2016年四川省成都七中育才学校七年级上学期数学期中试卷和解析答案

合集下载

四川省成都市七中育才学校2015-2016学年七年级上学期数学期末模拟测试试题1(扫描版)

四川省成都市七中育才学校2015-2016学年七年级上学期数学期末模拟测试试题1(扫描版)

C. -<272 + x>* 1% 1 山 * x272 f x - 196 - x四川省成都市七中育才学校 2015-2016学年七年级上学期数学期末模拟测试试题(1)i&f*a (样小■#分.共30分〉(RW-个直增廉材介■(!規求曲•审・仪样 ■的祥■腆*住之后餌我格中) k< > A.- 2, T«*式中,()A. x* 1 乩 3JT ・ 2JT *6 G Jt^y* 0 D ・ 2x-3^* 13. 小先铁ti 折的<L ■枷fTT-XUdt 为18儿的Ih 槍炖買标用f ( A, ISO 元 B, WjtK 卜刘代薛闯泾珂的站讚直鳴的电<■ •03t IOx t.10x A> -― «I _4■ 1433■ MIMBAM (i E 的<io>甲Uff r 人勿(人・乙PU T 匚人i»s 人.乙Vi 的人人■的M 少人犬屮BU 卸聚介用从人人镐甲SU 呻1汕方柿1"的处<)• •儿 272 + jH.氣Hl MWA 宾小疋方的轶人aui*的阳糧国堆(■ ■ ■执出生H~HC.;・14A. 4B, -13乩 tn*A. B, C/TM —t* an AIV6M. MX* MA. C AAMIAftAB (Av H cw 4 cs th 氛■糊.NMB ・9T ・ ZBDC>30* ・<H WZKOftrftttM < A 、40 > tt.W2 2题号.12345678910答案 .-3 11. 已知Zri 昇和-同类换 则也二 ______________________212. 小林同学在一牛匸方体盒子的付个而都近有一个字.分别是:我、蕃、欢、数、学、课・搖平面纏开图如图瞬可;.郷么住该正方体盒子•中, 利口ST 相对的面所写的字是" ________ ”!3>已知工=3是关于h 的方程处一6 = 4 + 10前解,则a= .........11.如图.C 是线段丽上任意…点"M, N 分别是AG BC 的中点•如果AB=12cm,那么MN 的长为 __ cm. 6 若 5x 2y^a y yx 2^x 7y\ «a= _______________________ A M C N B二、细心算-窮{每小題5分’英诵分)16、汁炸下列各题:(1) 3+ (-11)-(-9)17.化筒:2(宀皿)_加匕3(*四、解善蛊(K20;}>19,(10分】如图,己知0是[线CD 上的点,加屮分NBOC, ZA()C=35a , MZBOD 的度数.20、(10分)列方程解应用问题:某礼胡制适工厂接受-批玩具熊的订货任务,按计划天数主产,如果每天生产20个玩 具熊,则比订18.解方程,(1) 4x-3(5-x)=r653A[T A叵货狂勢少100 F;如果毎夭生产23令疏具熊・则可以超过订货任务20个、请求出这批玩具熊的订货任务是多少个?原计划几天完成任务?R卷(50分)-花填空題(每小题4分,共20分】21.若x-y = 3^则3工亠5~3p= ___________ ■h22.如果对于任意非零有理数小方定.义运算因如E a®b = —一1, ffl(-3)®3- _____________a23.-个画家有14个边长为Im的足方体,他在地礙上把它们摆成如下左图的形式,然后他把霧出的表而都涂上颜色,那么秋涂上颜色的总血积为nn<24、如上右图所示,OB. 0C是ZA0D的任意两条射线,OM平分ZAOB, 0N平分ZC()D+若ZlKJN^a , ZBOOP , WZAOD^______________ -25、假设有定够垄的黒白摘棋子*按照一定的規律捋成一行:oo«eo»ooe»o»oo»»o*oo«»o» …… 请阿第2015 w子是黑的还是白的?答:.二、解答题(共:怕分}26、(8分)队学生去校外送行训练.他们以5 T米/时的速度行进,走了J8分的时除学校耍梅一个紧急通知转给队匕通讯员从学技出发.骑自行车以14千米/时的速度按麻路追匕去.通讯员需多少时间可级逍上学学臥伍?327,门0分)现察F列图形•同答问题’(1) ® 2个屮有几个止方体堆枳而成的?第n个中右几亍止方休堆积両成陆?jr trr- *•"]⑵若正方休的梭长是h则第3个儿何体的我御积?请猜测第n令几诃休得点面枳呢?第a2& (池分)水资源透支现象令人担忧,卩釣用水迫在眉计时嚣民用水浪费现鎳.某市政府利环保组织进打了调?L并制定出相应的措施*(门据环保紡织调查绽II.全市至>^6x10'个木龙头* 2x10*个抽水乌備漏水.若一万个漏康的水龙头一个月能瀚掉日立方米水* 一刀•个漏水的马桶•个月漏掉b立方米水*刚全前个月仅这两项所卷成的水流失量是易歩?(2)卧对居WfflA浪费现象,市政府将制定居民用水标准:规定每个三口之家每月的标准用水量,超过标准部分加价收费.若不超标部分的忒悄为每立方米3,5 x¥超标部分为每哉方^4.2元.某家庭某月用水12立方;IC交水赳44丄元,请你通过列方程求出我市規進的三口之家每月的标准用木览为多少试方歌.(3)在近期由市物价局举行的水侑昕证会匕冇一牝表提出一新怖水价收躍设想:毎天也00 ® 22= GO为用水崙释期.水价可定为毎立方来刈元:2N皿至次口&加为用水低谷期,水价可宦为傢立方米3. 2元.若慕三口之家按照此方案需支付的水费与(2)问所交水務栢同,也为44* 冠戈知该家罐用水高舞期的用水量比低谷期少戈0%.请汁笄囁种方案下前用水吐较由?少多少?245初2(H8级七上数学期末模拟鴻试(O1 1! sq" 1 -™ I Th ill I bf|L _i j … … … i ^n-ir^ ―■ •■*«« *・E “ I题号「123 4:51 ■■ ■■ ■678 9 —10答案,MP■ Pj J..JA — JL三T 填空题(每题4兀A !5iDn.已知7菲—沪和是同类嚴 卿心 丄2俵 峦林同学在一个正方体盒子備个面都写音一个字,分别适:我、 喜、欢、数、学.课’其半面展翌却圄所疥.那么春该证方体倉子中, 和 诒 相对的面所写的宇是"_”13. 己知兀=3是关于工,的方程血一君0的離"…_…M m v C 捷纔段魅上任憊一点*脏肚分别是也BC 的中点』加果AB=12cm,那么MN 的长为7俪.二、细呛算一算{每小題6分f 典25分、 仏计算下列希Xi) 3+ (HD-(3)=Mi7、化前* 2(«? — ab)-2a ?3ah 轉诽2心加卜逊+切 二亦归X —C f、I EuaiE ・i w “”r -- D-鯉3加4强4)书 共•卄口 a :化 以+H 吨 少7 * 二-2曙.解答越Cft 20分》19.(U)分)如亂 已彌0是育线a 上的点,0A 半分ZBQC, ZA0C-350 , M«ZB0D 的度” \ z A 馄电Ao 沪$V 厶渕“/娜-山朋 匸[沪2曲二刃⑷"D = 5+2? 丸3218.解方程:(1) 4^™3(5^x) = 6解仇T5慨订15x tax 1 y 3 x 2 ^Sx 2 y 21^5| + (-3/ v(- I-)2 620、(10分)列方程解应用间題=某礼品制造工厂接受一批玩具熊的订贯任务,按计划天数生产,如果每天生产20个玩 具熊「则比rr 赏任务少】oo 个;如果策天生产23亍玩冀热 剛可以超过订货任务知个・请I 詰醪/觀订货任务捱多步个?原计划几天完成任务?旳?20 |10加 尢沖022,如果对于任意非零打理数s 〃定义运算@如卜:a®6= --1 . f<l|(-3)®3-r22:仁一个画家有14个边氏为血的在方体,他在地而上把它们摆成如卜左图的形式,然菇他 把露岀的表面郝涂上颜色.那么被涂上颜色的总而积为 圮 m 2.24、如上右图所示,氓、0C 是上A (芳曙王蠢两条射线,0M 平分ZA ()B T ON 平分ZCOD. Z.M0N-a , ZBOC- B ,则ZA0D.g2入假设有圧輪多的黑白国棋几 接摭 定的規律拶成"衍:OO”gOO ・WOO“0・OO“O ・ * 谐间第勿苗个棋f 是黑的逐是白的?答: 白弟.二、牌答恿(共⑷分、如 (8分)一队学保去校外送行训练.他们以5T 米/时的速度行进,走了怡分的的罠 学校要将一个第急通知传给从艮,通汎员从学校出处騎口行车以14「米/时的速度按原賂 辿匕去.迪说员需咅少时闾可綴追上泸|趴伍? ™也辭3说小L 旳丘古人6小/0份钟)卷Jo 谕b .2OX 妙协此缈0®鮒需xafeii 睁>(X 襯)-咿工尿)二曲W|二阪也净/x它诵彳二丄27,〔垃分)观察下列图丽*冋答前謹”(。

四川省成都市七年级(上)期中数学试卷(附答案解析)

四川省成都市七年级(上)期中数学试卷(附答案解析)

四川省成都市七年级(上)期中数学试卷一、选择题(本大题共10小题,共30.0分)1.下列计算正确的是()A. 3a2−a2=3B. a2⋅a3=a6 C. (a2)3=a6 D. a6÷a2=a32.世界上最小的鸟是生活在古巴的吸蜜蜂鸟,它的质量约为0.056盎司.将0.056用科学记数法表示为()A. 5.6×10−1B. 5.6×10−2C. 5.6×10−3D. 0.56×10−13.化简5a⋅(2a2−ab),结果正确的是()A. −10a3−5abB. 10a3−5a2bC. −10a2+5a2bD. −10a3+5a2b4.下列各式中能用平方差公式计算的是()A. (a+3b)(3a−b)B. (3a−b)(3a−b)C. (3a−b)(−3a+b)D. (3a−b)(3a+b)5.下列各组线段中,能组成三角形的是()A. 4,6,10B. 3,6,7C. 5,6,12D. 2,3,66.已知a+b=3,ab=32,则(a+b)2的值等于()A. 6B. 7C. 8D. 97.下列乘法公式的运用,不正确的是()A. (2a+b)(2a−b)=4a2−b2B. (−2a+3)(3+2a)=9−4a2C. (3−2x)2=4x2+9−12xD. (−1−3x)2=9x2−6x+18.如图,直线l与直线a、b相交,且a//b,∠1=50°,则∠2的度数是()A. 130°B. 50°C. 100°D. 120°9.如图,点E在AD延长线上,下列条件中不能判定BC//AD的是()A. ∠1=∠2B. ∠C=∠CDEC. ∠3=∠4D. ∠C+∠ADC=180°10.如图,直线a//b,把三角板的直角顶点放在直线b上,若∠1=60°,则∠2的度数为()A. 45°B. 35°C. 30°D. 25°二、填空题(本大题共9小题,共32.0分)11.若a m=2,a n=4,则a m+n=______.12.已知m+2n=2,m−2n=2,则m2−4n2=______.13.x2−4x+k是完全平方式,则k=______.14.如图,把一张长方形纸片ABCD沿EF折叠后,D、C分别在M、N的位置上,EM与BC的交点为G,若∠EFG=65°,则∠2=______.15.已知:3m=2,9n=5,则33m−2n=______.16.若a−b=2,则a2−b2−4b=______.17.已知a2−2(k−1)ab+9b2是一个完全平方式,那么k=______ .18.设a,b,c为△ABC的三边,化简|a−b+c|−|a+b−c|−|a−b−c|=______.19.如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF//AC交ED的延长线于点F,若BC恰好平分∠ABF,AE=2BF.给出下列四个结论:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF,其中正确的结论是______ .三、计算题(本大题共1小题,共10.0分)20.计算:(1)(−12)0+|3−π|+(13)−2.(2)(x+3)(x−3)−(x−2)2.四、解答题(本大题共8小题,共74.0分)21.计算:(1)(a+3)2−(a+2)(a−1);(2)(15x2y−10xy2)÷5xy.22.如图,直线AB//CD,直线EF与AB相交于点P,与CD相交于点Q,且PM⊥EF,若∠1=68°,求∠2的度数.23.如图,已知△ABC中,AD⊥BC于点D,E为AB边上任意一点,EF⊥BC于点F,∠1=∠2.求证:DG//AB.请把证明的过程填写完整.证明:∵AD⊥BC,EF⊥BC(______),∴∠EFB=∠ADB=90°(垂直的定义)∴EF//______(______)∴∠1=______(______)又∵∠1=∠2(已知)∴______(______)∴DG//AB(______)24.如图,在△ABC中,AD平分∠BAC,在AB上截取AE=AC,连结DE,已知DE=3.5cm,BD=4.5cm.(1)说明△AED≌△ACD的理由;(2)求线段BC的长.25.如图,在△ABC中,∠ACB=90°,AC=BC,D是AB边上一点(点D与A,B不重合),连结CD,将线段CD绕点C按逆时针方向旋转90°得到线段CE,连结DE交BC于点F,连接BE.(1)求证:△ACD≌△BCE;(2)当AD=BF时,求∠BEF的度数.26.乘法公式的探究及应用:(1)如图,可以求出阴影部分的面积是______(写成两数平方差的形式);(2)如图,若将阴影部分裁剪下来,重新拼成一个矩形,它的宽是______,长是______,面积是______(写成多项式乘法的形式);(3)比较左、右两图的阴影部分面积,可以得到乘法公式:______(用式子表达);(4)运用你所得到的公式,计算下列式子:(2m+n−p)(2m−n+p)27.已知:AB//CD,点E在直线AB上,点F在直线CD上.(1)如图(1),∠1=∠2,∠3=∠4.①若∠4=36°,求∠2的度数;②试判断EM与FN的位置关系,并说明理由;(2)如图(2),EG平分∠MEF,EH平分∠AEM,试探究∠GEH与∠EFD的数量关系,并说明理由.28.如图,在△ABC中,AB=AC,∠B=30°,点D从点B出发,沿B→C方向运动到C(D不与B、C重合),连接AD,作∠ADE=30°,DE交线段AC于E.(1)在点D的运动过程中,若∠BDA=100°,求∠DEC的大小;(2)在点D的运动过程中,若AB=DC,请证明△ABD≌△DCE;(3)若BC=6cm,点D的运动速度是1cm/s,运动时间为t(s).在点D的运动过程中,是否存在这样的t,使得△ADE的形状是直角三角形?若存在,请求出符合条件的t的值;若不存在,请说明理由.答案和解析1.【答案】C【解析】解:A、3a2−a2=2a2,故此选项错误;B、a2⋅a3=a5,故此选项错误;C、(a2)3=a6,正确;D、a6÷a2=a4,故此选项错误;故选:C.直接利用同底数幂的乘除运算法则以及幂的乘方运算法则分别化简得出答案.此题主要考查了同底数幂的乘除运算以及幂的乘方运算,正确掌握相关运算法则是解题关键.2.【答案】B【解析】解:将0.056用科学记数法表示为5.6×10−2,故选:B.绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.【答案】B【解析】【分析】此题考查了单项式乘以多项式的知识,牢记法则是解答本题的关键,属于基础题,比较简单.按照单项式乘以多项式的运算法则进行运算即可.【解答】解:5a⋅(2a2−ab)=10a3−5a2b.故选B.4.【答案】D【解析】解:A、不符合两个数的和与这两个数的差相乘,不能用平方差公式,故本选项错误;B、原式=(3a−b)2,故本选项错误;C、原式=−(3a−b)2,故本选项错误;D、符合平方差公式,故本选项正确.故选D.根据平方差公式对各选项进行逐一计算即可.本题考查的是平方差公式,熟知两个数的和与这两个数的差相乘,等于这两个数的平方差是解答此题的关键.5.【答案】B【解析】解:A、∵4+6=10,不符合三角形三边关系定理,∴以4、6、10为三角形的三边,不能组成三角形,故本选项错误;B、∵3+6>7,6+7<3,3+7>6,符合三角形三边关系定理,∴以3、6、7为三角形的三边,能组成三角形,故本选项正确;C、∵5+6<12,不符合三角形三边关系定理,∴以5、6、12为三角形的三边,不能组成三角形,故本选项错误;D、∵2+3<6,不符合三角形三边关系定理,∴以2、3、6为三角形的三边,不能组成三角形,故本选项错误;故选:B.三角形的任意两边之和都大于第三边,根据以上定理逐个判断即可.本题考查了对三角形三边关系定理的应用,能熟记三角形三边关系定理的内容是解此题的关键.6.【答案】D【解析】解:∵a+b=3,∴(a+b)2=32=9.故选:D.利用整体代入的方法计算.本题考查了完全平方公式:灵活运用完全平方公式是解决此类问题的关键.完全平方公式为:(a±b)2= a2±2ab+b2.7.【答案】D【解析】解:A选项运用平方差公式(2a+b)(2a−b)=(2a)2−b2=4a2−b2;B选项运用平方差公式(−2a+3)(3+2a)=32−(2a)2=9−4a2;C选项是运用了完全平方公式计算正确;D选项运用完全平方公式计算(−1−3x)2=(1+3x)2=1+6x+9x2,所以D选项错误.故选:D.A选项运用了平方差公式,计算正确;B选项运用了平方差公式,计算正确;C选项运用了完全平方公式,计算正确;D选项运用了完全平方公式(−1−3x)2=(1+3x)2=1+6x+9x2,所以原题计算错误.本题主要考查了平方差公式和完全平方公式,解决此类问题要熟知两个公式的形式:平方差是两数的和与两数的差的乘积等于两数的平方差,完全平方公式是两数的和或差的平方等于两数的平方和加上或减去这两数的乘积的2倍(首平方,尾平方,2倍在中央,符号看前方).8.【答案】B【解析】解:如图,∠3=∠1=50°,∵a//b,∴∠2=∠3=50°.故选:B.根据对顶角相等求出∠3,再根据两直线平行,同位角相等求解即可.本题考查了平行线的性质,对顶角相等的性质,熟记性质是解题的关键.9.【答案】A【解析】【分析】此题考查了平行线的判定,平行线的判定方法有:同位角相等两直线平行;内错角相等两直线平行;同旁内角互补两直线平行,熟练掌握平行线的判定是解本题的关键.分别利用同旁内角互补两直线平行,内错角相等两直线平行进行判断,即可得出答案.【解答】解:A、∵∠1=∠2,∴AB//CD,本选项符合题意;B、∵∠C=∠CDE,∴BC//AD,本选项不符合题意;C、∵∠3=∠4,∴BC//AD,本选项不符合题意;D、∵∠C+∠ADC=180°,∴AD//BC,本选项不符合题意.故选:A.10.【答案】C【解析】解:∵a//b,∴∠3=∠1=60°,∵∠4=90°,∠3+∠4+∠2=180°,∴∠2=30°.故选:C.由a与b平行,利用两直线平行同位角相等求出∠3的度数,再利用平角定义及∠4为直角,即可确定出所求角的度数.此题考查了平行线的判定,熟练掌握平行线的判定方法是解本题的关键.11.【答案】8【解析】解:a m+n=a m⋅a n=2×4=8,故答案为:8.因为a m和a n是同底数的幂,所以根据同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加解答即可.此题主要考查了同底数幂的乘法,此题逆用了同底数幂的乘法法则,是考试中经常出现的题目类型.12.【答案】4【解析】解:∵m+2n=2,m−2n=2,∴m2−4n2=(m+2n)(m−2n)=2×2=4.故答案为:4.原式利用平方差公式分解,把各自的值代入计算即可求出值.本题考查平方差公式,掌握平方差公式的结构特征是正确应用的前提.13.【答案】4【解析】解:∵x2−4x+k是完全平方式,∴k=22=4,故答案为:4利用完全平方公式的结构特征判断即可求出k的值.此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.14.【答案】130°【解析】【分析】本题考查了两直线平行,内错角相等,同旁内角互补的性质,以及翻折变换的性质,熟记各性质是解题的关键.据两直线平行,内错角相等求出∠3,再根据翻折的性质以及平角等于180°,求出∠1,然后根据两直线平行,同旁内角互补,列式计算即可得解.【解答】解:长方形纸片ABCD的边AD//BC,∴∠3=∠EFG=65°,根据翻折的性质,可得∠1=180°−2∠3=180°−2×65°=50°,又∵AD//BC,∴∠2=180°−∠1=180°−50°=130°.故答案为:130°.15.【答案】85【解析】解:∵3m=2,9n=32n=5,∴33m−2n=(3m)3÷32n=23÷5=85.故答案为:85.直接利用同底数幂的除法运算法则以及幂的乘方运算法则分别化简得出答案.此题主要考查了同底数幂的除法运算以及幂的乘方运算,正确将原式变形是解题关键.16.【答案】4 【解析】解:∵a−b=2∴原式=(a+b)(a−b)−4b=2(a+b)−4b=2a−2b=2(a−b)=4故答案为:4先将多项式因式分解,然后再代入求值.本题考查因式分解,涉及平方差公式,代入求值等知识.17.【答案】4或−2【解析】解:∵a2−2(k−1)ab+9b2=a2±6ab+(3b)2,∴−2(k−1)=±6,解得k=4或−2,故答案为:4或−2.先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定k的值.本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要.18.【答案】a−3b+c【解析】解:∵a,b,c为△ABC的三边,∴a−b+c>0,a+b−c>0,a−b−c<0,∴|a−b+c|−|a+b−c|−|a−b−c|=a−b+c−(a+b−c)+(a−b−c)=a−b+c−a−b+c+a−b−c=a−3b+c.故答案为:a−3b+c.直接利用三角形三边关系进而化简得出答案.此题主要考查了三角形三边关系以及绝对值的性质,正确化简绝对值是解题关键.19.【答案】①②③④【解析】【分析】本题考查了全等三角形的判定和性质,等腰三角形的性质,平行线的性质,掌握等腰三角形的性质三线合一是解题的关键.根据等腰三角形的性质三线合一得到BD=CD,AD⊥BC,故②③正确;通过△CDE≌△DBF,得到DE=DF,CE=BF,故①④正确.【解答】解:∵BF//AC,∴∠C=∠CBF,∵BC平分∠ABF,∴∠ABC=∠CBF,∴∠C=∠ABC,∴AB=AC,∵AD是△ABC的角平分线,∴BD=CD,AD⊥BC,故②③正确,在△CDE与△BDF中,{∠C=∠CBFCD=BD∠EDC=∠FDB,∴△CDE≌△BDF(ASA),∴DE=DF,CE=BF,故①正确;∵AE=2BF,∴AC=3BF,故④正确;故答案为①②③④.20.【答案】解:(1)原式=1+π−3+9=7+π.(2)原式=x2−9−(x2−4x+4)=x2−9−x2+4x−4=4x−13.【解析】(1)利用零指数幂、负整数指数幂法则,绝对值的意义计算即可得到结果;(2)根据平方差公式和完全平方公式计算即可得到结果.本题考查了实数和整式的运算,平方差公式和完全平方公式,解答本题的关键是明确它们各自的计算方法.21.【答案】解:(1)(a+3)2−(a+2)(a−1)=(a2+6a+9)−(a2−a+2a−2)=a2+6a+9−a2+a−2a+2=5a+11;(2)(15x2y−10xy2)÷5xy=3x−2y.【解析】(1)先根据完全平方公式和多项式乘以多项式法则算乘法,再合并同类项即可;(2)根据多项式除以单项式法则求出即可.本题考查了完全平方公式,多项式乘以多项式法则,多项式除以单项式法则,整式的混合运算等知识点,能正确根据知识点进行化简是解此题的关键.22.【答案】解:∵AB//CD,∠1=68°,∴∠1=∠QPA=68°.∵PM⊥EF,∴∠2+∠QPA=90°.∴∠2+68°=90°,∴∠2=22°.【解析】根据平行线的性质求得∠1=∠QPA=50°,由于∠2+∠QPA=90°,即可求得∠2的度数.本题考查了平行线的性质,熟练掌握平行线的性质是本题的关键.23.【答案】已知AD同位角相等,两直线平行∠3两直线平行,同位角相等∠2=∠3等量代换内错角相等,两直线平行【解析】解:证明:∵AD⊥BC,EF⊥BC(已知),∴∠EFB=∠ADB=90°(垂直的定义)∴EF//AD(同位角相等,两直线平行)∴∠1=∠3(两直线平行,同位角相等)又∵∠1=∠2(已知)∴∠2=∠3(等量代换)∴DG//AB(内错角相等,两直线平行)故答案为:已知;AD;同位角相等,两直线平行;∠3;两直线平行,同位角相等;∠2=∠3;等量代换;内错角相等,两直线平行;根据三角形内角和定理以及平行线的性质即可求出答案.本题考查三角形的综合问题,解题的关键是熟练运用三角形内角和定理以及平行线的性质与判定,本题属于基础题型.24.【答案】(1)证明:∵AD平分∠BAC,∴∠BAD=∠CAD;在△ADE和△ADC中,{AE=AC∠EAD=∠CAD AD=AD,∴△ADE≌△ADC(SAS);(2)解:由(1)知,△ADE≌△ADC,∴DE=DC(全等三角形的对应边相等),∴BC=BD+DC=BD+DE=4.5+3.5=8(cm).【解析】(1)根据角平分线的意义知∠BAD=∠CAD,又因为AE=AC,AD=AD,所以根据三角形的判定定理SAS易证得△AED≌△ACD;(2)利用(1)的结果,根据全等三角形的性质:对应边相等,知CD=DE,而BC=BD+DC,可求BC的长.本题考查全等三角形的判定与性质.解答此题时,充分利用了角平分线的意义.25.【答案】解:(1)由题意可知:CD=CE,∠DCE=90°,∵∠ACB=90°,∴∠ACD=∠ACB−∠DCB,∠BCE=∠DCE−∠DCB,∴∠ACD=∠BCE,在△ACD与△BCE中,{AC=BC∠ACD=∠BCE CD=CE∴△ACD≌△BCE(SAS)(2)∵∠ACB=90°,AC=BC,∴∠A=45°,由(1)可知:∠A=∠CBE=45°,AD=BE,∵AD=BF,∴BE=BF,∴∠BEF=67.5°.【解析】本题考查全等三角形的判定与性质,解题的关键是熟练运用旋转的性质以及全等三角形的判定与性质,本题属于中等题型.(1)由题意可知:CD=CE,∠DCE=90°,由于∠ACB=90°,所以∠ACD=∠ACB−∠DCB,∠BCE=∠DCE−∠DCB,所以∠ACD=∠BCE,从而可证明△ACD≌△BCE(SAS);(2)由△ACD≌△BCE(SAS)可知:∠A=∠CBE=45°,AD=BE,可得BE=BF,从而可求出∠BEF的度数.26.【答案】(1)a2−b2;(2)a−b;a+b;(a+b)(a−b);(3)(a+b)(a−b)=a2−b2;(4)(2m+n−p)(2m−n+p)=(2m)2−(n−p)2=4m2−(n2−2np+p2)=4m2−n2+2np−p2【解析】解:(1)由图可得,阴影部分的面积=a2−b2;故答案为:a2−b2;(2)由图可得,矩形的宽是a−b,长是a+b,面积是(a+b)(a−b);故答案为:a−b,a+b,(a+b)(a−b);(3)依据两图的阴影部分面积相等,可以得到乘法公式(a+b)(a−b)=a2−b2;故答案为:(a+b)(a−b)=a2−b2;(4)(2m+n−p)(2m−n+p)=(2m)2−(n−p)2=4m2−(n2−2np+p2)=4m2−n2+2np−p2.(1)由图形的面积关系即可得出结论;(2)由图形即可得到长方形的长,宽以及面积;(3)依据两图的阴影部分面积相等,可以得到乘法公式;(4)依据平方差公式以及完全平方公式,即可得到计算结果.本题考查了平方差公式的几何背景,此类题目,关键在于表示出阴影部分的面积,然后根据阴影部分面积相等求解.27.【答案】解:(1)①∵AB//CD,∴∠1=∠3,∵∠1=∠2,∠3=∠4,∴∠2=∠4=36°;②位置关系是:EM//FN.理由:由①知,∠1=∠3=∠2=∠4,∴∠MEF=∠EFN=180°−2∠1,∴∠MEF=∠EFN∴EM//FN(内错角相等,两直线平行)(2)关系是:∠EFD=2∠GEH.理由:∵EG平分∠MEF,∴∠MEG=∠GEH+∠HEF①∵EH平分∠AEM,∴∠MEG+∠GEH=∠AEF+∠HEF②由①②可得:∴∠AEF=2∠GEH,∵AB//CD,∴∠AEF=∠EFD,∴∠EFD=2∠GEH.【解析】(1)根据平行线的性质和判定解答即可;(2)利用角平分线的定义和平行线的性质解答即可.此题考查平行线的性质,关键是根据平行线的性质和判定解答.28.【答案】解:(1)∵AB=AC,∠B=30°,∴∠C=∠B=30°,∵∠BDA=100°,∠ADE=30°,∴∠EDC=180°−100°−30°=50°,∴∠DEC=180°−50°−30°=100°;(2)∵∠C=30°,∴∠CED+∠CDE=150°,∵∠ADE=30°,∴∠ADB+∠CDE=150°,∴∠CED=∠ADB,在△ABD和△DCE中,{∠ADB=∠DEC∠B=∠CAB=DC,∴△ABD≌△DCE(AAS);(3)存在,∵AB=AC,∠B=30°,∴∠BAC=120°,∵BC=6cm,点D的运动速度是1cm/s,运动时间为t(s),∴BD=t,CD=6−t,①如图1,当∠DAE=90,则∠BAD=30°,∴∠BAD=∠B=30°,∴AD=BD=t,∵∠C=30°,∴CD=2AD,即6−t=2t,∴t=2;②如图2,当∠AED=90°时,则∠DAE=60°,∴AD平分∠BAC,∴BD=CD,即t=6−t,∴t=3,综上所述,当t=2或3时,△ADE的形状是直角三角形.【解析】(1)根据等腰三角形的性质得到∠C=∠B=30°,根据已知条件得到∠EDC=180°−100°−30°=50°,于是得到∠DEC=180°−50°−30°=100°;(2)根据三角形的内角和和平角的定义得到∠CED=∠ADB根据全等三角形的判定定理即可得到结论;(3)根据三角形的内角和得到∠BAC=120°,求得BD=t,CD=6−t,①如图1,当∠DAE=90,则∠BAD=30°,根据直角三角形的性质列方程求得t的值;②如图2,当∠AED=90°时,则∠DAE=60°,根据等腰三角形的性质列方程求得t的值.本题考查了全等三角形的判定和性质,等腰三角形的性质,直角三角形的性质,三角形的内角和,正确的作出图形是解题的关键.。

成都市七中育才学校七年级上学期期末数学试题及答案

成都市七中育才学校七年级上学期期末数学试题及答案

成都市七中育才学校七年级上学期期末数学试题及答案一、选择题1.下列判断正确的是( ) A .有理数的绝对值一定是正数.B .如果两个数的绝对值相等,那么这两个数相等.C .如果一个数是正数,那么这个数的绝对值是它本身.D .如果一个数的绝对值是它本身,那么这个数是正数.2 0 2.若关于 x 的方程2k 3x 4 与 x B .10的解相同,则k 的值为( ) 10D .5A . C . 5x1 2x 1 3.对于方程 ,去分母后得到的方程是( ) 3 21 1 2x x 6 3(1 2x) 2x 3 3(1 2x)2x 6 3(1 2x)D .A . xB .C . 4.某厂准备加工 500 个零件,在加工了 100 个零件后,引进了新机器,使得每天的工作 效率是原来的两倍,结果共用了 6 天完成了任务,若设该厂原来每天加工 x 个零件,则由 题意可列出方程()100 5006 6 6 6 A .B .C .D .2x 100 500x x 2x 100 4002x 100 400x x2x5.互不相等的三个有理数 a ,b ,c 在数轴上对应的点分别为 A ,B ,C 。

