (4分)20.【答案】(1)21sin 212cos a S a a θθ=⋅+- (2)2a =+【解析】试题解析:(1)设边BC x =,则AC ax =,在三角形ABC 中,由余弦定理得: 22212cos x ax ax θ=+-, 所以22112cos x a a θ=+-, 所以211sin 2212cos a S ax x sin a a θθθ=⋅⋅=⋅+-, (2)因为()()222cos 12cos 2sin sin 1212cos a a a a a S a a θθθθθ+--⋅=+-'⋅, ()()2222cos 121212cos a a a a a θθ+-=⋅+-, 令0S '=,得022cos ,1a aθ=+ 且当0θθ<时,022cos 1a a θ>+,0S '>, 当0θθ>时,022cos 1a a θ<+,0S '<, 所以当0θθ=时,面积S 最大,此时0060θ=,所以22112a a =+,解得2a =因为1a >,则2a =点睛:解三角形的实际应用,首先转化为几何思想,将图形对应到三角形,找到已知条件,本题中对应知道一个角,一条边,及其余两边的比例关系,利用余弦定理得到函数方程;面积最值的处理过程中,若函数比较复杂,则借助导数去求解最值。
漯河市第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案
漯河市第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 投篮测试中,每人投3次,至少投中2次才能通过测试.己知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为( ) A .0.648 B .0.432 C .0.36 D .0.3122. 下列推断错误的是( )A .命题“若x 2﹣3x+2=0,则x=1”的逆否命题为“若x ≠1则x 2﹣3x+2≠0”B .命题p :存在x 0∈R ,使得x 02+x 0+1<0,则非p :任意x ∈R ,都有x 2+x+1≥0C .若p 且q 为假命题,则p ,q 均为假命题D .“x <1”是“x 2﹣3x+2>0”的充分不必要条件3. 设集合3|01x A x x -⎧⎫=<⎨⎬+⎩⎭,集合(){}2|220B x x a x a =+++>,若 A B ⊆,则的取值范围 ( )A .1a ≥B .12a ≤≤ C.a 2≥ D .12a ≤< 4.如果向量满足,且,则的夹角大小为( )A .30°B .45°C .75°D .135°5. 定义运算:,,a a ba b b a b≤⎧*=⎨>⎩.例如121*=,则函数()sin cos f x x x =*的值域为( )A.⎡⎢⎣⎦ B .[]1,1- C.⎤⎥⎣⎦ D.⎡-⎢⎣⎦ 6. 如图所示程序框图中,输出S=( )A .45B .﹣55C .﹣66D .667. 已知椭圆,长轴在y 轴上,若焦距为4,则m 等于( )A .4B .5C .7D .8班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________8. 设偶函数f (x )在(0,+∞)上为减函数,且f (2)=0,则不等式>0的解集为( )A .(﹣2,0)∪(2,+∞)B .(﹣∞,﹣2)∪(0,2)C .(﹣∞,﹣2)∪(2,+∞)D .(﹣2,0)∪(0,2)9. 已知f (x )=,则f (2016)等于( )A .﹣1B .0C .1D .210.某几何体的三视图如图所示,则该几何体为( )A .四棱柱B .四棱锥C .三棱台D .三棱柱 11.下列满足“∀x ∈R ,f (x )+f (﹣x )=0且f ′(x )≤0”的函数是( ) A .f (x )=﹣xe |x| B .f (x )=x+sinx C .f (x )=D .f (x )=x 2|x|12.设n S 是等差数列{}n a 的前项和,若5359a a =,则95SS =( ) A .1 B .2 C .3 D .4二、填空题13.若与共线,则y= .14.函数y=f (x )的图象在点M (1,f (1))处的切线方程是y=3x ﹣2,则f (1)+f ′(1)= .15.如图,在正方体ABCD ﹣A 1B 1C 1D 1中,点P 、Q 分别是B 1C 1、CC 1的中点,则直线A 1P 与DQ 的位置关系是 .(填“平行”、“相交”或“异面”)16.若等比数列{a n }的前n 项和为S n,且,则= .17.定义在[1,+∞)上的函数f (x )满足:(1)f (2x )=2f (x );(2)当2≤x ≤4时,f (x )=1﹣|x ﹣3|,则集合S={x|f (x )=f (34)}中的最小元素是 .18.已知函数f(x)=x3﹣ax2+3x在x∈[1,+∞)上是增函数,求实数a的取值范围.三、解答题19.在直角坐标系xOy中,已知一动圆经过点(2,0)且在y轴上截得的弦长为4,设动圆圆心的轨迹为曲线C.(1)求曲线C的方程;111](2)过点(1,0)作互相垂直的两条直线,,与曲线C交于A,B两点与曲线C交于E,F两点,线段AB,EF的中点分别为M,N,求证:直线MN过定点P,并求出定点P的坐标.20.全集U=R,若集合A={x|3≤x<10},B={x|2<x≤7},(1)求A∪B,(∁U A)∩(∁U B);(2)若集合C={x|x>a},A⊆C,求a的取值范围.21.如图,ABCD是边长为3的正方形,DE⊥平面ABCD,AF∥DE,DE=3AF,BE与平面ABCD所成角为60°.(Ⅰ)求证:AC⊥平面BDE;(Ⅱ)求二面角F﹣BE﹣D的余弦值;(Ⅲ)设点M是线段BD上一个动点,试确定点M的位置,使得AM∥平面BEF,并证明你的结论.22.已知圆C经过点A(﹣2,0),B(0,2),且圆心在直线y=x上,且,又直线l:y=kx+1与圆C相交于P、Q两点.(Ⅰ)求圆C的方程;(Ⅱ)若,求实数k的值;(Ⅲ)过点(0,1)作直线l1与l垂直,且直线l1与圆C交于M、N两点,求四边形PMQN面积的最大值.23.已知向量=(x,y),=(1,0),且(+)•(﹣)=0.(1)求点Q(x,y)的轨迹C的方程;(2)设曲线C与直线y=kx+m相交于不同的两点M、N,又点A(0,﹣1),当|AM|=|AN|时,求实数m的取值范围.24.如图,在四棱锥O﹣ABCD中,底面ABCD四边长为1的菱形,∠ABC=,OA⊥底面ABCD,OA=2,M为OA的中点,N为BC的中点.(Ⅰ)证明:直线MN∥平面OCD;(Ⅱ)求异面直线AB与MD所成角的大小;(Ⅲ)求点B到平面OCD的距离.漯河市第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1.【答案】A【解析】解:由题意可知:同学3次测试满足X∽B(3,0.6),该同学通过测试的概率为=0.648.故选:A.2.【答案】C【解析】解:对于A,命题“若x2﹣3x+2=0,则x=1”的逆否命题为“若x≠1则x2﹣3x+2≠0”,正确;对于B,命题p:存在x0∈R,使得x02+x0+1<0,则非p:任意x∈R,都有x2+x+1≥0,正确;对于C,若p且q为假命题,则p,q至少有一个为假命题,故C错误;对于D,x2﹣3x+2>0⇒x>2或x<1,故“x<1”是“x2﹣3x+2>0”的充分不必要条件,正确.综上所述,错误的选项为:C,故选:C.【点评】本题考查命题的真假判断与应用,着重考查全称命题与特称命题的理解与应用,考查复合命题与充分必要条件的真假判断,属于中档题.3.【答案】A【解析】考点:集合的包含关系的判断与应用.【方法点晴】本题主要考查了集合的包含关系的判定与应用,其中解答中涉及到分式不等式的求解,一元二次不等式的解法,集合的子集的相关的运算等知识点的综合考查,着重考查了转化与化归思想、分类讨论思想的应用,以及学生的推理与运算能力,属于中档试题,本题的解答中正确求解每个不等式的解集是解答的关键. 4.【答案】B【解析】解:由题意故,即故两向量夹角的余弦值为=故两向量夹角的取值范围是45°故选B【点评】本题考点是数量积表示两个向量的夹角,考查利用向量内积公式的变形形式求向量夹角的余弦,并进而求出两向量的夹角.属于基础公式应用题.5.【答案】D【解析】考点:1、分段函数的解析式;2、三角函数的最值及新定义问题.6.【答案】B【解析】解:由程序框图知,第一次运行T=(﹣1)2•12=1,S=0+1=1,n=1+1=2;第二次运行T=(﹣1)3•22=﹣4,S=1﹣4=﹣3,n=2+1=3;第三次运行T=(﹣1)4•32=9,S=1﹣4+9=6,n=3+1=4;…直到n=9+1=10时,满足条件n>9,运行终止,此时T=(﹣1)10•92,S=1﹣4+9﹣16+…+92﹣102=1+(2+3)+(4+5)+(6+7)+(8+9)﹣100=×9﹣100=﹣55.故选:B.【点评】本题考查了循环结构的程序框图,判断算法的功能是解答本题的关键.7.【答案】D【解析】解:将椭圆的方程转化为标准形式为,显然m﹣2>10﹣m,即m>6,,解得m=8故选D【点评】本题主要考查了椭圆的简单性质.要求学生对椭圆中对长轴和短轴即及焦距的关系要明了.8.【答案】B【解析】解:∵f(x)是偶函数∴f(﹣x)=f(x)不等式,即也就是xf(x)>0①当x>0时,有f(x)>0∵f(x)在(0,+∞)上为减函数,且f(2)=0∴f(x)>0即f(x)>f(2),得0<x<2;②当x<0时,有f(x)<0∵﹣x>0,f(x)=f(﹣x)<f(2),∴﹣x>2⇒x<﹣2综上所述,原不等式的解集为:(﹣∞,﹣2)∪(0,2)故选B9.【答案】D【解析】解:∵f(x)=,∴f(2016)=f(2011)=f(2006)=…=f(1)=f(﹣4)=log24=2,故选:D.【点评】本题考查的知识点是分段函数的应用,函数求值,难度不大,属于基础题.10.【答案】A【解析】试题分析:由三视图可知,该几何体是底面为直角梯形的直四棱柱,直角梯形的上下底分别为3和4,直角腰为1,棱柱的侧棱长为1,故选A.考点:三视图【方法点睛】本题考查了三视图的问题,属于基础题型,三视图主要还是来自简单几何体,所以需掌握三棱锥,四棱锥的三视图,尤其是四棱锥的放置方法,比如正常放置,底面就是底面,或是以其中一个侧面当底面的放置方法,还有棱柱,包含三棱柱,四棱柱,比如各种角度,以及以底面当底面,或是以侧面当底面的放置方法,还包含旋转体的三视图,以及一些组合体的三视图,只有先掌握这些,再做题时才能做到胸有成竹. 11.【答案】A【解析】解:满足“∀x∈R,f(x)+f(﹣x)=0,且f′(x)≤0”的函数为奇函数,且在R上为减函数,A中函数f(x)=﹣xe|x|,满足f(﹣x)=﹣f(x),即函数为奇函数,且f′(x)=≤0恒成立,故在R上为减函数,B中函数f(x)=x+sinx,满足f(﹣x)=﹣f(x),即函数为奇函数,但f′(x)=1+cosx≥0,在R上是增函数,C中函数f(x)=,满足f(﹣x)=f(x),故函数为偶函数;D中函数f(x)=x2|x|,满足f(﹣x)=f(x),故函数为偶函数,故选:A.12.【答案】A【解析】1111]试题分析:199515539()9215()52a aS aa aS a+===+.故选A.111]考点:等差数列的前项和.二、填空题13.【答案】﹣6.【解析】解:若与共线,则2y﹣3×(﹣4)=0解得y=﹣6故答案为:﹣6【点评】本题考查的知识点是平面向量共线(平行)的坐标表示,其中根据“两个向量若平行,交叉相乘差为零”的原则,构造关于y的方程,是解答本题的关键.14.【答案】4.【解析】解:由题意得f′(1)=3,且f(1)=3×1﹣2=1所以f(1)+f′(1)=3+1=4.故答案为4.【点评】本题主要考查导数的几何意义,要注意分清f(a)与f′(a).15.【答案】相交【分析】由已知得PQ∥A1D,PQ=A1D,从而四边形A1DQP是梯形,进而直线A1P与DQ相交.【解析】解:∵在正方体ABCD﹣A1B1C1D1中,点P、Q分别是B1C1、CC1的中点,∴PQ∥A1D,∵直线A1P与DQ共面,∴PQ=A1D,∴四边形A1DQP是梯形,∴直线A1P与DQ相交.故答案为:相交.【点评】本题考查两直线位置关系的判断,是基础题,解题时要认真审题,注意空间思维能力的培养.16.【答案】.【解析】解:∵等比数列{a n}的前n项和为S n,且,∴S4=5S2,又S2,S4﹣S2,S6﹣S4成等比数列,∴(S4﹣S2)2=S2(S6﹣S4),∴(5S2﹣S2)2=S2(S6﹣5S2),解得S6=21S2,∴==.故答案为:.【点评】本题考查等比数列的求和公式和等比数列的性质,用S2表示S4和S6是解决问题的关键,属中档题.17.【答案】6【解析】解:根据题意,得;∵f(2x)=2f(x),∴f(34)=2f(17)=4f()=8f()=16f();又∵当2≤x≤4时,f(x)=1﹣|x﹣3|,∴f()=1﹣|﹣3|=,∴f(2x)=16×=2;当2≤x≤4时,f(x)=1﹣|x﹣3|≤1,不存在;当4≤x≤8时,f(x)=2f()=2[1﹣|﹣3|]=2,解得x=6;故答案为:6.【点评】本题考查了根据函数的解析式求函数值以及根据函数值求对应自变量的最小值的应用问题,是基础题目.18.【答案】 (﹣∞,3] .【解析】解:f ′(x )=3x 2﹣2ax+3, ∵f (x )在[1,+∞)上是增函数,∴f ′(x )在[1,+∞)上恒有f ′(x )≥0,即3x 2﹣2ax+3≥0在[1,+∞)上恒成立.则必有≤1且f ′(1)=﹣2a+6≥0, ∴a ≤3;实数a 的取值范围是(﹣∞,3].三、解答题19.【答案】(1) 24y x =;(2)证明见解析;(3,0). 【解析】(2)易知直线,的斜率存在且不为0,设直线的斜率为,11(,)A x y ,22(,)B x y , 则直线:(1)y k x =-,1212(,)22x x y y M ++, 由24,(1),y x y k x ⎧=⎨=-⎩得2222(24)0k x k x k -++=, 2242(24)416160k k k ∆=+-=+>,考点:曲线的轨迹方程;直线与抛物线的位置关系.【易错点睛】导数法解决函数的单调性问题:(1)当)(x f 不含参数时,可通过解不等式)0)((0)(''<>x f x f 直接得到单调递增(或递减)区间.(2)已知函数的单调性,求参数的取值范围,应用条件),(),0)((0)(''b a x x f x f ∈≤≥恒成立,解出参数的取值范围(一般可用不等式恒成立的理论求解),应注意参数的取值是)('x f 不恒等于的参数的范围. 20.【答案】【解析】解:(1)∵A={x|3≤x <10},B={x|2<x ≤7},∴A ∩B=[3,7];A ∪B=(2,10);(C U A )∩(C U B )=(﹣∞,3)∪[10,+∞); (2)∵集合C={x|x >a},∴若A ⊆C ,则a <3,即a 的取值范围是{a|a <3}.21.【答案】【解析】【分析】(I )由已知中DE ⊥平面ABCD ,ABCD 是边长为3的正方形,我们可得DE ⊥AC ,AC ⊥BD ,结合线面垂直的判定定理可得AC ⊥平面BDE ;(Ⅱ)以D 为坐标原点,DA ,DC ,DE 方向为x ,y ,z 轴正方向,建立空间直角坐标系,分别求出平面BEF 和平面BDE 的法向量,代入向量夹角公式,即可求出二面角F ﹣BE ﹣D 的余弦值;(Ⅲ)由已知中M 是线段BD 上一个动点,设M (t ,t ,0).根据AM ∥平面BEF ,则直线AM 的方向向量与平面BEF 法向量垂直,数量积为0,构造关于t 的方程,解方程,即可确定M 点的位置. 【解答】证明:(Ⅰ)因为DE ⊥平面ABCD ,所以DE ⊥AC . 因为ABCD 是正方形,所以AC ⊥BD , 从而AC ⊥平面BDE .…(4分)解:(Ⅱ)因为DA ,DC ,DE 两两垂直,所以建立空间直角坐标系D ﹣xyz 如图所示.因为BE 与平面ABCD 所成角为600,即∠DBE=60°, 所以.由AD=3,可知,.则A(3,0,0),,,B(3,3,0),C(0,3,0),所以,.设平面BEF的法向量为=(x,y,z),则,即.令,则=.因为AC⊥平面BDE,所以为平面BDE的法向量,.所以cos.因为二面角为锐角,所以二面角F﹣BE﹣D的余弦值为.…(8分)(Ⅲ)点M是线段BD上一个动点,设M(t,t,0).则.因为AM∥平面BEF,所以=0,即4(t﹣3)+2t=0,解得t=2.此时,点M坐标为(2,2,0),即当时,AM∥平面BEF.…(12分)22.【答案】【解析】【分析】(I)设圆心C(a,a),半径为r,利用|AC|=|BC|=r,建立方程,从而可求圆C的方程;(II)方法一:利用向量的数量积公式,求得∠POQ=120°,计算圆心到直线l:kx﹣y+1=0的距离,即可求得实数k的值;方法二:设P(x1,y1),Q(x2,y2),直线方程代入圆的方程,利用韦达定理及=x1•x2+y1•y2=,即可求得k的值;(III)方法一:设圆心O到直线l,l1的距离分别为d,d1,求得,根据垂径定理和勾股定理得到,,再利用基本不等式,可求四边形PMQN面积的最大值;方法二:当直线l的斜率k=0时,则l1的斜率不存在,可求面积S;当直线l的斜率k≠0时,设,则,代入消元得(1+k2)x2+2kx﹣3=0,求得|PQ|,|MN|,再利用基本不等式,可求四边形PMQN面积的最大值.【解答】解:(I)设圆心C(a,a),半径为r.因为圆经过点A(﹣2,0),B(0,2),所以|AC|=|BC|=r,所以解得a=0,r=2,…(2分)所以圆C的方程是x2+y2=4.…(4分)(II)方法一:因为,…(6分)所以,∠POQ=120°,…(7分)所以圆心到直线l:kx﹣y+1=0的距离d=1,…(8分)又,所以k=0.…(9分)方法二:设P(x1,y1),Q(x2,y2),因为,代入消元得(1+k2)x2+2kx﹣3=0.…(6分)由题意得:…(7分)因为=x1•x2+y1•y2=﹣2,又,所以x1•x2+y1•y2=,…(8分)化简得:﹣5k2﹣3+3(k2+1)=0,所以k2=0,即k=0.…(9分)(III)方法一:设圆心O到直线l,l1的距离分别为d,d1,四边形PMQN的面积为S.因为直线l,l1都经过点(0,1),且l⊥l1,根据勾股定理,有,…(10分)又根据垂径定理和勾股定理得到,,…(11分)而,即…(13分)当且仅当d1=d时,等号成立,所以S的最大值为7.…(14分)方法二:设四边形PMQN的面积为S.当直线l的斜率k=0时,则l1的斜率不存在,此时.…(10分)当直线l的斜率k≠0时,设则,代入消元得(1+k2)x2+2kx﹣3=0所以同理得到.…(11分)=…(12分)因为,所以,…(13分)当且仅当k=±1时,等号成立,所以S的最大值为7.…(14分)23.【答案】【解析】解:(1)由题意向量=(x,y),=(1,0),且(+)•(﹣)=0,∴,化简得,∴Q点的轨迹C的方程为.…(2)由得(3k2+1)x2+6mkx+3(m2﹣1)=0,由于直线与椭圆有两个不同的交点,∴△>0,即m2<3k2+1.①…(i)当k≠0时,设弦MN的中点为P(x P,y P),x M、x N分别为点M、N的横坐标,则,从而,,…又|AM|=|AN|,∴AP⊥MN.则,即2m=3k2+1,②将②代入①得2m>m2,解得0<m<2,由②得,解得,故所求的m的取值范围是(,2).…(ii)当k=0时,|AM|=|AN|,∴AP⊥MN,m2<3k2+1,解得﹣1<m<1.…综上,当k≠0时,m的取值范围是(,2),当k=0时,m的取值范围是(﹣1,1).…【点评】本题考查轨迹方程,考查直线与椭圆的位置关系,考查小时分析解决问题的能力,属于中档题.24.【答案】【解析】解:方法一(综合法)(1)取OB中点E,连接ME,NE∵ME∥AB,AB∥CD,∴ME∥CD又∵NE∥OC,∴平面MNE∥平面OCD∴MN∥平面OCD(2)∵CD∥AB,∴∠MDC为异面直线AB与MD所成的角(或其补角)作AP⊥CD于P,连接MP∵OA⊥平面ABCD,∴CD⊥MP∵,∴,,∴所以AB与MD所成角的大小为.(3)∵AB∥平面OCD,∴点A和点B到平面OCD的距离相等,连接OP,过点A作AQ⊥OP于点Q,∵AP⊥CD,OA⊥CD,∴CD⊥平面OAP,∴AQ⊥CD.又∵AQ⊥OP,∴AQ⊥平面OCD,线段AQ的长就是点A到平面OCD的距离,∵,,∴,所以点B到平面OCD的距离为.方法二(向量法)作AP⊥CD于点P,如图,分别以AB,AP,AO所在直线为x,y,z轴建立坐标系:A(0,0,0),B(1,0,0),,,O(0,0,2),M(0,0,1),(1),,设平面OCD的法向量为n=(x,y,z),则•=0,•=0即取,解得∵•=(,,﹣1)•(0,4,)=0,∴MN∥平面OCD.(2)设AB与MD所成的角为θ,∵∴,∴,AB与MD所成角的大小为.(3)设点B到平面OCD的距离为d,则d为在向量=(0,4,)上的投影的绝对值,由,得d==所以点B到平面OCD的距离为.【点评】培养学生利用多种方法解决数学问题的能力,考查学生利用空间向量求直线间的夹角和距离的能力.。
漯河市高中2018-2019学年高三上学期11月月考数学试卷含答案
