高中数学人教A版选修2-3第三章 统计案例 过关检测 (6)

合集下载

(必考题)高中数学高中数学选修2-3第三章《统计案例》检测(含答案解析)

(必考题)高中数学高中数学选修2-3第三章《统计案例》检测(含答案解析)

一、选择题1.以模型kx y ce =去拟合一组数据时,为了求出回归方程,设ln z y =,其变换后得到线性回归方程0.53z x =+,则c =( ) A .3B .3eC .0.5D .0.5e2.已知两个统计案例如下:①为了探究患肺炎与吸烟的关系,调查了339名50岁以上的人,调查结果如下表:②为了解某地母亲与女儿身高的关系,随机测得10对母女的身高如下表:则对这些数据的处理所应用的统计方法是( ) A .①回归分析,②取平均值 B .①独立性检验,②回归分析 C .①回归分析,②独立性检验D .①独立性检验,②取平均值3.假设有两个分类变量X 和Y 的22⨯列联表为:对同一样本,以下数据能说明X 与Y 有关系的可能性最大的一组为参考公式:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.A .5,35b d ==B .15,25b d ==C .20,20b d ==D .30,10b d ==4.为了解高中生作文成绩与课外阅读量之间的关系,某研究机构随机抽取了60名高中生,通过问卷调查,得到以下数据:2()P K k≥0.0500.0250.0100.0050.001k 3.841 5.024 6.6357.87910.828由以上数据,计算得到K2的观测值k≈9.643,根据临界值表,以下说法正确的是() A.没有充足的理由认为课外阅读量大与作文成绩优秀有关B.有0.5%的把握认为课外阅读量大与作文成绩优秀有关C.有99.9%的把握认为课外阅读量大与作文成绩优秀有关D.有99.5%的把握认为课外阅读量大与作文成绩优秀有关5.某中学共有5000人,其中男生3500人,女生1500人,为了了解该校学生每周平均体育锻炼时间的情况以及该校学生每周平均体育锻炼时间是否与性别有关,现在用分层抽样的方法从中收集300位学生每周平均体育锻炼时间的样本数据(单位:小时),其频率分布直方图如下:附:22()=()()()()n ad bcKa cb d a d b c-++++,其中n a b c d=+++.2()P K k≥0.100.050.010.005k 2.706 3.841 6.6357.879已知在样本数据中,有60位女生的每周平均体育锻炼时间超过4小时,根据独立性检验原理,我们()A.没有理由认为“该校学生每周平均体育锻炼时间与性别有关”B.有95%的把握认为“该校学生每周平均体育锻炼时间与性别有关”C.有95%的把握认为“该校学生每周平均体育锻炼时间与性别无关”D .有99.5%的把握认为“该校学生每周平均体育锻炼时间与性别有关”6.通过随机询问100名性别不同的居民是否能做到“光盘”行动,得到如下的列联表:做不到“光盘” 能做到“光盘” 男 45 10 女3015则有( )以上的把握认为“该市民能否做到‘光盘’与性别有关”,附表及公式()20P K k ≥0.100 0.050 0.010 0.001 0k 2.7063.8416.63510.828()()()()()22n ad bc K a b c d a c b d -=++++A .90%B .95%C .99%D .99.9%7.为了普及环保知识,增强环保意识,随机抽取某大学30名学生参加环保知识测试,得分如图所示,若得分的中位数为m e ,众数为m 0,平均数为x -,则( )A .m e =m 0=x -B .m 0<x -<m e C .m e <m 0<x -D .m 0<m e <x -8.某科研机构为了研究中年人秃发与心脏病是否有关,随机调查了一些中年人的情况,具体数据见下表:心脏病 无心脏病 秃发 20 300 不秃发5450根据表中数据得到()277520450530015.96820750320455k ⨯⨯-⨯=≈⨯⨯⨯,因为K 2≥10.828,则断定秃发与心脏病有关系,那么这种判断出错的可能性为( ) A .0.1B .0.05C .0.01D .0.0019.给出以下四个说法:①绘制频率分布直方图时,各小长方形的面积等于相应各组的组距;②在刻画回归模型的拟合效果时,R2的值越大,说明拟合的效果越好;③设随机变量ξ服从正态分布N(4,22),则P(ξ>4)=12;④对分类变量X与Y,若它们的随机变量K2的观测值k越小,则判断“X与Y有关系”的犯错误的概率越小.其中正确的说法是()A.①④B.②③C.①③D.②④10.在一项中学生近视情况的调查中,某校男生150名中有80名近视,女生140名中有70名近视,在检验这些中学生眼睛近视是否与性别有关时用什么方法最有说服力()A.平均数与方差 B.回归分析C.独立性检验 D.概率11.某中学学生会为了调查爱好游泳运动与性别是否有关,通过随机询问110名性别不同的高中生是否爱好游泳运动得到如下的列联表:由()()()()()22n ad bcka b c d a c b d-=++++并参照附表,得到的正确结论是A.在犯错误的概率不超过1%的前提下,认为“爱好游泳运动与性别有关”B.在犯错误的概率不超过1%的前提下,认为“爱好游泳运动与性别无关”C.有99.9%的把握认为“爱好游泳运动与性别有关”D.有99.9%的把握认为“爱好游泳运动与性别无关”12.通过随机询问2016名性别不同的大学生是否爱好某项运动,得到2 6.023K=,则根据这一数据查阅表,则有把握认为“爱好该项运动与性别有关”的可信程度是()2()P K k≥…0.250.150.100.0250.0100.005…k… 1.323 2.072 2.706 5.024 6.6357.879…A.90%B.95%C.97.5%D.99.5%二、填空题13.给出下列结论:①在回归分析中,可用相关指数2R的值判断模型的拟合效果,2R越大,模型的拟合效果越好;②某工厂加工的某种钢管,内径与规定的内径尺寸之差是离散型随机变量;③随机变量的方差和标准差都反映了随机变量的取值偏离均值的平均程度,它们越小,则随机变量偏离均值的平均程度越小;④甲、乙两人向同一目标同时射击一次,事件A:“甲、乙中至少一人击中目标”与事件B:“甲、乙都没有击中目标”是相互独立事件.其中结论正确的是______.14.新闻媒体为了了解观众对央视某节目的喜爱与性别是否有关,随机调查了观看该节目的观众110名,得到如下的2×2列联表:试根据样本估计总体的思想,估计约有________的把握认为“喜爱该节目与否和性别有关”.参考附表:(参考公式:K2=()()()()()2n ad bca b c d a c b d-++++,其中n=a+b+c+d)15.某市电信宽带私人用户月收费标准如下表:假定每月初可以和电信部门约定上网方案.若某用户每月上网时间为66小时,应选择__________方案最合算.16.下列是某厂1~4月份用水量(单位:百吨)的一组数据,由其散点图可知,用水量y与月份x 之间有较好的线性相关关系,其线性回归方程是=﹣0.7x+,则= . 月 份x 1 2 3 4 用水量y4.5432.517.为了判断高中二年级学生是否喜欢足球运动与性别的关系,现随机抽取50名学生,得到22⨯列联表:喜欢 不喜欢 总计 男 15 10 25 女520 25 总计 203050(参考公式22()()()()()n ad bc k a b c d a c b d -=++++,()n a b c d =+++)20()P K k ≥ 0.010 0.005 0.0010k 6.635 7.879 10.828则有___________以上的把握认为“喜欢足球与性别有关”.18.为了判断高中三年级学生选修文理科是否与性别有关,现随机抽取50名学生,得到2×2列联表:理科 文科 总计 男 13 10 23 女 7 20 27 总计203050已知P (K 2≥3.841)≈0.05,P (K 2≥5.024)≈0.025.根据表中数据,得到≈4.844,则认为选修文理科与性别有关系出错的可能性约为________. 19.下列说法:①分类变量A 与B 的随机变量2K 越大,说明“A 与B 有关系”的可信度越大.②以模型kx y ce =去拟合一组数据时,为了求出回归方程,设ln z y =,将其变换后得到线性方程0.34z x =+,则,c k 的值分别是4e 和0.3.③根据具有线性相关关系的两个变量的统计数据所得的回归直线方程为y a bx =+中,1,1,3b x y ===则1a =.正确的序号是________________.20.已知下列命题:①从匀速传递的产品生产流水线上,质检员每30分钟从生产流水线中抽取一件产品进行某项指标检测,这样的抽样方法是系统抽样;②两个变量的线性相关程度越强,则相关系数的值越接近于1;③两个分类变量X 与Y 的观测值2k ,若2k 越小,则说明“X 与Y 有关系”的把握程度越大;④随机变量X ~(0,1)N ,则(1)2(1)1P X P X <=<-. 其中为真命题的是__________.三、解答题21.为研究男、女生的身高差异,现随机从高三某班选出男生、女生各10人,并测量他们的身高,测量结果如下(单位:厘米): 男:173 178 174 185 170 169 167 164 161 170 女:165 166 156 170 163 162 158 153 169 172(1)根据测量结果完成身高的茎叶图(单位:厘米),并分别求出男、女生身高的平均值;(2)请根据测量结果得到20名学生身高的中位数h (单位:厘米),将男、女生身高不低于h 和低于h 的人数填入下表中,并判断是否有90%的把握认为男、女生身高有差异? 人数 男生 女生身高h ≥ 身高h <参照公式:()()()()()22n ad bc k a b c d a c b d -=++++()20P K k ≥ 0.100.05 0.025 0.010 0.005 0.001 0k2.7063.8415.0246.6357.87910.828175厘米为偏高.采用分层抽样的方法从以上男生中抽取5人作为样本.若从样本中任取2人,试求恰有1人身高属于正常的概率.22.某实验学校为提高学习效率,开展学习方式创新活动,提出了完成某项学习任务的两种新的学习方式.为比较两种学习方式的效率,选取40名学生,将他们随机分成两组,每组20人,第一组学生用第一种学习方式,第二组学生用第二种学习方式.40名学生完成学习任务所需时间的中位数40min m =,并将完成学习任务所需时间超过min m 和不超过min m 的学生人数得到下面的列联表:(Ⅰ)估计第一种学习方式且不超过m 的概率、第二种学习方式且不超过m 的概率; (Ⅱ)能否有99%的把握认为两种学习方式的效率有差异?附:()()()()()22n ad bc K a b c d a c b d -=++++,23.某科研小组为了验证一种治疗新冠肺炎的新药的效果,选60名患者服药一段时间后,记录了这些患者的生理指标x 和y 的数据,并统计得到如下的22⨯列联表(不完整):在生理指标 1.8x >的人中,设A 组为生理指标65y ≤的人,B 组为生理指标65y >的人,将他们服用这种药物后的康复时间(单位:天)记录如下: A 组:10,11,12,13,14,15,16,17,19. B 组:12,13,14,15,16,17,20,21,25.(1)填写上表,并判断是否有95%95%的把握认为患者的两项生理指标x 和y 有关系; (2)从A ,B 两组人中随机各选1人,A 组选出的人记为甲,B 组选出的人记为乙,求乙的康复时间比甲的康复时间长的概率.附:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.)20k0.2524.在第十五次全国国民阅读调查中,某地区调查组获得一个容量为200的样本,其中城镇居民150人,农村居民50人,在这些居民中,经常阅读的城镇居民100人,农村居民24人.(1)完成上面2×2列联表,并判断是否有95%的把握认为经常阅读与居民居住地有关?(2)从该地区居民城镇的居民中,随机抽取5位居民参加一次阅读交流活动,记这5位居民中经常阅读的人数为X,若用样本的频率作为概率,求随机变量X的分布列和期望.附:K2=2()()()()()n ad bca b c d a c b d-++++,其中n=a+b+c+d.25.某足球运动员进行射门训练,若打进球门算成功,否则算失败.已知某天该球员射门成功次数与射门距离的统计数据如下:(1)请问是否有90%的把握认为该球员射门成功与射门距离是否超过30米有关?参考公式及数据:22(),()()()()n ad bc K n a b c d a b c d a c b d -==+++++++.(2)当该球员距离球门30米射门时,设射门角(射门点与球场底线中点的连线和底线所成的锐角或直角)为([0,])2πθθ∈,其射门成功率为2+3()cos sin 4f θθθθθ=+⋅-,求该球员射门成功率最高时射门角θ的值.26.已知某种新型病毒的传染能力很强,给人们生产和生活带来很大的影响,所以创新研发疫苗成了当务之急.为此,某药企加大了研发投入,市场上这种新型冠状病毒的疫苗A 的研发费用x (百万元)和销量y (万盒)的统计数据如下:(1)根据上表中的数据,建立y 关于x 的线性回归方程y bx a =+(用分数表示); (2)根据所求的回归方程,估计当研发费用为1600万元时,销售量为多少?参考公式:()()()1122211nniii i i i nniii i x x y y x y nx yb x x xnx====---==--∑∑∑∑,a y bx =-.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据指对数互化求解即可. 【详解】解:因为0.53z x =+,ln z y =,所以0.53ln x y +=,所以0.5330.5x x y e e e +==⨯,故3c e=.故选:B.【点睛】本题考查非线性回归问题的转化,是基础题.2.B解析:B【分析】根据独立性检验和回归分析的概念,即可作出判定,得到答案.【详解】由题意,独立性检验通常是研究两个分类变量之间是否有关系,所以①采用独立性检验,回归分析通常是研究两个具有相关关系的变量的相关程度,②采用回归分析,综上可知①是独立性检验,②是回归分析,故选B.【点睛】本题主要考查了独立性检验和回归分析的概念及其判定,其中解答中熟记独立性检验和回归分析的概念是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.3.D解析:D【解析】【分析】根据公式()()()()()22n ad bcKa b c d a c b d-=++++,分别利用4个选项中所给数据求出2K的值,比较所求值的大小即可得结果.【详解】选项A:22160(535155)3204010502K⨯⨯-⨯==⨯⨯⨯,选项B:22260(5251515)152040204016K⨯⨯-⨯==⨯⨯⨯,选项C:22360(5201520)24204025357K⨯⨯-⨯==⨯⨯⨯,选项D:22 460(5101530)96 204035257K⨯⨯-⨯==⨯⨯⨯,可得222431K K K>>22K>,所以由选项D中的数据得到的2K值最大,说明X与Y有关系的可能性最大,故选D.【点睛】本题主考查独立性检验的基本性质,意在考查对基本概念的理解与应用,属于基础题.解答独立性检验问题时,要注意应用2K越大两个变量有关的可能性越大这一性质.4.D解析:D【解析】【分析】由题意结合独立性检验的结论和临界值表给出结论即可.【详解】根据临界值表,9.643>7.879,在犯错误的概率不超过0.005的前提下,认为课外阅读量大与作文成绩优秀有关,即有99.5%的把握认为课外阅读量大与作文成绩优秀有关.本题选择D选项.【点睛】本题主要考查独立性检验的思想及其应用等知识,意在考查学生的转化能力和计算求解能力.5.B解析:B【解析】分析:根据题设收集的数据,得到男生学生的人数,进而得出22⨯的列联表,利用计算公式,求解2K的值,即可作出判断.详解:由题意得,从5000人中,其中男生3500人,女生1500人,抽取一个容量为300人的样本,其中男女各抽取的人数为35003002105000⨯=人,1500300905000⨯=人,又由频率分布直方图可知,每周体育锻炼时间超过4小时的人数的频率为0.75,所以在300人中每周体育锻炼时间超过4小时的人数为3000.75225⨯=人,又在每周体育锻炼时间超过4小时的人数中,女生有60人,所以男生有22560165-=人,可得如下的22⨯的列联表:结合列联表可算得22300(456016530)4.762 3.8412109075225K⨯⨯-⨯=≈>⨯⨯⨯,所以有95%的把握认为“该校学生的每周平均体育运动时间与性别有关”,故选B.点睛:本题主要考查了独立性检验的基础知识的应用,其中根据题设条件得到男女生的人数,得出22⨯的列联表,利用公式准确计算是解答的关键,着重考查了分析问题和解答问题的能力.6.A解析:A【解析】分析:根据列联表中数据代入公式计算k 的值,和临界值表比对后即可得到答案. 详解:将列联表中数据代入公式可得()210045153010 3.030 2.70675255545k ⨯⨯-⨯=≈>⨯⨯⨯,所以有0090的把握认为“该市居民能否做到‘光盘’”与性别有关.点睛:独立性检验的一般步骤:(1)根据样本数据制成22⨯列联表;(2)根据公式()()()()()22n ad bc K a b a d a c b d -=++++计算2K 的值;(3) 查表比较2K 与临界值的大小关系,作统计判断.(注意:在实际问题中,独立性检验的结论也仅仅是一种数学关系,得到的结论也可能犯错误.)7.D解析:D 【解析】由条形图知,30名学生的得分情况依次为2个人得3分,3个人得4分,10个人得5分,6个人得6分,3个人得7分,2个人得8分,2个人得9分,2个人得10分,中位数为第15,16个数(分别为5,6)的平均数,即m e =5.5,5出现的次数最多,故众数为m 0=5,平均数为x =130(2×3+3×4+10×5+6×6+3×7+2×8+2×9+2×10)≈5.97,故m 0<m e <x . 故答案为D.点睛:这个题目考查的是条型分布直方表的应用,以及基本量:均值,平均数的考查;一般在这类图中平均数就是将数据加到一起除以数据的个数即可,在频率分布直方表中是取每个长方条的中点乘以相应的频率并相加即可.8.D解析:D 【解析】010.828,10.0010.99999.90k ≥∴-==,则有0099.9以上的把握认为秃发与患心脏病有关,故这种判断出错的可能性为10.9990.001-=,故选D.【方法点睛】本题主要考查独立性检验的实际应用,属于难题.独立性检验的一般步骤:(1)根据样本数据制成22⨯列联表;(2)根据公式()()()()()22n ad bc K a b a d a c b d -=++++计算2K 的值;(3) 查表比较2K 与临界值的大小关系,作统计判断.(注意:在实际问题中,独立性检验的结论也仅仅是一种数学关系,得到的结论也可能犯错误.)9.B解析:B 【解析】①中各小长方形的面积等于相应各组的频率;②正确,相关指数R 2越大,拟合效果越好,R 2越小,拟合效果越差;③随机变量ξ服从正态分布N (4,22),正态曲线对称轴为x =4,所以P (ξ>4)=;④对分类变量X 与Y ,若它们的随机变量K 2的观测值k 越小,则说明“X 与Y 有关系”的犯错误的概率越大.故选B.10.C解析:C【解析】判断两个分类变量是否有关的最有效方法是进行独立性检验,故选C. 考点:独立性检验的意义.11.A解析:A 【解析】()22110403020207.8 6.63560506050k ⨯-⨯=≈>⨯⨯⨯,所以有99%的把握认为“爱好游泳运动与性别有关”,所以在犯错误的概率不超过1%的前提下,认为“爱好游泳运动与性别有关”12.C解析:C 【解析】因为2 6.023K =,且5.024 6.023 6.635≤≤,所以有把握认为“爱好该项运动与性别有关”的可信度P 满足10.02510.010P -≤≤-,即0.9750.99P ≤≤,应选答案C 。