若:| a b | | b c || a c |,则点 B ()A .在点 A, C 右边B .在点 A,C 左边 C .在点 A, C 之间D .以上都有可能6.已知单项式 2x y 与 3x y 的和是单项式,则 m ﹣n 的值是() 3 1+2m n +1 3 A .3B .﹣3 )C .1D .﹣1 7.计算:2.5°=( A .15′ B .25′C .150′D .250′M 5,3() 8.点在第 象限.A .第一象限B .第二象限C .第三象限D .第四象限9.若 a<b,则下列式子一定成立的是( ) a bc cA .a+c>b+cB .a -c<b -cC .ac<bcD .10.某中学进行义务劳动,去甲处劳动的有30 人,去乙处劳动的有 24 人,从乙处调一部 分人到甲处,使甲处人数是乙处人数的 2 倍,若设应从乙处调 x 人到甲处,则所列方程是 ()A .2(30+x )=24﹣x C .30﹣x =2(24+x )2x 1 B .2(30﹣x )=24+x D .30+x =2(24﹣x ) x 21 11.将方程 去分母,得( )3 44(2x 1) 3(x2) 4(2x 1) 12(x 2) A . C . B . (2x 1) 6 3(x 2) 4(2x 1) 12 3(x 2)D . 12.某商店出售两件衣服,每件卖了 200 元,其中一件赚了 25%,而另一件赔了 20%.那么商店在这次交易中( ) A .亏了 10 元钱B .赚了 10 钱C .赚了 20 元钱D .亏了 20 元钱二、填空题13.若代数式 mx +5y 2﹣2x2+3 的值与字母 x 的取值无关,则 m 的值是__.2 x3 2020x n 14.已知关于 x 的一元一次方程①与关于 y 的一元一次方程 20203y 23 2020(3y 2) n ②,若方程①的解为 x =2020,那么方程②的解为_____.202015.把四张形状大小完全相同的小长方形卡片(如图1)按两种不同的方式,不重叠地放 在一个底面为长方形(一边长为 4)的盒子底部(如图 2、图 3),盒子底面未被卡片覆盖 的部分用阴影表示.已知阴影部分均为长方形,且图2 与图 3 阴影部分周长之比为 5:6, 则盒子底部长方形的面积为_____.16. 已知线段 AB =8 cm ,在直线 AB 上画线段 BC ,使得 BC =6 cm ,则线段 AC =________cm.1 2 417.﹣30×( + )=_____.2 3 518.对于有理数 a ,b ,规定一种运算:a b a a b .如 12 1 121,则计算2 2 532=___.19.将 520000 用科学记数法表示为_____. 20.化简:2x+1﹣(x+1)=_____.21.计算 7a b﹣5ba =_____. 2 2 x a 22.已知二元一次方程 2x -3y=5 的一组解为,则 2a -3b+3=______.y b23.钟表显示 10 点 30 分时,时针与分针的夹角为________. 24.通常山的高度每升高100米,气温下降0.6C,如地面气温是4 ,那么高度是C2400米高的山上的气温是____________________.三、压轴题25.已知长方形纸片ABCD,点E在边AB上,点F、G在边CD上,连接EF、EG.将∠BEG 对折,点B落在直线EG上的点B′处,得折痕EM;将∠AEF对折,点A落在直线EF上的点A′处,得折痕EN.(1)如图1,若点F与点G重合,求∠MEN的度数;(2)如图2,若点G在点F的右侧,且∠FEG=30°,求∠MEN的度数;(3)若∠MEN=α,请直接用含α的式子表示∠FEG的大小.26.已知∠AOB=110°,∠COD=40°,OE平分∠AOC,OF平分∠BOD.(1)如图1,当OB、OC重合时,求∠AOE﹣∠BOF的值;(2)如图2,当∠COD从图1所示位置绕点O以每秒3°的速度顺时针旋转t秒(0<t<10),在旋转过程中∠AOE﹣∠BOF的值是否会因t的变化而变化?若不发生变化,请求出该定值;若发生变化,请说明理由.(3)在(2)的条件下,当∠COF=14°时,t=秒.27.如图,已知数轴上点A表示的数为8,B是数轴上位于点A左侧一点,且AB=22,动点P从A点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)出数轴上点B表示的数;点P表示的数(用含t的代数式表示)(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P、Q同时出发,问多少秒时P、Q之间的距离恰好等于2?(3)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时追上点Q?(4)若M为AP的中点,N为BP的中点,在点P运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由,若不变,请你画出图形,并求出线段MN的长.28.问题:将边长为的正三角形的三条边分别等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?探究:要研究上面的问题,我们不妨先从最简单的情形入手,进而找到一般性规律.探究一:将边长为2的正三角形的三条边分别二等分,连接各边中点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?如图①,连接边长为2的正三角形三条边的中点,从上往下看:个;边长为1的正三角形,第一层有1个,第二层有3个,共有边长为2的正三角形一共有1个.探究二:将边长为3的正三角形的三条边分别三等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?如图②,连接边长为3的正三角形三条边的对应三等分点,从上往下看:边长为1的正三个;边长为角形,第一层有1个,第二层有3个,第三层有5个,共有2的正三角形共有个.探究三:将边长为4的正三角形的三条边分别四等分(图③),连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?(仿照上述方法,写出探究过程)结论:将边长为的正三角形的三条边分别等分,连接各边对应的等分点,则该三角形中边长为 1 的正三角形和边长为 2 的正三角形分别有多少个? (仿照上述方法,写出探究过程)应用:将一个边长为 25 的正三角形的三条边分别 25 等分,连接各边对应的等分点,则该 三角形中边长为 1 的正三角形有______个和边长为 2 的正三角形有______个. 29.(1)探究:哪些特殊的角可以用一副三角板画出?在①135,②120,③75,④25中,小明同学利用一副三角板画不出来的特殊角是_________;(填序号)(2)在探究过程中,爱动脑筋的小明想起了图形的运动方式有多种.如图,他先用三角板画出了直线 EF ,然后将一副三角板拼接在一起,其中45 角(A O B)的顶点与60 角 ( 、 CO D )的顶点互相重合,且边O A O C 都在直线 EF 上.固定三角板C O D不动,将三角板 A O B 绕点O 按顺时针方向旋转一个角度 ,当边OB 与射线 止.第一次重合时停O F ①当OB 平分EO D 时,求旋转角度 ;②是否存在BOC 2AO D?若存在,求旋转角度 ;若不存在,请说明理由.30.如图,己知数轴上点 A 表示的数为 8,B 是数轴上一点,且 AB=22.动点 P 从点 A 出 发,以每秒 4 个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒. (1)写出数轴上点 B 表示的数____,点 P 表示的数____(用含 t 的代数式表示); (2)若动点 Q 从点 B 出发,以每秒 2 个单位长度的速度沿数轴向左匀速运动,若点P 、Q 同 时出发,问点 P 运动多少秒时追上点 Q?(列一元一次方程解应用题)(3)若动点 Q 从点 B 出发,以每秒 2 个单位长度的速度沿数轴向右匀速运动,若点P 、Q 同 时出发,问 秒时 P 、Q 之间的距离恰好等于 2(直接写出答案)(4)思考在点 P 的运动过程中,若 M 为 AP 的中点,N 为 PB 的中点.线段 MN 的长度是否发 生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN 的长.31.如图,已知数轴上点 A 表示的数为 8,B 是数轴上位于点 A 左侧一点,且 AB=20,动 点 P 从 A 点出发,以每秒 5 个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t > 0)秒.(1)写出数轴上点 B 表示的数______;点 P 表示的数______(用含 t 的代数式表示) (2)动点 Q 从点 B 出发,以每秒 3 个单位长度的速度沿数轴向右匀速运动,若点P 、Q 同 时出发,问多少秒时 P 、Q 之间的距离恰好等于 2?(3)动点 Q 从点 B 出发,以每秒 3 个单位长度的速度沿数轴向左匀速到家动,若点P 、Q同时出发,问点P运动多少秒时追上Q?(4)若M为AP的中点,N为BP的中点,在点P运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由,若不变,请你画出图形,并求出线段MN的长.32.从特殊到一般,类比等数学思想方法,在数学探究性学习中经常用到,如下是一个具体案例,请完善整个探究过程。

七年级上册成都市七中育才学校数学期末试卷测试卷 (word版,含解析)

七年级上册成都市七中育才学校数学期末试卷测试卷 (word版,含解析)

七年级上册成都市七中育才学校数学期末试卷测试卷(word版,含解析)一、初一数学上学期期末试卷解答题压轴题精选(难)1.已知数轴上两点A、B所表示的数分别为a和b,且满足|a+3|+(b-9)2018=0,O为原点(1)试求a和b的值(2)点C从O点出发向右运动,经过3秒后点C到A点的距离是点C到B点距离的3倍,求点C的运动速度?(3)点D以1个单位每秒的速度从点O向右运动,同时点P从点A出发以5个单位每秒的速度向左运动,点Q从点B出发,以20个单位每秒的速度向右运动.在运动过程中,M、N分别为PD、OQ的中点,问的值是否发生变化,请说明理由.【答案】(1)解:a=-3,b=9(2)解:设3秒后,点C对应的数为x则CA=|x+3|,CB=|x-9|∵CA=3CB∴|x+3|=3|x-9|=|3x-27|当x+3=3x-27,解得x=15,此时点C的速度为当x+3+3x-27=0,解得x=6,此时点C的速度为(3)解:设运动的时间为t点D对应的数为:t点P对应的数为:-3-5t点Q对应的数为:9+20t点M对应的数为:-1.5-2t点N对应的数为:4.5+10t则PQ=25t+12,OD=t,MN=12t+6∴为定值.【解析】【分析】(1)根据几个非负数之和为0,则每一个数都是0,建立关于a、b的方程,求出a、b的值,就可得出点A、B所表示的数。

(2)根据点C从O点出发向右运动,经过3秒后点C到A点的距离是点C到B点距离的3倍,可表示出CA=|x+3|,CB=|x-9|,再由CA=3CB,建立关于x的方程,求出方程的解,然后求出点C的速度即可。

(3)根据点的运动速度和方向,分别用含t的代数式表示出点D、P、Q、M、N对应的数,再分别求出PQ、OD、MN的长,然后求出的值时常量,即可得出结论。

2.已知:如图(1)∠AOB和∠COD共顶点O,OB和OD重合,OM为∠AOD的平分线,ON为∠BOC的平分线,∠AOB=α,∠COD=β.(1)如图(2),若α=90°,β=30°,求∠MON;(2)若将∠COD绕O逆时针旋转至图(3)的位置,求∠MON(用α、β表示);(3)如图(4),若α=2β,∠COD绕O逆时针旋转,转速为3°/秒,∠AOB绕O同时逆时针旋转,转速为1°/秒,(转到OC与OA共线时停止运动),且OE平分∠BOD,请判断∠COE与∠AOD的数量关系并说明理由.【答案】(1)解:∵OM为∠AOD的平分线,ON为∠BOC的平分线,α=90°,β=30°∴∠MOB=∠AOB=45°∠NOD=∠BOC=15°∴∠MON=∠MOB+∠NOD=45°+15°=60°.(2)解:设∠BOD=γ,∵∠MOD= = ,∠NOB= =∴∠MON=∠MOD+∠NOB-∠DOB= + -γ=(3)解:① 为定值,设运动时间为t秒,则∠DOB=3t-t=2t,∠DOE= ∠DOB=t,∴∠COE=β+t,∠AOD=α+2t,又∵α=2β,∴∠AOD=2β+2t=2(β+t).∴【解析】【分析】(1)根据角平分线的定义,分别求出∠MOB和∠NOD,再根据∠MON=∠MOB+∠NOD,可求出∠MON的度数。

成都七中育才学校学道分校人教版初中七年级数学上册第四章《几何图形初步》模拟检测卷(答案解析)

成都七中育才学校学道分校人教版初中七年级数学上册第四章《几何图形初步》模拟检测卷(答案解析)

一、选择题1.(0分)[ID :68638]如图,点C 是线段AB 的中点,点D 是线段CB 上任意一点,则下列表示线段关系的式子不正确的是( )A .AB=2ACB .AC+CD+DB=ABC .CD=AD-12AB D .AD=12(CD+AB ) 2.(0分)[ID :68635]已知点P 是CD 的中点,则下列等式中正确的个数是( ) ①PC CD =;②12PC CD =;③2PC PD =;④PC PD CD += A .1个B .2个C .3个D .4个3.(0分)[ID :68631]已知∠α与∠β互补,且∠α>∠β,则∠β的余角可以表示为( ) A .12α∠ B .12β∠ C .()12αβ∠-∠ D .()1+2αβ∠∠ 4.(0分)[ID :68628]如图,点O 在直线AB 上,射线OC ,OD 在直线AB 的同侧,∠AOD =40°,∠BOC =50°,OM ,ON 分别平分∠BOC 和∠AOD ,则∠MON 的度数为( )A .135°B .140°C .152°D .45°5.(0分)[ID :68616]α∠与β∠的度数分别是219m -和77m -,且α∠与β∠都是γ∠的补角,那么α∠与β∠的关系是( ). A .不互余且不相等 B .不互余但相等 C .互为余角但不相等D .互为余角且相等6.(0分)[ID :68615]将一副三角尺按不同位置摆放,摆放方式中∠α 与∠β 互余的是( ) A .B .C .D .7.(0分)[ID :68608]如图.已知//AB CD .直线EF 分别交,AB CD 于点,,E F EG 平分BEF ∠.若1 50∠=︒.则2∠的度数为( )A.50︒B.65︒C.60︒D.70︒8.(0分)[ID:68600]下列说法正确的是()A.射线PA和射线AP是同一条射线B.射线OA的长度是3cmAB CD相交于点P D.两点确定一条直线C.直线,9.(0分)[ID:68598]如果∠1与∠2互余,∠2与∠3互余,那么∠1与∠3的关系为()A.互余B.互补C.相等D.无法确定10.(0分)[ID:68591]一个小立方块的六个面分别标有字母A,B,C,D,E,F,从三个不同的方向看形如图所示,则字母D的对面是( )A.字母A B.字母F C.字母E D.字母B11.(0分)[ID:68589]已知∠AOB=40°,∠BOC=20°,则∠AOC的度数为( )A.60°B.20°C.40°D.20°或60°12.(0分)[ID:68588]体育课上,小悦在点O处进行了四次铅球试投,铅球分别落在图中的M,N,P,Q四个点处,则表示他最好成绩的点是()A.M B.N C.P D.Q13.(0分)[ID:68581]22°20′×8等于( ).A.178°20′B.178°40′C.176°16′D.178°30′14.(0分)[ID:68579]如图,图中射线、线段、直线的条数分别为()A.5,5,1 B.3,3,2C.1,3,2 D.8,4,115.(0分)[ID:68575]高速公路的建设带动我国经济的快速发展.在高速公路的建设中,通常要从大山中开挖隧道穿过,把道路取直,以缩短路程.这样做包含的数学道理是()A .两点确定一条直线B .两点之间,线段最短C .两条直线相交,只有一个交点D .直线是向两个方向无限延伸的二、填空题16.(0分)[ID :68717]如图,点C 、D 在线段AB 上,D 是线段AB 的中点,AC =13AD ,CD=4cm ,则线段AB 的长为_____cm17.(0分)[ID :68726]从起始站A 市坐火车到终点站G 市中途共停靠5次,各站点到A 市距离如下: 站点B C D E F G 到A 市距离(千米)4458051135149518252270若火车车票的价格由路程决定,则沿途总共有不同的票价____种.18.(0分)[ID :68720]植树节,只要定出两棵树的位置,就能确定这一行树所在的直线,这是因为两点确定_______条直线.19.(0分)[ID :68707]如图,点C 是线段AB 的中点,点D ,E 分别在线段AB 上,且ADDB=23,AEEB =2,则CD CE的值为____.20.(0分)[ID :68679]36.275︒=_____度______分______秒.21.(0分)[ID :68671]如图,小颖从家到超市共有4条路可走,小颖应选择第________条路才能使路程最短,用数学知识解释为________________.22.(0分)[ID :68669]如图,点C 是线段AB 上一点,点M ,N ,P 分别是线段AC ,BC ,AB 的中点.若3AC =,1CP =,则线段PN 的长为________.23.(0分)[ID :68659]如图,用边长为4cm 的正方形,做了一套七巧板,拼成如图所示的一幅图案,则图中阴影部分的面积为_____cm 2.24.(0分)[ID:68752]如图是一个正方体盒的展开图,若在其中的三个正方形A、B、C 内分别填入适当的数,使得折成正方体后相对面上的两个数互为相反数,则填入正方形中A,B,C内的三个数依次为__,___,___.25.(0分)[ID:68751]如图,点C是线段AB上一点,点M、N、P分别是线段AC,BC,AB的中点.3AC cm=,1=,线段PN=__cm.CP cm26.(0分)[ID:68749]一个直角三角形的两条直角边的长分别为3厘米和4厘米,绕它的直角边所在的直线旋转所形成几何体的体积是_____立方厘米.(结果保留π)27.(0分)[ID:68733]在9点至10点之间的某时刻,钟表的时针与分针构成的夹角是110°,则这时刻是9点__________分.三、解答题28.(0分)[ID:68832]如图,是一个几何体的表面展开图.(1)该几何体是________;A.正方体 B.长方体 C.三棱柱 D.四棱锥(2)求该几何体的体积.29.(0分)[ID:68812]如图,已知∠AOB=90°,∠EOF=60°,OE平分∠AOB,OF平分∠BOC,求∠AOC和∠COB的度数.30.(0分)[ID:68772]古时候,传说捷克的公主柳布莎曾出过这样一道有趣的题:“一只篮子中有若干李子,取它的一半又一个给第一个人,再取余下的一半又两个给第二个人,又取最后所余的一半又三个给第三个人,那么篮内的李子就没有剩余,篮中原有李子多少个?”【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.D2.C3.C4.A5.D6.C7.B8.D9.C10.D11.D12.C13.B14.D15.B二、填空题16.【分析】根据AC=ADCD=4cm求出再根据是线段的中点即可求得答案【详解】∵AC=ADCD=4cm∴∴∵是线段的中点∴∴故答案为【点睛】本题考查了线段中点的几何意义以及求线段的长根据题目中的几何语17.14【分析】画出图形后分别求出BCCDDEEFFG的大小可得AB=FGBC=DECD=EF然后根据票价是由路程决定再分别求出从ABCDEF出发的情况相加即可【详解】解:①从A分别到BCDEFG共6种18.一【分析】经过两点有且只有一条直线根据直线的性质可得答案【详解】解:植树时只要定出两棵树的位置就能确定这一行树所在的直线用数学知识解释其道理是:两点确定一条直线故答案为:一【点睛】本题考查了直线的性19.【分析】由线段中点的定义可得AC=BC=AB根据线段的和差关系及==2可得出CDCE 与AB的关系进而可得答案【详解】∵点C是线段AB的中点∴AC=BC=AB∵==2BD=AB-ADAE=AB-BE∴20.1630【解析】【分析】利用度分秒的换算1度=60分1分=60秒来计算【详解】36度16分30秒故答案为:361630【点睛】此题考查度分秒的换算解题关键在于掌握换算法则21.②两点之间线段最短【分析】结合两点之间线段最短以及图形信息即可解答本题【详解】根据题意可把家与超市看作两个点结合两点之间线段最短即可得出第②条为最短距离即数学知识为两点之间线段最短【点睛】本题考查两22.【解析】【分析】根据线段中点的性质计算即可CB的长结合图形根据线段中点的性质可得CN的长进而得出PN的长【详解】∵AP=AC+CPCP=1∴AP=3+1=4∵P为AB的中点∴AB=2AP=8∵CB=23.9【解析】【分析】先求出最小的等腰直角三角形的面积=××42=1再根据阴影部分的面积=大正方形面积减去三个等腰三角形的面积减去有关小正方形的面积即可【详解】解:阴影部分的面积=42-7×××42=124.02【分析】利用正方体及其表面展开图的特点解题【详解】解:由于只有符号不同的两个数互为相反数由正方体的展开图解题得填入正方形中内的三个数依次为102故答案为102【点睛】本题主要考查互为相反数的概念25.【分析】根据线段中点的性质计算即可CB的长结合图形根据线段中点的性质可得CN 的长进而得出PN的长【详解】解:为的中点为的中点故答案为:【点睛】本题考查了两点间的距离的计算掌握线段的中点的性质灵活运用26.或【分析】根据题意可得绕它的直角边所在的直线旋转所形成几何体是圆锥再利用圆锥的体积公式进行计算即可【详解】解:绕它的直角边所在的直线旋转所形成几何体是圆锥①当绕它的直角边为所在的直线旋转所形成几何体27.或【分析】设分针转的度数为x则时针转的度数为根据题意列方程即可得到结论【详解】解:设分针转的度数为x则时针转的度数为当时∴当时∴故答案为:或【点睛】本题考查了一元一次方程的应用----钟面角正确的理三、解答题28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.D解析:D【解析】解:A、由点C是线段AB的中点,则AB=2AC,正确,不符合题意;B、AC+CD+DB=AB,正确,不符合题意;C、由点C是线段AB的中点,则AC=12AB,CD=AD-AC=AD-12AB,正确,不符合题意;D、AD=AC+CD=12AB+CD,不正确,符合题意.故选D.2.C 解析:C根据线段中点的性质、结合图形解答即可. 【详解】 如图,∵P 是CD 中点,∴PC=PD ,12PC CD,CD=2PD ,PC+PD=CD , ∴正确的个数是①②④,共3个; 故选:C . 【点睛】本题考查的是两点间的距离的计算,掌握线段中点的概念和性质、灵活运用数形结合思想是解题的关键.3.C解析:C 【分析】首先根据∠α与∠β互补可得∠α+∠β=180°,再表示出∠β的余角90°-(180°-∠α),然后再把等式变形即可. 【详解】∵∠α与∠β互补, ∴∠α+∠β=180°, ∵∠α>∠β, ∴∠β=180°-∠α,∴∠β的余角为:90°-(180°-∠α)=∠α-90°=∠α-12(∠α+∠β)=12∠α−12∠β=12(∠α-∠β), 故选C . 【点睛】此题主要考查了余角和补角,关键是掌握余角和补角的定义.4.A解析:A 【分析】根据题意各种角的关系直接可求出题目要求的角度. 【详解】因为∠AOD =40°,∠BOC =50°,所以∠COD =90°,又因为OM ,ON 分别平分∠BOC 和∠AOD ,所以∠N OD+∠M OC =45°,则∠MON=∠N OD+∠M OC+∠COD=135°. 【点睛】本题考查了角平分线的知识,掌握角平分线的性质是解决此题的关键.5.D【分析】由α∠与β∠都是γ∠的补角可得αβ∠=∠,进而可得关于m 的方程,解方程即可求出m ,进一步即可进行判断. 【详解】解:由α∠与β∠都是γ∠的补角,得αβ∠=∠, 即21977m m -=-,解得:32m =, 所以2197745m m -=-=. 所以α∠与β∠互为余角且相等. 故选:D . 【点睛】本题考查了余角和补角以及简单的一元一次方程的解法,属于基本题型,熟练掌握上述基础知识是解题的关键.6.C解析:C 【分析】根据图形,结合互余的定义判断即可. 【详解】解:A 、∠α与∠β不互余,故本选项错误; B 、∠α与∠β不互余,故本选项错误; C 、∠α与∠β互余,故本选项正确;D 、∠α与∠β不互余,∠α和∠β互补,故本选项错误; 故选:C . 【点睛】本题考查了余角和补角的应用,掌握余角和补角的定义是解题的关键.7.B解析:B 【分析】根据平行线的性质和角平分线性质可求. 【详解】 解:∵AB ∥CD ,∴∠1+∠BEF=180°,∠2=∠BEG , ∴∠BEF=180°-50°=130°, 又∵EG 平分∠BEF ,∴∠BEG=12∠BEF=65°, ∴∠2=65°. 故选:B . 【点睛】此题考查平行线的性质,角平分线的性质,解题关键在于掌握两直线平行,内错角相等和同旁内角互补这两个性质.8.D解析:D【分析】根据直线、射线、线段的性质对各选项分析判断后利用排除法.【详解】解:A、射线PA和射线AP不是同一条射线,故本选项错误;B、射线是无限长的,故本选项错误;C、直线AB、CD可能平行,没有交点,故本选项错误;D、两点确定一条直线是正确的.故选:D.【点睛】本题主要考查了直线、射线、线段的特性,是基础题,需熟练掌握.9.C解析:C【分析】∠1和∠2互余,∠2与∠3互余,则∠1和∠3是同一个角∠2的余角,根据同角的余角相等.因而∠1=∠3.【详解】∵∠1与∠2互余,∠2与∠3互余,∴∠1+∠2=90°,∠2+∠3=90°,∴∠1=∠3,故选:C.【点睛】本题考查了余角的定义.解题的关键是掌握余角的定义,以及同角的余角相等这一性质.10.D解析:D【分析】根据与A相邻的四个面上的数字确定即可.【详解】由图可知,A相邻的四个面上的字母是B、D、E、F,所以,字母D的对面是字母B.故选:D.【点睛】本题考查了正方体相对两个面上的文字,仔细观察图形从相邻面考虑求解是解题的关键.11.D解析:D【分析】考虑两种情形①当OC 在∠AOB 内部时,∠AOC=∠AOB-∠BOC=40°-20°=20°,②当OC’在∠AOB 外部时,∠AOC’=∠AOB+∠BOC=40°+20°=60°.【详解】解:如图当OC 在∠AOB 内部时,∠AOC=∠AOB-∠BOC=40°-20°=20°,当OC’在∠AOB 外部时,∠AOC’=∠AOB+∠BOC=40°+20°=60°, 故答案为20°或60°, 故选D .【点睛】本题考查角的计算,解决本题的关键是学会正确画出图形,根据角的和差关系进行计算. 12.C解析:C【分析】根据点和圆的位置关系,知最好成绩在P 点.【详解】P 点与O 点距离最长,且在有效范围内,所以最好成绩在P 点.【点睛】考查了点和圆的位置关系.13.B解析:B【分析】根据角的换算关系即可求解.【详解】22°×8=176°,20′×8=160′=2°40′,故22°20′×8=176°+2°40′=178°40′故选B.【点睛】本题考查了角的度量单位以及单位之间的换算,掌握'160︒=,''160'=是解题的关键. 14.D解析:D【分析】直线没有端点,射线有一个端点,线段有两个端点.【详解】以A 点为端点的射线有2条,以B 为端点的射线有3条,以C 为端点的射线有2条,以D 为端点射线有1条,合计射线8条.线段:AB ,BC ,AC ,BD ,合计4条.直线:AC ,合计1条故本题 D.【点睛】直线没有端点,射线有一个端点,线段有两个端点.15.B解析:B【分析】本题为数学知识的应用,由题意将弯曲的道路改直以缩短路程,就用到两点间线段最短定理.【详解】解:弯曲的道路改直,使两点处于同一条线段上,两点之间线段最短.故选B .【点睛】本题考查了两点之间线段最短的性质,正确将数学定理应用于实际生活是解题关键.二、填空题16.【分析】根据AC=ADCD=4cm 求出再根据是线段的中点即可求得答案【详解】∵AC=ADCD=4cm ∴∴∵是线段的中点∴∴故答案为【点睛】本题考查了线段中点的几何意义以及求线段的长根据题目中的几何语解析:12【分析】根据AC =13AD ,CD=4cm ,求出AD ,再根据D 是线段AB 的中点,即可求得答案. 【详解】 ∵AC =13AD ,CD=4cm , ∴12433CD AD AC AD AD AD =-=-== ∴6AD =,∵D 是线段AB 的中点,∴212AB AD ==∴12AB cm =故答案为12【点睛】本题考查了线段中点的几何意义以及求线段的长,根据题目中的几何语言列出等式,是解题的关键.17.14【分析】画出图形后分别求出BCCDDEEFFG 的大小可得AB =FGBC =DECD =EF 然后根据票价是由路程决定再分别求出从ABCDEF 出发的情况相加即可【详解】解:①从A分别到BCDEFG共6种解析:14【分析】画出图形后分别求出BC、CD、DE、EF、FG的大小,可得AB=FG,BC=DE,CD=EF,然后根据票价是由路程决定,再分别求出从A、B、C、D、E、F出发的情况,相加即可.【详解】解:①从A分别到B、C、D、E、F、G共6种票价,如图:BC=805﹣445=360,CD=1135﹣805=330,DE=1495﹣1135=360,EF=1825﹣1495=330,FG=2270﹣1825=445,即AB=FG,BC=DE,CD=EF,②∵BC=360,BD=690,BE=1050,BF=1380,BG=1825=AF,∴从B出发的有4种票价,有BC、BD、BE、BF,4种;③∵CD=330,CE=690=BD,CF=1020,CG=1465,∴从C出发的(除去路程相同的)有3种票价,有CD,CF,CG,3种;④∵DE=360=BC,DF=690=BD,DG=1135=AD,∴从D出发的(除去路程相同的)有0种票价;⑤∵EF=330=CD,EG=775,∴从E出发的(除去路程相同的)有1种票价,有EG,1种;⑥∵FG=445=AB,∴从F出发的(除去路程相同的)有0种票价;∴6+4+3+0+1+0=14.故答案为:14.【点睛】本题考查了线段知识的实际应用,正确理解题意、不重不漏的求出所有情况是解此题的关键,这是一道比较容易出错的题目,求解时注意分类全面.18.一【分析】经过两点有且只有一条直线根据直线的性质可得答案【详解】解:植树时只要定出两棵树的位置就能确定这一行树所在的直线用数学知识解释其道理是:两点确定一条直线故答案为:一【点睛】本题考查了直线的性解析:一【分析】经过两点有且只有一条直线.根据直线的性质,可得答案.【详解】解:“植树时只要定出两棵树的位置,就能确定这一行树所在的直线”用数学知识解释其道理是:两点确定一条直线,故答案为:一.【点睛】本题考查了直线的性质,熟练掌握直线的性质是解题的关键.19.【分析】由线段中点的定义可得AC=BC=AB根据线段的和差关系及==2可得出CDCE与AB的关系进而可得答案【详解】∵点C是线段AB的中点∴AC=BC=AB∵==2BD=AB-ADAE=AB-BE∴解析:3 5【分析】由线段中点的定义可得AC=BC=12AB,根据线段的和差关系及ADDB=23,AEEB=2,可得出CD、CE与AB的关系,进而可得答案.【详解】∵点C是线段AB的中点,∴AC=BC=12AB,∵ADDB =23,AEEB=2,BD=AB-AD,AE=AB-BE,∴AD=25AB,BE=13AB,∵CD=AC-AD,CE=BC-BE,∴CD=12AB-25AB=110AB,CE=12AB-13AB=16AB,∴CDCE =11016ABAB=35,故答案为3 5【点睛】本题主要考查中点的定义及线段之间的和差关系,灵活运用线段的和、差、倍、分转化线段之间的数量关系是解题关键.20.1630【解析】【分析】利用度分秒的换算1度=60分1分=60秒来计算【详解】36度16分30秒故答案为:361630【点睛】此题考查度分秒的换算解题关键在于掌握换算法则解析:16 30【解析】【分析】利用度分秒的换算1度= 60分,1分=60秒,来计算.【详解】36.275︒=36度16分30秒故答案为:36,16,30.【点睛】此题考查度分秒的换算,解题关键在于掌握换算法则.21.②两点之间线段最短【分析】结合两点之间线段最短以及图形信息即可解答本题【详解】根据题意可把家与超市看作两个点结合两点之间线段最短即可得出第②条为最短距离即数学知识为两点之间线段最短【点睛】本题考查两解析:② 两点之间,线段最短【分析】结合“两点之间线段最短”以及图形信息即可解答本题.【详解】根据题意,可把家与超市看作两个点,结合“两点之间线段最短”即可得出第②条为最短距离,即数学知识为“两点之间线段最短”.【点睛】本题考查两点之间的最短距离,熟练掌握“两点之间线段最短”的性质是解题关键. 22.【解析】【分析】根据线段中点的性质计算即可CB的长结合图形根据线段中点的性质可得CN的长进而得出PN的长【详解】∵AP=AC+CPCP=1∴AP=3+1=4∵P为AB的中点∴AB=2AP=8∵CB=解析:3 2【解析】【分析】根据线段中点的性质计算即可CB的长,结合图形、根据线段中点的性质可得CN的长,进而得出PN的长.【详解】∵AP=AC+CP,CP=1,∴AP=3+1=4,∵P为AB的中点,∴AB=2AP=8,∵CB=AB-AC,AC=3,∴CB=5,∵N为CB的中点,∴CN=12BC=52,∴PN=CN-CP=32.故答案为32.【点睛】本题考查的是两点间的距离的计算,掌握线段的中点的性质、灵活运用数形结合思想是解题的关键.23.9【解析】【分析】先求出最小的等腰直角三角形的面积=××42=1再根据阴影部分的面积=大正方形面积减去三个等腰三角形的面积减去有关小正方形的面积即可【详解】解:阴影部分的面积=42-7×××42=1解析:9【解析】【分析】先求出最小的等腰直角三角形的面积=18×12×42=1,再根据阴影部分的面积=大正方形面积减去三个等腰三角形的面积减去有关小正方形的面积即可.【详解】解:阴影部分的面积=42-7×18×12×42=16-7=9.故答案为9.【点睛】本题考查七巧板、图形的拼剪,解题的关键是求出最小的等腰直角三角形的面积,学会利用分割法求阴影部分的面积.24.02【分析】利用正方体及其表面展开图的特点解题【详解】解:由于只有符号不同的两个数互为相反数由正方体的展开图解题得填入正方形中内的三个数依次为102故答案为102【点睛】本题主要考查互为相反数的概念解析:0 2【分析】利用正方体及其表面展开图的特点解题.【详解】解:由于只有符号不同的两个数互为相反数,由正方体的展开图解题得填入正方形中A,B,C内的三个数依次为1,0,2.故答案为1,0,2【点睛】本题主要考查互为相反数的概念,只有符号不同的两个数互为相反数.解题时勿忘记正方体展开图的各种情形.25.【分析】根据线段中点的性质计算即可CB的长结合图形根据线段中点的性质可得CN的长进而得出PN的长【详解】解:为的中点为的中点故答案为:【点睛】本题考查了两点间的距离的计算掌握线段的中点的性质灵活运用解析:32 【分析】根据线段中点的性质计算即可CB 的长,结合图形、根据线段中点的性质可得CN 的长,进而得出PN 的长.【详解】解:AP AC CP =+,1CP cm =,314AP cm ∴=+=,P 为AB 的中点,28AB AP cm ∴==, CB AB AC =-,3AC cm =,5CB cm ∴=,N 为CB 的中点,1522CN BC cm ∴==, 32PN CN CP cm ∴=-=. 故答案为:32.【点睛】本题考查了两点间的距离的计算,掌握线段的中点的性质、灵活运用数形结合思想是解题的关键.26.或【分析】根据题意可得绕它的直角边所在的直线旋转所形成几何体是圆锥再利用圆锥的体积公式进行计算即可【详解】解:绕它的直角边所在的直线旋转所形成几何体是圆锥①当绕它的直角边为所在的直线旋转所形成几何体 解析:12π或16π【分析】根据题意可得绕它的直角边所在的直线旋转所形成几何体是圆锥,再利用圆锥的体积公式进行计算即可.【详解】解:绕它的直角边所在的直线旋转所形成几何体是圆锥,①当绕它的直角边为3cm 所在的直线旋转所形成几何体的的体积是:2134123ππ⨯⨯=, ②当绕它的直角边为4cm 所在的直线旋转所形成几何体的的体积是:2143163ππ⨯⨯=, 故答案为:12π或16π.【点睛】此题主要考查了点、线、面、体,关键是掌握圆锥的体积公式,注意分类讨论.27.或【分析】设分针转的度数为x 则时针转的度数为根据题意列方程即可得到结论【详解】解:设分针转的度数为x 则时针转的度数为当时∴当时∴故答案为:或【点睛】本题考查了一元一次方程的应用----钟面角正确的理 解析:4011或32011 【分析】 设分针转的度数为x ,则时针转的度数为12x ,根据题意列方程即可得到结论. 【详解】解:设分针转的度数为x ,则时针转的度数为12x , 当9011012x x ︒︒+-=时,24011x ︒=, ∴2404061111︒︒÷= 当()9018011012x x ︒︒︒+--=时,192011x ︒⎛⎫= ⎪⎝⎭ ∴192032061111÷= 故答案为:4011或32011 【点睛】 本题考查了一元一次方程的应用----钟面角,正确的理解题意是解题的关键.三、解答题28.(1)C ;(2)4【分析】(1)本题根据展开图可直接得出答案.(2)本题根据体积等于底面积乘高求解即可.【详解】(1)本题可根据展开图中两个全等的等腰直角三角形,以此判定该几何体为三棱柱,故选C .(2)由图已知:该几何体底面积为等腰三角形面积12222=⨯⨯=;该几何体的高为2; 故该几何体体积=底面积⨯高=22=4⨯.【点睛】本题考查几何体展开图以及体积求法,根据展开图推测几何体时需要以展开图的特征位置作为推测依据,求解体积或者面积时按照公式求解即可.29.120°,30°【分析】先根据角平分线,求得∠BOE 的度数,再根据角的和差关系,求得BOF ∠的度数,最后根据角平分线,求得BOC ∠、AOC ∠的度数.【详解】∵OE 平分∠AOB ,∠AOB=90°∴∠BOE=∠AOB =45°又∵∠EOF=60°∴∠BOF=∠EOF -∠BOE= 15°又∵OF 平分∠BOC∴∠BOC=2∠BOF=30°∴∠AOC=∠AOB +∠BOC=120°故∠AOC=120°,∠COB=30°.【点睛】本题主要考查了角平分线的定义,根据角的和差关系进行计算是解题的关键.注意:也可以根据AOC ∠的度数是EOF ∠度数的2倍进行求解.30.34个【分析】在最后一次送了一半加三个,篮子的李子没有剩余,可以知道最后一次的一半就是三个,所以上一次剩余6个,6个加上送的2个合计8个,为第二次的一半,可以知道第一次送出后还有16个,16在加上第一次送的1个为17个,所以最初一共有34个.【详解】用逆推法:解: ()32221234⎡⎤⨯+⨯+⨯=⎣⎦(个)【点睛】送出一半又3个的时候,剩余为0,直接可以知道一半就是3个.。