漯河市高中2018-2019学年高三上学期11月月考数学试卷含答案班级__________姓名__________ 分数__________一、选择题1. 已知集合A={0,1,2},则集合B={x ﹣y|x ∈A ,y ∈A}中元素的个数是( )A .1B .3C .5D .92. 在ABC ∆中,若60A ∠=,45B ∠=,BC =,则AC =( )A .B .C. D 3. 已知直线l ∥平面α,P ∈α,那么过点P 且平行于l 的直线( )A .只有一条,不在平面α内B .只有一条,在平面α内C .有两条,不一定都在平面α内D .有无数条,不一定都在平面α内4. 线段AB 在平面α内,则直线AB 与平面α的位置关系是( )A .AB ⊂αB .AB ⊄αC .由线段AB 的长短而定D .以上都不对5. 已知全集U=R ,集合M={x|﹣2≤x ﹣1≤2}和N={x|x=2k ﹣1,k=1,2,…}的关系的韦恩(Venn )图如图所示,则阴影部分所示的集合的元素共有()A .3个B .2个C .1个D .无穷多个6. 已知椭圆,长轴在y 轴上,若焦距为4,则m 等于()A .4B .5C .7D .87. 设a=lge ,b=(lge )2,c=lg,则( )A .a >b >cB .c >a >bC .a >c >bD .c >b >a8. 若定义在R 上的函数f (x )满足:对任意x 1,x 2∈R 有f (x 1+x 2)=f (x 1)+f (x 2)+1,则下列说法一定正确的是( )A .f (x )为奇函数B .f (x )为偶函数C .f (x )+1为奇函数D .f (x )+1为偶函数9. 已知x ,y 满足时,z=x ﹣y 的最大值为( )A .4B .﹣4C .0D .210.“a >0”是“方程y 2=ax 表示的曲线为抛物线”的( )条件.A .充分不必要B .必要不充分C .充要D .既不充分也不必要11.已知函数f (x )=x (1+a|x|).设关于x 的不等式f (x+a )<f (x )的解集为A ,若,则实数a 的取值范围是( )A .B .C .D .12.等比数列{a n }的前n 项和为S n ,已知S 3=a 2+10a 1,a 5=9,则a 1=( )A .B .C .D .二、填空题13.二项式展开式中,仅有第五项的二项式系数最大,则其常数项为 .14.已知x ,y 满足条件,则函数z=﹣2x+y 的最大值是 .15.已知函数的三个零点成等比数列,则 .5()sin (0)2f x x a x π=-≤≤2log a =16.已知圆O :x 2+y 2=1和双曲线C :﹣=1(a >0,b >0).若对双曲线C 上任意一点A (点A 在圆O 外),均存在与圆O 外切且顶点都在双曲线C 上的菱形ABCD ,则﹣= .17.已知α为钝角,sin(+α)=,则sin(﹣α)= .18.如图,长方体ABCD﹣A1B1C1D1中,AA1=AB=2,AD=1,点E、F、G分别是DD1、AB、CC1的中点,则异面直线A1E与GF所成的角的余弦值是 .三、解答题19.已知函数f(x)=alnx+,曲线y=f(x)在点(1,f(1))处的切线方程为y=2.(I)求a、b的值;(Ⅱ)当x>1时,不等式f(x)>恒成立,求实数k的取值范围.20.已知数列{a n}是各项均为正数的等比数列,满足a3=8,a3﹣a2﹣2a1=0.(Ⅰ)求数列{a n}的通项公式(Ⅱ)记b n=log2a n,求数列{a n•b n}的前n项和S n.21.已知复数z=m(m﹣1)+(m2+2m﹣3)i(m∈R)(1)若z是实数,求m的值;(2)若z是纯虚数,求m的值;(3)若在复平面C内,z所对应的点在第四象限,求m的取值范围.22.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知sinA﹣sinC(cosB+sinB)=0.(1)求角C的大小;(2)若c=2,且△ABC的面积为,求a,b的值.23.设函数f(x)=lnx+a(1﹣x).(Ⅰ)讨论:f(x)的单调性;(Ⅱ)当f(x)有最大值,且最大值大于2a﹣2时,求a的取值范围.24.【启东中学2018届高三上学期第一次月考(10月)】设,函数.1a >()()21xf x x ea =+-(1)证明在上仅有一个零点;((2)若曲线在点处的切线与轴平行,且在点处的切线与直线平行,(O 是坐标原点),证明:1m ≤漯河市高中2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1.【答案】C【解析】解:∵A={0,1,2},B={x﹣y|x∈A,y∈A},∴当x=0,y分别取0,1,2时,x﹣y的值分别为0,﹣1,﹣2;当x=1,y分别取0,1,2时,x﹣y的值分别为1,0,﹣1;当x=2,y分别取0,1,2时,x﹣y的值分别为2,1,0;∴B={﹣2,﹣1,0,1,2},∴集合B={x﹣y|x∈A,y∈A}中元素的个数是5个.故选C.2.【答案】B【解析】考点:正弦定理的应用.3.【答案】B【解析】解:假设过点P且平行于l的直线有两条m与n∴m∥l且n∥l由平行公理4得m∥n这与两条直线m与n相交与点P相矛盾又因为点P在平面内所以点P且平行于l的直线有一条且在平面内所以假设错误.故选B.【点评】反证法一般用于问题的已知比较简单或命题不易证明的命题的证明,此类题目属于难度较高的题型. 4.【答案】A【解析】解:∵线段AB在平面α内,∴直线AB上所有的点都在平面α内,∴直线AB与平面α的位置关系:直线在平面α内,用符号表示为:AB⊂α故选A.【点评】本题考查了空间中直线与直线的位置关系及公理一,主要根据定义进行判断,考查了空间想象能力.公理一:如果一条线上的两个点在平面上则该线在平面上.5.【答案】B【解析】解:根据题意,分析可得阴影部分所示的集合为M∩N,又由M={x|﹣2≤x﹣1≤2}得﹣1≤x≤3,即M={x|﹣1≤x≤3},在此范围内的奇数有1和3.所以集合M∩N={1,3}共有2个元素,故选B.6.【答案】D【解析】解:将椭圆的方程转化为标准形式为,显然m﹣2>10﹣m,即m>6,,解得m=8故选D【点评】本题主要考查了椭圆的简单性质.要求学生对椭圆中对长轴和短轴即及焦距的关系要明了.7.【答案】C【解析】解:∵1<e<3<,∴0<lge<1,∴lge>lge>(lge)2.∴a>c>b.故选:C.【点评】本题主要考查对数的单调性.即底数大于1时单调递增,底数大于0小于1时单调递减.8.【答案】C【解析】解:∵对任意x1,x2∈R有f(x1+x2)=f(x1)+f(x2)+1,∴令x1=x2=0,得f(0)=﹣1∴令x1=x,x2=﹣x,得f(0)=f(x)+f(﹣x)+1,∴f(x)+1=﹣f(﹣x)﹣1=﹣[f(﹣x)+1],∴f(x)+1为奇函数.故选C【点评】本题考查函数的性质和应用,解题时要认真审题,仔细解答.9.【答案】A【解析】解:由约束条件作出可行域如图,联立,得A(6,2),化目标函数z=x﹣y为y=x﹣z,由图可知,当直线y=x﹣z过点A时,直线在y轴上的截距最小,z有最大值为4.故选:A.【点评】本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.10.【答案】A【解析】解:若方程y2=ax表示的曲线为抛物线,则a≠0.∴“a>0”是“方程y2=ax表示的曲线为抛物线”的充分不必要条件.故选A.【点评】本题主要考查充分条件和必要条件的判断,利用抛物线的定义是解决本题的关键,比较基础. 11.【答案】A【解析】解:取a=﹣时,f(x)=﹣x|x|+x,∵f(x+a)<f(x),∴(x﹣)|x﹣|+1>x|x|,(1)x<0时,解得﹣<x<0;(2)0≤x≤时,解得0;(3)x>时,解得,综上知,a=﹣时,A=(﹣,),符合题意,排除B、D;取a=1时,f(x)=x|x|+x,∵f(x+a)<f(x),∴(x+1)|x+1|+1<x|x|,(1)x<﹣1时,解得x>0,矛盾;(2)﹣1≤x≤0,解得x<0,矛盾;(3)x>0时,解得x<﹣1,矛盾;综上,a=1,A=∅,不合题意,排除C,故选A.【点评】本题考查函数的单调性、二次函数的性质、不等式等知识,考查数形结合思想、分类讨论思想,考查学生分析解决问题的能力,注意排除法在解决选择题中的应用.12.【答案】C【解析】解:设等比数列{a n}的公比为q,∵S3=a2+10a1,a5=9,∴,解得.∴.故选C.【点评】熟练掌握等比数列的通项公式是解题的关键.二、填空题13.【答案】 70 .【解析】解:根据题意二项式展开式中,仅有第五项的二项式系数最大,则n=8,所以二项式=展开式的通项为T r+1=(﹣1)r C8r x8﹣2r令8﹣2r=0得r=4则其常数项为C84=70故答案为70.【点评】本题考查二项式定理的应用,涉及二项式系数的性质,要注意系数与二项式系数的区别. 14.【答案】 4 .【解析】解:由约束条件作出可行域如图,化目标函数z=﹣2x+y为y=2x+z,由图可知,当直线y=2x+z过点A(﹣2,0)时,直线y=2x+z在y轴上的截距最大,即z最大,此时z=﹣2×(﹣2)+0=4.故答案为:4.【点评】本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.15.【答案】1 2考点:三角函数的图象与性质,等比数列的性质,对数运算.【名师点睛】本题考查三角函数的图象与性质、等比数列的性质、对数运算法则,属中档题.把等比数列与三角函数的零点有机地结合在一起,命题立意新,同时考查数形结合基本思想以及学生的运算能力、应用新知识解决问题的能力,是一道优质题.16.【答案】 1 .【解析】解:若对双曲线C上任意一点A(点A在圆O外),均存在与圆O外切且顶点都在双曲线C上的菱形ABCD,可通过特殊点,取A(﹣1,t),则B(﹣1,﹣t),C(1,﹣t),D(1,t),由直线和圆相切的条件可得,t=1.将A(﹣1,1)代入双曲线方程,可得﹣=1.故答案为:1.【点评】本题考查双曲线的方程和运用,同时考查直线和圆相切的条件,属于基础题.17.【答案】 ﹣ .【解析】解:∵sin(+α)=,∴cos(﹣α)=cos[﹣(+α)]=sin(+α)=,∵α为钝角,即<α<π,∴<﹣,∴sin(﹣α)<0,∴sin(﹣α)=﹣=﹣=﹣,故答案为:﹣.【点评】本题考查运用诱导公式求三角函数值,注意不同角之间的关系,正确选择公式,运用平方关系时,必须注意角的范围,以确定函数值的符号.18.【答案】0【解析】【分析】以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,利用向量法能求出异面直线A1E与GF所成的角的余弦值.【解答】解:以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,∵AA1=AB=2,AD=1,点E、F、G分别是DD1、AB、CC1的中点,∴A1(1,0,2),E(0,0,1),G(0,2,1),F(1,1,0),=(﹣1,0,﹣1),=(1,﹣1,﹣1),=﹣1+0+1=0,∴A1E⊥GF,∴异面直线A1E与GF所成的角的余弦值为0.故答案为:0.三、解答题19.【答案】【解析】解:(I)∵函数f(x)=alnx+的导数为f′(x)=﹣,且直线y=2的斜率为0,又过点(1,2),∴f(1)=2b=2,f′(1)=a﹣b=0,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣解得a=b=1﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(II)当x>1时,不等式f(x)>,即为(x﹣1)lnx+>(x﹣k)lnx,即(k﹣1)lnx+>0﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣令g(x)=(k﹣1)lnx+,g′(x)=+1+=,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣令m(x)=x2+(k﹣1)x+1,①当≤1即k≥﹣1时,m(x)在(1,+∞)单调递增且m(1)≥0,所以当x>1时,g′(x)>0,g(x)在(1,+∞)单调递增,则g(x)>g(1)=0即f(x)>恒成立.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣②当>1即k<﹣1时,m(x)在上(1,)上单调递减,且m(1)<0,故当x∈(1,)时,m(x)<0即g′(x)<0,所以函数g(x)在(1,)单调递减,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣当x∈(1,)时,g(x)<0与题设矛盾,综上可得k的取值范围为[﹣1,+∞)﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣20.【答案】【解析】解:(Ⅰ)设数列{a n}的公比为q,由a n>0可得q>0,且a3﹣a2﹣2a1=0,化简得q2﹣q﹣2=0,解得q=2或q=﹣1(舍),∵a3=a1•q2=4a1=8,∴a1=2,∴数列{a n}是以首项和公比均为2的等比数列,∴a n=2n;(Ⅱ)由(I)知b n=log2a n==n,∴a n b n=n•2n,∴S n=1×21+2×22+3×23+…+(n﹣1)×2n﹣1+n×2n,2S n=1×22+2×23+…+(n﹣2)×2n﹣1+(n﹣1)×2n+n×2n+1,两式相减,得﹣S n=21+22+23+…+2n﹣1+2n﹣n×2n+1,∴﹣S n=﹣n×2n+1,∴S n=2+(n﹣1)2n+1.【点评】本题考查等比数列的通项公式,错位相减法求和等基础知识,考查推理论证能力、运算求解能力、数据处理能力,考查函数与方程思想、化归与转化思想,注意解题方法的积累,属于中档题.21.【答案】【解析】解:(1)z为实数⇔m2+2m﹣3=0,解得:m=﹣3或m=1;(2)z为纯虚数⇔,解得:m=0;(3)z所对应的点在第四象限⇔,解得:﹣3<m<0.22.【答案】【解析】(本题满分为12分)解:(1)∵由题意得,sinA=sin(B+C),∴sinBcosC+sinCcosB﹣sinCcosB﹣sinBsinC=0,…(2分)即sinB(cosC﹣sinC)=0,∵sinB≠0,∴tanC=,故C=.…(6分)(2)∵ab×=,∴ab=4,①又c=2,…(8分)∴a2+b2﹣2ab×=4,∴a2+b2=8.②∴由①②,解得a=2,b=2.…(12分)【点评】本题主要考查了三角形内角和定理,三角函数恒等变换的应用,三角形面积公式,余弦定理在解三角形中的综合应用,考查了转化思想,属于基础题.23.【答案】【解析】解:(Ⅰ)f (x )=lnx+a (1﹣x )的定义域为(0,+∞),∴f ′(x )=﹣a=,若a ≤0,则f ′(x )>0,∴函数f (x )在(0,+∞)上单调递增,若a >0,则当x ∈(0,)时,f ′(x )>0,当x ∈(,+∞)时,f ′(x )<0,所以f (x )在(0,)上单调递增,在(,+∞)上单调递减,(Ⅱ),由(Ⅰ)知,当a ≤0时,f (x )在(0,+∞)上无最大值;当a >0时,f (x )在x=取得最大值,最大值为f ()=﹣lna+a ﹣1,∵f ()>2a ﹣2,∴lna+a ﹣1<0,令g (a )=lna+a ﹣1,∵g (a )在(0,+∞)单调递增,g (1)=0,∴当0<a <1时,g (a )<0,当a >1时,g (a )>0,∴a 的取值范围为(0,1).【点评】本题考查了导数与函数的单调性最值的关系,以及参数的取值范围,属于中档题.24.【答案】(1)在上有且只有一个零点(2)证明见解析f x ()∞+∞(﹣,)【解析】试题分析:试题解析:(1),,()()()22211xx f x e x x e x +='=++()0f x ∴'≥在上为增函数.()()21x f x x e a ∴=+-(),-∞+∞,,1a > ()010f a ∴=-<又,()1f a a =-=-,即,0,1>∴>0f >由零点存在性定理可知,在上为增函数,且,()f x (),-∞+∞()00f f ⋅<在上仅有一个零点。
漯河市第二高级中学2018-2019学年高三上学期12月月考数学试卷
漯河市第二高级中学2018-2019学年高三上学期12月月考数学试卷班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 已知集合,,则( ){2,1,0,1,2,3}A =--{|||3,}B y y x x A ==-∈A B = A .B .C .D .{2,1,0}--{1,0,1,2}-{2,1,0}--{1,,0,1}-【命题意图】本题考查集合的交集运算,意在考查计算能力.2. 某工厂产生的废气经过过虑后排放,过虑过程中废气的污染物数量(单位:毫克/升)与时间(单位:P t 小时)间的关系为(,均为正常数).如果前5个小时消除了的污染物,为了消除0e ktP P -=0P k 10%27.1%的污染物,则需要( )小时.A. B. C. D. 8101518【命题意图】本题考指数函数的简单应用,考查函数思想,方程思想的灵活运用,体现“数学是有用的”的新课标的这一重要思想.3. 一个几何体的三视图如图所示,如果该几何体的侧面面积为12π,则该几何体的体积是()A .4πB .12πC .16πD .48π4. 设集合S=|x|x <﹣1或x >5},T={x|a <x <a+8},且S ∪T=R ,则实数a 的取值范围是( )A .﹣3<a <﹣1B .﹣3≤a ≤﹣1C .a ≤﹣3或a ≥﹣1D .a <﹣3或a >﹣15. 已知f (x )=x 3﹣3x+m ,在区间[0,2]上任取三个数a ,b ,c ,均存在以f (a ),f (b ),f (c )为边长的三角形,则m 的取值范围是( )A .m >2B .m >4C .m >6D .m >86. 下列说法正确的是()A.圆锥的侧面展开图是一个等腰三角形;B.棱柱即是两个底面全等且其余各面都是矩形的多面体;C.任何一个棱台都可以补一个棱锥使他们组成一个新的棱锥;D.通过圆台侧面上的一点,有无数条母线.7. 直角梯形中,,直线截该梯形所得位于左边图OABC ,1,2AB OC AB OC BC ===A :l x t =形面积为,则函数的图像大致为()()S f t =8. 已知α是△ABC 的一个内角,tan α=,则cos (α+)等于()A .B .C .D .9. 如图在圆中,,是圆互相垂直的两条直径,现分别以,,,为直径作四个O AB CD O OA OB OC OD 圆,在圆内随机取一点,则此点取自阴影部分的概率是()O DABCO A .B .C .D .π1π21π121-π2141-【命题意图】本题考查几何概型概率的求法,借助圆这个载体,突出了几何概型的基本运算能力,因用到圆的几何性质及面积的割补思想,属于中等难度.10.直径为6的球的表面积和体积分别是( )A .B .C .D .144,144ππ144,36ππ36,144ππ36,36ππ二、填空题11.【徐州市第三中学2017~2018学年度高三第一学期月考】函数的单调增区间是__________.()3f x x x =-+12.已知数列中,,函数在处取得极值,则{}n a 11a =3212()3432n n a f x x x a x -=-+-+1x =_________.n a =13.已知函数,,其图象上任意一点处的切线的斜率恒()ln a f x x x =+(0,3]x ∈00(,)P x y 12k ≤成立,则实数的取值范围是.14.已知正方体ABCD ﹣A 1B1C 1D 1的一个面A 1B 1C 1D 1在半径为的半球底面上,A 、B 、C 、D 四个顶点都在此半球面上,则正方体ABCD ﹣A 1B 1C 1D 1的体积为 .15.若x ,y 满足约束条件,若z =2x +by (b >0)的最小值为3,则b =________.{x +y -5≤02x -y -1≥0x -2y +1≤0)16.已知函数()()31,ln 4f x x mxg x x =++=-.{}min ,a b 表示,a b 中的最小值,若函数()()(){}()min ,0h x f x g x x =>恰有三个零点,则实数m 的取值范围是 ▲ .三、解答题17.已知点(1,)是函数f (x )=a x (a >0且a ≠1)的图象上一点,等比数列{a n }的前n 项和为f (n )﹣c ,数列{b n }(b n >0)的首项为c ,且前n 项和S n 满足S n ﹣S n ﹣1=+(n ≥2).记数列{}前n 项和为T n ,(1)求数列{a n }和{b n }的通项公式;(2)若对任意正整数n ,当m ∈[﹣1,1]时,不等式t 2﹣2mt+>T n 恒成立,求实数t 的取值范围(3)是否存在正整数m ,n ,且1<m <n ,使得T 1,T m ,T n 成等比数列?若存在,求出m ,n 的值,若不存在,说明理由. 18.已知数列{a n }满足a 1=3,a n+1=a n +p •3n (n ∈N *,p 为常数),a 1,a 2+6,a 3成等差数列.(1)求p 的值及数列{a n }的通项公式;(2)设数列{b n }满足b n =,证明b n ≤.19.某同学用“五点法”画函数f (x )=Asin (ωx+φ)+B (A >0,ω>0,|φ|<)在某一个周期内的图象时,列表并填入的部分数据如表: x x 1x 2x 3ωx+φ0π2πAsin (ωx+φ)+B﹣(Ⅰ)请求出表中的x 1,x 2,x 3的值,并写出函数f (x )的解析式;(Ⅱ)将f (x )的图象向右平移个单位得到函数g (x )的图象,若函数g (x )在区间[0,m](3<m <4)上的图象的最高点和最低点分别为M ,N ,求向量与夹角θ的大小.20.(本小题满分12分)111]在如图所示的几何体中,是的中点,.D AC DB EF //(1)已知,,求证:平面; BC AB =CF AF =⊥AC BEF (2)已知分别是和的中点,求证: 平面.H G 、EC FB //GH ABC21.(本小题满分12分)在中,内角的对边为,已知ABC ∆C B A ,,c b a ,,.1cos )sin 3(cos 2cos 22=-+C B B A(I )求角的值;C(II )若,且的面积取值范围为,求的取值范围.2b =ABC ∆c 【命题意图】本题考查三角恒等变形、余弦定理、三角形面积公式等基础知识,意在考查基本运算能力.22.如图,在四棱锥P ﹣ABCD 中,AD ∥BC ,AB ⊥AD ,AB ⊥PA ,BC=2AB=2AD=4BE ,平面PAB ⊥平面ABCD ,(Ⅰ)求证:平面PED ⊥平面PAC ;(Ⅱ)若直线PE 与平面PAC 所成的角的正弦值为,求二面角A ﹣PC ﹣D 的平面角的余弦值.漯河市第二高级中学2018-2019学年高三上学期12月月考数学试卷(参考答案)一、选择题1. 【答案】C【解析】当时,,所以,故选C .{2,1,0,1,2,3}x ∈--||3{3,2,1,0}y x =-∈---A B = {2,1,0}--2. 【答案】15 【解析】3. 【答案】B【解析】解:由三视图可知几何体是底面半径为2的圆柱,∴几何体的侧面积为2π×2×h=12π,解得h=3,∴几何体的体积V=π×22×3=12π.故选B .【点评】本题考查了圆柱的三视图,结构特征,体积,表面积计算,属于基础题. 4. 【答案】A【解析】解:∵S=|x|x <﹣1或x >5},T={x|a <x <a+8},且S ∪T=R ,∴,解得:﹣3<a <﹣1.故选:A . 5. 【答案】C【解析】解:由f ′(x )=3x 2﹣3=3(x+1)(x ﹣1)=0得到x 1=1,x 2=﹣1(舍去)∵函数的定义域为[0,2]∴函数在(0,1)上f ′(x )<0,(1,2)上f ′(x )>0,∴函数f (x )在区间(0,1)单调递减,在区间(1,2)单调递增,则f (x )min =f (1)=m ﹣2,f (x )max =f (2)=m+2,f (0)=m 由题意知,f (1)=m ﹣2>0 ①;f (1)+f (1)>f (2),即﹣4+2m >2+m ②由①②得到m >6为所求.故选C【点评】本题以函数为载体,考查构成三角形的条件,解题的关键是求出函数在区间[0,2]上的最小值与最大值 6. 【答案】C 【解析】考点:几何体的结构特征.7. 【答案】C 【解析】试题分析:由题意得,当时,,当时,01t <≤()2122f t t t t =⋅⋅=12t <≤,所以,结合不同段上函数的性质,可知选项C 符()112(1)2212f t t t =⨯⨯+-⋅=-()2,0121,12t t f t t t ⎧<≤=⎨-<≤⎩合,故选C.考点:分段函数的解析式与图象.8. 【答案】B【解析】解:由于α是△ABC 的一个内角,tan α=,则=,又sin 2α+cos 2α=1,解得sin α=,cos α=(负值舍去).则cos (α+)=coscos α﹣sinsin α=×(﹣)=.故选B .【点评】本题考查三角函数的求值,考查同角的平方关系和商数关系,考查两角和的余弦公式,考查运算能力,属于基础题.9. 【答案】C【解析】设圆的半径为,根据图形的对称性,可以选择在扇形中研究问题,过两个半圆的交点分别O 2OAC 向,作垂线,则此时构成一个以为边长的正方形,则这个正方形内的阴影部分面积为,扇形OA OC 112-π的面积为,所求概率为.OAC ππππ12112-=-=P 10.【答案】D【解析】考点:球的表面积和体积.二、填空题11.【答案】(【解析】 ,所以增区间是()2310f x x x ⎛=-+>⇒∈ ⎝'⎛ ⎝12.【答案】1231n --A【解析】考点:1、利用导数求函数极值;2、根据数列的递推公式求通项公式.【方法点晴】本题主要考查等比数列的定义以及已知数列的递推公式求通项,属于中档题.由数列的递推公式求通项常用的方法有:累加法、累乘法、构造法,形如的递推数列求通项往往用1(0,1)n n a qa p p q -=+≠≠构造法,利用待定系数法构造成的形式,再根据等比数例求出的通项,进而得1()n n a m q a m -+=+{}n a m +出的通项公式.{}n a 13.【答案】21≥a 【解析】试题分析:,因为,其图象上任意一点处的切线的斜率恒成立,'21()a f x x x =-(0,3]x ∈00(,)P x y 12k ≤,,,恒成立,由.12112a x x ∴-≤(0,3]x ∈x x a +-≥∴221(0,3]x ∈2111,222x x a -+≤∴≥考点:导数的几何意义;不等式恒成立问题.【易错点睛】本题主要考查了导数的几何意义;不等式恒成立问题等知识点求函数的切线方程的注意事项:(1)首先应判断所给点是不是切点,如果不是,要先设出切点.(2)切点既在原函数的图象上也在切线上,可将切点代入两者的函数解析式建立方程组.(3)在切点处的导数值就是切线的斜率,这是求切线方程最重要的条件.14.【答案】 2 .【解析】解:如图所示,连接A1C1,B1D1,相交于点O.则点O为球心,OA=.设正方体的边长为x,则A1O=x.在Rt△OAA1中,由勾股定理可得:+x2=,解得x=.∴正方体ABCD﹣A1B1C1D1的体积V==2.故答案为:2.15.【答案】【解析】约束条件表示的区域如图,当直线l:z=2x+by(b>0)经过直线2x-y-1=0与x-2y+1=0的交点A(1,1)时,z min=2+b,∴2+b =3,∴b=1.答案:116.