数学教案 人教a版选修2_3 同步练习-第3章统计案例跟踪训练含解析

数学教案 人教a版选修2_3 同步练习-第3章统计案例跟踪训练含解析

回归分析的基本思想及其初步应用[A 组 学业达标]1.下列两个变量之间的关系不是函数关系的是( ) A .角度和它的余弦值 B .正方形的边长和面积 C .正n 边形的边数和内角度数和 D .人的年龄和身高解析:函数关系就是一种变量之间的确定性的关系.A ,B ,C 三项中的两个变量之间都是函数关系,可以写出相应的函数表达式,分别为f(θ)=cos θ,g(a)=a 2,h(n)=nπ-2π.D 选项中的两个变量之间不是函数关系,对于年龄确定的人群,仍可以有不同的身高.故选D.答案:D2.设一个线性回归方程为y ^=2-1.5x ,则变量x 增加一个单位时( ) A.y ^平均增加1.5个单位 B.y ^平均增加2个单位 C.y ^平均减少1.5个单位 D.y ^平均减少2个单位解析:由线性回归方程y ^=2-1.5x 中x 的系数为-1.5,知C 项正确. 答案:C 3.有下列数据:x 1 2 3 y35.9912.01A .y =3×2x -1B .y =log 2xC .y =3xD .y =x 2解析:当x =1,2,3时,分别代入求y 值,离y 最近的值模拟效果最好,可知A 模拟效果最好. 答案:A4.四名同学根据各自的样本数据研究变量x ,y 之间的相关关系,并求得回归直线方程,分别得到以下四个结论:①y 与x 负相关且y ^=-2.756x +7.325.②y 与x 负相关且y ^=3.476x +5.648 ③y 与x 正相关且y ^=-1.226x -6.578 ④y 与x 正相关且y ^=8.967x +8.163 其中一定不正确的结论的序号是( ) A .①② B .②③ C .③④D .①④解析:根据题意,依次分析4个结论:对于①,y 与x 负相关且y ^=-2.756x +7.325,此结论正确,线性回归方程符合负相关的特征; 对于②,y 与x 负相关且y ^=3.476x +5.648,此结论错误,由线性回归方程知,此两变量的关系是正相关;对于③,y 与x 正相关且y ^=-1.226x -6.578,此结论错误,由线性回归方程知,此两变量的关系是负相关;对于④,y 与x 正相关且y ^=8.967x +8.163,此结论正确,线性回归方程符合正相关的特征;故②③一定错误.答案:B5.对具有线性相关关系的变量x ,y ,测得一组数据如下表:x 2 4 5 6 8 y2040607080根据上表,利用最小二乘法得它们的回归直线方程为y ^=10.5x +a ^,据此模型来预测当x =20时,y 的估计值为________.解析:由已知得x -=5,y -=54,则(5,54)满足回归直线方程y ^=10.5x +a ^,解得a ^=1.5,因此y ^=10.5x +1.5,当x =20时y ^=10.5×20+1.5=211.5.答案:211.56.如图是x 和y 的一组样本数据的散点图,去掉一组数据________后,剩下的4组数据的相关指数最大.解析:去掉D(3,10)这一组数据后,其他4组数据对应的点都集中在某一条直线附近,即两变量的线性相关性最强,此时相关指数最大.答案:D(3,10)7.在研究两个变量的相关关系时,观察散点图发现样本点集中于某一条指数曲线y =ebx +a的周围,令z =ln y ,求得回归直线方程为z ^=0.25x -2.58,则该模型的回归方程为____________________.解析:由z =ln y ,z ^=0.25x -2.58, 得ln y ^=0.25x -2.58,∴y ^=e 0.25x -2.58. 故该模型的回归方程为y ^=e 0.25x -2.58. 答案:y ^=e 0.25x -2.588.为了解某社区居民的家庭年收入与年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表:根据上表可得回归直线方程y =b x +a ,其中b =0.76,a =y -b x .据此估计,求社区一户年收入为15万元的家庭的年支出.解析:由题意可得x -=15×(8.2+8.6+10.0+11.3+11.9)=10,y -=15×(6.2+7.5+8.0+8.5+9.8)=8,可得a ^=8-0.76×10=0.4. ∴回归直线方程为y ^=0.76x +0.4.把x =15代入可得y ^=0.76×15+0.4=11.8.故社区一户年收入为15万元的家庭的年支出为11.8万元.9.某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:(1)求线性回归方程y =b x +a ,其中b =-20,a =y -b x ;(2)预计在今后的销售中,销量与单价仍然服从(1)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入-成本)解析:(1)x -=8+8.2+8.4+8.6+8.8+96=8.5,y -=16(90+84+83+80+75+68)=80,∵b ^=-20,a ^=y --b ^ x -, ∴a ^=80+20×8.5=250, ∴线性回归方程y ^=-20x +250;(2)设工厂获得的利润为L 元,则L =x(-20x +250)-4(-20x +250)=-20⎝⎛⎭⎪⎫x -3342+361.25,∴该产品的单价应定为8.25元,工厂获得的利润最大.[B 组 能力提升]10.对于给定的样本点所建立的模型A 和模型B ,它们的残差平方和分别是a 1,a 2,R 2的值分别为b 1,b 2,下列说法正确的是( )A .若a 1<a 2,则b 1<b 2,A 的拟合效果更好B .若a 1<a 2,则b 1<b 2,B 的拟合效果更好C .若a 1<a 2,则b 1>b 2,A 的拟合效果更好D .若a 1<a 2,则b 1>b 2,B 的拟合效果更好解析:由残差平方和以及R 2的定义式可得若a 1<a 2,则b 1>b 2,A 的拟合效果更好. 答案:C11.近10年来,某市社会商品零售总额与职工工资总额(单位:亿元)数据如下:A.y ^=2.799 1x -27.248 552 B.y ^=2.799 1x -23.548 452 C.y ^=2.699 2x -23.749 352 D.y ^=2.899 2x -23.749 452解析:x -=41.72,y -=93.23,代入验证可知B 选项正确. 答案:B12.已知方程y ^=0.85x -82.71是根据女大学生的身高预报她的体重的回归方程,其中x 的单位是cm ,y ^的单位是kg ,那么针对某个体(160,53)的残差是________.解析:将x =160代入y ^=0.85x -82.71,得y ^=0.85×160-82.71=53.29, 所以残差e ^=y -y ^=53-53.29=-0.29.答案:-0.2913.已知一个线性回归方程为y ^=1.5x +45,x ∈{1,5,7,13,19},则y -=________. 解析:∵x -=1+5+7+13+195=9,且y ^=1.5x +45, ∴y -=1.5×9+45=58.5. 答案:58.514.假设关于某种设备的使用年限x(年)与所支出的维修费用y(万元)有如表统计资料:x 2 3 4 5 6 y2.23.85.56.57.0已知∑i =15x 2i=90,∑i =15x i y i =112.3.b ^=∑i =1nx i -x-y i -y-∑i =1nx i -x-2=∑i =1nx i y i -n x - y-∑i =1nx 2i -n x -2,a =y --b ^ x -. (1)求x -,y -.(2)x 与y 具有线性相关关系,求出线性回归方程. (3)估计使用年限为10年时,维修费用约是多少? 解析:(1)x -=4,y -=5.(2)b ^=∑i =15x i y i -5x - y-∑i =15x 2i -5x -2=1.23,a ^=y --b ^ x -=5-1.23×4=0.08.所以线性回归方程为y ^=1.23x +0.08.(3)当x =10时,y ^=1.23×10+0.08=12.38(万元), 即估计使用年限为10年时,维修费用约为12.38万元.15.菜农定期使用低害杀虫农药对蔬菜进行喷洒,以防止害虫的危害,但采集上市时蔬菜仍存有少量的残留农药,食用时需要用清水清洗干净,下表是用清水x(单位:千克)清洗该蔬菜1千克后,蔬菜上残留的农药y(单位:微克)的统计表:x1 2 3 4 5y 58 54 39 29 10(1)令w =x 2,利用给出的参考数据求出y 关于w 的回归方程y ^=b ^w +a ^.(a ^,b ^精确到0.1)参考数据:∑i =15w i =55,∑i =15(w i -w -)(y i -y -)=-751,∑i =15(w i -w -)2=374,其中w i =x 2i ,w -=15∑i =15w i .(2)对于某种残留在蔬菜上的农药,当它的残留量不高于20微克时对人体无害,为了放心食用该蔬菜,请估计至少需要用多少千克的清水清洗1千克蔬菜?(精确到0.1,参考数据5≈2.24)附:对于一组数据(u 1,v 1),(u 2,v 2),…,(u n ,v n ),其回归直线v ^=α^+β^u 的斜率和截距的最小二乘估计分别为β^=∑i =1nu i -u-v i -v-∑i =1nu i -u-2,α^=v --β^ u -.解析:(1)由题意得,w -=11,y -=38.b ^=∑i =15w i -w-y i -y-∑i =15w i -w-2=-751374≈-2.0,a ^=y --b ^w =60.0,所以y ^=-2.0w +60.0. (2)由(1)得,y ^=-2.0w +60.0, 所以y ^=-2.0x 2+60.0,当y ^≤20时,即-2.0x 2+60.0≤20,解得x≥25≈4.5,所以为了放心食用该蔬菜,估计需要用4.5千克的清水清洗1千克蔬菜.独立性检验的基本思想及其初步应用[A组学业达标]1.在某次飞行航程中遭遇恶劣气候,55名男乘客中有24名晕机,34名女乘客中有8名晕机,在检验这些乘客晕机是否与性别有关时,采用的数据分析方法应是( )A.频率分布直方图B.回归分析C.独立性检验D.用样本估计总体解析:根据题意,结合题目中的数据,列出2×2列联表,求出K2观测值,对照数表可得出概率结论,这种分析数据的方法是独立性检验.答案:C2.观察下列各图,其中两个分类变量x,y之间关系最强的是( )解析:观察等高条形图发现x1x1+y1和x2x2+y2相差越大,就判断两个分类变量之间关系越强.