四川省成都市七年级上学期数学期中考试试卷

四川省成都市七年级上学期数学期中考试试卷

四川省成都市七年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分) (2017七上·洱源期中) 若规定[a]表示不超过a的最大整数,例如[4.3]=4,若m=[π],n=[﹣2.1],则在此规定下[m+ n]的值为()A . ﹣3B . ﹣2C . ﹣1D . 02. (2分)﹣2的相反数是()A . -B .C . 2D . ±23. (2分) (2019七上·沭阳期末) 下列说法正确的是()A . 最小的正整数是1B . 一个数的相反数一定比它本身小C . 绝对值等于它本身的数一定是正数D . 一个数的绝对值一定比0大4. (2分)某天股票A开盘价为12元,上午12:00跌1.0元,下午收盘时又涨了0.2元,则股票A的收盘价是()A . 0.2元B . 9.8元C . 11.2元D . 12元5. (2分)-4的倒数的相反数是()A . -4B . 4C . -D .6. (2分)如果n是正整数,那么n[1﹣(﹣1)n]的值()A . 一定是零B . 一定是偶数C . 一定是奇数D . 是零或偶数7. (2分)(2016·广州) 据统计,2015年广州地铁日均客运量均为6 590 000人次,将6 590 000用科学记数法表示为()A . 6.59×104B . 659×104C . 65.9×105D . 6.59×1068. (2分)下列各组数中,互为相反数的是()A . -2和2B . 2和2C . 3和D . 3和|-3|9. (2分)已知a,b互为倒数,|c﹣1|=2,则abc的值为()A . ﹣1或3B . ﹣1C . 3D . ±210. (2分)对任意实数y,多项式2y2-10y+15的值是一个()A . 负数B . 非负数C . 正数D . 无法确定正负11. (2分)若|a|+|b|=0,则a与b的大小关系是()A . a=b=0B . a与b互为相反数C . a与b异号D . a与b不相等12. (2分) |-2|的绝对值的相反数是()A . -2B . 2C . -3D . 3二、填空题 (共6题;共8分)13. (2分)若把每月生300个零件记作0个,则二月份生产了340个零件记作________个,四月份生了280个零件记作________个;14. (1分)小丁期中考试考了a分,之后他继续努力,期末考试比期中考试提高了b%,则小丁期末考试考了________分.15. (2分) (2018七上·嘉兴期中) 绝对值小于10的所有整数的和为 ________,积为 ________.16. (1分) (2015七上·和平期末) 若a,b互为相反数,c,d互为倒数,m的绝对值为2,则的值为________.17. (1分) (2017七上·武清期末) 用四舍五入法,把5.395精确到百分位的结果是________.18. (1分)观察式子,,,……由此可知+……+=________。

七年级(上)期中数学试卷(解析版)

七年级(上)期中数学试卷(解析版)

2016-2017学年四川省XX中学七年级(上)期中数学试卷一、选择题(本大题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.﹣3的倒数是()A.3 B.C.﹣ D.﹣32.互为相反数的两个数的和为()A.0 B.﹣1 C.1 D.23.下列算式中,结果为正数的是()A.﹣2×5 B.﹣6÷(﹣2)C.0×(﹣1)D.5÷(﹣2)4.下列关于“﹣1”的说法中,错误的是()A.﹣1的相反数是1 B.﹣1是最大的负整数C.﹣1的绝对值是1 D.﹣1是最小的负整数5.下列计算正确的是()A.﹣3÷3×3=﹣3 B.﹣3﹣3=0 C.﹣3﹣(﹣3)=﹣6 D.﹣3÷3÷3=﹣3 6.用四舍五入法对3.8963取近似数,精确到0.01,得到的正确结果是()A.3.89 B.3.9 C.3.90 D.3.8967.以下选项中比小的数是()A.2 B.C.D.8.下列说法正确的是()A.带正号的数是正数,带负号的数是负数B.若|a|=a,则a一定是非负数C.一个数的相反数,不是正数,就是负数D.零除以任何数都等于零9.我国第一艘航母最大排水量为67500吨,用科学记数法表示这个数字是()A.6.75×104吨 B.67.5×103吨 C.6.75×103吨 D.6.75×105吨10.如图,数轴上点P对应的数为p,则数轴上与数﹣对应的点是()A.点A B.点B C.点C D.点D11.定义运算a⊗b=a(1﹣b),下面给出的关于这种运算的结论中正确的是()A.2⊗(﹣2)=﹣4 B.a⊗b=b⊗aC.若a⊗b=0,则a=0 D.(﹣2)⊗2=212.已知“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1=24,…,若公式C n m=(n>m),则C125+C126=()A.B.C.D.二、填空题(本大题共4小题,每小题4分,共16分.请将最后答案直接写在相应题中的横线上.)13.计算:2﹣2×(﹣3)=.14.用四舍五入法取下列各数的近似数(1)0.632 8(精确到0.1)≈;(2)47 155(精确到百位)≈.15.如果|a﹣1|+(b+2)2=0,则(a+b)2017的值是为.16.定义:a是不为1的有理数,我们把称为a的差倒数.如:2的差倒数是=﹣1,﹣1的差倒数是=.已知a1=﹣,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数,…,依此类推a n是a n的差倒数,请你直接写出+1a2016=.三、解答题(本大题共6小题,共56分)17.把下列各数填在相应的大括号里:﹣3,0.2,0,﹣|+|,﹣5%,﹣,|﹣9|,﹣(﹣1),﹣23,+3(1)正数集合:{ …};(2)整数集合:{ …};(3)负数集合:{ …}.18.计算下列各题(1)(﹣3)+(﹣4)﹣(+11)﹣(﹣19)(2)10+2÷×(﹣2)(3)10+8×(﹣)2﹣2÷.19.一辆货车为一家商场的仓库运货,仓库在记录进出货物时把运进记作正数,运出记作负数下午记录如下(单位:吨):5.5,﹣4.6,﹣5.3,5.4,﹣3.4,4.8,﹣3(1)仓库上午存货物60吨,下午运完货物后存货多少吨?(2)如果货车的运费为每吨10元,那么下午货车共得运费多少元?20.根据下面给出的数轴,解答下面的问题:(1)请你根据图中A,B两点的位置,分别写出它们所表示的有理数.(2)请问A,B两点之间的距离是多少?(3)在数轴上画出与点A的距离为2的点(用不同于A,B的其它字母表示),并写出这些点表示的数.21.数学老师布置了一道思考题:“计算(﹣)÷(﹣+﹣)”,小红和小明两位同学经过仔细思考,用不同的方法解答了这个问题.小红的解法:原式的倒数为(﹣+﹣)÷(﹣)=(﹣+﹣)×(﹣30)=﹣20+3﹣5+12=﹣10.所以(﹣)÷(﹣+﹣)=﹣.小明的解法:原式=(﹣)÷[(+)﹣(+)]=(﹣)÷(﹣)=﹣×3=﹣.请你分别用小红和小明的方法计算:(﹣)÷(﹣+﹣).22.(1)比较下列各式的大小:①|﹣2|+|3|与|﹣2+3|;②|﹣2|+|﹣3|与|﹣2﹣3|;③|﹣2|+|0|与|﹣2+0|;(2)请你由(1)归纳总结出|a|+|b|与|a+b|(a、b为有理数)的大小关系,并用文字语言叙述此关系;(3)根据(2)中的结论,求当|x|+2016=|x﹣2016|时,x的取值范围.2016-2017学年四川省内江市资中县七年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.﹣3的倒数是()A.3 B.C.﹣ D.﹣3【考点】倒数.【分析】利用倒数的定义,直接得出结果.【解答】解:∵﹣3×(﹣)=1,∴﹣3的倒数是﹣.故选:C.2.互为相反数的两个数的和为()A.0 B.﹣1 C.1 D.2【考点】相反数.【分析】直接利用相反数的定义分析得出答案.【解答】解:互为相反数的两个数的和为:0.故选:A.3.下列算式中,结果为正数的是()A.﹣2×5 B.﹣6÷(﹣2)C.0×(﹣1)D.5÷(﹣2)【考点】有理数的除法;正数和负数;有理数的乘法.【分析】本题根据有理数乘除法法则分别进行计算,再用排除法即可求出答案.【解答】解:A、﹣2×5=﹣10,故本选项错误;B、﹣6÷(﹣2)=3,故本选项正确;C、0×(﹣1)=0,故本选项错误;D、5÷(﹣2)=﹣2.5,故本选项错误.故选B.4.下列关于“﹣1”的说法中,错误的是()A.﹣1的相反数是1 B.﹣1是最大的负整数C.﹣1的绝对值是1 D.﹣1是最小的负整数【考点】有理数;相反数;绝对值.【分析】根据有理数的概念,绝对值的意义,相反数的定义判断即可.【解答】解:A、﹣1的相反数是1,正确;B、﹣1是最大的负整数,正确;C、﹣1的绝对值是1,正确;D、﹣1是最小的负整数,错误,故选D.5.下列计算正确的是()A.﹣3÷3×3=﹣3 B.﹣3﹣3=0 C.﹣3﹣(﹣3)=﹣6 D.﹣3÷3÷3=﹣3【考点】有理数的混合运算.【分析】A、原式从左到右依次计算即可得到结果,即可作出判断;B、原式利用减法法则计算得到结果,即可作出判断;C、原式利用减法法则计算得到结果,即可作出判断;D、原式从左到右依次计算得到结果,即可作出判断.【解答】解:A、原式=﹣1×3=﹣3,正确;B、原式=﹣6,错误;C、原式=﹣3+3=0,错误;D、原式=﹣1÷3=﹣,错误,故选A6.用四舍五入法对3.8963取近似数,精确到0.01,得到的正确结果是()A.3.89 B.3.9 C.3.90 D.3.896【考点】近似数和有效数字.【分析】对一个数精确到哪一位就是对这一位后面的数字进行四舍五入.【解答】解:用四舍五入法对3.8963取近似数,精确到0.01,得到的正确结果是3.90;故选C.7.以下选项中比小的数是()A.2 B.C.D.【考点】有理数大小比较;绝对值.【分析】先求出|﹣|的值,再根据有理数的大小比较法则比较即可.【解答】解:∵|﹣|=,A、2>,故本选项错误;B、>,故本选项错误;C、=,故本选项错误;D、﹣<,故本选项正确.故选D.8.下列说法正确的是()A.带正号的数是正数,带负号的数是负数B.若|a|=a,则a一定是非负数C.一个数的相反数,不是正数,就是负数D.零除以任何数都等于零【考点】有理数的除法;正数和负数;相反数;绝对值.【分析】根据正负数、绝对值以及相反数进行选择即可.【解答】解:A、带正号的数是正数,带负号的数是负数,如﹣(﹣2)=2,故A 错误;B、若|a|=a,则a一定是非负数,故B正确;C、一个数的相反数,不是正数,就是负数,0的相反数还是0,既不是正数也不是负数,故C错误;D、零除以任何不为0的数都等于零,故D错误;故选B.9.我国第一艘航母最大排水量为67500吨,用科学记数法表示这个数字是()A.6.75×104吨 B.67.5×103吨 C.6.75×103吨 D.6.75×105吨【考点】科学记数法—表示较大的数.【分析】用科学记数法表示,科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:67500=6.75×104,故选A.10.如图,数轴上点P对应的数为p,则数轴上与数﹣对应的点是()A.点A B.点B C.点C D.点D【考点】数轴.【分析】根据图示得到点P所表示的数,然后求得﹣的值即可.【解答】解:如图所示,1<p<2,则<<1,所以﹣1<﹣<﹣.则数轴上与数﹣对应的点是C.故选:C.11.定义运算a⊗b=a(1﹣b),下面给出的关于这种运算的结论中正确的是()A.2⊗(﹣2)=﹣4 B.a⊗b=b⊗aC.若a⊗b=0,则a=0 D.(﹣2)⊗2=2【考点】有理数的混合运算.【分析】利用已知的新定义判断即可确定出结果.【解答】解:A、根据题中的新定义得:原式=2×[1﹣(﹣2)]=2×3=6,不符合题意;B、根据题中的新定义得:a⊗b=a(1﹣b),b⊗a=b(1﹣a),a⊗b不一定等于b⊗a,不符合题意;C、根据题中的新定义得:a⊗b=a(1﹣b)=0,可得a=0或b=1,不符合题意;D、根据题中的新定义得:(﹣2)⊗2=﹣2×(1﹣2)=2,符合题意,故选D12.已知“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1=24,…,若公式C n m=(n>m),则C125+C126=()A.B.C.D.【考点】规律型:数字的变化类.【分析】根据公式C n m=(n>m),表示出C125与C126,然后通分整理计算即可.【解答】解:根据C n m=(n>m),可得:C125+C126=+=+===.故选:B.二、填空题(本大题共4小题,每小题4分,共16分.请将最后答案直接写在相应题中的横线上.)13.计算:2﹣2×(﹣3)=8.【考点】有理数的乘法;有理数的减法.【分析】先算乘法,再算加法即可,【解答】解:2﹣2×(﹣3)=2+6=8,故答案为:8.14.用四舍五入法取下列各数的近似数(1)0.632 8(精确到0.1)≈0.6;(2)47 155(精确到百位)≈ 4.71×103.【考点】近似数和有效数字.【分析】根据题目中的要求,由四舍五入法可以解答本题.【解答】解:(1)0.632 8(精确到0.1)≈0.6,(2)47 155(精确到百位)≈4.71×103,故答案为:0.6,4.71×103.15.如果|a﹣1|+(b+2)2=0,则(a+b)2017的值是为﹣1.【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】根据非负数的性质求出a、b的值,根据乘方法则计算即可.【解答】解:由题意得,a﹣1=0,b+2=0,解得,a=1,b=﹣2,则(a+b)2017=﹣1,故答案为:﹣1.16.定义:a是不为1的有理数,我们把称为a的差倒数.如:2的差倒数是=﹣1,﹣1的差倒数是=.已知a1=﹣,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数,…,依此类推a n是a n的差倒数,请你直接写出+1a2016=4.【考点】规律型:数字的变化类;倒数.【分析】求出数列的前4项,继而得出数列的循环周期,然后求解可得.【解答】解:∵a1=﹣,a2===,a3===4,a4===﹣,…,∴这列数每3个数为一周期循环,∵2016÷3=672,∴a2016=a3=4.故答案为:4.三、解答题(本大题共6小题,共56分)17.把下列各数填在相应的大括号里:﹣3,0.2,0,﹣|+|,﹣5%,﹣,|﹣9|,﹣(﹣1),﹣23,+3(1)正数集合:{ 0.2,|﹣9|,﹣(﹣1),+3…};(2)整数集合:{ 0,|﹣9|,﹣(﹣1),﹣23…};(3)负数集合:{ ﹣3,﹣|+|,﹣5%,﹣,﹣23…}.【考点】有理数;绝对值.【分析】根据有理数的分类及整数、正分数、负有理数的定义即可判定.【解答】解:(1)正数集合:{0.2,|﹣9|,﹣(﹣1),+3…};(2)整数集合:{0,|﹣9|,﹣(﹣1),﹣23…};(3)负数集合:{﹣3,﹣|+|,﹣5%,﹣,﹣23…}.故答案为:0.2,|﹣9|,﹣(﹣1),+3,0,|﹣9|,﹣(﹣1),﹣23,:﹣3,﹣|+|,﹣5%,﹣,﹣23.18.计算下列各题(1)(﹣3)+(﹣4)﹣(+11)﹣(﹣19)(2)10+2÷×(﹣2)(3)10+8×(﹣)2﹣2÷.【考点】有理数的混合运算.【分析】(1)从左向右依次计算即可.(2)首先计算除法、乘法,然后计算加法即可.(3)首先计算乘方,然后计算乘法、除法,最后从左向右依次计算即可.【解答】解:(1)(﹣3)+(﹣4)﹣(+11)﹣(﹣19)=﹣7﹣11+19=1(2)10+2÷×(﹣2)=10+6×(﹣2)=10﹣12=﹣2(3)10+8×(﹣)2﹣2÷=10+8×﹣10=10+2﹣10=219.一辆货车为一家商场的仓库运货,仓库在记录进出货物时把运进记作正数,运出记作负数下午记录如下(单位:吨):5.5,﹣4.6,﹣5.3,5.4,﹣3.4,4.8,﹣3(1)仓库上午存货物60吨,下午运完货物后存货多少吨?(2)如果货车的运费为每吨10元,那么下午货车共得运费多少元?【考点】有理数的混合运算;正数和负数.【分析】(1)将各数据相加即可得到结果;(2)将各数据的绝对值相加得到结果,乘以10即可得到最后结果.【解答】解:(1)60+5.5﹣4.6﹣5.3+5.4﹣3.4+4.8﹣3=65.5﹣4.6﹣5.3+5.4﹣3.4+4.8﹣3=59.4(吨),则下午运完货物后存货59.4吨;(2)(5.5+4.6+5.3+5.4+3.4+4.8+3)×10=32×10=320(元),则下午货车共得运费320元.20.根据下面给出的数轴,解答下面的问题:(1)请你根据图中A,B两点的位置,分别写出它们所表示的有理数.(2)请问A,B两点之间的距离是多少?(3)在数轴上画出与点A的距离为2的点(用不同于A,B的其它字母表示),并写出这些点表示的数.【考点】数轴.【分析】(1)读出数轴上的点表示的数值即可;(2)两点的距离,即两点表示的数的绝对值之和;(3)与点A的距离为2的点有两个,一个向左,一个向右.【解答】解:(1)根据所给图形可知A:1,B:﹣2.5;(2)依题意得:AB之间的距离为:1+2.5=3.5;(3)设这两点为C、D,则这两点为C:1﹣2=﹣1,D:1+2=3.21.数学老师布置了一道思考题:“计算(﹣)÷(﹣+﹣)”,小红和小明两位同学经过仔细思考,用不同的方法解答了这个问题.小红的解法:原式的倒数为(﹣+﹣)÷(﹣)=(﹣+﹣)×(﹣30)=﹣20+3﹣5+12=﹣10.所以(﹣)÷(﹣+﹣)=﹣.小明的解法:原式=(﹣)÷[(+)﹣(+)]=(﹣)÷(﹣)=﹣×3=﹣.请你分别用小红和小明的方法计算:(﹣)÷(﹣+﹣).【考点】有理数的混合运算;倒数.【分析】原式分别利用小红与小明的解法计算即可.【解答】解:法1:原式的倒数为(﹣+﹣)÷(﹣)=(﹣+﹣)×(﹣42)=﹣7+9﹣28+12=﹣35+21=﹣14,∴(﹣)÷(﹣+﹣)=﹣;法2:原式=(﹣)÷[(+)﹣(+)]=﹣÷(﹣)=﹣÷=﹣×3=﹣.22.(1)比较下列各式的大小:①|﹣2|+|3|与|﹣2+3|;②|﹣2|+|﹣3|与|﹣2﹣3|;③|﹣2|+|0|与|﹣2+0|;(2)请你由(1)归纳总结出|a|+|b|与|a+b|(a、b为有理数)的大小关系,并用文字语言叙述此关系;(3)根据(2)中的结论,求当|x|+2016=|x﹣2016|时,x的取值范围.【考点】有理数的加减混合运算;绝对值.【分析】(1)根据绝对值的定义去绝对值即可求解,(2)根据(1)中规律即可总结出答案,(3)根据(2)中结论即可得出答案.【解答】解:(1)∵①|﹣2|+|3|=5,|﹣2+3|=1,∴|﹣2|+|3|>|﹣2+3|,∵②|﹣2|+|﹣3|=5,|(﹣2)+(﹣3)|=5,∴|﹣2|+|﹣3|=|﹣2﹣3|,∵③|0|+|﹣2|=2,|﹣2+0|=2,∴|﹣2|+|0|=|﹣2+0|;故答案为>,=,=,(2)根据(1)中规律可得出:|a|+|b|≥|a+b|,(3)∵|﹣2016|=2016,∴|x|+2016=|x|+|﹣2016|=|x+(﹣2016)|=|x﹣2016|,∴x≤0,即:当|x|+2016=|x﹣2016|时,x≤0.2017年5月17日。

2016-2017学年七年级(上)期中数学试卷及答案解析

2016-2017学年七年级(上)期中数学试卷及答案解析

2016-2017学年七年级(上)期中数学试卷一、选择题1.﹣3的相反数是()A. B.3 C.± D.﹣32.图中不是正方体的展开图的是()A.B.C. D.3.下列说法正确的是()A.x不是单项式B.0不是单项式C.﹣x的系数是﹣1 D.是单项式4.在﹣(﹣2),﹣|﹣7|,﹣12001×0,﹣(﹣1)3,,﹣24中,非正数有()A.1个 B.2个 C.3个 D.4个5.已知代数式x+2y的值是5,则代数式2x+4y+1的值是() A.6 B.7 C.11 D.126.把小正方体的6个面分别涂上六种不同的颜色,并画上朵数不等的花,各面上的颜色和花的朵数情况如表:现将上述大小相等、颜色花朵分布完全一样的四个立方体拼成一个水平放置的长方体(如图),那么长方体下底面有()朵花.颜色红黄蓝白紫绿花的朵数 1 2 3 4 5 6A .15B .16C .21D .17 二、填空题7.计算:(﹣1)2015+(﹣1)2016= . 8.若3a 2bc m 为七次单项式,则m 的值为 .9.如图,用火柴棍拼成一排由三角形组成的图形,如果图形中含有n 个三角形,则需要 根火柴棍.10.一个边长为1的正方形,第一次截去正方形的一半,第二次截去剩下的一半,如此截下去,第六次后剩下的面积为 米.. 11.截至2013年3月底,某市人口总数已达到4 230 000人.将4 230 000用科学记数法表示为 .12.如果3x 2n ﹣1y m 与﹣5x m y 3是同类项,则m= ,n= .13.已知a 1=; a 2=; a 3=; a 4=…那么a 2016= .14.如果(x+1)2=a 0x 4+a 1x 3+a 2x 2+a 3x+a 4(a 0,a 1,a 2,a 3,a 4都是有理数)那么a 04+a 13+a 22+a 3+a 4;a 04﹣a 13+a 22﹣a 3+a 4;a 04+a 22+a 4的值分别是 ; ; .三、解答题15.(5分)从正面、左面、上面观察如图所示的几何体,分别画出你所看到的几何体的形状图.16.(5分)由数轴回答下列问题(1)A,B,C,D,E各表示什么数?(2)用“<”把这些数连接起来.17.(12分)计算.(1)(﹣7)﹣(+5)+(﹣4)﹣(﹣10);(2)﹣1+5÷(﹣)×(﹣4)(3)÷(﹣+﹣)(4)(﹣3)2﹣(1﹣)÷(﹣)×[4﹣(﹣42)].18.(8分)先化简,再求值:已知2(﹣3xy+x2)﹣[2x2﹣3(5xy﹣2x2)﹣xy],其中x,y满足|x+2|+(y﹣3)2=0.19.(8分)某工艺厂计划一周生产工艺品2100个,平均每天生产300个,但实际每天生产量与计划相比有出入.下表是某周的生产情况(超产记为正、减产记为负):星期一二三四五六日+5 ﹣2 ﹣5 +15 ﹣10 +16 ﹣9增减(单位:个)(1)写出该厂星期一生产工艺品的数量;(2)本周产量中最多的一天比最少的一天多生产多少个工艺品?(3)请求出该工艺厂在本周实际生产工艺品的数量.20.(8分)若“△”表示一种新运算,规定a△b=a×b﹣(a+b),请计算下列各式的值:(1)﹣3△5;(2)2△[(﹣4)△(﹣5)].21.(9分)我们发现了一种“乘法就是减法”的非常有趣的运算:①1×=1﹣:②2×=2﹣;③3×=3﹣;…(1)请直接写出第4个等式是;(2)试用n(n为自然数,n≥1)来表示第n个等式所反映的规律是;(3)请说明(2)中猜想的结论是正确的.22.(9分)小红做一道数学题“两个多项式A、B,B为4x2﹣5x﹣6,试求A+B的值”.小红误将A+B看成A﹣B,结果答案(计算正确)为﹣7x2+10x+12.(1)试求A+B的正确结果;(2)求出当x=3时A+B的值.23.(10分)某公司在甲、乙两座仓库分别有农用车12辆和6辆,现需要调往A县10辆,调往B县8辆.已知从甲仓库调运一辆农用车到A县和B县的运费分别为40元和80元,从乙仓库调运一辆农用车到A县和B县的运费分别为30元和50元.设从甲仓库调往A 县农用车x辆.(1)甲仓库调往B县农用车辆,乙仓库调往A县农用车辆.(用含x的代数式表示)(2)写出公司从甲、乙两座仓库调往农用车到A、B两县所需要的总运费.(用含x的代数式表示)(3)在(2)的基础上,求当从甲仓库调往A县农用车4辆时,总运费是多少?24.(12分)如图:在数轴上A点表示数a,B点示数b,C点表示数c,b是最小的正整数,且a、b满足|a+2|+(c﹣7)2=0.(1)a= ,b= ,c= ;(2)若将数轴折叠,使得A点与C点重合,则点B与数表示的点重合;(3)点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC.则AB= ,AC= ,BC= .(用含t的代数式表示)(4)请问:3BC﹣2AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.参考答案与试题解析一、选择题1.﹣3的相反数是()A.B.3 C.± D.﹣3【考点】相反数.【分析】根据只有符号不同的两数叫做互为相反数解答.【解答】解:﹣3的相反数是3.故选B.【点评】本题考查了相反数的定义,是基础题,熟记概念是解题的关键.2.图中不是正方体的展开图的是()A.B.C.D.【考点】几何体的展开图.【分析】由平面图形的折叠及正方体的展开图解题:正方体的每一个面都有对面,可得答案.【解答】解:由正方体的表面展开图的特点可知,只有A,C,D这三个图形,经过折叠后能围成正方体.故选B.【点评】本题考查了几何体的展开图,只要有“田”字格的展开图都不是正方体的表面展开图.3.下列说法正确的是()A.x不是单项式B.0不是单项式C.﹣x的系数是﹣1 D.是单项式【考点】单项式.【分析】根据单项式及单项式的次数的定义即可解答.【解答】解:A、根据单项式的定义可知,x是单项式,故本选项不符合题意;B、根据单项式的定义可知,0是单项式,故本选项不符合题意;C、根据单项式的系数的定义可知,﹣x的系数是﹣1,故本选项符合题意;D、根据单项式的定义可知,不是单项式,故本选项不符合题意.故选C.【点评】本题考查了单项式及单项式的次数的定义,比较简单.单项式的系数的定义:单项式中的数字因数叫做单项式的系数.4.在﹣(﹣2),﹣|﹣7|,﹣12001×0,﹣(﹣1)3,,﹣24中,非正数有()A.1个B.2个C.3个D.4个【考点】有理数.【分析】根据小于或等于零的数是非正数,可得答案.【解答】解:﹣(﹣2)=2>0,﹣|﹣7|=﹣7<0,﹣12001×0=0,﹣(﹣1)3=1>0,=﹣<0,﹣24=﹣16<0,故选:D.【点评】本题考查了有理数,小于或等于零的数是非正数,化简各数是解题关键.5.已知代数式x+2y的值是5,则代数式2x+4y+1的值是()A.6 B.7 C.11 D.12【考点】代数式求值.【分析】根据题意得出x+2y=5,将所求式子前两项提取2变形后,把x+2y=5代入计算即可求出值.【解答】解:∵x+2y=5,∴2x+4y=10,则2x+4y+1=10+1=11.故选C【点评】此题考查了代数式求值,利用了整体代入的思想,是一道基本题型.6.把小正方体的6个面分别涂上六种不同的颜色,并画上朵数不等的花,各面上的颜色和花的朵数情况如表:现将上述大小相等、颜色花朵分布完全一样的四个立方体拼成一个水平放置的长方体(如图),那么长方体下底面有()朵花.颜色红黄蓝白紫绿花的朵数 1 2 3 4 5 6A.15 B.16 C.21 D.17【考点】专题:正方体相对两个面上的文字.【分析】由图中显示的规律,可分别求出,右边正方体的下边为白色,左边为绿色,后面为紫色,按此规律,可依次得出右二的立方体的下侧为绿色,右三的为黄色,左一的为紫色,即可求出下底面的花朵数.【解答】解:由题意可得,右二的立方体的下侧为绿色,右三的为黄色,左一的为紫色,那么长方体的下底面共有花数4+6+2+5=17朵.故选D.【点评】注意正方体的空间图形,从相对面入手,分析及解答问题.二、填空题7.计算:(﹣1)2015+(﹣1)2016= 0 .【考点】有理数的乘方.【分析】根据有理数乘法的符号法则计算,再根据有理数的加法计算即可.【解答】解:原式=﹣1+1=0.故答案为:0.【点评】本题主要考查了有理数的乘法,熟练掌握幂的运算符号的性质是解决此题的关键.8.若3a2bc m为七次单项式,则m的值为 4 .【考点】多项式.【分析】单项式3a2bc m为七次单项式,即是字母的指数和为7,列方程求m的值.【解答】解:依题意,得2+1+m=7,解得m=4.故答案为:4.【点评】单项式的次数是指各字母的指数和,字母指数为1时,省去不写.9.如图,用火柴棍拼成一排由三角形组成的图形,如果图形中含有n个三角形,则需要2n+1 根火柴棍.【考点】规律型:图形的变化类.【分析】对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.【解答】解:因为第一个三角形需要三根火柴棍,再每增加一个三角形就增加2根火柴棒,所以有n个三角形,则需要2n+1根火柴棍.【点评】主要考查了学生通过特例分析从而归纳总结出一般结论的能力.10.一个边长为1的正方形,第一次截去正方形的一半,第二次截去剩下的一半,如此截下去,第六次后剩下的面积为米..【考点】有理数的乘方.【分析】根据题意知,易求出前几次裁剪后剩下的纸片的面积,第一次剩下的面积为,第二次剩下的面积为,第三次剩下的面积为,根据规律,总结出一般式,由此可以求出.【解答】解:∵第一次剩下的面积为,第二次剩下的面积为,第三次剩下的面积为,∴第n次剩下的面积为,∴,故答案为:.【点评】本题考查了有理数的乘方,正确理解问题中的数量关系,总结问题中隐含的规律是解题的关键.11.截至2013年3月底,某市人口总数已达到4 230 000人.将4 230 000用科学记数法表示为 4.23×106.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:4 230 000=4.23×106,故答案为:4.23×106.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.如果3x2n﹣1y m与﹣5x m y3是同类项,则m= 3 ,n= 2 .【考点】同类项.【分析】本题考查同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,根据同类项的定义中相同字母的指数也相同,可列出关于m 、n 的方程组,求出m 、n 的值.【解答】解:由题意,得,解得.故答案分别为:3、2.【点评】此题考查的知识点是同类项, 关键要明确同类项定义中的两个“相同”: (1)所含字母相同;(2)相同字母的指数相同,是易混点,因此成了中考的常考点.13.已知a 1=; a 2=; a 3=; a 4=…那么a 2016= ﹣1 .【考点】规律型:数字的变化类.【分析】依次求出a 2,a 3,a 4,判断出每3个数为一个循环组依次循环,用2016除以3,根据商和余数的情况解答即可.【解答】解:a 1=,a 2===2,a 3===﹣1,a 4===,…,依此类推,每3个数为一个循环组依次循环, ∵2016÷3=672,∴a 2016为第672循环组的第三个数, ∴a 2016=a 3=﹣1. 故答案为:﹣1.【点评】本题是对数字变化规律的考查,读懂题目信息,求出各数并判断出每3个数为一个循环组依次循环是解题的关键.14.如果(x+1)2=a0x4+a1x3+a2x2+a3x+a4(a0,a1,a2,a3,a4都是有理数)那么a04+a13+a22+a3+a4;a04﹣a13+a22﹣a3+a4;a04+a22+a4的值分别是 4 ;0 ; 2 .【考点】代数式求值.【分析】由原式可得x2+2x+1=a0x4+a1x3+a2x2+a3x+a4,可得a0=a1=0,a2=1,a3=2,a4=1,再分别代入所求代数式即可.【解答】解:∵(x+1)2=a0x4+a1x3+a2x2+a3x+a4,∴x2+2x+1=a0x4+a1x3+a2x2+a3x+a4,∴a0=a1=0,a2=1,a3=2,a4=1,则a04+a13+a22+a3+a4=1+2+1=4,a04﹣a13+a22﹣a3+a4=1﹣2+1=0,a04+a22+a4=1+1=2,故答案为:4; 0; 2.【点评】本题主要考查代数式的求值,根据已知等式得出a0=a1=0,a2=1,a3=2,a4=1是解题的关键.三、解答题15.从正面、左面、上面观察如图所示的几何体,分别画出你所看到的几何体的形状图.【考点】作图-三视图.【分析】通过仔细观察和想象,再画它的三视图即可.【解答】解:几何体的三视图如图所示,【点评】本题考查实物体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.本题画几何体的三视图时应注意小正方形的数目及位置.16.由数轴回答下列问题(1)A,B,C,D,E各表示什么数?(2)用“<”把这些数连接起来.【考点】有理数大小比较;数轴.【分析】(1)数轴上原点左边的数就是负数,右边的数就是正数,离开原点的距离就是这个数的绝对值;(2)数轴上的数右边的数总是大于左边的数,即可求解.【解答】解:(1)A:﹣4;B:1.5;C:0;D:﹣1.5;E:4;(2)用“<”把这些数连接起来为:﹣4<﹣1.5<0<1.5<4.【点评】本题主要考查了数轴上点表示的数的确定方法,以及数轴上的数的关系,右边的数总是大于左边的数.17.(12分)(2016秋•崇仁县校级期中)计算.(1)(﹣7)﹣(+5)+(﹣4)﹣(﹣10);(2)﹣1+5÷(﹣)×(﹣4)(3)÷(﹣+﹣)(4)(﹣3)2﹣(1﹣)÷(﹣)×[4﹣(﹣42)].【考点】有理数的混合运算.【分析】(1)先将减法转化为加法,再根据有理数的加法法则计算即可;(2)先算乘除,再算加法即可;(3)先求原式的倒数,再求解即可;(4)先算乘方,再算乘除,最后算加减.有括号,要先做括号内的运算.【解答】(1)解:原式=﹣7﹣5﹣4+10=﹣6;(2)解:原式=﹣1+5×(﹣4)×(﹣4)=﹣1+80=79;(3)解:因为(﹣+﹣)÷=(﹣+﹣)×64=﹣16+8﹣4=﹣12,所以÷(﹣+﹣)=﹣;(4)解:原式=9﹣×(﹣)×(4+16)=9+×20=9+16=25.【点评】本题考查了有理数的混合运算,顺序为:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.18.先化简,再求值:已知2(﹣3xy+x2)﹣[2x2﹣3(5xy﹣2x2)﹣xy],其中x,y满足|x+2|+(y﹣3)2=0.【考点】整式的加减—化简求值;非负数的性质:绝对值;非负数的性质:偶次方.【分析】首先利用去括号法则去括号,进而合并同类项,再利用非负数的性质得出x,y的值,进而求出即可.【解答】解:原式=﹣6xy+2x2﹣[2x2﹣15xy+6x2﹣xy]=﹣6xy+2x2﹣2x2+15xy﹣6x2+xy=﹣6x2+10xy∵|x+2|+(y﹣3)2=0∴x=﹣2,y=3,∴原式=﹣6x2+10xy=﹣6×(﹣2)2+10×(﹣2)×3=﹣24﹣60=﹣84.【点评】此题主要考查了整式的加减运算以及非负数的性质,正确化简整式是解题关键.19.某工艺厂计划一周生产工艺品2100个,平均每天生产300个,但实际每天生产量与计划相比有出入.下表是某周的生产情况(超产记为正、减产记为负):星期一二三四五六日增减(单位:个)+5 ﹣2 ﹣5 +15 ﹣10 +16 ﹣9(1)写出该厂星期一生产工艺品的数量;(2)本周产量中最多的一天比最少的一天多生产多少个工艺品?(3)请求出该工艺厂在本周实际生产工艺品的数量.【考点】正数和负数.【分析】(1)由表格可以求得该厂星期一生产工艺品的数量;(2)由表格可以求得本周产量中最多的一天比最少的一天多生产多少个工艺品;(3)由表格可以求得该工艺厂在本周实际生产工艺品的数量.【解答】解:(1)由表格可得,周一生产的工艺品的数量是:300+5=305(个)即该厂星期一生产工艺品的数量305个;(2)本周产量中最多的一天是星期六,最少的一天是星期五,16+300﹣[(﹣10)+300]=26个,即本周产量中最多的一天比最少的一天多生产26个;(3)2100+[5+(﹣2)+(﹣5)+15+(﹣10)+16+(﹣9)]=2100+10=2110(个).即该工艺厂在本周实际生产工艺品的数量是2110个.【点评】本题考查正数和负数,解题的关键是明确正数和负数在题目中的含义.20.若“△”表示一种新运算,规定a△b=a×b﹣(a+b),请计算下列各式的值:(1)﹣3△5;(2)2△[(﹣4)△(﹣5)].【考点】有理数的混合运算.【分析】原式各项利用题中的新定义计算即可得到结果.【解答】解:(1)﹣3△5=﹣3×5﹣[(﹣3)+5]=﹣15﹣2=﹣17;(2)(﹣4)△(﹣5)=﹣4×(﹣5)﹣[(﹣4)+(﹣5)]=20+9=29,则2△[(﹣4)△(﹣5)]=2×29﹣(2+29)=58﹣31=27.【点评】此题考查了有理数的混合运算,弄清题中的新定义是解本题的关键.21.我们发现了一种“乘法就是减法”的非常有趣的运算:①1×=1﹣:②2×=2﹣;③3×=3﹣;…(1)请直接写出第4个等式是4×=4﹣;(2)试用n(n为自然数,n≥1)来表示第n个等式所反映的规律是n×=n﹣;(3)请说明(2)中猜想的结论是正确的.【考点】规律型:数字的变化类.【分析】观察已知算式可以发现:等式左侧乘积的第一个因数是从1开始的连续自然数,第二个因数的分子和这个自然数相同,分母比分子大1;右侧恰是左侧两个因数的差;由此可以解决(1)和(2);(3)根据(2)中算式左侧和右侧进行分式运算比较即可.【解答】解:等式左侧乘积的第一个因数是从1开始的连续自然数,第二个因数的分子和这个自然数相同,分母比分子大1;右侧恰是左侧两个因数的差;(1)第4个等式:4×=4﹣,(2)第n个等式:n×=n﹣,(3)证明:n×=,n﹣==,∴n×=n﹣,∴(2)中猜想的结论是正确的.【点评】此题主要考察运算规律的探索应用与证明,观察已知算式找出规律是解题的关键.22.小红做一道数学题“两个多项式A、B,B为4x2﹣5x﹣6,试求A+B的值”.小红误将A+B看成A﹣B,结果答案(计算正确)为﹣7x2+10x+12.(1)试求A+B的正确结果;(2)求出当x=3时A+B的值.【考点】整式的加减.【分析】(1)因为A﹣B=﹣7x2+10x+12,且B=4x2﹣5x﹣6,所以可以求出A,再进一步求出A+B.(2)根据(1)的结论,把x=3代入求值即可.【解答】解:(1)A=﹣7x2+10x+12+4x2﹣5x﹣6=﹣3x2+5x+6,A+B=(﹣3x2+5x+6)+(4x2﹣5x﹣6)=x2;(2)当x=3时,A+B=x2=32=9.【点评】本题解题的关键是读懂题意,并正确进行整式的运算.注意去括号时,如果括号前是负号,那么括号中的每一项都要变号;合并同类项时,只把系数相加减,字母与字母的指数不变.23.(10分)(2015秋•无锡期中)某公司在甲、乙两座仓库分别有农用车12辆和6辆,现需要调往A县10辆,调往B县8辆.已知从甲仓库调运一辆农用车到A县和B县的运费分别为40元和80元,从乙仓库调运一辆农用车到A县和B县的运费分别为30元和50元.设从甲仓库调往A县农用车x辆.(1)甲仓库调往B县农用车12﹣x 辆,乙仓库调往A县农用车10﹣x 辆.(用含x的代数式表示)(2)写出公司从甲、乙两座仓库调往农用车到A、B两县所需要的总运费.(用含x的代数式表示)(3)在(2)的基础上,求当从甲仓库调往A县农用车4辆时,总运费是多少?【考点】列代数式;代数式求值.【分析】(1)根据题意列出代数式;(2)到甲的总费用=甲调往A的车辆数×甲到A调一辆车的费用+乙调往A的车辆数×乙到A调一辆车的费用,同理可求出到乙的总费用;(3)把x=4代入代数式计算即可.总费用=到甲的总费用+到乙的总费用.【解答】解:(1)设从甲仓库调往A县农用车x辆,则调往B县农用车=12﹣x,乙仓库调往A县的农用车=10﹣x;(2)到A的总费用=40x+30(10﹣x)=10x+300;到B的总费用=80(12﹣x)+50(x﹣4)=760﹣30x;故公司从甲、乙两座仓库调往农用车到A、B两县所需要的总运费为:10x+300+760﹣30x=﹣20x+1060;(3)当x=4时,到A的总费用=10x+300=340,到B的总费用=760﹣30×4=640故总费用=340+640=980.【点评】根据题意列代数,再求代数式的值.24.(12分)(2015秋•常熟市期中)如图:在数轴上A点表示数a,B点示数b,C点表示数c,b是最小的正整数,且a、b满足|a+2|+(c﹣7)2=0.(1)a= ﹣2 ,b= 1 ,c= 7 ;(2)若将数轴折叠,使得A点与C点重合,则点B与数 4 表示的点重合;(3)点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC.则AB= 3t+3 ,AC= 5t+9 ,BC= 2t+6 .(用含t的代数式表示)(4)请问:3BC﹣2AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.【考点】数轴;两点间的距离.【分析】(1)利用|a+2|+(c﹣7)2=0,得a+2=0,c﹣7=0,解得a,c的值,由b是最小的正整数,可得b=1;(2)先求出对称点,即可得出结果;(3)由 3BC﹣2AB=3(2t+6)﹣2(3t+3)求解即可.【解答】解:(1)∵|a+2|+(c﹣7)2=0,∴a+2=0,c﹣7=0,解得a=﹣2,c=7,∵b是最小的正整数,∴b=1;故答案为:﹣2,1,7.(2)(7+2)÷2=4.5,对称点为7﹣4.5=2.5,2.5+(2.5﹣1)=4;故答案为:4.(3)AB=t+2t+3=3t+3,AC=t+4t+9=5t+9,BC=2t+6;故答案为:3t+3,5t+9,2t+6.(4)不变.3BC﹣2AB=3(2t+6)﹣2(3t+3)=12.【点评】本题主要考查了数轴及两点间的距离,解题的关键是利用数轴的特点能求出两点间的距离.。