【答案】()53,44--【解析】试题分析:()23f x x m '=+,因为()10g =,所以要使()()(){}()min ,0h x f x g x x =>恰有三个零点,须满足()10,0,0f f m ><<,解得51534244m m >->⇒-<<-考点:函数零点【思路点睛】涉及函数的零点问题、方程解的个数问题、函数图像交点个数问题,一般先通过导数研究函数的单调性、最大值、最小值、变化趋势等,再借助函数的大致图象判断零点、方程根、交点的情况,归根到底还是研究函数的性质,如单调性、极值,然后通过数形结合的思想找到解题的思路.三、解答题17.【答案】【解析】解:(1)因为f (1)=a=,所以f (x )=,所以,a 2=[f (2)﹣c]﹣[f (1)﹣c]=,a 3=[f (3)﹣c]﹣[f (2)﹣c]=因为数列{a n }是等比数列,所以,所以c=1.又公比q=,所以;由题意可得: =,又因为b n >0,所以;所以数列{}是以1为首项,以1为公差的等差数列,并且有;当n ≥2时,b n =S n ﹣S n ﹣1=2n ﹣1;所以b n =2n ﹣1.(2)因为数列前n 项和为T n ,所以==;因为当m ∈[﹣1,1]时,不等式恒成立,所以只要当m ∈[﹣1,1]时,不等式t 2﹣2mt >0恒成立即可,设g (m )=﹣2tm+t 2,m ∈[﹣1,1],所以只要一次函数g(m)>0在m∈[﹣1,1]上恒成立即可,所以,解得t<﹣2或t>2,所以实数t的取值范围为(﹣∞,﹣2)∪(2,+∞).(3)T1,T m,T n成等比数列,得T m2=T1T n∴,∴结合1<m<n知,m=2,n=12【点评】本题综合考查数列、不等式与函数的有关知识,解决此类问题的关键是熟练掌握数列求通项公式与求和的方法,以及把不等式恒成立问题转化为函数求最值问题,然后利用函数的有关知识解决问题.18.【答案】【解析】(1)解:∵数列{a n}满足a1=3,a n+1=a n+p•3n(n∈N*,p为常数),∴a2=3+3p,a3=3+12p,∵a1,a2+6,a3成等差数列.∴2a2+12=a1+a3,即18+6p=6+12p 解得p=2.∵a n+1=a n+p•3n,∴a2﹣a1=2•3,a3﹣a2=2•32,…,a n﹣a n﹣1=2•3n﹣1,将这些式子全加起来得a n﹣a1=3n﹣3,∴a n=3n.(2)证明:∵{b n}满足b n=,∴b n=.设f(x)=,则f′(x)=,x∈N*,令f′(x)=0,得x=∈(1,2)当x∈(0,)时,f′(x)>0;当x∈(,+∞)时,f′(x)<0,且f(1)=,f(2)=,∴f(x)max=f(2)=,x∈N*.∴b n≤.【点评】本题考查数列的通项公式的求法,考查不等式的证明,解题时要认真审题,注意构造法的合理运用. 19.【答案】【解析】解:(Ⅰ)由条件知,,,∴,,∴,.(Ⅱ)∵函数f (x )的图象向右平移个单位得到函数g (x )的图象,∴,∵函数g (x )在区间[0,m](m ∈(3,4))上的图象的最高点和最低点分别为M ,N ,∴最高点为,最低点为,∴,,∴,又0≤θ≤π,∴.【点评】本题主要考查了由y=Asin (ωx+φ)的部分图象确定其解析式,函数y=Asin (ωx+φ)的图象变换,向量夹角公式的应用,属于基本知识的考查.20.【答案】(1)详见解析;(2)详见解析.【解析】试题分析:(1)根据,所以平面就是平面,连接DF,AC 是等腰三角形ABC 和ACF 的公DB EF //BEF BDEF 共底边,点D 是AC 的中点,所以,,即证得平面的条件;(2)要证明线面BD AC ⊥DF AC ⊥⊥AC BEF 平行,可先证明面面平行,取的中点为,连接,,根据中位线证明平面平面,即可证FC GI HI //HGI ABC 明结论.试题解析:证明:(1)∵,∴与确定平面.DB EF //EF DB BDEF 如图①,连结. ∵,是的中点,∴.同理可得.DF CF AF =D AC AC DF ⊥AC BD ⊥又,平面,∴平面,即平面.D DF BD = ⊂DF BD 、BDEF ⊥AC BDEF ⊥AC BEF考点:1.线线,线面垂直关系;2.线线,线面,面面平行关系.【方法点睛】本题考查了立体几何中的平行和垂直关系,属于中档题型,重点说说证明平行的方法,当涉及证明线面平行时,一种方法是证明平面外的线与平面内的线平行,一般是构造平行四边形或是构造三角形的中位线,二种方法是证明面面平行,则线面平行,因为直线与直线外一点确定一个平面,所以所以一般是在某条直线上再找一点,一般是中点,连接构成三角形,证明另两条边与平面平行.21.【答案】【解析】(I )∵,1cos )sin 3(cos 2cos 22=-+C B B A ∴,0cos sin 3cos cos cos =-+C B C B A ∴,0cos sin 3cos cos )cos(=-++-C B C B C B ∴,0cos sin 3cos cos sin sin cos cos =-++-C B C B C B C B ∴,因为,所以0cos sin 3sin sin =-C B C B sin 0B >3tan =C 又∵是三角形的内角,∴.C 3π=C22.【答案】【解析】解:(Ⅰ)∵平面PAB⊥平面ABCD,平面PAB∩平面ABCD=AB,AB⊥PA∴PA⊥平面ABCD结合AB⊥AD,可得分别以AB、AD、AP为x轴、y轴、z轴,建立空间直角坐标系o﹣xyz,如图所示…可得A(0,0,0)D(0,2,0),E(2,1,0),C(2,4,0),P(0,0,λ)(λ>0)∴,,得,,∴DE⊥AC且DE⊥AP,∵AC、AP是平面PAC内的相交直线,∴ED⊥平面PAC.∵ED⊂平面PED∴平面PED⊥平面PAC(Ⅱ)由(Ⅰ)得平面PAC的一个法向量是,设直线PE与平面PAC所成的角为θ,则,解之得λ=±2∵λ>0,∴λ=2,可得P的坐标为(0,0,2)设平面PCD的一个法向量为=(x0,y0,z0),,由,,得到,令x0=1,可得y0=z0=﹣1,得=(1,﹣1,﹣1)∴cos<,由图形可得二面角A﹣PC﹣D的平面角是锐角,∴二面角A﹣PC﹣D的平面角的余弦值为.【点评】本题在四棱锥中证明面面垂直,并且在线面所成角的正弦情况下求二面角A﹣PC﹣D的余弦值.着重考查了线面垂直、面面垂直的判定定理和利用空间向量研究直线与平面所成角和二面角大小的方法,属于中档题.。
漯河市第二高级中学2018-2019学年高三上学期11月月考数学试卷含答案(1)
漯河市第二高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 在△ABC 中,已知,则∠C=( )A .30°B .150°C .45°D .135°2. 如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数.从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为( )A .B .C .D .3. 设m ,n 表示两条不同的直线,α、β表示两个不同的平面,则下列命题中不正确的是( )A .m ⊥α,m ⊥β,则α∥βB .m ∥n ,m ⊥α,则n ⊥αC .m ⊥α,n ⊥α,则m ∥nD .m ∥α,α∩β=n ,则m ∥n4. 设集合A={x|x 2+x ﹣6≤0},集合B 为函数的定义域,则A ∩B=()A .(1,2)B .[1,2]C .[1,2)D .(1,2]5. 若圆上有且仅有三个点到直线是实数)的距离为,226260x y x y +--+=10(ax y a -+=则()a =A . B . C . D .1±6. 设为虚数单位,则( )A .B .C .D .7. 过抛物线焦点的直线与双曲线的一条渐近线平行,并交其抛物线于、22(0)y px p =>F 2218-=y x A 两点,若,且,则抛物线方程为( )B >AF BF ||3AF =A .B .C .D .2y x =22y x =24y x =23y x=【命题意图】本题考查抛物线方程、抛物线定义、双曲线标准方程和简单几何性质等基础知识,意在考查方程思想和运算能力.8. 双曲线:的渐近线方程和离心率分别是( )A .B .C .D .9. sin570°的值是( )A .B .﹣C .D .﹣10.已知F 1,F 2是椭圆和双曲线的公共焦点,M 是它们的一个公共点,且∠F 1MF 2=,则椭圆和双曲线的离心率的倒数之和的最大值为( )A .2B .C .D .411.已知数列的首项为,且满足,则此数列的第4项是( ){}n a 11a =11122n n n a a +=+班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A .1B .C.D .12345812.如图,从点M (x 0,4)发出的光线,沿平行于抛物线y 2=8x 的对称轴方向射向此抛物线上的点P ,经抛物线反射后,穿过焦点射向抛物线上的点Q ,再经抛物线反射后射向直线l :x ﹣y ﹣10=0上的点N ,经直线反射后又回到点M ,则x 0等于()A .5B .6C .7D .8二、填空题13.已知是函数两个相邻的两个极值点,且在1,3x x ==()()()sin 0f x x ωϕω=+>()f x 32x =处的导数,则___________.302f ⎛⎫'<⎪⎝⎭13f ⎛⎫= ⎪⎝⎭14.设函数有两个不同的极值点,,且对不等式32()(1)f x x a x ax =+++1x 2x 12()()0f x f x +≤恒成立,则实数的取值范围是 .15.已知f (x )=,则f (﹣)+f ()等于 .16.甲、乙、丙三位同学被问到是否去过A ,B ,C 三个城市时,甲说:我去过的城市比乙多,但没去过B 城市;乙说:我没去过C 城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为 . 17.如果直线3ax+y ﹣1=0与直线(1﹣2a )x+ay+1=0平行.那么a 等于 .18.在极坐标系中,点(2,)到直线ρ(cos θ+sin θ)=6的距离为 .三、解答题19.某种产品的广告费支出x 与销售额y (单位:百万元)之间有如下对应数据:x 24568y 3040605070(1)画出散点图;(2)求线性回归方程;(3)预测当广告费支出7(百万元)时的销售额.20.某人在如图所示的直角边长为4米的三角形地块的每个格点(指纵、横直线的交叉点以及三角形顶点)处都种了一株相同品种的作物.根据历年的种植经验,一株该种作物的年收获Y(单位:kg)与它的“相近”作物株数X之间的关系如下表所示:X1234Y51484542这里,两株作物“相近”是指它们之间的直线距离不超过1米.(I)从三角形地块的内部和边界上分别随机选取一株作物,求它们恰好“相近”的概率;(II)在所种作物中随机选取一株,求它的年收获量的分布列与数学期望.21.如图在长方形ABCD中,是CD的中点,M是线段AB上的点,.(1)若M是AB的中点,求证:与共线;(2)在线段AB上是否存在点M,使得与垂直?若不存在请说明理由,若存在请求出M点的位置;(3)若动点P在长方形ABCD上运动,试求的最大值及取得最大值时P点的位置.22.(本小题满分12分)一直线被两直线截得线段的中点是12:460,:3560l x y l x y ++=--=P 点, 当点为时, 求此直线方程.P ()0,023.如图所示,在正方体ABCD ﹣A 1B 1C 1D 1中,E 、F 分别是棱DD 1、C 1D 1的中点.(Ⅰ)证明:平面ADC 1B 1⊥平面A 1BE ;(Ⅱ)证明:B 1F ∥平面A 1BE ;(Ⅲ)若正方体棱长为1,求四面体A 1﹣B 1BE 的体积.24.如图,在四棱锥P ﹣ABCD 中,平面PAB ⊥平面ABCD ,AB ∥CD ,AB ⊥AD ,CD=2AB ,E 为PA 的中点,M 在PD 上.(I )求证:AD ⊥PB ;(Ⅱ)若,则当λ为何值时,平面BEM ⊥平面PAB ?(Ⅲ)在(II )的条件下,求证:PC ∥平面BEM .漯河市第二高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1.【答案】C【解析】解:∵a2+b2=c2+ba,即a2+b2﹣c2=ab,∴由余弦定理得:cosC==,∴∠C=45°.故选:C.【点评】此题考查了余弦定理,以及特殊角的三角函数值,熟练掌握余弦定理是解本题的关键.2.【答案】C【解析】解:从1,2,3,4,5中任取3个不同的数,有(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5)(2,3,4),(2,3,5),(2,4,5),(3,4,5)共10种,其中只有(3,4,5)为勾股数,故这3个数构成一组勾股数的概率为.故选:C3.【答案】D【解析】解:A选项中命题是真命题,m⊥α,m⊥β,可以推出α∥β;B选项中命题是真命题,m∥n,m⊥α可得出n⊥α;C选项中命题是真命题,m⊥α,n⊥α,利用线面垂直的性质得到n∥m;D选项中命题是假命题,因为无法用线面平行的性质定理判断两直线平行.故选D.【点评】本题考查了空间线面平行和线面垂直的性质定理和判定定理的运用,关键是熟练有关的定理.4.【答案】D【解析】解:A={x|x2+x﹣6≤0}={x|﹣3≤x≤2}=[﹣3,2],要使函数y=有意义,则x﹣1>0,即x>1,∴函数的定义域B=(1,+∞),则A∩B=(1,2],故选:D.【点评】本题主要考查集合的基本运算,利用函数成立的条件求出函数的定义域y以及利用不等式的解法求出集合A是解决本题的关键,比较基础5.【答案】B【解析】试题分析:由圆,可得,所以圆心坐标为,半径为226260x y x y +--+=22(3)(1)4x y -+-=(3,1),要使得圆上有且仅有三个点到直线是实数)的距离为,则圆心到直线的距离等于2r =10(ax y a -+=,解得B. 112r 1=a=考点:直线与圆的位置关系.【方法点晴】本题主要考查了直线与圆的位置关系,其中解答中涉及到圆的标准方程、圆心坐标和圆的半径、点到直线的距离公式等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力和转化的思想方法,本题的解答中,把圆上有且仅有三个点到直线的距离为,转化为圆心到直线的距离等于12r 是解答的关键.6. 【答案】C【解析】【知识点】复数乘除和乘方【试题解析】故答案为:C 7. 【答案】C【解析】由已知得双曲线的一条渐近线方程为,设,则,所以,=y 00(,)A x y 02>p x 0002002322ì=ïï-ïïïï+=íïï=ïïïïîy p x p x y px 解得或,因为,故,故,所以抛物线方程为.2=p 4=p 322->p p03p <<2=p 24y x =8. 【答案】D 【解析】解:双曲线:的a=1,b=2,c==∴双曲线的渐近线方程为y=±x=±2x ;离心率e==故选 D 9. 【答案】B【解析】解:原式=sin (720°﹣150°)=﹣sin150°=﹣.故选B【点评】此题考查了运用诱导公式化简求值,熟练掌握诱导公式是解本题的关键. 10.【答案】C【解析】解:设椭圆的长半轴为a,双曲线的实半轴为a1,(a>a1),半焦距为c,由椭圆和双曲线的定义可知,设|MF1|=r1,|MF2|=r2,|F1F2|=2c,椭圆和双曲线的离心率分别为e1,e2∵∠F1MF2=,∴由余弦定理可得4c2=(r1)2+(r2)2﹣2r1r2cos,①在椭圆中,①化简为即4c2=4a2﹣3r1r2,即=﹣1,②在双曲线中,①化简为即4c2=4a12+r1r2,即=1﹣,③联立②③得,+=4,由柯西不等式得(1+)(+)≥(1×+×)2,即(+)2≤×4=,即+≤,当且仅当e1=,e2=时取等号.即取得最大值且为.故选C.【点评】本题主要考查椭圆和双曲线的定义和性质,利用余弦定理和柯西不等式是解决本题的关键.难度较大.11.【答案】B【解析】12.【答案】B【解析】解:由题意可得抛物线的轴为x轴,F(2,0),∴MP所在的直线方程为y=4在抛物线方程y2=8x中,令y=4可得x=2,即P (2,4)从而可得Q (2,﹣4),N (6,﹣4)∵经抛物线反射后射向直线l :x ﹣y ﹣10=0上的点N ,经直线反射后又回到点M ,∴直线MN 的方程为x=6故选:B .【点评】本题主要考查了抛物线的性质的应用,解决问题的关键是要熟练掌握相关的性质并能灵活应用. 二、填空题13.【答案】12【解析】考点:三角函数图象与性质,函数导数与不等式.【思路点晴】本题主要考查两个知识点:三角函数图象与性质,函数导数与不等式.三角函数的极值点,也就是最大值、最小值的位置,所以两个极值点之间为半周期,由此求得周期和,再结合极值点的导数等于零,ω可求出.在求的过程中,由于题目没有给定它的取值范围,需要用来验证.求出表达式后,ϕϕ302f ⎛⎫'< ⎪⎝⎭()f x 就可以求出.113f ⎛⎫ ⎪⎝⎭14.【答案】1(,1],22⎡⎤-∞-⎢⎥⎣⎦U 【解析】试题分析:因为,故得不等式,即12()()0f x f x +≤()()()332212121210x x a x x a x x ++++++≤,由于()()()()()221212121212123120x x x x x x a x x x x a x x ⎡⎤⎡⎤++-+++-++≤⎣⎦⎣⎦,令得方程,因 , 故()()2'321f x x a x a =+++()'0f x =()23210x a x a +++=()2410a a ∆=-+>,代入前面不等式,并化简得,解不等式得或,()12122133x x a ax x ⎧+=-+⎪⎪⎨⎪=⎪⎩()1a +()22520a a -+≥1a ≤-122a ≤≤因此, 当或时, 不等式成立,故答案为.1a ≤-122a ≤≤()()120f x f x +≤1(,1],22⎡⎤-∞-⎢⎥⎣⎦U考点:1、利用导数研究函数的极值点;2、韦达定理及高次不等式的解法.【思路点晴】本题主要考查利用导数研究函数的极值点、韦达定理及高次不等式的解法,属于难题.要解答本题首先利用求导法则求出函数的到函数,令考虑判别式大于零,根据韦达定理求出()f x ()'0f x =的值,代入不等式,得到关于的高次不等式,再利用“穿针引线”即可求得实1212,x x x x +12()()0f x f x +≤数的取值范围.111]15.【答案】 4 .【解析】解:由分段函数可知f ()=2×=.f (﹣)=f (﹣+1)=f (﹣)=f (﹣)=f ()=2×=,∴f ()+f (﹣)=+.故答案为:4. 16.【答案】 A .【解析】解:由乙说:我没去过C 城市,则乙可能去过A 城市或B 城市,但甲说:我去过的城市比乙多,但没去过B 城市,则乙只能是去过A ,B 中的任一个,再由丙说:我们三人去过同一城市,则由此可判断乙去过的城市为A .故答案为:A .【点评】本题主要考查简单的合情推理,要抓住关键,逐步推断,是一道基础题. 17.【答案】 .【解析】解:∵直线3ax+y ﹣1=0与直线(1﹣2a )x+ay+1=0平行,∴3aa=1(1﹣2a ),解得a=﹣1或a=,经检验当a=﹣1时,两直线重合,应舍去故答案为:.【点评】本题考查直线的一般式方程和平行关系,属基础题. 18.【答案】 1 .【解析】解:点P (2,)化为P.直线ρ(cos θ+sin θ)=6化为.∴点P到直线的距离d==1.故答案为:1.【点评】本题考查了极坐标化为直角坐标方程、点到直线的距离公式,考查了推理能力与计算能力,属于中档题.三、解答题19.【答案】【解析】解:(1)(2)设回归方程为=bx+a则b=﹣5/﹣5=1380﹣5×5×50/145﹣5×52=6.5故回归方程为=6.5x+17.5(3)当x=7时,=6.5×7+17.5=63,所以当广告费支出7(百万元)时,销售额约为63(百万元).【点评】本题考查线性回归方程的求法和应用,本题解题的关键是利用最小二乘法求出线性回归方程的系数,这是解答正确的主要环节.20.【答案】【解析】【专题】概率与统计.【分析】(I)确定三角形地块的内部和边界上的作物株数,分别求出基本事件的个数,即可求它们恰好“相近”的概率;(II)确定变量的取值,求出相应的概率,从而可得年收获量的分布列与数学期望.【解答】解:(I)所种作物总株数N=1+2+3+4+5=15,其中三角形地块内部的作物株数为3,边界上的作物株数为12,从三角形地块的内部和边界上分别随机选取一株的不同结果有=36种,选取的两株作物恰好“相近”的不同结果有3+3+2=8,∴从三角形地块的内部和边界上分别随机选取一株作物,求它们恰好“相近”的概率为=;(II )先求从所种作物中随机选取一株作物的年收获量为Y 的分布列∵P (Y=51)=P (X=1),P (48)=P (X=2),P (Y=45)=P (X=3),P (Y=42)=P (X=4)∴只需求出P (X=k )(k=1,2,3,4)即可记n k 为其“相近”作物恰有k 株的作物株数(k=1,2,3,4),则n 1=2,n 2=4,n 3=6,n 4=3由P (X=k )=得P (X=1)=,P (X=2)=,P (X=3)==,P (X=4)==∴所求的分布列为Y 5148 45 42P数学期望为E (Y )=51×+48×+45×+42×=46【点评】本题考查古典概率的计算,考查分布列与数学期望,考查学生的计算能力,属于中档题.21.【答案】【解析】(1)证明:如图,以AB 所在直线为x 轴,AD 所在直线为y 轴建立平面直角坐标系,当M 是AB 的中点时,A (0,0),N (1,1),C (2,1),M (1,0),,由,可得与共线;(2)解:假设线段AB 上是否存在点M ,使得与垂直,设M (t ,0)(0≤t ≤2),则B (2,0),D (0,1),M (t ,0),,由=﹣2(t ﹣2)﹣1=0,解得t=,∴线段AB 上存在点,使得与垂直;(3)解:由图看出,当P 在线段BC 上时,在上的投影最大,则有最大值为4.【点评】本题考查平面向量的数量积运算,考查了向量在向量方向上的投影,体现了数形结合的解题思想方法,是中档题.22.【答案】.16y x =-【解析】试题分析:设所求直线与两直线分别交于,根据因为分别在直线12,l l ()()1122,,,A x y B x y ()()1122,,,A x y B x y 上,列出方程组,求解的值,即可求解直线的方程. 112,l l 11,x y考点:直线方程的求解.23.【答案】【解析】(Ⅰ)证明:∵ABCD ﹣A 1B 1C 1D 1为正方体,∴B 1C 1⊥平面ABB 1A 1;∵A 1B ⊂平面ABB 1A 1,∴B 1C 1⊥A 1B .又∵A 1B ⊥AB 1,B 1C 1∩AB 1=B 1,∴A 1B ⊥平面ADC 1B 1,∵A 1B ⊂平面A 1BE ,∴平面ADC 1B 1⊥平面A 1BE ;(Ⅱ)证明:连接EF ,EF ∥,且EF=,设AB 1∩A 1B=O ,则B 1O ∥C 1D ,且,∴EF ∥B 1O ,且EF=B 1O ,∴四边形B 1OEF 为平行四边形.∴B 1F ∥OE .又∵B 1F ⊄平面A 1BE ,OE ⊂平面A 1BE ,∴B 1F ∥平面A 1BE ,(Ⅲ)解: ====.24.【答案】【解析】(I)证明:∵平面PAB⊥平面ABCD,AB⊥AD,平面PAB∩平面ABCD=AB,∴AD⊥平面PAB.又PB⊂平面PAB,∴AD⊥PB.(II)解:由(I)可知,AD⊥平面PAB,又E为PA的中点,当M为PD的中点时,EM∥AD,∴EM⊥平面PAB,∵EM⊂平面BEM,∴平面BEM⊥平面PAB.此时,.(III)设CD的中点为F,连接BF,FM由(II)可知,M为PD的中点.∴FM∥PC.∵AB∥FD,FD=AB,∴ABFD为平行四边形.∴AD∥BF,又∵EM∥AD,∴EM∥BF.∴B,E,M,F四点共面.∴FM⊂平面BEM,又PC⊄平面BEM,∴PC∥平面BEM.【点评】本题考查了线面垂直的性质,线面平行,面面垂直的判定,属于中档题.。
郾城区第二高级中学2018-2019学年高三上学期11月月考数学试卷含答案