答案:D3.如表是一个2×2列联表:则表中a,b的值分别为( )y1y2总计x1 a 21 73x222 25 47总计 b 46 120A.94,72C.52,74 D.74,52解析:a=73-21=52,b=a+22=74,故选C.答案:C4.利用独立性检验来考虑两个分类变量X与Y是否有关系时,通过查阅下表来确定“X和Y有关系”的可信度.如果K2的观测值k>5.024,那么在犯错误的概率不超过________的前提下认为“X与Y有关系”()P(K2≥k 0) 0.50 0.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001k 0 0.455 0.708 1.323 2.072 2.706 3.841 5.024 6.635 7.87910.828A.0.25 B .0.05 C .0.1D .0.025解析:因为K 2的观测值k >5.024,而在临界值表中对应于5.024的是0.025,所以可以在犯错误的概率不超过0.025的前提下认为“X 和Y 有关系”.答案:D5.分类变量X 和Y 的列表如下,则下列说法判断正确的是( )y 1 y 2 总计 x 1 a b a +b x 2 c d c +d 总计a +cb +da +b +c +dA.ad -bc 越小,说明X 与Y 的关系越弱 B .ad -bc 越大,说明X 与Y 的关系越强 C .(ad -bc)2越大,说明X 与Y 的关系越强 D .(ad -bc)2越接近于0,说明X 与Y 的关系越强解析:列联表可以较为准确地判断两个变量之间的相关关系程度, 由K 2=a +b +c +dad -bc2a +b a +cb +dc +d,当(ad -bc)2越大,K 2越大,表明X 与Y 的关系越强.(ad -bc)2越接近0,说明两个分类变量X 和Y 无关的可能性越大. 即所给说法判断正确的是C. 答案:C6.某部门通过随机调查89名工作人员的休闲方式,了解读书和健身的人数,得到的数据如表:读书 健身 总计 女 24 31 55 男 8 26 34 总计325789在犯错误的概率不超过________的前提下认为性别与休闲方式有关系. 解析:由列联表中的数据,得K 2的观测值为k =89×24×26-31×8255×34×32×57≈3.689>2.706,因此,在犯错误的概率不超过0.10的前提下认为性别与休闲方式有关系.答案:0.107.为了探究电离辐射的剂量与人体的受损程度是否有关,用两种不同剂量的电离辐射照射小白鼠.在照射后14天的结果如下表所示:死亡 存活 总计 第一种剂量 14 11 25 第二种剂量 6 19 25 总计203050进行统计分析的统计假设是________,K 2=________,说明两种电离辐射剂量对小白鼠的致死作用________.(填“相同”或“不相同”)参考公式:K 2=n ad -bc2a +bc +d a +cb +d解析:统计假设是“小白鼠的死亡与使用的电离辐射剂量无关”,由列联表中数据得K 2=5.33>3.841,所以在犯错误的概率不超过0.05的前提下认为小白鼠的死亡与使用的电离辐射剂量有关.所以两种电离辐射剂量对小白鼠的致死作用不相同.答案:小白鼠的死亡与使用的电离辐射剂量无关 5.33 不相同 8.下表是关于男婴与女婴出生时间调查的列联表:晚上 白天 总计 男婴 45 A B 女婴 E 35 C 总计98D180那么,A =________,B =E =________. 解析:由列联表知识得⎩⎪⎨⎪⎧ 45+E =98,98+D =180,A +35=D ,E +35=C ,B +C =180,解得⎩⎪⎨⎪⎧A =47,B =92,C =88,D =82,E =53.答案:47 92 88 82 539.网络对现代人的生活影响较大,尤其是对青少年,为了解网络对中学生学习成绩的影响,某地区教育主管部门从辖区初中生中随机抽取了1 000人调查,发现其中经常上网的有200人,这200人中有80人期末考试不及格,而另外800人中有120人不及格.利用图形判断学生经常上网与学习成绩有关吗?解析:根据题目所给的数据得到如下2×2列联表:经常上网 不经常上网总计 不及格80120200及格 120 680 800 总计2008001 000得出等高条形图如图所示:比较图中阴影部分的高可以发现经常上网不及格的频率明显高于经常上网及格的频率,因此可以认为经常上网与学习成绩有关.10.随着生活水平的提高,人们的休闲方式也发生了变化.某机构随机调查了n 个人,其中男性占调查人数的25.已知男性中有一半的人的休闲方式是运动,而女性中只有13的人的休闲方式是运动.(1)完成下列2×2列联表:运动 非运动总计 男性 女性 总计n(2)数至少有多少?(3)根据(2)的结论,本次被调查的人中,至少有多少人的休闲方式是运动? 解析:(1)补全2×2列联表如下:运动 非运动 总计 男性 15n 15n 25n 女性 15n 25n 35n 总计25n 35n n(2)则P(K 2≥k 0)=3.841. 由于K 2的观测值k =n ⎝ ⎛⎭⎪⎫n 5·2n 5-n 5·n 522n 5·3n 5·2n 5·3n 5=n 36,故n36≥3.841,即n≥138.276. 又由15n ∈Z ,故n≥140.故若在犯错误的概率不超过0.05的前提下,可认为“性别与休闲方式有关”,那么本次被调查的至少有140人.(3)根据(2)的结论,本次被调查的人中,至少有25×140=56(人)的休闲方式是运动.[B 组 能力提升]11.某卫生机构对366人进行健康体检,其中某项检测指标阳性家族史者糖尿病发病的有16人,不发病的有93人;阴性家族史者糖尿病发病的有17人,不发病的有240人,故在犯错误的概率不超过________的前提下认为糖尿病患者与遗传有关系.( )A .0.001B .0.005C .0.01D .0.025解析:可以先作出如下列联表(单位:人): 糖尿病患者与遗传列联表糖尿病发病糖尿病不发病总计 阳性家族史 16 93 109 阴性家族史17 240 257 总计33333366根据列联表中的数据,得到K 2的观测值为 k =366×16×240-17×932109×257×33×333≈6.067>5.024.故在犯错误的概率不超过0.025的前提下认为糖尿病患者与遗传有关系. 答案:D12.在研究性别与吃零食这两个分类变量是否有关系时,下列说法中正确的是________(填序号). ①若K 2的观测值k =6.635,则我们在犯错误的概率不超过0.01的前提下认为吃零食与性别有关系,那么在100个吃零食的人中必有99人是女性;②由独立性检验可知在犯错误的概率不超过0.01的前提下认为吃零食与性别有关系时,如果某人吃零食,那么此人是女性的可能性为99%;③由独立性检验可知在犯错误的概率不超过0.01的前提下认为吃零食与性别有关系时,是指每进行100次这样的推断,平均有1次推断错误.解析:K 2的观测值是支持确定有多大把握认为“两个分类变量吃零食与性别有关系”的随机变量值,所以由独立性检验可知在犯错误的概率不超过0.01的前提下认为吃零食与性别有关系时,是指每进行100次这样的推断,平均有1次推断错误,故填③.答案:③13.根据下表计算:不看电视 看电视 男 37 85 女35143K 2的观测值k≈________(保留3位小数). 解析:k =300×37×143-85×352122×178×72×228≈4.514.答案:4.51414.某学校为了解该校高三年级学生在市一练考试的数学成绩情况,随机从该校高三文科与理科各抽取50名学生的数学成绩,作出频率分布直方图如图,规定考试成绩在[120,150]内为优秀.(1)由以上频率分布直方图填写下列2×2列联表.若按是否优秀来判断,是否有99%的把握认为该校的文理科数学成绩有差异.文科 理科 总计 优秀 非优秀 总计5050100(2)某高校派出2140分以上的学生进行自主招生面试,每位教授至少面试一人,每位学生只能被一位教授面试.若甲教授面试的学生人数为ξ,求ξ的分布列和均值.解析:(1)由频率分布直方图知,该校文科学生中数学成绩优秀的人数为(0.010+0.004+0.002)×10×50=8,故非优秀人数为50-8=42.该校理科学生中数学成绩优秀的人数为(0.020+0.014+0.006)×10×50=20,故非优秀人数为50-20=30.则2×2列联表如下:文科 理科 总计 优秀 8 20 28 非优秀 42 30 72 总计5050100∴K 2的观测值k =100×8×30-42×20250×50×28×72≈7.143>6.635,故有99%的把握认为该校文理科数学成绩有差异.(2)由(1)知,该校随机抽取的学生成绩中一练数学成绩在140分以上的学生为4人,ξ的可能取值为1,2,3.将4人分给两名教授每名教授至少1名学生的不同分法种数为⎝⎛⎭⎪⎫C 34+C 24C 22A 22A 22=14,则P(ξ=1)=C 1414=27,P(ξ=2)=C 2414=37,P(ξ=3)=C 3414=27.∴ξ的分布列为:ξ 1 2 3 P273727∴E(ξ)=1×27+2×37+3×27=2.15.某校为了了解学生对消防知识的了解情况,从高一年级和高二年级各选取100名同学进行消防知识竞赛.图(1)和图(2)分别是对高一年级和高二年级参加竞赛的学生成绩按[40,50),[50,60),[60,70),[70,80]分组,得到的频率分布直方图.(1)请计算高一年级和高二年级成绩小于60分的人数.(2)完成2×2列联表,并回答:在犯错误的概率不超过多少的前提下认为“学生所在的年级与消防常识的了解存在相关性”?成绩小于60分人数成绩不小于60分人数总计高一 高二 总计附:临界值表及参考公式: K 2=n ad -bc 2a +bc +d a +cb +d ,n =a +b +c +d. P(K 2≥k 0)0.15 0.100.05 0.025 0.010 0.005 0.001 k 02.0722.7063.8415.0246.6357.87910.828解析:(1)高一年级成绩低于60分的人数为:(0.03+0.04)×10×100=70; 高二年级成绩低于60分的人数为: (0.035+0.015)×10×100=50. (2)2×2列联表如下:成绩小于60分人数成绩不小于60分人数总计 高一 70 30 100 高二 50 50 100 总计12080200由于K 2的观测值k =200×50×70-50×302100×100×120×80≈8.333>7.879,所以在犯错误的概率不超过0.005的前提下认为“学生所在的年级与消防知识的了解存在相关性”.。