成都七中育才学校2015-2016学年七年级上期末数学试卷含解析

成都七中育才学校2015-2016学年七年级上期末数学试卷含解析

2015-2016学年四川省成都七中育才学校七年级(上)期末数学试卷一、选择题1. 3的相反数是( )A .3B .C .﹣3D .﹣2.某物体从不同方向看到的三种形状图如图所示,那么该物体的形状是( )A .圆柱体B .正方体C .长方体D .球体3.下列调查方式合适的是( )A .为了了解市民对电影《南京》的感受,小华在某校随机采访了8名初三学生B .为了了解全校学生用于做数学作业的时间,小民同学在网上向3位好友做了调查C .为了了解全国青少年儿童的睡眠时间,统计人员采用了普查的方式D .为了了解“嫦娥一号”卫星零部件的状况,检测人员采用了普查的方式4.去年5月,在成都举行的世界机场城市大会上,成都新机场规划蓝图首次亮相,新机场建成后,成都将成为继北京、上海之后,国内第三个拥有双机场的城市,按照远期规划,新机场将建的4个航站楼的总面积约为1260000平方米,这个总面积用科学记数法表示为( )平方米.A .126×104B .1.26×104C .1.26×106D .1.26×1075.下列计算正确的是( )A .2x+3y=5xyB .5a 2﹣3a 2=2C .(﹣7)÷=﹣7D .(﹣2)﹣(﹣3)=1 6.代数式3x a y b 与x 2y 是同类项,则a ﹣b 的值为( )A .1B .0C .﹣2D .27.有理数a 、b 在数轴上的位置如图所示,则下列结论正确的是( )A .B .a ﹣b >0C .ab >0D .a+b <08.用代数式表示“a 与b 两数的差的平方”,正确的是( )A .a 2﹣bB .a ﹣b 2C .a 2﹣b 2D .(a ﹣b )29.如果关于x的方程2x m+1=0是一元一次方程,则m的值为()A.0 B.1 C.﹣1 D.任何数10.已知下列一组数:1,,,,,…;用代数式表示第n个数,则第n个数是()A.B.C.D.二、填空题11.单项式4x2y的系数是.12.如果x=2是关于x的方程x﹣1=a的解,那么a的值是.13.|a﹣1|+|b﹣2|=0,则a+b= .14.如图,已知O是直线CD上的点,OA平分∠BOC,∠BOD=120°,则∠AOC的度数是.15.下列说法正确的是(填番号).①﹣3.1是负数、分数、整式②一个数的绝对值不小于它本身③0既不是正数,也不是负数④整数和分数统称为有理数.三、解答题(本大题共5个小题,共55分)16.(1)计算:1﹣(﹣3)+(+2)(2)计算:(3)解方程:2x﹣(2﹣x)=4(4)解方程:.17.化简并求值:2ab﹣[ab2(ab﹣ab2)],其中a=﹣1,b=2.18.(1)如图,点B,D都在线段AC上,点D是线段AB的中点,BD=4,BC=2,求线段AC的长度.(2)列方程解应用题:一件商品按成本价提高20%后标价,又以9折销售,售价为270元,这种商品的成本价是多少元?19.最近以来,我市持续大面积的雾霾天气让环保和健康问题成为焦点,为了调查学生对雾霾天气知识的了解程度,我校在全校学生中抽取400名同学做了一次调查,调查结果共分为四个等组A.非常了解; B.比较了解:C.基本了解; D.不了解根据调查统计结果,绘制了不完整的三种统计图表.对雾霾了解程度的统计表对雾霾的了解程度百分比A.非常了解5%B.比较了解mC.基本了解45%D.不了解n请结合统计图表,回答下列问题:(1)本次参与调查的学生选择“A.非常了解”的人数为人,m= ,n= ;(2)请在图1中补全条形统计图;(3)请问在图2所示的扇形统计图中,D部分扇形所对应的圆心角是多少度?20.某市居民自来水收费标准如下:每户每月用水不超过4吨时,每吨价格为2元,当用水超过4吨而不超过7吨时,超过部分每吨水的价格为3元,当用水超过7吨时,超过部分每吨水的价格为5元.(1)若某户某月用了6吨水,应付多少元水费?(2)若某户某月用了x吨水(x>7),应付水费多少元?(2)若某户某月付了水费32元,你能算出用了多少吨水吗?2015-2016学年四川省成都七中育才学校七年级(上)期末数学试卷参考答案与试题解析一、选择题1.3的相反数是()A.3 B.C.﹣3 D.﹣【考点】相反数.【分析】根据相反数的定义,即可解答.【解答】解:3的相反数是﹣3,故选:C.【点评】本题考查了相反数,解决本题的关键是熟记相反数的定义.2.某物体从不同方向看到的三种形状图如图所示,那么该物体的形状是()A.圆柱体B.正方体C.长方体D.球体【考点】由三视图判断几何体.【分析】根据三视图的知识,主视图以及左视图都是矩形,俯视图为一个圆,故易判断该几何体为圆柱.【解答】解:根据主视图和左视图是矩形,得出该物体的形状是柱体,根据俯视图是圆,得出该物体是圆柱体.故选:A.【点评】本题考查由三视图确定几何体的形状,同时考查学生空间想象能力,从主视图、左视图上弄清物体的上下和左右形状;从俯视图上弄清物体的左右和前后形状.3.下列调查方式合适的是()A.为了了解市民对电影《南京》的感受,小华在某校随机采访了8名初三学生B.为了了解全校学生用于做数学作业的时间,小民同学在网上向3位好友做了调查C.为了了解全国青少年儿童的睡眠时间,统计人员采用了普查的方式D.为了了解“嫦娥一号”卫星零部件的状况,检测人员采用了普查的方式【考点】全面调查与抽样调查.【分析】根据抽样调查和全面调查的特点即可作出判断.【解答】解:A、要了解市民对电影《南京》的感受,应随机抽查一部分市民,只采访了8名初三学生,具有片面性;B、要了解全校学生用于做数学作业的时间,应从全校中随机抽查部分学生,不能在网上向3位好友做调查,不具代表性;C、要了解全国青少年儿童的睡眠时间,范围广,宜采用抽查方式;D、要保证“嫦娥一号”卫星零部件的状况,是精确度要求高、事关重大的调查,往往选用全面调查.故选:D.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.4.去年5月,在成都举行的世界机场城市大会上,成都新机场规划蓝图首次亮相,新机场建成后,成都将成为继北京、上海之后,国内第三个拥有双机场的城市,按照远期规划,新机场将建的4个航站楼的总面积约为1260000平方米,这个总面积用科学记数法表示为()平方米.A.126×104B.1.26×104C.1.26×106D.1.26×107【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:1 260 000=1.26×107,故选:D.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.下列计算正确的是()A.2x+3y=5xy B.5a2﹣3a2=2 C.(﹣7)÷=﹣7 D.(﹣2)﹣(﹣3)=1 【考点】合并同类项;有理数的混合运算.【分析】直接利用合并同类项法则以及有理数混合运算法则分别分析得出答案.【解答】解:A、2x+3y,无法计算,故此选项错误;B、5a2﹣3a2=2a2,故此选项错误;C、(﹣7)÷=﹣,故此选项错误;D、(﹣2)﹣(﹣3)=1,正确.故选:D.【点评】此题主要考查了合并同类项以及有理数混合运算,正确掌握运算法则是解题关键.6.代数式3x a y b与x2y是同类项,则a﹣b的值为()A.1 B.0 C.﹣2 D.2【考点】同类项.【专题】计算题;整式.【分析】利用同类项定义求出a与b的值,即可求出a﹣b的值.【解答】解:∵3x a y b与x2y是同类项,∴a=2,b=1,则a﹣b=2﹣1=1.故选A【点评】此题考查了同类项,熟练掌握同类项定义是解本题的关键.7.有理数a、b在数轴上的位置如图所示,则下列结论正确的是()A.B.a﹣b>0 C.ab>0 D.a+b<0【考点】数轴.【分析】根据数轴可以判断a、b的正负和它们的绝对值的大小,从而可以解答本题.【解答】解:由数轴可得,a<0<b且|a|>|b|,∴<0,故选项A错误,a﹣b<0,故选项B错误,ab<0,故选项C错误,a+b<0,故选项D正确,故选D.【点评】本题考查数轴,解题的关键是明确数轴的特点.8.用代数式表示“a与b两数的差的平方”,正确的是()A.a2﹣b B.a﹣b2C.a2﹣b2D.(a﹣b)2【考点】列代数式.【分析】a与b两数的差的平方则是先分别计算差再计算乘方.【解答】解:a与b两数的差的平方表示为(a﹣b)2;故选D【点评】本题考查了列代数式:根据题中的已知数量利用代数式表示其他相关的量.9.如果关于x的方程2x m+1=0是一元一次方程,则m的值为()A.0 B.1 C.﹣1 D.任何数【考点】一元一次方程的定义.【分析】根据一元一次方程的定义可以得到方程中x的次数应该为1,从而可以解答本题.【解答】解:∵方程2x m+1=0是一元一次方程,∴m=1,故选B.【点评】本题考查一元一次方程的定义,解题的关键是明确一元一次方程中未知数的次数是一次.10.已知下列一组数:1,,,,,…;用代数式表示第n个数,则第n个数是()A.B.C.D.【考点】规律型:数字的变化类.【分析】仔细观察给出的数字,找出其中存在的规律从而解题即可.【解答】解:∵1=;;;∴第n个数是:故选B.【点评】本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.二、填空题11.单项式4x2y的系数是 4 .【考点】单项式.【分析】根据单项式的概念即可求出答案.【解答】解:故答案为:4;【点评】本题考查单项式的概念,属于基础题型.12.如果x=2是关于x的方程x﹣1=a的解,那么a的值是0 .【考点】一元一次方程的解.【分析】把x=2代入方程即可得到一个关于a的方程求得a的值.【解答】解:把x=2代入方程得1﹣1=a,解得:a=0.故答案是:0.【点评】本题考查了方程的解的定义,方程的解就是能使方程左右两边相等的未知数的值,理解定义是关键.13.|a﹣1|+|b﹣2|=0,则a+b= 3 .【考点】非负数的性质:绝对值.【分析】根据非负数的性质可求出a、b的值,再将它们代代数式中求解即可.【解答】解:根据题意得:,解得:,则a+b=1+2=3.故答案是:3.【点评】本题考查了非负数的性质:有限个非负数的和为零,那么每一个加数也必为零.14.如图,已知O是直线CD上的点,OA平分∠BOC,∠BOD=120°,则∠AOC的度数是30°.【考点】角平分线的定义.【分析】根据邻补角定义可得∠BOC的度数,再根据角平分线定义可得∠AOC的度数.【解答】解:∵∠BOD=120°,∴∠BOC=180°﹣120°=60°,∵OA平分∠BOC,∴∠AOC=∠BOC=60°=30°,故答案为:30°.【点评】此题主要考查了角平分线,关键是掌握角平分线把角分成相等的两部分.15.下列说法正确的是①②③④(填番号).①﹣3.1是负数、分数、整式②一个数的绝对值不小于它本身③0既不是正数,也不是负数④整数和分数统称为有理数.【考点】有理数;绝对值.【专题】常规题型.【分析】①单独的一个数和字母是单项式,所以﹣3.1是整式;②可通过正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0做出判断;③0特殊的有理数,它有很多特殊的性质,它是数轴上正负数的分界点;④是有理数的定义.【解答】解:﹣3.1是单项式,所以﹣3.1是负数,是分数也是整式故①正确;当a为实数时,|a|≥a,所以一个数的绝对值不小于它本身,故②正确;0是特殊的有理数,不是正数也不负数,故③正确;整数和分数统称有理数,故④正确.故答案为:①②③④【点评】本题考查了数的分类、绝对值的性质、0及有理数的定义.0是特殊的有理数,它不是正数与不是负数,它的绝对值和相反数都是它本身,它没有倒数.三、解答题(本大题共5个小题,共55分)16.(1)计算:1﹣(﹣3)+(+2)(2)计算:(3)解方程:2x﹣(2﹣x)=4(4)解方程:.【考点】解一元一次方程;有理数的混合运算.【专题】计算题;实数;一次方程(组)及应用.【分析】(1)原式利用减法法则变形,计算即可得到结果;(2)原式先计算乘方及乘法运算,再计算加减运算即可得到结果;(3)方程去括号,移项合并,把x系数化为1,即可求出解;(4)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)原式=1+3+2=6;(2)原式=﹣1+3﹣2=0;(3)去括号得:2x﹣2+x=4,移项合并得:3x=6,解得:x=2;(4)去分母得:2x+2=x﹣1+6,移项合并得:x=3.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.17.化简并求值:2ab﹣[ab2(ab﹣ab2)],其中a=﹣1,b=2.【考点】整式的混合运算—化简求值.【分析】先根据整式的混合运算顺序和运算法则化简原式,再代入求值可得.【解答】解:原式=2ab﹣(a2b3﹣a2b4)=2ab﹣a2b3+a2b4,当a=﹣1,b=2时,原式=2×(﹣1)×2﹣(﹣1)2×23+(﹣1)2×24=﹣4﹣8+16=4.【点评】本题主要考查整式的化简求值,熟练掌握整式的混合运算顺序和运算法则是解题的关键.18.(1)如图,点B,D都在线段AC上,点D是线段AB的中点,BD=4,BC=2,求线段AC的长度.(2)列方程解应用题:一件商品按成本价提高20%后标价,又以9折销售,售价为270元,这种商品的成本价是多少元?【考点】两点间的距离;一元一次方程的应用.【分析】(1)先根据中点的定义,求得AB长,再根据BC的长求得AC长即可;(2)成本价×(1+20%)×90%=270元,根据此等量关系列方程即可.【解答】解:(1)∵点D是线段AB的中点,BD=4,∴AB=2BD=8,又∵BC=2,∴AC=AB+BC=8+2=10,故线段AC的长度为10;(2)设这种商品的成本价为x元,依题意得:x(1+20%)×90%=270,解得:x=250.答:这种商品的成本价是250元.【点评】本题主要考查了两点间的距离以及一元一次方程的应用,解题关键是要读懂题目的意思,理清线段之间的和差关系;根据题目给出的条件,找出合适的等量关系,列出方程求解.19.最近以来,我市持续大面积的雾霾天气让环保和健康问题成为焦点,为了调查学生对雾霾天气知识的了解程度,我校在全校学生中抽取400名同学做了一次调查,调查结果共分为四个等组A.非常了解; B.比较了解:C.基本了解; D.不了解根据调查统计结果,绘制了不完整的三种统计图表.对雾霾了解程度的统计表对雾霾的了解程度百分比A.非常了解5%B.比较了解mC.基本了解45%D.不了解n请结合统计图表,回答下列问题:(1)本次参与调查的学生选择“A.非常了解”的人数为20 人,m= 15% ,n= 35% ;(2)请在图1中补全条形统计图;(3)请问在图2所示的扇形统计图中,D部分扇形所对应的圆心角是多少度?【考点】条形统计图;统计表;扇形统计图.【分析】(1)根据被调查学生总人数,用B的人数除以被调查的学生总人数计算即可求出m,再根据各部分的百分比的和等于1计算即可求出n;(2)求出D的学生人数,然后补全统计图即可;(3)用D的百分比乘360°计算即可得解.【解答】解:(1)非常了解的人数为20,60÷400×100%=15%,1﹣5%﹣15%﹣45%=35%,故答案为:20;15%;35%;(2)∵D等级的人数为:400×35%=140,∴补全条形统计图如图所示:(3)D部分扇形所对应的圆心角:360°×35%=126°.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20.某市居民自来水收费标准如下:每户每月用水不超过4吨时,每吨价格为2元,当用水超过4吨而不超过7吨时,超过部分每吨水的价格为3元,当用水超过7吨时,超过部分每吨水的价格为5元.(1)若某户某月用了6吨水,应付多少元水费?(2)若某户某月用了x吨水(x>7),应付水费多少元?(2)若某户某月付了水费32元,你能算出用了多少吨水吗?【考点】一元一次方程的应用;列代数式.【分析】(1)根据题意可以求得某户某月用了6吨水,应付的水费;(2)根据题意可以求得某户某月用了x吨水(x>7),应付的水费;(3)根据题意可以判断出32元水费在哪个用水范围内,从而可以解答本题.【解答】解:(1)由题意可得,某户某月用了6吨水,应付水费为:4×2+(6﹣4)×3=14(元),即某户某月用了6吨水,应付14元的水费;(2)由题意可得,某户某月用了x吨水(x>7),应付水费为:4×2+(7﹣4)×3+(x﹣7)×5=(5x﹣18)元,即某户某月用了x吨水(x>7),应付水费(5x﹣18)元;(3)当x=7时,收费为:4×2+(7﹣4)×3=17,∵17<32,∴32=5x﹣18,解得,x=10即某户某月付了水费32元,用水10吨.【点评】本题考查一元一次方程的应用,解题的关键是明确题意,找出所求问需要的条件.。

【真卷】2015-2016学年四川省成都七中育才学校七年级(上)数学期中试题与解析

【真卷】2015-2016学年四川省成都七中育才学校七年级(上)数学期中试题与解析

2015-2016学年四川省成都七中育才学校七年级(上)期中数学试卷一、选择题(每小题3分,共30分)1.(3分)2的相反数是()A.B.﹣ C.2 D.﹣22.(3分)下列各式符合代数式书写规范的是()A.a8 B.C.m﹣1元 D.1x3.(3分)下列几何体中,截面不可能是圆的是()A.B.C.D.4.(3分)下列各式中结果为负数的是()A.﹣(﹣3)B.(﹣3)2C.|﹣3|D.﹣|﹣3|5.(3分)将如图折叠成正方体后,与“七”字相对面上的汉字是()A.育B.才C.学D.校6.(3分)辽宁号航空母舰是中国人民解放军海军第一艘可以搭载固定翼飞机的航空母舰,它的排水量为67500吨,数字67500用科学记数法可以表示为()A.675×102B.6.75×104C.6.75×105D.0.675×1057.(3分)下列各式中,正确的是()A.﹣5÷×5=﹣5 B.2a+3b=5abC.7ab﹣3ab=4 D.x2y﹣2x2y=﹣x2y8.(3分)下列说法中正确的是()A.最大的负有理数是﹣1B.任何有理数的绝对值都是正数C.0是最小的数D.如果两个数互为相反数,那么它们的绝对值相等9.(3分)下列式子:x2+2,+4,,,﹣5x,0中,整式的个数是()A.6 B.5 C.4 D.310.(3分)有理数在数轴上的位置如图所示,则下列各式:①|a+b|=a+b;②|a ﹣b|=a﹣b;③|b|>a;④ab<0.成立的是()A.①②③B.③④C.②③④D.①③④二、填空题:(每空2分,共18分)11.(4分)的绝对值是;的倒数是.12.(4分)比较大小:﹣23;.13.(4分)单项式﹣的系数是,次数是.14.(4分)三棱锥有条棱,有个面.15.(2分)如图,从边长为(a+4)cm的正方形纸片中剪去一个边长为(a+1)cm的正方形(a>0),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为.三、计算(16、17每小题16分,共24分,18题6分)16.(16分)(1)﹣20+(﹣14)﹣(﹣18)(2)(3)|(4).17.(8分)(1)2x2﹣x2﹣7x2(2)2(2a﹣3b)﹣(2b﹣3a)18.(6分)先化简,再求值:.其中x=﹣2,y=.四、解答题(19、20题6分,21题10分,共22分)19.(6分)一个几何体由若干大小相同的小文体方块搭成,如图分别是从它的正面、上面看到的形状图.(1)该几何体最多是用多少块小立方体搭成的?(2)请画出(1)下几何体的左视图.20.(6分)某人用400元购买了8套儿童服装,准备以一定的价格出售,如果每套儿童服装以卖出60元的价格为标准,超出的记正数,不足的记负数,记录如下:+3,﹣2,﹣3,+1,﹣3,﹣1,0,﹣2.当他卖完这8套儿童服装后是盈利还是亏损?盈利(或亏损)多少钱?21.(10分)长汀某服装厂生产一种夹克和T恤,夹克每件定价150元,T恤每件定价75元.厂方在开展促销活动期间,向客户提供两种优惠方案:①买一件夹克送一件T恤;②夹克和T恤都按定价的80%付款.现某客户要到该服装厂购买夹克30件,T恤x件(x>30).(1)若该客户按方案①购买夹克需付款元,T恤需付款元(用含x的式子表示);若该客户按方案②购买,夹克需付款元,T恤需付款元(用含x的式子表示);(2)按方案①购买夹克和T恤共需付款元(用含x的式子表示);按方案②购买夹克和T恤共需付款元(用含x的式子表示).(3)若两种优惠方案可同时使用,当x=40时,你能给出一种更为省钱的购买方案吗?试写出你的购买方案,并说明理由.一、填空题(每小题3分,共9分)22.(3分)若|a﹣1|+(b+1)2=0,则a2+b3的值是.23.(3分)已知甲数的绝对值是乙数绝对值的2倍,两数在数轴上对应两点之间的距离为6,这两数的积为.24.(3分)在求两位数的平方时,可以用“列竖式”的方法进行速算,求解过程如图1所示.(1)仿照图1,在图2中补全672的“竖式”,可计算出(m+n)(x﹣y)=;(2)仿照图1,用“列竖式”的方法计算一个两位数的平方,部分过程如图3所示.若这个两位数的个位数字为a,则这个两位数为(用含a的代数式表示).二、解答题(25题5分,26题6分,共11分)25.(5分)一位同学做一道题:“已知两个多项式A,B,计算2A+B”.他误将“2A+B”看成:“A+2B”,求得的结果为9x2+2x﹣7.已知B=x2﹣3x+2(1)求多项式A是多少?(2)若x的平方等于4,求原题正确的结果是多少?26.(6分)观察下列式子,并完成后面的问题:13+23=13+23+33=13+23+33+43=…(1)13+23+33+43+…+n3=;(2)(2n)3=2n×2n×2n=2×2×2n•n•n=23n3=8n3.你能利用上述关系计算23+43+63+83+…+203=;(3)得用(1)、(2)得到结论,73+93+…+193等于多少吗?并写出你是怎样得到的?2015-2016学年四川省成都七中育才学校七年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)2的相反数是()A.B.﹣ C.2 D.﹣2【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.【解答】解:2的相反数是﹣2,故选:D.2.(3分)下列各式符合代数式书写规范的是()A.a8 B.C.m﹣1元 D.1x【分析】本题根据书写规则,数字应在字母前面,分数不能为假分数,不能出现除号,对各项的代数式进行判定,即可求出答案.【解答】解:A、数字应写在前面正确书写形式为8a,故本选项错误;B、书写形式正确,故本选项正确;C、正确书写形式为(m﹣1)元,故本选项错误;D、正确书写形式为x,故本选项错误,故选:B.3.(3分)下列几何体中,截面不可能是圆的是()A.B.C.D.【分析】根据一个几何体有几个面,则截面最多为几边形,由于棱柱没有曲边,所以用一个平面去截棱柱,截面不可能是圆.【解答】解:用一个平面去截球,截面是圆,用一个平面去截圆锥或圆柱,截面可能是圆,但用一个平面去截棱柱,截面不可能是圆.故选:A.4.(3分)下列各式中结果为负数的是()A.﹣(﹣3)B.(﹣3)2C.|﹣3|D.﹣|﹣3|【分析】根据相反数定义,有理数的乘方,绝对值的性质对各选项分析判断利用排除法求解.【解答】解:A、﹣(﹣3)=3,是正数,故本选项错误;B、(﹣3)2=9,是正数,故本选项错误;C、|﹣3|=3,是正数,故本选项错误;D、﹣|﹣3|=﹣3,是负数,故本选项正确.故选:D.5.(3分)将如图折叠成正方体后,与“七”字相对面上的汉字是()A.育B.才C.学D.校【分析】正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,据此作答.【解答】解:正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,所以与“我”字相对的面上的字是:校.故选:D.6.(3分)辽宁号航空母舰是中国人民解放军海军第一艘可以搭载固定翼飞机的航空母舰,它的排水量为67500吨,数字67500用科学记数法可以表示为()A.675×102B.6.75×104C.6.75×105D.0.675×105【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:67500用科学记数法可以表示为6.75×104,故选:B.7.(3分)下列各式中,正确的是()A.﹣5÷×5=﹣5 B.2a+3b=5abC.7ab﹣3ab=4 D.x2y﹣2x2y=﹣x2y【分析】根据合并同类项,即可解答.【解答】解:A、﹣5÷×5=﹣125,故错误;B、2a与3b不是同类项,不能合并;C、7ab﹣3ab=4ab,故错误;D、正确;故选:D.8.(3分)下列说法中正确的是()A.最大的负有理数是﹣1B.任何有理数的绝对值都是正数C.0是最小的数D.如果两个数互为相反数,那么它们的绝对值相等【分析】根据有理数的定义和特点,绝对值、相反数的定义及性质,对选项进行一一分析,排除错误答案.【解答】解:A、最大的负整数是﹣1,错误;B、任何有理数的绝对值都不是负数,错误;C、0是绝对值最小的数,错误;D、如果两个数互为相反数,那么它们的绝对值相等,正确;故选:D.9.(3分)下列式子:x2+2,+4,,,﹣5x,0中,整式的个数是()A.6 B.5 C.4 D.3【分析】根据整式的定义分析判断各个式子,从而得到正确选项.【解答】解:式子x2+2,,﹣5x,0,符合整式的定义,都是整式;+4,这两个式子的分母中都含有字母,不是整式.故整式共有4个.故选:C.10.(3分)有理数在数轴上的位置如图所示,则下列各式:①|a+b|=a+b;②|a ﹣b|=a﹣b;③|b|>a;④ab<0.成立的是()A.①②③B.③④C.②③④D.①③④【分析】本题可先对数轴进行分析,找出a、b之间的大小关系,然后分别分析A、B、C、D即可得出答案.【解答】解:根据数轴,知a>0,b<0,且b的绝对值大于a的绝对值,∴①|a+b|=﹣a﹣b;②|a﹣b|=a﹣b;③|b|>a;④ab<0,②③④.故选:C.二、填空题:(每空2分,共18分)11.(4分)的绝对值是;的倒数是﹣.【分析】根据负数的绝对值是它的相反数,乘积为一的两个数互为倒数,可得答案.【解答】解:的绝对值是;的倒数是﹣,故答案为:,﹣.12.(4分)比较大小:﹣2<3;=.【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:根据有理数比较大小的方法,可得﹣2<3;=.故答案为:<、=.13.(4分)单项式﹣的系数是﹣,次数是4.【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【解答】解:根据单项式系数、次数的定义可知,单项式﹣的系数是﹣,次数是4.14.(4分)三棱锥有6条棱,有4个面.【分析】三棱锥的侧面由三个三角形围成,底面也是一个三角形,结合三棱锥的组成特征,可确定它棱的条数和面数.【解答】解:三棱锥有6条棱,有4个面.故答案为6,4.15.(2分)如图,从边长为(a+4)cm的正方形纸片中剪去一个边长为(a+1)cm的正方形(a>0),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为(6a+15)cm2.【分析】利用大正方形的面积减去小正方形的面积即可,注意完全平方公式的计算.【解答】解:矩形的面积为:(a+4)2﹣(a+1)2=(a2+8a+16)﹣(a2+2a+1)=a2+8a+16﹣a2﹣2a﹣1=6a+15.故答案为:(6a+15)cm2,三、计算(16、17每小题16分,共24分,18题6分)16.(16分)(1)﹣20+(﹣14)﹣(﹣18)(2)(3)|(4).【分析】(1)(2)(3)根据有理数的混合运算的运算方法,求出每个算式的值各是多少即可.(4)应用乘法分配律,求出算式的值是多少即可.【解答】解:(1)﹣20+(﹣14)﹣(﹣18)=﹣34+18=﹣16(2)=﹣2+20=18(3)|=﹣1×[4﹣9]+4=5+4=9(4)=×24+×24﹣×24﹣4×(﹣)=9+4﹣18+1=﹣417.(8分)(1)2x2﹣x2﹣7x2(2)2(2a﹣3b)﹣(2b﹣3a)【分析】(1)直接合并同类项即可;(2)先去括号,再合并同类项即可.【解答】解:(1)2x2﹣x2﹣7x2=﹣6x2;(2)2(2a﹣3b)﹣(2b﹣3a)=4a﹣6b﹣2b+3a=7a﹣8b.18.(6分)先化简,再求值:.其中x=﹣2,y=.【分析】首先去括号,合并同类项,把代数式化简,然后再代入x、y的值,进而可得答案.【解答】解:=5x2﹣2xy﹣4x2﹣xy﹣6=x2﹣3xy﹣6,把x=﹣2,y=代入上式可得:原式=x2﹣3xy﹣6=(﹣2)2﹣3×(﹣2)×﹣6=4+3﹣6=1.四、解答题(19、20题6分,21题10分,共22分)19.(6分)一个几何体由若干大小相同的小文体方块搭成,如图分别是从它的正面、上面看到的形状图.(1)该几何体最多是用多少块小立方体搭成的?(2)请画出(1)下几何体的左视图.【分析】(1)从俯视图中可以看出最底层小立方块的个数及形状,从主视图可以看出每一层小立方块的层数和个数,进而可得答案;(2)根据(1)中的图形画出从左边看所得到的图形即可.【解答】解:(1)最下面一层最多有5块,上面一层最多有3块,最多共有8块;(2)如图所示:.20.(6分)某人用400元购买了8套儿童服装,准备以一定的价格出售,如果每套儿童服装以卖出60元的价格为标准,超出的记正数,不足的记负数,记录如下:+3,﹣2,﹣3,+1,﹣3,﹣1,0,﹣2.当他卖完这8套儿童服装后是盈利还是亏损?盈利(或亏损)多少钱?【分析】把8个数相加,然后根据有理数的加法运算法则进行计算,计算后根据正负情况判断盈亏情况.【解答】解:3﹣2﹣3+1﹣3﹣1+0﹣2=﹣7(元),60×8﹣7=473,473﹣400=73(元)所以,当他卖完这8套儿童服装后是盈利了,盈利73元.21.(10分)长汀某服装厂生产一种夹克和T恤,夹克每件定价150元,T恤每件定价75元.厂方在开展促销活动期间,向客户提供两种优惠方案:①买一件夹克送一件T恤;②夹克和T恤都按定价的80%付款.现某客户要到该服装厂购买夹克30件,T恤x件(x>30).(1)若该客户按方案①购买夹克需付款4500元,T恤需付款75(x﹣30);元(用含x的式子表示);若该客户按方案②购买,夹克需付款3600元,T 恤需付款60x元(用含x的式子表示);(2)按方案①购买夹克和T恤共需付款2250+75x元(用含x的式子表示);按方案②购买夹克和T恤共需付款3600+60x元(用含x的式子表示).(3)若两种优惠方案可同时使用,当x=40时,你能给出一种更为省钱的购买方案吗?试写出你的购买方案,并说明理由.【分析】(1)该客户按方案①购买,夹克需付款30×150=4500;T恤需付款75款75×80%×x=60x;(2)按照两种优惠方案分别表示两种方案的付款数;(3)把x=40分别代入(1)中的代数式中,再求和得到按方案①购买所需费用=3600+40×60=5000(元),按方案②购买所需费用=3600+40×60=5000(元),然后比较大小.【解答】解:(1)若该客户按方案①购买,夹克需付款4500元,T恤需付款75(x﹣30)元(用含x的式子表示);若该客户按方案②购买,夹克需付款360000元,T恤需付款60x元;(2)按方案①购买夹克和T恤共需付款2250+75x元,方案②购买夹克和T恤共需付款3600+60x元;(3)当x=40时,方案①共需付款:2250+75×40=5250元,方案②共需付款:3600+40×60=5000元,∵5000元<5250元,∴方案②是更省钱的购买方案.一、填空题(每小题3分,共9分)22.(3分)若|a﹣1|+(b+1)2=0,则a2+b3的值是0.【分析】根据非负数的性质列出方程求出a、b的值,代入所求代数式计算即可.【解答】解:根据题意得:,解得:,则原式=1﹣1=0.故答案是:0.23.(3分)已知甲数的绝对值是乙数绝对值的2倍,两数在数轴上对应两点之间的距离为6,这两数的积为72,±8.【分析】根据绝对值的定义和正负数的意义,利用分类讨论的思想:同在原点的右侧,设乙为x,则甲为2x,由题意可得2x﹣x=6,可得甲数和乙数;若同在原点的左侧,设乙为x,则甲为2x,x﹣2x=6,可得甲数和乙数;在原点的两侧,设乙为x,则甲为﹣2x,由题意可得x+2x=6,可得甲数和乙数;若原点的两侧,设乙为﹣x,则甲为2x,﹣x+2x=6,可得甲数和乙数.再写出即可求解.【解答】解:①同在原点的右侧,设乙为x,则甲为2x,由题意可得2x﹣x=6,解得x=6,2x=12,xy=6×12=72;②若同在原点的左侧,设乙为x,则甲为2x,由题意可得x﹣2x=6,解得x=﹣6,﹣2x=﹣12,xy=(﹣6)×(﹣12)=72;③在原点的两侧,设乙为x,则甲为﹣2x,由题意可得x+2x=6,解得x=2,﹣2x=﹣4,xy=2×(﹣4)=8;④若原点的两侧,设乙为﹣x,则甲为2x,由题意可得﹣x﹣2x=6,解得x=﹣2,﹣2x=4,xy=﹣2×4=﹣8;故这两数的积为72,±8.故答案为:72,±8.24.(3分)在求两位数的平方时,可以用“列竖式”的方法进行速算,求解过程如图1所示.(1)仿照图1,在图2中补全672的“竖式”,可计算出(m+n)(x﹣y)=36;示.若这个两位数的个位数字为a,则这个两位数为a+50(用含a的代数式表示).【分析】(1)观察图象可知,第一行从右向左分别为个位数和十位数字的平方,每个数的平方占两个空,平方是一位数的前面的空用0填补,第二行从左边第2个空开始向右是这个两位数的两个数字的乘积的2倍,然后相加即为这个两位数的平方,根据此规律求解即可;(2)设这个两位数的十位数字为b,根据图3,利用十位数字与个位数字的乘积的2倍的关系列出方程用a表示出b,然后写出即可.【解答】解:解:(1)即m=3,n=6,x=8,y=4,(m+n)(x﹣y)=(3+6)×(8﹣4)=36,故答案为:36;(2)设这个两位数的十位数字为b,由题意得,2ab=10a,解得b=5,所以,这个两位数是10×5+a=a+50.故答案为:a+50.二、解答题(25题5分,26题6分,共11分)25.(5分)一位同学做一道题:“已知两个多项式A,B,计算2A+B”.他误将“2A+B”看成:“A+2B”,求得的结果为9x2+2x﹣7.已知B=x2﹣3x+2(1)求多项式A是多少?(2)若x的平方等于4,求原题正确的结果是多少?【分析】(1)根据和减去一个加数得到另一个加数确定出A即可;(2)把A与B代入2A+B中去括号合并,将x的值代入计算即可求出值.【解答】解:(1)由题意得:A=9x2+2x﹣7﹣2(x2﹣3x+2)=9x2+2x﹣7﹣2x2+6x﹣4=7x2+8x﹣11;(2)由x2=4,得到x=2或x=﹣2,2A+B=18x2+4x﹣14+x2﹣3x+2=19x2+x﹣12,当x=2时,原式=66;当x=﹣2时,原式=62.26.(6分)观察下列式子,并完成后面的问题:13+23=13+23+33=13+23+33+43=…(1)13+23+33+43+…+n3=×n2×(n+1)2;(2)(2n)3=2n×2n×2n=2×2×2n•n•n=23n3=8n3.你能利用上述关系计算23+43+63+83+…+203=24200;(3)得用(1)、(2)得到结论,73+93+…+193等于多少吗?并写出你是怎样得到的?【分析】(1)观察不难发现,从1开始的连续自然数的立方和等于自然数的个数的平方乘比个数大1的数的平方,再除以4;(2)将原式变形为(2×1)3+(2×2)3+(2×3)3+(2×4)3+…+(2×10)3=8×(13+23+33+43+…+103),再套用(1)中公式计算可得;(3)由(1)得13+23+33+43+…+203=×202×212=44100,由(2)得23+43+63+83+…+203=8××102×112=24200,两式相减从而得出13+33+53+73+…+193,再减去13+33+53即可得答案.【解答】解:(1)∵13=×12×22,13+23=×22×32,13+23+33=×32×42,∴13+23+33+…+(n﹣1)3+n3=×n2×(n+1)2;故答案为:×n2×(n+1)2;(2)原式=(2×1)3+(2×2)3+(2×3)3+(2×4)3+...+(2×10)3 =8×(13+23+33+43+ (103)=8××102×112=24200,故答案为:24200;(3)由(1)知13+23+33+43+…+203=×202×212=44100,由(2)知,23+43+63+83+…+203=8××102×112=24200,∴13+33+53+73+…+193=44100﹣24200=19900,又∵13+33+53=1+27+125=153,∴73+93+…+193=19747.。