郾城区第二高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 方程x= 所表示的曲线是( )A .双曲线B .椭圆C .双曲线的一部分D .椭圆的一部分2. 已知f (x )=,g (x )=(k ∈N *),对任意的c >1,存在实数a ,b 满足0<a <b <c ,使得f (c )=f (a )=g (b ),则k 的最大值为( )A .2B .3C .4D .53. 已知集合,,则( ){| lg 0}A x x =≤1={|3}2B x x ≤≤A B =I A .B .C .D .(0,3](1,2](1,3]1[,1]2【命题意图】本题考查对数不等式解法和集合的运算等基础知识,意在考查基本运算能力.4. 已知函数y=f (x )的周期为2,当x ∈[﹣1,1]时 f (x )=x 2,那么函数y=f (x )的图象与函数y=|lgx|的图象的交点共有( )A .10个B .9个C .8个D .1个5. 已知||=3,||=1,与的夹角为,那么|﹣4|等于()A .2B .C .D .136. 某人以15万元买了一辆汽车,此汽车将以每年20%的速度折旧,如图是描述汽车价值变化的算法流程图,则当n=4吋,最后输出的S 的值为()班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A .9.6B .7.68C .6.144D .4.91527. 复数(为虚数单位),则的共轭复数为( )2(2)i z i-=i z A . B . C . D .43i -+43i +34i +34i-【命题意图】本题考查复数的运算和复数的概念等基础知识,意在考查基本运算能力.8. 设α、β是两个不同的平面,l 、m 为两条不同的直线,命题p :若平面α∥β,l ⊂α,m ⊂β,则l ∥m ;命题q :l ∥α,m ⊥l ,m ⊂β,则β⊥α,则下列命题为真命题的是( )A .p 或qB .p 且qC .¬p 或qD .p 且¬q9. 二项式的展开式中项的系数为10,则( )(1)(N )nx n *+Î3x n =A .5B .6C .8D .10【命题意图】本题考查二项式定理等基础知识,意在考查基本运算能力.10.投篮测试中,每人投3次,至少投中2次才能通过测试.己知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为( )A .0.648B .0.432C .0.36D .0.31211.“互联网”时代,倡导读书称为一种生活方式,调查机构为了解某小区老、中、青三个年龄阶+段的阅读情况,拟采用分层抽样的方法从该小区三个年龄阶段的人群中抽取一个容量为50的样本进行调查,已知该小区有老年人600人,中年人600人,青年人800人,则应从青年人抽取的人数为( )A .10 B .20C .30D .4012.(﹣6≤a ≤3)的最大值为( )A .9B .C .3D .二、填空题13.若命题“∀x ∈R ,|x ﹣2|>kx+1”为真,则k 的取值范围是 .14.已知曲线y=(a ﹣3)x 3+lnx 存在垂直于y 轴的切线,函数f (x )=x 3﹣ax 2﹣3x+1在[1,2]上单调递减,则a 的范围为 . 15.已知数列{a n }满足a n+1=e+a n (n ∈N *,e=2.71828)且a 3=4e ,则a 2015= . 16.在复平面内,记复数+i 对应的向量为,若向量饶坐标原点逆时针旋转60°得到向量所对应的复数为 .17.已知复数,则1+z 50+z 100= .18.在中,已知,则此三角形的最大内角的度数等ABC ∆sin :sin :sin 3:5:7A B C =于__________.三、解答题19.(本小题满分12分)如图四棱柱ABCD-A1B1C1D1的底面为菱形,AA1⊥底面ABCD,M为A1A的中点,AB=BD=2,且△BMC1为等腰三角形.(1)求证:BD⊥MC1;(2)求四棱柱ABCD-A1B1C1D1的体积.20.某少数民族的刺绣有着悠久的历史,图(1)、(2)、(3)、(4)为她们刺绣最简单的四个图案,这些图案都由小正方形构成,小正方形数越多刺绣越漂亮,现按同样的规律刺绣(小正方形的摆放规律相同),设第n个图形包含f(n)个小正方形.(Ⅰ)求出f(5);(Ⅱ)利用合情推理的“归纳推理思想”归纳出f(n+1)与f(n)的关系式,并根据你得到的关系式求f(n)的表达式.21.已知椭圆E:+=1(a>b>0)的左、右焦点分别为F1,F2,离心率为,点(,)在椭圆E上.(1)求椭圆E的方程;(2)设过点P (2,1)的直线l 与椭圆相交于A 、B 两点,若AB 的中点恰好为点P ,求直线l 的方程. 22.已知数列{a n }与{b n },若a 1=3且对任意正整数n 满足a n+1﹣a n =2,数列{b n }的前n 项和S n =n 2+a n .(Ⅰ)求数列{a n },{b n }的通项公式;(Ⅱ)求数列{}的前n 项和T n .23.设集合.{}()(){}222|320,|2150A x x x B x x a x a =-+==+-+-=(1)若,求实数的值;{}2A B =I (2),求实数的取值范围.1111]A B A =U 24.(本小题满分10分)选修4-4:坐标系与参数方程已知曲线的极坐标方程是,以极点为平面直角坐标系的原点,极轴为轴的正半轴,建立C 2cos ρθ=平面直角坐标系,直线的参数方程是(为参数).243x ty t =-+⎧⎨=⎩(1)写出曲线的参数方程,直线的普通方程;C (2)求曲线上任意一点到直线的距离的最大值.C郾城区第二高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1. 【答案】C 【解析】解:x=两边平方,可变为3y 2﹣x 2=1(x ≥0),表示的曲线为双曲线的一部分;故选C .【点评】本题主要考查了曲线与方程.解题的过程中注意x 的范围,注意数形结合的思想. 2. 【答案】B 【解析】解:∵f (x )=,g (x )=(k ∈N *),对任意的c >1,存在实数a ,b 满足0<a <b <c ,使得f (c )=f (a )=g (b ),∴可得:>,对于x >1恒成立.设h (x )=x •,h ′(x )=,且y=x ﹣2﹣lnx ,y ′=1﹣>0在x >1成立,∴即3﹣2﹣ln3<0,4﹣2﹣ln4>0,故存在x 0∈(3,4)使得f (x )≥f (x 0)>3,∴k 的最大值为3.故选:B【点评】本题考查了学生的构造函数,求导数,解决函数零点问题,综合性较强,属于难题. 3. 【答案】D【解析】由已知得,故,故选D .{}=01A x x <£A B I 1[,1]24. 【答案】A【解析】解:作出两个函数的图象如上∵函数y=f (x )的周期为2,在[﹣1,0]上为减函数,在[0,1]上为增函数∴函数y=f (x )在区间[0,10]上有5次周期性变化,在[0,1]、[2,3]、[4,5]、[6,7]、[8,9]上为增函数,在[1,2]、[3,4]、[5,6]、[7,8]、[9,10]上为减函数,且函数在每个单调区间的取值都为[0,1],再看函数y=|lgx|,在区间(0,1]上为减函数,在区间[1,+∞)上为增函数,且当x=1时y=0; x=10时y=1,再结合两个函数的草图,可得两图象的交点一共有10个,故选:A .【点评】本题着重考查了基本初等函数的图象作法,以及函数图象的周期性,属于基本题. 5. 【答案】C【解析】解:||=3,||=1,与的夹角为,可得=||||cos <,>=3×1×=,即有|﹣4|===.故选:C .【点评】本题考查向量的数量积的定义和性质,考查向量的平方即为模的平方,考查运算能力,属于基础题. 6. 【答案】C【解析】解:由题意可知,设汽车x 年后的价值为S ,则S=15(1﹣20%)x ,结合程序框图易得当n=4时,S=15(1﹣20%)4=6.144.故选:C . 7. 【答案】A【解析】根据复数的运算可知,可知的共轭复数为,故选A.43)2()2(22--=--=-=i i i ii z z 43z i =-+8. 【答案】 C【解析】解:在长方体ABCD ﹣A 1B 1C 1D 1中命题p :平面AC 为平面α,平面A 1C 1为平面β,直线A 1D 1,和直线AB 分别是直线m ,l ,显然满足α∥β,l ⊂α,m ⊂β,而m 与l 异面,故命题p 不正确;﹣p 正确;命题q :平面AC 为平面α,平面A 1C 1为平面β,直线A 1D 1,和直线AB 分别是直线m ,l ,显然满足l ∥α,m ⊥l ,m ⊂β,而α∥β,故命题q 不正确;﹣q 正确;故选C .【点评】此题是个基础题.考查面面平行的判定和性质定理,要说明一个命题不正确,只需举一个反例即可,否则给出证明;考查学生灵活应用知识分析解决问题的能力. 9. 【答案】B【解析】因为的展开式中项系数是,所以,解得,故选A .(1)(N )n x n *+Î3x 3C n 3C 10n =5n =10.【答案】A【解析】解:由题意可知:同学3次测试满足X ∽B (3,0.6),该同学通过测试的概率为=0.648.故选:A . 11.【答案】B 【解析】试题分析:设从青年人抽取的人数为,故选B .800,,2050600600800x x x ∴=∴=++考点:分层抽样.12.【答案】B【解析】解:令f (a )=(3﹣a )(a+6)=﹣+,而且﹣6≤a ≤3,由此可得函数f(a )的最大值为,故(﹣6≤a ≤3)的最大值为=,故选B .【点评】本题主要考查二次函数的性质应用,体现了转化的数学思想,属于中档题. 二、填空题13.【答案】 [﹣1,﹣) .【解析】解:作出y=|x ﹣2|,y=kx+1的图象,如图所示,直线y=kx+1恒过定点(0,1),结合图象可知k ∈[﹣1,﹣).故答案为:[﹣1,﹣).【点评】本题考查全称命题,考查数形结合的数学思想,比较基础.14.【答案】 .【解析】解:因为y=(a﹣3)x3+lnx存在垂直于y轴的切线,即y'=0有解,即y'=在x>0时有解,所以3(a﹣3)x3+1=0,即a﹣3<0,所以此时a<3.函数f(x)=x3﹣ax2﹣3x+1在[1,2]上单调递减,则f'(x)≤0恒成立,即f'(x)=3x2﹣2ax﹣3≤0恒成立,即,因为函数在[1,2]上单调递增,所以函数的最大值为,所以,所以.综上.故答案为:.【点评】本题主要考查导数的基本运算和导数的应用,要求熟练掌握利用导数在研究函数的基本应用. 15.【答案】 2016 .【解析】解:由a n+1=e+a n,得a n+1﹣a n=e,∴数列{a n}是以e为公差的等差数列,则a1=a3﹣2e=4e﹣2e=2e,∴a2015=a1+2014e=2e+2014e=2016e.故答案为:2016e.【点评】本题考查了数列递推式,考查了等差数列的通项公式,是基础题.16.【答案】 2i .【解析】解:向量饶坐标原点逆时针旋转60°得到向量所对应的复数为(+i )(cos60°+isin60°)=(+i )()=2i,故答案为 2i .【点评】本题考查两个复数代数形式的乘法及其集合意义,判断旋转60°得到向量对应的复数为(+i )(cos60°+isin60°),是解题的关键. 17.【答案】 i .【解析】解:复数,所以z 2=i ,又i 2=﹣1,所以1+z 50+z 100=1+i 25+i 50=1+i ﹣1=i ;故答案为:i .【点评】本题考查了虚数单位i 的性质运用;注意i 2=﹣1. 18.【答案】120o【解析】考点:解三角形.【方法点晴】本题主要考查了解三角形问题,其中解答中涉及到三角形的正弦定理、余弦定理的综合应用,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,属于基础题,本题的解答中根据,根据正弦定理,可设,即可利用余弦定理求解最大角的余弦,sin :sin :sin 3:5:7A B C =3,5,7a b ===熟记正弦、余弦定理的公式是解答的关键.三、解答题19.【答案】【解析】解:(1)证明:如图,连接AC ,设AC 与BD 的交点为E ,∵四边形ABCD 为菱形,∴BD ⊥AC ,又AA 1⊥平面ABCD ,BD ⊂平面ABCD ,∴A 1A ⊥BD ;又A 1A ∩AC =A ,∴BD ⊥平面A 1ACC 1,又MC 1⊂平面A 1ACC 1,∴BD ⊥MC 1.(2)∵AB =BD =2,且四边形ABCD 是菱形,∴AC =2AE =2=2,AB 2-BE 23又△BMC 1为等腰三角形,且M 为A 1A 的中点,∴BM 是最短边,即C 1B =C 1M .则有BC 2+C 1C 2=AC 2+A 1M 2,即4+C 1C 2=12+()2,C 1C 2解得C 1C =,463所以四棱柱ABCD -A 1B 1C 1D 1的体积为V =S 菱形ABCD ×C 1C=AC ×BD ×C 1C =×2×2×=8.121234632即四棱柱ABCD -A 1B 1C 1D 1的体积为8.220.【答案】【解析】解:(Ⅰ)∵f (1)=1,f (2)=5,f (3)=13,f (4)=25,∴f (2)﹣f (1)=4=4×1.f (3)﹣f (2)=8=4×2,f (4)﹣f (3)=12=4×3,f (5)﹣f (4)=16=4×4∴f (5)=25+4×4=41.…(Ⅱ)由上式规律得出f (n+1)﹣f (n )=4n .…∴f (2)﹣f (1)=4×1,f (3)﹣f (2)=4×2,f (4)﹣f (3)=4×3,…f (n ﹣1)﹣f (n ﹣2)=4•(n ﹣2),f (n )﹣f (n ﹣1)=4•(n ﹣1)…∴f (n )﹣f (1)=4[1+2+…+(n ﹣2)+(n ﹣1)]=2(n ﹣1)•n ,∴f (n )=2n 2﹣2n+1.…21.【答案】【解析】解:(1)由题得=, =1,又a 2=b 2+c 2,解得a 2=8,b 2=4.∴椭圆方程为:.(2)设直线的斜率为k ,A (x 1,y 1),B (x 2,y 2),∴, =1,两式相减得=0,∵P 是AB 中点,∴x 1+x 2=4,y 1+y 2=2,=k ,代入上式得:4+4k=0,解得k=﹣1,∴直线l :x+y ﹣3=0.【点评】本题考查了椭圆的标准方程及其性质、“点差法”、斜率计算公式、中点坐标坐标公式,考查了推理能力与计算能力,属于中档题.22.【答案】【解析】解:(Ⅰ)由题意知数列{a n }是公差为2的等差数列,又∵a 1=3,∴a n =3+2(n ﹣1)=2n+1.列{b n }的前n 项和S n =n 2+a n =n 2+2n+1=(n+1)2当n=1时,b 1=S 1=4;当n ≥2时,.上式对b 1=4不成立.∴数列{b n }的通项公式:;(Ⅱ)n=1时,;n ≥2时,,∴.n=1仍然适合上式.综上,.【点评】本题考查了求数列的通项公式,训练了裂项法求数列的和,是中档题.23.【答案】(1)或;(2).1a =5a =-3a >【解析】(2) .{}{}1,2,1,2A A B ==U ①无实根,, 解得; ()()22,2150B x a x a =∅+-+-=0∆<3a >② 中只含有一个元素,仅有一个实根, B ()()222150x a x a +-+-=故舍去;{}{}0,3,2,2,1,2a B A B ∆===-=-U ③中只含有两个元素,使 两个实根为和, B ()()222150x a x a +-+-=需要满足方程组无根,故舍去, 综上所述]()2212121=a 5a ⎧+=--⎪⎨⨯-⎪⎩3a >考点:集合的运算及其应用.24.【答案】(1)参数方程为,;(2).1cos sin x y θθ=+⎧⎨=⎩3460x y -+=145【解析】试题分析:(1)先将曲线的极坐标方程转化为直角坐标系下的方程,可得,利用圆的参数方C 22(1)1x y -+=程写出结果,将直线的参数方程消去参数变为直线的普通方程;(2)利用参数方程写出曲线上任一点坐标,C 用点到直线的距离公式,将其转化为关于的式子,利用三角函数性质可得距离最值.试题解析:(1)曲线的普通方程为,∴,C 22cos ρρθ=2220x y x +-=∴,所以参数方程为,22(1)1x y -+=1cos sin x y θθ=+⎧⎨=⎩直线的普通方程为.3460x y -+=(2)曲线上任意一点到直线的距离为C (1cos ,sin )θθ+,所以曲线上任意一点到直线的距离的最大值为.33cos 4sin 65sin()914555d θθθϕ+-+++==≤C 145考点:1.极坐标方程;2.参数方程.。
漯河市实验中学2018-2019学年高三上学期11月月考数学试卷含答案
漯河市实验中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 若关于x 的不等式07|2||1|>-+-++m x x 的解集为R ,则参数m 的取值范围为( ) A .),4(+∞ B .),4[+∞ C .)4,(-∞ D .]4,(-∞【命题意图】本题考查含绝对值的不等式含参性问题,强化了函数思想、化归思想、数形结合思想在本题中的应用,属于中等难度.2. 如图,空间四边形OABC 中,,,,点M 在OA上,且,点N 为BC 中点,则等于( )A. B. C. D.3. 以下四个命题中,真命题的是( ) A .2,2x R x x ∃∈≤-B .“对任意的x R ∈,210x x ++>”的否定是“存在0x R ∈,20010x x ++<C .R θ∀∈,函数()sin(2)f x x θ=+都不是偶函数D .已知m ,n 表示两条不同的直线,α,β表示不同的平面,并且m α⊥,n β⊂,则“αβ⊥”是 “//m n ”的必要不充分条件【命题意图】本题考查量词、充要条件等基础知识,意在考查逻辑推理能力.4. 已知e 是自然对数的底数,函数f (x )=e x +x ﹣2的零点为a ,函数g (x )=lnx+x ﹣2的零点为b ,则下列不等式中成立的是( )A .a <1<bB .a <b <1C .1<a <bD .b <1<a5. 已知平面向量(12)=,a ,(32)=-,b ,若k +a b 与a 垂直,则实数k 值为( ) A .15- B .119 C .11 D .19【命题意图】本题考查平面向量数量积的坐标表示等基础知识,意在考查基本运算能力. 6. 矩形ABCD 中,AD=mAB ,E 为BC的中点,若,则m=( )A.B.C .2D .37. 下列命题中正确的是( )A .若命题p 为真命题,命题q 为假命题,则命题“p ∧q ”为真命题B .命题“若xy=0,则x=0”的否命题为:“若xy=0,则x ≠0”C .“”是“”的充分不必要条件班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________D .命题“∀x ∈R ,2x >0”的否定是“”8. 关于函数2()ln f x x x=+,下列说法错误的是( ) (A )2x =是()f x 的极小值点( B ) 函数()y f x x =-有且只有1个零点 (C )存在正实数k ,使得()f x kx >恒成立(D )对任意两个正实数12,x x ,且21x x >,若12()()f x f x =,则124x x +>9. 数列{a n }的首项a 1=1,a n+1=a n +2n ,则a 5=( ) A .B .20C .21D .3110.△ABC 中,A (﹣5,0),B (5,0),点C 在双曲线上,则=( )A .B .C .D .±11.设集合A ={1,2,3},B ={4,5},M ={x|x =a +b ,a ∈A ,b ∈B},则M 中元素的个数为( )。
漯河市高级中学2018-2019学年高三上学期第三次月考试卷数学含答案
漯河市高级中学2018-2019学年高三上学期第三次月考试卷数学含答案 班级__________ 座号_____ 姓名__________ 分数__________一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)1. 将函数f (x )=3sin (2x+θ)(﹣<θ<)的图象向右平移φ(φ>0)个单位长度后得到函数g (x )的图象,若f (x ),g (x )的图象都经过点P (0,),则φ的值不可能是( )A .B .πC .D .2. 设a ,b 为正实数,1122a b+≤,23()4()a b ab -=,则log a b =( )A.0B.1-C.1 D .1-或0【命题意图】本题考查基本不等式与对数的运算性质等基础知识,意在考查代数变形能与运算求解能力.3. 已知,,那么夹角的余弦值( )A .B .C .﹣2D .﹣4. 已知平面向量与的夹角为3π,且32|2|=+b a ,1||=b ,则=||a ( ) A . B .3 C . D . 5. 为了得到函数的图象,只需把函数y=sin3x 的图象( )A .向右平移个单位长度B .向左平移个单位长度C .向右平移个单位长度D .向左平移个单位长度6. 在ABC ∆中,22tan sin tan sin A B B A =gg ,那么ABC ∆一定是( ) A .锐角三角形 B .直角三角形 C .等腰三角形 D .等腰三角形或直角三角形 7. 某几何体的三视图如下(其中三视图中两条虚线互相垂直)则该几何体的体积为( )A.83 B .4 C.163D .2038. 487被7除的余数为a (0≤a <7),则展开式中x ﹣3的系数为( )A .4320B .﹣4320C .20D .﹣209. 已知集合},052|{2Z x x x x M ∈<+=,},0{a N =,若∅≠N M I ,则=a ( )A .1-B .C .1-或D .1-或2- 10.在平面直角坐标系中,直线y=x 与圆x 2+y 2﹣8x+4=0交于A 、B 两点,则线段AB 的长为( )A .4B .4C .2D .211.图 1是由哪个平面图形旋转得到的( )A .B .C .D . 12.下列哪组中的两个函数是相等函数( ) A .()()()4444=f x x x x =,g B .()()24=,22x f x g x x x -=-+ C .()()1,01,1,0x f x g x x >⎧==⎨<⎩ D .()()33=f x x x x =,g二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)13.等差数列{}n a 的前项和为n S ,若37116a a a ++=,则13S 等于_________. 14.在正方形ABCD 中,2==AD AB ,N M ,分别是边CD BC ,上的动点,当4AM AN u u u u r u u u r⋅=时,则MN的取值范围为 .【命题意图】本题考查平面向量数量积、点到直线距离公式等基础知识,意在考查坐标法思想、数形结合思想和基本运算能力. 15.已知函数f (x )=,点O 为坐标原点,点An (n ,f (n ))(n ∈N +),向量=(0,1),θn 是向量与i 的夹角,则++…+= .16.已知f (x )=x (e x +a e -x )为偶函数,则a =________.三、解答题(本大共6小题,共70分。
漯河市一中2018-2019学年高三上学期11月月考数学试卷含答案
)
第 1 页,共 7 页
A.﹣ B. C.﹣1 D.1
9. 设变量 x,y 满足约束条件
,则目标函数 z=4x+2y 的最大值为( )
A.12 B.10 C.8 D.2
10.已知曲线 C1:y=ex 上一点 A(x1,y1),曲线 C2:y=1+ln(x﹣m)(m>0)上一点 B(x2,y2),当 y1=y2
,
,
,点 M 在 OA 上,且
,点 N 为 BC 中点
,则 等于( )
A.
B.
C.
D.
5. 设 a,b,c,∈R+,则“abc=1”是“
”的( )
A.充分条件但不是必要条件 B.必要条件但不是充分条件 C.充分必要条件 D.既不充分也不必要的条件
6. 已知| |=3,| |=1, 与 的夹角为 ,那么| ﹣4 |等于( )
①f(x)=3x+1
②f(x)=( )x+1
③f(x)=x2+1
④f(x)=
其中是“H 函数”的有 (填序号)
三、解答题
19.(1)化简:
(2)已知 tanα=3,计算
的值.
20.(本题满分 14 分)已知函数 f (x) x2 a ln x .
第 3 页,共 7 页
(1)若 f (x) 在[3,5] 上是单调递减函数,求实数 a 的取值范围;
二、填空题
应的边分别为 a,b,c, A=60°,b=2,则 c 的 14.阅读右侧程序框图,输出的结果 i 的值为 .
13.△ABC 外接圆半径为 值为 .
,内角 A,B,C 对
第 2 页,共 7 页
15.已知向量 =(1,2), =(1,0), =(3,4),若 λ 为实数,( +λ )⊥ ,则 λ 的值为 . 16.已知点 A(2,0),点 B(0,3),点 C 在圆 x2+y2=1 上,当△ABC 的面积最小时,点 C 的坐标为 .