人教版数学高二A版选修2-3单元检测第三章统计案例(附答案)

人教版数学高二A版选修2-3单元检测第三章统计案例(附答案)

数学人教版A2-3第三章 统计案例单元检测(时间:45分钟,满分:100分)一、选择题(每小题6分,共48分)1( ).A .一次函数模型B .二次函数模型C .指数函数模型D .对数函数模型2.工人月工资y (元)随劳动生产率x (千元)变化的回归方程为ˆy=50+80x .下列判断错误的是( ).A .劳动生产率为1 000元时,工资约为130元B .劳动生产率提高1 000元时,工资提高130元C .劳动生产率提高1 000元时,工资提高80元D .当月工资约为210元时,劳动生产率为2 000元3.某考察团对全国10大城市进行职工人均工资水平x (千元)与居民人均消费水平y (千元)统计调查,y 与x 具有相关关系,回归方程为ˆy=0.66x +1.562.若某城市居民人均消费水平为7.675(千元),估计该城市人均消费额占人均工资收入的百分比约为( ).A .83%B .72%C .67%D .66%4.若两个变量的残差平方和是325,21()nii x y =-∑=923,则随机误差对预报变量的贡献率约为( ). A .64.8% B .60% C .35.2% D .40% 5.下列说法:①在残差图中,残差点比较均匀地落在水平的带状区域内,说明选用的模型比较合适; ②用相关指数可以刻画回归的效果,值越小说明模型的拟合效果越好; ③比较两个模型的拟合效果,可以比较残差平方和的大小,残差平方和越小的模型拟合效果越好.其中说法正确的是( ). A .①② B .②③ C .①③ D .①②③6.(创新题)独立检验中,假设H 0:变量X 与变量Y 没有关系,则在H 0成立的情况下,P (K 2≥6.635)=0.010表示的意义是( ). A .变量X 与变量Y 有关系的概率为1%B .变量X 与变量Y 没有关系的概率为99.9%C .变量X 与变量Y 没有关系的概率为99%D .变量X 与变量Y 有关系的概率为99%7( ).A.K2=9.564 B.K2=3.564 C.K2<2.706 D.K2>3.841 8.为了解高中生作文成绩与课外阅读量之间的关系,某研究机构随机抽取了60名高中由以上数据,计算得到K2的观测值k≈9.643,根据临界值表,以下说法正确的是().A.没有充足的理由认为课外阅读量大与作文成绩优秀有关B.有0.5%的把握认为课外阅读量大与作文成绩优秀有关C.有99.9%的把握认为课外阅读量大与作文成绩优秀有关D.有99.5%的把握认为课外阅读量大与作文成绩优秀有关二、填空题(每小题6分,共18分)9.(创新题)已知回归直线ˆy=bx+a斜率的估计值是52,且样本点的中心为(4,5).则当x=-2时,ˆy的值为______.10.若一组观测值(x1,y1),(x2,y2),…,(x n,y n)之间满足y i=bx i+a+e i(i=1,2,…,n),若e i恒为0,则R2为________.11.对196个接受心脏搭桥手术的病人和196个接受血管清障手术的病人进行了3年的试根据上述数据计算K2=______,比较这两种手术对病人又发作心脏病的影响有没有差别______.三、解答题(共34分)12.(10分)某数学老师身高176 cm,他爷爷、父亲和儿子的身高分别是173 cm,170 cm和182 cm.因儿子的身高与父亲的身高有关,求该老师用线性回归分析的方法预测他孙子的身高为多少.13.(12分)为了比较注射A,B两种药物后产生的皮肤疱疹的面积,选200只家兔做试验,将这200只家兔随机地分成两组,每组100只,其中一组注射药物A,另一组注射药物B.下表1和表2分别是注射药物A和药物B后的试验结果.(疱疹面积单位:mm2)表2:注射药物B后皮肤疱疹面积的频数分布表完成下面2×2列联表,并回答能否有99.9%的把握认为“注射药物A后的疱疹面积与14.(12分)一个车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了(1)建立零件数为解释变量,加工时间为预报变量的回归模型,并计算残差;(2)你能残差分析这个模型能较好地刻画零件数和加工时间的关系吗?参考答案1答案:A解析:画出散点图可观察得点都在一条直线上,故A正确.2答案:B解析:当x=1(千元)时,ˆy=130元,A正确;当ˆy=210元时,x=2105080-=2千元,D正确;当x增加一个单位时,ˆy增加80,C正确.3答案:A解析:因为当ˆy=7.675时,x=7.675 1.5620.66-≈9.262,所以7.6759.262≈0.829≈83%.4答案:C解析:由题意可知随机误差对预报变量的贡献率约为325923=0.352.5答案:C解析:相关指数R2越大,说明模型拟合效果越好,故②错误.6答案:D解析:由题意知变量X与Y没有关系的概率为0.01,即认为变量X与Y有关系的概率为99%.7答案:D解析:由K2=2()()()()()n ad bca b c d a c b d-++++,得K2的观测值k=285(4012528)68174540⨯⨯⨯⨯⨯⨯-≈4.722>3.841.8答案:D解析:根据临界值表,9.643>7.879,在犯错误的概率不超过0.005的前提下,认为课外阅读量大与作文成绩优秀有关,即有99.5%的把握认为课外阅读量大与作文成绩优秀有关.9答案:-10解析:由已知b=52且4b+a=5,∴a=-5,5ˆ2y x=-5.∴x=-2时,y=-10.10答案:1解析:e i恒为0,说明随机误差总为0,于是y i=ˆy,故R2=1.11答案:1.78不能作出这两种手术对病人又发作心脏病的影响有差别的结论解析:提出假设H0:两种手术对病人又发作心脏病的影响没有差别.根据列联表中的数据,可以求得K2的观测值k=2392(3916729157)68324196196⨯⨯⨯⨯⨯⨯-≈1.78.当H 0成立时,K 2≈1.78,而K 2<2.072的概率为0.85.所以,不能否定假设H 0.也就是不能作出这两种手术对病人又发作心脏病的影响有差别的结论.12解:由题意父亲身高x cm 与儿子身高y cm 对应关系如下表:则1731701763x ++==173,1701761823y ++==176, 31()()iii x x y y =--∑=(173-173)×(170-176)+(170-173)×(176-176)+(176-173)×(182-176)=18,321()ii x x =-∑=(173-173)2+(170-173)2+(176-173)2=18.∴18ˆ18b==1. ∴ˆˆay bx =-=176-173=3. ∴线性回归直线方程ˆˆˆybx a =+=x +3. ∴可估计孙子身高为182+3=185(cm).由列联表中的数据,得K 2的观测值为k =2200(70653530)10010010595⨯⨯⨯⨯⨯⨯-≈24.561>10.828.因此,有99.9%的把握认为“注射药物A 后的疱疹面积与注射药物B 后的疱疹面积有差异”.14解:(1)根据表中数据作出散点图,如图所示.间对零件数的线性回归方程为ˆy=0.668x+54.93.(2)以零件数为横坐标,残差为纵坐标作出残差图如图所示.由图可知,残差点分布较均匀,即用上述回归模型拟合数据效果很好.但需注意,由残差图也可以看出,第4个样本点和第5个样本点的残差比较大,需要确认在采集这两个样本点的过程中是否有人为的错误.。