四川省成都市成都七中育才学校七年级上半期考试题数学试题

四川省成都市成都七中育才学校七年级上半期考试题数学试题

成都七中育才学校七年级上期数学期中考试试题(考试时间 120分钟,满分 150分)A卷(共100分)温馨提示:请将所有答案均写在答题卷上,交卷时只交答题卷.....。

注意所有解答题均要有完整过程,书写要工整,格式要规范。

相信你,你将取得理想的成绩!第Ⅰ卷(选择题共30分).一.选择题:(在每小题所给出的四个选项中,只有一个正确答案,请把正确答案选项前的字母代号填涂在机读卡中.每小题3分,共30分)1.13的相反数是( )A.13B.-13C.3 D.-32.下面几何体的截面不可能是圆的是 ( )A.圆柱B.圆锥C.球D.棱柱3.下面形状的四张纸板,按图中的线经过折叠可以围成一个直三棱柱的是( ).4.地球绕太阳每小时转动经过的路程约为110000千米,用科学记数法表示约为()A. 1.1×104千米 B. 1.1×105千米 C. 1.1×106千米 D. 11×104千米5.下列计算正确的是()A.-22=-4B.-(-2)2=4C.(-3)2=6D.(-1)3=16.下列整式中,多项式有()个.﹣a3b,,x2+y2﹣2,b,3x3﹣3xy3+x4﹣1,30t3,2x﹣y.A.2 B.3 C.4 D.57. 数轴上到原点的距离等于5的点表示的数是().A.5 B.-5 C.-5或5 D.不能确定8.下列图形是正方体展开图的是:().A.B.C.D.…9.下列计算:①(-1)×(-2)×(-3)=6;②(-36)÷(-9)=-4;③23×94⎛⎫- ⎪⎝⎭÷(-1)=32;④(-4)÷12×(-2)=16. 其中正确的个数是( ). A .4B .3C .2D .110.如图,用三角形摆图案:摆第1层图需要1个三角形,摆第2层图需要3个三角形,摆第3层图需要7个三角形,摆4层图需要13个三角形,…,摆第100层图需要( )个三角形.A .10001B .9981C .9901D .9837第Ⅱ卷 (非选择题 共70分)二.填空题(12题4分,其余每题2分,共12分) 11.7-的绝对值是 ,21-的倒数是 . 12. 把下列各数填在相应的大括号里:1,45-,8.9,-7,0,56,-3.2,+1 008,-0.06,28,-9.正整数集合:{ …};负整数集合:{ …}; 正分数集合:{ …};负分数集合:{ …}. 13.右图是一数值转换机,若输入的x 为-5, 则输出的结果为__________。

成都七中育才学校七年级(上)期中数学试卷及答案

成都七中育才学校七年级(上)期中数学试卷及答案

四川省成都七中育才学校七年级(上)期中数学试卷出题人:秦玲审题人:王山 2016.11班级:七年级班学号:姓名:一、选择题(每小题3分,共30分)1.﹣的相反数是()A.﹣2 B.﹣ C. D.22.10月24日成都第十五届西博会新疆代表团签约175亿元合作项目,175亿元用科学记数法表示为()A.1.75×109元B.1.75×1010元C.0.175×1011元D.17.5×109元3.若单项式﹣2x m﹣1y mn与7x3y2是同类项,则代数式m﹣n的值是()A.﹣ B.2 C. D.﹣24.用平面截一个几何体,如果截面的形状是长方形(或正方形),那么该几何体不可能是()A.圆柱 B.棱柱 C.圆锥D.正方体5.数轴上到﹣4的距离等于5个单位长度的点表示的数是()A.5或﹣5 B.1 C.﹣9 D.1或﹣96.若m、n满足|2m+3|+(n﹣2)4=0,则m n的值等于()A. B. C.﹣ D.07.下列(1)=3a﹣2、(2)r+3>0、(3)3s+4=s、(4)x+7y=36,是一元一次方程的有()个.A.1 B.2 C.3 D.4第1页(共22页)第2页(共22页)8.下列各组数据中,结果相等的是( )A.(﹣1)4与﹣14B.﹣|﹣3|与﹣(﹣3)C.D.9.下面是小丽同学做的合并同类项的题,其中正确的是( )A .2a +3b=6abB .ab ﹣ba=0C .5a 3﹣4a 3=1D .﹣a ﹣a=010.如图,正方形ABCD 的边长为3cm ,以直线AB 为轴,将正方形旋转一周,所得几何体的主视图的面积是( )A .9cm 2B .9πcm 2C .18πcm 2D .18cm 2二、填空题(每小题3分,共15分)11.比较大小:﹣3 2;﹣ ﹣;﹣π﹣3.14.12.多项式是 次 项式. 13.如图是一个正方体盒子的展开图,在其中三个正方形A 、B 、C内分别添入适当的数,使他们折成正方体后相对的面上的两个数互为相反数,则添入正方形A 、B 、C 内的三个数中最小的是 面.14.若方程3x +2a=12和方程2x ﹣4=12的解相同,则a 的值为 .15.当x=1时,代数式ax 2+bx ﹣1的值为3,则代数式﹣2a ﹣b ﹣2的值为 .三、计算题(16、17题每小题4分,18题6分,共30分)16.(1)﹣4﹣28﹣(﹣29)+(﹣24) (2)2×(﹣3)2﹣×(﹣22)+6(3)﹣(﹣+)÷(﹣2) (4)﹣14+(1﹣0.5)××[2﹣(﹣3)2].第3页(共22页)17.(1)2ax 2﹣3ax 2﹣7ax 2 (2)﹣(﹣2x 2y )﹣(+3xy 2)﹣2(﹣5x 2y +2xy 2)18.先化简,后求值:﹣3(﹣x 2+xy )+2y 2﹣2(2y 2﹣xy ),其中x=,y=﹣1.四、解答题(19-21题每小题6分,22题7分,共25分)19.如图所示的几何体是由7个相同的小正方体搭成的,请画出它的左视图和俯视图.20.小明在对代数式2x 2+ax ﹣y +6﹣2bx 2+3x ﹣5y +1化简后,没有含x 的项,请求出代数式(a ﹣b )2的值.21.2014年国庆十一黄金周期间,据统计,来成都古镇旅游的人数变化情况如下表(正数表示比前一天多的人数,负数表示比前一天少的人数)(1)若9月30日古镇的游客人数为a 万人,则10月1日的游客人数为 万人;七天内游客人数最大的是10月 日;(2)若9月30日游客人数为0.3万人,而2013年黄金周7天游客总数为2.4万人,那么2014年“十一”黄金周比2013年同期游客总数增长的百分率是多少?第4页(共22页)22.把正整数1,2,3,4,…,2014排列成如图所示的一个表x ,另外没有被覆盖的数用含x 的式子表示出来,从小到大依次是 、 、 .(2)没有被阴影覆盖的这四个数之和能等于96吗?若能,请求出x 的值;若不能,请说明理由.(3)那这四个数之和又能否等于3282呢?如果能,请求出x 的值;如果不能,请说明理由.23.若3x |n |﹣(n ﹣4)x ﹣3是关于x 的四次三项式,则n 的值为 .24.有理数a ,b ,c 在数轴上的位置如图所示, 则化简:|a ﹣b |﹣|c ﹣a |﹣|b +c |= .25.如图,一个正方体,6个面上分别写着6个连续的整数,且每个相对面上的两个数之和相等,如图所示,你能看到的数为9、12、13,则六个整数之和为 .26.圣诞节将至,小华决定购买一些贺卡,贺卡店有一则广告如图:(1)如果小华只买15张,则购买贺卡共花去多少元钱?(2)如果小华购买x张,请用含x的代数式表示小华所花的费用;(3)如果小华此次购买共花去360元,请问购买贺卡可能多少张?27.请观察下列算式,找出规律并填空.如图所示数表,从1开始的连续自然数组成,观察规律并完成下列各题:(1)请问第六排从左到右的第二个数是;(2)设第n排右边最后一个数字为y,请用含n的代数式表示y.第5页(共22页)四川省成都七中育才学校七年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.﹣的相反数是()A.﹣2 B.﹣ C. D.2【考点】相反数.【分析】根据相反数的意义解答即可.【解答】解:由相反数的意义得:﹣的相反数是.故选C.2.10月24日成都第十五届西博会新疆代表团签约175亿元合作项目,175亿元用科学记数法表示为()A.1.75×109元 B.1.75×1010元 C.0.175×1011元D.17.5×109元【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:175亿=175********=1.75×1010,故选:B.3.若单项式﹣2x m﹣1y mn与7x3y2是同类项,则代数式m﹣n的值是()第6页(共22页)A.﹣ B.2 C. D.﹣2【考点】同类项;代数式求值.【分析】根据同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,可得答案.注意同类项与字母的顺序无关,与系数无关.【解答】解:由题意,得m﹣1=3,mn=2,解得m=4,n=,m﹣n=4﹣=,故选:C.4.用平面截一个几何体,如果截面的形状是长方形(或正方形),那么该几何体不可能是()A.圆柱B.棱柱C.圆锥D.正方体【考点】截一个几何体.【分析】用一个平面截一个几何体得到的面叫做几何体的截面.【解答】解:A、圆柱的轴截面是长方形,不符合题意;B、棱柱的轴截面是长方形,不符合题意;C、圆锥的截面为与圆有关的或与三角形有关的形状,符合题意;D、正方体的轴截面是正方形,不符合题意;故选C.5.数轴上到﹣4的距离等于5个单位长度的点表示的数是()第7页(共22页)A.5或﹣5 B.1 C.﹣9 D.1或﹣9【考点】数轴.【分析】设该点表示的数为x,由距离的定义可得到关于x的方程,可求得答案.【解答】解:设该点表示的数为x,由题意可得|x﹣(﹣4)|=5,∴x+4=5或x+4=﹣5,解得x=1或x=﹣9,即该点表示的数是1或﹣9,故选D.6.若m、n满足|2m+3|+(n﹣2)4=0,则m n的值等于()A. B. C.﹣ D.0【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】根据非负数的性质列方程求出m、n的值,然后代入代数式进行计算即可得解.【解答】解:由题意得,2m+3=0,n﹣2=0,解得m=﹣,n=2,所以,m n=(﹣)2=.故选A.第8页(共22页)7.下列(1)=3a﹣2、(2)r+3>0、(3)3s+4=s、(4)x+7y=36,是一元一次方程的有()个.A.1 B.2 C.3 D.4【考点】一元一次方程的定义.【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程,它的一般形式是ax+b=0(a,b是常数且a≠0).【解答】解:(1)=3a﹣2、(3)3s+4=s是一元一次方程,故选:B.8.下列各组数据中,结果相等的是()A.(﹣1)4与﹣14B.﹣|﹣3|与﹣(﹣3)C.D.【考点】有理数的乘方.【分析】根据有理数的乘方,逐一计算,即可解答.【解答】解:A、(﹣1)4=1,﹣14=﹣1,1≠﹣1,故错误;B、﹣|﹣3|=﹣3,﹣(﹣3)=3,﹣3≠3,故错误;C、,,,故错误;D、,,相等,正确.故选:D.9.下面是小丽同学做的合并同类项的题,其中正确的是()A.2a+3b=6ab B.ab﹣ba=0 C.5a3﹣4a3=1 D.﹣a﹣a=0第9页(共22页)第10页(共22页)【考点】合并同类项.【分析】本题考查同类项的概念,含有相同的字母,并且相同字母的指数相同,是同类项的两项可以合并,否则不能合并.合并同类项的法则是系数相加作为系数,字母和字母的指数不变.【解答】解:A 、2a 与3b 不是同类项,不能合并.错误;B 、ab ﹣ba=0.正确;C 、5a 3﹣4a 3=a 3.错误;D 、﹣a ﹣a=﹣2a .错误.故选B .10.如图,正方形ABCD 的边长为3cm ,以直线AB 为轴,将正方形旋转一周,所得几何体的主视图的面积是( )A .9cm 2B .9πcm 2C .18πcm 2D .18cm 2【考点】圆柱的计算.【分析】易得此几何体为圆柱,主视图为长方形,面积=底面直径×高.【解答】解:所得几何体的主视图的面积是2×3×3=18cm 2.故选D .二、填空题(每小题3分,共15分)11.比较大小:﹣3 < 2;﹣ > ﹣;﹣π < ﹣3.14.【考点】实数大小比较.【分析】根据正数都大于负数,两个负数比较大小,其绝对值大的反而小比较即可.第11页(共22页)【解答】解:﹣3<2,∵|﹣|=,|﹣|=,∴﹣>﹣,﹣π<﹣3.14,故答案为:<,>,<.12.多项式是 三 次 三 项式. 【考点】多项式.【分析】根据多项式的定义,即可解答.【解答】解:多项式是三次三项式,故答案为:三,三.13.如图是一个正方体盒子的展开图,在其中三个正方形A 、B 、C 内分别添入适当的数,使他们折成正方体后相对的面上的两个数互为相反数,则添入正方形A 、B 、C 内的三个数中最小的是 B 面.【考点】专题:正方体相对两个面上的文字;有理数大小比较.【分析】本题可根据图形的折叠性,对图形进行分析,可知A 对应﹣1,B 对应2,C 对应0.两数互为相反数,和为0,据此可解此题.【解答】解:由图可知A 对应﹣1,B 对应2,C 对应0.∵﹣1的相反数为1,2的相反数为﹣2,0的相反数为0,∴A=1,B=﹣2,C=0,∴添入正方形A、B、C内的三个数中最小的是B面.故答案为:B.14.若方程3x+2a=12和方程2x﹣4=12的解相同,则a的值为﹣6.【考点】同解方程.【分析】本题中有2个方程,且是同解方程,一般思路是:先求出不含字母系数的方程的解,再把解代入到含有字母系数的方程中,求字母系数的值.【解答】解:解方程2x﹣4=12,得:x=8,把x=8代入3x+2a=12,得:3×8+2a=12,解得:a=﹣6.故答案为:﹣6.15.当x=1时,代数式ax2+bx﹣1的值为3,则代数式﹣2a﹣b﹣2的值为﹣10.【考点】代数式求值.【分析】将x=1代入可求得a+=4,然后等式两边同时乘以﹣2得:﹣2a﹣b=﹣8,最后代入计算即可.【解答】解:将x=1代入得:a+﹣1=3,∴a+=4.等式两边同时乘以﹣2得:﹣2a﹣b=﹣8.∴﹣2a﹣b﹣2=﹣8﹣2=﹣10.第12页(共22页)故答案为:﹣10.三、计算题(16、17题每小题4分,18题6分,共30分)16.(1)﹣4﹣28﹣(﹣29)+(﹣24)(2)2×(﹣3)2﹣×(﹣22)+6(3)﹣(﹣+)÷(﹣2)(4)﹣14+(1﹣0.5)××[2﹣(﹣3)2].【考点】有理数的混合运算.【分析】(1)首先计算除法,然后从左向右依次计算即可.(2)首先计算乘方和乘法,然后从左向右依次计算即可.(3)首先计算小括号里面的加法,然后计算除法和减法即可.(4)首先计算乘方和括号里面的运算,然后计算乘法和加法即可.【解答】解:(1)﹣4﹣28﹣(﹣29)+(﹣24)=﹣32+29﹣24=﹣3﹣24=﹣27(2)2×(﹣3)2﹣×(﹣22)+6=2×9﹣×(﹣4)+6=18+1+6=25第13页(共22页)(3)﹣(﹣+)÷(﹣2)=﹣(﹣)÷(﹣2)=﹣=0(4)﹣14+(1﹣0.5)××[2﹣(﹣3)2]=﹣1+××[2﹣9]=﹣1+×(﹣7)=﹣1﹣=﹣217.(1)2ax2﹣3ax2﹣7ax2(2)﹣(﹣2x2y)﹣(+3xy2)﹣2(﹣5x2y+2xy2)【考点】整式的加减.【分析】(1)原式合并同类项即可得到结果;(2)原式去括号合并即可得到结果.【解答】解:(1)原式=(2﹣3﹣7)ax2=﹣8ax2;(2)原式=2x2y﹣3xy2+10x2y﹣4xy2=12x2y﹣7xy2.18.先化简,后求值:﹣3(﹣x2+xy)+2y2﹣2(2y2﹣xy),其中x=,y=﹣1.【考点】整式的加减—化简求值.第14页(共22页)【分析】原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=x2﹣2xy+2y2﹣4y2+2xy=x2﹣2y2,当x=,y=﹣1时,原式=﹣2=﹣1.四、解答题(19-21题每小题6分,22题7分,共25分)19.如图所示的几何体是由7个相同的小正方体搭成的,请画出它的左视图和俯视图.【考点】作图﹣三视图.【分析】左视图有3列,每列小正方数形数目分别为3,2,1,俯视图有3列,每列小正方形数目分别为1,1,2.再根据小正方形的位置可画出图形.【解答】解:如图所示:20.小明在对代数式2x2+ax﹣y+6﹣2bx2+3x﹣5y+1化简后,没有含x的项,请求出代数式(a﹣b)2的值.【考点】多项式.【分析】代数式合并后,根据其值与x取值无关,确定出a与b的值,即可求出所求式子的值.第15页(共22页)【解答】解:原式=(2﹣2b)x2+(a+3)x﹣6y+5,由代数式的值与字母x的取值无关,得到2﹣2b=0,a+3=0,解得:a=﹣3,b=1,则(a﹣b)2=16.21.2014年国庆十一黄金周期间,据统计,来成都古镇旅游的人数变化情况如下表(正数表示比前一天多的人数,负数表示比前一天少的人数)(1)若9月30日古镇的游客人数为a万人,则10月1日的游客人数为a+0.6万人;七天内游客人数最大的是10月3日;(2)若9月30日游客人数为0.3万人,而2013年黄金周7天游客总数为2.4万人,那么2014年“十一”黄金周比2013年同期游客总数增长的百分率是多少?【考点】列代数式;正数和负数.【分析】(1)根据表格中的数据可以解答本题;(2)根据(1)中的答案和表格中的数据可以解答本题.【解答】解:(1)由题意可得,10月1日游客为:a+0.6,10月2日游客为:a+0.6+0.8=a+1.4,10月3日游客为:a+1.4+0.4=a+1.8,10月4日游客为:a+1.8﹣0.4=a+1.4,10月5日游客为:a+1.4﹣0.8=a+0.6,第16页(共22页)10月6日游客为:a+0.6+0.2=a+0.8,10月7日游客为:a+0.8﹣0.8=a,故答案为:(a+0.6),3;(2)∵9月30日游客人数0.3万人,∴2014年黄金周7天游客总数为0.3+1.4+0.3+0.6+0.3+1.8+0.3+1.4+0.3+0.6+0.3+0.8+0.3=8.7万人,∴2014年“十一”黄金周比2013年同期游客总数增长的百分率是.22.把正整数1,2,3,4,…,2014排列成如图所示的一个表(1)用一正方形在表中随意框住16个数,把其中没有被阴影覆盖的最小的数记为x,另外没有被覆盖的数用含x的式子表示出来,从小到大依次是x+3、x+24、x+27.(2)没有被阴影覆盖的这四个数之和能等于96吗?若能,请求出x的值;若不能,请说明理由.(3)那这四个数之和又能否等于3282呢?如果能,请求出x的值;如果不能,请说明理由.第17页(共22页)【考点】一元一次方程的应用;列代数式.【分析】(1)观察数列的排列方式即可得出:每行有8个数,同行相邻两列数差为1,同列相邻两行的差为8.根据最小的数为x结合正方形的性质即可得出其它三个数;(2)根据(1)将此四个数相加,令其等于96即可得出关于x的一元一次方程,解之即可求出x的值,由x不是正整数即可得出这四个数之和不能等于96;(3)根据(1)将此四个数相加,令其等于3282即可得出关于x的一元一次方程,解之即可求出x的值,由x为正整数即可得出结论.【解答】解:(1)观察数列可知:每行有8个数,同行相邻两列数差为1,同列相邻两行的差为8.∵最小的数记为x,∴另外三个数分别为:x+3,x+24,x+27.故答案为:x+3;x+24;x+27.(2)没有被阴影覆盖的这四个数之和不能等于96,理由如下:四个数之和为x+x+3+x+24+x+27=4x+54,∴4x+54=96,解得:x=10.5,∵x为正整数,∴没有被阴影覆盖的这四个数之和不能等于96.(3)根据题意得:4x+54=3282,解得:x=807.答:这四个数之和能等于3282,此时x的值为807.第18页(共22页)23.若3x|n|﹣(n﹣4)x﹣3是关于x的四次三项式,则n的值为﹣4.【考点】多项式.【分析】根据题意得|n|=4且n≠4,得出n的值即可.【解答】解:∵3x|n|﹣(n﹣4)x﹣3是关于x的四次三项式,∴|n|=4且n≠4,∴n=﹣4,故答案为﹣4.24.有理数a,b,c在数轴上的位置如图所示,则化简:|a﹣b|﹣|c﹣a|﹣|b+c|=﹣c.【考点】整式的加减;数轴;绝对值.【分析】根据数轴得出a﹣b,c﹣a,b+c的符号,再去绝对值即可.【解答】解:由数轴得a<﹣1<b<0<1<c,∴|a﹣b|﹣|c﹣a|﹣|b+c|=b﹣a﹣c+a﹣b﹣c=﹣c,故答案为﹣c.25.如图,一个正方体,6个面上分别写着6个连续的整数,且每个相对面上的两个数之和相等,如图所示,你能看到的数为9、12、13,则六个整数之和为69.第19页(共22页)【考点】专题:正方体相对两个面上的文字.【分析】由平面图形的折叠及立体图形的表面展开图的特点解题,根据题意分析可得:六个面上分别写着六个连续的整数,故六个整数可能为9,10,11,12,13,14或8,9,10,11,12,13,然后分析符合题意的一组数即可.【解答】解:根据题意分析可得:六个面上分别写着六个连续的整数,故六个整数可能为9,10,11,12,13,14,或8,9,10,11,12,13,且每个相对面上的两个数之和相等,13+10=23,12+11=23,9+14=23,故只可能为9,10,11,12,13,14,其和为69.故答案为:69.26.圣诞节将至,小华决定购买一些贺卡,贺卡店有一则广告如图:(2)如果小华购买x张,请用含x的代数式表示小华所花的费用;(3)如果小华此次购买共花去360元,请问购买贺卡可能多少张?【考点】一元一次方程的应用;列代数式.第20页(共22页)【分析】(1)根据总价=单价×数量,列式计算即可;(2)设小华所花的费用为y元,分0<x≤20和x>20两种情况找出y关于x的代数式,此题得解;(3)先求出购买20和21张贺卡的总钱数,将其与360元进行比较即可得出小华此次购买贺卡张数可能多于21也可能少于20,将y=360代入(2)的关系式中即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:(1)20×15=300(元).答:如果小华只买15张,则购买贺卡共花去300元钱.(2)设小华所花的费用为y元,根据题意可知:当0<x≤20时,y=20x;当x>20时,y=0.75×20x=15x.∴小华所花的费用y=.(3)∵20×20=400(元),21×15=315(元),315<360<400,∴若购买贺卡花去360元,则小华此次购买贺卡张数可能多于21也可能少于20,∴当y=360时,有20x=360或15x=360,解得:x=18或x=24.答:如果小华此次购买共花去360元,请问购买贺卡可能为18或24张.27.请观察下列算式,找出规律并填空.如图所示数表,从1开始的连续自然数组成,观察规律并完成下列各题:(1)请问第六排从左到右的第二个数是17;(2)设第n排右边最后一个数字为y,请用含n的代数式表示y.第21页(共22页)【考点】规律型:数字的变化类.【分析】由数表可知:每一行的数字个数与所在的行数相等,偶数行最后一个数可表示n(n+1),奇数行第一个数可表示n(n+1),由此规律分析得出答案即可.【解答】解:(1)第五排的第一个数字为×5×(5+1)=15,所以第六排从左到右的第二个数是17;(2)设第n排右边最后一个数字为y,偶数行y=n(n+1),奇数行y=n(n﹣1)+1.第22页(共22页)。

成都市七中育才学校(新校区)初中数学七年级上期中知识点总结(答案解析)

成都市七中育才学校(新校区)初中数学七年级上期中知识点总结(答案解析)