漯河市第二中学2018-2019学年高三上学期11月月考数学试卷含答案
漯河市第二中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 已知向量(,2)a m =,(1,)b n =-(0n >),且0a b ⋅=,点(,)P m n 在圆225x y +=上,则|2|a b +=( )AB . C. D.2. 若f (x )=x 2﹣2x ﹣4lnx ,则f ′(x )>0的解集为( ) A .(0,+∞) B .(﹣1,0)∪(2,+∞)C .(2,+∞)D .(﹣1,0)3. 已知回归直线的斜率的估计值是1.23,样本点的中心为(4,5),则回归直线的方程是( ) A. =1.23x+4 B. =1.23x ﹣0.08 C. =1.23x+0.8 D. =1.23x+0.08 4. 曲线y=e x 在点(2,e 2)处的切线与坐标轴所围三角形的面积为( ) A. e 2 B .2e 2 C .e 2 D. e 25.设集合( )A. B.C.D.6. 如果是定义在上的奇函数,那么下列函数中,一定为偶函数的是( ) A .B .C .D .7. 若f (x )为定义在区间G 上的任意两点x 1,x 2和任意实数λ(0,1),总有f (λx 1+(1﹣λ)x 2)≤λf (x 1)+(1﹣λ)f (x 2),则称这个函数为“上进”函数,下列函数是“上进”函数的个数是( ) ①f (x )=,②f (x )=,③f (x )=,④f (x )=.A .4B .3C .2D .18. 下面各组函数中为相同函数的是( )A .f (x )=,g (x )=x ﹣1B .f (x )=,g (x )=C .f (x )=ln e x 与g (x )=e lnxD .f (x )=(x ﹣1)0与g (x )=9. 高考临近,学校为丰富学生生活,缓解高考压力,特举办一场高三学生队与学校校队的男子篮球比赛.由于爱好者众多,高三学生队队员指定由5班的6人、16班的8人、33班的10人按分层抽样构成一个12人的篮球队.首发要求每个班至少1人,至多2人,则首发方案数为( ) A .720 B .270 C .390 D .30010.设S n 为等比数列{a n }的前n 项和,已知3S 3=a 4﹣2,3S 2=a 3﹣2,则公比q=( ) A .3B .4C .5D .611.执行如图所示的一个程序框图,若f (x )在[﹣1,a]上的值域为[0,2],则实数a 的取值范围是( )班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A .(0,1]B .[1,] C .[1,2] D .[,2]12.已知直线l :2y kx =+过椭圆)0(12222>>=+b ay a x 的上顶点B 和左焦点F ,且被圆224x y +=截得的弦长为L ,若5L ≥e 的取值范围是( ) (A ) ⎥⎦⎤ ⎝⎛550, ( B ) 0⎛ ⎝⎦(C ) ⎥⎦⎤⎝⎛5530, (D ) ⎥⎦⎤⎝⎛5540, 二、填空题13.已知函数f (x )=cosxsinx ,给出下列四个结论: ①若f (x 1)=﹣f (x 2),则x1=﹣x 2; ②f (x )的最小正周期是2π; ③f (x )在区间[﹣,]上是增函数;④f (x )的图象关于直线x=对称.其中正确的结论是 .14.将一个半径为3和两个半径为1的球完全装入底面边长为6的正四棱柱容器中,则正四棱柱容器的高的最小值为 .15.如图为长方体积木块堆成的几何体的三视图,此几何体共由 块木块堆成.16.若x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -5≤02x -y -1≥0x -2y +1≤0,若z =2x +by (b >0)的最小值为3,则b =________.17.已知一个算法,其流程图如图,则输出结果是 .18.已知数列{a n}满足a1=1,a2=2,a n+2=(1+cos2)a n+sin2,则该数列的前16项和为.三、解答题19.已知f(x)=x3+3ax2+3bx+c在x=2处有极值,其图象在x=1处的切线与直线6x+2y+5=0平行.(1)求函数的单调区间;(2)若x∈[1,3]时,f(x)>1﹣4c2恒成立,求实数c的取值范围.20.已知P(m,n)是函授f(x)=e x﹣1图象上任一于点(Ⅰ)若点P关于直线y=x﹣1的对称点为Q(x,y),求Q点坐标满足的函数关系式(Ⅱ)已知点M(x0,y0)到直线l:Ax+By+C=0的距离d=,当点M在函数y=h(x)图象上时,公式变为,请参考该公式求出函数ω(s,t)=|s﹣e x﹣1﹣1|+|t﹣ln(t﹣1)|,(s∈R,t>0)的最小值.21.在中,、、是角、、所对的边,是该三角形的面积,且(1)求的大小;(2)若,,求的值。
漯河市第二高级中学2018-2019学年高三上学期11月月考数学试卷含答案(1)
漯河市第二高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 在△ABC中,已知,则∠C=( )A .30°B .150°C .45°D .135°2. 如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数.从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为( ) A.B.C.D.3. 设m ,n 表示两条不同的直线,α、β表示两个不同的平面,则下列命题中不正确的是( ) A .m ⊥α,m ⊥β,则α∥β B .m ∥n ,m ⊥α,则n ⊥α C .m ⊥α,n ⊥α,则m ∥nD .m ∥α,α∩β=n ,则m ∥n4. 设集合A={x|x 2+x ﹣6≤0},集合B为函数的定义域,则A ∩B=( )A .(1,2)B .[1,2]C .[1,2)D .(1,2]5. 若圆226260x y x y +--+=上有且仅有三个点到直线10(ax y a -+=是实数)的距离为,则a =( )A . 1±B .4± C. D.±6. 设为虚数单位,则( )A .B .C .D .7. 过抛物线22(0)y px p =>焦点F 的直线与双曲线2218-=y x 的一条渐近线平行,并交其抛物线于A 、 B 两点,若>AF BF ,且||3AF =,则抛物线方程为( )A .2y x = B .22y x = C .24y x = D .23y x =【命题意图】本题考查抛物线方程、抛物线定义、双曲线标准方程和简单几何性质等基础知识,意在考查方程思想和运算能力. 8.双曲线:的渐近线方程和离心率分别是( ) A.B.C.D.9. sin570°的值是( ) A.B.﹣ C.D.﹣10.已知F 1,F 2是椭圆和双曲线的公共焦点,M 是它们的一个公共点,且∠F 1MF 2=,则椭圆和双曲线的离心率的倒数之和的最大值为( ) A .2 B.C.D .4班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________11.已知数列{}n a 的首项为11a =,且满足11122n n n a a +=+,则此数列的第4项是( ) A .1 B .12 C. 34 D .5812.如图,从点M (x 0,4)发出的光线,沿平行于抛物线y 2=8x 的对称轴方向射向此抛物线上的点P ,经抛物线反射后,穿过焦点射向抛物线上的点Q ,再经抛物线反射后射向直线l :x ﹣y ﹣10=0上的点N ,经直线反射后又回到点M ,则x 0等于( )A .5B .6C .7D .8二、填空题13.已知1,3x x ==是函数()()()sin 0f x x ωϕω=+>两个相邻的两个极值点,且()f x 在32x = 处的导数302f ⎛⎫'<⎪⎝⎭,则13f ⎛⎫= ⎪⎝⎭___________.14.设函数32()(1)f x x a x ax =+++有两个不同的极值点1x ,2x ,且对不等式12()()0f x f x +≤恒成立,则实数的取值范围是 .15.已知f (x )=,则f (﹣)+f ()等于 .16.甲、乙、丙三位同学被问到是否去过A ,B ,C 三个城市时, 甲说:我去过的城市比乙多,但没去过B 城市;乙说:我没去过C 城市; 丙说:我们三人去过同一城市;由此可判断乙去过的城市为 .17.如果直线3ax+y ﹣1=0与直线(1﹣2a )x+ay+1=0平行.那么a 等于 .18.在极坐标系中,点(2,)到直线ρ(cos θ+sin θ)=6的距离为 .三、解答题19.某种产品的广告费支出x 与销售额y (单位:百万元)之间有如下对应数据:x 2 4 5 6 8 y 30 40 60 50 70(1)画出散点图; (2)求线性回归方程;(3)预测当广告费支出7(百万元)时的销售额.20.某人在如图所示的直角边长为4米的三角形地块的每个格点(指纵、横直线的交叉点以及三角形顶点)处都种了一株相同品种的作物.根据历年的种植经验,一株该种作物的年收获Y(单位:kg)与它的“相近”作物株数X之间的关系如下表所示:X 1 2 3 4Y 51 48 45 42这里,两株作物“相近”是指它们之间的直线距离不超过1米.(I)从三角形地块的内部和边界上分别随机选取一株作物,求它们恰好“相近”的概率;(II)在所种作物中随机选取一株,求它的年收获量的分布列与数学期望.21.如图在长方形ABCD中,是CD的中点,M是线段AB上的点,.(1)若M是AB的中点,求证:与共线;(2)在线段AB上是否存在点M,使得与垂直?若不存在请说明理由,若存在请求出M点的位置;(3)若动点P在长方形ABCD上运动,试求的最大值及取得最大值时P点的位置.22.(本小题满分12分)一直线被两直线12:460,:3560l x y l x y ++=--=截得线段的中点是P 点, 当P 点为()0,0时, 求此直线方程.23.如图所示,在正方体ABCD ﹣A 1B 1C 1D 1中,E 、F 分别是棱DD 1、C 1D 1的中点. (Ⅰ)证明:平面ADC 1B 1⊥平面A 1BE ; (Ⅱ)证明:B 1F ∥平面A 1BE ;(Ⅲ)若正方体棱长为1,求四面体A 1﹣B 1BE 的体积.24.如图,在四棱锥P ﹣ABCD 中,平面PAB ⊥平面ABCD ,AB ∥CD ,AB ⊥AD ,CD=2AB ,E 为PA 的中点,M 在PD 上.(I )求证:AD ⊥PB ;(Ⅱ)若,则当λ为何值时,平面BEM ⊥平面PAB ?(Ⅲ)在(II )的条件下,求证:PC ∥平面BEM .漯河市第二高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1.【答案】C【解析】解:∵a2+b2=c2+ba,即a2+b2﹣c2=ab,∴由余弦定理得:cosC==,∴∠C=45°.故选:C.【点评】此题考查了余弦定理,以及特殊角的三角函数值,熟练掌握余弦定理是解本题的关键.2.【答案】C【解析】解:从1,2,3,4,5中任取3个不同的数,有(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5)(2,3,4),(2,3,5),(2,4,5),(3,4,5)共10种,其中只有(3,4,5)为勾股数,故这3个数构成一组勾股数的概率为.故选:C3.【答案】D【解析】解:A选项中命题是真命题,m⊥α,m⊥β,可以推出α∥β;B选项中命题是真命题,m∥n,m⊥α可得出n⊥α;C选项中命题是真命题,m⊥α,n⊥α,利用线面垂直的性质得到n∥m;D选项中命题是假命题,因为无法用线面平行的性质定理判断两直线平行.故选D.【点评】本题考查了空间线面平行和线面垂直的性质定理和判定定理的运用,关键是熟练有关的定理.4.【答案】D【解析】解:A={x|x2+x﹣6≤0}={x|﹣3≤x≤2}=[﹣3,2],要使函数y=有意义,则x﹣1>0,即x>1,∴函数的定义域B=(1,+∞),则A∩B=(1,2],故选:D.【点评】本题主要考查集合的基本运算,利用函数成立的条件求出函数的定义域y以及利用不等式的解法求出集合A是解决本题的关键,比较基础5. 【答案】B 【解析】试题分析:由圆226260x y x y +--+=,可得22(3)(1)4x y -+-=,所以圆心坐标为(3,1),半径为2r =,要使得圆上有且仅有三个点到直线10(ax y a -+=是实数)的距离为,则圆心到直线的距离等于12r,即1=,解得4a =±,故选B. 1 考点:直线与圆的位置关系.【方法点晴】本题主要考查了直线与圆的位置关系,其中解答中涉及到圆的标准方程、圆心坐标和圆的半径、点到直线的距离公式等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力和转化的思想方法,本题的解答中,把圆上有且仅有三个点到直线的距离为,转化为圆心到直线的距离等于12r 是解答的关键.6. 【答案】C【解析】【知识点】复数乘除和乘方【试题解析】故答案为:C 7. 【答案】C【解析】由已知得双曲线的一条渐近线方程为=y ,设00(,)A x y ,则02>p x,所以0002002322ì=ïï-ïïïï+=íïï=ïïïïîy p x p x y px ,解得2=p 或4=p ,因为322->p p,故03p <<,故2=p ,所以抛物线方程为24y x =. 8. 【答案】D【解析】解:双曲线:的a=1,b=2,c==∴双曲线的渐近线方程为y=±x=±2x ;离心率e==故选 D9. 【答案】B【解析】解:原式=sin (720°﹣150°)=﹣sin150°=﹣. 故选B【点评】此题考查了运用诱导公式化简求值,熟练掌握诱导公式是解本题的关键.10.【答案】C【解析】解:设椭圆的长半轴为a,双曲线的实半轴为a1,(a>a1),半焦距为c,由椭圆和双曲线的定义可知,设|MF1|=r1,|MF2|=r2,|F1F2|=2c,椭圆和双曲线的离心率分别为e1,e2∵∠F1MF2=,∴由余弦定理可得4c2=(r1)2+(r2)2﹣2r1r2cos,①在椭圆中,①化简为即4c2=4a2﹣3r1r2,即=﹣1,②在双曲线中,①化简为即4c2=4a12+r1r2,即=1﹣,③联立②③得,+=4,由柯西不等式得(1+)(+)≥(1×+×)2,即(+)2≤×4=,即+≤,当且仅当e=,e2=时取等号.即取得最大值且为.1故选C.【点评】本题主要考查椭圆和双曲线的定义和性质,利用余弦定理和柯西不等式是解决本题的关键.难度较大.11.【答案】B【解析】12.【答案】B【解析】解:由题意可得抛物线的轴为x轴,F(2,0),∴MP所在的直线方程为y=4在抛物线方程y2=8x中,令y=4可得x=2,即P (2,4) 从而可得Q (2,﹣4),N (6,﹣4)∵经抛物线反射后射向直线l :x ﹣y ﹣10=0上的点N ,经直线反射后又回到点M , ∴直线MN 的方程为x=6 故选:B .【点评】本题主要考查了抛物线的性质的应用,解决问题的关键是要熟练掌握相关的性质并能灵活应用.二、填空题13.【答案】12【解析】考点:三角函数图象与性质,函数导数与不等式.【思路点晴】本题主要考查两个知识点:三角函数图象与性质,函数导数与不等式.三角函数的极值点,也就是最大值、最小值的位置,所以两个极值点之间为半周期,由此求得周期和ω,再结合极值点的导数等于零,可求出ϕ.在求ϕ的过程中,由于题目没有给定它的取值范围,需要用302f ⎛⎫'< ⎪⎝⎭来验证.求出()f x 表达式后,就可以求出13f ⎛⎫ ⎪⎝⎭.1 14.【答案】1(,1],22⎡⎤-∞-⎢⎥⎣⎦【解析】试题分析:因为12()()0f x f x +≤,故得不等式()()()332212121210x x a x x a x x ++++++≤,即()()()()()221212121212123120x x x x x x a x x x x a x x ⎡⎤⎡⎤++-+++-++≤⎣⎦⎣⎦,由于()()2'321f x x a x a =+++,令()'0f x =得方程()23210x a x a +++=,因()2410a a ∆=-+> , 故()12122133x x a ax x ⎧+=-+⎪⎪⎨⎪=⎪⎩,代入前面不等式,并化简得()1a +()22520a a -+≥,解不等式得1a ≤-或122a ≤≤,因此, 当1a ≤-或122a ≤≤时, 不等式()()120f x f x +≤成立,故答案为1(,1],22⎡⎤-∞-⎢⎥⎣⎦.考点:1、利用导数研究函数的极值点;2、韦达定理及高次不等式的解法.【思路点晴】本题主要考查利用导数研究函数的极值点、韦达定理及高次不等式的解法,属于难题.要解答本题首先利用求导法则求出函数()f x 的到函数,令()'0f x =考虑判别式大于零,根据韦达定理求出1212,x x x x +的值,代入不等式12()()0f x f x +≤,得到关于的高次不等式,再利用“穿针引线”即可求得实数的取值范围.111] 15.【答案】 4 .【解析】解:由分段函数可知f ()=2×=.f (﹣)=f (﹣+1)=f (﹣)=f (﹣)=f ()=2×=,∴f ()+f (﹣)=+.故答案为:4.16.【答案】 A .【解析】解:由乙说:我没去过C 城市,则乙可能去过A 城市或B 城市,但甲说:我去过的城市比乙多,但没去过B 城市,则乙只能是去过A ,B 中的任一个,再由丙说:我们三人去过同一城市, 则由此可判断乙去过的城市为A .故答案为:A .【点评】本题主要考查简单的合情推理,要抓住关键,逐步推断,是一道基础题.17.【答案】 .【解析】解:∵直线3ax+y ﹣1=0与直线(1﹣2a )x+ay+1=0平行,∴3aa=1(1﹣2a ),解得a=﹣1或a=, 经检验当a=﹣1时,两直线重合,应舍去故答案为:.【点评】本题考查直线的一般式方程和平行关系,属基础题.18.【答案】 1 .【解析】解:点P (2,)化为P.直线ρ(cos θ+sin θ)=6化为.∴点P到直线的距离d==1.故答案为:1.【点评】本题考查了极坐标化为直角坐标方程、点到直线的距离公式,考查了推理能力与计算能力,属于中档题.三、解答题19.【答案】【解析】解:(1)(2)设回归方程为=bx+a则b=﹣5/﹣5=1380﹣5×5×50/145﹣5×52=6.5故回归方程为=6.5x+17.5(3)当x=7时,=6.5×7+17.5=63,所以当广告费支出7(百万元)时,销售额约为63(百万元).【点评】本题考查线性回归方程的求法和应用,本题解题的关键是利用最小二乘法求出线性回归方程的系数,这是解答正确的主要环节.20.【答案】【解析】【专题】概率与统计.【分析】(I)确定三角形地块的内部和边界上的作物株数,分别求出基本事件的个数,即可求它们恰好“相近”的概率;(II)确定变量的取值,求出相应的概率,从而可得年收获量的分布列与数学期望.【解答】解:(I)所种作物总株数N=1+2+3+4+5=15,其中三角形地块内部的作物株数为3,边界上的作物株数为12,从三角形地块的内部和边界上分别随机选取一株的不同结果有=36种,选取的两株作物恰好“相近”的不同结果有3+3+2=8,∴从三角形地块的内部和边界上分别随机选取一株作物,求它们恰好“相近”的概率为=;(II)先求从所种作物中随机选取一株作物的年收获量为Y的分布列∵P(Y=51)=P(X=1),P(48)=P(X=2),P(Y=45)=P(X=3),P(Y=42)=P(X=4)∴只需求出P(X=k)(k=1,2,3,4)即可记n k为其“相近”作物恰有k株的作物株数(k=1,2,3,4),则n1=2,n2=4,n3=6,n4=3由P(X=k)=得P(X=1)=,P(X=2)=,P(X=3)==,P(X=4)==∴所求的分布列为Y 51 48 45 42P数学期望为E(Y)=51×+48×+45×+42×=46【点评】本题考查古典概率的计算,考查分布列与数学期望,考查学生的计算能力,属于中档题.21.【答案】【解析】(1)证明:如图,以AB所在直线为x轴,AD所在直线为y轴建立平面直角坐标系,当M是AB的中点时,A(0,0),N(1,1),C(2,1),M(1,0),,由,可得与共线;(2)解:假设线段AB上是否存在点M,使得与垂直,设M(t,0)(0≤t≤2),则B(2,0),D(0,1),M(t,0),,由=﹣2(t﹣2)﹣1=0,解得t=,∴线段AB上存在点,使得与垂直;(3)解:由图看出,当P在线段BC上时,在上的投影最大,则有最大值为4.【点评】本题考查平面向量的数量积运算,考查了向量在向量方向上的投影,体现了数形结合的解题思想方法,是中档题.22.【答案】16y x =-. 【解析】试题分析:设所求直线与两直线12,l l 分别交于()()1122,,,A x y B x y ,根据因为()()1122,,,A x y B x y 分别在直线12,l l 上,列出方程组,求解11,x y 的值,即可求解直线的方程. 1考点:直线方程的求解. 23.【答案】【解析】(Ⅰ)证明:∵ABCD ﹣A 1B 1C 1D 1为正方体, ∴B 1C 1⊥平面ABB 1A 1; ∵A 1B ⊂平面ABB 1A 1, ∴B 1C 1⊥A 1B .又∵A 1B ⊥AB 1,B 1C 1∩AB 1=B 1, ∴A 1B ⊥平面ADC 1B 1, ∵A 1B ⊂平面A 1BE ,∴平面ADC 1B 1⊥平面A 1BE ;(Ⅱ)证明:连接EF ,EF ∥,且EF=,设AB 1∩A 1B=O ,则B 1O ∥C 1D ,且,∴EF ∥B 1O ,且EF=B 1O , ∴四边形B 1OEF 为平行四边形. ∴B 1F ∥OE .又∵B 1F ⊄平面A 1BE ,OE ⊂平面A 1BE , ∴B 1F ∥平面A 1BE ,(Ⅲ)解:====.24.【答案】【解析】(I)证明:∵平面PAB⊥平面ABCD,AB⊥AD,平面PAB∩平面ABCD=AB,∴AD⊥平面PAB.又PB⊂平面PAB,∴AD⊥PB.(II)解:由(I)可知,AD⊥平面PAB,又E为PA的中点,当M为PD的中点时,EM∥AD,∴EM⊥平面PAB,∵EM⊂平面BEM,∴平面BEM⊥平面PAB.此时,.(III)设CD的中点为F,连接BF,FM由(II)可知,M为PD的中点.∴FM∥PC.∵AB∥FD,FD=AB,∴ABFD为平行四边形.∴AD∥BF,又∵EM∥AD,∴EM∥BF.∴B,E,M,F四点共面.∴FM⊂平面BEM,又PC⊄平面BEM,∴PC∥平面BEM.【点评】本题考查了线面垂直的性质,线面平行,面面垂直的判定,属于中档题.。
漯河市第一中学2018-2019学年高三上学期11月月考数学试卷含答案
15.若直线 x﹣y=1 与直线(m+3)x+my﹣8=0 平行,则 m= . 16.甲、乙、丙三位同学被问到是否去过 A,B,C 三个城市时, 甲说:我去过的城市比乙多,但没去过 B 城市; 乙说:我没去过 C 城市; 丙说:我们三人去过同一城市; 由此可判断乙去过的城市为 . 17. 椭圆 C: + =1(a>b>0) 0) 3) 的右焦点为 (2, , 且点 (2, 在椭圆上, 则椭圆的短轴长为 .
o
2
D.
1 3 i 5 5
)
【命题意图】本题考查复数乘法与除法的运算法则,突出复数知识中的基本运算,属于容易题. 8. 已知角 的终边经过点 (sin15 , cos15 ) ,则 cos
的值为(
第 1 页,共 12 页
1 3 3 C. 2 4 4 9. 设集合 A x R | 2 x 2 , B x | x 1 0 ,则 A I (ð R B) (
3. 已知 A, B 是球 O 的球面上两点, AOB 60 , C 为该球面上的动点,若三棱锥 O ABC 体积的最大 值为 18 3 ,则球 O 的体积为( A. 81 B. 128 C. 144 D. 288 【命题意图】本题考查棱锥、球的体积、球的性质,意在考查空间想象能力、逻辑推理能力、方程思想、运算 求解能力.
第 5 页,共 12 页
【解析】1111] 试题分析:由直线方程 L1 : y x ,可得直线的倾斜角为 45 ,又因为这两条直线的夹角在 0,
0
,所以 12
直 线 L2 : ax y 0 的 倾 斜 角 的 取 值 范 围 是 30 60 且
漯河市第二中学校2018-2019学年高三上学期11月月考数学试卷含答案