最新整理高中数学人教A版选修2-3本章测评:第三章统计案例1 Word版含解析.doc

最新整理高中数学人教A版选修2-3本章测评:第三章统计案例1 Word版含解析.doc

本章测评一、选择题(每题只有一个正确答案,请把正确答案的序号填写在题后的括号内)1.下列说法正确的是( )A.相关关系是一种不确定的关系,回归分析是对相关关系的分析,因此没有实际意义B.独立性检验对分类变量关系的研究没有100%的把握,所以独立性检验研究的结果在实际中也没有多大的实际意义C.相关关系可以对变量的发展趋势进行预报,这种预报可能会是错误的D.独立性检验如果得出的结论有99%的可信度就意味着这个结论一定是正确的思路解析:相关关系虽然是一种不确定关系,但是回归分析可以在某种程度上对变量的发展趋势进行预报,这种预报在尽量减小误差的条件下可以对生产与生活起到一定的指导作用,独立性检验对分类变量的检验也是不确定的,但是其结果也有一定的实际意义.答案:C2.设有一个回归方程为x yˆ8.22ˆ-=,则变量x 增加一个单位时( ) A.y 平均增加2.8个单位 B.y 平均增加2个单位C.y 平均减少2.8个单位D.y 平均减少2个单位思路解析:根据回归方程可知y 是关于x 的单调递减函数,并且由系数知,x 增加一个单位,相应的y 值平均减少1.5个单位.答案:C3.为了研究男子的年龄与吸烟的关系,抽查了100个男人,按年龄超过和不超过40岁,吸烟量每天多于和不多于20支进行分组,如下表:年龄 合计 不超过40岁 超过40岁吸烟量不多于20支/天50 15 65 吸烟量多于20支/天10 25 35 合计60 40 100 则有____________的把握确定吸烟量与年龄有关. …( )A.99.9%B.99%C.95%D.没有理由 思路解析:利用题中列联表,代入公式计算.K 2=40603565)15102550(1002⨯⨯⨯⨯-⨯⨯≈22.16>10.828, 所以我们有99.9%的把握确定吸烟量与年龄有关.答案:A4.下列关于线性回归直线方程yˆ=a+bx 的叙述错误的是 ( ) A.这是根据样本数据近似得出的关系式B.根据回归直线方程可以近似估计某一变量x 对应的y 值C.根据回归直线方程可以估计某一组数据的大致分布情况D.对于同一组数据可以得到若干条直线方程,其中任意一条都可以作为回归直线方程思路解析:回归直线方程是近似描述数据之间的一种关系式,根据回归直线方程可以估计某一变量x 值对应的数值,它是根据样本数据得到的最贴近实际的一条而不是所有直线中的任意一条直线,所以,选项D 是错误的.答案:D5.根据表中提供的数据:x 49.2 50.0 49.3 49.0 49.0 49.5 50.8 50.2 y a 17.0 16.8 16.6 16.7 16.8 b 17.0 若表中数据满足线性相关关系,则表中a,b 的值最有可能是( )A.16.7 50.2B.16.7 16.9C.49.0 50.8D.50.0 47.1思路解析:根据表中数据的特点可以发现y 随着x 的增大而增大,结合表中数据的大小特点可知选项B 最有可能.答案:B 6.根据下表内容,下列说法正确的是( )事件A A 的对立事件 合计方法1a b a+b 方法2c d c+d 合计a+c b+d a+b+c+d A.不论a 、b 、c 、d 取什么值,方法1和方法2对事件A 的影响都是有区别的B.当dc b a =时,可以认为方法1和方法2对事件A 的影响有非常大的区别 C.|dc c b a a +-+|的值越大,说明方法1和方法2对事件A 发生影响的区别越大 D.|dc c b a a +-+|的值越大,说明方法1和方法2对事件A 发生影响的区别越小 思路解析:当b a a +与d c c +的差越大,则两个变量有关系的可能性越大. 答案:C二、填空题(请把正确答案直接填写在题后的括号内)7.一台机器可以按各种不同速度运转,其生产的物件有一些会有缺点,每小时生产有缺点物件的多寡,随机器运转的速度而变化,下列为其试验结果:速度(转/秒) 每小时生产有缺点物件数8 512 814 916 11则机器速度影响每小时生产有缺点物件数的回归直线方程为________________.思路解析:直接代入回归直线方程的公式,回归直线方程:yˆ=a+bx,其中回归系数是:.,1221x b y a x n xy x n y x b n i in i i i-=--=∑∑==答案:yˆ=0.728 6x-0.857 1 8.对于一条线性回归直线yˆ=a+bx,如果x=3时,对应的y 的估计值是17,当x=8时,对应的y 的估计值是22,那么,可以估计出回归直线方程是_____________,根据回归直线方程判断当x=_____________时,y 的估计值是38.思路解析:首先把两组值代入回归直线方程得⎩⎨⎧==⇒⎩⎨⎧=+=+.14,1228173a b a b a b 所以回归直线方程是yˆ=x+14.令x+14=38,可得x=24. 答案:yˆ=x+14 24 9.在对两个变量进行回归分析时,甲、乙分别给出两个不同的回归方程,并对回归方程进行检验,对这两个回归方程进行检验,与实际数据(个数)对比结果如下:与实际相符数据个数 与实际不符合数据个数 合计甲回归方程32 8 40 乙回归方程40 20 60 合计72 28 100 则从表中数据分析,_____________回归方程更好(即与实际数据更贴近).思路解析:可以根据表中数据分析,两个回归方程对数据预测的正确率进行判断,也可以画出二维条形图进行判断.甲回归方程的数据准确率为544032=,而乙回归方程的数据准确率为326040=,显然甲的准确率高些,因此甲回归方程好些. 答案:甲10.假如由数据:(1,2),(3,4),(2,2),(4,4),(5,6),(3,3.6)可以得出线性回归方程yˆ=a+bx 必经过的定点是以上点中的_____________.思路解析:易知,线性回归方程yˆ=a+bx 必经过定点(y x ,),而根据计算可知这几个点中满足条件的是(3,3.6).答案:(3,3.6)三、解答题(请写出详细解题过程)11.在7块并排、形状大小相同的试验田上进行施化肥量对水稻产量影响的试验,得到如下表所示的一组数据.(单位:kg )施化肥量x15 20 25 30 35 40 45 水稻产量y 330345 365 405 445 450 455 (1)画出散点图;(2)求y 关于x 的线性回归方程;(3)若施化肥量为38 kg,其他情况不变,请预测水稻的产量.思路分析:首先根据表中数据可以画出散点图,然后根据散点图的趋势判断相关关系是正相关还是负相关;利用最小二乘法求出回归直线系数,从而得到回归方程,把x=38代入方程即可估计出施肥量为38 kg 时水稻的产量.解:(1)根据表中数据可得散点图如下:(2)根据回归直线方程系数的公式计算可得回归直线方程yˆ=4.75x+257. (3)把x=38代入回归直线方程得y=438,所以,可以预测,施化肥量为38 kg,其他情况不变,水稻的产量是438 kg.12.在调查的480名男人中有38名患有色盲,520名女人中有6名患有色盲,分别利用图形和独立性检验的方法来判断色盲是否与性别有关?并给出结论的可信度.思路分析:本题应首先作出调查数据的列联表,再根据列联表画出二维条形图或者是三维柱形图,根据图形粗略给出结论,再根据独立性检验得出结论的可信度.解:根据题目中的数据可得列联表如下:色盲 不色盲 合计男人38 442 480 女人6 514 520 合计44 956 1 000 根据列联表作出二维条形图如下:从二维条形图来看,在男人中患色盲的比例为:48038,比在女人中患色盲的比例5206要大,其差值|48038-5206|≈0.068,差值较大,因而我们可以认为性别与患色盲是有关的,根据列联表中所给的数据可以有:a=38,b=442,c=6,d=514,代入公式K 2=))()()(()(2d b c a d c b a bc ad n ++++-,可得K 2=95644520480)442651438(10002⨯⨯⨯⨯-⨯⨯≈27.1,由于K 2≈27.1>10.828,所以,我们有99.9%的把握认为性别与色盲有关,这个结论只对调查的480名男人和520名女人适用.。

高中数学第三章统计案例本章测评(含解析)新人教A版选修23

高中数学第三章统计案例本章测评(含解析)新人教A版选修23

高中数学第三章统计案例本章测评(含解析)新人教A版选修23(时间:90分钟满分:100分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列说法中错误的是( )A.如果变量x与y之间存在线性相关关系,则我们根据试验数据得到的点(x i,y i)(i=1,2,…,n)将散布在某一条直线的附近B.如果两个变量x与y之间不存在线性关系,那么根据它们的一组数据(x i,y i)(i=1,2,…,n)不能写出一个线性方程C.设x,y是具有相关关系的两个变量,且y关于x的线性回归方程为x+叫做回归系数D.为使求出的线性回归方程有意义,可用统计检验的方法来判断变量y与x之间是否存在线性相关关系解析:任何一组(x i,y i)(i=1,2,…,n)都能写出一个线性方程,只是有的无意义.答案:B2.在建立两个变量y与x的回归模型时,分别选择了4个不同的模型,它们的相关指数R2如下,其中拟合得最好的模型为( )A.模型1的相关指数R2为0.75B.模型2的相关指数R2为0.90C.模型3的相关指数R2为0.25D.模型4的相关指数R2为0.55解析:相关指数R2的值越大,意味着残差平方和越小,也就是说拟合效果越好.答案:B3.下列关于独立性检验的说法中,错误的是( )A.独立性检验依据小概率原理B.独立性检验得到的结论一定正确C.样本不同,独立性检验的结论可能有差异D.独立性检验不是判定两类事物是否相关的唯一方法答案:B4.一位母亲记录了儿子3~9岁的身高,数据略,由此建立的身高与年龄的回归模型为=7.19x+73.93,用这个模型预测这个孩子10岁时的身高,则正确的叙述是( )A.身高一定是145.83cmB.身高在145.83cm以上C.身高在145.83cm左右D.身高在145.83cm以下解析:只能预测,不能确定实际值.答案:C5.为了调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了200位老年人,结构如下:性别是否需要志愿者男需要70 0不需要30 0附:P( K2>k0).05.01.001k03.8416.63510.828K2=参照附表,得到的正确结论是( ).A.在犯错误的概率不超过0.1%的前提下认为“该地区的老年人是否需要志愿者提供帮助与性别有关”B.在犯错误的概率不超过0.1%的前提下认为“该地区的老年人是否需要志愿者提供帮助与性别无关”C.最多有99%的把握认为“该地区的老年人是否需要志愿者提供帮助与性别有关”D.最多有99%的把握认为“该地区的老年人是否需要志愿者提供帮助与性别无关”解析:由公式可计算K2的观测值k==≈18.18>10.828,所以在犯错误的概率不超过0.1%的前提下认为“该地区的老年人是否需要志愿者提供帮助与性别有关”,故选A.答案:A6.三点(3,10),(7,20),(11,24)确定的线性回归方程是( )A.=1.75x-5.75B.=1.75x+5.75C.=-1.75x+5.75D.=-1.75x-5.75xz解析:设回归直线为x+,则由公式得=1.75,=5.75.答案:B7.下列说法:①若r>0,则x增大时,y也相应增大;②若r<0,则x增大时,y也相应增大;③若r=1,或r=-1,则x与y的关系完全对应(有函数关系),在散点图上各个散点均在一条直线上.正确的有( )A.①②B.②③C.①③D.①②③解析:由相关系数的定义可知①③正确.答案:C8.某考察团对全国10大城市进行职工人均工资水平x(千元)与居民人均消费水平y(千元)统计调查,y与x具有相关关系,回归方程为=0.66x+1.562,若某城市居民人均消费水平为7.675(千元),估计该城市人均消费额占人均工资收入的百分比约为( )A.83%B.72%C.67%D.66%解析:因为当=7.675时,x=≈9.262,所以≈0.829≈83%.答案:A9.若对于变量y与x的10组统计数据的回归模型中,相关指数R2=0.95,又知残差平方和为120.53,那么(y i-)2的值为( )A.241.06B.2410.6C.253.08D.2530.8解析:由R2=1-,得0.95=1-,得(y i-)2==2410.6.答案:B10.为了考察两个变量x和y之间的线性相关性,甲、乙两个同学各自独立做了10次和15次试验,并且利用线性回归方法,求得回归直线l1和l2,已知在两人的试验中发现变量x的观测数据的平均值恰好相等,都为s ,变量y的观测数据的平均值也恰好相等,都为t,那么下列说法正确的是( )A.直线l1和直线l2有交点(s,t)B.直线l1和直线l2相交,但交点未必是点(s,t)C.直线l1和直线l2由于斜率相等,所以必定平行D.直线l1和直线l2必定重合解析:l1与l2都过样本中心点(s,t).答案:A二、填空题(本大题共5小题,每小题5分,共25分.把答案填在题中的横线上)11.有下列关系:①人的年龄与他(她)拥有的财富之间的关系;②曲线上的点与该点的坐标之间的关系;③苹果的产量与气候之间的关系;④森林中的同一种树木,其断面直径与高度之间的关系;⑤学生与他(她)的学号之间的关系.其中具有相关关系的是.解析:②⑤中两个变量之间的关系是确定性关系,不是相关关系.①③④中两个变量之间具有相关关系.答案:①③④12.由数据:(1,2),(3,4),(2,2),(4,4),(5,6),(3,3.6)得出的线性回归方程x必经过的定点是以上点中的.解析:易知,线性回归方程x必经过定点(),而根据计算可知这几个点中满足条件的是(3,3.6).答案:(3,3.6)13.下列是关于男婴与女婴出生时间调查的列联表晚上白天总计男婴45a b女婴e35c 总计98d180那么a=,b=,c=,d=,e=.解析:∵45+e=98,∴e=53;∵e+35=c,∴c=88;∵98+d=180,∴d=82;∵a+35=d,∴a=47;∵45+a=b,∴b=92.答案:47 92 88 82 5314.某学校对校选课程“人与自然”的选修情况进行了统计,得到如下数据:选未选总计男405 45450女23022450总计635265900那么,在犯错误的概率不超过的前提下认为选修“人与自然”与性别有关.解析:K2=,k≈163.8>10.828,即在犯错误的概率不超过0.001的前提下认为选修“人与自然”与性别有关.答案:0.00115.对有关数据的分析可知,每立方米混凝土的水泥用量x(单位:kg)与28天后混凝土的抗压度y(单位:kg/cm2)之间具有线性相关关系,其线性回归方程为=0.30x+9.99.根据建设项目的需要,28天后混凝土的抗压度不得低于89.7kg/cm2,则每立方米混凝土的水泥用量最少应为kg.(精确到0.1kg)解析:由已知,0.30x+9.99≥89.7,解得x≥265.7.答案:265.7三、解答题(本大题共2小题,共25分.解答时应写出文字说明、证明过程或演算步骤)16.(10分)某班主任对全班50名学生的学习积极性和对待班级工作的态度进行了调查,统计数据如下表所示:积极参加班级工作不太主动参加班级工作合计学习积极性高18 725学习积极性一般6 1925合计24 265(1)如果随机抽查这个班的一名学生,那么抽到积极参加班级工作的学生的概率是多少?抽到不太主动参加班级工作且学习积极性一般的学生的概率是多少?(2)试运用独立性检验的思想方法分析:学生的学习积极性与对待班级工作的态度是否有关系?并说明理由.分析:(1)运用古典概型概率公式求值.(2)求出随机变量,说明关系.解:(1)积极参加班级工作的学生有24人,不太主动参加班级工作且学习积极性一般的学生有19人,总人数为50人,∴抽到积极参加班级工作的学生的概率为;抽到不太主动参加班级工作且学习积极性一般的学生的概率为.(2)k=≈11.5,∵k>10.828,∴在犯错误的概率不超过0.001的前提下认为学习积极性与对待班级工作的态度有关系.17.(15分)在关于人的脂肪含量(百分比)和年龄的关系的研究中,研究人员获得了一组数据如下表:年龄x23273941454955354565758661 脂肪含量y9.517.821.225.927.526.328.229.630.231.430.833.535.234.6(1)作出散点图,并判断y与x是否线性相关,若线性相关,求线性回归方程;(2)求相关指数R2,并说明其含义;(3)给出37岁时人的脂肪含量的预测值.分析:先作出样本数据的散点图,进而求出回归模型,并依据公式求出R2,进而说明拟合效果.解:(1)散点图如图所示.由散点图可知样本点呈条状分布,脂肪含量与年龄有比较好的线性相关关系,因此可以用线性回归方程来刻画它们之间的关系.设线性回归方程为x+,则由计算器算得≈0.576,=-0.448,所以线性回归方程为=0.576x-0.448.(2)(y i-)2≈37.78.(y i-)2≈644.99.R2=1-≈0.941.R2≈0.941,表明年龄解释了94.1%的脂肪含量变化.(3)当x=37时,=0.576×37-0.448≈20.9,故37岁时人的脂肪含量约为20.9%.。