一、选择题1.81x>0.8x,所以在乙超市购买合算.故选B.【点睛】本题看起来很繁琐,但只要理清思路,分别计算降价后的价格是原价的百分之多少便可判断.渗透了转化思想.2.中国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是,有人要去某关口,路程378里,第一天健步行走,第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地,则此人第六天走的路程为()A.24里B.12里C.6里D.3里3.如图,直线AB,CD相交于点O,射线OM平分∠AOC,ON⊥OM,若∠AOM=35°,则∠CON的度数为()A.35°B.45°C.55°D.65°4.x=5是下列哪个方程的解()A.x+5=0B.3x﹣2=12+xC.x﹣15x=6D.1700+150x=24505.7-的绝对值是()A.17-B.17C.7D.7-6.下面四个图形中,是三棱柱的平面展开图的是( )A.B.C.D.7.将一副三角板如图摆放,∠OAB=∠OCD=90°,∠AOB=60°,∠COD=45°,OM平分∠AOD,ON平分∠COB,则∠MON的度数为()A .60°B .45°C .65.5°D .52.5°8.如图,用火柴棒摆出一列正方形图案,第①个图案用了 4 根,第②个图案用了 12 根,第③个图案用了 24 根,按照这种方式摆下去,摆出第⑥个图案用火柴棒的根数是( )A .84B .81C .78D .76 9.一家健身俱乐部收费标准为180元/次,若购买会员年卡,可享受如下优惠: 会员年卡类型办卡费用(元) 每次收费(元) A 类1500 100 B 类3000 60 C 类 4000 40例如,购买A 类会员年卡,一年内健身20次,消费1500100203500+⨯=元,若一年内在该健身俱乐部健身的次数介于50-60次之间,则最省钱的方式为( )A .购买A 类会员年卡B .购买B 类会员年卡C .购买C 类会员年卡D .不购买会员年卡10.小明在利用完全平方公式计算一个二项整式的平方时,不小心用墨水把最后一项染黑了,得到正确的结果变为2412a ab -+( ),你觉得这一项应是( )A .23bB .26bC .29bD .236b11.如图所示几何体的左视图是( )A .B .C .D .12.下列各图经过折叠后不能围成一个正方体的是( )A.B.C.D.13.有理数a、b、c在数轴上的对应点如图,下列结论中,正确的是()A.a>c>b B.a>b>c C.a<c<b D.a<b<c 14.000043的小数点向右移动5位得到4.3,所以0.000043用科学记数法表示为4.3×10﹣5,故选A.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.15.有理数a,b在数轴上的对应点如图所示,则下面式子中正确的是()①b<0<a;②|b|<|a|;③ab>0;④a﹣b>a+b.A.①②B.①④C.②③D.③④二、填空题16.一个角与它的补角之差是20°,则这个角的大小是____.17.如图,用代数式表示图中阴影部分的面积为___________________.18.某商品按标价八折出售仍能盈利b元,若此商品的进价为a元,则该商品的标价为_________元.(用含a,b的代数式表示).19.若关于x的方程2ax=(a+1)x+6的解为正整数,求整数a的值_____.20.把六张形状大小完全相同的小长方形卡片(如图 1)不重叠地放在一个底面为长方形(长为 20cm,宽为 16cm)的盒子底部(如图 2),盒子底面未被卡片覆盖的部分用阴影表示.则图 2 中两块阴影部分周长的和是_________.21.已知x=3是方程ax﹣6=a+10的解,则a= .所对应的点相距4个单位长度的点表示的数是______.22.在数轴上与223.下面每个表格中的四个数都是按相同规律填写的:根据此规律确定x的值为_______.24.用黑白两色的正方形纸片,按黑色纸片数逐渐加1的规律拼成一列图案:则第n个图案中有白色纸片________张.25.有理数a、b、c在数轴上的位置如图所示,化简:-|c-a|+|b|+|a|-|c|= ________.三、解答题26.有一批共享单车需要维修,维修后继续投放骑用,现有甲、乙两人做维修,甲每天维修16辆,乙每天维修的车辆比甲多8辆,甲单独维修完成这批共享单车比乙单独维修完多用20天,公司每天付甲80元维修费,付乙120元维修费.(1)问需要维修的这批共享单车共有多少辆?(2)在维修过程中,公司要派一名人员进行质量监督,公司负担他每天10元补助费,现有三种维修方案:①由甲单独维修;②由乙单独维修;③甲、乙合作同时维修,你认为哪种方案最省钱,为什么?27.小明早晨跑步,他从自己家出发,向东跑了2km到达小彬家,继续向东跑了1.5km到达小红家,然后又向西跑了4.5km到达学校,最后又向东跑回到自己家.(1)以小明家为原点,向东为正方向,用1个单位长度表示1km,在图中的数轴上,分别用点A表示出小彬家,用点B表示出小红家,用点C表示出学校的位置;(2)求小彬家与学校之间的距离;(3)如果小明跑步的速度是250米/分钟,那么小明跑步一共用了多长时间?28.5+(2.5−1)=4;故答案为:4.(3)依题意可得AB=t+2t+3=3t+3,AC=t+4t+9=5t+9,BC=2t+6;故答案为:3t+3;5t+9;2t+6.(4)不变.3BC−2AB=3(2t+6)−2(3t+3)=12.【点睛】本题主要考查了一元一次方程的应用、数轴及两点间的距离,解题的关键是利用数轴的特点能求出两点间的距离.29.初一(7)班数学学习小组“孙康映雪”在学习了第七章平面图形的认识(二)后对几何学习产生了浓厚的兴趣.请你认真研读下列三个片断,并完成相关问题.如图1,直线OM⊥ON,垂足为O,三角板的直角顶点C落在∠MON的内部,三角板的另两条直角边分别与ON、OM交于点D和点B.(片断一)小孙说:由四边形内角和知识很容易得到∠OBC+∠ODC的值.如果你是小孙,得到的正确答案应是:∠OBC+∠ODC = °.(片断二)小康说:连结BD(如图2),若BD平分∠OBC,那么BD也平分∠ODC.请你说明当BD平分∠OBC时,BD也平分∠ODC的理由.(片断三)小雪说:若DE平分∠ODC、BF平分∠MBC,我发现DE与BF具有特殊的位置关系.请你先在备用图中补全图形,再判断DE与BF有怎样的位置关系并说明理由.30.解方程:x+12=2−x3−1【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题题号1 2 3 4 5 6 7 8 9 10 11 12 13 14 15答 C C D C C D A C C B D C B二、填空题16.100°【解析】【分析】设这个角为α根据互为补角的两个角的和等于180°表示出它的补角然后列出方程求出α即可【详解】设这个角为α则它的补角180°-α根据题意得α-(180°-α)=20°解得:α=17.【解析】阴影部分的面积等于长方形的面积减去两个小扇形的面积差长方形的面积是ab两个扇形的圆心角是90∘∴这两个扇形是分别是半径为b的圆面积的四分之一∴【点睛】本题考查了列代数式由数和表示数的字母经有18.【解析】【分析】首先设标价x元由题意得等量关系:标价×打折﹣利润=进价代入相应数值再求出x的值【详解】设标价x元由题意得:80x﹣b=a解得:x=故答案为:【点睛】此题主要考查了列代数式解决问题的关19.2347【解析】【分析】把a看做已知数表示出方程的解由方程的解为正整数确定出整数a的值即可【详解】方程整理得:(a﹣1)x=6解得:x=由方程的解为正整数即为正整数得到整数a=2347故答案为:2320.64【解析】试题分析:设小长方形的长为xcm宽为ycm根据题意得:20=x+3y则图②中两块阴影部分周长和是:40+2(16-3y)+2(16-x)=40+64-6y-2x=40+64-2(x+3y21.8【解析】【分析】将x=3代入方程ax﹣6=a+10然后解关于a的一元一次方程即可【详解】∵x=3是方程ax﹣6=a+10的解∴x=3满足方程ax﹣6=a+10∴3a﹣6=a+10解得a=8故答案为22.2或﹣6【解析】解:当该点在﹣2的右边时由题意可知:该点所表示的数为2当该点在﹣2的左边时由题意可知:该点所表示的数为﹣6故答案为2或﹣6点睛:本题考查数轴涉及有理数的加减运算分类讨论的思想23.301【解析】【分析】根据所给图形的数字的规律进行求解即可【详解】解:由图像的:表格中中的左上的数字分别为:1234可得第n个表格中的数字为:n;表格中中的右上的数字分别为:36912可得第n个表格24.3n+1【解析】【分析】试题分析:观察图形发现:白色纸片在4的基础上依次多3个;根据其中的规律用字母表示即可【详解】解:第1个图案中有白色纸片3×1+1=4张第2个图案中有白色纸片3×2+1=7张第25.b+2c【解析】【分析】由图可知c-a<0根据正数的绝对值等于它本身负数的绝对值等于它的相反数分别求出绝对值再根据整式的加减运算去括号合并同类项即可【详解】由图可知c<00<a<b则c-a<0原式=三、解答题26.27.28.无29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题二、填空题16.100°【解析】【分析】设这个角为α根据互为补角的两个角的和等于180°表示出它的补角然后列出方程求出α即可【详解】设这个角为α则它的补角180°-α根据题意得α-(180°-α)=20°解得:α=解析:100°【解析】【分析】设这个角为α,根据互为补角的两个角的和等于180°表示出它的补角,然后列出方程求出α即可.【详解】设这个角为α,则它的补角180°-α, 根据题意得,α-(180°-α)=20°,解得:α=100°,故答案为100°.【点睛】本题考查了余角和补角的概念,是基础题,设出这个角并表示出它的补角是解题的关键.17.【解析】阴影部分的面积等于长方形的面积减去两个小扇形的面积差长方形的面积是ab 两个扇形的圆心角是90∘∴这两个扇形是分别是半径为b 的圆面积的四分之一∴【点睛】本题考查了列代数式由数和表示数的字母经有 解析:212ab b π- 【解析】阴影部分的面积等于长方形的面积减去两个小扇形的面积差.长方形的面积是ab ,两个扇形的圆心角是90∘,∴这两个扇形是分别是半径为b 的圆面积的四分之一. ∴2211242ab b ab b ππ-⨯=- . 【点睛】 本题考查了列代数式, 由数和表示数的字母经有限次加、减、乘、除、乘方和开方等代数运算所得的式子,或含有字母的数学表达式称为代数式.理解图意得到阴影部分的面积长方形的面积-2个14圆的面积是解题的关键. 18.【解析】【分析】首先设标价x 元由题意得等量关系:标价×打折﹣利润=进价代入相应数值再求出x 的值【详解】设标价x 元由题意得:80x ﹣b=a 解得:x=故答案为:【点睛】此题主要考查了列代数式解决问题的关 解析:5()4a b + 【解析】【分析】首先设标价x 元,由题意得等量关系:标价×打折﹣利润=进价,代入相应数值,再求出x 的值.【详解】设标价x 元,由题意得:80%x ﹣b=a ,解得:x=5()4a b +,故答案为:5()4a b+.【点睛】此题主要考查了列代数式,解决问题的关键是读懂题意,找到所求的量的等量关系,标价×打折﹣利润=进价.19.2347【解析】【分析】把a看做已知数表示出方程的解由方程的解为正整数确定出整数a的值即可【详解】方程整理得:(a﹣1)x=6解得:x=由方程的解为正整数即为正整数得到整数a=2347故答案为:23解析:2,3,4,7【解析】【分析】把a看做已知数表示出方程的解,由方程的解为正整数,确定出整数a的值即可.【详解】方程整理得:(a﹣1)x=6,解得:x=61 a-,由方程的解为正整数,即61a-为正整数,得到整数a=2,3,4,7,故答案为:2,3,4,7【点睛】本题考查了求解一元一次方程的解法,解题的关键是得出关于a的等式.20.64【解析】试题分析:设小长方形的长为xcm宽为ycm根据题意得:20=x+3y则图②中两块阴影部分周长和是:40+2(16-3y)+2(16-x)=40+64-6y-2x=40+64-2(x+3y解析:64【解析】试题分析:设小长方形的长为xcm,宽为ycm,根据题意得:20=x+3y,则图②中两块阴影部分周长和是:40+2(16-3y)+2(16-x)=40+64-6y-2x=40+64-2(x+3y)=40+64-40=64(cm)考点:代数式的应用.21.8【解析】【分析】将x=3代入方程ax﹣6=a+10然后解关于a的一元一次方程即可【详解】∵x=3是方程ax﹣6=a+10的解∴x=3满足方程ax﹣6=a+10∴3a﹣6=a+10解得a=8故答案为解析:8【解析】【分析】将x=3代入方程ax﹣6=a+10,然后解关于a的一元一次方程即可.【详解】∵x=3是方程ax﹣6=a+10的解,∴x=3满足方程ax﹣6=a+10,∴3a﹣6=a+10,解得a=8.故答案为8.22.2或﹣6【解析】解:当该点在﹣2的右边时由题意可知:该点所表示的数为2当该点在﹣2的左边时由题意可知:该点所表示的数为﹣6故答案为2或﹣6点睛:本题考查数轴涉及有理数的加减运算分类讨论的思想解析:2或﹣6【解析】解:当该点在﹣2的右边时,由题意可知:该点所表示的数为2,当该点在﹣2的左边时,由题意可知:该点所表示的数为﹣6.故答案为2或﹣6.点睛:本题考查数轴,涉及有理数的加减运算、分类讨论的思想.23.301【解析】【分析】根据所给图形的数字的规律进行求解即可【详解】解:由图像的:表格中中的左上的数字分别为:1234可得第n个表格中的数字为:n;表格中中的右上的数字分别为:36912可得第n个表格解析:301【解析】【分析】根据所给图形的数字的规律进行求解即可.【详解】解:由图像的:表格中中的左上的数字分别为:1、2、3、4,可得第n个表格中的数字为:n;表格中中的右上的数字分别为:3、6、9、12,可得第n个表格中的数字为:3n,得最后一个中右上数字为21,可得为第7个表格,故a=7;表格中中的右上的数字分别为:2、4、6、8,可得第n个表格中的数字为:2n,故b=14;结合前4个表格可知,右下的数值=左下×右上+左下,故x=21×14+7=301,故【点睛】本题主要考查规律形数字的变化,能熟练找出规律是解题的关键.24.3n+1【解析】【分析】试题分析:观察图形发现:白色纸片在4的基础上依次多3个;根据其中的规律用字母表示即可【详解】解:第1个图案中有白色纸片3×1+1=4张第2个图案中有白色纸片3×2+1=7张第解析:3n+1【解析】【分析】试题分析:观察图形,发现:白色纸片在4的基础上,依次多3个;根据其中的规律,用字母表示即可.【详解】解:第1个图案中有白色纸片3×1+1=4张第2个图案中有白色纸片3×2+1=7张,第3图案中有白色纸片3×3+1=10张,…第n个图案中有白色纸片=3n+1张.故答案为3n+1.【点睛】此题主要考查学生对图形的变化类的知识点的理解和掌握,此题的关键是注意发现前后图形中的数量之间的关系.25.b+2c【解析】【分析】由图可知c-a<0根据正数的绝对值等于它本身负数的绝对值等于它的相反数分别求出绝对值再根据整式的加减运算去括号合并同类项即可【详解】由图可知c<00<a<b则c-a<0原式=解析:b+2c【解析】【分析】由图可知, c-a<0,根据正数的绝对值等于它本身,负数的绝对值等于它的相反数,分别求出绝对值,再根据整式的加减运算,去括号,合并同类项即可.【详解】由图可知c<0,0<a<b,则c-a<0,原式=(c-a)+b+a-(-c)=c-a+b+a+c=b+2c.【点睛】本题考查的知识点是整式的加减和绝对值,解题关键是熟记整式的加减运算实际上就是去括号、合并同类项.三、解答题26.(1)960辆;(2)方案三最省钱,理由见详解.【解析】【分析】(1)通过理解题意可知本题的等量关系,即甲乙单独修完共享单车的数量相同,列方程求解即可;(2)分别计算,通过比较选择最省钱的方案.【详解】解:(1)设乙单独做需要x天完成,则甲单独做需要(x+20)天,由题意可得:16(x+20)=(16+8)x,解得:x=40,总数:(16+8)×40=960(辆),∴这批共享单车一共有960辆;(2)方案一:甲单独完成:60×80+60×10=5400(元),方案二:乙单独完成:40×120+40×10=5200(元),方案三:甲、乙合作完成:960÷(16+24)=24(天),则一共需要:24×(120+80)+24×10=5040(元),>>,∵540052005040∴方案三最省钱.【点睛】此题主要考查了一元一次方程的应用,正确得出等量关系是解题关键.27.(1)画图见解析;(2)小彬家与学校之间的距离是3km;(3)小明跑步共用了36分钟.【解析】试题分析:(1)根据题意画出即可;(2)计算 2﹣(﹣1)即可求出答案;(3)求出每个数的绝对值,相加可求小明一共跑了的路程,再根据时间=÷速度即可求出答案.试题解析:(1)如图所示:(2)小彬家与学校的距离是:2﹣(﹣1)=3(km).故小彬家与学校之间的距离是 3km;(3)小明一共跑了(2+1.5+1)×2=9(km),小明跑步一共用的时间是:9000÷250=36(分钟).答:小明跑步一共用了 36 分钟长时间.28.29.(1)180°;(2)见解析;(3)DE⊥BF.【解析】【分析】(1)根据四边形的性质,可得答案;(2)根据三角形内角和定理和角平分线的定义即可求解;(3)根据补角的性质,可得∠CBM=∠ODC,根据相似三角形的判定与性质,可得答案.【详解】(1)由四边形内角的性质,得,∠OBC+∠DOB+∠ODC+∠DCB=360°,∵∠DOB=∠DCB=90°,∴∠OBC+∠ODC=180°;(2)∵∠OBD+∠ODC=180°BD 平分∠OBC∴∠OBD=∠CBD∴∠OBD+∠ODB=90°∴∠CBD+∠ODC=90°∴∠ODB=∠BDC∴BD 平分∠ODC.(3)如图,延长DE 交BF 于G ,,∵∠ODC+∠OBC=∠CBM+∠OBC=180,∴∠CBM=∠ODC ,12∠CBM=∠EBG=12∠ODC=∠EDC . ∵∠BEG=∠DEC ,∴△DEC ∽△BEG ,∴∠BGE=∠DCE=90°,∴DE 垂直BF .【点睛】本题考查了三角形的内角和定理,利用相似三角形的判定与性质是解题关键;利用补角的性质得出∠NDC+∠CBM=180°是解题关键.30.x=-1【解析】【分析】方程去分母,去括号,移项合并,将x 系数化为1,即可求出解;【详解】解:去分母得:3x+3=4-2x-6,移项合并得:5x=-5,解得:x=-1;【点睛】此题考查解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.。

成都市七中育才学校七年级上学期期末数学试题及答案

成都市七中育才学校七年级上学期期末数学试题及答案

成都市七中育才学校七年级上学期期末数学试题及答案一、选择题1.如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是( )A .垂线段最短B .经过一点有无数条直线C .两点之间,线段最短D .经过两点,有且仅有一条直线2.如图,已知线段AB 的长度为a ,CD 的长度为b ,则图中所有线段的长度和为( )A .3a+bB .3a-bC .a+3bD .2a+2b 3.一个角是这个角的余角的2倍,则这个角的度数是( )A .30B .45︒C .60︒D .75︒4.对于方程12132x x +-=,去分母后得到的方程是( ) A .112x x -=+ B .63(12)x x -=+ C .233(12)x x -=+ D .263(12)x x -=+5.如图是小明制作的一张数字卡片,在此卡片上可以用一个正方形圈出44⨯个位置的16个数(如1,2,3,4,8,9,10,11,15,16,17,18,22,23,24,25).若用这样的正方形圈出这张数字卡片上的16个数,则圈出的16个数的和不可能为下列数中的( )A .208B .480C .496D .5926.直线3l 与12,l l 相交得如图所示的5个角,其中互为对顶角的是( )A .3∠和5∠B .3∠和4∠C .1∠和5∠D .1∠和4∠7.下列方程是一元一次方程的是( ) A .213+x =5x B .x 2+1=3x C .32y=y+2 D .2x ﹣3y =18.已知2a ﹣b =3,则代数式3b ﹣6a+5的值为( ) A .﹣4B .﹣5C .﹣6D .﹣79.已知线段AB=8cm ,点C 是直线AB 上一点,BC =2cm ,若M 是AC 的中点,N 是BC 的中点,则线段MN 的长度是( ) A .6cm B .3cm C .3cm 或6cm D .4cm 10.化简(2x -3y )-3(4x -2y )的结果为( )A .-10x -3yB .-10x +3yC .10x -9yD .10x +9y 11.若(1,2)表示教室里第1列第2排的位置,则教室里第2列第3排的位置表示为( ) A .(2,1)B .(3,3)C .(2,3)D .(3,2)12.如果代数式﹣3a 2m b 与ab 是同类项,那么m 的值是( ) A .0B .1C .12D .313.观察一行数:﹣1,5,﹣7,17,﹣31,65,则按此规律排列的第10个数是( ) A .513B .﹣511C .﹣1023D .102514.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y 与n 之间的关系是()A .y=2n+1B .y=2n +nC .y=2n+1+nD .y=2n +n+115.如图,已知点C 在线段AB 上,点M 、N 分别是AC 、BC 的中点,且AB =8cm ,则MN 的长度为( )cm .A .2B .3C .4D .6二、填空题16.一个角的余角等于这个角的13,这个角的度数为________. 17.下面每个正方形中的五个数之间都有相同的规律,根据这种规律,则第4个正方形中间数字m 为________,第n 个正方形的中间数字为______.(用含n 的代数式表示)…………18.把53°24′用度表示为_____. 19.﹣30×(1223-+45)=_____. 20.如图,这是一种数值转换机的运算程序,若第一次输入的数为7,则第2018次输出的数是_____;若第一次输入的数为x ,使第2次输出的数也是x ,则x =_____.21.在一样本容量为80的样本中,已知某组数据的频率为0.7,频数为_____.22.计算221b a a b a b ⎛⎫÷- ⎪-+⎝⎭的结果是______ 23.某水果点销售50千克香蕉,第一天售价为9元/千克,第二天降价6元/千克,第三天再降为3元/千克.三天全部售完,共计所得270元.若该店第二天销售香蕉t 千克,则第三天销售香蕉 千克. 24.15030'的补角是______. 25.52.42°=_____°___′___″. 26.若∠1=35°21′,则∠1的余角是__.27.在数轴上,与表示-3的点的距离为4的点所表示的数为__________________. 28.如果m ﹣n =5,那么﹣3m +3n ﹣5的值是_____.29.众所周知,中华诗词博大精深,集大量的情景情感于短短数十字之间,或豪放,或婉约,或思民生疾苦,或抒发己身豪情逸致,文化价值极高.而数学与古诗词更是有着密切的联系.古诗中,五言绝句是四句诗,每句都是五个字;七言绝句是四句诗,每句都是七个字.有一本诗集,其中五言绝句比七言绝句多13首,总字数却反而少了20个字.问两种诗各多少首?设七言绝句有x 首,根据题意,可列方程为______. 30.已知关于x 的方程4mx x -=的解是1x =,则m 的值为______.三、压轴题31.已知AOD α∠=,OB 、OC 、OM 、ON 是AOD ∠内的射线.(1)如图1,当160α=︒,若OM 平分AOB ∠,ON 平分BOD ∠,求MON ∠的大小; (2)如图2,若OM 平分AOC ∠,ON 平分BOD ∠,20BOC ∠=︒,60MON ∠=︒,求α.32.综合试一试(1)下列整数可写成三个非0整数的立方和:45=_____;2=______.(2)对于有理数a ,b ,规定一种运算:2a b a ab ⊗=-.如2121121⊗=-⨯=-,则计算()()532-⊗⊗-=⎡⎤⎣⎦______. (3)a 是不为1的有理数,我们把11a-称为a 的差倒数.如:2的差倒数是1112=--,1-的差倒数是()11112=--.已知12a =,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,……,以此类推,122500a a a ++⋅⋅⋅+=______.(4)10位裁判给一位运动员打分,每个人给的分数都是整数,去掉一个最高分,再去掉一个最低分,其余得分的平均数为该运动员的得分.若用四舍五入取近似值的方法精确到十分位,该运动员得9.4分,如果精确到百分位,该运动员得分应当是_____分. (5)在数1.2.3...2019前添加“+”,“-”并依次计算,所得结果可能的最小非负数是______(6)早上8点钟,甲、乙、丙三人从东往西直行,乙在甲前400米,丙在乙前400米,甲、乙、丙三人速度分别为120米/分钟、100米/分钟、90米/分钟,问:______分钟后甲和乙、丙的距离相等.33.已知有理数a ,b ,c 在数轴上对应的点分别为A ,B ,C ,且满足(a-1)2+|ab+3|=0,c=-2a+b .(1)分别求a ,b ,c 的值;(2)若点A 和点B 分别以每秒2个单位长度和每秒1个单位长度的速度在数轴上同时相向运动,设运动时间为t 秒.i )是否存在一个常数k ,使得3BC-k•AB 的值在一定时间范围内不随运动时间t 的改变而改变?若存在,求出k 的值;若不存在,请说明理由.ii )若点C 以每秒3个单位长度的速度向右与点A ,B 同时运动,何时点C 为线段AB 的三等分点?请说明理由.34.如图,数轴上点A 表示的数为4-,点B 表示的数为16,点P 从点A 出发,以每秒3个单位长度的速度沿数轴向右匀速运动同时点Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t秒(t0)>.()1A,B两点间的距离等于______,线段AB的中点表示的数为______;()2用含t的代数式表示:t秒后,点P表示的数为______,点Q表示的数为______;()3求当t为何值时,1PQ AB2=?()4若点M为PA的中点,点N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变请直接写出线段MN的长.35.已知,如图,A、B、C分别为数轴上的三点,A点对应的数为60,B点在A点的左侧,并且与A点的距离为30,C点在B点左侧,C点到A点距离是B点到A点距离的4倍.(1)求出数轴上B点对应的数及AC的距离.(2)点P从A点出发,以3单位/秒的速度向终点C运动,运动时间为t秒.①当P点在AB之间运动时,则BP=.(用含t的代数式表示)②P点自A点向C点运动过程中,何时P,A,B三点中其中一个点是另外两个点的中点?求出相应的时间t.③当P点运动到B点时,另一点Q以5单位/秒的速度从A点出发,也向C点运动,点Q到达C点后立即原速返回到A点,那么Q点在往返过程中与P点相遇几次?直.接.写.出.相遇时P点在数轴上对应的数36.我国著名数学家华罗庚曾经说过,“数形结合百般好,隔裂分家万事非.”数形结合的思想方法在数学中应用极为广泛.观察下列按照一定规律堆砌的钢管的横截面图:用含n的式子表示第n个图的钢管总数.(分析思路)图形规律中暗含数字规律,我们可以采用分步的方法,从图形排列中找规律;把图形看成几个部分的组合,并保持结构,找到每一部分对应的数字规律,进而找到整个图形对应的数字规律.如:要解决上面问题,我们不妨先从特例入手: (统一用S表示钢管总数)(解决问题)(1)如图,如果把每个图形按照它的行来分割观察,你发现了这些钢管的堆砌规律了吗?像n=1、n=2的情形那样,在所给横线上,请用数学算式表达你发现的规律.S=1+2 S=2+3+4 _____________ ______________(2)其实,对同一个图形,我们的分析眼光可以是不同的.请你像(1)那样保持结构的、对每一个所给图形添加分割线,提供与(1)不同的分割方式;并在所给横线上,请用数学算式表达你发现的规律:_______ ____________ _______________ _______________(3)用含n的式子列式,并计算第n个图的钢管总数.37.射线OA、OB、OC、OD、OE有公共端点O.(1)若OA与OE在同一直线上(如图1),试写出图中小于平角的角;(2)若∠AOC=108°,∠COE=n°(0<n<72),OB平分∠AOE,OD平分∠COE(如图2),求∠BOD的度数;(3)如图3,若∠AOE=88°,∠BOD=30°,射OC绕点O在∠AOD内部旋转(不与OA、OD重合).探求:射线OC从OA转到OD的过程中,图中所有锐角的和的情况,并说明理由.38.如图①,点O为直线AB上一点,过点O作射线OC,使∠AOC=120°,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图①中的三角板OMN摆放成如图②所示的位置,使一边OM在∠BOC的内部,当OM平分∠BOC时,∠BO N= ;(直接写出结果)(2)在(1)的条件下,作线段NO的延长线OP(如图③所示),试说明射线OP是∠AOC的平分线;(3)将图①中的三角板OMN摆放成如图④所示的位置,请探究∠NOC与∠AOM之间的数量关系.(直接写出结果,不须说明理由)【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【详解】用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,∴线段AB的长小于点A绕点C到B的长度,∴能正确解释这一现象的数学知识是两点之间,线段最短,故选C.【点睛】根据“用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小”得到线段AB的长小于点A绕点C到B的长度,从而确定答案.本题考查了线段的性质,能够正确的理解题意是解答本题的关键,属于基础知识,比较简单.2.A解析:A【解析】【分析】依据线段AB长度为a,可得AB=AC+CD+DB=a,依据CD长度为b,可得AD+CB=a+b,进而得出所有线段的长度和.【详解】∵线段AB长度为a,∴AB=AC+CD+DB=a,又∵CD长度为b,∴AD+CB=a+b,∴图中所有线段的长度和为:AB+AC+CD+DB+AD+CB=a+a+a+b=3a+b,故选A . 【点睛】本题考查了比较线段的长度和有关计算,主要考查学生能否求出线段的长度和知道如何数图形中的线段.3.C解析:C 【解析】 【分析】设这个角为α,先表示出这个角的余角为(90°-α),再列方程求解. 【详解】解:根据题意列方程的:2(90°-α)=α, 解得:α=60°. 故选:C . 【点睛】本题考查余角的概念,关键是先表示出这个角的余角为(90°-α).4.D解析:D 【解析】 【分析】方程两边同乘以6即可求解. 【详解】12132x x +-=, 方程两边同乘以6可得, 2x-6=3(1+2x ). 故选D. 【点睛】本题考查了一元一次方程的解法—去分母,方程两边同乘以各分母的最小公倍数是去分母的基本方法.5.C解析:C 【解析】 【分析】由题意设第一列第一行的数为x ,依次表示每个数,并相加进行分析得出选项. 【详解】解:设第一列第一行的数为x ,第一行四个数分别为,1,2,3x x x x +++, 第二行四个数分别为7,8,9,10x x x x ++++, 第三行四个数分别为14,15,16,17x x x x ++++,第四行四个数分别为21,22,23,24x x x x ++++,16个数相加得到16192x +,当相加数为208时x 为1,当相加数为480时x 为18,相加数为496时x 为19,相加数为592时x 为25,由数字卡片可知,x 为19时,不满足条件. 故选C. 【点睛】本题考查列代数式求解问题,理解题意设未知数并列出方程进行分析即可.6.A解析:A 【解析】 【分析】两条直线相交后所得的有公共顶点,且两边互为反向延长线的两个角互为对顶角,据此逐一判断即可. 【详解】A.3∠和5∠只有一个公共顶点,且两边互为反向延长线,是对顶角,符合题意,B.3∠和4∠两边不是互为反向延长线,不是对顶角,不符合题意,C.1∠和5∠没有公共顶点,不是对顶角,不符合题意,D.1∠和4∠没有公共顶点,不是对顶角,不符合题意, 故选:A. 【点睛】本题考查对顶角,两条直线相交后所得的有公共顶点且两边互为反向延长线的两个角叫做对顶角;熟练掌握对顶角的定义是解题关键.7.A解析:A 【解析】 【分析】只含有一个未知数(元),并且未知数的指数是1次的整式方程叫做一元一次方程,它的一般形式是ax+b =0(a ,b 是常数且a≠0).据此可得出正确答案. 【详解】 解:A 、213+x =5x 符合一元一次方程的定义; B 、x 2+1=3x 未知数x 的最高次数为2,不是一元一次方程; C 、32y=y+2中等号左边不是整式,不是一元一次方程; D 、2x ﹣3y =1含有2个未知数,不是一元一次方程; 故选:A . 【点睛】解题的关键是根据一元一次方程的定义,未知数x 的次数是1这个条件.此类题目可严格按照定义解题.8.A解析:A【解析】【分析】由已知可得3b﹣6a+5=-3(2a﹣b)+5,把2a﹣b=3代入即可.【详解】3b﹣6a+5=-3(2a﹣b)+5=-9+5=-4.故选:A【点睛】利用乘法分配律,将代数式变形.9.D解析:D【解析】【分析】根据线段的和与差,可得MB的长,根据线段中点的定义,即可得出答案.【详解】当点C在AB的延长线上时,如图1,则MB=MC-BC,∵M是AC的中点,N是BC的中点,AB=8cm,∴MC=11()22AC AB BC=+,BN=12BC,∴MN=MB+BN,=MC-BC+BN,=1()2AB BC+-BC+12BC,=12 AB,=4,同理,当点C在线段AB上时,如图2,则MN=MC+NC=12AC+12BC=12AB=4,,故选:D.【点睛】本题考查了线段的和与差,线段中点的定义,掌握线段中点的定义是解题的关键.10.B解析:B【解析】分析:先按照去括号法则去掉整式中的小括号,再合并整式中的同类项即可.详解:原式=2x﹣3y﹣12x+6y=﹣10x+3y.故选B.点睛:本题考查了整式的加减、去括号法则两个考点.解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则,这是各地中考的常考点.11.C解析:C【解析】【分析】根据数对(1,2)表示教室里第1列第2排的位置,可知第一个数字表示列,第二个数字表示排,由此即可求得答案.【详解】∵(1,2)表示教室里第1列第2排的位置,∴教室里第2列第3排的位置表示为(2,3),故选C.【点睛】本题考查了数对表示位置的方法的灵活应用,分析出数对表示的意义是解题的关键. 12.C解析:C【解析】【分析】根据同类项的定义得出2m=1,求出即可.【详解】解:∵单项式-3a2m b与ab是同类项,∴2m=1,∴m=12,故选C.【点睛】本题考查了同类项的定义,能熟记同类项的定义是解此题的关键,所含字母相同,并且相同字母的指数也分别相同的项,叫同类项.13.D解析:D【解析】【分析】观察数据,找到规律:第n个数为(﹣2)n+1,根据规律求出第10个数即可.【详解】解:观察数据,找到规律:第n个数为(﹣2)n+1,第10个数是(﹣2)10+1=1024+1=1025故选:D.【点睛】此题主要考查了数字变化规律,根据已知数据得出数字的变与不变是解题关键.14.B解析:B【解析】【分析】【详解】∵观察可知:左边三角形的数字规律为:1,2,…,n,右边三角形的数字规律为:2,22,…,2n,下边三角形的数字规律为:1+2,222+, (2)n+,∴最后一个三角形中y与n之间的关系式是y=2n+n.故选B.【点睛】考点:规律型:数字的变化类.15.C解析:C【解析】【分析】根据MN=CM+CN=12AC+12CB=12(AC+BC)=12AB即可求解.【详解】解:∵M、N分别是AC、BC的中点,∴CM=12AC,CN=12BC,∴MN=CM+CN=12AC+12BC=12(AC+BC)=12AB=4.故选:C.【点睛】本题考查了线段中点的性质,找到MC与AC,CN与CB关系,是本题的关键二、填空题16.【解析】【分析】设这个角度的度数为x度,根据题意列出方程即可求解.【详解】设这个角度的度数为x度,依题意得90-x=解得x=67.5故填【点睛】此题主要考查角度的求解,解题的关键是解析:67.5【解析】【分析】设这个角度的度数为x度,根据题意列出方程即可求解.【详解】设这个角度的度数为x度,依题意得90-x=1 3 x解得x=67.5故填67.5【点睛】此题主要考查角度的求解,解题的关键是熟知补角的性质.17.【解析】【分析】由前三个正方形可知:右上和右下两个数的和等于中间的数,根据这一个规律即可得出m的值;首先求得第n个的最小数为1+4(n-1)=4n-3,其它三个分别为4n-2,4n-1,4n,解析:83n【解析】【分析】由前三个正方形可知:右上和右下两个数的和等于中间的数,根据这一个规律即可得出m 的值;首先求得第n个的最小数为1+4(n-1)=4n-3,其它三个分别为4n-2,4n-1,4n,由以上规律即可求解.【详解】解:由题知:右上和右下两个数的和等于中间的数,∴第4个正方形中间的数字m=14+15=29;∵第n个的最小数为1+4(n-1)=4n-3,其它三个分别为4n-2,4n-1,4n,∴第n个正方形的中间数字:4n-2+4n-1=8n-3.故答案为:29;8n-3【点睛】本题主要考查的是图形的变化规律,通过观察、分析、归纳发现数字之间的运算规律是解题的关键.18.4°.【解析】【分析】根据度分秒之间60进制的关系计算.【详解】解:53°24′用度表示为53.4°,故答案为:53.4°.【点睛】此题考查度分秒的换算,由度化分应乘以60,由分化度解析:4°.【解析】【分析】根据度分秒之间60进制的关系计算.【详解】解:53°24′用度表示为53.4°,故答案为:53.4°.【点睛】此题考查度分秒的换算,由度化分应乘以60,由分化度应除以60,注意度、分、秒都是60进制的,由大单位化小单位要乘以60才行.19.﹣19.【解析】【分析】根据乘法分配律简便计算即可求解.【详解】解:﹣30×(+)=﹣30×+(﹣30)×()+(﹣30)×=﹣15+20﹣24=﹣19.故答案为:﹣19.【点睛解析:﹣19.【解析】【分析】根据乘法分配律简便计算即可求解.【详解】解:﹣30×(1223+45)=﹣30×12+(﹣30)×(23)+(﹣30)×45=﹣15+20﹣24=﹣19.故答案为:﹣19.【点睛】本题考查了有理数的混合运算,熟练掌握运算法则和运算顺序是正确解题的关键. 20.2; 0或3或6【解析】【分析】先计算出前6次输出结果,据此得出循环规律,从而得出答案;根据数值转换机的运算程序,求出所有x的值,使得输入的数和第2次输出的数相等即可.【详解】解析:2; 0或3或6【解析】【分析】先计算出前6次输出结果,据此得出循环规律,从而得出答案;根据数值转换机的运算程序,求出所有x的值,使得输入的数和第2次输出的数相等即可.【详解】解:∵第1次输出的结果为7+3=10,第2次输出的结果为12×10=5,第3次输出结果为5+3=8,第4次输出结果为12×8=4,第5次输出结果为12×4=2,第6次输出结果为12×2=1,第7次输出结果为1+3=4,第8次输出结果为12×4=2,……∴输出结果除去前3个数后,每3个数为一个周期循环,∵(2018﹣3)÷3=671…2,∴第2018次输出的数是2,如图,若x=14x,则x=0;若x=12x+3,则x=6;若x=12(x+3),则x=3;故答案为:2、0或3或6.【点睛】此题主要考查了代数式求值问题,要熟练掌握,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.21.56【解析】【分析】由已知一个容量为80的样本,已知某组样本的频率为0.7,根据频数=频率×样本容量,可得答案【详解】样本容量为80,某组样本的频率为0.7,该组样本的频数=0.7×80解析:56【解析】【分析】由已知一个容量为80的样本,已知某组样本的频率为0.7,根据频数=频率×样本容量,可得答案【详解】样本容量为80,某组样本的频率为0.7,该组样本的频数=0.7×80=56故答案为:56【点睛】此题考查频率分布表,掌握运算法则是解题关键22.【解析】 【分析】 先将括号内进行通分计算,再将除法变乘法约分即可.【详解】解:原式===故答案为:.【点睛】本题考查分式的计算,掌握分式的通分和约分是关键.解析:1a b- 【解析】【分析】先将括号内进行通分计算,再将除法变乘法约分即可. 【详解】解:原式=()()+⎛⎫÷- ⎪-+++⎝⎭b a b a a b a b a b a b =()()+⋅-+b a b a b a b b =1a b- 故答案为:1a b-. 【点睛】 本题考查分式的计算,掌握分式的通分和约分是关键.23.30﹣【解析】试题分析:设第三天销售香蕉x 千克,则第一天销售香蕉(50﹣t ﹣x )千克,根据三天的销售额为270元列出方程:9(50﹣t ﹣x )+6t+3x=270,则x==30﹣, 故答案为:30解析:30﹣【解析】试题分析:设第三天销售香蕉x 千克,则第一天销售香蕉(50﹣t ﹣x )千克,根据三天的销售额为270元列出方程:9(50﹣t ﹣x )+6t+3x=270,则x==30﹣,故答案为:30﹣.考点:列代数式24.【解析】【分析】利用补角的意义:两角之和等于180°,那么这两个角互为补角其中一个角叫做另一个角的补角直接列式计算即可.【详解】解:.故答案为.【点睛】此题考查补角的意义,以及度分秒解析:2930'【解析】【分析】利用补角的意义:两角之和等于180°,那么这两个角互为补角其中一个角叫做另一个角的补角直接列式计算即可.【详解】-=.解:18015030'2930'故答案为2930'.【点睛】此题考查补角的意义,以及度分秒之间的计算,注意借1当60.25.52; 25; 12.【解析】【分析】将高级单位化为低级单位时,乘60,用0.42乘60,可得:0.42°=25.2′;用0.2乘60,可得:0.2′=12′′;据此求解即解析:52; 25; 12.【解析】【分析】将高级单位化为低级单位时,乘60,用0.42乘60,可得:0.42°=25.2′;用0.2乘60,可得:0.2′=12′′;据此求解即可.【详解】52.42°=52°25′12″.故答案为52、25、12.【点睛】此题主要考查了度分秒的换算,要熟练掌握,解答此题的关键是要明确:1度=60分,即1°=60′,1分=60秒,即1′=60″.26.54°39′.【解析】试题解析:根据定义,∠1的余角度数是90°-35°21′=54°39′.考点:1.余角和补角;2.度分秒的换算.解析:54°39′.【解析】试题解析:根据定义,∠1的余角度数是90°-35°21′=54°39′.考点:1.余角和补角;2.度分秒的换算.27.1或-7【解析】【分析】设这个数为x,利用数轴上两点间的距离公式可得|x-(-3)|=4,解出x即可. 【详解】设这个数为x,由题意得|x-(-3)|=4,所以x+3=4或x+3=-4,解解析:1或-7【解析】【分析】设这个数为x,利用数轴上两点间的距离公式可得|x-(-3)|=4,解出x即可.【详解】设这个数为x,由题意得|x-(-3)|=4,所以x+3=4或x+3=-4,解得x=1或-7.【点睛】本题考查数轴的应用,使用两点间的距离公式列出方程是解题的关键.28.-20.【解析】【分析】把所求代数式化成的形式,再整体代入的值进行计算便可.【详解】解:,,故答案为:.【点睛】本题主要考查了求代数式的值,整体代入思想,关键是把所求代数式解析:-20.【解析】【分析】把所求代数式化成3()5m n ---的形式,再整体代入m n -的值进行计算便可.【详解】解:5m n -=,335m n ∴-+-3()5m n =---355=-⨯-155=--20=-,故答案为:20-.【点睛】本题主要考查了求代数式的值,整体代入思想,关键是把所求代数式化成()m n -的代数式形式.29.28x-20(x+13)=20【解析】【分析】利用五言绝句与七言绝句总字数之间的关系得出等式进而得出答案.【详解】设七言绝句有x 首,根据题意,可列方程为: 28x-20(x+13)=20,解析:28x-20(x+13)=20【解析】【分析】利用五言绝句与七言绝句总字数之间的关系得出等式进而得出答案.【详解】设七言绝句有x 首,根据题意,可列方程为: 28x-20(x+13)=20,故答案为: 28x-20(x+13)=20.【点睛】本题主要考查一元一次方程应用,关键在于找出五言绝句与七言绝句总字数之间的关系. 30.5【解析】【分析】把方程的解代入方程即可得出的值.【详解】把代入方程,得∴故答案为5.【点睛】此题主要考查根据方程的解求参数的值,熟练掌握,即可解题. 解析:5【解析】【分析】把方程的解代入方程即可得出m的值.【详解】把1x=代入方程,得141m⨯-=∴5m=故答案为5.【点睛】此题主要考查根据方程的解求参数的值,熟练掌握,即可解题.三、压轴题31.(1)80°;(2)140°【解析】【分析】(1)根据角平分线的定义得∠BOM=12∠AOB,∠BON=12∠BOD,再根据角的和差得∠AOD=∠AOB+∠BOD,∠MON=∠BOM+∠BON,结合三式求解;(2)根据角平分线的定义∠MOC=12∠AOC,∠BON=12∠BOD,再根据角的和差得∠AOD=∠AOC+∠BOD-∠BOC,∠MON=∠MOC+∠BON-∠BOC结合三式求解.【详解】解:(1)∵OM平分∠AOB,ON平分∠BOD,∴∠BOM=12∠AOB,∠BON=12∠BOD,∴∠MON=∠BOM+∠BON=12∠AOB+12∠BOD=12(∠AOB+∠BOD).∵∠AOD=∠AOB+∠BOD=α=160°,∴∠MON=12×160°=80°;(2)∵OM平分∠AOC,ON平分∠BOD,∴∠MOC=12∠AOC ,∠BON=12∠BOD , ∵∠MON=∠MOC+∠BON-∠BOC ,∴∠MON=12∠AOC+12∠BOD -∠BOC=12(∠AOC+∠BOD )-∠BOC. ∵∠AOD=∠AOB+∠BOD ,∠AOC=∠AOB+∠BOC, ∴∠MON=12(∠AOB+∠BOC+∠BOD )-∠BOC=12(∠AOD+∠BOC )-∠BOC , ∵∠AOD=α,∠MON=60°,∠BOC=20°, ∴60°=12(α+20°)-20°, ∴α=140°.【点睛】 本题考查了角的和差计算,角平分线的定义,明确角之间的关系是解答此题的关键.32.(1)23+(-3)3+43,73+(-5)3+(-6)3;(2)100;(3)25032;(4)9.38;(5)0;(6)24或40【解析】【分析】(1)把45分解为2、-3、4三个整数的立方和,2分解为7、-5、-6三个整数的立方和即可的答案;(2)按照新运算法则,根据有理数混合运算法则计算即可得答案;(3)根据差倒数的定义计算出前几项的值,得出规律,计算即可得答案;(4)根据精确到十分位得9.4分可知平均分在9.35到9.44之间,可求出总分的取值范围,根据裁判打分是整数即可求出8个裁判给出的总分,再计算出平均分,精确到百分位即可;(5)由1+2-3=0,连续4个自然数通过加减运算可得0,列式计算即可得答案;(6)根据题意得要使甲和乙、甲和丙的距离相等就可以得出甲在乙、丙之间,设x 分钟后甲和乙、甲和丙的距离相等,就有甲走的路程-乙走的路程-400=丙走的路程+800-甲走的路程建立方程求出其解,就可以得出结论.当乙追上丙时,甲和乙、丙的距离相等,求出乙追上丙的时间即可.综上即可的答案.【详解】(1)45=23+(-3)3+43,2=73+(-5)3+(-6)3,故答案为23+(-3)3+43,73+(-5)3+(-6)3(2)∵2a b a ab ⊗=-,∴()()532-⊗⊗-=⎡⎤⎣⎦(-5)⊗[32-3×(-2)] =(-5)⊗15=(-5)2-(-5)×15=100.(3)∵a 1=2,∴a 2=1112=--, a 3=11(1)--=12, 412112a ==-a 5=-1…… ∴从a 1开始,每3个数一循环,∵2500÷3=833……1,∴a 2500=a 1=2,∴122500a a a ++⋅⋅⋅+=833×(2-1+12)+2=25032. (4)∵10个裁判打分,去掉一个最高分,再去掉一个最低分,∴平均分为中间8个分数的平均分,∵平均分精确到十分位的为9.4,∴平均分在9.35至9.44之间,9.35×8=74.8,9.44×8=75.52,∴8个裁判所给的总分在74.8至75.52之间,∵打分都是整数,∴总分也是整数,∴总分为75,∴平均分为75÷8=9.375,∴精确到百分位是9.38.故答案为9.38(5)2019÷4=504……3,∵1+2-3=0,4-5-6+7=0,8-9-10+11=0,……∴(1+2-3)+(4-5-6+7)+……+(2016-2017-2018+2019)=0∴所得结果可能的最小非负数是0,故答案为0(6)设x 分钟后甲和乙、丙的距离相等,∵乙在甲前400米,丙在乙前400米,速度分别为120米/分钟、100米/分钟、90米/分钟,∴120x-400-100x=90x+800-120x解得:x=24.∵当乙追上丙时,甲和乙、丙的距离相等,∴400÷(100-90)=40(分钟)∴24分钟或40分钟时甲和乙、丙的距离相等.故答案为24或40.【点睛】本题考查数字类的变化规律、有理数的混合运算、近似数及一元一次方程的应用,熟练掌握相关知识是解题关键.33.(1)1,-3,-5(2)i )存在常数m ,m=6这个不变化的值为26,ii )11.5s【解析】【分析】(1)根据非负数的性质求得a 、b 、c 的值即可;(2)i )根据3BC-k•AB 求得k 的值即可;ii )当AC=13AB 时,满足条件. 【详解】(1)∵a 、b 满足(a-1)2+|ab+3|=0,∴a-1=0且ab+3=0.解得a=1,b=-3.∴c=-2a+b=-5.故a ,b ,c 的值分别为1,-3,-5.(2)i )假设存在常数k ,使得3BC-k•AB 不随运动时间t 的改变而改变.则依题意得:AB=5+t ,2BC=4+6t .所以m•AB -2BC=m (5+t )-(4+6t )=5m+mt-4-6t 与t 的值无关,即m-6=0,解得m=6,所以存在常数m ,m=6这个不变化的值为26.ii )AC=13AB , AB=5+t ,AC=-5+3t-(1+2t )=t-6, t-6=13(5+t ),解得t=11.5s . 【点睛】 本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.34.(1)20,6;(2)43t -+,162t -;(3)t 2=或6时;(4)不变,10,理由见解析.【解析】【分析】(1)由数轴上两点距离先求得A ,B 两点间的距离,由中点公式可求线段AB 的中点表示的数;(2)点P 从点A 出发,以每秒3个单位长度的速度沿数轴向右匀速运动同时点Q 从点B 出发,向右为正,所以-4+3t ;Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动,向左为负,16-2t.(3)由题意,1PQ AB 2=表示出线段长度,可列方程求t 的值;。