漯河市第二中学校2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 在曲线y=x 2上切线倾斜角为的点是( )A .(0,0)B .(2,4) C.(,)D.(,)2. 已知定义在R 上的可导函数y=f (x )是偶函数,且满足xf ′(x )<0, =0,则满足的x 的范围为( )A .(﹣∞,)∪(2,+∞) B.(,1)∪(1,2) C.(,1)∪(2,+∞) D .(0,)∪(2,+∞)3. 将函数()sin 2y x ϕ=+(0ϕ>)的图象沿x 轴向左平移8π个单位后,得到一个偶函数的图象,则ϕ的最小值为( ) (A )43π ( B ) 83π (C ) 4π (D ) 8π4. 设f (x )与g (x )是定义在同一区间[a ,b]上的两个函数,若函数y=f (x )﹣g (x )在x ∈[a ,b]上有两个不同的零点,则称f (x )和g (x )在[a ,b]上是“关联函数”,区间[a ,b]称为“关联区间”.若f (x )=x 2﹣3x+4与g (x )=2x+m 在[0,3]上是“关联函数”,则m 的取值范围为( )A.(﹣,﹣2]B .[﹣1,0]C .(﹣∞,﹣2]D .(﹣,+∞)5. 在△ABC 中,∠A 、∠B 、∠C 所对的边长分别是a 、b 、c .若sinC+sin (B ﹣A )=sin2A ,则△ABC 的形状为( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰三角形或直角三角形6. 已知变量,x y 满足约束条件20170x y x x y -+≤⎧⎪≥⎨⎪+-≤⎩,则y x 的取值范围是( )A .9[,6]5B .9(,][6,)5-∞+∞ C .(,3][6,)-∞+∞ D .[3,6] 7. 三个数60.5,0.56,log 0.56的大小顺序为( ) A .log 0.56<0.56<60.5 B .log 0.56<60.5<0.56 C .0.56<60.5<log 0.56 D .0.56<log 0.56<60.5 8. 数列中,若,,则这个数列的第10项( )班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A.19B.21C.D.9.一个几何体的三视图如图所示,且其侧视图是一个等边三角形,则这个几何体的体积为()A. B.(4+π)C. D.10.已知三次函数f(x)=ax3+bx2+cx+d的图象如图所示,则=()A.﹣1 B.2 C.﹣5 D.﹣311.设f(x)=asin(πx+α)+bcos(πx+β)+4,其中a,b,α,β均为非零的常数,f(1988)=3,则f(2008)的值为()A.1 B.3 C.5 D.不确定12.若某几何体的三视图(单位:cm)如图所示,则此几何体的体积是()cm3A.πB.2πC.3πD.4π二、填空题13.若在圆C:x2+(y﹣a)2=4上有且仅有两个点到原点O距离为1,则实数a的取值范围是.14.袋中装有6个不同的红球和4个不同的白球,不放回地依次摸出2个球,在第1次摸出红球的条件下,第2次摸出的也是红球的概率为.15.计算:×5﹣1= .16.设为单位向量,①若为平面内的某个向量,则=||•;②若与平行,则=||•;③若与平行且||=1,则=.上述命题中,假命题个数是 .17.在△ABC 中,角A ,B ,C 所对边分别为a ,b ,c,且,B=45°,面积S=2,则b 等于 . 18.某慢性疾病患者,因病到医院就医,医生给他开了处方药(片剂),要求此患者每天早、晚间隔小时各服一次药,每次一片,每片毫克.假设该患者的肾脏每小时从体内大约排出这种药在其体内残留量的,并且医生认为这种药在体内的残留量不超过毫克时无明显副作用.若该患者第一天上午点第一次服药,则第二天上午点服完药时,药在其体内的残留量是 毫克,若该患者坚持长期服用此药 明显副作用(此空填“有”或“无”)三、解答题19.已知椭圆x 2+4y 2=4,直线l :y=x+m (1)若l 与椭圆有一个公共点,求m 的值;(2)若l 与椭圆相交于P 、Q 两点,且|PQ|等于椭圆的短轴长,求m 的值.20.已知函数f (x )=|2x ﹣1|+|2x+a|,g (x )=x+3. (1)当a=2时,求不等式f (x )<g (x )的解集;(2)设a>,且当x ∈[,a]时,f (x )≤g (x ),求a 的取值范围.21.(本小题满分10分)选修4-4:坐标系与参数方程 已知曲线1C 的极坐标方程是2=ρ,曲线2C 的参数方程是θππθθ],2,6[,0(21sin 2,1∈>⎪⎩⎪⎨⎧+==t t y x 是参数). (Ⅰ)写出曲线1C 的直角坐标方程和曲线2C 的普通方程;(Ⅱ)求t的取值范围,使得1C,2C没有公共点.22.【徐州市2018届高三上学期期中】如图,有一块半圆形空地,开发商计划建一个矩形游泳池及其矩形附属设施,并将剩余空地进行绿化,园林局要求绿化面积应最大化.其中半圆的圆心为,半径为,矩形的一边在直径上,点、、、在圆周上,、在边上,且,设.(1)记游泳池及其附属设施的占地面积为,求的表达式;(2)怎样设计才能符合园林局的要求?23.已知集合A={x|x<﹣1,或x>2},B={x|2p﹣1≤x≤p+3}.(1)若p=,求A∩B;(2)若A∩B=B,求实数p的取值范围.24.设函数f(θ)=,其中,角θ的顶点与坐标原点重合,始边与x轴非负半轴重合,终边经过点P(x,y),且0≤θ≤π.(Ⅰ)若点P的坐标为,求f(θ)的值;(Ⅱ)若点P(x,y)为平面区域Ω:上的一个动点,试确定角θ的取值范围,并求函数f(θ)的最小值和最大值.漯河市第二中学校2018-2019学年高三上学期11月月考数学试卷含答案(参考答案) 一、选择题1. 【答案】D【解析】解:y'=2x ,设切点为(a ,a 2)∴y'=2a ,得切线的斜率为2a ,所以2a=tan45°=1,∴a=,在曲线y=x 2上切线倾斜角为的点是(,).故选D .【点评】本小题主要考查直线的斜率、导数的几何意义、利用导数研究曲线上某点切线方程等基础知识,考查运算求解能力.属于基础题.2. 【答案】D【解析】解:当x >0时,由xf ′(x )<0,得f ′(x )<0,即此时函数单调递减,∵函数f (x )是偶函数,∴不等式等价为f (||)<,即||>,即>或<﹣,解得0<x <或x >2,故x 的取值范围是(0,)∪(2,+∞) 故选:D【点评】本题主要考查不等式的求解,根据函数奇偶性和单调性之间的关系是解决本题的关键.3. 【答案】B【解析】将函数()()sin 20y x ϕϕ=+>的图象沿x 轴向左平移8π个单位后,得到一个偶函数sin 2sin 284[()]()y x x ππϕϕ=++=++的图象,可得42ππϕ+=,求得ϕ的最小值为 4π,故选B .4. 【答案】A【解析】解:∵f (x )=x 2﹣3x+4与g (x )=2x+m 在[0,3]上是“关联函数”,故函数y=h (x )=f (x )﹣g (x )=x 2﹣5x+4﹣m 在[0,3]上有两个不同的零点,故有,即,解得﹣<m ≤﹣2,故选A .【点评】本题考查函数零点的判定定理,“关联函数”的定义,二次函数的性质,体现了转化的数学思想,属于基础题.5. 【答案】D【解析】解:∵sinC+sin (B ﹣A )=sin2A , ∴sin (A+B )+sin (B ﹣A )=sin2A , ∴sinAcosB+cosAsinB+sinBcosA ﹣cosBsinA=sin2A ,∴2cosAsinB=sin2A=2sinAcosA , ∴2cosA (sinA ﹣sinB )=0, ∴cosA=0,或sinA=sinB ,∴A=,或a=b ,∴△ABC 为等腰三角形或直角三角形 故选:D . 【点评】本题考查三角形形状的判断,涉及三角函数公式的应用,本题易约掉cosA 而导致漏解,属中档题和易错题.6. 【答案】A 【解析】试题分析:作出可行域,如图ABC ∆内部(含边界),yx 表示点(,)x y 与原点连线的斜率,易得59(,)22A ,(1,6)B ,992552OAk ==,661OB k ==,所以965y x ≤≤.故选A .考点:简单的线性规划的非线性应用.7.【答案】A【解析】解:∵60.5>60=1,0<0.56<0.50=1,log0.56<log0.51=0.∴log0.56<0.56<60.5.故选:A【点评】本题考查了不等关系与不等式,考查了指数函数和对数函数的性质,对于此类大小比较问题,有时借助于0和1为媒介,能起到事半功倍的效果,是基础题.8.【答案】C【解析】因为,所以,所以数列构成以为首项,2为公差的等差数列,通项公式为,所以,所以,故选C答案:C9.【答案】D【解析】解:由三视图知,几何体是一个组合体,是由半个圆锥和一个四棱锥组合成的几何体,圆柱的底面直径和母线长都是2,四棱锥的底面是一个边长是2的正方形,四棱锥的高与圆锥的高相同,高是=,∴几何体的体积是=,故选D.【点评】本题考查由三视图求组合体的体积,考查由三视图还原直观图,本题的三视图比较特殊,不容易看出直观图,需要仔细观察.10.【答案】C【解析】解:由三次函数的图象可知,x=2函数的极大值,x=﹣1是极小值,即2,﹣1是f′(x)=0的两个根,∵f(x)=ax3+bx2+cx+d,∴f′(x)=3ax2+2bx+c,由f′(x)=3ax2+2bx+c=0,得2+(﹣1)==1,﹣1×2==﹣2,即c=﹣6a,2b=﹣3a,即f′(x)=3ax2+2bx+c=3ax2﹣3ax﹣6a=3a(x﹣2)(x+1),则===﹣5,故选:C【点评】本题主要考查函数的极值和导数之间的关系,以及根与系数之间的关系的应用,考查学生的计算能力.11.【答案】B【解析】解:∵f(1988)=asin(1988π+α)+bcos(1998π+β)+4=asinα+bcosβ+4=3,∴asinα+bcosβ=﹣1,故f(2008)=asin(2008π+α)+bcos(2008π+β)+4=asinα+bcosβ+4=﹣1+4=3,故选:B.【点评】本题主要考查利用诱导公式进行化简求值,属于中档题.12.【答案】B【解析】解:由三视图可知:此几何体为圆锥的一半,∴此几何体的体积==2π.故选:B.二、填空题13.【答案】﹣3<a<﹣1或1<a<3.【解析】解:根据题意知:圆x2+(y﹣a)2=4和以原点为圆心,1为半径的圆x2+y2=1相交,两圆圆心距d=|a|,∴2﹣1<|a|<2+1,∴﹣3<a<﹣1或1<a<3.故答案为:﹣3<a<﹣1或1<a<3.【点评】本题体现了转化的数学思想,解题的关键在于将问题转化为:圆x2+(y﹣a)2=4和以原点为圆心,1为半径的圆x2+y2=1相交,属中档题.14.【答案】.【解析】解:方法一:由题意,第1次摸出红球,由于不放回,所以袋中还有5个不同的红球和4个不同的白球故在第1次摸出红球的条件下,第2次摸出的也是红球的概率为=,方法二:先求出“第一次摸到红球”的概率为:P1=,设“在第一次摸出红球的条件下,第二次也摸到红球”的概率是P2再求“第一次摸到红球且第二次也摸到红球”的概率为P==,根据条件概率公式,得:P2==,故答案为:【点评】本题考查了概率的计算方法,主要是考查了条件概率与独立事件的理解,属于中档题.看准确事件之间的联系,正确运用公式,是解决本题的关键.15.【答案】9.【解析】解:×5﹣1=×=×=(﹣5)×(﹣9)×=9,∴×5﹣1=9,故答案为:9.16.【答案】3.【解析】解:对于①,向量是既有大小又有方向的量,=||•的模相同,但方向不一定相同,∴①是假命题;对于②,若与平行时,与方向有两种情况,一是同向,二是反向,反向时=﹣||•,∴②是假命题;对于③,若与平行且||=1时,与方向有两种情况,一是同向,二是反向,反向时=﹣,∴③是假命题;综上,上述命题中,假命题的个数是3.故答案为:3.【点评】本题考查了平面向量的概念以及应用的问题,解题时应把握向量的基本概念是什么,是基础题目.17.【答案】5.【解析】解:∵,B=45°,面积S=2,∴S=acsinB==2a=2.∴a=1由余弦定理得b2=a2+c2﹣2accosB=12+(4)2﹣2×1××=25∴b=5.故答案为:5.【点评】本题考查三角形的面积公式:三角形的面积等于任意两边与它们夹角正弦的一半、考查利用三角形的余弦定理求边长.18.【答案】, 无.【解析】【知识点】等比数列【试题解析】设该病人第n次服药后,药在体内的残留量为毫克,所以)=300,=350.由,所以是一个等比数列,所以所以若该患者坚持长期服用此药无明显副作用。
漯河市高级中学2018-2019学年高二上学期第一次月考试卷数学
漯河市高级中学2018-2019学年高二上学期第一次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 已知函数f (x )=1+x ﹣+﹣+…+,则下列结论正确的是( )A .f (x )在(0,1)上恰有一个零点B .f (x )在(﹣1,0)上恰有一个零点C .f (x )在(0,1)上恰有两个零点D .f (x )在(﹣1,0)上恰有两个零点2. 双曲线4x 2+ty 2﹣4t=0的虚轴长等于( )A .B .﹣2tC .D .43. 设集合{}|22A x R x =∈-≤≤,{}|10B x x =-≥,则()R A B =ð( )A.{}|12x x <≤B.{}|21x x -≤<C. {}|21x x -≤≤D. {}|22x x -≤≤【命题意图】本题主要考查集合的概念与运算,属容易题.4. 已知函数()x e f x x=,关于x 的方程2()2()10f x af x a -+-=(a R Î)有3个相异的实数根,则a 的取值范围是( )A .21(,)21e e -+?-B .21(,)21e e --?-C .21(0,)21e e --D .2121e e 禳-镲睚-镲铪【命题意图】本题考查函数和方程、导数的应用等基础知识,意在考查数形结合思想、综合分析问题解决问题的能力.5. 用反证法证明某命题时,对结论:“自然数a ,b ,c 中恰有一个偶数”正确的反设为( )A .a ,b ,c 中至少有两个偶数B .a ,b ,c 中至少有两个偶数或都是奇数C .a ,b ,c 都是奇数D .a ,b ,c 都是偶数6. 函数y=2sin 2x+sin2x 的最小正周期( )A .B .C .πD .2π7. 设函数y=的定义域为M ,集合N={y|y=x 2,x ∈R},则M ∩N=( )A .∅B .NC .[1,+∞)D .M8. 下列说法正确的是( ) A .类比推理是由特殊到一般的推理B.演绎推理是特殊到一般的推理C.归纳推理是个别到一般的推理D.合情推理可以作为证明的步骤9.设函数f(x)=,f(﹣2)+f(log210)=()A.11 B.8 C.5 D.210.如图,程序框图的运算结果为()A.6 B.24 C.20 D.12011.若数列{a n}的通项公式a n=5()2n﹣2﹣4()n﹣1(n∈N*),{a n}的最大项为第p项,最小项为第q项,则q﹣p等于()A.1 B.2 C.3 D.412.数列{a n}满足a1=,=﹣1(n∈N*),则a10=()A.B.C.D.二、填空题13.已知sinα+cosα=,且<α<,则sinα﹣cosα的值为.14.由曲线y=2x2,直线y=﹣4x﹣2,直线x=1围成的封闭图形的面积为.15.函数y=sin2x﹣2sinx的值域是y∈.16.如图所示,正方体ABCD﹣A′B′C′D′的棱长为1,E、F分别是棱AA′,CC′的中点,过直线EF的平面分别与棱BB′、DD′交于M、N,设BM=x,x∈[0,1],给出以下四个命题:①平面MENF ⊥平面BDD ′B ′;②当且仅当x=时,四边形MENF 的面积最小; ③四边形MENF 周长l=f (x ),x ∈0,1]是单调函数; ④四棱锥C ′﹣MENF 的体积v=h (x )为常函数; 以上命题中真命题的序号为 .17.1785与840的最大约数为 .18.定义在R 上的函数)(x f 满足:1)(')(>+x f x f ,4)0(=f ,则不等式3)(+>x x e x f e (其 中为自然对数的底数)的解集为 .三、解答题19.某小区在一次对20岁以上居民节能意识的问卷调查中,随机抽取了100份问卷进行统计,得到相关的数(2)据了解到,全小区节能意识强的人共有350人,估计这350人中,年龄大于50岁的有多少人? (3)按年龄分层抽样,从节能意识强的居民中抽5人,再从这5人中任取2人,求恰有1人年龄在20至50岁的概率.20.如图,在四边形ABCD 中,,,3,2,45AD DC AD BC AD CD AB DAB ⊥===∠=, 四 边形绕着直线AD 旋转一周.(1)求所成的封闭几何体的表面积; (2)求所成的封闭几何体的体积.21.已知函数f (x0=.(1)画出y=f (x )的图象,并指出函数的单调递增区间和递减区间; (2)解不等式f (x ﹣1)≤﹣.22.已知α、β、是三个平面,且c αβ=,a βγ=,b αγ=,且a b O =.求证:、、三线共点.23.已知集合A={x|a﹣1<x<2a+1},B={x|0<x<1}(1)若a=,求A∩B.(2)若A∩B=∅,求实数a的取值范围.24.2008年奥运会在中国举行,某商场预计2008年从1日起前x个月,顾客对某种奥运商品的需求总量p(x)件与月份x的近似关系是且x≤12),该商品的进价q(x)元与月份x的近似关系是q(x)=150+2x,(x∈N*且x≤12).(1)写出今年第x月的需求量f(x)件与月份x的函数关系式;(2)该商品每件的售价为185元,若不计其他费用且每月都能满足市场需求,则此商场今年销售该商品的月利润预计最大是多少元?漯河市高级中学2018-2019学年高二上学期第一次月考试卷数学(参考答案)一、选择题1. 【答案】B【解析】解:∵f ′(x )=1﹣x+x 2﹣x 3+…+x 2014=(1﹣x )(1+x 2+…+x 2012)+x 2014; ∴f ′(x )>0在(﹣1,0)上恒成立; 故f (x )在(﹣1,0)上是增函数;又∵f (0)=1,f (﹣1)=1﹣1﹣﹣﹣…﹣<0;故f (x )在(﹣1,0)上恰有一个零点;故选B .【点评】本题考查了导数的综合应用及函数零点的个数的判断,属于中档题.2. 【答案】C【解析】解:双曲线4x 2+ty 2﹣4t=0可化为:∴∴双曲线4x 2+ty 2﹣4t=0的虚轴长等于故选C .3. 【答案】B【解析】易知{}{}|10|1B x x x x =-≥=≥,所以()R A B =ð{}|21x x -≤<,故选B.4. 【答案】D第Ⅱ卷(共90分)5.【答案】B【解析】解:∵结论:“自然数a,b,c中恰有一个偶数”可得题设为:a,b,c中恰有一个偶数∴反设的内容是假设a,b,c中至少有两个偶数或都是奇数.故选B.【点评】此题考查了反证法的定义,反证法在数学中经常运用,当论题从正面不容易或不能得到证明时,就需要运用反证法,此即所谓“正难则反“.6.【答案】C【解析】解:函数y=2sin2x+sin2x=2×+sin2x=sin(2x﹣)+1,则函数的最小正周期为=π,故选:C.【点评】本题主要考查三角恒等变换,函数y=Asin(ωx+φ)的周期性,利用了函数y=Asin(ωx+φ)的周期为,属于基础题.7.【答案】B【解析】解:根据题意得:x+1≥0,解得x≥﹣1,∴函数的定义域M={x|x≥﹣1};∵集合N中的函数y=x2≥0,∴集合N={y|y≥0},则M∩N={y|y≥0}=N.故选B8.【答案】C【解析】解:因为归纳推理是由部分到整体的推理;类比推理是由特殊到特殊的推理;演绎推理是由一般到特殊的推理;合情推理的结论不一定正确,不可以作为证明的步骤,故选C.【点评】本题考查合情推理与演绎推理,考查学生分析解决问题的能力,属于基础题.9.【答案】B【解析】解:∵f(x)=,∴f(﹣2)=1+log24=1+2=3,=5,∴f(﹣2)+f(log210)=3+5=8.故选:B.【点评】本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.10.【答案】B【解析】解:∵循环体中S=S×n可知程序的功能是:计算并输出循环变量n的累乘值,∵循环变量n的初值为1,终值为4,累乘器S的初值为1,故输出S=1×2×3×4=24,故选:B.【点评】本题考查的知识点是程序框图,其中根据已知分析出程序的功能是解答的关键.11.【答案】A【解析】解:设=t∈(0,1],a n=5()2n﹣2﹣4()n﹣1(n∈N*),∴a n=5t2﹣4t=﹣,∴a n∈,当且仅当n=1时,t=1,此时a n取得最大值;同理n=2时,a n取得最小值.∴q﹣p=2﹣1=1,故选:A.【点评】本题考查了二次函数的单调性、指数函数的单调性、数列的通项公式,考查了推理能力与计算能力,属于中档题.12.【答案】C【解析】解:∵=﹣1(n∈N*),∴﹣=﹣1,∴数列是等差数列,首项为=﹣2,公差为﹣1.∴=﹣2﹣(n﹣1)=﹣n﹣1,∴a n=1﹣=.∴a10=.故选:C.【点评】本题考查了等差数列的通项公式,考查了推理能力与计算能力,属于基础题.二、填空题13.【答案】.【解析】解:∵sinα+cosα=,<α<,∴sin2α+2sinαcosα+cos2α=,∴2sinαcosα=﹣1=,且sinα>cosα,∴sinα﹣cosα===.故答案为:.14.【答案】.【解析】解:由方程组解得,x=﹣1,y=2故A(﹣1,2).如图,故所求图形的面积为S=∫﹣11(2x2)dx﹣∫﹣11(﹣4x﹣2)dx=﹣(﹣4)=故答案为:【点评】本题主要考查了定积分在求面积中的应用,以及定积分的计算,属于基础题.15.【答案】[﹣1,3].【解析】解:∵函数y=sin2x﹣2sinx=(sinx﹣1)2﹣1,﹣1≤sinx≤1,∴0≤(sinx﹣1)2≤4,∴﹣1≤(sinx﹣1)2﹣1≤3.∴函数y=sin2x﹣2sinx的值域是y∈[﹣1,3].故答案为[﹣1,3].【点评】熟练掌握正弦函数的单调性、二次函数的单调性是解题的关键.16.【答案】①②④.【解析】解:①连结BD,B′D′,则由正方体的性质可知,EF⊥平面BDD′B′,所以平面MENF⊥平面BDD′B′,所以①正确.②连结MN,因为EF⊥平面BDD′B′,所以EF⊥MN,四边形MENF的对角线EF是固定的,所以要使面积最小,则只需MN的长度最小即可,此时当M为棱的中点时,即x=时,此时MN长度最小,对应四边形MENF的面积最小.所以②正确.③因为EF⊥MN,所以四边形MENF是菱形.当x∈[0,]时,EM的长度由大变小.当x∈[,1]时,EM的长度由小变大.所以函数L=f(x)不单调.所以③错误.④连结C ′E ,C ′M ,C ′N ,则四棱锥则分割为两个小三棱锥,它们以C ′EF 为底,以M ,N 分别为顶点的两个小棱锥.因为三角形C ′EF 的面积是个常数.M ,N 到平面C'EF 的距离是个常数,所以四棱锥C'﹣MENF 的体积V=h (x )为常函数,所以④正确. 故答案为:①②④.【点评】本题考查空间立体几何中的面面垂直关系以及空间几何体的体积公式,本题巧妙的把立体几何问题和函数进行的有机的结合,综合性较强,设计巧妙,对学生的解题能力要求较高.17.【答案】 105 .【解析】解:1785=840×2+105,840=105×8+0. ∴840与1785的最大公约数是105. 故答案为10518.【答案】),0(+∞ 【解析】考点:利用导数研究函数的单调性.【方法点晴】本题是一道利用导数判断单调性的题目,解答本题的关键是掌握导数的相关知识,首先对已知的不等式进行变形,可得()()01>-'+x f x f ,结合要求的不等式可知在不等式两边同时乘以xe ,即()()0>-'+x x x e x f e x f e ,因此构造函数()()x x e x f e x g -=,求导利用函数的单调性解不等式.另外本题也可以构造满足前提的特殊函数,比如令()4=x f 也可以求解.1三、解答题19.【答案】【解析】解(1)因为20至50岁的54人有9人节能意识强,大于50岁的46人有36人节能意识强,与相差较大,所以节能意识强弱与年龄有关(2)由数据可估计在节能意识强的人中,年龄大于50岁的概率约为∴年龄大于50岁的约有(人)(3)抽取节能意识强的5人中,年龄在20至50岁的(人),年龄大于50岁的5﹣1=4人,记这5人分别为a ,B 1,B 2,B 3,B 4.从这5人中任取2人,共有10种不同取法:(a ,B 1),(a ,B 2),(a ,B 3),(a ,B 4),(B 1,B 2),(B 1,B 3),(B 1,B 4),(B 2,B 3),(B 2,B 4),(B 3,B 4), 设A 表示随机事件“这5人中任取2人,恰有1人年龄在20至50岁”, 则A 中的基本事件有4种:(a ,B 1),(a ,B 2),(a ,B 3),(a ,B 4)故所求概率为20.【答案】(1)(8π+;(2)203π. 【解析】考点:旋转体的概念;旋转体的表面积、体积.21.【答案】【解析】解:(1)图象如图所示:由图象可知函数的单调递增区间为(﹣∞,0),(1,+∞),丹迪减区间是(0,1)(2)由已知可得或,解得x≤﹣1或≤x≤,故不等式的解集为(﹣∞,﹣1]∪[,].【点评】本题考查了分段函数的图象的画法和不等式的解集的求法,属于基础题.22.【答案】证明见解析.【解析】考点:平面的基本性质与推论.23.【答案】【解析】解:(1)当a=时,A={x|},B={x|0<x<1}∴A∩B={x|0<x<1}(2)若A∩B=∅当A=∅时,有a﹣1≥2a+1∴a≤﹣2当A≠∅时,有∴﹣2<a≤或a≥2综上可得,或a≥2【点评】本题主要考查了集合交集的求解,解题时要注意由A∩B=∅时,要考虑集合A=∅的情况,体现了分类讨论思想的应用.24.【答案】【解析】解:(1)当x=1时,f(1)=p(1)=37.当2≤x≤12时,且x≤12)验证x=1符合f(x)=﹣3x2+40x,∴f(x)=﹣3x2+40x(x∈N*且x≤12).该商场预计销售该商品的月利润为g(x)=(﹣3x2+40x)(185﹣150﹣2x)=6x3﹣185x2+1400x,(x∈N*且x≤12),令h(x)=6x3﹣185x2+1400x(1≤x≤12),h'(x)=18x2﹣370x+1400,令h'(x)=0,解得(舍去).>0;当5<x≤12时,h'(x)<0.∴当x=5时,h(x)取最大值h(5)=3125.max=g(5)=3125(元).综上,5月份的月利润最大是3125元.【点评】本题考查利用函数知识解决应用题的有关知识.新高考中的重要的理念就是把数学知识运用到实际生活中,如何建模是解决这类问题的关键.同时要熟练地利用导数的知识解决函数的求最值问题.。
漯河市民族中学2018-2019学年高三上学期11月月考数学试卷含答案