人教A版高中数学选修2-3第三章《统计案例》测试题(含答案解析)(2)

人教A版高中数学选修2-3第三章《统计案例》测试题(含答案解析)(2)

高中新课标选修(2-3)第三章统计案例综合测试题一、选择题1.下列属于相关现象的是( ) A.利息与利率 B.居民收入与储蓄存款 C.电视机产量与苹果产量 D.某种商品的销售额与销售价格 答案:B2.如果有95%的把握说事件A 和B 有关,那么具体算出的数据满足( ) A.2 3.841K > B.2 3.841K < C.2 6.635K > D.2 6.635K <答案:A3.如图所示,图中有5组数据,去掉组数据后(填字母代号),剩下的4组数据的线性相关性最大( ) A.E B.C C.D D.A答案:A4.为调查吸烟是否对患肺癌有影响,某肿瘤研究所随机地调查了9965人, 得到如下结果(单位:人)9 根据表中数据,你认为吸烟与患肺癌有关的把握有( ) A.90% B.95%C.99%D.100%答案:C5.调查某医院某段时间内婴儿出生的时间与性别的关系,得到下面的数据表:1你认为婴儿的性别与出生时间有关系的把握为( ) A.80% B.90%C.95%D.99%答案:B6.已知有线性相关关系的两个变量建立的回归直线方程为y a bx =+,方程中的回归系数b ( ) A.可以小于0 B.只能大于0 C.可以为0D.只能小于0答案:A7.每一吨铸铁成本c y (元)与铸件废品率x %建立的回归方程568c y x =+,下列说法正确的是( ) A.废品率每增加1%,成本每吨增加64元 B.废品率每增加1%,成本每吨增加8% C.废品率每增加1%,成本每吨增加8元 D.如果废品率增加1%,则每吨成本为56元 答案:C8.下列说法中正确的有:①若0r >,则x 增大时,y 也相应增大;②若0r <,则x 增大时,y 也相应增大;③若1r =,或1r =-,则x 与y 的关系完全对应(有函数关系),在散点图上各个散点均在一条直线上( ) A.①②B.②③C.①③D.①②③答案:C9.有一个同学家开了一个小卖部,他为了研究气温对热饮销售的影响,经过统计,得到一个卖出的热饮杯数与当天气温的对比表:如果某天气温是2℃,则这天卖出的热饮杯数约为( ) A.100 B.143C.200D.243答案:B10.甲、乙两个班级进行一门考试,按照学生考试成绩优秀和不优秀统计成绩后,得到如下列联表:利用独立性检验估计,你认为推断“成绩与班级有关系”错误的概率介于()A.0.3~0.4 B.0.4~0.5 C.0.5~0.6 D.0.6~0.7答案:B二、填空题11.某矿山采煤的单位成本Y与采煤量x有关,其数据如下:则Y对x的回归系数.答案:0.1229-12.对于回归直线方程 4.75257y x=+,当28x=时,y的估计值为.答案:39013.在某医院,因为患心脏病而住院的665名男性病人中,有214人秃顶;而另外772名不是因为患心脏病而住院的男性病人中有175人秃顶,则2K=.答案:16.37314.某工厂在2005年里每月产品的总成本y(万元)与该月产量x(万件)之间有如下一组数据:0 2.55则月总成本y对月产量x的回归直线方程为.答案: 1.2150.975y x=+三、解答题15.某教育机构为了研究人具有大学专科以上学历(包括大学专科)和对待教育改革态度的关系,随机抽取了392名成年人进行调查,所得数据如下表所示:对于教育机构的研究项目,根据上述数据能得出什么结论.解:22392(3916715729)1.7819619668324K⨯⨯-⨯=≈⨯⨯⨯.因为1.78 2.706<,所以我们没有理由说人具有大学专科以上学历(包括大学专科)和对待教育改革态度有关.16.1907年一项关于16艘轮船的研究中,船的吨位区间位于192吨到3246吨,船员的人数从5人到32人,船员的人数关于船的吨位的回归分析得到如下结果:船员人数=9.1+0.006×吨位.(1)假定两艘轮船吨位相差1000吨,船员平均人数相差多少?(2)对于最小的船估计的船员数为多少?对于最大的船估计的船员数是多少?解:由题意知:(1)船员平均人数之差=0.006×吨位之差=0.006×1000=6,∴船员平均相差6人;(2)最小的船估计的船员数为:9.1+0.006×192=9.1+1.152=10.252≈10(人).最大的船估计的船员数为:9.1+0.006×3246=9.1+19.476=28.576≈28(人).17.假设一个人从出生到死亡,在每个生日都测量身高,并作出这些数据散点图,则这些点将不会落在一条直线上,但在一段时间内的增长数据有时可以用线性回归来分析.下表是一位母亲给儿子作的成长记录:11(1)作出这些数据的散点图;(2)求出这些数据的回归方程;(3)对于这个例子,你如何解释回归系数的含义?(4)用下一年的身高减去当年的身高,计算他每年身高的增长数,并计算他从3~16岁身高的年均增长数.(5)解释一下回归系数与每年平均增长的身高之间的联系.解:(1)数据的散点图如下:(2)用y表示身高,x表示年龄,则数据的回归方程为y=6.317x+71.984;(3)在该例中,回归系数6.317表示该人在一年中增加的高度; (4)每年身高的增长数略.3~16岁身高的年均增长数约为6.323cm ; (5)回归系数与每年平均增长的身高之间近似相等.18.某个服装店经营某种服装,在某周内获纯利y (元),与该周每天销售这种服装件数x 之间的一组数据关系见表:已知721280ii x ==∑,2145309ii y ==∑,13487i i i x y ==∑.(1)求x y ,; (2)画出散点图;(3)判断纯利y 与每天销售件数x 之间是否线性相关,如果线性相关,求出回归方程. 解:(1)345678967x ++++++==,6669738189909179.867y ++++++=≈;(2)略;(3)由散点图知,y 与x 有线性相关关系, 设回归直线方程:y bx a =+,5593487761337 4.7528073628b -⨯⨯===-⨯,79.866 4.7551.36a =-⨯=.∴回归直线方程 4.7551.36y x =+.。