四川省成都七年级上学期数学期中试卷七套解析版

四川省成都七年级上学期数学期中试卷七套解析版

,故本选项错误;
B.
,故本选项错误;
C.
,故本选项错误;
D.
,故本选项正确.
故答案为:D.
【分析】根据绝对值的定义和正负数的意义逐一判断即可.
4.【答案】 D
【解析】【解答】解:
解得
故答案为: 【分析】根据绝对值的解法先求出 x 和 y,再解答. 5.【答案】 C 【解析】【解答】A、B、D 都是整式,不符合题意; C 是分式(分母中含有字母),符合题意. 故答案为:C.
三、解答题
20.计算:
(1)

(2)

21.把下列各数用数轴上的点表示出来,并用“<”把它们连接起来.
22.先化简,再求值:
其中
23.如图所示,a,b,c 分别表示数轴上的数,化简:|2﹣b|+|a+c|﹣|b﹣a﹣c|.
24.已知两个多项式 A=9x²y+7xy-x-2,B=3x²y-5xy+x+7 (1)求 A-3B; (2)若要使 A-3B 的值与 x 的取值无关,试求 y 的值; 25.甲、乙两家超市以相同的价格出售同样的商品,为了吸引顾客,各自推出不同的优惠方案:在甲超市 累计购买商品超出 300 元之后,超出部分按原价 8 折优惠;在乙超市累计购买商品超出 200 元之后,超出 部分按原价 8.5 折优惠. 设顾客预计累计购物的费用为 x (x>300)元. (1)请用含 x 的代数式分别表示顾客在两家超市购物所付的费用; (2)李明准备购买 500 元的商品,你认为他应该去哪家超市?请说明理由. 26.学校要购入两种记录本,预计花费 460 元,其中 A 种记录本每本 3 元,B 种记录本每本 2 元,且购买 A 种记录本的数量比 B 种记录本的 2 倍还多 20 本. (1)求购买 A 和 B 两种记录本的数量; (2)某商店搞促销活动,A 种记录本按 8 折销售,B 种记录本按 9 折销售,则学校此次可以节省多少钱? 27.阅读并解决问题:归纳 人们通过长期观察发现,如果早晨天空中有棉絮状的高积云,那么午后常有雷雨降临,于是有了“朝有破 絮云,午后雷雨临”的谚语.在数学里,我们也常用这样的方法探求规律,例如:三角形有 3 个顶点,如果在 它的内部再画 n 个点,并以(n+3)个点为顶点,把三角形剪成若干个小三角形,那么最多可以剪得多少个这 样的三角形? .为了解决这个问题,我们可以从 n=1、n=2、nr=3 等具体的、简单的情形入手,探索最多可 以剪得的三角形个数的变化规律.

七年级上册成都市七中育才学校(新校区)数学期末试卷测试卷(含答案解析)

七年级上册成都市七中育才学校(新校区)数学期末试卷测试卷(含答案解析)

七年级上册成都市七中育才学校(新校区)数学期末试卷测试卷(含答案解析)一、初一数学上学期期末试卷解答题压轴题精选(难)1.数轴上A, B, C, D四点表示的有理数分别为1, 3, -5, -8(1)计算以下各点之间的距离:①A、B两点, ②B、C两点,③C、D两点,(2)若点M、N两点所表示的有理数分别为m、n,求M、N两点之间的距离.【答案】(1)AB=3-1=2;BC=3-(-5)=8;CD=-5-(-8)=-5+8=3.(2)MN=【解析】【分析】(1)数轴上两点间的距离等于数值较大的数减去数值较小的数,据此计算即可;(2)因为m、n的大小未知,则M、N两点间的距离为它们所表示的有理数之差的绝对值. 2.如图,在数轴上有三个点A、B、C,完成下列问题:(1)将点B向右移动六个单位长度到点D,在数轴上表示出点D.(2)在数轴上找到点E,使点E为BA的中点(E到A、C两点的距离相等),井在数轴上标出点E表示的数,求出CE的长.(3)O为原点,取OC的中点M,分OC分为两段,记为第一次操作:取这两段OM、CM 的中点分别为了N1、N2,将OC分为4段,记为第二次操作,再取这两段的中点将OC分为8段,记为第三次操作,第六次操作后,OC之间共有多少个点?求出这些点所表示的数的和.【答案】(1)解:如图所示,(2)解:如图所示,点E表示的数为:﹣3.5,∵点C表示的数为:4,∴CE=4﹣(﹣3.5)=7.5(3)解:∵第一次操作:有3=(21+1)个点,第二次操作,有5=(22+1)个点,第三次操作,有9=(23+1)个点,∴第六次操作后,OC之间共有(26+1)=65个点;∵65个点除去0有64个数,∴这些点所表示的数的和=4×()=130.【解析】【分析】(1)根据数轴上的点移动时的大小变化规律“左减右加”即可求解;(2)根据题意和数轴上两点间的距离等于两坐标之差的绝对值即可求解;(3)由题意可得点数依次是2的指数次幂+1,再求和即可求解.3.已知线段AB=6.(1)取线段AB的三等分点,这些点连同线段AB的两个端点可以组成多少条线段?求这些线段长度的和;(2)再在线段AB上取两种点:第一种是线段AB的四等分点;第二种是线段AB的六等分点,这些点连同(1)中的三等分点和线段AB的两个端点可以组成多少条线段?求这些线段长度的和。

成都七中育才学校初2016届七年级上期半期阶段性测试

成都七中育才学校初2016届七年级上期半期阶段性测试

成都七中育才学校初2016届七年级上期半期阶段性测试(题卷)数 学 命题人:何明磊 审题人:罗丹梅A 卷(共100分)一、选择题(每小题3分,共30分)1. 在-2,0,1,-4这四个数中,最大的数是( )A. -4B. -2C. 0D. 1 2. 去年中央财政安排农村义务教育营养膳食补助资金共150.5亿元,150.5亿元用科学记数法表示为( ) A. 910505.1⨯元 B. 1010505.1⨯元 C. 11101505.0⨯元 D. 111005.15⨯元 3. 计算23-的值是( )A. 9B. -9C. 6D. -6 4. 下面说法正确的有( )(1)正整数和负整数统称为有理数; (2)0既不是正数,又不是负数; (3)有绝对值最小的有理数; (4)正数和负数统称为有理数. A. 4个 B. 3个 C. 2个 D. 1个 5. 数轴上到2的距离等于5的点表示的数是( )A. 3B. 7C. -3D. -3或7 6. 若m 、n 满足0)2(122=-++n m ,则nm 的值等于是( )A. -1B. 1C. -2D.417. 用语言叙述代数式22b a -,正确的是( )A. a ,b 两数的平方和B. a 与b 差的平方C. A 与b 平方的差D. b ,a 两数的平方差8. 如图所示,A 、B 、C 、D 在同一条直线上,则图中共有线段的条数为( ) A B C DA. 3 D. 69. 如果整式252+--x x n 是关于x 的三次三项式,那么n 等于( )A. 3B. 4C. 5D. 610. 某超市货架上摆放着某品牌红烧牛肉方便面,如图是它们的三视图,则货架上的红烧牛肉方便面至少有( )盒。

A. 8B. 9C. 10D. 11第Ⅱ卷(非选择题 共70分)二、填空题(每小题4分,共20分)11. 计算)3(--= ,=-3 ,=-2)3( .12. 单项式522yx -的系数是 ,次数是 .13. 若53b a m 与124+n b a 是同类项,则=+n m .14. 若m n n m -=-,且4=m ,3=n ,则=+2)(n m .15. 观察下列算式:221=,422=,823=,1624=,3225=,6426=,12827=,25628=…,通过观察发现,用所发现的规律确定20162的个位数是 . 三、解答题(共50分)16. (6分)在数轴上表示下列各数,并用“<”号连接起来.)2(--, 2-,211-,0.5 ,)3(--,4--,3.517. 计算(每小题4分,共8分) (1)2132)5(22÷-+-⨯ (2))2()211(4.03)3(2-÷⎥⎦⎤⎢⎣⎡-⨯+---18. 化简(每小题5分,共10分) (1)ab b a a ab 2)2(2)32(+--+-.(2)先化简,再求值:)35()(235222222b a b a b a ---++,其中21,1=-=b a .19. (6分)已知a 、b 、c 在数轴上的位置如图所示,化简:b a b c a a --+--+-12.20. (6分)已知:关于x 、y 的多项式b y ay x +-+2与多项式3632-+-y y bx 的差的值与字母x 的取值无关,求代数式)4()2(32222b ab a b ab a ++---的值.21. (6分)小虫从A 点出发,在一条直线上来回地爬行,假定向右爬行的路程记作正数,向左爬行记作负数,爬行的各段路程(单位:cm ),依次记为:+6,,4,10,-8,-7,13,-9.解答下列问题: (1)小虫在爬行过程中离A 点最远有多少距离? (2)小虫爬行到最后时距离A 点有多远? (3)小虫一共爬行了多少厘米?22. (8分)某单位在五月准备组织部分员工到北京旅游,现联系了甲、乙两家旅行社,两家旅行社报价均为2000元/人,两家旅行社同时都对10人以上的团体推出了优惠举措:甲旅行社对每位员工七五折优惠;而乙旅行社是免去一位员工的费用,其余员工八折优惠.(1)如果设参加旅游的员工共有)10(>a a 人,则甲旅行社的费用为_________ 元,乙旅行社的费用为____________元;(用含a 的代数式表示) (2)假如这个单位现组织包括管理员工在内的共20名员工到北京旅游,该单位选择哪一家旅行社比较优惠?请说明理由.(3)如果计划在五月份外出旅游七天,设最中间一天的日期为a ,则这七天的日期之和为________.(用含a 的代数式表示.)(4)假如这七天的日期之和为63的倍数,则他们可能于五月几号出发?(写出所有符合条件的可能性.)B 卷(共20分)一、填空(其中23、24小题每题2分,25小题3分,共7分)23. 计算:=-+-20152016)3()3( .24. 已知当3-=x ,代数式13++bx ax 的值为8,那么当3=x时,代数式13++bx ax 的值为 .25. 小明有5张写着以下数字的卡片,请你按要求抽出卡片,完成下各问题:(1)从中(1)从中取出2张卡片,使这2张卡片上数字乘积最大,最大值是 ; (2)从中取出2张卡片,使这2张卡片上数字相除的商最小,最小值是 ;(3)从中取出除0以外的4张卡片,用学过的运算方法,使结果为24,写出运算式子(一种即可) .二、探究题26. (7分)根据下面给出的数轴,解答下面的问题:(1)请你根据图中A 、B 两点的位置,分别写出它们所表示的有理数A : ,B : . (2)观察数轴,与点A 的距离为4的点表示的数是: . (3)若将数轴折叠,使得A 点与-2表示的带你重合,则 ①B 点与哪个数表示的点重合?②若数轴上M 、N 两点之间的距离为2011(M 在N 的左侧),且M 、N 两点经过折叠后互相重合,求M 、N 两点表示的数分别是多少?27. (6分)一般地,数轴上表示数m 和数n 的两点之间的距离等于n m -,如:数轴上表示4和1的两点之间的而距离是314=-;表示-3和2两点之间的而距离是523=--. 根据以上材料,结合数轴与绝对值的知识回答下列问题:(1)如果表示数a 和-2的两点之间的而距离是3,那么=a ;(2)若数轴上表示数的a 点位于-4与2之间,那么24-++a a 的值是 ; 当a 取 时,415-+-++a a a 的值最小,最小值是 . (3)依照上述方法:4426++-+-++a a a a 的最小值是 .。

七年级上册成都市七中育才学校数学期末试卷测试卷 (word版,含解析)

七年级上册成都市七中育才学校数学期末试卷测试卷 (word版,含解析)

七年级上册成都市七中育才学校数学期末试卷测试卷(word版,含解析)一、初一数学上学期期末试卷解答题压轴题精选(难)1.(1)问题发现:如图 1,已知点 F,G 分别在直线 AB,CD 上,且 AB∥CD,若∠BFE=40°,∠CGE=130°,则∠GEF 的度数为________;(2)拓展探究:∠GEF,∠BFE,∠CGE 之间有怎样的数量关系?写出结论并给出证明;答:∠GEF=▲ .证明:过点 E 作 EH∥AB,∴∠FEH=∠BFE(▲),∵AB∥CD,EH∥AB,(辅助线的作法)∴EH∥CD(▲),∴∠HEG=180°-∠CGE(▲),∴∠FEG=∠HFG+∠FEH=▲ .(3)深入探究:如图 2,∠BFE 的平分线 FQ 所在直线与∠CGE 的平分线相交于点 P,试探究∠GPQ 与∠GEF 之间的数量关系,请直接写出你的结论.【答案】(1)90°(2)解:∠GEF=∠BFE+180°−∠CGE,证明:过点 E 作 EH∥AB,∴∠FEH=∠BFE(两直线平行,内错角相等),∵AB∥CD,EH∥AB,(辅助线的作法)∴EH∥CD(平行线的迁移性),∴∠HEG=180°-∠CGE(两直线平行,同旁内角互补),∴∠FEG=∠HFG+∠FEH=∠BFE+180°−∠CGE ,故答案为:∠BFE+180°−∠CGE;两直线平行,内错角相等;平行线的迁移性;两直线平行,同旁内角互补;∠BFE+180°−∠CGE;(3)解:∠GPQ+∠GEF=90°,理由是:如图2,∵FQ平分∠BFE,GP平分∠CGE,∴∠BFQ=∠BFE,∠CGP=∠CGE,在△PMF中,∠GPQ=∠GMF−∠PFM=∠CGP−∠BFQ,∴∠GPQ+∠GEF=∠CGE− ∠BFE+∠GEF= ×180°=90°.即∠GPQ+∠GEF=90°.【解析】【解答】(1)解:如图1,过E作EH∥AB,∵AB∥CD,∴AB∥CD∥EH,∴∠HEF=∠BFE=40°,∠HEG+∠CGE=180°,∵∠CGE=130°,∴∠HEG=50°,∴∠GEF=∠HEF+∠HEG=40°+50°=90°;故答案为:90°;【分析】(1)如图1,过E作EH∥AB,根据平行线的性质可得∠HEF=∠BFE=40 ,∠HEG=50 ,相加可得结论;(2)由①知:∠HEF=∠BFE,∠HEG+∠CGE=180°,则∠HEG=180°−∠CGE,两式相加可得∠GEF=∠BFE+180°−∠CGE;(3)如图2,根据角平分线的定义得:∠BFQ=∠BFE,∠CGP=∠CGE,由三角形的外角的性质得:∠GPQ=∠GMF−∠PFM=∠CGP−∠BFQ,计算∠GPQ+∠GEF并结合②的结论可得结果.2.如图,在平面直角坐标系中,已知点A(0,4),B(3,0),线段AB平移后对应的线段为CD,点C在x轴的负半轴上,B、C两点之间的距离为8.(1)求点D的坐标;(2)如图(1),求△ACD的面积;(3)如图(2),∠OAB与∠OCD的角平分线相交于点M,探求∠AMC的度数并证明你的结论.【答案】(1)解:∵B(3,0),∴OB=3,∵BC=8,∴OC=5,∴C(﹣5,0),∵AB∥CD,AB=CD,∴D(﹣2,﹣4)(2)解:如图(1),连接OD,∴S△ACD=S△ACO+S△DCO﹣S△AOD=﹣=16(3)解:∠M=45°,理由是:如图(2),连接AC,∵AB∥CD,∴∠DCB=∠ABO,∵∠AOB=90°,∴∠OAB+∠ABO=90°,∴∠OAB+∠DCB=90°,∵∠OAB与∠OCD的角平分线相交于点M,∴∠MCB=,∠OAM=,∴∠MCB+∠OAM==45°,△ACO中,∠AOC=∠ACO+∠OAC=90°,△ACM中,∠M+∠ACM+∠CAM=180°,∴∠M+∠MCB+∠ACO+∠OAC+∠OAM=180°,∴∠M=180°﹣90°﹣45°=45°.【解析】【分析】(1)利用B的坐标,可得OB=3,从而求出OC=5,利用平移的性质了求出点D的坐标.(2)如图(1),连接OD,由S△ACD=S△ACO+S△DCO+S△AOD,利用三角形的面积公式计算即得.(3)连接AC,利用平行线的性质及直角三角形两锐角互余可得∠OAB+∠DCB=90°,利用角平分线的定义可得∠MCB+∠OAM==45°,根据三角形的内角和等于180°,即可求出∠M的度数.3.阅读理解:若A、B、C为数轴上三点,若点C到A的距离是点C到B的距离2倍,我们就称点C是点是【A,B】的好点.(1)如图1,点A表示的数为﹣1,点B表示的数为2.表示1的点C到点A的距离是2,到点B的距离是1,那么点C是【A,B】的好点;又如,表示0的点D到点A的距离是1,到点B的距离是2,那么点D________【A,B】的好点,但点D________【B,A】的好点.(请在横线上填是或不是)知识运用:(2)如图2,M、N为数轴上两点,点M所表示的数为4,点N所表示的数为﹣2.数________所表示的点是【M,N】的好点;(3)如图3,A、B为数轴上两点,点A所表示的数为﹣20,点B所表示的数为40.现有一只电子蚂蚁P从点B出发,以4个单位每秒的速度向左运动,到达点A停止.当经过________秒时,P、A和B中恰有一个点为其余两点的好点?【答案】(1)不是;是(2)0(3)5或10【解析】【解答】解:(1)如图1,∵点D到点A的距离是1,到点B的距离是2,根据好点的定义得:DB=2DA,那么点D不是【A,B】的好点,但点D是【B,A】的好点;⑵如图2,4﹣(﹣2)=6,6÷3×2=4,即距离点M4个单位,距离点N2个单位的点就是所求的好点0;∴数0所表示的点是【M,N】的好点;⑶如图3,由题意得:PB=4t,AB=40+20=60,PA=60﹣4t,点P走完所用的时间为:60÷4=15(秒),当PB=2PA时,即4t=2(60﹣4t),t=10(秒),当PA=2PB时,即2×4t=60﹣4t,t=5(秒),∴当经过5秒或10秒时,P、A和B中恰有一个点为其余两点的好点;故答案:(1)不是,是;(2)0;(3)5或10.【分析】(1)根据定义发现:好点表示的数到【A,B】中,前面的点A是到后面的数B 的距离的2倍,从而得出结论;(2)点M到点N的距离为6,分三等分为份为2,根据定义得:好点所表示的数为0;(3)根据题意得:PB=4t,AB=40+20=60,PA=60﹣4t,由好点的定义可知:分两种情况列式:①PB=2PA;②PA=2PB;可以得出结论.4.已知:,OB、OC、OM、ON是内的射线.(1)如图1,若OM平分,ON平分当OB绕点O在内旋转时,则的大小为________;(2)如图2,若,OM平分,ON平分当绕点O在内旋转时,求的大小;(3)在的条件下,若,当在内绕着点O以秒的速度逆时针旋转t秒时,和中的一个角的度数恰好是另一个角的度数的两倍,求t的值【答案】(1)78°(2)解:∵OM平分∠AOC,ON平分∠BOD,∴∠COM ∠AOC,∠BON∠BOD,∴∠MON=∠BON+∠COM﹣∠BOC ∠AOC ∠BOD﹣24°(∠AOC+∠BOD)﹣24°,∴∠MON (∠AOD+∠BOC)﹣24° 180°﹣24°=66°.(3)解:∵∠BOC在∠AOD内绕着点O以2°/秒的速度逆时针旋转t秒,OM平分∠AOC,ON平分∠BOD,∴∠AOC=54°+2t,∠AOM=27+t,∠BOD=126﹣2t,∠DON=63﹣t.若∠AOM=2∠DON时,即27+t=2(63﹣t),∴t=33;若2∠AOM=∠DON,即2(27+t)=63﹣t,∴t=3.综上所述:当t=3或t=33时,∠AOM和∠DON中的一个角的度数恰好是另一个角的度数的两倍.【解析】【解答】解:(1)∵OM平分∠AOB,ON平分∠BOD,∴∠BOM ∠AOB,∠BON ∠BON.∵∠MON=∠BOM+∠BON ∠AOD,∴∠MON=78°.故答案为:78°.【分析】(1)由角平分线的定义可得∠BOM=∠AOB,∠BON=∠BOD,然后根据∠MON=∠BOM+∠BON=∠AOD即可求解;(2)由角平分线的定义可得∠COM=∠AOC,∠BON=∠BOD,∠MON=∠BON+∠COM-∠BOC=∠AOC+∠BOD﹣24°=(∠AOC+∠BOD)﹣24°=(∠AOD+∠BOC)﹣24°可求解;(3)由题意可得∠AOC=54°+2t,∠AOM=27+t,∠BOD=126−2t,∠DON=63−t,分∠AOM=2∠DON,∠DON=2∠AOM两种情况讨论,列方程即可求解.5.如图,直线AB、CD相交于点O,已知,OE把分成两个角,且::3(1)求的度数;(2)过点O作射线,求的度数.【答案】(1)解:,,::3,;(2)解:,,,OF在的内部时,,,,OF在的内部时,,,,综上所述或【解析】【分析】(1)根据对顶角相等得出,然后根据::3 即可算出∠BOE的度数;(2)根据角的和差,由算出∠DOE的度数,根据垂直的定义得出∠EOF=90°;当OF在的内部时,根据,算出答案;OF在的内部时,根据,算出但,综上所述即可得出答案。

成都市七中育才学校初中数学七年级上期中提高练习(培优)

成都市七中育才学校初中数学七年级上期中提高练习(培优)