漯河市民族中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 若动点A ,B 分别在直线l 1:x+y ﹣7=0和l 2:x+y ﹣5=0上移动,则AB 的中点M 到原点的距离的最小值为( )A .3B .2C .3D .42. 已知实数a ,b ,c 满足不等式0<a <b <c <1,且M=2a ,N=5﹣b ,P=()c ,则M 、N 、P 的大小关系为()A .M >N >PB .P <M <NC .N >P >M3. 棱锥被平行于底面的平面所截,当截面分别平分棱锥的侧棱、侧面积、体积时,相应截面面积为、、,则( )1S 2S 3S A . B .C .D .123S S S <<123S S S >>213S S S <<213S S S >>4. 设函数,其中,若存在唯一的整数,使得,则的()()21xf x e x ax a =--+1a <()0f t <取值范围是( )A .B .C .D .3,12e ⎡⎫-⎪⎢⎣⎭33,24e ⎡⎫-⎪⎢⎣⎭33,24e ⎡⎫⎪⎢⎣⎭3,12e ⎡⎫⎪⎢⎣⎭1111]5. 已知函数f (x )是(﹣∞,0)∪(0,+∞)上的奇函数,且当x <0时,函数的部分图象如图所示,则不等式xf (x )<0的解集是()A .(﹣2,﹣1)∪(1,2)B .(﹣2,﹣1)∪(0,1)∪(2,+∞)C .(﹣∞,﹣2)∪(﹣1,0)∪(1,2)D .(﹣∞,﹣2)∪(﹣1,0)∪(0,1)∪(2,+∞)6. 三角函数的振幅和最小正周期分别是( )()sin(2)cos 26f x x x π=-+ABCD2ππ2ππ7. 如图,直三棱柱ABC ﹣A 1B 1C 1中,侧棱AA 1⊥平面ABC .若AB=AC=AA 1=1,BC=,则异面直线A 1C与B 1C 1所成的角为()A .30°B .45°C .60°D .90°班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________8. 如图,设全集U=R ,M={x|x >2},N={0,1,2,3},则图中阴影部分所表示的集合是( )A .{3}B .{0,1}C .{0,1,2}D .{0,1,2,3}9. 若a 是f (x )=sinx ﹣xcosx 在x ∈(0,2π)的一个零点,则∀x ∈(0,2π),下列不等式恒成立的是( )A .B .cosa ≥C .≤a ≤2πD .a ﹣cosa ≥x ﹣cosx10.垂直于同一条直线的两条直线一定( )A .平行B .相交C .异面D .以上都有可能11.如图,从点M (x 0,4)发出的光线,沿平行于抛物线y 2=8x 的对称轴方向射向此抛物线上的点P ,经抛物线反射后,穿过焦点射向抛物线上的点Q ,再经抛物线反射后射向直线l :x ﹣y ﹣10=0上的点N ,经直线反射后又回到点M ,则x 0等于()A .5B .6C .7D .812.已知,若不等式对一切恒成立,则的最大值为2,0()2, 0ax x x f x x x ⎧+>=⎨-≤⎩(2)()f x f x -≥x R ∈a ( )A .B .C .D .716-916-12-14-二、填空题13.已知双曲线的标准方程为,则该双曲线的焦点坐标为, 渐近线方程为 .14.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一组数:1,1,2,3,5,8,13,…其中从第三个数起,每一个数都等于他前面两个数的和.该数列是一个非常美丽、和谐的数列,有很多奇妙的属性.比如:随着数列项数的增加,前一项与后一项之比越逼近黄金分割0.6180339887….人们称该数列{a n }为“斐波那契数列”.若把该数列{a n }的每一项除以4所得的余数按相对应的顺序组成新数列{b n },在数列{b n }中第2016项的值是 . 15.已知,为实数,代数式的最小值是.x y 2222)3(9)2(1y x x y ++-++-+【命题意图】本题考查两点之间距离公式的运用基础知识,意在考查构造的数学思想与运算求解能力.16.二项式展开式中,仅有第五项的二项式系数最大,则其常数项为 . 17.在三棱柱ABC ﹣A 1B 1C 1中,底面为棱长为1的正三角形,侧棱AA 1⊥底面ABC ,点D 在棱BB 1上,且BD=1,若AD 与平面AA 1C 1C 所成的角为α,则sin α的值是 .18.在各项为正数的等比数列{a n }中,若a 6=a 5+2a 4,则公比q= .三、解答题19.(本题10分)解关于的不等式2(1)10ax a x -++>.20.武汉市为增强市民交通安全意识,面向全市征召义务宣传志愿者.现从符合条件的志愿者中随机抽取100名按年龄分组:第1组[20,25),第2组[25,30),第3组[30,35),第4组[35,40),第5组[40,45],得到的频率分布直方图如图所示.(1)分别求第3,4,5组的频率;(2)若从第3,4,5组中用分层抽样的方法抽取6名志愿者参加广场的宣传活动,应从第3,4,5组各抽取多少名志愿者?(3)在(2)的条件下,该市决定在这6名志愿者中随机抽取2名志愿者介绍宣传经验,求第4组至少有一名志愿者被抽中的概率.21.(本小题满分12分)已知函数.21()(3)ln 2f x x a x x =+-+(1)若函数在定义域上是单调增函数,求的最小值;()f x (2)若方程在区间上有两个不同的实根,求的取值范围.21()()(4)02f x a x a x -+--=1[,]e e22.已知关x 的一元二次函数f (x )=ax 2﹣bx+1,设集合P={1,2,3}Q={﹣1,1,2,3,4},分别从集合P 和Q 中随机取一个数a 和b 得到数对(a ,b ).(1)列举出所有的数对(a ,b )并求函数y=f (x )有零点的概率;(2)求函数y=f (x )在区间[1,+∞)上是增函数的概率.23.某单位为了了解用电量y 度与气温x ℃之间的关系,随机统计了某4天的用电量与当天气温.气温(℃)141286用电量(度)22263438(1)求线性回归方程;()(2)根据(1)的回归方程估计当气温为10℃时的用电量.附:回归直线的斜率和截距的最小二乘法估计公式分别为:=,=﹣. 24.如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD是菱形,AB=2,∠BAD=60°.(Ⅰ)求证:BD⊥平面PAC;(Ⅱ)若PA=AB,求PB与AC所成角的余弦值;(Ⅲ)当平面PBC与平面PDC垂直时,求PA的长.漯河市民族中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1.【答案】A【解析】解:∵l1:x+y﹣7=0和l2:x+y﹣5=0是平行直线,∴可判断:过原点且与直线垂直时,中的M到原点的距离的最小值∵直线l1:x+y﹣7=0和l2:x+y﹣5=0,∴两直线的距离为=,∴AB的中点M到原点的距离的最小值为+=3,故选:A【点评】本题考查了两点距离公式,直线的方程,属于中档题.2.【答案】A【解析】解:∵0<a<b<c<1,∴1<2a<2,<5﹣b<1,<()c<1,5﹣b=()b>()c>()c,即M>N>P,故选:A【点评】本题主要考查函数值的大小比较,根据幂函数和指数函数的单调性的性质是解决本题的关键.3.【答案】A【解析】考点:棱锥的结构特征.4.【答案】D【解析】考点:函数导数与不等式.1【思路点晴】本题主要考查导数的运用,涉及划归与转化的数学思想方法.首先令将函数变为两个函()0f x =数,将题意中的“存在唯一整数,使得在直线的下方”,转化为()()()21,xg x e x h x ax a =-=-()g t ()h x 存在唯一的整数,使得在直线的下方.利用导数可求得函数的极值,由此可求得的取值()g t ()h x ax a =-m 范围.5. 【答案】D【解析】解:根据奇函数的图象关于原点对称,作出函数的图象,如图 则不等式xf (x )<0的解为:或解得:x ∈(﹣∞,﹣2)∪(﹣1,0)∪(0,1)∪(2,+∞)故选:D .6. 【答案】B 【解析】()sincos 2cossin 2cos 266f x x x xππ=-+31cos 222sin 2)22x x x x ==-,故选B .6x π=+7. 【答案】C【解析】解:因为几何体是棱柱,BC ∥B 1C 1,则直线A 1C 与BC 所成的角为就是异面直线A 1C 与B 1C 1所成的角.直三棱柱ABC ﹣A 1B 1C 1中,侧棱AA 1⊥平面ABC .若AB=AC=AA 1=1,BC=,BA 1=,CA 1=,三角形BCA 1是正三角形,异面直线所成角为60°.故选:C .8. 【答案】C【解析】解:由图可知图中阴影部分所表示的集合∁M∩N,∵全集U=R,M={x|x>2},N={0,1,2,3},∴∁M={x|x≤2},∴∁M∩N={0,1,2},故选:C【点评】本题主要考查集合的基本运算,根据条件确定集合的基本关系是解决本题的关键.9.【答案】A【解析】解:f′(x)=xsinx,当x∈(0,π),f′(x)>0,函数f(x)单调递增,当x∈(π,2π),f′(x)<0,函数f(x)单调递减,又f(0)=0,f(π)>0,f(2π)<0,∴a∈(π,2π),∴当x∈(0,a),f(x)>0,当x∈(a,2π),f(x)<0,令g(x)=,g′(x)=,∴当x∈(0,a),g′(x)<0,函数g(x)单调递减,当x∈(a,2π),g′(x)>0,函数g(x)单调递增,∴g(x)≥g(a).故选:A.【点评】本题主要考查零点的存在性定理,利用导数求最值及计算能力.10.【答案】D【解析】解:分两种情况:①在同一平面内,垂直于同一条直线的两条直线平行;②在空间内垂直于同一条直线的两条直线可以平行、相交或异面.故选D【点评】本题主要考查在空间内两条直线的位置关系.11.【答案】B【解析】解:由题意可得抛物线的轴为x轴,F(2,0),∴MP所在的直线方程为y=4在抛物线方程y2=8x中,令y=4可得x=2,即P(2,4)从而可得Q(2,﹣4),N(6,﹣4)∵经抛物线反射后射向直线l:x﹣y﹣10=0上的点N,经直线反射后又回到点M,∴直线MN的方程为x=6故选:B.【点评】本题主要考查了抛物线的性质的应用,解决问题的关键是要熟练掌握相关的性质并能灵活应用.12.【答案】C【解析】解析:本题考查用图象法解决与函数有关的不等式恒成立问题.当(如图1)、(如图2)时,不等式不可能恒成立;当时,如图3,直线与0a >0a =0a <2(2)y x =--函数图象相切时,,切点横坐标为,函数图象经过点时,,2y ax x =+916a =-832y ax x =+(2,0)12a =-观察图象可得,选C .12a ≤-二、填空题13.【答案】 (±,0) y=±2x .【解析】解:双曲线的a=2,b=4,c==2,可得焦点的坐标为(±,0),渐近线方程为y=±x ,即为y=±2x .故答案为:(±,0),y=±2x .【点评】本题考查双曲线的方程和性质,主要是焦点的求法和渐近线方程的求法,考查运算能力,属于基础题. 14.【答案】 0 .【解析】解:1,1,2,3,5,8,13,…除以4所得的余数分别为1,1,2,3,1,0,;1,1,2,3,1,0…,即新数列{b n }是周期为6的周期数列,∴b 2016=b 336×6=b 6=0,故答案为:0.【点评】本题主要考查数列的应用,考查数列为周期数性,属于中档题. 15.. 【解析】16.【答案】 70 .【解析】解:根据题意二项式展开式中,仅有第五项的二项式系数最大,则n=8,所以二项式=展开式的通项为T r+1=(﹣1)r C8r x8﹣2r令8﹣2r=0得r=4则其常数项为C84=70故答案为70.【点评】本题考查二项式定理的应用,涉及二项式系数的性质,要注意系数与二项式系数的区别. 17.【答案】 .【解析】解:如图所示,分别取AC,A1C1的中点O,O1,连接OO1,取OE=1,连接DE,B1O1,AE.∴BO⊥AC,∵侧棱AA1⊥底面ABC,∴三棱柱ABC﹣A1B1C1是直棱柱.由直棱柱的性质可得:BO⊥侧面ACC1A1.∴四边形BODE是矩形.∴DE⊥侧面ACC1A1.∴∠DAE是AD与平面AA1C1C所成的角,为α,∴DE==OB.AD==.在Rt △ADE 中,sin α==.故答案为:.【点评】本题考查了直棱柱的性质、空间角、空间位置关系、等边三角形的性质,考查了推理能力与计算能力,属于中档题.18.【答案】 2 .【解析】解:由a 6=a 5+2a 4得,a 4q 2=a 4q+2a 4,即q 2﹣q ﹣2=0,解得q=2或q=﹣1,又各项为正数,则q=2,故答案为:2.【点评】本题考查等比数列的通项公式,注意公比的符号,属于基础题.三、解答题19.【答案】当1a >时,),1()1,(+∞-∞∈ ax ,当1a =时,),1()1,(+∞-∞∈ x ,当1a 0<<时,),1()1,(+∞-∞∈a x ,当0a =时,)1,(-∞∈x ,当0a <时,)1,1(ax ∈.考点:二次不等式的解法,分类讨论思想.20.【答案】【解析】解:(1)由题意可知第3组的频率为0.06×5=0.3,第4组的频率为0.04×5=0.2,第5组的频率为0.02×5=0.1;(2)第3组的人数为0.3×100=30,第4组的人数为0.2×100=20,第5组的人数为0.1×100=10;因为第3,4,5组共有60名志愿者,所以利用分层抽样的方法在60名志愿者中抽取6名志愿者,每组抽取的人数分别为:第3组=3;第4组=2;第5组=1;应从第3,4,5组各抽取3,2,1名志愿者.(3)记第3组3名志愿者为1,2,3;第4组2名志愿者为4,5;第5组1名志愿者为6;在这6名志愿者中随机抽取2名志愿者有:(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6);共有15种,第4组2名志愿者为4,5;至少有一名志愿者被抽中共有9种,所以第4组至少有一名志愿者被抽中的概率为.【点评】本题考查列举法计算基本事件数及事件发生的概率,频率分布直方图,考查计算能力.21.【答案】(1);(2).1111]01a <<【解析】则对恒成立,即对恒成立,'()0f x ≥0x >1()3a x x ≥-++0x >而当时,,0x >1(3231x x -++≤-+=∴.1a ≥若函数在上递减,()f x (0,)+∞则对恒成立,即对恒成立,'()0f x ≤0x >1()3a x x ≤-++0x >这是不可能的.综上,.1a ≥的最小值为1. 1(2)由,21()()(2)2ln 02f x a x a x x =-+-+=得,21((2)2ln 2a x a x x -+-=即,令,,2ln x x a x +=2ln ()x x r x x +=2331(1)2(ln )12ln '()x x x x x x x r x x x +-+--==得的根为1,12ln 0x x--=考点:1、利用导数研究函数的单调性;2、函数零点问题及不等式恒成立问题.【方法点晴】本题主要考查利用导数研究函数的单调性、函数零点问题及不等式恒成立问题,属于难题.不等式恒成立问题常见方法:①分离参数()a f x ≤恒成立(min ()a f x ≤即可)或()a f x ≥恒成(max ()a f x ≥即可);②数形结合;③讨论最值min ()0f x ≥或max ()0f x ≤恒成立;④讨论参数.本题(2)就是先将问题转化为不等式恒成立问题后再利用①求得的最小值的.请考生在第22、23两题中任选一题作答,如果多做,则按所做的第一题记分.解答时请写清题号.22.【答案】【解析】解:(1)(a ,b )共有(1,﹣1),(1,1),(1,2),(1,3),(1,4),(2,﹣1),(2,1),(2,2),(2,3),(2,4),(3﹣1),(3,1),(3,2),(3,3),(3,4),15种情况函数y=f (x )有零点,△=b 2﹣4a ≥0,有(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)共6种情况满足条件所以函数y=f (x )有零点的概率为(2)函数y=f (x )的对称轴为,在区间[1,+∞)上是增函数则有,(1,﹣1),(1,1),(1,2),(2,﹣1),(2,1),(2,2),(2,3),(2,4),(3,﹣1),(3,1),(3,2),(3,3),(3,4),共13种情况满足条件所以函数y=f (x )在区间[1,+∞)上是增函数的概率为【点评】本题主要考查概率的列举法和二次函数的单调性问题.对于概率是从高等数学下放的内容,一般考查的不会太难但是每年必考的内容要引起重视.23.【答案】【解析】解:(1)由表可得:;又;∴,;∴线性回归方程为:;(2)根据回归方程:当x=10时,y=﹣2×10+50=30;∴估计当气温为10℃时的用电量为30度.【点评】考查回归直线的概念,以及线性回归方程的求法,直线的斜截式方程.24.【答案】【解析】解:(I )证明:因为四边形ABCD 是菱形,所以AC ⊥BD ,又因为PA ⊥平面ABCD ,所以PA ⊥BD ,PA ∩AC=A所以BD ⊥平面PAC(II )设AC ∩BD=O ,因为∠BAD=60°,PA=AB=2,所以BO=1,AO=OC=,以O为坐标原点,分别以OB,OC为x轴、y轴,以过O且垂直于平面ABCD的直线为z轴,建立空间直角坐标系O﹣xyz,则P(0,﹣,2),A(0,﹣,0),B(1,0,0),C(0,,0)所以=(1,,﹣2),设PB与AC所成的角为θ,则cosθ=|(III)由(II)知,设,则设平面PBC的法向量=(x,y,z)则=0,所以令,平面PBC的法向量所以,同理平面PDC的法向量,因为平面PBC⊥平面PDC,所以=0,即﹣6+=0,解得t=,所以PA=.【点评】本小题主要考查空间线面关系的垂直关系的判断、异面直线所成的角、用空间向量的方法求解直线的夹角、距离等问题,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力。
漯河市第二中学20182019学年上学期高三数学月考试题
漯河市第二中学2018-2019学年上学期高三数学10月月考试题班级__________座号_____姓名__________分数__________一、选择题1.如图,圆O与x轴的正半轴的交点为A,点C、B在圆O上,且点C位于第一象限,点B的坐标为(,﹣),∠AOC=α,若|BC|=1,则 cos2﹣sin cos ﹣的值为()A.B.C.﹣D.﹣2.已知向量=(﹣1,3),=(x,2),且,则x=()A.B.C.D..在ABC中,tanAsin 2B tanBsin2A,那么ABC必定是()3A.锐角三角形B.直角三角形C.等腰三角形D.等腰三角形或直角三角形4.在ABC中,角A,B,C的对边分别是,,,BH为AC边上的高,BH5,若20aBC15bCA12cAB0,则H到AB边的距离为()A.2B.3ABC90C.1D.45ABC外接球的表面积为32,0,三棱锥SABC的三视图如图.已知三棱锥S所示,则其侧视图的面积的最大值为()A.4B.42C.8D.47第1页,共17页6R 的偶函数f(x)知足对随意的 x R ,有f(x2) f(x)f(1),且当.已知定义域为x[2,3]时,f(x)2x 212x18 .若函数yf(x)log a (x1)在(0,)上起码有三个零点,则实数的取值范围是( )111]A .(0, 2)B .(0,3) C .(0, 5)D .(0,6)2 i)23567z( i为虚数单位),则z 的共轭复数为( ).复数(2iA .-4+3iB .4+3iC .3+4iD .3-4i【命题企图】此题考察复数的运算和复数的观点等基础知识,意在考察基本运算能力.nnn 2 *),则+++= ()8.设数列{a}的前 n 项和为S ,若S=n +2n (n ∈N A .B .C .D . 9.履行以下图的程序框图,输出的结果是()第2页,共17页A .15B .21C.24D.3510.已知数列{a}的首项为a 1,且知足a n11a n1 ,则此数列的第 4项是( )n122n135 A .1B .C.D .24811.在等差数列{a n }中,a 1=1,公差d0,S n 为{a n }的前n 项和.若向量m=(a 1,a 3),n=(a 13,-a 3),且m?n02S n +16 的最小值为(),则a n +3A .4B .3C .23-2D .92【命题企图】此题考察等差数列的性质,等差数列的前 n 项和,向量的数目积,基本不等式等基础知识,意在 考察学生的学生运算能力,察看剖析,解决问题的能力.12.过点P (﹣2,2)作直线 l ,使直线 l 与两坐标轴在第二象限内围成的三角形面积为 8,这样的直线 l 一共 有( )A .3条B .2条C .1条D .0条二、填空题13.已知点A (2,0),点B (0,3),点C 在圆x 2+y 2=1上,当△ABC 的面积最小时,点C 的坐标为 .14 .(﹣2) 7的睁开式中,x 2的系数是.15.函数f(x)x 2 2(a1)x2在区间(,4] 上递减,则实数的取值范围是.16 .设有一组圆 k:(x ﹣k+1) 224kN*C +(y ﹣3k ) =2k (∈).以下四个命题:①存在一条定直线与全部的圆均相切;第3页,共17页漯河市第二中学20182019学年上学期高三数学月考试题②存在一条定直线与全部的圆均订交;③存在一条定直线与全部的圆均不订交;④全部的圆均不经过原点.此中真命题的代号是(写出全部真命题的代号).三、解答题17.(此题12分)如图,D是Rt BAC斜边BC上一点,AC3DC.(1)若BD2DC2,求AD;(2)若AB AD,求角B.18.等差数列{a n}的前n项和为S n,已知a1=10,a2为整数,且S n≤S4。
漯河市外国语学校2018-2019学年高三上学期11月月考数学试卷含答案
漯河市外国语学校2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 某几何体的三视图如下(其中三视图中两条虚线互相垂直)则该几何体的体积为()A. B .483C.D .1632032. 若某几何体的三视图 (单位:cm ) 如图所示,则此几何体的体积是( )cm3A .πB .2πC .3πD .4π3. 设偶函数f (x )满足f (x )=2x ﹣4(x ≥0),则{x|f (x ﹣2)<0}=( )A .{x|x <﹣2或x >4}B .{x|x <0或x >4}C .{x|x <0或x >6}D .{x|0<x <4}4. 年月“两会”期间,有代表提出适当下调“五险一金”的缴存比例,现拟从某工厂职工中抽取20163名代表调查对这一提案的态度,已知该厂青年,中年,老年职工人数分别为,,,按分20350500150层抽样的方法,应从青年职工中抽取的人数为( )A. B. C. D.56710【命题意图】本题主要考查分层抽样的方法的运用,属容易题.5. 若等边三角形的边长为2,为的中点,且上一点满足,ABC N AB AB M CM xCA yCB =+u u u u r u u u r u u u r 则当取最小值时,( )14x y+CM CN ⋅=u u u u r u u u r A .6 B .5C .4D .36. 已知双曲线C :﹣=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过点F 1作直线l ⊥x 轴交双曲线C的渐近线于点A ,B 若以AB 为直径的圆恰过点F 2,则该双曲线的离心率为()班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A .B .C .2D .7. 设D 、E 、F 分别是△ABC 的三边BC 、CA 、AB 上的点,且=2,=2,=2,则与()A .互相垂直B .同向平行C .反向平行D .既不平行也不垂直8. 已知函数f (x+1)=3x+2,则f (x )的解析式是()A .3x ﹣1B .3x+1C .3x+2D .3x+49. 若f (x )=x 2﹣2x ﹣4lnx ,则f ′(x )>0的解集为()A .(0,+∞)B .(﹣1,0)∪(2,+∞)C .(2,+∞)D .(﹣1,0)10.将函数()的图象沿轴向左平移个单位后,得到一个偶函数的图象,则的()sin 2y x ϕ=+0ϕ>x 8πϕ最小值为( )(A )( B )(C )(D )43π83π4π8π11.如果集合 ,同时满足,就称,A B {}{}{}{}1,2,3,41,1,1A B B A B =≠≠U I ,A =有序集对为“ 好集对”. 这里有序集对是指当时,和是不(),A B (),A B A B ≠(),A B (),B A 同的集对, 那么“好集对” 一共有( )个A .个B .个C .个D .个12.下列函数中,在其定义域内既是奇函数又是减函数的是( )A .y=|x|(x ∈R )B .y=(x ≠0)C .y=x (x ∈R )D .y=﹣x 3(x ∈R )二、填空题13.某工厂产生的废气经过过虑后排放,过虑过程中废气的污染物数量(单位:毫克/升)与时间(单P t 位:小时)间的关系为(,均为正常数).如果前5个小时消除了的污染物,为了0ektP P -=0P k 10%消除的污染物,则需要___________小时.27.1%【命题意图】本题考指数函数的简单应用,考查函数思想,方程思想的灵活运用.14.设函数,若用表示不超过实数m 的最大整数,则函数的值域为 .15.用1,2,3,4,5组成不含重复数字的五位数,要求数字4不出现在首位和末位,数字1,3,5中有且仅有两个数字相邻,则满足条件的不同五位数的个数是.(注:结果请用数字作答)【命题意图】本题考查计数原理、排列与组合的应用,同时也渗透了分类讨论的思想,本题综合性强,难度较大.16.曲线y=x+e x在点A(0,1)处的切线方程是 .17.给出下列命题:(1)命题p:;菱形的对角线互相垂直平分,命题q:菱形的对角线相等;则p∨q是假命题(2)命题“若x2﹣4x+3=0,则x=3”的逆否命题为真命题(3)“1<x<3”是“x2﹣4x+3<0”的必要不充分条件(4)若命题p:∀x∈R,x2+4x+5≠0,则¬p:.其中叙述正确的是 .(填上所有正确命题的序号)18.记等比数列{a n}的前n项积为Πn,若a4•a5=2,则Π8= .三、解答题19.已知三棱柱ABC﹣A1B1C1,底面三角形ABC为正三角形,侧棱AA1⊥底面ABC,AB=2,AA1=4,E为AA1的中点,F为BC的中点(1)求证:直线AF∥平面BEC1(2)求A到平面BEC1的距离.20.如图,矩形ABCD和梯形BEFC所在平面互相垂直,BE∥CF,BC⊥CF,,EF=2,BE=3,CF=4.(Ⅰ)求证:EF⊥平面DCE;(Ⅱ)当AB的长为何值时,二面角A﹣EF﹣C的大小为60°.21.(本小题满分10分)选修4-4:坐标系与参数方程:x l在直角坐标系中,以原点为极点,轴的正半轴为极轴,以相同的长度单位建立极坐标系.已知直线的极坐标方程为,曲线的极坐标方程为.cos sin 2ρθρθ-=C 2sin 2cos (0)p p ρθθ=>(1)设为参数,若,求直线的参数方程;t 2x =-+l (2)已知直线与曲线交于,设,且,求实数的值.l C ,P Q (2,4)M --2||||||PQ MP MQ =⋅p 22.如图所示的几何体中,EA ⊥平面ABC ,BD ⊥平面ABC ,AC=BC=BD=2AE=,M 是AB 的中点.(1)求证:CM ⊥EM ;(2)求MC 与平面EAC 所成的角.23.已知函数f (x )=和直线l :y=m (x ﹣1).(1)当曲线y=f (x )在点(1,f (1))处的切线与直线l 垂直时,求原点O 到直线l 的距离;(2)若对于任意的x ∈[1,+∞),f (x )≤m (x ﹣1)恒成立,求m 的取值范围;(3)求证:ln <(n ∈N +)24.如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD是菱形,AB=2,∠BAD=60°.(Ⅰ)求证:BD⊥平面PAC;(Ⅱ)若PA=AB,求PB与AC所成角的余弦值;(Ⅲ)当平面PBC与平面PDC垂直时,求PA的长.漯河市外国语学校2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1. 【答案】【解析】选D.根据三视图可知,该几何体是一个棱长为2的正方体挖去一个以正方体的中心为顶点,上底面为底面的正四棱锥后剩下的几何体如图,其体积V =23-×2×2×1=,故选D.132032. 【答案】B【解析】解:由三视图可知:此几何体为圆锥的一半,∴此几何体的体积==2π.故选:B . 3. 【答案】D【解析】解:∵偶函数f (x )=2x ﹣4(x ≥0),故它的图象关于y 轴对称,且图象经过点(﹣2,0)、(0,﹣3),(2,0),故f (x ﹣2)的图象是把f (x )的图象向右平移2个单位得到的,故f (x ﹣2)的图象经过点(0,0)、(2,﹣3),(4,0),则由f (x ﹣2)<0,可得 0<x <4,故选:D .【点评】本题主要考查指数不等式的解法,函数的图象的平移规律,属于中档题. 4. 【答案】C5. 【答案】D 【解析】试题分析:由题知,;设,则(1)CB BM CM CB xCA y =-=+-s u u r u u u u v u u u u v u u u v u u u v BA CA CB =-u uu v u u u v u u u v BM k BA =u u u u v u u u v,可得,当取最小值时,,最小值在,1x k y k =-=-1x y +=14x y +()141445x yx y x y x y y x ⎛⎫+=++=++ ⎪⎝⎭时取到,此时,将代入,则4y x x y =21,33y x ==()1,CN 2CM xCA yCB CA CB =+=+u u u u v u u u v u u u v u u u v u u u v u u u v .故本题答案选D.()22111233322233x y CM CN xCA yCB CA CB x y +⎛⎫⋅=++⋅=+=+= ⎪⎝⎭u u u u r u u u r u u u v u u u v u u u v u u u v 考点:1.向量的线性运算;2.基本不等式.6. 【答案】D【解析】解:设F 1(﹣c ,0),F 2(c ,0),则l 的方程为x=﹣c ,双曲线的渐近线方程为y=±x ,所以A (﹣c , c )B (﹣c ,﹣ c )∵AB 为直径的圆恰过点F 2∴F 1是这个圆的圆心∴AF 1=F 1F 2=2c ∴c=2c ,解得b=2a ∴离心率为==故选D .【点评】本题考查了双曲线的性质,如焦点坐标、离心率公式. 7. 【答案】D【解析】解:如图所示,△ABC 中,=2,=2,=2,根据定比分点的向量式,得==+,=+,=+,以上三式相加,得++=﹣,所以,与反向共线.【点评】本题考查了平面向量的共线定理与定比分点的应用问题,是基础题目. 8. 【答案】A【解析】∵f (x+1)=3x+2=3(x+1)﹣1∴f (x )=3x ﹣1故答案是:A【点评】考察复合函数的转化,属于基础题. 9. 