高中数学人教A版选修2-3:阶段质量检测(三) 统计案例 Word版含解析

高中数学人教A版选修2-3:阶段质量检测(三) 统计案例 Word版含解析

阶段质量检测(三) 统计案例(时间120分钟 满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.对有线性相关关系的两个变量建立的回归直线方程y ^=a ^+b ^x 中,回归系数b ^( ) A .可以小于0 B .大于0 C .能等于0D .只能小于0解析:选A ∵b ^=0时,则r =0,这时不具有线性相关关系,但b ^可以大于0也可以小于0.2.每一吨铸铁成本y (元)与铸件废品率x %建立的回归方程y ^=56+8x ,下列说法正确的是( )A .废品率每增加1%,成本每吨增加64元B .废品率每增加1%,成本每吨增加8%C .废品率每增加1%,成本每吨增加8元D .如果废品率增加1%,则每吨成本为56元解析:选C 根据回归方程知y 是关于x 的单调增函数,并且由系数知x 每增加一个单位,y 平均增加8个单位.3.下表显示出样本中变量y 随变量x 变化的一组数据,由此判断它最可能是( )A .线性函数模型B .二次函数模型C .指数函数模型D .对数函数模型解析:选A 画出散点图(图略)可以得到这些样本点在某一条直线上或该直线附近,故最可能是线性函数模型.4.试验测得四组(x ,y )的值为(1,2),(2,3),(3,4),(4,5),则y 与x 之间的回归直线方程为( )A .y ^=x +1B . y ^=x +2 C .y ^=2x +1 D .y ^=x -1解析:选A 由题意发现,(x ,y )的四组值均满足y ^=x +1,故y ^=x +1为回归直线方程.5.下列关于等高条形图说法正确的是( ) A .等高条形图表示高度相对的条形图 B .等高条形图表示的是分类变量的频数 C .等高条形图表示的是分类变量的百分比 D .等高条形图表示的是分类变量的实际高度 解析:选C 由等高条形图的特点及性质进行判断.6.根据一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )的散点图分析存在线性相关关系,求得其回归方程y ^=0.85x -85.7,则在样本点(165,57)处的残差为( )A .54.55B .2.45C .3.45D .111.55解析:选B 把x =165代入y ^=0.85x -85.7,得y =0.85×165-85.7=54.55,由57-54.55=2.45,故选B .7.有甲、乙两个班级进行数学考试,按照大于等于85分为优秀,85分以下为非优秀统计成绩,得到如下所示的列联表:已知在全部105人中随机抽取1人,成绩优秀的概率为27,则下列说法正确的是( )A .列联表中c 的值为30,b 的值为35B .列联表中c 的值为15,b 的值为50C .根据列联表中的数据,若按95%的可靠性要求,能认为“成绩与班级有关系”D .根据列联表中的数据,若按95%的可靠性要求,不能认为“成绩与班级有关系” 解析:选C 由题意知,成绩优秀的学生数是30,成绩非优秀的学生数是75,所以c =20,b =45,选项A 、B 错误.根据列联表中的数据,得到K 2=105×(10×30-20×45)255×50×30×75≈6.109>3.841,因此有95%的把握认为“成绩与班级有关系”,选项C 正确.8.某考察团对全国10大城市进行职工人均工资水平x (千元)与居民人均消费水平y (千元)统计调查,y 与x 具有相关关系,回归方程为y ^=0.66x +1.562,若某城市居民人均消费水平为7.675千元,估计该城市人均消费额占人均工资收入的百分比约为( )A .83%B .72%C .67%D .66%解析:选A将y=7.675代入回归方程,可计算得x≈9.262,所以该城市人均消费额占人均工资收入的百分比约为7.675÷9.262≈0.83≈83%,即约为83%.9.为了研究男子的年龄与吸烟的关系,抽查了100个男子,按年龄超过和不超过40岁,吸烟量每天多于和不多于20支进行分组,如下表:则在犯错误的概率不超过__________的前提下认为吸烟量与年龄有关()A.0.001 B.0.01C.0.05 D.没有理由解析:选A K2=100×(50×25-10×15)265×35×60×40≈22.16>10.828,所以我们在犯错误的概率不超过0.001的前提下认为吸烟量与年龄有关.10.为了考察两个变量x和y之间的线性相关性,甲、乙两个同学各自独立做了10次和15次试验,并且利用线性回归方法,求得回归直线为l1和l2,已知在两人的试验中发现对变量x的观测数据的平均值恰好相等,都为s,对变量y的观测数据的平均值也恰好相等,都为t,那么下列说法正确的是()A.直线l1和直线l2有交点(s,t)B.直线l1和直线l2相交,但交点未必是点(s,t)C.直线l1和直线l2由于斜率相等,所以必定平行D.直线l1和直线l2必定重合解析:选A l1与l2都过样本中心(x,y).11.假设有两个分类变量X和Y,它们的可能取值分别为{x1,x2}和{y1,y2},其2×2列联表如下:对于以下数据,对同一样本能说明X 与Y 有关的可能性最大的一组为( ) A .a =9,b =8,c =7,d =6 B .a =9,b =7,c =6,d =8 C .a =8,b =6,c =9,d =7 D .a =6,b =7,c =8,d =9解析:选B 对于同一样本|ad -bc |越小,说明X 与Y 之间的关系越弱,|ad -bc |越大, 故检验知选B .12.两个分类变量X 和Y, 值域分别为{x 1,x 2}和{y 1,y 2}, 其样本频数分别是a =10, b =21, c +d =35. 若X 与Y 有关系的可信程度不小于97.5%, 则c 等于( )A .3B .4C .5D .6解析:选A 列2×2列联表如下:故K 2的观测值k =66×[10(35-c )-21c ]31×35×(10+c )(56-c )≥5.024. 把选项A, B, C, D 代入验证可知选A .二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中的横线上) 13.已知某车间加工零件的个数x 与所花费时间y (h)之间的线性回归方程为y ^=0.01x +0.5,则加工600个零件大约需要________h .解析:当x =600时,y ^=0.01×600+0.5=6.5. 答案:6.514.若一组观测值(x 1,y 1),(x 2,y 2),…,(x n ,y n )之间满足y i =bx i +a +e i (i =1,2,…,n ),若e i 恒为0,则R 2为________.解析:e i 恒为0,说明随机误差总为0,于是y i =y ^,故R 2=1. 答案:115.下列是关于出生男婴与女婴调查的列联表那么A =______,B =______,C ______,D =________,E =________. 解析:∵45+E =98,∴E =53,∵E +35=C ,∴C =88,∵98+D =180,∴D =82, ∵A +35=D ,∴A =47,∵45+A =B ,∴B =92. 答案:47 92 88 82 5316.已知x ,y 之间的一组数据如表,对于表中数据,甲、乙两同学给出的拟合直线分别为l 1:y =13x +1与l 2:y =12x +12,利用最小二乘法判断拟合程度更好的直线是________.解析:用y =13x +1作为拟合直线时,所得y 的实际值与y 的估计值的差的平方和为:S 1=⎝⎛⎭⎫1-432+(2-2)2+(3-3)2+⎝⎛⎭⎫4-1032+⎝⎛⎭⎫5-1132=73.用y =12x +12作为拟合直线时,所得y 的实际值与y 的估计值的差的平方和为:S 2=(1-1)2+(2-2)2+⎝⎛⎭⎫3-722+(4-4)2+⎝⎛⎭⎫5-922=12.因为S 2<S 1,故用直线l 2:y =12x +12,拟合程度更好.答案:y =12x +12三、解答题(本大题共6小题,共70分,解答时写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)对某校小学生进行心理障碍测试得如下列联表:(其中焦虑、说谎、懒惰都是心理障碍)试说明在这三种心理障碍中哪一种与性别关系最大?解:对于上述三种心理障碍分别构造三个随机变量K 21,K 22,K 23,由表中数据可得K 21=110×(5×60-25×20)230×80×25×85≈0.863,K 22=110×(10×70-20×10)230×80×20×90≈6.366,K 23=110×(15×30-15×50)230×80×65×45≈1.410.因为K 22的值最大,所以说谎与性别关系最大.18.(本小题满分12分)有人统计一个省的6个城市某一年的人均国内生产总值(人均GDP)x 和这一年各城市患白血病的儿童数量y ,其数据如下表所示:(1)画出散点图,并判断是否线性相关; (2)求y 与x 之间的回归方程. 解:(1)作散点图(如下图所示).由散点图可知y 与x 具有线性相关关系.(2)将数据代入公式,可得b ^≈23.253,a ^≈102.151. 故y 与x 之间的线性回归方程是y ^=23.253x +102.151.19.(本小题满分12分)某校在两个班进行教学方式对比试验,两个月后进行了一次检测,试验班与对照班成绩统计如下表所示(单位:人):(1)求m ,n ;(2)能否在犯错误的概率不超过0.005的情况下认为教学方式与成绩有关系? 解:(1)m =45-15=30,n =50+50=100. (2)由表中的数据,得K 2的观测值为 k =100×(35×30-15×20)250×50×55×45≈9.091.因为9.091>7.879,所以能在犯错误的概率不超过0.005的前提下认为教学方式与成绩有关系.20.(本小题满分12分)某工厂用甲、乙两种不同工艺生产一大批同一种零件,零件尺寸均在[21.7,22.3](单位:cm)之间,把零件尺寸在[21.9,22.1)的记为一等品,尺寸在[21.8,21.9)∪[22.1,22.2)的记为二等品,尺寸在[21.7,21.8)∪[22.2,22.3]的记为三等品,现从甲、乙工艺生产的零件中各随机抽取100件产品,所得零件尺寸的频率分布直方图如图所示:(1)根据上述数据完成下列2×2列联表,根据此数据你认为选择不同的工艺与生产出一等品是否有关?附:K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d)(2)以上述各种产品的频率作为各种产品发生的概率,若一等品、二等品、三等品的单件利润分别为30元、20元、15元,你认为以后该工厂应该选择哪种工艺生产该种零件?请说明理由.解:(1)2×2列联表如下K 2=200×(50×40-60×50)2110×90×100×100≈2.02<2.706,所以没有理由认为选择不同的工艺与生产出一等品有关.(2)由题知运用甲工艺生产单件产品的利润X 的分布列为X 的数学期望为E (X )=30×0.5+20×0.3+15×0.2=24,X 的方差为D (X )=(30-24)2×0.5+(20-24)2×0.3+(15-24)2×0.2=39.乙工艺生产单件产品的利润Y 的分布列为Y 的数学期望为E (Y )=30×0.6+20×0.1+15×0.3=24.5,Y 的方差为D (Y )=(30-24.5)2×0.6+(20-24.5)2×0.1+(15-24.5)2×0.3=47.25. 由上述结果可以看出D (X )<D (Y ),即甲工艺波动小,虽然E (X )<E (Y ),但相差不大,所以以后选择甲工艺.21.(本小题满分12分)为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样的方法从该地区调查了500位老年人,结果如下:附:K 2的观测值k =n (ad -bc )2(a +b )(c +d )(a +c )(b +d ).(1)估计该地区老年人中,需要志愿者提供帮助的老年人的比例;(2)在犯错误的概率不超过0.01的前提下是否可认为该地区的老年人是否需要志愿者提供帮助与性别有关?(3)根据(2)的结论,能否提出更好的调查方法来估计该地区的老年人中,需要志愿者提供帮助的老年人的比例?请说明理由.解:(1)调查的500位老人中有70位需要志愿者提供帮助,因此该地区老年人中,需要帮助的老年人的比例的估算值为70500=14%.(2)随机变量K2的观测值k=500×(40×270-30×160)2200×300×70×430≈9.967.由于9.967>6.635,因此,在犯错误的概率不超过0.01的前提下认为该地区的老年人是否需要志愿者提供帮助与性别有关.(3)由(2)的结论知,该地区的老年人是否需要帮助与性别有关,并且从样本数据中能看出该地区男性老年人与女性老年人中需要帮助的比例有明显差异,因此在调查时,先确定该地区老年人中男、女的比例,再把老年人分成男、女两层,并且采用分层抽样方法比采用简单随机抽样的方法更好.22.(本小题满分12分)某市为了对学生的数理(数学与物理)学习能力进行分析,从10 000名学生中随机抽出100位学生的数理综合学习能力等级分数(6分制)作为样本,分数频数分布如下表:(1)如果以能力等级分数大于4分作为良好的标准,从样本中任意抽取2名学生,求恰有1名学生为良好的概率.(2)统计方法中,同一组数据常用该组区间的中点值(例如区间(1,2]的中点值为1.5)作为代表:①据此,计算这100名学生数理学习能力等级分数的期望μ及标准差σ(精确到0.1);②若总体服从正态分布,以样本估计总体,估计该市这10 000名学生中数理学习能力等级在(1.9,4.1)范围内的人数.(3)从这10 000名学生中任意抽取5名同学,他们数学与物理单科学习能力等级分数如下表:①请画出上表数据的散点图;②请根据上表提供的数据,用最小二乘法求出y 关于x 的线性回归方程y ^=b ^x +a ^(附参考数据:129≈11.4).解:(1)样本中学生为良好的人数为20人.故从样本中任意抽取2名学生,则仅有1名学生为良好的概率为C 120×C 180C 2100=3299. (2)①总体数据的期望约为:μ=0.5×0.03+1.5×0.17+2.5×0.30+3.5×0.30+4.5×0.17+5.5×0.03=3.0,标准差σ=[(0.5-3)2×0.03+(1.5-3)2×0.17+(2.5-3)2×0.3+(3.5-3)2×0.3+(4.5-3)2×0.17+(5.5-3)2×0.03]12= 1.29≈1.1,②由于μ=3,σ=1.1当x ∈(1.9,4.1)时,即x ∈(μ-σ,μ+σ),故数理学习能力等级分数在(1.9,4.1)范围中的概率为0.682 6.数理习能力等级分数在(1.9,4.1)范围中的学生的人数约为10 000×0.682 6=6 826人.(3)①数据的散点图如图:②设线性回归方程为y ^=b ^x +a ^,则b ^=∑i =15x i y i -5x y ∑i =15x 2i -5x2=1.1,a ^=y -b ^x =-0.4.故回归直线方程为y ^=1.1x -0.4.第11页共11页。

2017-2018学年人教A版高中数学选修2-3检测:第三章 统

2017-2018学年人教A版高中数学选修2-3检测:第三章 统

温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。

关闭Word文档返回原板块。

阶段通关训练(三)(60分钟100分)一、选择题(每小题5分,共30分)1.船员人数关于船的吨位的线性回归方程是=95+0.06x.如果两艘轮船吨位相差1000吨.则船员平均人数相差( )A.40B.57C.60D.95【解析】选C.由题意,由于线性回归方程是=95+0.06x,两艘轮船吨位相差1000吨,所以船员平均人数的差值是0.06×1000=60.2.已知呈线性相关关系的变量x,y之间的关系如表所示,则回归直线一定过点( )A.(0.1,2.11)B.(0.2,2.85)C.(0.3,4.08)D.(0.275,4.797 5)【解析】选D.回归直线一定过点(错误!未找到引用源。