一、选择题1.中国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是,有人要去某关口,路程378里,第一天健步行走,第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地,则此人第六天走的路程为( ) A .24里B .12里C .6里D .3里2.如图,O 在直线AB 上,OC 平分∠DOA (大于90°),OE 平分∠DOB ,OF ⊥AB ,则图中互余的角有( )对.A .6B .7C .8D .93.x =5是下列哪个方程的解( )A .x +5=0B .3x ﹣2=12+xC .x ﹣15x =6 D .1700+150x =24504.若一个角的两边与另一个角的两边分别平行,则这两个角( ) A .相等B .互补C .相等或互补D .不能确定5.下列方程变形正确的是( ) A .由25x +=,得52x =+ B .由23x =,得32x =C .由104x =,得4x = D .由45x =-,得54x =--6.按如图所示的运算程序,能使输出结果为10的是( )A .x =7,y =2B .x =﹣4,y =﹣2C .x =﹣3,y =4D .x =12,y =3 7.下列图形经过折叠不能围成棱柱的是( ).A.B.C.D.8.已知∠1=18°18′,∠2=18.18°,∠3=18.3°,下列结论正确的是()A.∠1=∠3 B.∠1=∠2C.∠2=∠3D.∠1=∠2=∠3 9.实数a,b在数轴上的位置如图所示,以下说法正确的是()A.a+b=0 B.b<a C.ab>0 D.|b|<|a|10.已知,OA⊥OC,且∠AOB:∠AOC=2:3,则∠BOC的度数为()A.30°B.150°C.30°或150°D.90°11.在如图的2016年6月份的日历表中,任意框出表中竖列上三个相邻的数,这三个数的和不可能是()A.27B.51C.69D.7212.下列等式变形正确的是()A.由a=b,得5+a=5﹣bB.如果3a=6b﹣1,那么a=2b﹣1C.由x=y,得x y m m =D.如果2x=3y,那么2629 55x y --=13.一球鞋厂,现打折促销卖出330双球鞋,比上个月多卖10%,设上个月卖出x双,列出方程()A.10%x=330B.(1﹣10%)x=330C.(1﹣10%)2x=330D.(1+10%)x=33014.下列等式变形错误的是( )A.若x=y,则x-5=y-5B.若-3x=-3y,则x=yC.若xa=ya,则x=y D.若mx=my,则x=y15.如下图,将直角三角形绕一条边所在直线旋转一周后形成的几何体不可能是()A .B .C .D .二、填空题16.如图,用代数式表示图中阴影部分的面积为___________________.17.观察下列算式:122=,224=,328=,4216=,5232=,6264=,72128=,82256=则20192的个位数字是________.18.将一些形状相同的小五角星如图所示的规律摆放,据此规律,第10个图形有_______个五角星.19.某商店一套夏装进价为200元,按标价8折出售可获利72元,则该套夏装标价为______________元.20.在下列方程中 ①x+2y=3,②139x x -=,③2133y y -=+,④2102x =,是一元一次方程的有_______(填序号).21.观察下列等式:70=1,71=7,72=49,73=343,74=2401,75=16807,…,根据其中的规律可得70+71+72+…+72019的结果的个位数字是_____. 22.小华在计算14a -时,误把“-”看成“+”,求得结果为5-,则14a -=____________.23.观察下列运算并填空. 1×2×3×4+1=24+1=25=52; 2×3×4×5+1=120+1=121=112; 3×4×5×6+1=360+1=361=192; 4×5×6×7+1=840+1=841=292;7×8×9×10+1=5040+1=5041=712;……试猜想:(n+1)(n+2)(n+3)(n+4)+1=________2.24.一个边长为1的正方形,第一次截去正方形的一半,第二次截去剩下的一半,如此截下去,第六次后剩下的面积为_____米.25.有理数a、b、c在数轴上的位置如图所示,化简:-|c-a|+|b|+|a|-|c|= ________.三、解答题26.如图,已知A、B、C是数轴上的三点,点C表示的数是6,点B与点C之间的距离是4,点B与点A的距离是12,点P为数轴上一动点.(1)数轴上点A表示的数为.点B表示的数为;(2)数轴上是否存在一点P,使点P到点A、点B的距离和为16,若存在,请求出此时点P所表示的数;若不存在,请说明理由;(3)点P以每秒1个单位长度的速度从C点向左运动,点Q以每秒2个单位长度从点B 出发向左运动,点R从点A以每秒5个单位长度的速度向右运动,它们同时出发,运动的时间为t秒,请求点P与点Q,点R的距离相等时t的值.27.我国古代《算法统宗》里有这样一首诗:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.诗中后两句的意思是:如果每间客房住7人,那么有7人无房可住;如果每间客房住9人,那么就空出一间房.求该店有客房多少间?房客多少人?28.解下列方程:(1)x-7=10 - 4(x+0.5) ;(2)1321 23x x-+-=.29.如图,直线BC与MN相交于点O,AO丄OC,OE平分∠BON,若∠EON=20°,求∠AOM 的度数.30.某市电力公司对全市用户采用分段计费的方式计算电费,收费标准如下表所示:月用电量不超过180度的部分超过180度但不超过280度的部分超过280度的部分收费标准0.5元/度0.6元/度0.9元/度若某用户7月份的电费是139.2元,则该用户7月份用电为多少度?【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题题号1 2 3 4 5 6 7 8 9 10 11 12 13 14 15答案C D D C B D B A D C D D D D C二、填空题16.【解析】阴影部分的面积等于长方形的面积减去两个小扇形的面积差长方形的面积是ab两个扇形的圆心角是90∘∴这两个扇形是分别是半径为b的圆面积的四分之一∴【点睛】本题考查了列代数式由数和表示数的字母经有17.【解析】【分析】通过观察发现:2n的个位数字是2486四个一循环所以根据2019÷4=504…3得出22019的个位数字与23的个位数字相同为8【详解】2n的个位数字是2486四个一循环所以201918.【解析】寻找规律:不难发现第1个图形有3=22-1个小五角星;第2个图形有8=32-1个小五角星;第3个图形有15=42-1个小五角星;…第n个图形有(n+1)2-1个小五角星∴第10个图形有11219.340【解析】【分析】设该服装标签价格为x元根据售价-进价=利润即可得出关于x的一元一次方程解之即可得出结论【详解】解:设该服装标签价格为x元根据题意得:x-200=72解得:x=340答:该服装标20.③【解析】【分析】一元一次方程指只含有一个未知数未知数的最高次数为1且两边都为整式的方程据此进一步逐一判断即可【详解】①中方程有两个未知数不符合题意错误;②中方程有分式不符合题意错误;③中方程符合题21.0【解析】【分析】由70=171=772=4973=34374=240175=16807…得出规律个位数4个数一循环由1+7+9+3=20(2019+1)÷4=505即可得出结果【详解】解:∵70=22.33【解析】【分析】先根据错解求出a的值再进行计算即可得解【详解】解:根据题意得14+a=-5a=-14-5=-19∴14-a=14-(-19)=33故答案为:33【点睛】本题考查有理数的加法和减法23.n2+5n+5【解析】【分析】观察几个算式可知结果都是完全平方式且5=1×4+111=2×5+119=3×6+1…由此可知最后一个式子为完全平方式且底数=(n+1)(n+4)+1=n2+5n+5【详24.【解析】【分析】【详解】解:第一次截后剩下米;第二次截后剩下米;第三次截后剩下米;则第六次截后剩下=米故答案为:25.b+2c【解析】【分析】由图可知c-a<0根据正数的绝对值等于它本身负数的绝对值等于它的相反数分别求出绝对值再根据整式的加减运算去括号合并同类项即可【详解】由图可知c<00<a<b则c-a<0原式=三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷 参考解析【参考解析】**科目模拟测试一、选择题二、填空题16.【解析】阴影部分的面积等于长方形的面积减去两个小扇形的面积差长方形的面积是ab 两个扇形的圆心角是90∘∴这两个扇形是分别是半径为b 的圆面积的四分之一∴【点睛】本题考查了列代数式由数和表示数的字母经有解析:212ab b π-【解析】阴影部分的面积等于长方形的面积减去两个小扇形的面积差. 长方形的面积是ab ,两个扇形的圆心角是90∘, ∴这两个扇形是分别是半径为b 的圆面积的四分之一.∴2211242ab b ab b ππ-⨯=- . 【点睛】本题考查了列代数式, 由数和表示数的字母经有限次加、减、乘、除、乘方和开方等代数运算所得的式子,或含有字母的数学表达式称为代数式.理解图意得到阴影部分的面积长方形的面积-2个14圆的面积是解题的关键.17.【解析】【分析】通过观察发现:2n的个位数字是2486四个一循环所以根据2019÷4=504…3得出22019的个位数字与23的个位数字相同为8【详解】2n的个位数字是2486四个一循环所以2019解析:8【解析】【分析】通过观察发现:2n的个位数字是2,4,8,6四个一循环,所以根据2019÷4=504…3,得出22019的个位数字与23的个位数字相同为8.【详解】2n的个位数字是2,4,8,6四个一循环,所以2019÷4=504…3,则22019的末位数字是8.故答案是:8.【点睛】考查学生分析数据,总结、归纳数据规律的能力,要求学生有一定的解题技巧.解题关键是知道个位数字为2,4,8,6顺次循环.18.【解析】寻找规律:不难发现第1个图形有3=22-1个小五角星;第2个图形有8=32-1个小五角星;第3个图形有15=42-1个小五角星;…第n个图形有(n+1)2-1个小五角星∴第10个图形有112解析:【解析】寻找规律:不难发现,第1个图形有3=22-1个小五角星;第2个图形有8=32-1个小五角星;第3个图形有15=42-1个小五角星;…第n个图形有(n+1)2-1个小五角星.∴第10个图形有112-1=120个小五角星.19.340【解析】【分析】设该服装标签价格为x元根据售价-进价=利润即可得出关于x的一元一次方程解之即可得出结论【详解】解:设该服装标签价格为x元根据题意得:x-200=72解得:x=340答:该服装标解析:340【解析】【分析】设该服装标签价格为x元,根据售价-进价=利润,即可得出关于x的一元一次方程,解之即可得出结论.【详解】解:设该服装标签价格为x元,根据题意得:810x-200=72,解得:x=340.答:该服装标签价格为340元.故答案为:340.【点睛】本题考查了一元一次方程的应用,根据售价-进价=利润,列出关于x的一元一次方程是解题的关键.20.③【解析】【分析】一元一次方程指只含有一个未知数未知数的最高次数为1且两边都为整式的方程据此进一步逐一判断即可【详解】①中方程有两个未知数不符合题意错误;②中方程有分式不符合题意错误;③中方程符合题解析:③【解析】【分析】一元一次方程指只含有一个未知数、未知数的最高次数为1且两边都为整式的方程,据此进一步逐一判断即可.【详解】①中方程有两个未知数,不符合题意,错误;②中方程有分式,不符合题意,错误;③中方程符合题意,是一元一次方程,正确;④中方程未知数最高次数为2,不符合题意,错误;故答案为:③.【点睛】本题主要考查了一元一次方程的判断,熟练掌握相关概念是解题关键.21.0【解析】【分析】由70=171=772=4973=34374=240175=16807…得出规律个位数4个数一循环由1+7+9+3=20(2019+1)÷4=505即可得出结果【详解】解:∵70=解析:0【解析】【分析】由70=1,71=7,72=49,73=343,74=2401,75=16807,…,得出规律个位数4个数一循环,由1+7+9+3=20,(2019+1)÷4=505,即可得出结果.【详解】解:∵70=1,71=7,72=49,73=343,74=2401,75=16807,…,∴个位数4个数一循环,4个数一循环的个位数的和:1+7+9+3=20,∵(2019+1)÷4=505,∴70+71+72+…+72019的结果的个位数字是0,故答案为:0【点睛】本题考查了尾数特征,仔细观察数据的个位数字,得到每4个个位数字为一个循环组依次循环是解题的关键.22.33【解析】【分析】先根据错解求出a的值再进行计算即可得解【详解】解:根据题意得14+a=-5a=-14-5=-19∴14-a=14-(-19)=33故答案为:33【点睛】本题考查有理数的加法和减法解析:33【解析】【分析】先根据错解求出a的值,再进行计算即可得解.【详解】解:根据题意得,14+a=-5,a=-14-5=-19, ∴14-a=14-(-19)=33故答案为:33【点睛】本题考查有理数的加法和减法,正确理解题意是解题的关键.23.n2+5n+5【解析】【分析】观察几个算式可知结果都是完全平方式且5=1×4+111=2×5+119=3×6+1…由此可知最后一个式子为完全平方式且底数=(n+1)(n+4)+1=n2+5n+5【详解析:n2+5n+5【解析】【分析】观察几个算式可知,结果都是完全平方式,且5=1×4+1,11=2×5+1,19=3×6+1,…,由此可知,最后一个式子为完全平方式,且底数=(n+1)(n+4)+1=n2+5n+5.【详解】根据算式的规律可得:(n+1)(n+2)(n+3)(n+4)+1=(n2+5n+5)2.故答案为n2+5n+5.【点睛】本题考查了整式的混合运算,解题的关键是熟练的掌握整式的混合运算法则.24.【解析】【分析】【详解】解:第一次截后剩下米;第二次截后剩下米;第三次截后剩下米;则第六次截后剩下=米故答案为:解析:164【解析】【分析】【详解】解:第一次截后剩下12米;第二次截后剩下212⎛⎫⎪⎝⎭米;第三次截后剩下312⎛⎫⎪⎝⎭米;则第六次截后剩下612⎛⎫⎪⎝⎭=164米.故答案为:1 64.25.b+2c【解析】【分析】由图可知c-a<0根据正数的绝对值等于它本身负数的绝对值等于它的相反数分别求出绝对值再根据整式的加减运算去括号合并同类项即可【详解】由图可知c<00<a<b则c-a<0原式=解析:b+2c【解析】【分析】由图可知, c-a<0,根据正数的绝对值等于它本身,负数的绝对值等于它的相反数,分别求出绝对值,再根据整式的加减运算,去括号,合并同类项即可.【详解】由图可知c<0,0<a<b,则c-a<0,原式=(c-a)+b+a-(-c)=c-a+b+a+c=b+2c.【点睛】本题考查的知识点是整式的加减和绝对值,解题关键是熟记整式的加减运算实际上就是去括号、合并同类项.三、解答题26.(1)-10;2 (2)存在;﹣12或4 (3)127或4【解析】【分析】(1)结合数轴可知点A和点B都在点C的左边,且点A小于0,在根据题意列式计算即可得到答案;(2)因为AB=12,则P不可能在线段AB上,所以分两种情况:①当点P在BA的延长线上时,②当点P在AB的延长线上时,进行讨论,即可得到答案;(3)根据题意“t秒P点到点Q,点R的距离相等”,则此时点P、Q、R所表示的数分别是6﹣t,2﹣2t,﹣10+5t,分①6﹣t﹣(2﹣2t)=6﹣t﹣(﹣10+5t),②6﹣t﹣(2﹣2t)=(﹣10+5t)﹣(6﹣t)两种情况,计算即可得到答案.【详解】解:(1)由题意可知点A 和点B 都在点C 的左边,且点A 小于0,则由题意可得数轴上点B 表示的数为6-4=2,点A 表示的数为2-10=﹣10,故答案为:﹣10,2;(2)∵AB =12,∴P 不可能在线段AB 上,所以分两种情况:①如图1,当点P 在BA 的延长线上时,PA +PB =16,∴PA +PA +AB =16,2PA =16﹣12=4,PA =2,则点P 表示的数为﹣12;②如图2,当点P 在AB 的延长线上时,同理得PB =2,则点P 表示的数为4;综上,点P 表示的数为﹣12或4;(3)由题意得:t 秒P 点到点Q ,点R 的距离相等,则此时点P 、Q 、R 所表示的数分别是6﹣t ,2﹣2t ,﹣10+5t ,①6﹣t ﹣(2﹣2t )=6﹣t ﹣(﹣10+5t ),解得t =127; ②6﹣t ﹣(2﹣2t )=(﹣10+5t )﹣(6﹣t ),解得t =4;答:点P 与点Q ,点R 的距离相等时t 的值是127或4秒. 【点睛】本题考查数轴和动点问题,解题的关键是掌握数轴上的有理数的性质,注意分类讨论. 27.客房8间,房客63人【解析】【分析】设该店有x 间客房,以人数相等为等量关系列出方程即可.【详解】设该店有x 间客房,则7799x x +=-解得8x =7778763x +=⨯+=答:该店有客房8间,房客63人.【点睛】本题考查的是利用一元一次方程解决应用题,根据题意找到等量关系式是解题的关键. 28.(1)3;(2)15-【解析】【分析】(1)首先将原方程去掉括号,然后进一步移项化简,最后通过系数化1即可求出解; (2)首先将原方程去掉分母,再去掉括号,然后进一步移项化简,最后通过系数化1即可求出解.【详解】(1)去括号可得:71042x x -=--,移项可得:41072x x +=+-,化简可得:515x =,解得:3x =;(2)去分母可得:()()312326x x --+=,去括号可得:33646x x ---=,移项可得:34636x x -=++,化简可得:15x -=,解得:15x =-.【点睛】本题主要考查了解一元一次方程,熟练掌握相关方法是解题关键.29.o【解析】【分析】首先根据角的平分线的定义求得∠BON ,然后根据对顶角相等求得∠MOC ,然后根据∠AOM=90°-∠COM 即可求解. 【详解】解:∵OE 平分∠BON ,∴∠BON=2∠EON=40°,∴∠COM=∠BON=40°,∵AO ⊥BC ,∴∠AOC=90°,∴∠AOM=90°-∠COM=90°-40°=50°.30.262度【解析】【分析】先判断出是否超过120度,然后列方程计算即可.【详解】解:因为180×0.5=90,(280﹣180)×0.6=60,90+60=150,而150>139.2,所以7月份用电是“超过180度但不超过280度”.故设7月份用电x度,由题意,得180×0.5+(x﹣180)×0.6=139.2解得x=262答:该用户7月份用电为262度.【点睛】本题考查了一元一次方程的应用,解答本题的关键是仔细审题,根据等量关系得出方程,难度一般.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015-2016学年四川省成都七中育才学校七年级(上)期中数学试卷一、选择题(每小题3分,共30分)1.(3分)2的相反数是()A.B.﹣ C.2 D.﹣22.(3分)下列各式符合代数式书写规范的是()A.a8 B.C.m﹣1元 D.1x3.(3分)下列几何体中,截面不可能是圆的是()A.B.C.D.4.(3分)下列各式中结果为负数的是()A.﹣(﹣3)B.(﹣3)2C.|﹣3|D.﹣|﹣3|5.(3分)将如图折叠成正方体后,与“七”字相对面上的汉字是()A.育B.才C.学D.校6.(3分)辽宁号航空母舰是中国人民解放军海军第一艘可以搭载固定翼飞机的航空母舰,它的排水量为67500吨,数字67500用科学记数法可以表示为()A.675×102B.6.75×104C.6.75×105D.0.675×1057.(3分)下列各式中,正确的是()A.﹣5÷×5=﹣5 B.2a+3b=5abC.7ab﹣3ab=4 D.x2y﹣2x2y=﹣x2y8.(3分)下列说法中正确的是()A.最大的负有理数是﹣1B.任何有理数的绝对值都是正数C.0是最小的数D.如果两个数互为相反数,那么它们的绝对值相等9.(3分)下列式子:x2+2,+4,,,﹣5x,0中,整式的个数是()A.6 B.5 C.4 D.310.(3分)有理数在数轴上的位置如图所示,则下列各式:①|a+b|=a+b;②|a ﹣b|=a﹣b;③|b|>a;④ab<0.成立的是()A.①②③B.③④C.②③④D.①③④二、填空题:(每空2分,共18分)11.(4分)的绝对值是;的倒数是.12.(4分)比较大小:﹣23;.13.(4分)单项式﹣的系数是,次数是.14.(4分)三棱锥有条棱,有个面.15.(2分)如图,从边长为(a+4)cm的正方形纸片中剪去一个边长为(a+1)cm的正方形(a>0),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为.三、计算(16、17每小题16分,共24分,18题6分)16.(16分)(1)﹣20+(﹣14)﹣(﹣18)(2)(3)|(4).17.(8分)(1)2x2﹣x2﹣7x2(2)2(2a﹣3b)﹣(2b﹣3a)18.(6分)先化简,再求值:.其中x=﹣2,y=.四、解答题(19、20题6分,21题10分,共22分)19.(6分)一个几何体由若干大小相同的小文体方块搭成,如图分别是从它的正面、上面看到的形状图.(1)该几何体最多是用多少块小立方体搭成的?(2)请画出(1)下几何体的左视图.20.(6分)某人用400元购买了8套儿童服装,准备以一定的价格出售,如果每套儿童服装以卖出60元的价格为标准,超出的记正数,不足的记负数,记录如下:+3,﹣2,﹣3,+1,﹣3,﹣1,0,﹣2.当他卖完这8套儿童服装后是盈利还是亏损?盈利(或亏损)多少钱?21.(10分)长汀某服装厂生产一种夹克和T恤,夹克每件定价150元,T恤每件定价75元.厂方在开展促销活动期间,向客户提供两种优惠方案:①买一件夹克送一件T恤;②夹克和T恤都按定价的80%付款.现某客户要到该服装厂购买夹克30件,T恤x件(x>30).(1)若该客户按方案①购买夹克需付款元,T恤需付款元(用含x的式子表示);若该客户按方案②购买,夹克需付款元,T恤需付款元(用含x的式子表示);(2)按方案①购买夹克和T恤共需付款元(用含x的式子表示);按方案②购买夹克和T恤共需付款元(用含x的式子表示).(3)若两种优惠方案可同时使用,当x=40时,你能给出一种更为省钱的购买方案吗?试写出你的购买方案,并说明理由.一、填空题(每小题3分,共9分)22.(3分)若|a﹣1|+(b+1)2=0,则a2+b3的值是.23.(3分)已知甲数的绝对值是乙数绝对值的2倍,两数在数轴上对应两点之间的距离为6,这两数的积为.24.(3分)在求两位数的平方时,可以用“列竖式”的方法进行速算,求解过程如图1所示.(1)仿照图1,在图2中补全672的“竖式”,可计算出(m+n)(x﹣y)=;(2)仿照图1,用“列竖式”的方法计算一个两位数的平方,部分过程如图3所示.若这个两位数的个位数字为a,则这个两位数为(用含a的代数式表示).二、解答题(25题5分,26题6分,共11分)25.(5分)一位同学做一道题:“已知两个多项式A,B,计算2A+B”.他误将“2A+B”看成:“A+2B”,求得的结果为9x2+2x﹣7.已知B=x2﹣3x+2(1)求多项式A是多少?(2)若x的平方等于4,求原题正确的结果是多少?26.(6分)观察下列式子,并完成后面的问题:13+23=13+23+33=13+23+33+43=…(1)13+23+33+43+…+n3=;(2)(2n)3=2n×2n×2n=2×2×2n•n•n=23n3=8n3.你能利用上述关系计算23+43+63+83+…+203=;(3)得用(1)、(2)得到结论,73+93+…+193等于多少吗?并写出你是怎样得到的?2015-2016学年四川省成都七中育才学校七年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)2的相反数是()A.B.﹣ C.2 D.﹣2【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.【解答】解:2的相反数是﹣2,故选:D.2.(3分)下列各式符合代数式书写规范的是()A.a8 B.C.m﹣1元 D.1x【分析】本题根据书写规则,数字应在字母前面,分数不能为假分数,不能出现除号,对各项的代数式进行判定,即可求出答案.【解答】解:A、数字应写在前面正确书写形式为8a,故本选项错误;B、书写形式正确,故本选项正确;C、正确书写形式为(m﹣1)元,故本选项错误;D、正确书写形式为x,故本选项错误,故选:B.3.(3分)下列几何体中,截面不可能是圆的是()A.B.C.D.【分析】根据一个几何体有几个面,则截面最多为几边形,由于棱柱没有曲边,所以用一个平面去截棱柱,截面不可能是圆.【解答】解:用一个平面去截球,截面是圆,用一个平面去截圆锥或圆柱,截面可能是圆,但用一个平面去截棱柱,截面不可能是圆.故选:A.4.(3分)下列各式中结果为负数的是()A.﹣(﹣3)B.(﹣3)2C.|﹣3|D.﹣|﹣3|【分析】根据相反数定义,有理数的乘方,绝对值的性质对各选项分析判断利用排除法求解.【解答】解:A、﹣(﹣3)=3,是正数,故本选项错误;B、(﹣3)2=9,是正数,故本选项错误;C、|﹣3|=3,是正数,故本选项错误;D、﹣|﹣3|=﹣3,是负数,故本选项正确.故选:D.5.(3分)将如图折叠成正方体后,与“七”字相对面上的汉字是()A.育B.才C.学D.校【分析】正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,据此作答.【解答】解:正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,所以与“我”字相对的面上的字是:校.故选:D.6.(3分)辽宁号航空母舰是中国人民解放军海军第一艘可以搭载固定翼飞机的航空母舰,它的排水量为67500吨,数字67500用科学记数法可以表示为()A.675×102B.6.75×104C.6.75×105D.0.675×105【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:67500用科学记数法可以表示为6.75×104,故选:B.7.(3分)下列各式中,正确的是()A.﹣5÷×5=﹣5 B.2a+3b=5abC.7ab﹣3ab=4 D.x2y﹣2x2y=﹣x2y【分析】根据合并同类项,即可解答.【解答】解:A、﹣5÷×5=﹣125,故错误;B、2a与3b不是同类项,不能合并;C、7ab﹣3ab=4ab,故错误;D、正确;故选:D.8.(3分)下列说法中正确的是()A.最大的负有理数是﹣1B.任何有理数的绝对值都是正数C.0是最小的数D.如果两个数互为相反数,那么它们的绝对值相等【分析】根据有理数的定义和特点,绝对值、相反数的定义及性质,对选项进行一一分析,排除错误答案.【解答】解:A、最大的负整数是﹣1,错误;B、任何有理数的绝对值都不是负数,错误;C、0是绝对值最小的数,错误;D、如果两个数互为相反数,那么它们的绝对值相等,正确;故选:D.9.(3分)下列式子:x2+2,+4,,,﹣5x,0中,整式的个数是()A.6 B.5 C.4 D.3【分析】根据整式的定义分析判断各个式子,从而得到正确选项.【解答】解:式子x2+2,,﹣5x,0,符合整式的定义,都是整式;+4,这两个式子的分母中都含有字母,不是整式.故整式共有4个.故选:C.10.(3分)有理数在数轴上的位置如图所示,则下列各式:①|a+b|=a+b;②|a ﹣b|=a﹣b;③|b|>a;④ab<0.成立的是()A.①②③B.③④C.②③④D.①③④【分析】本题可先对数轴进行分析,找出a、b之间的大小关系,然后分别分析A、B、C、D即可得出答案.【解答】解:根据数轴,知a>0,b<0,且b的绝对值大于a的绝对值,∴①|a+b|=﹣a﹣b;②|a﹣b|=a﹣b;③|b|>a;④ab<0,②③④.故选:C.二、填空题:(每空2分,共18分)11.(4分)的绝对值是;的倒数是﹣.【分析】根据负数的绝对值是它的相反数,乘积为一的两个数互为倒数,可得答案.【解答】解:的绝对值是;的倒数是﹣,故答案为:,﹣.12.(4分)比较大小:﹣2<3;=.【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:根据有理数比较大小的方法,可得﹣2<3;=.故答案为:<、=.13.(4分)单项式﹣的系数是﹣,次数是4.【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【解答】解:根据单项式系数、次数的定义可知,单项式﹣的系数是﹣,次数是4.14.(4分)三棱锥有6条棱,有4个面.【分析】三棱锥的侧面由三个三角形围成,底面也是一个三角形,结合三棱锥的组成特征,可确定它棱的条数和面数.【解答】解:三棱锥有6条棱,有4个面.故答案为6,4.15.(2分)如图,从边长为(a+4)cm的正方形纸片中剪去一个边长为(a+1)cm的正方形(a>0),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为(6a+15)cm2.【分析】利用大正方形的面积减去小正方形的面积即可,注意完全平方公式的计算.【解答】解:矩形的面积为:(a+4)2﹣(a+1)2=(a2+8a+16)﹣(a2+2a+1)=a2+8a+16﹣a2﹣2a﹣1=6a+15.故答案为:(6a+15)cm2,三、计算(16、17每小题16分,共24分,18题6分)16.(16分)(1)﹣20+(﹣14)﹣(﹣18)(2)(3)|(4).【分析】(1)(2)(3)根据有理数的混合运算的运算方法,求出每个算式的值各是多少即可.(4)应用乘法分配律,求出算式的值是多少即可.【解答】解:(1)﹣20+(﹣14)﹣(﹣18)=﹣34+18=﹣16(2)=﹣2+20=18(3)|=﹣1×[4﹣9]+4=5+4=9(4)=×24+×24﹣×24﹣4×(﹣)=9+4﹣18+1=﹣417.(8分)(1)2x2﹣x2﹣7x2(2)2(2a﹣3b)﹣(2b﹣3a)【分析】(1)直接合并同类项即可;(2)先去括号,再合并同类项即可.【解答】解:(1)2x2﹣x2﹣7x2=﹣6x2;(2)2(2a﹣3b)﹣(2b﹣3a)=4a﹣6b﹣2b+3a=7a﹣8b.18.(6分)先化简,再求值:.其中x=﹣2,y=.【分析】首先去括号,合并同类项,把代数式化简,然后再代入x、y的值,进而可得答案.【解答】解:=5x2﹣2xy﹣4x2﹣xy﹣6=x2﹣3xy﹣6,把x=﹣2,y=代入上式可得:原式=x2﹣3xy﹣6=(﹣2)2﹣3×(﹣2)×﹣6=4+3﹣6=1.四、解答题(19、20题6分,21题10分,共22分)19.(6分)一个几何体由若干大小相同的小文体方块搭成,如图分别是从它的正面、上面看到的形状图.(1)该几何体最多是用多少块小立方体搭成的?(2)请画出(1)下几何体的左视图.【分析】(1)从俯视图中可以看出最底层小立方块的个数及形状,从主视图可以看出每一层小立方块的层数和个数,进而可得答案;(2)根据(1)中的图形画出从左边看所得到的图形即可.【解答】解:(1)最下面一层最多有5块,上面一层最多有3块,最多共有8块;(2)如图所示:.20.(6分)某人用400元购买了8套儿童服装,准备以一定的价格出售,如果每套儿童服装以卖出60元的价格为标准,超出的记正数,不足的记负数,记录如下:+3,﹣2,﹣3,+1,﹣3,﹣1,0,﹣2.当他卖完这8套儿童服装后是盈利还是亏损?盈利(或亏损)多少钱?【分析】把8个数相加,然后根据有理数的加法运算法则进行计算,计算后根据正负情况判断盈亏情况.【解答】解:3﹣2﹣3+1﹣3﹣1+0﹣2=﹣7(元),60×8﹣7=473,473﹣400=73(元)所以,当他卖完这8套儿童服装后是盈利了,盈利73元.21.(10分)长汀某服装厂生产一种夹克和T恤,夹克每件定价150元,T恤每件定价75元.厂方在开展促销活动期间,向客户提供两种优惠方案:①买一件夹克送一件T恤;②夹克和T恤都按定价的80%付款.现某客户要到该服装厂购买夹克30件,T恤x件(x>30).(1)若该客户按方案①购买夹克需付款4500元,T恤需付款75(x﹣30);元(用含x的式子表示);若该客户按方案②购买,夹克需付款3600元,T 恤需付款60x元(用含x的式子表示);(2)按方案①购买夹克和T恤共需付款2250+75x元(用含x的式子表示);按方案②购买夹克和T恤共需付款3600+60x元(用含x的式子表示).(3)若两种优惠方案可同时使用,当x=40时,你能给出一种更为省钱的购买方案吗?试写出你的购买方案,并说明理由.【分析】(1)该客户按方案①购买,夹克需付款30×150=4500;T恤需付款75(x﹣30);若该客户按方案②购买,夹克需付款30×150×80%=3600;T恤需付款75×80%×x=60x;(2)按照两种优惠方案分别表示两种方案的付款数;(3)把x=40分别代入(1)中的代数式中,再求和得到按方案①购买所需费用=3600+40×60=5000(元),按方案②购买所需费用=3600+40×60=5000(元),然后比较大小.【解答】解:(1)若该客户按方案①购买,夹克需付款4500元,T恤需付款75(x﹣30)元(用含x的式子表示);若该客户按方案②购买,夹克需付款360000元,T恤需付款60x元;(2)按方案①购买夹克和T恤共需付款2250+75x元,方案②购买夹克和T恤共需付款3600+60x元;(3)当x=40时,方案①共需付款:2250+75×40=5250元,方案②共需付款:3600+40×60=5000元,∵5000元<5250元,∴方案②是更省钱的购买方案.一、填空题(每小题3分,共9分)22.(3分)若|a﹣1|+(b+1)2=0,则a2+b3的值是0.【分析】根据非负数的性质列出方程求出a、b的值,代入所求代数式计算即可.【解答】解:根据题意得:,解得:,则原式=1﹣1=0.故答案是:0.23.(3分)已知甲数的绝对值是乙数绝对值的2倍,两数在数轴上对应两点之间的距离为6,这两数的积为72,±8.【分析】根据绝对值的定义和正负数的意义,利用分类讨论的思想:同在原点的右侧,设乙为x,则甲为2x,由题意可得2x﹣x=6,可得甲数和乙数;若同在原点的左侧,设乙为x,则甲为2x,x﹣2x=6,可得甲数和乙数;在原点的两侧,设乙为x,则甲为﹣2x,由题意可得x+2x=6,可得甲数和乙数;若原点的两侧,设乙为﹣x,则甲为2x,﹣x+2x=6,可得甲数和乙数.再写出即可求解.【解答】解:①同在原点的右侧,设乙为x,则甲为2x,由题意可得2x﹣x=6,解得x=6,2x=12,xy=6×12=72;②若同在原点的左侧,设乙为x,则甲为2x,由题意可得x﹣2x=6,解得x=﹣6,﹣2x=﹣12,xy=(﹣6)×(﹣12)=72;③在原点的两侧,设乙为x,则甲为﹣2x,由题意可得x+2x=6,解得x=2,﹣2x=﹣4,xy=2×(﹣4)=8;④若原点的两侧,设乙为﹣x,则甲为2x,由题意可得﹣x﹣2x=6,解得x=﹣2,﹣2x=4,xy=﹣2×4=﹣8;故这两数的积为72,±8.故答案为:72,±8.24.(3分)在求两位数的平方时,可以用“列竖式”的方法进行速算,求解过程如图1所示.(1)仿照图1,在图2中补全672的“竖式”,可计算出(m+n)(x﹣y)=36;(2)仿照图1,用“列竖式”的方法计算一个两位数的平方,部分过程如图3所示.若这个两位数的个位数字为a,则这个两位数为a+50(用含a的代数式表示).【分析】(1)观察图象可知,第一行从右向左分别为个位数和十位数字的平方,每个数的平方占两个空,平方是一位数的前面的空用0填补,第二行从左边第2个空开始向右是这个两位数的两个数字的乘积的2倍,然后相加即为这个两位数的平方,根据此规律求解即可;(2)设这个两位数的十位数字为b,根据图3,利用十位数字与个位数字的乘积的2倍的关系列出方程用a表示出b,然后写出即可.【解答】解:解:(1)即m=3,n=6,x=8,y=4,(m+n)(x﹣y)=(3+6)×(8﹣4)=36,故答案为:36;(2)设这个两位数的十位数字为b,由题意得,2ab=10a,解得b=5,所以,这个两位数是10×5+a=a+50.故答案为:a+50.二、解答题(25题5分,26题6分,共11分)25.(5分)一位同学做一道题:“已知两个多项式A,B,计算2A+B”.他误将“2A+B”看成:“A+2B”,求得的结果为9x2+2x﹣7.已知B=x2﹣3x+2(1)求多项式A是多少?(2)若x的平方等于4,求原题正确的结果是多少?【分析】(1)根据和减去一个加数得到另一个加数确定出A即可;(2)把A与B代入2A+B中去括号合并,将x的值代入计算即可求出值.【解答】解:(1)由题意得:A=9x2+2x﹣7﹣2(x2﹣3x+2)=9x2+2x﹣7﹣2x2+6x ﹣4=7x2+8x﹣11;(2)由x2=4,得到x=2或x=﹣2,2A+B=18x2+4x﹣14+x2﹣3x+2=19x2+x﹣12,当x=2时,原式=66;当x=﹣2时,原式=62.26.(6分)观察下列式子,并完成后面的问题:13+23=13+23+33=13+23+33+43=…(1)13+23+33+43+…+n3=×n2×(n+1)2;(2)(2n)3=2n×2n×2n=2×2×2n•n•n=23n3=8n3.你能利用上述关系计算23+43+63+83+…+203=24200;(3)得用(1)、(2)得到结论,73+93+…+193等于多少吗?并写出你是怎样得到的?【分析】(1)观察不难发现,从1开始的连续自然数的立方和等于自然数的个数的平方乘比个数大1的数的平方,再除以4;(2)将原式变形为(2×1)3+(2×2)3+(2×3)3+(2×4)3+…+(2×10)3=8×(13+23+33+43+…+103),再套用(1)中公式计算可得;(3)由(1)得13+23+33+43+…+203=×202×212=44100,由(2)得23+43+63+83+…+203=8××102×112=24200,两式相减从而得出13+33+53+73+…+193,再减去13+33+53即可得答案.【解答】解:(1)∵13=×12×22,13+23=×22×32,13+23+33=×32×42,∴13+23+33+…+(n﹣1)3+n3=×n2×(n+1)2;故答案为:×n2×(n+1)2;(2)原式=(2×1)3+(2×2)3+(2×3)3+(2×4)3+...+(2×10)3 =8×(13+23+33+43+ (103)=8××102×112=24200,故答案为:24200;(3)由(1)知13+23+33+43+…+203=×202×212=44100,由(2)知,23+43+63+83+…+203=8××102×112=24200,∴13+33+53+73+…+193=44100﹣24200=19900,又∵13+33+53=1+27+125=153,∴73+93+…+193=19747.赠送初中数学几何模型【模型一】“一线三等角”模型: 图形特征:60°60°60°45°45°45°运用举例:1.如图,若点B 在x 轴正半轴上,点A (4,4)、C (1,-1),且AB =BC ,AB ⊥BC ,求点B 的坐标;2.如图,在直线l 上依次摆放着七个正方形(如图所示),已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是1S 、2S 、3S 、4S ,则14S S += .ls 4s 3s 2s 13213. 如图,Rt △ABC 中,∠BAC =90°,AB =AC =2,点D 在BC 上运动(不与点B ,C 重合),过D 作∠ADE =45°,DE 交AC 于E . (1)求证:△ABD ∽△DCE ;(2)设BD =x ,AE =y ,求y 关于x 的函数关系式,并写出自变量x 的取值范围; (3)当△ADE 是等腰三角形时,求AE 的长.EB4.如图,已知直线112y x =+与y 轴交于点A ,与x 轴交于点D ,抛物线212y x bx c =++与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为 (1,0)。

相关文档
最新文档