【答案】C【解析】解:由题,f (x )的定义域为(0,+∞),f ′(x )=2x ﹣2﹣,令2x ﹣2﹣>0,整理得x 2﹣x ﹣2>0,解得x >2或x <﹣1,结合函数的定义域知,f ′(x )>0的解集为(2,+∞).故选:C . 10.【答案】B【解析】将函数的图象沿轴向左平移个单位后,得到一个偶函数()()sin 20y x ϕϕ=+>x 8π的图象,可得,求得的最小值为,故选B .sin 2sin 284[()]()y x x ππϕϕ=++=++42ππϕ+=ϕ4π11.【答案】B 【解析】试题分析:因为,所以当时,;当{}{}{}{}1,2,3,41,1,1A B B A B =≠≠U I ,A ={1,2}A ={1,2,4}B =时,;当时,;当时,;当时,{1,3}A ={1,2,4}B ={1,4}A ={1,2,3}B ={1,2,3}A ={1,4}B ={1,2,4}A =;当时,;所以满足条件的“好集对”一共有个,故选B.{1,3}B ={1,3,4}A ={1,2}B =考点:元素与集合的关系的判断.【方法点晴】本题主要考查了元素与集合关系的判断与应用,其中解答中涉及到集合的交集和集合的并集运算与应用、元素与集合的关系等知识点的综合考查,着重考查了分类讨论思想的应用,以及学生分析问题和解答问题的能力,试题有一定的难度,属于中档试题,本题的解答中正确的理解题意是解答的关键.1111]12.【答案】D【解析】解:y=|x|(x ∈R )是偶函数,不满足条件,y=(x ≠0)是奇函数,在定义域上不是单调函数,不满足条件,y=x (x ∈R )是奇函数,在定义域上是增函数,不满足条件,y=﹣x 3(x ∈R )奇函数,在定义域上是减函数,满足条件,故选:D 二、填空题13.【答案】15【解析】由条件知,所以.消除了的污染物后,废气中的污染物数量为5000.9e kP P -=5e0.9k-=27.1%,于是,∴,所以小时.00.729P 000.729e kt P P -=315e 0.7290.9e kt k --===15t =14.【答案】 {0,1} .【解析】解:=[﹣]+[+]=[﹣]+[+],∵0<<1,∴﹣<﹣<,<+<,①当0<<时,0<﹣<,<+<1,故y=0;②当=时,﹣=0,+=1,故y=1;③<<1时,﹣<﹣<0,1<+<,故y=﹣1+1=0;故函数的值域为{0,1}.故答案为:{0,1}.【点评】本题考查了学生的化简运算能力及分类讨论的思想应用. 15.【答案】48【解析】16.【答案】 2x﹣y+1=0 .【解析】解:由题意得,y′=(x+e x)′=1+e x,∴点A(0,1)处的切线斜率k=1+e0=2,则点A(0,1)处的切线方程是y﹣1=2x,即2x﹣y+1=0,故答案为:2x﹣y+1=0.【点评】本题考查导数的几何意义,以及利用点斜式方程求切线方程,注意最后要用一般式方程来表示,属于基础题.17.【答案】 (4) 【解析】解:(1)命题p:菱形的对角线互相垂直平分,为真命题.命题q:菱形的对角线相等为假命题;则p∨q是真命题,故(1)错误,(2)命题“若x2﹣4x+3=0,则x=3或x=1”,即原命题为假命题,则命题的逆否命题为假命题,故(2)错误,(3)由x2﹣4x+3<0得1<x<3,则“1<x<3”是“x2﹣4x+3<0”的充要条件,故(3)错误,(4)若命题p:∀x∈R,x2+4x+5≠0,则¬p:.正确,故答案为:(4)【点评】本题主要考查命题的真假判断,涉及复合命题的真假关系,四种命题,充分条件和必要条件以及含有量词的命题的否定,知识点较多,属于中档题.18.【答案】 16 .【解析】解:∵等比数列{a n}的前n项积为Πn,∴Π8=a1•a2a3•a4•a5a6•a7•a8=(a4•a5)4=24=16.故答案为:16.【点评】本题主要考查等比数列的计算,利用等比数列的性质是解决本题的关键.三、解答题19.【答案】【解析】解:(1)取BC1的中点H,连接HE、HF,则△BCC1中,HF∥CC1且HF=CC1又∵平行四边形AA1C1C中,AE∥CC1且AE=CC1∴AE∥HF且AE=HF,可得四边形AFHE为平行四边形,∴AF∥HE,∵AF⊄平面REC1,HE⊂平面REC1∴AF∥平面REC1.…(2)等边△ABC中,高AF==,所以EH=AF=由三棱柱ABC﹣A1B1C1是正三棱柱,得C1到平面AA1B1B的距离等于∵Rt△A1C1E≌Rt△ABE,∴EC1=EB,得EH⊥BC1可得S△=BC1•EH=××=,而S△ABE=AB×BE=2由等体积法得V A﹣BEC1=V C1﹣BEC,∴S△×d=S△ABE×,(d为点A到平面BEC1的距离)即××d=×2×,解之得d=∴点A到平面BEC1的距离等于.…【点评】本题在正三棱柱中求证线面平行,并求点到平面的距离.着重考查了正三棱柱的性质、线面平行判定定理和等体积法求点到平面的距离等知识,属于中档题.20.【答案】【解析】证明:(Ⅰ)在△BCE中,BC⊥CF,BC=AD=,BE=3,∴EC=,∵在△FCE中,CF2=EF2+CE2,∴EF⊥CE由已知条件知,DC⊥平面EFCB,∴DC⊥EF,又DC与EC相交于C,∴EF⊥平面DCE解:(Ⅱ)方法一:过点B作BH⊥EF交FE的延长线于H,连接AH.由平面ABCD⊥平面BEFC,平面ABCD∩平面BEFC=BC,AB⊥BC,得AB⊥平面BEFC,从而AH⊥EF.所以∠AHB为二面角A﹣EF﹣C的平面角.在Rt△CEF中,因为EF=2,CF=4.EC=∴∠CEF=90°,由CE∥BH,得∠BHE=90°,又在Rt△BHE中,BE=3,∴由二面角A﹣EF﹣C的平面角∠AHB=60°,在Rt△AHB中,解得,所以当时,二面角A﹣EF﹣C的大小为60°方法二:如图,以点C为坐标原点,以CB,CF和CD分别作为x轴,y轴和z轴,建立空间直角坐标系C﹣xyz .设AB=a(a>0),则C(0,0,0),A(,0,a),B(,0,0),E(,3,0),F(0,4,0).从而,设平面AEF的法向量为,由得,,取x=1,则,即,不妨设平面EFCB的法向量为,由条件,得解得.所以当时,二面角A﹣EF﹣C的大小为60°.【点评】本题考查的知识点是用空间向量求平面间的夹角,其中(I)的关键是熟练掌握线线垂直、线面垂直与面面垂直的之间的相互转化,(II)的关键是建立空间坐标系,将二面角问题,转化为向量的夹角问题. 21.【答案】【解析】【命题意图】本题主要考查抛物线极坐标方程、直线的极坐标方程与参数方程的互化、直线参数方程的几何意义的应用,意在考查逻辑思维能力、等价转化的能力、运算求解能力,以及方程思想、转化思想的应用.22.【答案】【解析】(1)证明:∵AC=BC=AB,∴△ABC为等腰直角三角形,∵M为AB的中点,∴AM=BM=CM,CM⊥AB,∵EA⊥平面ABC,∴EA⊥AC,设AM=BM=CM=1,则有AC=,AE=AC=,在Rt△AEC中,根据勾股定理得:EC==,在Rt△AEM中,根据勾股定理得:EM==,∴EM2+MC2=EC2,∴CM⊥EM;(2)解:过M作MN⊥AC,可得∠MCA为MC与平面EAC所成的角,则MC与平面EAC所成的角为45°.23.【答案】【解析】(Ⅰ)解:由f(x)=,得,∴,于是m=﹣2,直线l的方程为2x+y﹣2=0.原点O到直线l的距离为;(Ⅱ)解:对于任意的x∈[1,+∞),f(x)≤m(x﹣1)恒成立,即,也就是,设,即∀x∈[1,+∞),g(x)≤0成立..①若m≤0,∃x使g′(x)>0,g(x)≥g(1)=0,这与题设g(x)≤0矛盾;②若m>0,方程﹣mx2+x﹣m=0的判别式△=1﹣4m2,当△≤0,即m时,g′(x)≤0,∴g(x)在(1,+∞)上单调递减,∴g(x)≤g(1)=0,即不等式成立.当0<m<时,方程﹣mx2+x﹣m=0的两根为x1,x2(x1<x2),,,当x∈(x1,x2)时,g′(x)>0,g(x)单调递增,g(x)>g(1)=0与题设矛盾.综上所述,m;(Ⅲ)证明:由(Ⅱ)知,当x>1,m=时,成立.不妨令,∴ln,(k∈N*).∴..….累加可得:,(n∈N*).即ln<(n∈N*).【点评】本题考查了利用导数研究过曲线上某点处的切线方程,考查了利用导数求函数的最值,训练了利用导数证明函数表达式,对于(Ⅲ)的证明,引入不等式是关键,要求考生具有较强的逻辑思维能力和灵活变形能力,是压轴题.24.【答案】【解析】解:(I)证明:因为四边形ABCD是菱形,所以AC⊥BD,又因为PA⊥平面ABCD,所以PA⊥BD,PA∩AC=A所以BD⊥平面PAC(II)设AC∩BD=O,因为∠BAD=60°,PA=AB=2,所以BO=1,AO=OC=,以O为坐标原点,分别以OB,OC为x轴、y轴,以过O且垂直于平面ABCD的直线为z轴,建立空间直角坐标系O﹣xyz,则P(0,﹣,2),A(0,﹣,0),B(1,0,0),C(0,,0)所以=(1,,﹣2),设PB与AC所成的角为θ,则cosθ=|(III)由(II)知,设,则设平面PBC的法向量=(x,y,z)则=0,所以令,平面PBC的法向量所以,同理平面PDC的法向量,因为平面PBC⊥平面PDC,所以=0,即﹣6+=0,解得t=,所以PA=.【点评】本小题主要考查空间线面关系的垂直关系的判断、异面直线所成的角、用空间向量的方法求解直线的夹角、距离等问题,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
漯河市第二高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1.在平面直角坐标系中,若不等式组(为常数)表示的区域面积等于, 则的值为( )A .B .C .D .2. 若P 是以F 1,F 2为焦点的椭圆=1(a >b >0)上的一点,且=0,tan ∠PF 1F 2=,则此椭圆的离心率为( )A .B .C .D .3. 两圆C 1:x 2+y 2﹣4x+3=0和C 2:的位置关系是( )A .相离B .相交C .内切D .外切4. 下列各组表示同一函数的是( )A .y=与y=()2B .y=lgx 2与y=2lgxC .y=1+与y=1+D .y=x 2﹣1(x ∈R )与y=x 2﹣1(x ∈N )5. 边长为2的正方形ABCD 的定点都在同一球面上,球心到平面ABCD 的距离为1,则此球的表面积为( )A .3πB .5πC .12πD .20π6. 设全集U={1,3,5,7,9},集合A={1,|a ﹣5|,9},∁U A={5,7},则实数a 的值是()A .2B .8C .﹣2或8D .2或87. 若变量x y ,满足约束条件22024010x y x y x +-≥⎧⎪-+≥⎨⎪-≤⎩,则目标函数32z x y =-的最小值为( )A .-5B .-4 C.-2D .38. 函数()log 1xa f x a x =-有两个不同的零点,则实数的取值范围是( )A .()1,10B .()1,+∞C .()0,1D .()10,+∞9. 若直线y=kx ﹣k 交抛物线y 2=4x 于A ,B 两点,且线段AB 中点到y 轴的距离为3,则|AB|=()A .12B .10C .8D .610.若函数则函数的零点个数为( )21,1,()ln ,1,x x f x x x ⎧-≤=⎨>⎩1()2y f x x =+A .1B .2C .3D .4班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________11.为了得到函数y=cos (2x+1)的图象,只需将函数y=cos2x 的图象上所有的点( )A .向左平移个单位长度B .向右平移个单位长度C .向左平移1个单位长度D .向右平移1个单位长度12.利用独立性检验来考虑两个分类变量X 和Y 是否有关系时,通过查阅下表来确定断言“X 和Y 有关系”的可信度,如果k >5.024,那么就有把握认为“X 和Y 有关系”的百分比为( )P (K 2>k )0.500.400.250.150.100.050.0250.0100.0050.001k 0.4550.7081.3232.0722.7063.8415.0246.6357.87910.828A .25%B .75%C .2.5%D .97.5%二、填空题13.已知函数,则的值是_______,的最小正周期是______.22tan ()1tan x f x x =-(3f π()f x 【命题意图】本题考查三角恒等变换,三角函数的性质等基础知识,意在考查运算求解能力.14.已知圆的方程为,过点的直线与圆交于两点,若使C 22230x y y +--=()1,2P -C ,A B AB 最小则直线的方程是 .15.设变量x ,y 满足约束条件,则的最小值为 .16.设p :∃x ∈使函数有意义,若¬p 为假命题,则t 的取值范围为 .17.(x ﹣)6的展开式的常数项是 (应用数字作答).18.函数()满足且在上的导数满足,则不等式)(x f R x ∈2)1(=f )(x f R )('x f 03)('>-x f 的解集为.1log 3)(log 33-<x x f 【命题意图】本题考查利用函数的单调性解抽象不等式问题,本题对运算能力、化归能力及构造能力都有较高要求,难度大.三、解答题19.已知椭圆x 2+4y 2=4,直线l :y=x+m (1)若l 与椭圆有一个公共点,求m 的值;(2)若l 与椭圆相交于P 、Q 两点,且|PQ|等于椭圆的短轴长,求m 的值. 20.如图1,圆O 的半径为2,AB ,CE 均为该圆的直径,弦CD 垂直平分半径OA ,垂足为F ,沿直径AB 将半圆ACB 所在平面折起,使两个半圆所在的平面互相垂直(如图2)(Ⅰ)求四棱锥C ﹣FDEO 的体积(Ⅱ)如图2,在劣弧BC 上是否存在一点P (异于B ,C 两点),使得PE ∥平面CDO ?若存在,请加以证明;若不存在,请说明理由.21.已知函数f (x )=lnx ﹣kx+1(k ∈R ).(Ⅰ)若x 轴是曲线f (x )=lnx ﹣kx+1一条切线,求k 的值;(Ⅱ)若f (x )≤0恒成立,试确定实数k 的取值范围. 22.(本小题满分12分)已知点为圆上一个动点,点是在轴上的投影,为线段上一点,且与点关M 22:4C x y +=D M x P MD Q 于原点对称,满足.O QP OM OD =+u u u r u u u u r u u u r(1)求动点的轨迹的方程;P E (2)过点作的切线与圆相交于两点,当的面积最大时,求直线的方程.P E l ,A B QAB ∆l23.已知函数f(x)=x2﹣mx在[1,+∞)上是单调函数.(1)求实数m的取值范围;(2)设向量,求满足不等式的α的取值范围.24.(本小题满分10分)如图⊙O经过△ABC的点B,C与AB交于E,与AC交于F,且AE=AF.(1)求证EF∥BC;(2)过E作⊙O的切线交AC于D,若∠B=60°,EB=EF=2,求ED的长.漯河市第二高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1.【答案】B【解析】【知识点】线性规划【试题解析】作可行域:由题知:所以故答案为:B2.【答案】A【解析】解:∵∴,即△PF1F2是P为直角顶点的直角三角形.∵Rt△PF1F2中,,∴=,设PF2=t,则PF1=2t∴=2c,又∵根据椭圆的定义,得2a=PF1+PF2=3t∴此椭圆的离心率为e====故选A【点评】本题给出椭圆的一个焦点三角形为直角三角形,根据一个内角的正切值,求椭圆的离心率,着重考查了椭圆的基本概念和简单几何性质,属于基础题.3.【答案】D【解析】解:由题意可得,圆C2:x2+y2﹣4x+3=0可化为(x﹣2)2+y2=1,C2:的x2+(y+2)2=9两圆的圆心距C1C2==4=1+3,∴两圆相外切.故选:D.【点评】本题主要考查圆的标准方程,两个圆的位置关系的判定方法,属于中档题.4.【答案】C【解析】解:A.y=|x|,定义域为R,y=()2=x,定义域为{x|x≥0},定义域不同,不能表示同一函数.B.y=lgx2,的定义域为{x|x≠0},y=2lgx的定义域为{x|x>0},所以两个函数的定义域不同,所以不能表示同一函数.C.两个函数的定义域都为{x|x≠0},对应法则相同,能表示同一函数.D.两个函数的定义域不同,不能表示同一函数.故选:C.【点评】本题主要考查判断两个函数是否为同一函数,判断的标准就是判断两个函数的定义域和对应法则是否一致,否则不是同一函数.5.【答案】C【解析】解:∵正方形的边长为2,∴正方形的对角线长为=2,∵球心到平面ABCD的距离为1,∴球的半径R==,则此球的表面积为S=4πR2=12π.故选:C.【点评】此题考查了球的体积和表面积,求出球的半径是解本题的关键.6.【答案】D【解析】解:由题意可得3∈A,|a﹣5|=3,∴a=2,或a=8,故选D.7.【答案】B【解析】试题分析:根据不等式组作出可行域如图所示阴影部分,目标函数可转化直线系31y 22x z =+,直线系在可行域内的两个临界点分别为)2,0(A 和)0,1(C ,当直线过A 点时,32224z x y =-=-⨯=-,当直线过C 点时,32313z x y =-=⨯=,即的取值范围为]3,4[-,所以Z 的最小值为4-.故本题正确答案为B.考点:线性规划约束条件中关于最值的计算.8. 【答案】B 【解析】试题分析:函数有两个零点等价于与的图象有两个交点,当时同一坐标()f x 1xy a ⎛⎫= ⎪⎝⎭log a y x =01a <<系中做出两函数图象如图(2),由图知有一个交点,符合题意;当时同一坐标系中做出两函数图象如图(1),1a >由图知有两个交点,不符合题意,故选B.(1) (2)考点:1、指数函数与对数函数的图象;2、函数的零点与函数交点之间的关系.【方法点睛】本题主要考查指数函数与对数函数的图象、函数的零点与函数交点之间的关系.属于难题.判断方程()y f x =零点个数的常用方法:①直接法:可利用判别式的正负直接判定一元二次方程根的个数;②转化法:函数()y f x =零点个数就是方程()0f x =根的个数,结合函数的图象与性质(如单调性、奇偶性、周期性、对称性) 可确定函数的零点个数;③数形结合法:一是转化为两个函数的图象的()(),y g x y h x ==交点个数问题,画出两个函数的图象,其交点的个数就是函数零点的个数,二是转化为的交(),y a y g x ==点个数的图象的交点个数问题.本题的解答就利用了方法③.9. 【答案】C【解析】解:直线y=kx ﹣k 恒过(1,0),恰好是抛物线y 2=4x 的焦点坐标,设A (x 1,y 1) B (x 2,y 2)抛物y 2=4x 的线准线x=﹣1,线段AB 中点到y 轴的距离为3,x 1+x 2=6,∴|AB|=|AF|+|BF|=x 1+x 2+2=8,故选:C .【点评】本题的考点是函数的最值及其几何意义,主要解决抛物线上的点到焦点的距离问题,利用抛物线的定义将到焦点的距离转化为到准线的距离. 10.【答案】D 【解析】考点:函数的零点.【易错点睛】函数零点个数的判断方法:(1)直接求零点:令,如果能求出解,则有几个解就有几0)(=x f 个零点.(2)零点存在性定理法:要求函数在上是连续的曲线,且.还必须结合函数的图],[b a 0)()(<b f a f 象和性质(如单调性)才能确定函数有多少个零点.(3)图象法:先把所求函数分解为两个简单函数,再画两个函数图象,看其交点的个数有几个,其中交点的横坐标有几个不同的值,就有几个不同的零点.11.【答案】A 【解析】解:∵,故将函数y=cos2x 的图象上所有的点向左平移个单位长度,可得函数y=cos (2x+1)的图象,故选:A .【点评】本题主要考查函数y=Asin (ωx+φ)的图象变换规律,属于基础题. 12.【答案】D【解析】解:∵k >5、024,而在观测值表中对应于5.024的是0.025,∴有1﹣0.025=97.5%的把握认为“X 和Y 有关系”,故选D .【点评】本题考查独立性检验的应用,是一个基础题,这种题目出现的机会比较小,但是一旦出现,就是我们必得分的题目. 二、填空题13.【答案】.π【解析】∵,∴,∴的定义域为22tan ()tan 21tan x f x x x ==-2()tan 33f ππ==221tan 0x k x ππ⎧≠+⎪⎨⎪-≠⎩()f x ,,将的图象如下图画出,从而(,)(,)(,)244442kk k k k k ππππππππππππ-+-+-++++U U k Z ∈()f x 可知其最小正周期为,故填:,.ππ14.【答案】30x y -+=【解析】试题分析:由圆的方程为,表示圆心在,半径为的圆,点到圆心的距C 22230x y y +--=(0,1)C ()1,2P -,小于圆的半径,所以点在圆内,所以当时,最小,此时()1,2P -AB CP ⊥AB ,由点斜式方程可得,直线的方程为,即.11,1CP k k =-=21y x -=+30x y -+=考点:直线与圆的位置关系的应用.15.【答案】 4 .【解析】解:作出不等式组对应的平面区域,则的几何意义为区域内的点到原点的斜率,由图象可知,OC的斜率最小,由,解得,即C(4,1),此时=4,故的最小值为4,故答案为:4【点评】本题主要考查线性规划的应用,利用直线斜率的定义以及数形结合是解决本题的关键.16.【答案】 .【解析】解:若¬P为假命题,则p为真命题.不等式tx2+2x﹣2>0有属于(1,)的解,即有属于(1,)的解,又时,,所以.故t>﹣.故答案为t>﹣.17.【答案】 ﹣160 【解析】解:由于(x﹣)6展开式的通项公式为T r+1=•(﹣2)r•x6﹣2r,令6﹣2r=0,求得r=3,可得(x﹣)6展开式的常数项为﹣8=﹣160,故答案为:﹣160.【点评】本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,求展开式中某项的系数,属于基础题.18.【答案】)3,0(【解析】构造函数,则,说明在上是增函数,且x x f x F 3)()(-=03)(')('>-=x f x F )(x F R .又不等式可化为,即,13)1()1(-=-=f F 1log 3)(log 33-<x x f 1log 3)(log 33-<-x x f )1()(log 3F x F <∴,解得.∴不等式的解集为.1log 3<x 30<<x 1log 3)(log 33-<x x f )3,0(三、解答题19.【答案】【解析】解:(1)把直线y=x+m 代入椭圆方程得:x 2+4(x+m )2=4,即:5x 2+8mx+4m 2﹣4=0,△=(8m )2﹣4×5×(4m 2﹣4)=﹣16m 2+80=0解得:m=.(2)设该直线与椭圆相交于两点A (x 1,y 1),B (x 2,y 2),则x 1,x 2是方程5x 2+8mx+4m 2﹣4=0的两根,由韦达定理可得:x1+x 2=﹣,x 1•x 2=,∴|AB|====2;∴m=±.【点评】本题考查直线与圆锥曲线的位置关系与弦长问题,难点在于弦长公式的灵活应用,属于中档题. 20.【答案】【解析】解:(Ⅰ)如图1,∵弦CD 垂直平分半径OA ,半径为2,∴CF=DF ,OF=,∴在Rt △COF 中有∠COF=60°,CF=DF=,∵CE 为直径,∴DE ⊥CD ,∴OF ∥DE ,DE=2OF=2,∴,图2中,平面ACB ⊥平面ADE ,平面ACB ∩平面ADE=AB ,又CF ⊥AB ,CF ⊂平面ACB ,∴CF ⊥平面ADE ,则CF 是四棱锥C ﹣FDEO 的高,∴.(Ⅱ)在劣弧BC上是存在一点P(劣弧BC的中点),使得PE∥平面CDO.证明:分别连接PE,CP,OP,∵点P为劣弧BC弧的中点,∴,∵∠COF=60°,∴∠COP=60°,则△COP为等边三角形,∴CP∥AB,且,又∵DE∥AB且DE=,∴CP∥DE且CP=DE,∴四边形CDEP为平行四边形,∴PE∥CD,又PE⊄面CDO,CD⊂面CDO,∴PE∥平面CDO.【点评】本题以空间几何体的翻折为背景,考查空间几何体的体积,考查空间点、线、面的位置关系、线面平行及线面垂直等基础知识,考查空间想象能力,求解运算能力和推理论证能力,考查数形结合,化归与数学转化等思想方法,是中档题.21.【答案】【解析】解:(1)函数f(x)的定义域为(0,+∞),f′(x)=﹣k=0,∴x=,由ln﹣1+1=0,可得k=1;(2)当k≤0时,f′(x)=﹣k>0,f(x)在(0,+∞)上是增函数;当k>0时,若x∈(0,)时,有f′(x)>0,若x∈(,+∞)时,有f′(x)<0,则f(x)在(0,)上是增函数,在(,+∞)上是减函数.k≤0时,f(x)在(0,+∞)上是增函数,而f(1)=1﹣k>0,f(x)≤0不成立,故k>0,∵f(x)的最大值为f(),要使f(x)≤0恒成立,则f()≤0即可,即﹣lnk≤0,得k≥1.【点评】本题考查导数的几何意义,考查函数单调区间的求法,确定实数的取值范围,渗透了分类与整合的数学思想,培养学生的抽象概括能力、推理论证能力、运算求解能力和创新意识.22.【答案】【解析】(1)设,,则.(,)P x y 00(,)M x y 0(,0)D x ∵点与点关于原点对称,∴.P Q O 2QP OP =u u u r u u u r ∵,∴,QP OM OD =+u u u r u u u u r u u u r 2OP OM OD =+u u u r u u u u r u u u r ∴,∴,0002(,)(,)(,0)x y x y x =+002x x y y=⎧⎨=⎩∵,∴,22004x y +=2244x y +=∴动点的轨迹方程:.P 2214x y +=(2)当直线的斜率不存在时,显然不符合题意,l ∴设直线的方程为,l y km m =+ 由,得.2244y km m x y =+⎧⎨+=⎩222(41)8440k x kmx m +++-= ∵直线与椭圆相切,l ∴,∴.2222644(41)(44)0k m k m ∆=-+-=2241m k =+原点到直线的距离,则,Ol d =AB =∴1222QAB S AB d ∆=⋅=,4==≤当,即时,的面积取得最大值.22d=d =QAB ∆4 此时,即,d ==2222m k =+ 由,解得,22222241m k m k ⎧=+⎪⎨=+⎪⎩m k ⎧=⎪⎨=⎪⎩ ∴直线的方程为或l y x =+y x =y x =+y x =-23.【答案】【解析】解:(1)∵函数f (x )=x 2﹣mx 在[1,+∞)上是单调函数∴x=≤1∴m ≤2∴实数m 的取值范围为(﹣∞,2];(2)由(1)知,函数f (x )=x 2﹣mx 在[1,+∞)上是单调增函数∵,∵∴2﹣cos2α>cos2α+3∴cos2α<∴∴α的取值范围为.【点评】本题考查函数的单调性,考查求解不等式,解题的关键是利用单调性确定参数的范围,将抽象不等式转化为具体不等式.24.【答案】【解析】解:(1)证明:∵AE =AF ,∴∠AEF =∠AFE .又B ,C ,F ,E 四点共圆,∴∠ABC =∠AFE ,∴∠AEF =∠ACB ,又∠AEF =∠AFE ,∴EF ∥BC .(2)由(1)与∠B =60°知△ABC 为正三角形,又EB =EF =2,∴AF =FC =2,设DE =x ,DF =y ,则AD =2-y ,在△AED 中,由余弦定理得DE 2=AE 2+AD 2-2AD ·AE cos A .即x 2=(2-y )2+22-2(2-y )·2×,12∴x 2-y 2=4-2y ,①由切割线定理得DE 2=DF ·DC ,即x 2=y (y +2),∴x 2-y 2=2y ,②由①②联解得y =1,x =,∴ED =.33。