),通过表格中的数据计算出错误!未找到引用源。

,易知选D.3.(2017·青岛高二检测)某校高三年级学生学习数学的时间(x)与考试成绩(y)之间建立线性回归直线方程y=x,经计算,方程为=20-0.8x,该方程参数计算( )A.值是明显不对的B.值是明显不对的C.值和值都是不对的D.值和都是正确的【解析】选 B.一般来说,学习的时间与考试成绩基本上是正相关的,所以值应是正值.4.某个工业企业生产性固定资产价值与工业增加值数据如下(单位:万元):根据上表数据计算的相关系数为( )A.0B.-0.8973C.1.0228D.0.9918 【解析】选D.利用相关系数的计算公式即可求得.5.(2017·厦门高二检测)为了解高中生作文成绩与课外阅读量之间的关系,某研究机构随机抽取了60名高中生,通过问卷调查,得到以下数据:由以上数据计算得到K2的观测值k≈9.643,根据临界值表,以下说法正确的是( )A.没有充足的理由认为课外阅读量大与作文成绩优秀有关B.有0.5%的把握认为课外阅读量大与作文成绩优秀有关C.在犯错误的概率不超过0.001的前提下认为课外阅读量大与作文成绩优秀有关D.在犯错误的概率不超过0.005的前提下认为课外阅读量大与作文成绩优秀有关【解析】选 D.根据临界值表,9.643>7.879,在犯错误的概率不超过0.005的前提下,认为课外阅读量大与作文成绩优秀有关.6.(2017·哈尔滨高二检测)某咖啡厅为了了解热饮的销售量y(个)与气温x(℃)之间的关系,随机统计了某4天的销售量与气温,并制作了对照表:由表中数据,得线性回归方程当气温为-4℃时,预测销售量约为( ) A.68 B.66 C.72 D.70【解析】选A.因为=(18+13+10-1)=10,=(24+34+38+64)=40,所以40=-2×10+,所以=60,当x=-4时,y=-2×(-4)+60=68.二、填空题(每小题5分,共20分)7.利用独立性检验来考察两个分类变量X和Y是否有关系时,通过查阅下表来确定“X与Y有关系”的可信程度.如果K2≥5.024,那么推断“X与Y有关系”犯错误的概率不超过________.【解析】由表可知k0=5.024对应的P为0.025,即P(K2≥5.024)=0.025,从而推出“X与Y有关系”犯错误的概率不超过0.025.答案:0.0258.(2017·临沂高二检测)若施肥量x(kg)与小麦产量y(kg)之间的回归直线方程为=250+4x,当施肥量为50kg时,预计小麦产量为________.【解析】将x=50代入回归方程得=450kg.答案:450kg9.吃零食是中学生中普遍存在的现象.吃零食对学生身体发育有诸多不利影响,影响学生的健康成长.下表给出性别与吃零食的列联表:试回答吃零食与性别有关系吗?(答有或没有)________.【解析】k===≈4.722>3.841.故约在犯错误的概率不超过0.05的前提下认为“吃零食与性别”有关.答案:有10.(2017·太原高二检测)对具有线性相关关系的变量x和y,测得一组数据如下:若已求得它们的回归直线的斜率为 6.5,则这条回归直线方程为___________.【解析】由数据表得=5,=50,所以=-6.5=17.5.所以回归直线方程为=17.5+6.5x.答案:=17.5+6.5x三、解答题(共4小题,共50分)11.(12分)在一段时间内,某种商品的价格x(单位:元)和需求量y(单位:件)之间的一组数据如下:求出y 关于x 的回归直线方程,并说明拟合效果的好坏.【解析】因为错误!未找到引用源。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章统计案例过关检测(时间:45分钟,满分:100分)一、选择题(每小题6分,共48分)1.(2013广西南宁模拟)如下图所示,4个散点图中,不适合用线性回归模型拟合其中两个变量的是().答案:A解析:题图A中的点不成线性排列,故两个变量不适合线性回归模型,故选A.2.(2014重庆高考)已知变量x与y正相关,且由观测数据算得样本平均数=3,=3.5,则由该观测数据算得的线性回归方程可能是().A.=0.4x+2.3B.=2x-2.4C.=-2x+9.5D.=-0.3x+4.4答案:A解析:由变量x与y正相关,可知x的系数为正,排除C,D.而所有的回归直线必经过点(),由此排除B,故选A.3.某考察团对全国10个城市进行职工人均工资水平x(千元)与居民人均消费水平y(千元)统计调查,y与x具有相关关系,回归方程为=0.66x+1.562.若某城市居民人均消费水平为7.675(千元),估计该城市人均消费额占人均工资收入的百分比约为().A.83%B.72%C.67%D.66%答案:A解析:由已知=7.675,代入方程=0.66x+1.562,得x≈9.2621,所以百分比为≈83%.故选A.4.若两个变量的残差平方和是325,(y i-)2=923,则随机误差对预报变量的贡献率约为().A.64.8%B.60%C.35.2%D.40%答案:C解析:由题意可知随机误差对预报变量的贡献率约为≈0.352.5.下列说法:①在残差图中,残差点比较均匀地落在水平的带状区域内,说明选用的模型比较合适;②用相关指数可以刻画回归的效果,值越小说明模型的拟合效果越好;③比较两个模型的拟合效果,可以比较残差平方和的大小,残差平方和越小的模型拟合效果越好.其中说法正确的是().A.①②B.②③C.①③D.①②③答案:C解析:相关指数R2越大,说明模型拟合效果越好,故②错误.6.在吸烟与患肺病这两个分类变量的计算中,下列说法正确的是().①若K2的观测值满足K2≥6.635,我们有99%的把握认为吸烟与患肺病有关系,那么在100个吸烟的人中必有99人患有肺病;②从独立性检验可知有99%的把握认为吸烟与患病有关系时,我们说某人吸烟,那么他有99%的可能患有肺病;③从统计量中得知有95%的把握认为吸烟与患肺病有关系,是指有5%的可能性使得推断出现错误A.①B.①③C.③D.②答案:C解析:若K2≥6.635,我们有99%的把握认为吸烟与患肺病有关系,不表示有99%的可能患有肺病,也不表示在100个吸烟的人中必有99人患有肺病,故①不正确.也不表示某人吸烟,那么他有99%的可能患有肺病,故②不正确,若从统计量中求出有95%是吸烟与患肺病的比例,表示有5%的可能性使得推断出现错误,故③正确.7.下表是性别与喜欢足球与否的统计列联表,依据表中的数据,得到().喜欢足球不喜欢足球总计男40 28 68 女 5 12 17 总计45 40 85A.K2=9.564B.K2=3.564C.K2<2.706D.K2>3.841答案:D解析:由K2=,得K2的观测值k=≈4.722>3.841.8.为了解高中生作文成绩与课外阅读量之间的关系,某研究机构随机抽取了60名高中生,通过问卷调查,得到以下数据:作文成绩优秀作文成绩一般总计课外阅读量较大22 10 32课外阅读量一般8 20 28总计30 30 60由以上数据,计算得到K2的观测值k≈9.643,根据临界值表,以下说法正确的是().A.没有充足的理由认为课外阅读量大与作文成绩优秀有关B.有0.5%的把握认为课外阅读量大与作文成绩优秀有关C.有99.9%的把握认为课外阅读量大与作文成绩优秀有关D.有99.5%的把握认为课外阅读量大与作文成绩优秀有关答案:D解析:根据临界值表,9.643>7.879,在犯错误的概率不超过0.005的前提下,认为课外阅读量大与作文成绩优秀有关,即有99.5%的把握认为课外阅读量大与作文成绩优秀有关.二、填空题(每小题6分,共18分)9.对具有线性相关关系的变量x和y,由测得的一组数据已求得回归直线的斜率为6.5,且恒过(2,3)点,则这条回归直线的方程为.答案:=-10+6.5x解析:设回归直线方程为=kx+,由题知,k=6.5,且直线恒过点(2,3),将(2,3)代入直线方程,得=-10,所以回归方程为=-10+6.5x.10.若一组观测值(x1,y1),(x2,y2),…,(x n,y n)之间满足y i=bx i+a+e i(i=1,2,…,n),若e i恒为0,则R2为.答案:1解析:e i恒为0,说明随机误差总为0,于是y i=,故R2=1.11.对196个接受心脏搭桥手术的病人和196个接受血管清障手术的病人进行了3年的跟踪研究,调查他们是否又发作过心脏病,调查结果如下表所示:又发作过心脏病未发作过心脏病合计心脏搭桥手术39 157 196血管清障手术29 167 196合计68 324 392试根据上述数据计算K2=,能否得出这两种手术对病人又发作心脏病的影响有差别的结论?(填“能”或“不能”).答案:1.78不能解析:提出假设H0:两种手术对病人又发作心脏病的影响没有差别.根据列联表中的数据,可以求得K2的观测值k=≈1.78.当H0成立时,K2≈1.78,而K2<2.072的概率为0.85.所以,不能否定假设H0.也就是不能作出这两种手术对病人又发作心脏病的影响有差别的结论.三、解答题(共34分)12.(10分)为了比较注射A,B两种药物后产生的皮肤疱疹的面积,选200只家兔做试验,将这200只家兔随机地分成两组,每组100只,其中一组注射药物A,另一组注射药物B.下表1和表2分别是注射药物A和药物B后的试验结果.(疱疹面积单位:mm2)表1:注射药物A后皮肤疱疹面积的频数分布表疱疹面积[60,65)[65,70)[70,75)[75,80)频数30 40 20 10表2:注射药物B后皮肤疱疹面积的频数分布表疱疹面积[60,65)[65,70)[70,75)[75,80)[80,85)频数10 25 20 30 15完成下面2×2列联表,并回答能否有99.9%的把握认为“注射药物A后的疱疹面积与注射药物B后的疱疹面积有差异”.表3:疱疹面积小于70 mm2疱疹面积不小于70mm2总计注射药物Aa=b=注射药物Bc=d=总计n=解:疱疹面积小于70 mm2疱疹面积不小于70mm2总计注射药物Aa=70 b=30 100 注射药物Bc=35 d=65 100总计105 95 n=20 0由列联表中的数据,得K2的观测值为k=≈24.561>10.828.因此,有99.9%的把握认为“注射药物A后的疱疹面积与注射药物B后的疱疹面积有差异”.13.(12分)(2014课标全国Ⅱ高考)某地区2007年至2013年农村居民家庭人均纯收入y(单位:千元)的数据如下表:年份200720082009201201120122013年份代号t 1 2 3 4 5 6 7人均纯收入y2.93.3 3.64.4 4.85.2 5.9(1)求y关于t的线性回归方程;(2)利用(1)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.附:回归直线的斜率和截距的最小二乘估计公式分别为:.解:(1)由所给数据计算得(1+2+3+4+5+6+7)=4,(2.9+3.3+3.6+4.4+4.8+5.2+5.9)=4.3,(t i-)2=9+4+1+0+1+4+9=28,(t i-)(y i-)=(-3)×(-1.4)+(-2)×(-1)+(-1)×(-0.7)+0×0.1+1×0.5+2×0.9+3×1.6=14,=0.5,=4.3-0.5×4=2.3,所求回归方程为=0.5t+2.3.(2)由(1)知,=0.5>0,故2007年至2013年该地区农村居民家庭人均纯收入逐年增加,平均每年增加0.5千元.将2015年的年份代号t=9代入(1)中的回归方程,得=0.5×9+2.3=6.8,故预测该地区2015年农村居民家庭人均纯收入为6.8千元.14.(12分)某中学将100名高一新生分成水平相同的甲、乙两个“平行班”,每班50人.陈老师采用A,B两种不同的教学方式分别在甲、乙两个班级进行教改实验.为了了解教学效果,期末考试后,陈老师分别从两个班级中各随机抽取20名学生的成绩进行统计,作出茎叶图如下.记成绩不低于90分者为“成绩优秀”.(1)在乙班样本中的20个个体中,从不低于86分的成绩中随机抽取2个,求抽出的两个均“成绩优秀”的概率;(2)由以上统计数据填写下面列联表,并判断是否有90%的把握认为:“成绩优秀”与教学方式有关.甲班(A方式) 乙班(B方式)总计成绩优秀成绩不优秀总计(附:K2=,其中n=a+b+c+d.)P(K2≥k) 0.25 0.15 0.10 0.050.0250.010.0050.001k 1.3232.0722.7063.8415.0246.6357.87910.828解:(1)设“抽出的两个均…成绩优秀‟”为事件A.从不低于86分的成绩中随机抽取2个的基本事件个数为=15,而事件A包含的基本事件个数为=10,所以所求概率为P(A)=.(2)由已知数据得甲班(A方式) 乙班(B方式)总计成绩优秀 1 5 6成绩不优秀19 15 34总计20 20 40根据列联表中数据,得K2=≈3.137.由于3.137>2.706,所以有90%的把握认为“成绩优秀”与教学方式有关.。

相关文档
最新文档